]>
Commit | Line | Data |
---|---|---|
1 | /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. | |
2 | ||
3 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, | |
4 | 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc. | |
5 | ||
6 | Contributed by Alessandro Forin([email protected]) at CMU | |
7 | and by Per Bothner([email protected]) at U.Wisconsin. | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
22 | along with this program; if not, write to the Free Software | |
23 | Foundation, Inc., 59 Temple Place - Suite 330, | |
24 | Boston, MA 02111-1307, USA. */ | |
25 | ||
26 | #include "defs.h" | |
27 | #include "gdb_string.h" | |
28 | #include "gdb_assert.h" | |
29 | #include "frame.h" | |
30 | #include "inferior.h" | |
31 | #include "symtab.h" | |
32 | #include "value.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "language.h" | |
35 | #include "gdbcore.h" | |
36 | #include "symfile.h" | |
37 | #include "objfiles.h" | |
38 | #include "gdbtypes.h" | |
39 | #include "target.h" | |
40 | #include "arch-utils.h" | |
41 | #include "regcache.h" | |
42 | #include "osabi.h" | |
43 | #include "mips-tdep.h" | |
44 | #include "block.h" | |
45 | #include "reggroups.h" | |
46 | #include "opcode/mips.h" | |
47 | #include "elf/mips.h" | |
48 | #include "elf-bfd.h" | |
49 | #include "symcat.h" | |
50 | #include "sim-regno.h" | |
51 | #include "dis-asm.h" | |
52 | ||
53 | static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off); | |
54 | static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum); | |
55 | ||
56 | /* A useful bit in the CP0 status register (PS_REGNUM). */ | |
57 | /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */ | |
58 | #define ST0_FR (1 << 26) | |
59 | ||
60 | /* The sizes of floating point registers. */ | |
61 | ||
62 | enum | |
63 | { | |
64 | MIPS_FPU_SINGLE_REGSIZE = 4, | |
65 | MIPS_FPU_DOUBLE_REGSIZE = 8 | |
66 | }; | |
67 | ||
68 | ||
69 | static const char *mips_abi_string; | |
70 | ||
71 | static const char *mips_abi_strings[] = { | |
72 | "auto", | |
73 | "n32", | |
74 | "o32", | |
75 | "n64", | |
76 | "o64", | |
77 | "eabi32", | |
78 | "eabi64", | |
79 | NULL | |
80 | }; | |
81 | ||
82 | struct frame_extra_info | |
83 | { | |
84 | mips_extra_func_info_t proc_desc; | |
85 | int num_args; | |
86 | }; | |
87 | ||
88 | /* Various MIPS ISA options (related to stack analysis) can be | |
89 | overridden dynamically. Establish an enum/array for managing | |
90 | them. */ | |
91 | ||
92 | static const char size_auto[] = "auto"; | |
93 | static const char size_32[] = "32"; | |
94 | static const char size_64[] = "64"; | |
95 | ||
96 | static const char *size_enums[] = { | |
97 | size_auto, | |
98 | size_32, | |
99 | size_64, | |
100 | 0 | |
101 | }; | |
102 | ||
103 | /* Some MIPS boards don't support floating point while others only | |
104 | support single-precision floating-point operations. See also | |
105 | FP_REGISTER_DOUBLE. */ | |
106 | ||
107 | enum mips_fpu_type | |
108 | { | |
109 | MIPS_FPU_DOUBLE, /* Full double precision floating point. */ | |
110 | MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ | |
111 | MIPS_FPU_NONE /* No floating point. */ | |
112 | }; | |
113 | ||
114 | #ifndef MIPS_DEFAULT_FPU_TYPE | |
115 | #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE | |
116 | #endif | |
117 | static int mips_fpu_type_auto = 1; | |
118 | static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; | |
119 | ||
120 | static int mips_debug = 0; | |
121 | ||
122 | /* MIPS specific per-architecture information */ | |
123 | struct gdbarch_tdep | |
124 | { | |
125 | /* from the elf header */ | |
126 | int elf_flags; | |
127 | ||
128 | /* mips options */ | |
129 | enum mips_abi mips_abi; | |
130 | enum mips_abi found_abi; | |
131 | enum mips_fpu_type mips_fpu_type; | |
132 | int mips_last_arg_regnum; | |
133 | int mips_last_fp_arg_regnum; | |
134 | int mips_default_saved_regsize; | |
135 | int mips_fp_register_double; | |
136 | int mips_default_stack_argsize; | |
137 | int gdb_target_is_mips64; | |
138 | int default_mask_address_p; | |
139 | }; | |
140 | ||
141 | #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \ | |
142 | || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64) | |
143 | ||
144 | #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum) | |
145 | ||
146 | #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum) | |
147 | ||
148 | #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type) | |
149 | ||
150 | /* Return the currently configured (or set) saved register size. */ | |
151 | ||
152 | #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize) | |
153 | ||
154 | static const char *mips_saved_regsize_string = size_auto; | |
155 | ||
156 | #define MIPS_SAVED_REGSIZE (mips_saved_regsize()) | |
157 | ||
158 | /* MIPS16 function addresses are odd (bit 0 is set). Here are some | |
159 | functions to test, set, or clear bit 0 of addresses. */ | |
160 | ||
161 | static CORE_ADDR | |
162 | is_mips16_addr (CORE_ADDR addr) | |
163 | { | |
164 | return ((addr) & 1); | |
165 | } | |
166 | ||
167 | static CORE_ADDR | |
168 | make_mips16_addr (CORE_ADDR addr) | |
169 | { | |
170 | return ((addr) | 1); | |
171 | } | |
172 | ||
173 | static CORE_ADDR | |
174 | unmake_mips16_addr (CORE_ADDR addr) | |
175 | { | |
176 | return ((addr) & ~1); | |
177 | } | |
178 | ||
179 | /* Return the contents of register REGNUM as a signed integer. */ | |
180 | ||
181 | static LONGEST | |
182 | read_signed_register (int regnum) | |
183 | { | |
184 | void *buf = alloca (REGISTER_RAW_SIZE (regnum)); | |
185 | deprecated_read_register_gen (regnum, buf); | |
186 | return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum))); | |
187 | } | |
188 | ||
189 | static LONGEST | |
190 | read_signed_register_pid (int regnum, ptid_t ptid) | |
191 | { | |
192 | ptid_t save_ptid; | |
193 | LONGEST retval; | |
194 | ||
195 | if (ptid_equal (ptid, inferior_ptid)) | |
196 | return read_signed_register (regnum); | |
197 | ||
198 | save_ptid = inferior_ptid; | |
199 | ||
200 | inferior_ptid = ptid; | |
201 | ||
202 | retval = read_signed_register (regnum); | |
203 | ||
204 | inferior_ptid = save_ptid; | |
205 | ||
206 | return retval; | |
207 | } | |
208 | ||
209 | /* Return the MIPS ABI associated with GDBARCH. */ | |
210 | enum mips_abi | |
211 | mips_abi (struct gdbarch *gdbarch) | |
212 | { | |
213 | return gdbarch_tdep (gdbarch)->mips_abi; | |
214 | } | |
215 | ||
216 | static unsigned int | |
217 | mips_saved_regsize (void) | |
218 | { | |
219 | if (mips_saved_regsize_string == size_auto) | |
220 | return MIPS_DEFAULT_SAVED_REGSIZE; | |
221 | else if (mips_saved_regsize_string == size_64) | |
222 | return 8; | |
223 | else /* if (mips_saved_regsize_string == size_32) */ | |
224 | return 4; | |
225 | } | |
226 | ||
227 | /* Functions for setting and testing a bit in a minimal symbol that | |
228 | marks it as 16-bit function. The MSB of the minimal symbol's | |
229 | "info" field is used for this purpose. This field is already | |
230 | being used to store the symbol size, so the assumption is | |
231 | that the symbol size cannot exceed 2^31. | |
232 | ||
233 | ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special", | |
234 | i.e. refers to a 16-bit function, and sets a "special" bit in a | |
235 | minimal symbol to mark it as a 16-bit function | |
236 | ||
237 | MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol | |
238 | MSYMBOL_SIZE returns the size of the minimal symbol, i.e. | |
239 | the "info" field with the "special" bit masked out */ | |
240 | ||
241 | static void | |
242 | mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym) | |
243 | { | |
244 | if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16) | |
245 | { | |
246 | MSYMBOL_INFO (msym) = (char *) | |
247 | (((long) MSYMBOL_INFO (msym)) | 0x80000000); | |
248 | SYMBOL_VALUE_ADDRESS (msym) |= 1; | |
249 | } | |
250 | } | |
251 | ||
252 | static int | |
253 | msymbol_is_special (struct minimal_symbol *msym) | |
254 | { | |
255 | return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0); | |
256 | } | |
257 | ||
258 | static long | |
259 | msymbol_size (struct minimal_symbol *msym) | |
260 | { | |
261 | return ((long) MSYMBOL_INFO (msym) & 0x7fffffff); | |
262 | } | |
263 | ||
264 | /* XFER a value from the big/little/left end of the register. | |
265 | Depending on the size of the value it might occupy the entire | |
266 | register or just part of it. Make an allowance for this, aligning | |
267 | things accordingly. */ | |
268 | ||
269 | static void | |
270 | mips_xfer_register (struct regcache *regcache, int reg_num, int length, | |
271 | enum bfd_endian endian, bfd_byte *in, const bfd_byte *out, | |
272 | int buf_offset) | |
273 | { | |
274 | bfd_byte reg[MAX_REGISTER_SIZE]; | |
275 | int reg_offset = 0; | |
276 | gdb_assert (reg_num >= NUM_REGS); | |
277 | /* Need to transfer the left or right part of the register, based on | |
278 | the targets byte order. */ | |
279 | switch (endian) | |
280 | { | |
281 | case BFD_ENDIAN_BIG: | |
282 | reg_offset = REGISTER_RAW_SIZE (reg_num) - length; | |
283 | break; | |
284 | case BFD_ENDIAN_LITTLE: | |
285 | reg_offset = 0; | |
286 | break; | |
287 | case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */ | |
288 | reg_offset = 0; | |
289 | break; | |
290 | default: | |
291 | internal_error (__FILE__, __LINE__, "bad switch"); | |
292 | } | |
293 | if (mips_debug) | |
294 | fprintf_unfiltered (gdb_stderr, | |
295 | "xfer $%d, reg offset %d, buf offset %d, length %d, ", | |
296 | reg_num, reg_offset, buf_offset, length); | |
297 | if (mips_debug && out != NULL) | |
298 | { | |
299 | int i; | |
300 | fprintf_unfiltered (gdb_stdlog, "out "); | |
301 | for (i = 0; i < length; i++) | |
302 | fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]); | |
303 | } | |
304 | if (in != NULL) | |
305 | regcache_cooked_read_part (regcache, reg_num, reg_offset, length, in + buf_offset); | |
306 | if (out != NULL) | |
307 | regcache_cooked_write_part (regcache, reg_num, reg_offset, length, out + buf_offset); | |
308 | if (mips_debug && in != NULL) | |
309 | { | |
310 | int i; | |
311 | fprintf_unfiltered (gdb_stdlog, "in "); | |
312 | for (i = 0; i < length; i++) | |
313 | fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]); | |
314 | } | |
315 | if (mips_debug) | |
316 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
317 | } | |
318 | ||
319 | /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU | |
320 | compatiblity mode. A return value of 1 means that we have | |
321 | physical 64-bit registers, but should treat them as 32-bit registers. */ | |
322 | ||
323 | static int | |
324 | mips2_fp_compat (void) | |
325 | { | |
326 | /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not | |
327 | meaningful. */ | |
328 | if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4) | |
329 | return 0; | |
330 | ||
331 | #if 0 | |
332 | /* FIXME drow 2002-03-10: This is disabled until we can do it consistently, | |
333 | in all the places we deal with FP registers. PR gdb/413. */ | |
334 | /* Otherwise check the FR bit in the status register - it controls | |
335 | the FP compatiblity mode. If it is clear we are in compatibility | |
336 | mode. */ | |
337 | if ((read_register (PS_REGNUM) & ST0_FR) == 0) | |
338 | return 1; | |
339 | #endif | |
340 | ||
341 | return 0; | |
342 | } | |
343 | ||
344 | /* Indicate that the ABI makes use of double-precision registers | |
345 | provided by the FPU (rather than combining pairs of registers to | |
346 | form double-precision values). Do not use "TARGET_IS_MIPS64" to | |
347 | determine if the ABI is using double-precision registers. See also | |
348 | MIPS_FPU_TYPE. */ | |
349 | #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double) | |
350 | ||
351 | /* The amount of space reserved on the stack for registers. This is | |
352 | different to MIPS_SAVED_REGSIZE as it determines the alignment of | |
353 | data allocated after the registers have run out. */ | |
354 | ||
355 | #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize) | |
356 | ||
357 | #define MIPS_STACK_ARGSIZE (mips_stack_argsize ()) | |
358 | ||
359 | static const char *mips_stack_argsize_string = size_auto; | |
360 | ||
361 | static unsigned int | |
362 | mips_stack_argsize (void) | |
363 | { | |
364 | if (mips_stack_argsize_string == size_auto) | |
365 | return MIPS_DEFAULT_STACK_ARGSIZE; | |
366 | else if (mips_stack_argsize_string == size_64) | |
367 | return 8; | |
368 | else /* if (mips_stack_argsize_string == size_32) */ | |
369 | return 4; | |
370 | } | |
371 | ||
372 | #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0) | |
373 | ||
374 | #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p) | |
375 | ||
376 | #define VM_MIN_ADDRESS (CORE_ADDR)0x400000 | |
377 | ||
378 | static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR, | |
379 | struct frame_info *, int); | |
380 | ||
381 | static CORE_ADDR heuristic_proc_start (CORE_ADDR); | |
382 | ||
383 | static CORE_ADDR read_next_frame_reg (struct frame_info *, int); | |
384 | ||
385 | static int mips_set_processor_type (char *); | |
386 | ||
387 | static void mips_show_processor_type_command (char *, int); | |
388 | ||
389 | static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *); | |
390 | ||
391 | static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc, | |
392 | struct frame_info *next_frame, | |
393 | int cur_frame); | |
394 | ||
395 | static CORE_ADDR after_prologue (CORE_ADDR pc, | |
396 | mips_extra_func_info_t proc_desc); | |
397 | ||
398 | static struct type *mips_float_register_type (void); | |
399 | static struct type *mips_double_register_type (void); | |
400 | ||
401 | /* This value is the model of MIPS in use. It is derived from the value | |
402 | of the PrID register. */ | |
403 | ||
404 | char *mips_processor_type; | |
405 | ||
406 | char *tmp_mips_processor_type; | |
407 | ||
408 | /* The list of available "set mips " and "show mips " commands */ | |
409 | ||
410 | static struct cmd_list_element *setmipscmdlist = NULL; | |
411 | static struct cmd_list_element *showmipscmdlist = NULL; | |
412 | ||
413 | /* A set of original names, to be used when restoring back to generic | |
414 | registers from a specific set. */ | |
415 | static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES; | |
416 | ||
417 | /* Integer registers 0 thru 31 are handled explicitly by | |
418 | mips_register_name(). Processor specific registers 32 and above | |
419 | are listed in the sets of register names assigned to | |
420 | mips_processor_reg_names. */ | |
421 | static char **mips_processor_reg_names = mips_generic_reg_names; | |
422 | ||
423 | /* Return the name of the register corresponding to REGNO. */ | |
424 | static const char * | |
425 | mips_register_name (int regno) | |
426 | { | |
427 | /* GPR names for all ABIs other than n32/n64. */ | |
428 | static char *mips_gpr_names[] = { | |
429 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
430 | "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", | |
431 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
432 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", | |
433 | }; | |
434 | ||
435 | /* GPR names for n32 and n64 ABIs. */ | |
436 | static char *mips_n32_n64_gpr_names[] = { | |
437 | "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", | |
438 | "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3", | |
439 | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | |
440 | "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra" | |
441 | }; | |
442 | ||
443 | enum mips_abi abi = mips_abi (current_gdbarch); | |
444 | ||
445 | /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then | |
446 | don't make the raw register names visible. */ | |
447 | int rawnum = regno % NUM_REGS; | |
448 | if (regno < NUM_REGS) | |
449 | return ""; | |
450 | ||
451 | /* The MIPS integer registers are always mapped from 0 to 31. The | |
452 | names of the registers (which reflects the conventions regarding | |
453 | register use) vary depending on the ABI. */ | |
454 | if (0 <= rawnum && rawnum < 32) | |
455 | { | |
456 | if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64) | |
457 | return mips_n32_n64_gpr_names[rawnum]; | |
458 | else | |
459 | return mips_gpr_names[rawnum]; | |
460 | } | |
461 | else if (32 <= rawnum && rawnum < NUM_REGS) | |
462 | return mips_processor_reg_names[rawnum - 32]; | |
463 | else | |
464 | internal_error (__FILE__, __LINE__, | |
465 | "mips_register_name: bad register number %d", rawnum); | |
466 | } | |
467 | ||
468 | /* *INDENT-OFF* */ | |
469 | /* Names of IDT R3041 registers. */ | |
470 | ||
471 | char *mips_r3041_reg_names[] = { | |
472 | "sr", "lo", "hi", "bad", "cause","pc", | |
473 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
474 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
475 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
476 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
477 | "fsr", "fir", "",/*"fp"*/ "", | |
478 | "", "", "bus", "ccfg", "", "", "", "", | |
479 | "", "", "port", "cmp", "", "", "epc", "prid", | |
480 | }; | |
481 | ||
482 | /* Names of IDT R3051 registers. */ | |
483 | ||
484 | char *mips_r3051_reg_names[] = { | |
485 | "sr", "lo", "hi", "bad", "cause","pc", | |
486 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
487 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
488 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
489 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
490 | "fsr", "fir", ""/*"fp"*/, "", | |
491 | "inx", "rand", "elo", "", "ctxt", "", "", "", | |
492 | "", "", "ehi", "", "", "", "epc", "prid", | |
493 | }; | |
494 | ||
495 | /* Names of IDT R3081 registers. */ | |
496 | ||
497 | char *mips_r3081_reg_names[] = { | |
498 | "sr", "lo", "hi", "bad", "cause","pc", | |
499 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
500 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
501 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
502 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
503 | "fsr", "fir", ""/*"fp"*/, "", | |
504 | "inx", "rand", "elo", "cfg", "ctxt", "", "", "", | |
505 | "", "", "ehi", "", "", "", "epc", "prid", | |
506 | }; | |
507 | ||
508 | /* Names of LSI 33k registers. */ | |
509 | ||
510 | char *mips_lsi33k_reg_names[] = { | |
511 | "epc", "hi", "lo", "sr", "cause","badvaddr", | |
512 | "dcic", "bpc", "bda", "", "", "", "", "", | |
513 | "", "", "", "", "", "", "", "", | |
514 | "", "", "", "", "", "", "", "", | |
515 | "", "", "", "", "", "", "", "", | |
516 | "", "", "", "", | |
517 | "", "", "", "", "", "", "", "", | |
518 | "", "", "", "", "", "", "", "", | |
519 | }; | |
520 | ||
521 | struct { | |
522 | char *name; | |
523 | char **regnames; | |
524 | } mips_processor_type_table[] = { | |
525 | { "generic", mips_generic_reg_names }, | |
526 | { "r3041", mips_r3041_reg_names }, | |
527 | { "r3051", mips_r3051_reg_names }, | |
528 | { "r3071", mips_r3081_reg_names }, | |
529 | { "r3081", mips_r3081_reg_names }, | |
530 | { "lsi33k", mips_lsi33k_reg_names }, | |
531 | { NULL, NULL } | |
532 | }; | |
533 | /* *INDENT-ON* */ | |
534 | ||
535 | /* Return the groups that a MIPS register can be categorised into. */ | |
536 | ||
537 | static int | |
538 | mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
539 | struct reggroup *reggroup) | |
540 | { | |
541 | int vector_p; | |
542 | int float_p; | |
543 | int raw_p; | |
544 | int rawnum = regnum % NUM_REGS; | |
545 | int pseudo = regnum / NUM_REGS; | |
546 | if (reggroup == all_reggroup) | |
547 | return pseudo; | |
548 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
549 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
550 | /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs | |
551 | (gdbarch), as not all architectures are multi-arch. */ | |
552 | raw_p = rawnum < NUM_REGS; | |
553 | if (REGISTER_NAME (regnum) == NULL | |
554 | || REGISTER_NAME (regnum)[0] == '\0') | |
555 | return 0; | |
556 | if (reggroup == float_reggroup) | |
557 | return float_p && pseudo; | |
558 | if (reggroup == vector_reggroup) | |
559 | return vector_p && pseudo; | |
560 | if (reggroup == general_reggroup) | |
561 | return (!vector_p && !float_p) && pseudo; | |
562 | /* Save the pseudo registers. Need to make certain that any code | |
563 | extracting register values from a saved register cache also uses | |
564 | pseudo registers. */ | |
565 | if (reggroup == save_reggroup) | |
566 | return raw_p && pseudo; | |
567 | /* Restore the same pseudo register. */ | |
568 | if (reggroup == restore_reggroup) | |
569 | return raw_p && pseudo; | |
570 | return 0; | |
571 | } | |
572 | ||
573 | /* Map the symbol table registers which live in the range [1 * | |
574 | NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw | |
575 | registers. */ | |
576 | ||
577 | static void | |
578 | mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
579 | int cookednum, void *buf) | |
580 | { | |
581 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); | |
582 | return regcache_raw_read (regcache, cookednum % NUM_REGS, buf); | |
583 | } | |
584 | ||
585 | static void | |
586 | mips_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
587 | int cookednum, const void *buf) | |
588 | { | |
589 | gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS); | |
590 | return regcache_raw_write (regcache, cookednum % NUM_REGS, buf); | |
591 | } | |
592 | ||
593 | /* Table to translate MIPS16 register field to actual register number. */ | |
594 | static int mips16_to_32_reg[8] = | |
595 | {16, 17, 2, 3, 4, 5, 6, 7}; | |
596 | ||
597 | /* Heuristic_proc_start may hunt through the text section for a long | |
598 | time across a 2400 baud serial line. Allows the user to limit this | |
599 | search. */ | |
600 | ||
601 | static unsigned int heuristic_fence_post = 0; | |
602 | ||
603 | #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ | |
604 | #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ | |
605 | #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) | |
606 | #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) | |
607 | #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) | |
608 | #define PROC_REG_MASK(proc) ((proc)->pdr.regmask) | |
609 | #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) | |
610 | #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) | |
611 | #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) | |
612 | #define PROC_PC_REG(proc) ((proc)->pdr.pcreg) | |
613 | /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long, | |
614 | this will corrupt pdr.iline. Fortunately we don't use it. */ | |
615 | #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) | |
616 | #define _PROC_MAGIC_ 0x0F0F0F0F | |
617 | #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) | |
618 | #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) | |
619 | ||
620 | struct linked_proc_info | |
621 | { | |
622 | struct mips_extra_func_info info; | |
623 | struct linked_proc_info *next; | |
624 | } | |
625 | *linked_proc_desc_table = NULL; | |
626 | ||
627 | void | |
628 | mips_print_extra_frame_info (struct frame_info *fi) | |
629 | { | |
630 | if (fi | |
631 | && get_frame_extra_info (fi) | |
632 | && get_frame_extra_info (fi)->proc_desc | |
633 | && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS) | |
634 | printf_filtered (" frame pointer is at %s+%s\n", | |
635 | REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg), | |
636 | paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset)); | |
637 | } | |
638 | ||
639 | /* Number of bytes of storage in the actual machine representation for | |
640 | register N. NOTE: This indirectly defines the register size | |
641 | transfered by the GDB protocol. */ | |
642 | ||
643 | static int mips64_transfers_32bit_regs_p = 0; | |
644 | ||
645 | static int | |
646 | mips_register_raw_size (int regnum) | |
647 | { | |
648 | gdb_assert (regnum >= 0); | |
649 | if (regnum < NUM_REGS) | |
650 | { | |
651 | /* For compatibility with old code, implemnt the broken register raw | |
652 | size map for the raw registers. | |
653 | ||
654 | NOTE: cagney/2003-06-15: This is so bogus. The register's | |
655 | raw size is changing according to the ABI | |
656 | (FP_REGISTER_DOUBLE). Also, GDB's protocol is defined by a | |
657 | combination of REGISTER_RAW_SIZE and DEPRECATED_REGISTER_BYTE. */ | |
658 | if (mips64_transfers_32bit_regs_p) | |
659 | return REGISTER_VIRTUAL_SIZE (regnum); | |
660 | else if (regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32 | |
661 | && FP_REGISTER_DOUBLE) | |
662 | /* For MIPS_ABI_N32 (for example) we need 8 byte floating point | |
663 | registers. */ | |
664 | return 8; | |
665 | else | |
666 | return MIPS_REGSIZE; | |
667 | } | |
668 | else if (regnum < 2 * NUM_REGS) | |
669 | { | |
670 | /* For the moment map [NUM_REGS .. 2*NUM_REGS) onto the same raw | |
671 | registers, but always return the virtual size. */ | |
672 | int rawnum = regnum % NUM_REGS; | |
673 | return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, rawnum)); | |
674 | } | |
675 | else | |
676 | internal_error (__FILE__, __LINE__, "Register %d out of range", regnum); | |
677 | } | |
678 | ||
679 | /* Register offset in a buffer for each register. | |
680 | ||
681 | FIXME: cagney/2003-06-15: This is so bogus. Instead REGISTER_TYPE | |
682 | should strictly return the layout of the buffer. Unfortunatly | |
683 | remote.c and the MIPS have come to rely on a custom layout that | |
684 | doesn't 1:1 map onto the register type. */ | |
685 | ||
686 | static int | |
687 | mips_register_byte (int regnum) | |
688 | { | |
689 | gdb_assert (regnum >= 0); | |
690 | if (regnum < NUM_REGS) | |
691 | /* Pick up the relevant per-tm file register byte method. */ | |
692 | return MIPS_REGISTER_BYTE (regnum); | |
693 | else if (regnum < 2 * NUM_REGS) | |
694 | { | |
695 | int reg; | |
696 | int byte; | |
697 | /* Start with the end of the raw register buffer - assum that | |
698 | MIPS_REGISTER_BYTE (NUM_REGS) returns that end. */ | |
699 | byte = MIPS_REGISTER_BYTE (NUM_REGS); | |
700 | /* Add space for all the proceeding registers based on their | |
701 | real size. */ | |
702 | for (reg = NUM_REGS; reg < regnum; reg++) | |
703 | byte += TYPE_LENGTH (gdbarch_register_type (current_gdbarch, | |
704 | (reg % NUM_REGS))); | |
705 | return byte; | |
706 | } | |
707 | else | |
708 | internal_error (__FILE__, __LINE__, "Register %d out of range", regnum); | |
709 | } | |
710 | ||
711 | /* Convert between RAW and VIRTUAL registers. The RAW register size | |
712 | defines the remote-gdb packet. */ | |
713 | ||
714 | static int | |
715 | mips_register_convertible (int reg_nr) | |
716 | { | |
717 | if (mips64_transfers_32bit_regs_p) | |
718 | return 0; | |
719 | else | |
720 | return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr)); | |
721 | } | |
722 | ||
723 | static void | |
724 | mips_register_convert_to_virtual (int n, struct type *virtual_type, | |
725 | char *raw_buf, char *virt_buf) | |
726 | { | |
727 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
728 | memcpy (virt_buf, | |
729 | raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
730 | TYPE_LENGTH (virtual_type)); | |
731 | else | |
732 | memcpy (virt_buf, | |
733 | raw_buf, | |
734 | TYPE_LENGTH (virtual_type)); | |
735 | } | |
736 | ||
737 | static void | |
738 | mips_register_convert_to_raw (struct type *virtual_type, int n, | |
739 | const char *virt_buf, char *raw_buf) | |
740 | { | |
741 | memset (raw_buf, 0, REGISTER_RAW_SIZE (n)); | |
742 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
743 | memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)), | |
744 | virt_buf, | |
745 | TYPE_LENGTH (virtual_type)); | |
746 | else | |
747 | memcpy (raw_buf, | |
748 | virt_buf, | |
749 | TYPE_LENGTH (virtual_type)); | |
750 | } | |
751 | ||
752 | static int | |
753 | mips_convert_register_p (int regnum, struct type *type) | |
754 | { | |
755 | return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
756 | && REGISTER_RAW_SIZE (regnum) == 4 | |
757 | && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32 | |
758 | && TYPE_CODE(type) == TYPE_CODE_FLT | |
759 | && TYPE_LENGTH(type) == 8); | |
760 | } | |
761 | ||
762 | static void | |
763 | mips_register_to_value (struct frame_info *frame, int regnum, | |
764 | struct type *type, void *to) | |
765 | { | |
766 | frame_read_register (frame, regnum + 0, (char *) to + 4); | |
767 | frame_read_register (frame, regnum + 1, (char *) to + 0); | |
768 | } | |
769 | ||
770 | static void | |
771 | mips_value_to_register (struct frame_info *frame, int regnum, | |
772 | struct type *type, const void *from) | |
773 | { | |
774 | put_frame_register (frame, regnum + 0, (const char *) from + 4); | |
775 | put_frame_register (frame, regnum + 1, (const char *) from + 0); | |
776 | } | |
777 | ||
778 | /* Return the GDB type object for the "standard" data type of data in | |
779 | register REG. */ | |
780 | ||
781 | static struct type * | |
782 | mips_register_type (struct gdbarch *gdbarch, int regnum) | |
783 | { | |
784 | /* For moment, map [NUM_REGS .. 2*NUM_REGS) onto the same raw | |
785 | registers. Even return the same type. */ | |
786 | int rawnum = regnum % NUM_REGS; | |
787 | gdb_assert (rawnum >= 0 && rawnum < NUM_REGS); | |
788 | #ifdef MIPS_REGISTER_TYPE | |
789 | return MIPS_REGISTER_TYPE (rawnum); | |
790 | #else | |
791 | if (FP0_REGNUM <= rawnum && rawnum < FP0_REGNUM + 32) | |
792 | { | |
793 | /* Floating point registers... */ | |
794 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
795 | return builtin_type_ieee_double_big; | |
796 | else | |
797 | return builtin_type_ieee_double_little; | |
798 | } | |
799 | else if (rawnum == PS_REGNUM /* CR */) | |
800 | return builtin_type_uint32; | |
801 | else if (FCRCS_REGNUM <= rawnum && rawnum <= LAST_EMBED_REGNUM) | |
802 | return builtin_type_uint32; | |
803 | else | |
804 | { | |
805 | /* Everything else... | |
806 | Return type appropriate for width of register. */ | |
807 | if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64)) | |
808 | return builtin_type_uint64; | |
809 | else | |
810 | return builtin_type_uint32; | |
811 | } | |
812 | #endif | |
813 | } | |
814 | ||
815 | /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */ | |
816 | ||
817 | static CORE_ADDR | |
818 | mips_read_sp (void) | |
819 | { | |
820 | return read_signed_register (SP_REGNUM); | |
821 | } | |
822 | ||
823 | /* Should the upper word of 64-bit addresses be zeroed? */ | |
824 | enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO; | |
825 | ||
826 | static int | |
827 | mips_mask_address_p (void) | |
828 | { | |
829 | switch (mask_address_var) | |
830 | { | |
831 | case AUTO_BOOLEAN_TRUE: | |
832 | return 1; | |
833 | case AUTO_BOOLEAN_FALSE: | |
834 | return 0; | |
835 | break; | |
836 | case AUTO_BOOLEAN_AUTO: | |
837 | return MIPS_DEFAULT_MASK_ADDRESS_P; | |
838 | default: | |
839 | internal_error (__FILE__, __LINE__, | |
840 | "mips_mask_address_p: bad switch"); | |
841 | return -1; | |
842 | } | |
843 | } | |
844 | ||
845 | static void | |
846 | show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c) | |
847 | { | |
848 | switch (mask_address_var) | |
849 | { | |
850 | case AUTO_BOOLEAN_TRUE: | |
851 | printf_filtered ("The 32 bit mips address mask is enabled\n"); | |
852 | break; | |
853 | case AUTO_BOOLEAN_FALSE: | |
854 | printf_filtered ("The 32 bit mips address mask is disabled\n"); | |
855 | break; | |
856 | case AUTO_BOOLEAN_AUTO: | |
857 | printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n", | |
858 | mips_mask_address_p () ? "enabled" : "disabled"); | |
859 | break; | |
860 | default: | |
861 | internal_error (__FILE__, __LINE__, | |
862 | "show_mask_address: bad switch"); | |
863 | break; | |
864 | } | |
865 | } | |
866 | ||
867 | /* Should call_function allocate stack space for a struct return? */ | |
868 | ||
869 | static int | |
870 | mips_eabi_use_struct_convention (int gcc_p, struct type *type) | |
871 | { | |
872 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); | |
873 | } | |
874 | ||
875 | static int | |
876 | mips_n32n64_use_struct_convention (int gcc_p, struct type *type) | |
877 | { | |
878 | return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE); | |
879 | } | |
880 | ||
881 | /* Should call_function pass struct by reference? | |
882 | For each architecture, structs are passed either by | |
883 | value or by reference, depending on their size. */ | |
884 | ||
885 | static int | |
886 | mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type) | |
887 | { | |
888 | enum type_code typecode = TYPE_CODE (check_typedef (type)); | |
889 | int len = TYPE_LENGTH (check_typedef (type)); | |
890 | ||
891 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
892 | return (len > MIPS_SAVED_REGSIZE); | |
893 | ||
894 | return 0; | |
895 | } | |
896 | ||
897 | static int | |
898 | mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type) | |
899 | { | |
900 | return 0; /* Assumption: N32/N64 never passes struct by ref. */ | |
901 | } | |
902 | ||
903 | static int | |
904 | mips_o32_reg_struct_has_addr (int gcc_p, struct type *type) | |
905 | { | |
906 | return 0; /* Assumption: O32/O64 never passes struct by ref. */ | |
907 | } | |
908 | ||
909 | /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ | |
910 | ||
911 | static int | |
912 | pc_is_mips16 (bfd_vma memaddr) | |
913 | { | |
914 | struct minimal_symbol *sym; | |
915 | ||
916 | /* If bit 0 of the address is set, assume this is a MIPS16 address. */ | |
917 | if (is_mips16_addr (memaddr)) | |
918 | return 1; | |
919 | ||
920 | /* A flag indicating that this is a MIPS16 function is stored by elfread.c in | |
921 | the high bit of the info field. Use this to decide if the function is | |
922 | MIPS16 or normal MIPS. */ | |
923 | sym = lookup_minimal_symbol_by_pc (memaddr); | |
924 | if (sym) | |
925 | return msymbol_is_special (sym); | |
926 | else | |
927 | return 0; | |
928 | } | |
929 | ||
930 | /* MIPS believes that the PC has a sign extended value. Perhaphs the | |
931 | all registers should be sign extended for simplicity? */ | |
932 | ||
933 | static CORE_ADDR | |
934 | mips_read_pc (ptid_t ptid) | |
935 | { | |
936 | return read_signed_register_pid (PC_REGNUM, ptid); | |
937 | } | |
938 | ||
939 | /* This returns the PC of the first inst after the prologue. If we can't | |
940 | find the prologue, then return 0. */ | |
941 | ||
942 | static CORE_ADDR | |
943 | after_prologue (CORE_ADDR pc, | |
944 | mips_extra_func_info_t proc_desc) | |
945 | { | |
946 | struct symtab_and_line sal; | |
947 | CORE_ADDR func_addr, func_end; | |
948 | ||
949 | /* Pass cur_frame == 0 to find_proc_desc. We should not attempt | |
950 | to read the stack pointer from the current machine state, because | |
951 | the current machine state has nothing to do with the information | |
952 | we need from the proc_desc; and the process may or may not exist | |
953 | right now. */ | |
954 | if (!proc_desc) | |
955 | proc_desc = find_proc_desc (pc, NULL, 0); | |
956 | ||
957 | if (proc_desc) | |
958 | { | |
959 | /* If function is frameless, then we need to do it the hard way. I | |
960 | strongly suspect that frameless always means prologueless... */ | |
961 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
962 | && PROC_FRAME_OFFSET (proc_desc) == 0) | |
963 | return 0; | |
964 | } | |
965 | ||
966 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
967 | return 0; /* Unknown */ | |
968 | ||
969 | sal = find_pc_line (func_addr, 0); | |
970 | ||
971 | if (sal.end < func_end) | |
972 | return sal.end; | |
973 | ||
974 | /* The line after the prologue is after the end of the function. In this | |
975 | case, tell the caller to find the prologue the hard way. */ | |
976 | ||
977 | return 0; | |
978 | } | |
979 | ||
980 | /* Decode a MIPS32 instruction that saves a register in the stack, and | |
981 | set the appropriate bit in the general register mask or float register mask | |
982 | to indicate which register is saved. This is a helper function | |
983 | for mips_find_saved_regs. */ | |
984 | ||
985 | static void | |
986 | mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask, | |
987 | unsigned long *float_mask) | |
988 | { | |
989 | int reg; | |
990 | ||
991 | if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ | |
992 | || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ | |
993 | || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ | |
994 | { | |
995 | /* It might be possible to use the instruction to | |
996 | find the offset, rather than the code below which | |
997 | is based on things being in a certain order in the | |
998 | frame, but figuring out what the instruction's offset | |
999 | is relative to might be a little tricky. */ | |
1000 | reg = (inst & 0x001f0000) >> 16; | |
1001 | *gen_mask |= (1 << reg); | |
1002 | } | |
1003 | else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ | |
1004 | || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ | |
1005 | || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */ | |
1006 | ||
1007 | { | |
1008 | reg = ((inst & 0x001f0000) >> 16); | |
1009 | *float_mask |= (1 << reg); | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | /* Decode a MIPS16 instruction that saves a register in the stack, and | |
1014 | set the appropriate bit in the general register or float register mask | |
1015 | to indicate which register is saved. This is a helper function | |
1016 | for mips_find_saved_regs. */ | |
1017 | ||
1018 | static void | |
1019 | mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask) | |
1020 | { | |
1021 | if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
1022 | { | |
1023 | int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
1024 | *gen_mask |= (1 << reg); | |
1025 | } | |
1026 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
1027 | { | |
1028 | int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
1029 | *gen_mask |= (1 << reg); | |
1030 | } | |
1031 | else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ | |
1032 | || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
1033 | *gen_mask |= (1 << RA_REGNUM); | |
1034 | } | |
1035 | ||
1036 | ||
1037 | /* Fetch and return instruction from the specified location. If the PC | |
1038 | is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ | |
1039 | ||
1040 | static t_inst | |
1041 | mips_fetch_instruction (CORE_ADDR addr) | |
1042 | { | |
1043 | char buf[MIPS_INSTLEN]; | |
1044 | int instlen; | |
1045 | int status; | |
1046 | ||
1047 | if (pc_is_mips16 (addr)) | |
1048 | { | |
1049 | instlen = MIPS16_INSTLEN; | |
1050 | addr = unmake_mips16_addr (addr); | |
1051 | } | |
1052 | else | |
1053 | instlen = MIPS_INSTLEN; | |
1054 | status = read_memory_nobpt (addr, buf, instlen); | |
1055 | if (status) | |
1056 | memory_error (status, addr); | |
1057 | return extract_unsigned_integer (buf, instlen); | |
1058 | } | |
1059 | ||
1060 | ||
1061 | /* These the fields of 32 bit mips instructions */ | |
1062 | #define mips32_op(x) (x >> 26) | |
1063 | #define itype_op(x) (x >> 26) | |
1064 | #define itype_rs(x) ((x >> 21) & 0x1f) | |
1065 | #define itype_rt(x) ((x >> 16) & 0x1f) | |
1066 | #define itype_immediate(x) (x & 0xffff) | |
1067 | ||
1068 | #define jtype_op(x) (x >> 26) | |
1069 | #define jtype_target(x) (x & 0x03ffffff) | |
1070 | ||
1071 | #define rtype_op(x) (x >> 26) | |
1072 | #define rtype_rs(x) ((x >> 21) & 0x1f) | |
1073 | #define rtype_rt(x) ((x >> 16) & 0x1f) | |
1074 | #define rtype_rd(x) ((x >> 11) & 0x1f) | |
1075 | #define rtype_shamt(x) ((x >> 6) & 0x1f) | |
1076 | #define rtype_funct(x) (x & 0x3f) | |
1077 | ||
1078 | static CORE_ADDR | |
1079 | mips32_relative_offset (unsigned long inst) | |
1080 | { | |
1081 | long x; | |
1082 | x = itype_immediate (inst); | |
1083 | if (x & 0x8000) /* sign bit set */ | |
1084 | { | |
1085 | x |= 0xffff0000; /* sign extension */ | |
1086 | } | |
1087 | x = x << 2; | |
1088 | return x; | |
1089 | } | |
1090 | ||
1091 | /* Determine whate to set a single step breakpoint while considering | |
1092 | branch prediction */ | |
1093 | static CORE_ADDR | |
1094 | mips32_next_pc (CORE_ADDR pc) | |
1095 | { | |
1096 | unsigned long inst; | |
1097 | int op; | |
1098 | inst = mips_fetch_instruction (pc); | |
1099 | if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */ | |
1100 | { | |
1101 | if (itype_op (inst) >> 2 == 5) | |
1102 | /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */ | |
1103 | { | |
1104 | op = (itype_op (inst) & 0x03); | |
1105 | switch (op) | |
1106 | { | |
1107 | case 0: /* BEQL */ | |
1108 | goto equal_branch; | |
1109 | case 1: /* BNEL */ | |
1110 | goto neq_branch; | |
1111 | case 2: /* BLEZL */ | |
1112 | goto less_branch; | |
1113 | case 3: /* BGTZ */ | |
1114 | goto greater_branch; | |
1115 | default: | |
1116 | pc += 4; | |
1117 | } | |
1118 | } | |
1119 | else if (itype_op (inst) == 17 && itype_rs (inst) == 8) | |
1120 | /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */ | |
1121 | { | |
1122 | int tf = itype_rt (inst) & 0x01; | |
1123 | int cnum = itype_rt (inst) >> 2; | |
1124 | int fcrcs = read_signed_register (FCRCS_REGNUM); | |
1125 | int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01); | |
1126 | ||
1127 | if (((cond >> cnum) & 0x01) == tf) | |
1128 | pc += mips32_relative_offset (inst) + 4; | |
1129 | else | |
1130 | pc += 8; | |
1131 | } | |
1132 | else | |
1133 | pc += 4; /* Not a branch, next instruction is easy */ | |
1134 | } | |
1135 | else | |
1136 | { /* This gets way messy */ | |
1137 | ||
1138 | /* Further subdivide into SPECIAL, REGIMM and other */ | |
1139 | switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */ | |
1140 | { | |
1141 | case 0: /* SPECIAL */ | |
1142 | op = rtype_funct (inst); | |
1143 | switch (op) | |
1144 | { | |
1145 | case 8: /* JR */ | |
1146 | case 9: /* JALR */ | |
1147 | /* Set PC to that address */ | |
1148 | pc = read_signed_register (rtype_rs (inst)); | |
1149 | break; | |
1150 | default: | |
1151 | pc += 4; | |
1152 | } | |
1153 | ||
1154 | break; /* end SPECIAL */ | |
1155 | case 1: /* REGIMM */ | |
1156 | { | |
1157 | op = itype_rt (inst); /* branch condition */ | |
1158 | switch (op) | |
1159 | { | |
1160 | case 0: /* BLTZ */ | |
1161 | case 2: /* BLTZL */ | |
1162 | case 16: /* BLTZAL */ | |
1163 | case 18: /* BLTZALL */ | |
1164 | less_branch: | |
1165 | if (read_signed_register (itype_rs (inst)) < 0) | |
1166 | pc += mips32_relative_offset (inst) + 4; | |
1167 | else | |
1168 | pc += 8; /* after the delay slot */ | |
1169 | break; | |
1170 | case 1: /* BGEZ */ | |
1171 | case 3: /* BGEZL */ | |
1172 | case 17: /* BGEZAL */ | |
1173 | case 19: /* BGEZALL */ | |
1174 | greater_equal_branch: | |
1175 | if (read_signed_register (itype_rs (inst)) >= 0) | |
1176 | pc += mips32_relative_offset (inst) + 4; | |
1177 | else | |
1178 | pc += 8; /* after the delay slot */ | |
1179 | break; | |
1180 | /* All of the other instructions in the REGIMM category */ | |
1181 | default: | |
1182 | pc += 4; | |
1183 | } | |
1184 | } | |
1185 | break; /* end REGIMM */ | |
1186 | case 2: /* J */ | |
1187 | case 3: /* JAL */ | |
1188 | { | |
1189 | unsigned long reg; | |
1190 | reg = jtype_target (inst) << 2; | |
1191 | /* Upper four bits get never changed... */ | |
1192 | pc = reg + ((pc + 4) & 0xf0000000); | |
1193 | } | |
1194 | break; | |
1195 | /* FIXME case JALX : */ | |
1196 | { | |
1197 | unsigned long reg; | |
1198 | reg = jtype_target (inst) << 2; | |
1199 | pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */ | |
1200 | /* Add 1 to indicate 16 bit mode - Invert ISA mode */ | |
1201 | } | |
1202 | break; /* The new PC will be alternate mode */ | |
1203 | case 4: /* BEQ, BEQL */ | |
1204 | equal_branch: | |
1205 | if (read_signed_register (itype_rs (inst)) == | |
1206 | read_signed_register (itype_rt (inst))) | |
1207 | pc += mips32_relative_offset (inst) + 4; | |
1208 | else | |
1209 | pc += 8; | |
1210 | break; | |
1211 | case 5: /* BNE, BNEL */ | |
1212 | neq_branch: | |
1213 | if (read_signed_register (itype_rs (inst)) != | |
1214 | read_signed_register (itype_rt (inst))) | |
1215 | pc += mips32_relative_offset (inst) + 4; | |
1216 | else | |
1217 | pc += 8; | |
1218 | break; | |
1219 | case 6: /* BLEZ, BLEZL */ | |
1220 | less_zero_branch: | |
1221 | if (read_signed_register (itype_rs (inst) <= 0)) | |
1222 | pc += mips32_relative_offset (inst) + 4; | |
1223 | else | |
1224 | pc += 8; | |
1225 | break; | |
1226 | case 7: | |
1227 | default: | |
1228 | greater_branch: /* BGTZ, BGTZL */ | |
1229 | if (read_signed_register (itype_rs (inst) > 0)) | |
1230 | pc += mips32_relative_offset (inst) + 4; | |
1231 | else | |
1232 | pc += 8; | |
1233 | break; | |
1234 | } /* switch */ | |
1235 | } /* else */ | |
1236 | return pc; | |
1237 | } /* mips32_next_pc */ | |
1238 | ||
1239 | /* Decoding the next place to set a breakpoint is irregular for the | |
1240 | mips 16 variant, but fortunately, there fewer instructions. We have to cope | |
1241 | ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. | |
1242 | We dont want to set a single step instruction on the extend instruction | |
1243 | either. | |
1244 | */ | |
1245 | ||
1246 | /* Lots of mips16 instruction formats */ | |
1247 | /* Predicting jumps requires itype,ritype,i8type | |
1248 | and their extensions extItype,extritype,extI8type | |
1249 | */ | |
1250 | enum mips16_inst_fmts | |
1251 | { | |
1252 | itype, /* 0 immediate 5,10 */ | |
1253 | ritype, /* 1 5,3,8 */ | |
1254 | rrtype, /* 2 5,3,3,5 */ | |
1255 | rritype, /* 3 5,3,3,5 */ | |
1256 | rrrtype, /* 4 5,3,3,3,2 */ | |
1257 | rriatype, /* 5 5,3,3,1,4 */ | |
1258 | shifttype, /* 6 5,3,3,3,2 */ | |
1259 | i8type, /* 7 5,3,8 */ | |
1260 | i8movtype, /* 8 5,3,3,5 */ | |
1261 | i8mov32rtype, /* 9 5,3,5,3 */ | |
1262 | i64type, /* 10 5,3,8 */ | |
1263 | ri64type, /* 11 5,3,3,5 */ | |
1264 | jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ | |
1265 | exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ | |
1266 | extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ | |
1267 | extRRItype, /* 15 5,5,5,5,3,3,5 */ | |
1268 | extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ | |
1269 | EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ | |
1270 | extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ | |
1271 | extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ | |
1272 | extRi64type, /* 20 5,6,5,5,3,3,5 */ | |
1273 | extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ | |
1274 | }; | |
1275 | /* I am heaping all the fields of the formats into one structure and | |
1276 | then, only the fields which are involved in instruction extension */ | |
1277 | struct upk_mips16 | |
1278 | { | |
1279 | CORE_ADDR offset; | |
1280 | unsigned int regx; /* Function in i8 type */ | |
1281 | unsigned int regy; | |
1282 | }; | |
1283 | ||
1284 | ||
1285 | /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format | |
1286 | for the bits which make up the immediatate extension. */ | |
1287 | ||
1288 | static CORE_ADDR | |
1289 | extended_offset (unsigned int extension) | |
1290 | { | |
1291 | CORE_ADDR value; | |
1292 | value = (extension >> 21) & 0x3f; /* * extract 15:11 */ | |
1293 | value = value << 6; | |
1294 | value |= (extension >> 16) & 0x1f; /* extrace 10:5 */ | |
1295 | value = value << 5; | |
1296 | value |= extension & 0x01f; /* extract 4:0 */ | |
1297 | return value; | |
1298 | } | |
1299 | ||
1300 | /* Only call this function if you know that this is an extendable | |
1301 | instruction, It wont malfunction, but why make excess remote memory references? | |
1302 | If the immediate operands get sign extended or somthing, do it after | |
1303 | the extension is performed. | |
1304 | */ | |
1305 | /* FIXME: Every one of these cases needs to worry about sign extension | |
1306 | when the offset is to be used in relative addressing */ | |
1307 | ||
1308 | ||
1309 | static unsigned int | |
1310 | fetch_mips_16 (CORE_ADDR pc) | |
1311 | { | |
1312 | char buf[8]; | |
1313 | pc &= 0xfffffffe; /* clear the low order bit */ | |
1314 | target_read_memory (pc, buf, 2); | |
1315 | return extract_unsigned_integer (buf, 2); | |
1316 | } | |
1317 | ||
1318 | static void | |
1319 | unpack_mips16 (CORE_ADDR pc, | |
1320 | unsigned int extension, | |
1321 | unsigned int inst, | |
1322 | enum mips16_inst_fmts insn_format, | |
1323 | struct upk_mips16 *upk) | |
1324 | { | |
1325 | CORE_ADDR offset; | |
1326 | int regx; | |
1327 | int regy; | |
1328 | switch (insn_format) | |
1329 | { | |
1330 | case itype: | |
1331 | { | |
1332 | CORE_ADDR value; | |
1333 | if (extension) | |
1334 | { | |
1335 | value = extended_offset (extension); | |
1336 | value = value << 11; /* rom for the original value */ | |
1337 | value |= inst & 0x7ff; /* eleven bits from instruction */ | |
1338 | } | |
1339 | else | |
1340 | { | |
1341 | value = inst & 0x7ff; | |
1342 | /* FIXME : Consider sign extension */ | |
1343 | } | |
1344 | offset = value; | |
1345 | regx = -1; | |
1346 | regy = -1; | |
1347 | } | |
1348 | break; | |
1349 | case ritype: | |
1350 | case i8type: | |
1351 | { /* A register identifier and an offset */ | |
1352 | /* Most of the fields are the same as I type but the | |
1353 | immediate value is of a different length */ | |
1354 | CORE_ADDR value; | |
1355 | if (extension) | |
1356 | { | |
1357 | value = extended_offset (extension); | |
1358 | value = value << 8; /* from the original instruction */ | |
1359 | value |= inst & 0xff; /* eleven bits from instruction */ | |
1360 | regx = (extension >> 8) & 0x07; /* or i8 funct */ | |
1361 | if (value & 0x4000) /* test the sign bit , bit 26 */ | |
1362 | { | |
1363 | value &= ~0x3fff; /* remove the sign bit */ | |
1364 | value = -value; | |
1365 | } | |
1366 | } | |
1367 | else | |
1368 | { | |
1369 | value = inst & 0xff; /* 8 bits */ | |
1370 | regx = (inst >> 8) & 0x07; /* or i8 funct */ | |
1371 | /* FIXME: Do sign extension , this format needs it */ | |
1372 | if (value & 0x80) /* THIS CONFUSES ME */ | |
1373 | { | |
1374 | value &= 0xef; /* remove the sign bit */ | |
1375 | value = -value; | |
1376 | } | |
1377 | } | |
1378 | offset = value; | |
1379 | regy = -1; | |
1380 | break; | |
1381 | } | |
1382 | case jalxtype: | |
1383 | { | |
1384 | unsigned long value; | |
1385 | unsigned int nexthalf; | |
1386 | value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f); | |
1387 | value = value << 16; | |
1388 | nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */ | |
1389 | value |= nexthalf; | |
1390 | offset = value; | |
1391 | regx = -1; | |
1392 | regy = -1; | |
1393 | break; | |
1394 | } | |
1395 | default: | |
1396 | internal_error (__FILE__, __LINE__, | |
1397 | "bad switch"); | |
1398 | } | |
1399 | upk->offset = offset; | |
1400 | upk->regx = regx; | |
1401 | upk->regy = regy; | |
1402 | } | |
1403 | ||
1404 | ||
1405 | static CORE_ADDR | |
1406 | add_offset_16 (CORE_ADDR pc, int offset) | |
1407 | { | |
1408 | return ((offset << 2) | ((pc + 2) & (0xf0000000))); | |
1409 | } | |
1410 | ||
1411 | static CORE_ADDR | |
1412 | extended_mips16_next_pc (CORE_ADDR pc, | |
1413 | unsigned int extension, | |
1414 | unsigned int insn) | |
1415 | { | |
1416 | int op = (insn >> 11); | |
1417 | switch (op) | |
1418 | { | |
1419 | case 2: /* Branch */ | |
1420 | { | |
1421 | CORE_ADDR offset; | |
1422 | struct upk_mips16 upk; | |
1423 | unpack_mips16 (pc, extension, insn, itype, &upk); | |
1424 | offset = upk.offset; | |
1425 | if (offset & 0x800) | |
1426 | { | |
1427 | offset &= 0xeff; | |
1428 | offset = -offset; | |
1429 | } | |
1430 | pc += (offset << 1) + 2; | |
1431 | break; | |
1432 | } | |
1433 | case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */ | |
1434 | { | |
1435 | struct upk_mips16 upk; | |
1436 | unpack_mips16 (pc, extension, insn, jalxtype, &upk); | |
1437 | pc = add_offset_16 (pc, upk.offset); | |
1438 | if ((insn >> 10) & 0x01) /* Exchange mode */ | |
1439 | pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */ | |
1440 | else | |
1441 | pc |= 0x01; | |
1442 | break; | |
1443 | } | |
1444 | case 4: /* beqz */ | |
1445 | { | |
1446 | struct upk_mips16 upk; | |
1447 | int reg; | |
1448 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1449 | reg = read_signed_register (upk.regx); | |
1450 | if (reg == 0) | |
1451 | pc += (upk.offset << 1) + 2; | |
1452 | else | |
1453 | pc += 2; | |
1454 | break; | |
1455 | } | |
1456 | case 5: /* bnez */ | |
1457 | { | |
1458 | struct upk_mips16 upk; | |
1459 | int reg; | |
1460 | unpack_mips16 (pc, extension, insn, ritype, &upk); | |
1461 | reg = read_signed_register (upk.regx); | |
1462 | if (reg != 0) | |
1463 | pc += (upk.offset << 1) + 2; | |
1464 | else | |
1465 | pc += 2; | |
1466 | break; | |
1467 | } | |
1468 | case 12: /* I8 Formats btez btnez */ | |
1469 | { | |
1470 | struct upk_mips16 upk; | |
1471 | int reg; | |
1472 | unpack_mips16 (pc, extension, insn, i8type, &upk); | |
1473 | /* upk.regx contains the opcode */ | |
1474 | reg = read_signed_register (24); /* Test register is 24 */ | |
1475 | if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ | |
1476 | || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */ | |
1477 | /* pc = add_offset_16(pc,upk.offset) ; */ | |
1478 | pc += (upk.offset << 1) + 2; | |
1479 | else | |
1480 | pc += 2; | |
1481 | break; | |
1482 | } | |
1483 | case 29: /* RR Formats JR, JALR, JALR-RA */ | |
1484 | { | |
1485 | struct upk_mips16 upk; | |
1486 | /* upk.fmt = rrtype; */ | |
1487 | op = insn & 0x1f; | |
1488 | if (op == 0) | |
1489 | { | |
1490 | int reg; | |
1491 | upk.regx = (insn >> 8) & 0x07; | |
1492 | upk.regy = (insn >> 5) & 0x07; | |
1493 | switch (upk.regy) | |
1494 | { | |
1495 | case 0: | |
1496 | reg = upk.regx; | |
1497 | break; | |
1498 | case 1: | |
1499 | reg = 31; | |
1500 | break; /* Function return instruction */ | |
1501 | case 2: | |
1502 | reg = upk.regx; | |
1503 | break; | |
1504 | default: | |
1505 | reg = 31; | |
1506 | break; /* BOGUS Guess */ | |
1507 | } | |
1508 | pc = read_signed_register (reg); | |
1509 | } | |
1510 | else | |
1511 | pc += 2; | |
1512 | break; | |
1513 | } | |
1514 | case 30: | |
1515 | /* This is an instruction extension. Fetch the real instruction | |
1516 | (which follows the extension) and decode things based on | |
1517 | that. */ | |
1518 | { | |
1519 | pc += 2; | |
1520 | pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc)); | |
1521 | break; | |
1522 | } | |
1523 | default: | |
1524 | { | |
1525 | pc += 2; | |
1526 | break; | |
1527 | } | |
1528 | } | |
1529 | return pc; | |
1530 | } | |
1531 | ||
1532 | static CORE_ADDR | |
1533 | mips16_next_pc (CORE_ADDR pc) | |
1534 | { | |
1535 | unsigned int insn = fetch_mips_16 (pc); | |
1536 | return extended_mips16_next_pc (pc, 0, insn); | |
1537 | } | |
1538 | ||
1539 | /* The mips_next_pc function supports single_step when the remote | |
1540 | target monitor or stub is not developed enough to do a single_step. | |
1541 | It works by decoding the current instruction and predicting where a | |
1542 | branch will go. This isnt hard because all the data is available. | |
1543 | The MIPS32 and MIPS16 variants are quite different */ | |
1544 | CORE_ADDR | |
1545 | mips_next_pc (CORE_ADDR pc) | |
1546 | { | |
1547 | if (pc & 0x01) | |
1548 | return mips16_next_pc (pc); | |
1549 | else | |
1550 | return mips32_next_pc (pc); | |
1551 | } | |
1552 | ||
1553 | /* Set up the 'saved_regs' array. This is a data structure containing | |
1554 | the addresses on the stack where each register has been saved, for | |
1555 | each stack frame. Registers that have not been saved will have | |
1556 | zero here. The stack pointer register is special: rather than the | |
1557 | address where the stack register has been saved, | |
1558 | saved_regs[SP_REGNUM] will have the actual value of the previous | |
1559 | frame's stack register. */ | |
1560 | ||
1561 | static void | |
1562 | mips_find_saved_regs (struct frame_info *fci) | |
1563 | { | |
1564 | int ireg; | |
1565 | /* r0 bit means kernel trap */ | |
1566 | int kernel_trap; | |
1567 | /* What registers have been saved? Bitmasks. */ | |
1568 | unsigned long gen_mask, float_mask; | |
1569 | mips_extra_func_info_t proc_desc; | |
1570 | t_inst inst; | |
1571 | CORE_ADDR *saved_regs; | |
1572 | ||
1573 | if (get_frame_saved_regs (fci) != NULL) | |
1574 | return; | |
1575 | saved_regs = frame_saved_regs_zalloc (fci); | |
1576 | ||
1577 | /* If it is the frame for sigtramp, the saved registers are located | |
1578 | in a sigcontext structure somewhere on the stack. If the stack | |
1579 | layout for sigtramp changes we might have to change these | |
1580 | constants and the companion fixup_sigtramp in mdebugread.c */ | |
1581 | #ifndef SIGFRAME_BASE | |
1582 | /* To satisfy alignment restrictions, sigcontext is located 4 bytes | |
1583 | above the sigtramp frame. */ | |
1584 | #define SIGFRAME_BASE MIPS_REGSIZE | |
1585 | /* FIXME! Are these correct?? */ | |
1586 | #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) | |
1587 | #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) | |
1588 | #define SIGFRAME_FPREGSAVE_OFF \ | |
1589 | (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) | |
1590 | #endif | |
1591 | #ifndef SIGFRAME_REG_SIZE | |
1592 | /* FIXME! Is this correct?? */ | |
1593 | #define SIGFRAME_REG_SIZE MIPS_REGSIZE | |
1594 | #endif | |
1595 | if ((get_frame_type (fci) == SIGTRAMP_FRAME)) | |
1596 | { | |
1597 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1598 | { | |
1599 | CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF | |
1600 | + ireg * SIGFRAME_REG_SIZE); | |
1601 | set_reg_offset (saved_regs, ireg, reg_position); | |
1602 | } | |
1603 | for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) | |
1604 | { | |
1605 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1606 | + SIGFRAME_FPREGSAVE_OFF | |
1607 | + ireg * SIGFRAME_REG_SIZE); | |
1608 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position); | |
1609 | } | |
1610 | ||
1611 | set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF); | |
1612 | /* SP_REGNUM, contains the value and not the address. */ | |
1613 | set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci)); | |
1614 | return; | |
1615 | } | |
1616 | ||
1617 | proc_desc = get_frame_extra_info (fci)->proc_desc; | |
1618 | if (proc_desc == NULL) | |
1619 | /* I'm not sure how/whether this can happen. Normally when we | |
1620 | can't find a proc_desc, we "synthesize" one using | |
1621 | heuristic_proc_desc and set the saved_regs right away. */ | |
1622 | return; | |
1623 | ||
1624 | kernel_trap = PROC_REG_MASK (proc_desc) & 1; | |
1625 | gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc); | |
1626 | float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc); | |
1627 | ||
1628 | if (/* In any frame other than the innermost or a frame interrupted | |
1629 | by a signal, we assume that all registers have been saved. | |
1630 | This assumes that all register saves in a function happen | |
1631 | before the first function call. */ | |
1632 | (get_next_frame (fci) == NULL | |
1633 | || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME)) | |
1634 | ||
1635 | /* In a dummy frame we know exactly where things are saved. */ | |
1636 | && !PROC_DESC_IS_DUMMY (proc_desc) | |
1637 | ||
1638 | /* Don't bother unless we are inside a function prologue. | |
1639 | Outside the prologue, we know where everything is. */ | |
1640 | ||
1641 | && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc)) | |
1642 | ||
1643 | /* Not sure exactly what kernel_trap means, but if it means the | |
1644 | kernel saves the registers without a prologue doing it, we | |
1645 | better not examine the prologue to see whether registers | |
1646 | have been saved yet. */ | |
1647 | && !kernel_trap) | |
1648 | { | |
1649 | /* We need to figure out whether the registers that the | |
1650 | proc_desc claims are saved have been saved yet. */ | |
1651 | ||
1652 | CORE_ADDR addr; | |
1653 | ||
1654 | /* Bitmasks; set if we have found a save for the register. */ | |
1655 | unsigned long gen_save_found = 0; | |
1656 | unsigned long float_save_found = 0; | |
1657 | int instlen; | |
1658 | ||
1659 | /* If the address is odd, assume this is MIPS16 code. */ | |
1660 | addr = PROC_LOW_ADDR (proc_desc); | |
1661 | instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; | |
1662 | ||
1663 | /* Scan through this function's instructions preceding the | |
1664 | current PC, and look for those that save registers. */ | |
1665 | while (addr < get_frame_pc (fci)) | |
1666 | { | |
1667 | inst = mips_fetch_instruction (addr); | |
1668 | if (pc_is_mips16 (addr)) | |
1669 | mips16_decode_reg_save (inst, &gen_save_found); | |
1670 | else | |
1671 | mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); | |
1672 | addr += instlen; | |
1673 | } | |
1674 | gen_mask = gen_save_found; | |
1675 | float_mask = float_save_found; | |
1676 | } | |
1677 | ||
1678 | /* Fill in the offsets for the registers which gen_mask says were | |
1679 | saved. */ | |
1680 | { | |
1681 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1682 | + PROC_REG_OFFSET (proc_desc)); | |
1683 | for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1) | |
1684 | if (gen_mask & 0x80000000) | |
1685 | { | |
1686 | set_reg_offset (saved_regs, ireg, reg_position); | |
1687 | reg_position -= MIPS_SAVED_REGSIZE; | |
1688 | } | |
1689 | } | |
1690 | ||
1691 | /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse | |
1692 | order of that normally used by gcc. Therefore, we have to fetch | |
1693 | the first instruction of the function, and if it's an entry | |
1694 | instruction that saves $s0 or $s1, correct their saved addresses. */ | |
1695 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
1696 | { | |
1697 | inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); | |
1698 | if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) | |
1699 | /* entry */ | |
1700 | { | |
1701 | int reg; | |
1702 | int sreg_count = (inst >> 6) & 3; | |
1703 | ||
1704 | /* Check if the ra register was pushed on the stack. */ | |
1705 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1706 | + PROC_REG_OFFSET (proc_desc)); | |
1707 | if (inst & 0x20) | |
1708 | reg_position -= MIPS_SAVED_REGSIZE; | |
1709 | ||
1710 | /* Check if the s0 and s1 registers were pushed on the | |
1711 | stack. */ | |
1712 | for (reg = 16; reg < sreg_count + 16; reg++) | |
1713 | { | |
1714 | set_reg_offset (saved_regs, reg, reg_position); | |
1715 | reg_position -= MIPS_SAVED_REGSIZE; | |
1716 | } | |
1717 | } | |
1718 | } | |
1719 | ||
1720 | /* Fill in the offsets for the registers which float_mask says were | |
1721 | saved. */ | |
1722 | { | |
1723 | CORE_ADDR reg_position = (get_frame_base (fci) | |
1724 | + PROC_FREG_OFFSET (proc_desc)); | |
1725 | ||
1726 | /* Fill in the offsets for the float registers which float_mask | |
1727 | says were saved. */ | |
1728 | for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1) | |
1729 | if (float_mask & 0x80000000) | |
1730 | { | |
1731 | if (MIPS_SAVED_REGSIZE == 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
1732 | { | |
1733 | /* On a big endian 32 bit ABI, floating point registers | |
1734 | are paired to form doubles such that the most | |
1735 | significant part is in $f[N+1] and the least | |
1736 | significant in $f[N] vis: $f[N+1] ||| $f[N]. The | |
1737 | registers are also spilled as a pair and stored as a | |
1738 | double. | |
1739 | ||
1740 | When little-endian the least significant part is | |
1741 | stored first leading to the memory order $f[N] and | |
1742 | then $f[N+1]. | |
1743 | ||
1744 | Unfortunatly, when big-endian the most significant | |
1745 | part of the double is stored first, and the least | |
1746 | significant is stored second. This leads to the | |
1747 | registers being ordered in memory as firt $f[N+1] and | |
1748 | then $f[N]. | |
1749 | ||
1750 | For the big-endian case make certain that the | |
1751 | addresses point at the correct (swapped) locations | |
1752 | $f[N] and $f[N+1] pair (keep in mind that | |
1753 | reg_position is decremented each time through the | |
1754 | loop). */ | |
1755 | if ((ireg & 1)) | |
1756 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, | |
1757 | reg_position - MIPS_SAVED_REGSIZE); | |
1758 | else | |
1759 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, | |
1760 | reg_position + MIPS_SAVED_REGSIZE); | |
1761 | } | |
1762 | else | |
1763 | set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position); | |
1764 | reg_position -= MIPS_SAVED_REGSIZE; | |
1765 | } | |
1766 | ||
1767 | set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]); | |
1768 | } | |
1769 | ||
1770 | /* SP_REGNUM, contains the value and not the address. */ | |
1771 | set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci)); | |
1772 | } | |
1773 | ||
1774 | static CORE_ADDR | |
1775 | read_next_frame_reg (struct frame_info *fi, int regno) | |
1776 | { | |
1777 | /* Always a pseudo. */ | |
1778 | gdb_assert (regno >= NUM_REGS); | |
1779 | if (fi == NULL) | |
1780 | { | |
1781 | LONGEST val; | |
1782 | regcache_cooked_read_signed (current_regcache, regno, &val); | |
1783 | return val; | |
1784 | } | |
1785 | else if ((regno % NUM_REGS) == SP_REGNUM) | |
1786 | /* The SP_REGNUM is special, its value is stored in saved_regs. | |
1787 | In fact, it is so special that it can even only be fetched | |
1788 | using a raw register number! Once this code as been converted | |
1789 | to frame-unwind the problem goes away. */ | |
1790 | return frame_unwind_register_signed (fi, regno % NUM_REGS); | |
1791 | else | |
1792 | return frame_unwind_register_signed (fi, regno); | |
1793 | ||
1794 | } | |
1795 | ||
1796 | /* mips_addr_bits_remove - remove useless address bits */ | |
1797 | ||
1798 | static CORE_ADDR | |
1799 | mips_addr_bits_remove (CORE_ADDR addr) | |
1800 | { | |
1801 | if (GDB_TARGET_IS_MIPS64) | |
1802 | { | |
1803 | if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff)) | |
1804 | { | |
1805 | /* This hack is a work-around for existing boards using | |
1806 | PMON, the simulator, and any other 64-bit targets that | |
1807 | doesn't have true 64-bit addressing. On these targets, | |
1808 | the upper 32 bits of addresses are ignored by the | |
1809 | hardware. Thus, the PC or SP are likely to have been | |
1810 | sign extended to all 1s by instruction sequences that | |
1811 | load 32-bit addresses. For example, a typical piece of | |
1812 | code that loads an address is this: | |
1813 | lui $r2, <upper 16 bits> | |
1814 | ori $r2, <lower 16 bits> | |
1815 | But the lui sign-extends the value such that the upper 32 | |
1816 | bits may be all 1s. The workaround is simply to mask off | |
1817 | these bits. In the future, gcc may be changed to support | |
1818 | true 64-bit addressing, and this masking will have to be | |
1819 | disabled. */ | |
1820 | addr &= (CORE_ADDR) 0xffffffff; | |
1821 | } | |
1822 | } | |
1823 | else if (mips_mask_address_p ()) | |
1824 | { | |
1825 | /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be | |
1826 | masking off bits, instead, the actual target should be asking | |
1827 | for the address to be converted to a valid pointer. */ | |
1828 | /* Even when GDB is configured for some 32-bit targets | |
1829 | (e.g. mips-elf), BFD is configured to handle 64-bit targets, | |
1830 | so CORE_ADDR is 64 bits. So we still have to mask off | |
1831 | useless bits from addresses. */ | |
1832 | addr &= (CORE_ADDR) 0xffffffff; | |
1833 | } | |
1834 | return addr; | |
1835 | } | |
1836 | ||
1837 | /* mips_software_single_step() is called just before we want to resume | |
1838 | the inferior, if we want to single-step it but there is no hardware | |
1839 | or kernel single-step support (MIPS on GNU/Linux for example). We find | |
1840 | the target of the coming instruction and breakpoint it. | |
1841 | ||
1842 | single_step is also called just after the inferior stops. If we had | |
1843 | set up a simulated single-step, we undo our damage. */ | |
1844 | ||
1845 | void | |
1846 | mips_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1847 | { | |
1848 | static CORE_ADDR next_pc; | |
1849 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
1850 | static binsn_quantum break_mem; | |
1851 | CORE_ADDR pc; | |
1852 | ||
1853 | if (insert_breakpoints_p) | |
1854 | { | |
1855 | pc = read_register (PC_REGNUM); | |
1856 | next_pc = mips_next_pc (pc); | |
1857 | ||
1858 | target_insert_breakpoint (next_pc, break_mem); | |
1859 | } | |
1860 | else | |
1861 | target_remove_breakpoint (next_pc, break_mem); | |
1862 | } | |
1863 | ||
1864 | static CORE_ADDR | |
1865 | mips_init_frame_pc_first (int fromleaf, struct frame_info *prev) | |
1866 | { | |
1867 | CORE_ADDR pc, tmp; | |
1868 | ||
1869 | pc = ((fromleaf) | |
1870 | ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev)) | |
1871 | : get_next_frame (prev) | |
1872 | ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev)) | |
1873 | : read_pc ()); | |
1874 | tmp = SKIP_TRAMPOLINE_CODE (pc); | |
1875 | return tmp ? tmp : pc; | |
1876 | } | |
1877 | ||
1878 | ||
1879 | static CORE_ADDR | |
1880 | mips_frame_saved_pc (struct frame_info *frame) | |
1881 | { | |
1882 | CORE_ADDR saved_pc; | |
1883 | ||
1884 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)) | |
1885 | { | |
1886 | LONGEST tmp; | |
1887 | /* Always unwind the cooked PC register value. */ | |
1888 | frame_unwind_signed_register (frame, NUM_REGS + PC_REGNUM, &tmp); | |
1889 | saved_pc = tmp; | |
1890 | } | |
1891 | else | |
1892 | { | |
1893 | mips_extra_func_info_t proc_desc | |
1894 | = get_frame_extra_info (frame)->proc_desc; | |
1895 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) | |
1896 | saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE); | |
1897 | else | |
1898 | { | |
1899 | /* We have to get the saved pc from the sigcontext if it is | |
1900 | a signal handler frame. */ | |
1901 | int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME ? PC_REGNUM | |
1902 | : proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM); | |
1903 | saved_pc = read_next_frame_reg (frame, NUM_REGS + pcreg); | |
1904 | } | |
1905 | } | |
1906 | return ADDR_BITS_REMOVE (saved_pc); | |
1907 | } | |
1908 | ||
1909 | static struct mips_extra_func_info temp_proc_desc; | |
1910 | ||
1911 | /* This hack will go away once the get_prev_frame() code has been | |
1912 | modified to set the frame's type first. That is BEFORE init extra | |
1913 | frame info et.al. is called. This is because it will become | |
1914 | possible to skip the init extra info call for sigtramp and dummy | |
1915 | frames. */ | |
1916 | static CORE_ADDR *temp_saved_regs; | |
1917 | ||
1918 | /* Set a register's saved stack address in temp_saved_regs. If an | |
1919 | address has already been set for this register, do nothing; this | |
1920 | way we will only recognize the first save of a given register in a | |
1921 | function prologue. | |
1922 | ||
1923 | For simplicity, save the address in both [0 .. NUM_REGS) and | |
1924 | [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range | |
1925 | is used as it is only second range (the ABI instead of ISA | |
1926 | registers) that comes into play when finding saved registers in a | |
1927 | frame. */ | |
1928 | ||
1929 | static void | |
1930 | set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset) | |
1931 | { | |
1932 | if (saved_regs[regno] == 0) | |
1933 | { | |
1934 | saved_regs[regno + 0 * NUM_REGS] = offset; | |
1935 | saved_regs[regno + 1 * NUM_REGS] = offset; | |
1936 | } | |
1937 | } | |
1938 | ||
1939 | ||
1940 | /* Test whether the PC points to the return instruction at the | |
1941 | end of a function. */ | |
1942 | ||
1943 | static int | |
1944 | mips_about_to_return (CORE_ADDR pc) | |
1945 | { | |
1946 | if (pc_is_mips16 (pc)) | |
1947 | /* This mips16 case isn't necessarily reliable. Sometimes the compiler | |
1948 | generates a "jr $ra"; other times it generates code to load | |
1949 | the return address from the stack to an accessible register (such | |
1950 | as $a3), then a "jr" using that register. This second case | |
1951 | is almost impossible to distinguish from an indirect jump | |
1952 | used for switch statements, so we don't even try. */ | |
1953 | return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ | |
1954 | else | |
1955 | return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ | |
1956 | } | |
1957 | ||
1958 | ||
1959 | /* This fencepost looks highly suspicious to me. Removing it also | |
1960 | seems suspicious as it could affect remote debugging across serial | |
1961 | lines. */ | |
1962 | ||
1963 | static CORE_ADDR | |
1964 | heuristic_proc_start (CORE_ADDR pc) | |
1965 | { | |
1966 | CORE_ADDR start_pc; | |
1967 | CORE_ADDR fence; | |
1968 | int instlen; | |
1969 | int seen_adjsp = 0; | |
1970 | ||
1971 | pc = ADDR_BITS_REMOVE (pc); | |
1972 | start_pc = pc; | |
1973 | fence = start_pc - heuristic_fence_post; | |
1974 | if (start_pc == 0) | |
1975 | return 0; | |
1976 | ||
1977 | if (heuristic_fence_post == UINT_MAX | |
1978 | || fence < VM_MIN_ADDRESS) | |
1979 | fence = VM_MIN_ADDRESS; | |
1980 | ||
1981 | instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; | |
1982 | ||
1983 | /* search back for previous return */ | |
1984 | for (start_pc -= instlen;; start_pc -= instlen) | |
1985 | if (start_pc < fence) | |
1986 | { | |
1987 | /* It's not clear to me why we reach this point when | |
1988 | stop_soon, but with this test, at least we | |
1989 | don't print out warnings for every child forked (eg, on | |
1990 | decstation). 22apr93 [email protected]. */ | |
1991 | if (stop_soon == NO_STOP_QUIETLY) | |
1992 | { | |
1993 | static int blurb_printed = 0; | |
1994 | ||
1995 | warning ("Warning: GDB can't find the start of the function at 0x%s.", | |
1996 | paddr_nz (pc)); | |
1997 | ||
1998 | if (!blurb_printed) | |
1999 | { | |
2000 | /* This actually happens frequently in embedded | |
2001 | development, when you first connect to a board | |
2002 | and your stack pointer and pc are nowhere in | |
2003 | particular. This message needs to give people | |
2004 | in that situation enough information to | |
2005 | determine that it's no big deal. */ | |
2006 | printf_filtered ("\n\ | |
2007 | GDB is unable to find the start of the function at 0x%s\n\ | |
2008 | and thus can't determine the size of that function's stack frame.\n\ | |
2009 | This means that GDB may be unable to access that stack frame, or\n\ | |
2010 | the frames below it.\n\ | |
2011 | This problem is most likely caused by an invalid program counter or\n\ | |
2012 | stack pointer.\n\ | |
2013 | However, if you think GDB should simply search farther back\n\ | |
2014 | from 0x%s for code which looks like the beginning of a\n\ | |
2015 | function, you can increase the range of the search using the `set\n\ | |
2016 | heuristic-fence-post' command.\n", | |
2017 | paddr_nz (pc), paddr_nz (pc)); | |
2018 | blurb_printed = 1; | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | return 0; | |
2023 | } | |
2024 | else if (pc_is_mips16 (start_pc)) | |
2025 | { | |
2026 | unsigned short inst; | |
2027 | ||
2028 | /* On MIPS16, any one of the following is likely to be the | |
2029 | start of a function: | |
2030 | entry | |
2031 | addiu sp,-n | |
2032 | daddiu sp,-n | |
2033 | extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ | |
2034 | inst = mips_fetch_instruction (start_pc); | |
2035 | if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
2036 | || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ | |
2037 | || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ | |
2038 | || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ | |
2039 | break; | |
2040 | else if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
2041 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
2042 | seen_adjsp = 1; | |
2043 | else | |
2044 | seen_adjsp = 0; | |
2045 | } | |
2046 | else if (mips_about_to_return (start_pc)) | |
2047 | { | |
2048 | start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ | |
2049 | break; | |
2050 | } | |
2051 | ||
2052 | return start_pc; | |
2053 | } | |
2054 | ||
2055 | /* Fetch the immediate value from a MIPS16 instruction. | |
2056 | If the previous instruction was an EXTEND, use it to extend | |
2057 | the upper bits of the immediate value. This is a helper function | |
2058 | for mips16_heuristic_proc_desc. */ | |
2059 | ||
2060 | static int | |
2061 | mips16_get_imm (unsigned short prev_inst, /* previous instruction */ | |
2062 | unsigned short inst, /* current instruction */ | |
2063 | int nbits, /* number of bits in imm field */ | |
2064 | int scale, /* scale factor to be applied to imm */ | |
2065 | int is_signed) /* is the imm field signed? */ | |
2066 | { | |
2067 | int offset; | |
2068 | ||
2069 | if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ | |
2070 | { | |
2071 | offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); | |
2072 | if (offset & 0x8000) /* check for negative extend */ | |
2073 | offset = 0 - (0x10000 - (offset & 0xffff)); | |
2074 | return offset | (inst & 0x1f); | |
2075 | } | |
2076 | else | |
2077 | { | |
2078 | int max_imm = 1 << nbits; | |
2079 | int mask = max_imm - 1; | |
2080 | int sign_bit = max_imm >> 1; | |
2081 | ||
2082 | offset = inst & mask; | |
2083 | if (is_signed && (offset & sign_bit)) | |
2084 | offset = 0 - (max_imm - offset); | |
2085 | return offset * scale; | |
2086 | } | |
2087 | } | |
2088 | ||
2089 | ||
2090 | /* Fill in values in temp_proc_desc based on the MIPS16 instruction | |
2091 | stream from start_pc to limit_pc. */ | |
2092 | ||
2093 | static void | |
2094 | mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
2095 | struct frame_info *next_frame, CORE_ADDR sp) | |
2096 | { | |
2097 | CORE_ADDR cur_pc; | |
2098 | CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ | |
2099 | unsigned short prev_inst = 0; /* saved copy of previous instruction */ | |
2100 | unsigned inst = 0; /* current instruction */ | |
2101 | unsigned entry_inst = 0; /* the entry instruction */ | |
2102 | int reg, offset; | |
2103 | ||
2104 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */ | |
2105 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
2106 | ||
2107 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) | |
2108 | { | |
2109 | /* Save the previous instruction. If it's an EXTEND, we'll extract | |
2110 | the immediate offset extension from it in mips16_get_imm. */ | |
2111 | prev_inst = inst; | |
2112 | ||
2113 | /* Fetch and decode the instruction. */ | |
2114 | inst = (unsigned short) mips_fetch_instruction (cur_pc); | |
2115 | if ((inst & 0xff00) == 0x6300 /* addiu sp */ | |
2116 | || (inst & 0xff00) == 0xfb00) /* daddiu sp */ | |
2117 | { | |
2118 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); | |
2119 | if (offset < 0) /* negative stack adjustment? */ | |
2120 | PROC_FRAME_OFFSET (&temp_proc_desc) -= offset; | |
2121 | else | |
2122 | /* Exit loop if a positive stack adjustment is found, which | |
2123 | usually means that the stack cleanup code in the function | |
2124 | epilogue is reached. */ | |
2125 | break; | |
2126 | } | |
2127 | else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ | |
2128 | { | |
2129 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2130 | reg = mips16_to_32_reg[(inst & 0x700) >> 8]; | |
2131 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); | |
2132 | set_reg_offset (temp_saved_regs, reg, sp + offset); | |
2133 | } | |
2134 | else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ | |
2135 | { | |
2136 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2137 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
2138 | PROC_REG_MASK (&temp_proc_desc) |= (1 << reg); | |
2139 | set_reg_offset (temp_saved_regs, reg, sp + offset); | |
2140 | } | |
2141 | else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ | |
2142 | { | |
2143 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2144 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); | |
2145 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); | |
2146 | } | |
2147 | else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ | |
2148 | { | |
2149 | offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); | |
2150 | PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM); | |
2151 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); | |
2152 | } | |
2153 | else if (inst == 0x673d) /* move $s1, $sp */ | |
2154 | { | |
2155 | frame_addr = sp; | |
2156 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2157 | } | |
2158 | else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ | |
2159 | { | |
2160 | offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); | |
2161 | frame_addr = sp + offset; | |
2162 | PROC_FRAME_REG (&temp_proc_desc) = 17; | |
2163 | PROC_FRAME_ADJUST (&temp_proc_desc) = offset; | |
2164 | } | |
2165 | else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ | |
2166 | { | |
2167 | offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); | |
2168 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
2169 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2170 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); | |
2171 | } | |
2172 | else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ | |
2173 | { | |
2174 | offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); | |
2175 | reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; | |
2176 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2177 | set_reg_offset (temp_saved_regs, reg, frame_addr + offset); | |
2178 | } | |
2179 | else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ | |
2180 | entry_inst = inst; /* save for later processing */ | |
2181 | else if ((inst & 0xf800) == 0x1800) /* jal(x) */ | |
2182 | cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ | |
2183 | } | |
2184 | ||
2185 | /* The entry instruction is typically the first instruction in a function, | |
2186 | and it stores registers at offsets relative to the value of the old SP | |
2187 | (before the prologue). But the value of the sp parameter to this | |
2188 | function is the new SP (after the prologue has been executed). So we | |
2189 | can't calculate those offsets until we've seen the entire prologue, | |
2190 | and can calculate what the old SP must have been. */ | |
2191 | if (entry_inst != 0) | |
2192 | { | |
2193 | int areg_count = (entry_inst >> 8) & 7; | |
2194 | int sreg_count = (entry_inst >> 6) & 3; | |
2195 | ||
2196 | /* The entry instruction always subtracts 32 from the SP. */ | |
2197 | PROC_FRAME_OFFSET (&temp_proc_desc) += 32; | |
2198 | ||
2199 | /* Now we can calculate what the SP must have been at the | |
2200 | start of the function prologue. */ | |
2201 | sp += PROC_FRAME_OFFSET (&temp_proc_desc); | |
2202 | ||
2203 | /* Check if a0-a3 were saved in the caller's argument save area. */ | |
2204 | for (reg = 4, offset = 0; reg < areg_count + 4; reg++) | |
2205 | { | |
2206 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2207 | set_reg_offset (temp_saved_regs, reg, sp + offset); | |
2208 | offset += MIPS_SAVED_REGSIZE; | |
2209 | } | |
2210 | ||
2211 | /* Check if the ra register was pushed on the stack. */ | |
2212 | offset = -4; | |
2213 | if (entry_inst & 0x20) | |
2214 | { | |
2215 | PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM; | |
2216 | set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset); | |
2217 | offset -= MIPS_SAVED_REGSIZE; | |
2218 | } | |
2219 | ||
2220 | /* Check if the s0 and s1 registers were pushed on the stack. */ | |
2221 | for (reg = 16; reg < sreg_count + 16; reg++) | |
2222 | { | |
2223 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2224 | set_reg_offset (temp_saved_regs, reg, sp + offset); | |
2225 | offset -= MIPS_SAVED_REGSIZE; | |
2226 | } | |
2227 | } | |
2228 | } | |
2229 | ||
2230 | static void | |
2231 | mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
2232 | struct frame_info *next_frame, CORE_ADDR sp) | |
2233 | { | |
2234 | CORE_ADDR cur_pc; | |
2235 | CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ | |
2236 | restart: | |
2237 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); | |
2238 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); | |
2239 | PROC_FRAME_OFFSET (&temp_proc_desc) = 0; | |
2240 | PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ | |
2241 | for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) | |
2242 | { | |
2243 | unsigned long inst, high_word, low_word; | |
2244 | int reg; | |
2245 | ||
2246 | /* Fetch the instruction. */ | |
2247 | inst = (unsigned long) mips_fetch_instruction (cur_pc); | |
2248 | ||
2249 | /* Save some code by pre-extracting some useful fields. */ | |
2250 | high_word = (inst >> 16) & 0xffff; | |
2251 | low_word = inst & 0xffff; | |
2252 | reg = high_word & 0x1f; | |
2253 | ||
2254 | if (high_word == 0x27bd /* addiu $sp,$sp,-i */ | |
2255 | || high_word == 0x23bd /* addi $sp,$sp,-i */ | |
2256 | || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ | |
2257 | { | |
2258 | if (low_word & 0x8000) /* negative stack adjustment? */ | |
2259 | PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word; | |
2260 | else | |
2261 | /* Exit loop if a positive stack adjustment is found, which | |
2262 | usually means that the stack cleanup code in the function | |
2263 | epilogue is reached. */ | |
2264 | break; | |
2265 | } | |
2266 | else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ | |
2267 | { | |
2268 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2269 | set_reg_offset (temp_saved_regs, reg, sp + low_word); | |
2270 | } | |
2271 | else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ | |
2272 | { | |
2273 | /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, | |
2274 | but the register size used is only 32 bits. Make the address | |
2275 | for the saved register point to the lower 32 bits. */ | |
2276 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2277 | set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE); | |
2278 | } | |
2279 | else if (high_word == 0x27be) /* addiu $30,$sp,size */ | |
2280 | { | |
2281 | /* Old gcc frame, r30 is virtual frame pointer. */ | |
2282 | if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc)) | |
2283 | frame_addr = sp + low_word; | |
2284 | else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
2285 | { | |
2286 | unsigned alloca_adjust; | |
2287 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
2288 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); | |
2289 | alloca_adjust = (unsigned) (frame_addr - (sp + low_word)); | |
2290 | if (alloca_adjust > 0) | |
2291 | { | |
2292 | /* FP > SP + frame_size. This may be because | |
2293 | * of an alloca or somethings similar. | |
2294 | * Fix sp to "pre-alloca" value, and try again. | |
2295 | */ | |
2296 | sp += alloca_adjust; | |
2297 | goto restart; | |
2298 | } | |
2299 | } | |
2300 | } | |
2301 | /* move $30,$sp. With different versions of gas this will be either | |
2302 | `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. | |
2303 | Accept any one of these. */ | |
2304 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
2305 | { | |
2306 | /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ | |
2307 | if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) | |
2308 | { | |
2309 | unsigned alloca_adjust; | |
2310 | PROC_FRAME_REG (&temp_proc_desc) = 30; | |
2311 | frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30); | |
2312 | alloca_adjust = (unsigned) (frame_addr - sp); | |
2313 | if (alloca_adjust > 0) | |
2314 | { | |
2315 | /* FP > SP + frame_size. This may be because | |
2316 | * of an alloca or somethings similar. | |
2317 | * Fix sp to "pre-alloca" value, and try again. | |
2318 | */ | |
2319 | sp += alloca_adjust; | |
2320 | goto restart; | |
2321 | } | |
2322 | } | |
2323 | } | |
2324 | else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ | |
2325 | { | |
2326 | PROC_REG_MASK (&temp_proc_desc) |= 1 << reg; | |
2327 | set_reg_offset (temp_saved_regs, reg, frame_addr + low_word); | |
2328 | } | |
2329 | } | |
2330 | } | |
2331 | ||
2332 | static mips_extra_func_info_t | |
2333 | heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc, | |
2334 | struct frame_info *next_frame, int cur_frame) | |
2335 | { | |
2336 | CORE_ADDR sp; | |
2337 | ||
2338 | if (cur_frame) | |
2339 | sp = read_next_frame_reg (next_frame, NUM_REGS + SP_REGNUM); | |
2340 | else | |
2341 | sp = 0; | |
2342 | ||
2343 | if (start_pc == 0) | |
2344 | return NULL; | |
2345 | memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc)); | |
2346 | temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS); | |
2347 | memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS); | |
2348 | PROC_LOW_ADDR (&temp_proc_desc) = start_pc; | |
2349 | PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; | |
2350 | PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; | |
2351 | ||
2352 | if (start_pc + 200 < limit_pc) | |
2353 | limit_pc = start_pc + 200; | |
2354 | if (pc_is_mips16 (start_pc)) | |
2355 | mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2356 | else | |
2357 | mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); | |
2358 | return &temp_proc_desc; | |
2359 | } | |
2360 | ||
2361 | struct mips_objfile_private | |
2362 | { | |
2363 | bfd_size_type size; | |
2364 | char *contents; | |
2365 | }; | |
2366 | ||
2367 | /* Global used to communicate between non_heuristic_proc_desc and | |
2368 | compare_pdr_entries within qsort (). */ | |
2369 | static bfd *the_bfd; | |
2370 | ||
2371 | static int | |
2372 | compare_pdr_entries (const void *a, const void *b) | |
2373 | { | |
2374 | CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a); | |
2375 | CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b); | |
2376 | ||
2377 | if (lhs < rhs) | |
2378 | return -1; | |
2379 | else if (lhs == rhs) | |
2380 | return 0; | |
2381 | else | |
2382 | return 1; | |
2383 | } | |
2384 | ||
2385 | static mips_extra_func_info_t | |
2386 | non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr) | |
2387 | { | |
2388 | CORE_ADDR startaddr; | |
2389 | mips_extra_func_info_t proc_desc; | |
2390 | struct block *b = block_for_pc (pc); | |
2391 | struct symbol *sym; | |
2392 | struct obj_section *sec; | |
2393 | struct mips_objfile_private *priv; | |
2394 | ||
2395 | if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0)) | |
2396 | return NULL; | |
2397 | ||
2398 | find_pc_partial_function (pc, NULL, &startaddr, NULL); | |
2399 | if (addrptr) | |
2400 | *addrptr = startaddr; | |
2401 | ||
2402 | priv = NULL; | |
2403 | ||
2404 | sec = find_pc_section (pc); | |
2405 | if (sec != NULL) | |
2406 | { | |
2407 | priv = (struct mips_objfile_private *) sec->objfile->obj_private; | |
2408 | ||
2409 | /* Search the ".pdr" section generated by GAS. This includes most of | |
2410 | the information normally found in ECOFF PDRs. */ | |
2411 | ||
2412 | the_bfd = sec->objfile->obfd; | |
2413 | if (priv == NULL | |
2414 | && (the_bfd->format == bfd_object | |
2415 | && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour | |
2416 | && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64)) | |
2417 | { | |
2418 | /* Right now GAS only outputs the address as a four-byte sequence. | |
2419 | This means that we should not bother with this method on 64-bit | |
2420 | targets (until that is fixed). */ | |
2421 | ||
2422 | priv = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2423 | sizeof (struct mips_objfile_private)); | |
2424 | priv->size = 0; | |
2425 | sec->objfile->obj_private = priv; | |
2426 | } | |
2427 | else if (priv == NULL) | |
2428 | { | |
2429 | asection *bfdsec; | |
2430 | ||
2431 | priv = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2432 | sizeof (struct mips_objfile_private)); | |
2433 | ||
2434 | bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr"); | |
2435 | if (bfdsec != NULL) | |
2436 | { | |
2437 | priv->size = bfd_section_size (sec->objfile->obfd, bfdsec); | |
2438 | priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack, | |
2439 | priv->size); | |
2440 | bfd_get_section_contents (sec->objfile->obfd, bfdsec, | |
2441 | priv->contents, 0, priv->size); | |
2442 | ||
2443 | /* In general, the .pdr section is sorted. However, in the | |
2444 | presence of multiple code sections (and other corner cases) | |
2445 | it can become unsorted. Sort it so that we can use a faster | |
2446 | binary search. */ | |
2447 | qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries); | |
2448 | } | |
2449 | else | |
2450 | priv->size = 0; | |
2451 | ||
2452 | sec->objfile->obj_private = priv; | |
2453 | } | |
2454 | the_bfd = NULL; | |
2455 | ||
2456 | if (priv->size != 0) | |
2457 | { | |
2458 | int low, mid, high; | |
2459 | char *ptr; | |
2460 | ||
2461 | low = 0; | |
2462 | high = priv->size / 32; | |
2463 | ||
2464 | do | |
2465 | { | |
2466 | CORE_ADDR pdr_pc; | |
2467 | ||
2468 | mid = (low + high) / 2; | |
2469 | ||
2470 | ptr = priv->contents + mid * 32; | |
2471 | pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr); | |
2472 | pdr_pc += ANOFFSET (sec->objfile->section_offsets, | |
2473 | SECT_OFF_TEXT (sec->objfile)); | |
2474 | if (pdr_pc == startaddr) | |
2475 | break; | |
2476 | if (pdr_pc > startaddr) | |
2477 | high = mid; | |
2478 | else | |
2479 | low = mid + 1; | |
2480 | } | |
2481 | while (low != high); | |
2482 | ||
2483 | if (low != high) | |
2484 | { | |
2485 | struct symbol *sym = find_pc_function (pc); | |
2486 | ||
2487 | /* Fill in what we need of the proc_desc. */ | |
2488 | proc_desc = (mips_extra_func_info_t) | |
2489 | obstack_alloc (&sec->objfile->psymbol_obstack, | |
2490 | sizeof (struct mips_extra_func_info)); | |
2491 | PROC_LOW_ADDR (proc_desc) = startaddr; | |
2492 | ||
2493 | /* Only used for dummy frames. */ | |
2494 | PROC_HIGH_ADDR (proc_desc) = 0; | |
2495 | ||
2496 | PROC_FRAME_OFFSET (proc_desc) | |
2497 | = bfd_get_32 (sec->objfile->obfd, ptr + 20); | |
2498 | PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2499 | ptr + 24); | |
2500 | PROC_FRAME_ADJUST (proc_desc) = 0; | |
2501 | PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2502 | ptr + 4); | |
2503 | PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2504 | ptr + 12); | |
2505 | PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2506 | ptr + 8); | |
2507 | PROC_FREG_OFFSET (proc_desc) | |
2508 | = bfd_get_32 (sec->objfile->obfd, ptr + 16); | |
2509 | PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd, | |
2510 | ptr + 28); | |
2511 | proc_desc->pdr.isym = (long) sym; | |
2512 | ||
2513 | return proc_desc; | |
2514 | } | |
2515 | } | |
2516 | } | |
2517 | ||
2518 | if (b == NULL) | |
2519 | return NULL; | |
2520 | ||
2521 | if (startaddr > BLOCK_START (b)) | |
2522 | { | |
2523 | /* This is the "pathological" case referred to in a comment in | |
2524 | print_frame_info. It might be better to move this check into | |
2525 | symbol reading. */ | |
2526 | return NULL; | |
2527 | } | |
2528 | ||
2529 | sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL); | |
2530 | ||
2531 | /* If we never found a PDR for this function in symbol reading, then | |
2532 | examine prologues to find the information. */ | |
2533 | if (sym) | |
2534 | { | |
2535 | proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); | |
2536 | if (PROC_FRAME_REG (proc_desc) == -1) | |
2537 | return NULL; | |
2538 | else | |
2539 | return proc_desc; | |
2540 | } | |
2541 | else | |
2542 | return NULL; | |
2543 | } | |
2544 | ||
2545 | ||
2546 | static mips_extra_func_info_t | |
2547 | find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame) | |
2548 | { | |
2549 | mips_extra_func_info_t proc_desc; | |
2550 | CORE_ADDR startaddr = 0; | |
2551 | ||
2552 | proc_desc = non_heuristic_proc_desc (pc, &startaddr); | |
2553 | ||
2554 | if (proc_desc) | |
2555 | { | |
2556 | /* IF this is the topmost frame AND | |
2557 | * (this proc does not have debugging information OR | |
2558 | * the PC is in the procedure prologue) | |
2559 | * THEN create a "heuristic" proc_desc (by analyzing | |
2560 | * the actual code) to replace the "official" proc_desc. | |
2561 | */ | |
2562 | if (next_frame == NULL) | |
2563 | { | |
2564 | struct symtab_and_line val; | |
2565 | struct symbol *proc_symbol = | |
2566 | PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc); | |
2567 | ||
2568 | if (proc_symbol) | |
2569 | { | |
2570 | val = find_pc_line (BLOCK_START | |
2571 | (SYMBOL_BLOCK_VALUE (proc_symbol)), | |
2572 | 0); | |
2573 | val.pc = val.end ? val.end : pc; | |
2574 | } | |
2575 | if (!proc_symbol || pc < val.pc) | |
2576 | { | |
2577 | mips_extra_func_info_t found_heuristic = | |
2578 | heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), | |
2579 | pc, next_frame, cur_frame); | |
2580 | if (found_heuristic) | |
2581 | proc_desc = found_heuristic; | |
2582 | } | |
2583 | } | |
2584 | } | |
2585 | else | |
2586 | { | |
2587 | /* Is linked_proc_desc_table really necessary? It only seems to be used | |
2588 | by procedure call dummys. However, the procedures being called ought | |
2589 | to have their own proc_descs, and even if they don't, | |
2590 | heuristic_proc_desc knows how to create them! */ | |
2591 | ||
2592 | struct linked_proc_info *link; | |
2593 | ||
2594 | for (link = linked_proc_desc_table; link; link = link->next) | |
2595 | if (PROC_LOW_ADDR (&link->info) <= pc | |
2596 | && PROC_HIGH_ADDR (&link->info) > pc) | |
2597 | return &link->info; | |
2598 | ||
2599 | if (startaddr == 0) | |
2600 | startaddr = heuristic_proc_start (pc); | |
2601 | ||
2602 | proc_desc = | |
2603 | heuristic_proc_desc (startaddr, pc, next_frame, cur_frame); | |
2604 | } | |
2605 | return proc_desc; | |
2606 | } | |
2607 | ||
2608 | static CORE_ADDR | |
2609 | get_frame_pointer (struct frame_info *frame, | |
2610 | mips_extra_func_info_t proc_desc) | |
2611 | { | |
2612 | return (read_next_frame_reg (frame, NUM_REGS + PROC_FRAME_REG (proc_desc)) | |
2613 | + PROC_FRAME_OFFSET (proc_desc) | |
2614 | - PROC_FRAME_ADJUST (proc_desc)); | |
2615 | } | |
2616 | ||
2617 | static mips_extra_func_info_t cached_proc_desc; | |
2618 | ||
2619 | static CORE_ADDR | |
2620 | mips_frame_chain (struct frame_info *frame) | |
2621 | { | |
2622 | mips_extra_func_info_t proc_desc; | |
2623 | CORE_ADDR tmp; | |
2624 | CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame); | |
2625 | ||
2626 | if (saved_pc == 0 || deprecated_inside_entry_file (saved_pc)) | |
2627 | return 0; | |
2628 | ||
2629 | /* Check if the PC is inside a call stub. If it is, fetch the | |
2630 | PC of the caller of that stub. */ | |
2631 | if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0) | |
2632 | saved_pc = tmp; | |
2633 | ||
2634 | if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0)) | |
2635 | { | |
2636 | /* A dummy frame, uses SP not FP. Get the old SP value. If all | |
2637 | is well, frame->frame the bottom of the current frame will | |
2638 | contain that value. */ | |
2639 | return get_frame_base (frame); | |
2640 | } | |
2641 | ||
2642 | /* Look up the procedure descriptor for this PC. */ | |
2643 | proc_desc = find_proc_desc (saved_pc, frame, 1); | |
2644 | if (!proc_desc) | |
2645 | return 0; | |
2646 | ||
2647 | cached_proc_desc = proc_desc; | |
2648 | ||
2649 | /* If no frame pointer and frame size is zero, we must be at end | |
2650 | of stack (or otherwise hosed). If we don't check frame size, | |
2651 | we loop forever if we see a zero size frame. */ | |
2652 | if (PROC_FRAME_REG (proc_desc) == SP_REGNUM | |
2653 | && PROC_FRAME_OFFSET (proc_desc) == 0 | |
2654 | /* The previous frame from a sigtramp frame might be frameless | |
2655 | and have frame size zero. */ | |
2656 | && !(get_frame_type (frame) == SIGTRAMP_FRAME) | |
2657 | /* For a generic dummy frame, let get_frame_pointer() unwind a | |
2658 | register value saved as part of the dummy frame call. */ | |
2659 | && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))) | |
2660 | return 0; | |
2661 | else | |
2662 | return get_frame_pointer (frame, proc_desc); | |
2663 | } | |
2664 | ||
2665 | static void | |
2666 | mips_init_extra_frame_info (int fromleaf, struct frame_info *fci) | |
2667 | { | |
2668 | int regnum; | |
2669 | mips_extra_func_info_t proc_desc; | |
2670 | ||
2671 | if (get_frame_type (fci) == DUMMY_FRAME) | |
2672 | return; | |
2673 | ||
2674 | /* Use proc_desc calculated in frame_chain. When there is no | |
2675 | next frame, i.e, get_next_frame (fci) == NULL, we call | |
2676 | find_proc_desc () to calculate it, passing an explicit | |
2677 | NULL as the frame parameter. */ | |
2678 | proc_desc = | |
2679 | get_next_frame (fci) | |
2680 | ? cached_proc_desc | |
2681 | : find_proc_desc (get_frame_pc (fci), | |
2682 | NULL /* i.e, get_next_frame (fci) */, | |
2683 | 1); | |
2684 | ||
2685 | frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info)); | |
2686 | ||
2687 | deprecated_set_frame_saved_regs_hack (fci, NULL); | |
2688 | get_frame_extra_info (fci)->proc_desc = | |
2689 | proc_desc == &temp_proc_desc ? 0 : proc_desc; | |
2690 | if (proc_desc) | |
2691 | { | |
2692 | /* Fixup frame-pointer - only needed for top frame */ | |
2693 | /* This may not be quite right, if proc has a real frame register. | |
2694 | Get the value of the frame relative sp, procedure might have been | |
2695 | interrupted by a signal at it's very start. */ | |
2696 | if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc) | |
2697 | && !PROC_DESC_IS_DUMMY (proc_desc)) | |
2698 | deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), NUM_REGS + SP_REGNUM)); | |
2699 | else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0)) | |
2700 | /* Do not ``fix'' fci->frame. It will have the value of the | |
2701 | generic dummy frame's top-of-stack (since the draft | |
2702 | fci->frame is obtained by returning the unwound stack | |
2703 | pointer) and that is what we want. That way the fci->frame | |
2704 | value will match the top-of-stack value that was saved as | |
2705 | part of the dummy frames data. */ | |
2706 | /* Do nothing. */; | |
2707 | else | |
2708 | deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc)); | |
2709 | ||
2710 | if (proc_desc == &temp_proc_desc) | |
2711 | { | |
2712 | char *name; | |
2713 | ||
2714 | /* Do not set the saved registers for a sigtramp frame, | |
2715 | mips_find_saved_registers will do that for us. We can't | |
2716 | use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not | |
2717 | yet set. */ | |
2718 | /* FIXME: cagney/2002-11-18: This problem will go away once | |
2719 | frame.c:get_prev_frame() is modified to set the frame's | |
2720 | type before calling functions like this. */ | |
2721 | find_pc_partial_function (get_frame_pc (fci), &name, | |
2722 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); | |
2723 | if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name)) | |
2724 | { | |
2725 | frame_saved_regs_zalloc (fci); | |
2726 | /* Set value of previous frame's stack pointer. | |
2727 | Remember that saved_regs[SP_REGNUM] is special in | |
2728 | that it contains the value of the stack pointer | |
2729 | register. The other saved_regs values are addresses | |
2730 | (in the inferior) at which a given register's value | |
2731 | may be found. */ | |
2732 | set_reg_offset (temp_saved_regs, SP_REGNUM, | |
2733 | get_frame_base (fci)); | |
2734 | set_reg_offset (temp_saved_regs, PC_REGNUM, | |
2735 | temp_saved_regs[RA_REGNUM]); | |
2736 | memcpy (get_frame_saved_regs (fci), temp_saved_regs, | |
2737 | SIZEOF_FRAME_SAVED_REGS); | |
2738 | } | |
2739 | } | |
2740 | ||
2741 | /* hack: if argument regs are saved, guess these contain args */ | |
2742 | /* assume we can't tell how many args for now */ | |
2743 | get_frame_extra_info (fci)->num_args = -1; | |
2744 | for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) | |
2745 | { | |
2746 | if (PROC_REG_MASK (proc_desc) & (1 << regnum)) | |
2747 | { | |
2748 | get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1; | |
2749 | break; | |
2750 | } | |
2751 | } | |
2752 | } | |
2753 | } | |
2754 | ||
2755 | /* MIPS stack frames are almost impenetrable. When execution stops, | |
2756 | we basically have to look at symbol information for the function | |
2757 | that we stopped in, which tells us *which* register (if any) is | |
2758 | the base of the frame pointer, and what offset from that register | |
2759 | the frame itself is at. | |
2760 | ||
2761 | This presents a problem when trying to examine a stack in memory | |
2762 | (that isn't executing at the moment), using the "frame" command. We | |
2763 | don't have a PC, nor do we have any registers except SP. | |
2764 | ||
2765 | This routine takes two arguments, SP and PC, and tries to make the | |
2766 | cached frames look as if these two arguments defined a frame on the | |
2767 | cache. This allows the rest of info frame to extract the important | |
2768 | arguments without difficulty. */ | |
2769 | ||
2770 | struct frame_info * | |
2771 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) | |
2772 | { | |
2773 | if (argc != 2) | |
2774 | error ("MIPS frame specifications require two arguments: sp and pc"); | |
2775 | ||
2776 | return create_new_frame (argv[0], argv[1]); | |
2777 | } | |
2778 | ||
2779 | /* According to the current ABI, should the type be passed in a | |
2780 | floating-point register (assuming that there is space)? When there | |
2781 | is no FPU, FP are not even considered as possibile candidates for | |
2782 | FP registers and, consequently this returns false - forces FP | |
2783 | arguments into integer registers. */ | |
2784 | ||
2785 | static int | |
2786 | fp_register_arg_p (enum type_code typecode, struct type *arg_type) | |
2787 | { | |
2788 | return ((typecode == TYPE_CODE_FLT | |
2789 | || (MIPS_EABI | |
2790 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
2791 | && TYPE_NFIELDS (arg_type) == 1 | |
2792 | && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT)) | |
2793 | && MIPS_FPU_TYPE != MIPS_FPU_NONE); | |
2794 | } | |
2795 | ||
2796 | /* On o32, argument passing in GPRs depends on the alignment of the type being | |
2797 | passed. Return 1 if this type must be aligned to a doubleword boundary. */ | |
2798 | ||
2799 | static int | |
2800 | mips_type_needs_double_align (struct type *type) | |
2801 | { | |
2802 | enum type_code typecode = TYPE_CODE (type); | |
2803 | ||
2804 | if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8) | |
2805 | return 1; | |
2806 | else if (typecode == TYPE_CODE_STRUCT) | |
2807 | { | |
2808 | if (TYPE_NFIELDS (type) < 1) | |
2809 | return 0; | |
2810 | return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0)); | |
2811 | } | |
2812 | else if (typecode == TYPE_CODE_UNION) | |
2813 | { | |
2814 | int i, n; | |
2815 | ||
2816 | n = TYPE_NFIELDS (type); | |
2817 | for (i = 0; i < n; i++) | |
2818 | if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i))) | |
2819 | return 1; | |
2820 | return 0; | |
2821 | } | |
2822 | return 0; | |
2823 | } | |
2824 | ||
2825 | /* Macros to round N up or down to the next A boundary; | |
2826 | A must be a power of two. */ | |
2827 | ||
2828 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
2829 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
2830 | ||
2831 | /* Adjust the address downward (direction of stack growth) so that it | |
2832 | is correctly aligned for a new stack frame. */ | |
2833 | static CORE_ADDR | |
2834 | mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2835 | { | |
2836 | return ROUND_DOWN (addr, 16); | |
2837 | } | |
2838 | ||
2839 | static CORE_ADDR | |
2840 | mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
2841 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
2842 | struct value **args, CORE_ADDR sp, int struct_return, | |
2843 | CORE_ADDR struct_addr) | |
2844 | { | |
2845 | int argreg; | |
2846 | int float_argreg; | |
2847 | int argnum; | |
2848 | int len = 0; | |
2849 | int stack_offset = 0; | |
2850 | ||
2851 | /* For shared libraries, "t9" needs to point at the function | |
2852 | address. */ | |
2853 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
2854 | ||
2855 | /* Set the return address register to point to the entry point of | |
2856 | the program, where a breakpoint lies in wait. */ | |
2857 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
2858 | ||
2859 | /* First ensure that the stack and structure return address (if any) | |
2860 | are properly aligned. The stack has to be at least 64-bit | |
2861 | aligned even on 32-bit machines, because doubles must be 64-bit | |
2862 | aligned. For n32 and n64, stack frames need to be 128-bit | |
2863 | aligned, so we round to this widest known alignment. */ | |
2864 | ||
2865 | sp = ROUND_DOWN (sp, 16); | |
2866 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
2867 | ||
2868 | /* Now make space on the stack for the args. We allocate more | |
2869 | than necessary for EABI, because the first few arguments are | |
2870 | passed in registers, but that's OK. */ | |
2871 | for (argnum = 0; argnum < nargs; argnum++) | |
2872 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
2873 | MIPS_STACK_ARGSIZE); | |
2874 | sp -= ROUND_UP (len, 16); | |
2875 | ||
2876 | if (mips_debug) | |
2877 | fprintf_unfiltered (gdb_stdlog, | |
2878 | "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n", | |
2879 | paddr_nz (sp), ROUND_UP (len, 16)); | |
2880 | ||
2881 | /* Initialize the integer and float register pointers. */ | |
2882 | argreg = A0_REGNUM; | |
2883 | float_argreg = FPA0_REGNUM; | |
2884 | ||
2885 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
2886 | if (struct_return) | |
2887 | { | |
2888 | if (mips_debug) | |
2889 | fprintf_unfiltered (gdb_stdlog, | |
2890 | "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n", | |
2891 | argreg, paddr_nz (struct_addr)); | |
2892 | write_register (argreg++, struct_addr); | |
2893 | } | |
2894 | ||
2895 | /* Now load as many as possible of the first arguments into | |
2896 | registers, and push the rest onto the stack. Loop thru args | |
2897 | from first to last. */ | |
2898 | for (argnum = 0; argnum < nargs; argnum++) | |
2899 | { | |
2900 | char *val; | |
2901 | char valbuf[MAX_REGISTER_SIZE]; | |
2902 | struct value *arg = args[argnum]; | |
2903 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
2904 | int len = TYPE_LENGTH (arg_type); | |
2905 | enum type_code typecode = TYPE_CODE (arg_type); | |
2906 | ||
2907 | if (mips_debug) | |
2908 | fprintf_unfiltered (gdb_stdlog, | |
2909 | "mips_eabi_push_dummy_call: %d len=%d type=%d", | |
2910 | argnum + 1, len, (int) typecode); | |
2911 | ||
2912 | /* The EABI passes structures that do not fit in a register by | |
2913 | reference. */ | |
2914 | if (len > MIPS_SAVED_REGSIZE | |
2915 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
2916 | { | |
2917 | store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg)); | |
2918 | typecode = TYPE_CODE_PTR; | |
2919 | len = MIPS_SAVED_REGSIZE; | |
2920 | val = valbuf; | |
2921 | if (mips_debug) | |
2922 | fprintf_unfiltered (gdb_stdlog, " push"); | |
2923 | } | |
2924 | else | |
2925 | val = (char *) VALUE_CONTENTS (arg); | |
2926 | ||
2927 | /* 32-bit ABIs always start floating point arguments in an | |
2928 | even-numbered floating point register. Round the FP register | |
2929 | up before the check to see if there are any FP registers | |
2930 | left. Non MIPS_EABI targets also pass the FP in the integer | |
2931 | registers so also round up normal registers. */ | |
2932 | if (!FP_REGISTER_DOUBLE | |
2933 | && fp_register_arg_p (typecode, arg_type)) | |
2934 | { | |
2935 | if ((float_argreg & 1)) | |
2936 | float_argreg++; | |
2937 | } | |
2938 | ||
2939 | /* Floating point arguments passed in registers have to be | |
2940 | treated specially. On 32-bit architectures, doubles | |
2941 | are passed in register pairs; the even register gets | |
2942 | the low word, and the odd register gets the high word. | |
2943 | On non-EABI processors, the first two floating point arguments are | |
2944 | also copied to general registers, because MIPS16 functions | |
2945 | don't use float registers for arguments. This duplication of | |
2946 | arguments in general registers can't hurt non-MIPS16 functions | |
2947 | because those registers are normally skipped. */ | |
2948 | /* MIPS_EABI squeezes a struct that contains a single floating | |
2949 | point value into an FP register instead of pushing it onto the | |
2950 | stack. */ | |
2951 | if (fp_register_arg_p (typecode, arg_type) | |
2952 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
2953 | { | |
2954 | if (!FP_REGISTER_DOUBLE && len == 8) | |
2955 | { | |
2956 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
2957 | unsigned long regval; | |
2958 | ||
2959 | /* Write the low word of the double to the even register(s). */ | |
2960 | regval = extract_unsigned_integer (val + low_offset, 4); | |
2961 | if (mips_debug) | |
2962 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
2963 | float_argreg, phex (regval, 4)); | |
2964 | write_register (float_argreg++, regval); | |
2965 | ||
2966 | /* Write the high word of the double to the odd register(s). */ | |
2967 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
2968 | if (mips_debug) | |
2969 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
2970 | float_argreg, phex (regval, 4)); | |
2971 | write_register (float_argreg++, regval); | |
2972 | } | |
2973 | else | |
2974 | { | |
2975 | /* This is a floating point value that fits entirely | |
2976 | in a single register. */ | |
2977 | /* On 32 bit ABI's the float_argreg is further adjusted | |
2978 | above to ensure that it is even register aligned. */ | |
2979 | LONGEST regval = extract_unsigned_integer (val, len); | |
2980 | if (mips_debug) | |
2981 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
2982 | float_argreg, phex (regval, len)); | |
2983 | write_register (float_argreg++, regval); | |
2984 | } | |
2985 | } | |
2986 | else | |
2987 | { | |
2988 | /* Copy the argument to general registers or the stack in | |
2989 | register-sized pieces. Large arguments are split between | |
2990 | registers and stack. */ | |
2991 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
2992 | are treated specially: Irix cc passes them in registers | |
2993 | where gcc sometimes puts them on the stack. For maximum | |
2994 | compatibility, we will put them in both places. */ | |
2995 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
2996 | (len % MIPS_SAVED_REGSIZE != 0)); | |
2997 | ||
2998 | /* Note: Floating-point values that didn't fit into an FP | |
2999 | register are only written to memory. */ | |
3000 | while (len > 0) | |
3001 | { | |
3002 | /* Remember if the argument was written to the stack. */ | |
3003 | int stack_used_p = 0; | |
3004 | int partial_len = | |
3005 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
3006 | ||
3007 | if (mips_debug) | |
3008 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3009 | partial_len); | |
3010 | ||
3011 | /* Write this portion of the argument to the stack. */ | |
3012 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3013 | || odd_sized_struct | |
3014 | || fp_register_arg_p (typecode, arg_type)) | |
3015 | { | |
3016 | /* Should shorter than int integer values be | |
3017 | promoted to int before being stored? */ | |
3018 | int longword_offset = 0; | |
3019 | CORE_ADDR addr; | |
3020 | stack_used_p = 1; | |
3021 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3022 | { | |
3023 | if (MIPS_STACK_ARGSIZE == 8 && | |
3024 | (typecode == TYPE_CODE_INT || | |
3025 | typecode == TYPE_CODE_PTR || | |
3026 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3027 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3028 | else if ((typecode == TYPE_CODE_STRUCT || | |
3029 | typecode == TYPE_CODE_UNION) && | |
3030 | TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE) | |
3031 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3032 | } | |
3033 | ||
3034 | if (mips_debug) | |
3035 | { | |
3036 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3037 | paddr_nz (stack_offset)); | |
3038 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3039 | paddr_nz (longword_offset)); | |
3040 | } | |
3041 | ||
3042 | addr = sp + stack_offset + longword_offset; | |
3043 | ||
3044 | if (mips_debug) | |
3045 | { | |
3046 | int i; | |
3047 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3048 | paddr_nz (addr)); | |
3049 | for (i = 0; i < partial_len; i++) | |
3050 | { | |
3051 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3052 | val[i] & 0xff); | |
3053 | } | |
3054 | } | |
3055 | write_memory (addr, val, partial_len); | |
3056 | } | |
3057 | ||
3058 | /* Note!!! This is NOT an else clause. Odd sized | |
3059 | structs may go thru BOTH paths. Floating point | |
3060 | arguments will not. */ | |
3061 | /* Write this portion of the argument to a general | |
3062 | purpose register. */ | |
3063 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3064 | && !fp_register_arg_p (typecode, arg_type)) | |
3065 | { | |
3066 | LONGEST regval = extract_unsigned_integer (val, partial_len); | |
3067 | ||
3068 | if (mips_debug) | |
3069 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3070 | argreg, | |
3071 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3072 | write_register (argreg, regval); | |
3073 | argreg++; | |
3074 | } | |
3075 | ||
3076 | len -= partial_len; | |
3077 | val += partial_len; | |
3078 | ||
3079 | /* Compute the the offset into the stack at which we | |
3080 | will copy the next parameter. | |
3081 | ||
3082 | In the new EABI (and the NABI32), the stack_offset | |
3083 | only needs to be adjusted when it has been used. */ | |
3084 | ||
3085 | if (stack_used_p) | |
3086 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3087 | } | |
3088 | } | |
3089 | if (mips_debug) | |
3090 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3091 | } | |
3092 | ||
3093 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
3094 | ||
3095 | /* Return adjusted stack pointer. */ | |
3096 | return sp; | |
3097 | } | |
3098 | ||
3099 | /* N32/N64 version of push_dummy_call. */ | |
3100 | ||
3101 | static CORE_ADDR | |
3102 | mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
3103 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
3104 | struct value **args, CORE_ADDR sp, int struct_return, | |
3105 | CORE_ADDR struct_addr) | |
3106 | { | |
3107 | int argreg; | |
3108 | int float_argreg; | |
3109 | int argnum; | |
3110 | int len = 0; | |
3111 | int stack_offset = 0; | |
3112 | ||
3113 | /* For shared libraries, "t9" needs to point at the function | |
3114 | address. */ | |
3115 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3116 | ||
3117 | /* Set the return address register to point to the entry point of | |
3118 | the program, where a breakpoint lies in wait. */ | |
3119 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3120 | ||
3121 | /* First ensure that the stack and structure return address (if any) | |
3122 | are properly aligned. The stack has to be at least 64-bit | |
3123 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3124 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3125 | aligned, so we round to this widest known alignment. */ | |
3126 | ||
3127 | sp = ROUND_DOWN (sp, 16); | |
3128 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3129 | ||
3130 | /* Now make space on the stack for the args. */ | |
3131 | for (argnum = 0; argnum < nargs; argnum++) | |
3132 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3133 | MIPS_STACK_ARGSIZE); | |
3134 | sp -= ROUND_UP (len, 16); | |
3135 | ||
3136 | if (mips_debug) | |
3137 | fprintf_unfiltered (gdb_stdlog, | |
3138 | "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n", | |
3139 | paddr_nz (sp), ROUND_UP (len, 16)); | |
3140 | ||
3141 | /* Initialize the integer and float register pointers. */ | |
3142 | argreg = A0_REGNUM; | |
3143 | float_argreg = FPA0_REGNUM; | |
3144 | ||
3145 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
3146 | if (struct_return) | |
3147 | { | |
3148 | if (mips_debug) | |
3149 | fprintf_unfiltered (gdb_stdlog, | |
3150 | "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n", | |
3151 | argreg, paddr_nz (struct_addr)); | |
3152 | write_register (argreg++, struct_addr); | |
3153 | } | |
3154 | ||
3155 | /* Now load as many as possible of the first arguments into | |
3156 | registers, and push the rest onto the stack. Loop thru args | |
3157 | from first to last. */ | |
3158 | for (argnum = 0; argnum < nargs; argnum++) | |
3159 | { | |
3160 | char *val; | |
3161 | char valbuf[MAX_REGISTER_SIZE]; | |
3162 | struct value *arg = args[argnum]; | |
3163 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3164 | int len = TYPE_LENGTH (arg_type); | |
3165 | enum type_code typecode = TYPE_CODE (arg_type); | |
3166 | ||
3167 | if (mips_debug) | |
3168 | fprintf_unfiltered (gdb_stdlog, | |
3169 | "mips_n32n64_push_dummy_call: %d len=%d type=%d", | |
3170 | argnum + 1, len, (int) typecode); | |
3171 | ||
3172 | val = (char *) VALUE_CONTENTS (arg); | |
3173 | ||
3174 | if (fp_register_arg_p (typecode, arg_type) | |
3175 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3176 | { | |
3177 | /* This is a floating point value that fits entirely | |
3178 | in a single register. */ | |
3179 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3180 | above to ensure that it is even register aligned. */ | |
3181 | LONGEST regval = extract_unsigned_integer (val, len); | |
3182 | if (mips_debug) | |
3183 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3184 | float_argreg, phex (regval, len)); | |
3185 | write_register (float_argreg++, regval); | |
3186 | ||
3187 | if (mips_debug) | |
3188 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3189 | argreg, phex (regval, len)); | |
3190 | write_register (argreg, regval); | |
3191 | argreg += 1; | |
3192 | } | |
3193 | else | |
3194 | { | |
3195 | /* Copy the argument to general registers or the stack in | |
3196 | register-sized pieces. Large arguments are split between | |
3197 | registers and stack. */ | |
3198 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3199 | are treated specially: Irix cc passes them in registers | |
3200 | where gcc sometimes puts them on the stack. For maximum | |
3201 | compatibility, we will put them in both places. */ | |
3202 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3203 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3204 | /* Note: Floating-point values that didn't fit into an FP | |
3205 | register are only written to memory. */ | |
3206 | while (len > 0) | |
3207 | { | |
3208 | /* Rememer if the argument was written to the stack. */ | |
3209 | int stack_used_p = 0; | |
3210 | int partial_len = len < MIPS_SAVED_REGSIZE ? | |
3211 | len : MIPS_SAVED_REGSIZE; | |
3212 | ||
3213 | if (mips_debug) | |
3214 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3215 | partial_len); | |
3216 | ||
3217 | /* Write this portion of the argument to the stack. */ | |
3218 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3219 | || odd_sized_struct | |
3220 | || fp_register_arg_p (typecode, arg_type)) | |
3221 | { | |
3222 | /* Should shorter than int integer values be | |
3223 | promoted to int before being stored? */ | |
3224 | int longword_offset = 0; | |
3225 | CORE_ADDR addr; | |
3226 | stack_used_p = 1; | |
3227 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3228 | { | |
3229 | if (MIPS_STACK_ARGSIZE == 8 && | |
3230 | (typecode == TYPE_CODE_INT || | |
3231 | typecode == TYPE_CODE_PTR || | |
3232 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3233 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3234 | } | |
3235 | ||
3236 | if (mips_debug) | |
3237 | { | |
3238 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3239 | paddr_nz (stack_offset)); | |
3240 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3241 | paddr_nz (longword_offset)); | |
3242 | } | |
3243 | ||
3244 | addr = sp + stack_offset + longword_offset; | |
3245 | ||
3246 | if (mips_debug) | |
3247 | { | |
3248 | int i; | |
3249 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3250 | paddr_nz (addr)); | |
3251 | for (i = 0; i < partial_len; i++) | |
3252 | { | |
3253 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3254 | val[i] & 0xff); | |
3255 | } | |
3256 | } | |
3257 | write_memory (addr, val, partial_len); | |
3258 | } | |
3259 | ||
3260 | /* Note!!! This is NOT an else clause. Odd sized | |
3261 | structs may go thru BOTH paths. Floating point | |
3262 | arguments will not. */ | |
3263 | /* Write this portion of the argument to a general | |
3264 | purpose register. */ | |
3265 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3266 | && !fp_register_arg_p (typecode, arg_type)) | |
3267 | { | |
3268 | LONGEST regval = extract_unsigned_integer (val, partial_len); | |
3269 | ||
3270 | /* A non-floating-point argument being passed in a | |
3271 | general register. If a struct or union, and if | |
3272 | the remaining length is smaller than the register | |
3273 | size, we have to adjust the register value on | |
3274 | big endian targets. | |
3275 | ||
3276 | It does not seem to be necessary to do the | |
3277 | same for integral types. | |
3278 | ||
3279 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3280 | outputting LE O32 with sizeof (struct) < | |
3281 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3282 | part of storing the argument in a register a | |
3283 | register (the left shift isn't generated when | |
3284 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3285 | is quite possible that this is GCC contradicting | |
3286 | the LE/O32 ABI, GDB has not been adjusted to | |
3287 | accommodate this. Either someone needs to | |
3288 | demonstrate that the LE/O32 ABI specifies such a | |
3289 | left shift OR this new ABI gets identified as | |
3290 | such and GDB gets tweaked accordingly. */ | |
3291 | ||
3292 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3293 | && partial_len < MIPS_SAVED_REGSIZE | |
3294 | && (typecode == TYPE_CODE_STRUCT || | |
3295 | typecode == TYPE_CODE_UNION)) | |
3296 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3297 | TARGET_CHAR_BIT); | |
3298 | ||
3299 | if (mips_debug) | |
3300 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3301 | argreg, | |
3302 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3303 | write_register (argreg, regval); | |
3304 | argreg++; | |
3305 | } | |
3306 | ||
3307 | len -= partial_len; | |
3308 | val += partial_len; | |
3309 | ||
3310 | /* Compute the the offset into the stack at which we | |
3311 | will copy the next parameter. | |
3312 | ||
3313 | In N32 (N64?), the stack_offset only needs to be | |
3314 | adjusted when it has been used. */ | |
3315 | ||
3316 | if (stack_used_p) | |
3317 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3318 | } | |
3319 | } | |
3320 | if (mips_debug) | |
3321 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3322 | } | |
3323 | ||
3324 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
3325 | ||
3326 | /* Return adjusted stack pointer. */ | |
3327 | return sp; | |
3328 | } | |
3329 | ||
3330 | /* O32 version of push_dummy_call. */ | |
3331 | ||
3332 | static CORE_ADDR | |
3333 | mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
3334 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
3335 | struct value **args, CORE_ADDR sp, int struct_return, | |
3336 | CORE_ADDR struct_addr) | |
3337 | { | |
3338 | int argreg; | |
3339 | int float_argreg; | |
3340 | int argnum; | |
3341 | int len = 0; | |
3342 | int stack_offset = 0; | |
3343 | ||
3344 | /* For shared libraries, "t9" needs to point at the function | |
3345 | address. */ | |
3346 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3347 | ||
3348 | /* Set the return address register to point to the entry point of | |
3349 | the program, where a breakpoint lies in wait. */ | |
3350 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3351 | ||
3352 | /* First ensure that the stack and structure return address (if any) | |
3353 | are properly aligned. The stack has to be at least 64-bit | |
3354 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3355 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3356 | aligned, so we round to this widest known alignment. */ | |
3357 | ||
3358 | sp = ROUND_DOWN (sp, 16); | |
3359 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3360 | ||
3361 | /* Now make space on the stack for the args. */ | |
3362 | for (argnum = 0; argnum < nargs; argnum++) | |
3363 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3364 | MIPS_STACK_ARGSIZE); | |
3365 | sp -= ROUND_UP (len, 16); | |
3366 | ||
3367 | if (mips_debug) | |
3368 | fprintf_unfiltered (gdb_stdlog, | |
3369 | "mips_o32_push_dummy_call: sp=0x%s allocated %d\n", | |
3370 | paddr_nz (sp), ROUND_UP (len, 16)); | |
3371 | ||
3372 | /* Initialize the integer and float register pointers. */ | |
3373 | argreg = A0_REGNUM; | |
3374 | float_argreg = FPA0_REGNUM; | |
3375 | ||
3376 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
3377 | if (struct_return) | |
3378 | { | |
3379 | if (mips_debug) | |
3380 | fprintf_unfiltered (gdb_stdlog, | |
3381 | "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n", | |
3382 | argreg, paddr_nz (struct_addr)); | |
3383 | write_register (argreg++, struct_addr); | |
3384 | stack_offset += MIPS_STACK_ARGSIZE; | |
3385 | } | |
3386 | ||
3387 | /* Now load as many as possible of the first arguments into | |
3388 | registers, and push the rest onto the stack. Loop thru args | |
3389 | from first to last. */ | |
3390 | for (argnum = 0; argnum < nargs; argnum++) | |
3391 | { | |
3392 | char *val; | |
3393 | char valbuf[MAX_REGISTER_SIZE]; | |
3394 | struct value *arg = args[argnum]; | |
3395 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3396 | int len = TYPE_LENGTH (arg_type); | |
3397 | enum type_code typecode = TYPE_CODE (arg_type); | |
3398 | ||
3399 | if (mips_debug) | |
3400 | fprintf_unfiltered (gdb_stdlog, | |
3401 | "mips_o32_push_dummy_call: %d len=%d type=%d", | |
3402 | argnum + 1, len, (int) typecode); | |
3403 | ||
3404 | val = (char *) VALUE_CONTENTS (arg); | |
3405 | ||
3406 | /* 32-bit ABIs always start floating point arguments in an | |
3407 | even-numbered floating point register. Round the FP register | |
3408 | up before the check to see if there are any FP registers | |
3409 | left. O32/O64 targets also pass the FP in the integer | |
3410 | registers so also round up normal registers. */ | |
3411 | if (!FP_REGISTER_DOUBLE | |
3412 | && fp_register_arg_p (typecode, arg_type)) | |
3413 | { | |
3414 | if ((float_argreg & 1)) | |
3415 | float_argreg++; | |
3416 | } | |
3417 | ||
3418 | /* Floating point arguments passed in registers have to be | |
3419 | treated specially. On 32-bit architectures, doubles | |
3420 | are passed in register pairs; the even register gets | |
3421 | the low word, and the odd register gets the high word. | |
3422 | On O32/O64, the first two floating point arguments are | |
3423 | also copied to general registers, because MIPS16 functions | |
3424 | don't use float registers for arguments. This duplication of | |
3425 | arguments in general registers can't hurt non-MIPS16 functions | |
3426 | because those registers are normally skipped. */ | |
3427 | ||
3428 | if (fp_register_arg_p (typecode, arg_type) | |
3429 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3430 | { | |
3431 | if (!FP_REGISTER_DOUBLE && len == 8) | |
3432 | { | |
3433 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3434 | unsigned long regval; | |
3435 | ||
3436 | /* Write the low word of the double to the even register(s). */ | |
3437 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3438 | if (mips_debug) | |
3439 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3440 | float_argreg, phex (regval, 4)); | |
3441 | write_register (float_argreg++, regval); | |
3442 | if (mips_debug) | |
3443 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3444 | argreg, phex (regval, 4)); | |
3445 | write_register (argreg++, regval); | |
3446 | ||
3447 | /* Write the high word of the double to the odd register(s). */ | |
3448 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3449 | if (mips_debug) | |
3450 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3451 | float_argreg, phex (regval, 4)); | |
3452 | write_register (float_argreg++, regval); | |
3453 | ||
3454 | if (mips_debug) | |
3455 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3456 | argreg, phex (regval, 4)); | |
3457 | write_register (argreg++, regval); | |
3458 | } | |
3459 | else | |
3460 | { | |
3461 | /* This is a floating point value that fits entirely | |
3462 | in a single register. */ | |
3463 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3464 | above to ensure that it is even register aligned. */ | |
3465 | LONGEST regval = extract_unsigned_integer (val, len); | |
3466 | if (mips_debug) | |
3467 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3468 | float_argreg, phex (regval, len)); | |
3469 | write_register (float_argreg++, regval); | |
3470 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
3471 | registers for each argument. The below is (my | |
3472 | guess) to ensure that the corresponding integer | |
3473 | register has reserved the same space. */ | |
3474 | if (mips_debug) | |
3475 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3476 | argreg, phex (regval, len)); | |
3477 | write_register (argreg, regval); | |
3478 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
3479 | } | |
3480 | /* Reserve space for the FP register. */ | |
3481 | stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE); | |
3482 | } | |
3483 | else | |
3484 | { | |
3485 | /* Copy the argument to general registers or the stack in | |
3486 | register-sized pieces. Large arguments are split between | |
3487 | registers and stack. */ | |
3488 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3489 | are treated specially: Irix cc passes them in registers | |
3490 | where gcc sometimes puts them on the stack. For maximum | |
3491 | compatibility, we will put them in both places. */ | |
3492 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3493 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3494 | /* Structures should be aligned to eight bytes (even arg registers) | |
3495 | on MIPS_ABI_O32, if their first member has double precision. */ | |
3496 | if (MIPS_SAVED_REGSIZE < 8 | |
3497 | && mips_type_needs_double_align (arg_type)) | |
3498 | { | |
3499 | if ((argreg & 1)) | |
3500 | argreg++; | |
3501 | } | |
3502 | /* Note: Floating-point values that didn't fit into an FP | |
3503 | register are only written to memory. */ | |
3504 | while (len > 0) | |
3505 | { | |
3506 | /* Remember if the argument was written to the stack. */ | |
3507 | int stack_used_p = 0; | |
3508 | int partial_len = | |
3509 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
3510 | ||
3511 | if (mips_debug) | |
3512 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3513 | partial_len); | |
3514 | ||
3515 | /* Write this portion of the argument to the stack. */ | |
3516 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3517 | || odd_sized_struct | |
3518 | || fp_register_arg_p (typecode, arg_type)) | |
3519 | { | |
3520 | /* Should shorter than int integer values be | |
3521 | promoted to int before being stored? */ | |
3522 | int longword_offset = 0; | |
3523 | CORE_ADDR addr; | |
3524 | stack_used_p = 1; | |
3525 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3526 | { | |
3527 | if (MIPS_STACK_ARGSIZE == 8 && | |
3528 | (typecode == TYPE_CODE_INT || | |
3529 | typecode == TYPE_CODE_PTR || | |
3530 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3531 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3532 | } | |
3533 | ||
3534 | if (mips_debug) | |
3535 | { | |
3536 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3537 | paddr_nz (stack_offset)); | |
3538 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3539 | paddr_nz (longword_offset)); | |
3540 | } | |
3541 | ||
3542 | addr = sp + stack_offset + longword_offset; | |
3543 | ||
3544 | if (mips_debug) | |
3545 | { | |
3546 | int i; | |
3547 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3548 | paddr_nz (addr)); | |
3549 | for (i = 0; i < partial_len; i++) | |
3550 | { | |
3551 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3552 | val[i] & 0xff); | |
3553 | } | |
3554 | } | |
3555 | write_memory (addr, val, partial_len); | |
3556 | } | |
3557 | ||
3558 | /* Note!!! This is NOT an else clause. Odd sized | |
3559 | structs may go thru BOTH paths. Floating point | |
3560 | arguments will not. */ | |
3561 | /* Write this portion of the argument to a general | |
3562 | purpose register. */ | |
3563 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3564 | && !fp_register_arg_p (typecode, arg_type)) | |
3565 | { | |
3566 | LONGEST regval = extract_signed_integer (val, partial_len); | |
3567 | /* Value may need to be sign extended, because | |
3568 | MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */ | |
3569 | ||
3570 | /* A non-floating-point argument being passed in a | |
3571 | general register. If a struct or union, and if | |
3572 | the remaining length is smaller than the register | |
3573 | size, we have to adjust the register value on | |
3574 | big endian targets. | |
3575 | ||
3576 | It does not seem to be necessary to do the | |
3577 | same for integral types. | |
3578 | ||
3579 | Also don't do this adjustment on O64 binaries. | |
3580 | ||
3581 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3582 | outputting LE O32 with sizeof (struct) < | |
3583 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3584 | part of storing the argument in a register a | |
3585 | register (the left shift isn't generated when | |
3586 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3587 | is quite possible that this is GCC contradicting | |
3588 | the LE/O32 ABI, GDB has not been adjusted to | |
3589 | accommodate this. Either someone needs to | |
3590 | demonstrate that the LE/O32 ABI specifies such a | |
3591 | left shift OR this new ABI gets identified as | |
3592 | such and GDB gets tweaked accordingly. */ | |
3593 | ||
3594 | if (MIPS_SAVED_REGSIZE < 8 | |
3595 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3596 | && partial_len < MIPS_SAVED_REGSIZE | |
3597 | && (typecode == TYPE_CODE_STRUCT || | |
3598 | typecode == TYPE_CODE_UNION)) | |
3599 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3600 | TARGET_CHAR_BIT); | |
3601 | ||
3602 | if (mips_debug) | |
3603 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3604 | argreg, | |
3605 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3606 | write_register (argreg, regval); | |
3607 | argreg++; | |
3608 | ||
3609 | /* Prevent subsequent floating point arguments from | |
3610 | being passed in floating point registers. */ | |
3611 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
3612 | } | |
3613 | ||
3614 | len -= partial_len; | |
3615 | val += partial_len; | |
3616 | ||
3617 | /* Compute the the offset into the stack at which we | |
3618 | will copy the next parameter. | |
3619 | ||
3620 | In older ABIs, the caller reserved space for | |
3621 | registers that contained arguments. This was loosely | |
3622 | refered to as their "home". Consequently, space is | |
3623 | always allocated. */ | |
3624 | ||
3625 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3626 | } | |
3627 | } | |
3628 | if (mips_debug) | |
3629 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3630 | } | |
3631 | ||
3632 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
3633 | ||
3634 | /* Return adjusted stack pointer. */ | |
3635 | return sp; | |
3636 | } | |
3637 | ||
3638 | /* O64 version of push_dummy_call. */ | |
3639 | ||
3640 | static CORE_ADDR | |
3641 | mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
3642 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
3643 | struct value **args, CORE_ADDR sp, int struct_return, | |
3644 | CORE_ADDR struct_addr) | |
3645 | { | |
3646 | int argreg; | |
3647 | int float_argreg; | |
3648 | int argnum; | |
3649 | int len = 0; | |
3650 | int stack_offset = 0; | |
3651 | ||
3652 | /* For shared libraries, "t9" needs to point at the function | |
3653 | address. */ | |
3654 | regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr); | |
3655 | ||
3656 | /* Set the return address register to point to the entry point of | |
3657 | the program, where a breakpoint lies in wait. */ | |
3658 | regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr); | |
3659 | ||
3660 | /* First ensure that the stack and structure return address (if any) | |
3661 | are properly aligned. The stack has to be at least 64-bit | |
3662 | aligned even on 32-bit machines, because doubles must be 64-bit | |
3663 | aligned. For n32 and n64, stack frames need to be 128-bit | |
3664 | aligned, so we round to this widest known alignment. */ | |
3665 | ||
3666 | sp = ROUND_DOWN (sp, 16); | |
3667 | struct_addr = ROUND_DOWN (struct_addr, 16); | |
3668 | ||
3669 | /* Now make space on the stack for the args. */ | |
3670 | for (argnum = 0; argnum < nargs; argnum++) | |
3671 | len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), | |
3672 | MIPS_STACK_ARGSIZE); | |
3673 | sp -= ROUND_UP (len, 16); | |
3674 | ||
3675 | if (mips_debug) | |
3676 | fprintf_unfiltered (gdb_stdlog, | |
3677 | "mips_o64_push_dummy_call: sp=0x%s allocated %d\n", | |
3678 | paddr_nz (sp), ROUND_UP (len, 16)); | |
3679 | ||
3680 | /* Initialize the integer and float register pointers. */ | |
3681 | argreg = A0_REGNUM; | |
3682 | float_argreg = FPA0_REGNUM; | |
3683 | ||
3684 | /* The struct_return pointer occupies the first parameter-passing reg. */ | |
3685 | if (struct_return) | |
3686 | { | |
3687 | if (mips_debug) | |
3688 | fprintf_unfiltered (gdb_stdlog, | |
3689 | "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n", | |
3690 | argreg, paddr_nz (struct_addr)); | |
3691 | write_register (argreg++, struct_addr); | |
3692 | stack_offset += MIPS_STACK_ARGSIZE; | |
3693 | } | |
3694 | ||
3695 | /* Now load as many as possible of the first arguments into | |
3696 | registers, and push the rest onto the stack. Loop thru args | |
3697 | from first to last. */ | |
3698 | for (argnum = 0; argnum < nargs; argnum++) | |
3699 | { | |
3700 | char *val; | |
3701 | char valbuf[MAX_REGISTER_SIZE]; | |
3702 | struct value *arg = args[argnum]; | |
3703 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
3704 | int len = TYPE_LENGTH (arg_type); | |
3705 | enum type_code typecode = TYPE_CODE (arg_type); | |
3706 | ||
3707 | if (mips_debug) | |
3708 | fprintf_unfiltered (gdb_stdlog, | |
3709 | "mips_o64_push_dummy_call: %d len=%d type=%d", | |
3710 | argnum + 1, len, (int) typecode); | |
3711 | ||
3712 | val = (char *) VALUE_CONTENTS (arg); | |
3713 | ||
3714 | /* 32-bit ABIs always start floating point arguments in an | |
3715 | even-numbered floating point register. Round the FP register | |
3716 | up before the check to see if there are any FP registers | |
3717 | left. O32/O64 targets also pass the FP in the integer | |
3718 | registers so also round up normal registers. */ | |
3719 | if (!FP_REGISTER_DOUBLE | |
3720 | && fp_register_arg_p (typecode, arg_type)) | |
3721 | { | |
3722 | if ((float_argreg & 1)) | |
3723 | float_argreg++; | |
3724 | } | |
3725 | ||
3726 | /* Floating point arguments passed in registers have to be | |
3727 | treated specially. On 32-bit architectures, doubles | |
3728 | are passed in register pairs; the even register gets | |
3729 | the low word, and the odd register gets the high word. | |
3730 | On O32/O64, the first two floating point arguments are | |
3731 | also copied to general registers, because MIPS16 functions | |
3732 | don't use float registers for arguments. This duplication of | |
3733 | arguments in general registers can't hurt non-MIPS16 functions | |
3734 | because those registers are normally skipped. */ | |
3735 | ||
3736 | if (fp_register_arg_p (typecode, arg_type) | |
3737 | && float_argreg <= MIPS_LAST_FP_ARG_REGNUM) | |
3738 | { | |
3739 | if (!FP_REGISTER_DOUBLE && len == 8) | |
3740 | { | |
3741 | int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
3742 | unsigned long regval; | |
3743 | ||
3744 | /* Write the low word of the double to the even register(s). */ | |
3745 | regval = extract_unsigned_integer (val + low_offset, 4); | |
3746 | if (mips_debug) | |
3747 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3748 | float_argreg, phex (regval, 4)); | |
3749 | write_register (float_argreg++, regval); | |
3750 | if (mips_debug) | |
3751 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3752 | argreg, phex (regval, 4)); | |
3753 | write_register (argreg++, regval); | |
3754 | ||
3755 | /* Write the high word of the double to the odd register(s). */ | |
3756 | regval = extract_unsigned_integer (val + 4 - low_offset, 4); | |
3757 | if (mips_debug) | |
3758 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3759 | float_argreg, phex (regval, 4)); | |
3760 | write_register (float_argreg++, regval); | |
3761 | ||
3762 | if (mips_debug) | |
3763 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3764 | argreg, phex (regval, 4)); | |
3765 | write_register (argreg++, regval); | |
3766 | } | |
3767 | else | |
3768 | { | |
3769 | /* This is a floating point value that fits entirely | |
3770 | in a single register. */ | |
3771 | /* On 32 bit ABI's the float_argreg is further adjusted | |
3772 | above to ensure that it is even register aligned. */ | |
3773 | LONGEST regval = extract_unsigned_integer (val, len); | |
3774 | if (mips_debug) | |
3775 | fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s", | |
3776 | float_argreg, phex (regval, len)); | |
3777 | write_register (float_argreg++, regval); | |
3778 | /* CAGNEY: 32 bit MIPS ABI's always reserve two FP | |
3779 | registers for each argument. The below is (my | |
3780 | guess) to ensure that the corresponding integer | |
3781 | register has reserved the same space. */ | |
3782 | if (mips_debug) | |
3783 | fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s", | |
3784 | argreg, phex (regval, len)); | |
3785 | write_register (argreg, regval); | |
3786 | argreg += FP_REGISTER_DOUBLE ? 1 : 2; | |
3787 | } | |
3788 | /* Reserve space for the FP register. */ | |
3789 | stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE); | |
3790 | } | |
3791 | else | |
3792 | { | |
3793 | /* Copy the argument to general registers or the stack in | |
3794 | register-sized pieces. Large arguments are split between | |
3795 | registers and stack. */ | |
3796 | /* Note: structs whose size is not a multiple of MIPS_REGSIZE | |
3797 | are treated specially: Irix cc passes them in registers | |
3798 | where gcc sometimes puts them on the stack. For maximum | |
3799 | compatibility, we will put them in both places. */ | |
3800 | int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) && | |
3801 | (len % MIPS_SAVED_REGSIZE != 0)); | |
3802 | /* Structures should be aligned to eight bytes (even arg registers) | |
3803 | on MIPS_ABI_O32, if their first member has double precision. */ | |
3804 | if (MIPS_SAVED_REGSIZE < 8 | |
3805 | && mips_type_needs_double_align (arg_type)) | |
3806 | { | |
3807 | if ((argreg & 1)) | |
3808 | argreg++; | |
3809 | } | |
3810 | /* Note: Floating-point values that didn't fit into an FP | |
3811 | register are only written to memory. */ | |
3812 | while (len > 0) | |
3813 | { | |
3814 | /* Remember if the argument was written to the stack. */ | |
3815 | int stack_used_p = 0; | |
3816 | int partial_len = | |
3817 | len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE; | |
3818 | ||
3819 | if (mips_debug) | |
3820 | fprintf_unfiltered (gdb_stdlog, " -- partial=%d", | |
3821 | partial_len); | |
3822 | ||
3823 | /* Write this portion of the argument to the stack. */ | |
3824 | if (argreg > MIPS_LAST_ARG_REGNUM | |
3825 | || odd_sized_struct | |
3826 | || fp_register_arg_p (typecode, arg_type)) | |
3827 | { | |
3828 | /* Should shorter than int integer values be | |
3829 | promoted to int before being stored? */ | |
3830 | int longword_offset = 0; | |
3831 | CORE_ADDR addr; | |
3832 | stack_used_p = 1; | |
3833 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
3834 | { | |
3835 | if (MIPS_STACK_ARGSIZE == 8 && | |
3836 | (typecode == TYPE_CODE_INT || | |
3837 | typecode == TYPE_CODE_PTR || | |
3838 | typecode == TYPE_CODE_FLT) && len <= 4) | |
3839 | longword_offset = MIPS_STACK_ARGSIZE - len; | |
3840 | } | |
3841 | ||
3842 | if (mips_debug) | |
3843 | { | |
3844 | fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s", | |
3845 | paddr_nz (stack_offset)); | |
3846 | fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s", | |
3847 | paddr_nz (longword_offset)); | |
3848 | } | |
3849 | ||
3850 | addr = sp + stack_offset + longword_offset; | |
3851 | ||
3852 | if (mips_debug) | |
3853 | { | |
3854 | int i; | |
3855 | fprintf_unfiltered (gdb_stdlog, " @0x%s ", | |
3856 | paddr_nz (addr)); | |
3857 | for (i = 0; i < partial_len; i++) | |
3858 | { | |
3859 | fprintf_unfiltered (gdb_stdlog, "%02x", | |
3860 | val[i] & 0xff); | |
3861 | } | |
3862 | } | |
3863 | write_memory (addr, val, partial_len); | |
3864 | } | |
3865 | ||
3866 | /* Note!!! This is NOT an else clause. Odd sized | |
3867 | structs may go thru BOTH paths. Floating point | |
3868 | arguments will not. */ | |
3869 | /* Write this portion of the argument to a general | |
3870 | purpose register. */ | |
3871 | if (argreg <= MIPS_LAST_ARG_REGNUM | |
3872 | && !fp_register_arg_p (typecode, arg_type)) | |
3873 | { | |
3874 | LONGEST regval = extract_signed_integer (val, partial_len); | |
3875 | /* Value may need to be sign extended, because | |
3876 | MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */ | |
3877 | ||
3878 | /* A non-floating-point argument being passed in a | |
3879 | general register. If a struct or union, and if | |
3880 | the remaining length is smaller than the register | |
3881 | size, we have to adjust the register value on | |
3882 | big endian targets. | |
3883 | ||
3884 | It does not seem to be necessary to do the | |
3885 | same for integral types. | |
3886 | ||
3887 | Also don't do this adjustment on O64 binaries. | |
3888 | ||
3889 | cagney/2001-07-23: gdb/179: Also, GCC, when | |
3890 | outputting LE O32 with sizeof (struct) < | |
3891 | MIPS_SAVED_REGSIZE, generates a left shift as | |
3892 | part of storing the argument in a register a | |
3893 | register (the left shift isn't generated when | |
3894 | sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it | |
3895 | is quite possible that this is GCC contradicting | |
3896 | the LE/O32 ABI, GDB has not been adjusted to | |
3897 | accommodate this. Either someone needs to | |
3898 | demonstrate that the LE/O32 ABI specifies such a | |
3899 | left shift OR this new ABI gets identified as | |
3900 | such and GDB gets tweaked accordingly. */ | |
3901 | ||
3902 | if (MIPS_SAVED_REGSIZE < 8 | |
3903 | && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
3904 | && partial_len < MIPS_SAVED_REGSIZE | |
3905 | && (typecode == TYPE_CODE_STRUCT || | |
3906 | typecode == TYPE_CODE_UNION)) | |
3907 | regval <<= ((MIPS_SAVED_REGSIZE - partial_len) * | |
3908 | TARGET_CHAR_BIT); | |
3909 | ||
3910 | if (mips_debug) | |
3911 | fprintf_filtered (gdb_stdlog, " - reg=%d val=%s", | |
3912 | argreg, | |
3913 | phex (regval, MIPS_SAVED_REGSIZE)); | |
3914 | write_register (argreg, regval); | |
3915 | argreg++; | |
3916 | ||
3917 | /* Prevent subsequent floating point arguments from | |
3918 | being passed in floating point registers. */ | |
3919 | float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; | |
3920 | } | |
3921 | ||
3922 | len -= partial_len; | |
3923 | val += partial_len; | |
3924 | ||
3925 | /* Compute the the offset into the stack at which we | |
3926 | will copy the next parameter. | |
3927 | ||
3928 | In older ABIs, the caller reserved space for | |
3929 | registers that contained arguments. This was loosely | |
3930 | refered to as their "home". Consequently, space is | |
3931 | always allocated. */ | |
3932 | ||
3933 | stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE); | |
3934 | } | |
3935 | } | |
3936 | if (mips_debug) | |
3937 | fprintf_unfiltered (gdb_stdlog, "\n"); | |
3938 | } | |
3939 | ||
3940 | regcache_cooked_write_signed (regcache, SP_REGNUM, sp); | |
3941 | ||
3942 | /* Return adjusted stack pointer. */ | |
3943 | return sp; | |
3944 | } | |
3945 | ||
3946 | static void | |
3947 | mips_pop_frame (void) | |
3948 | { | |
3949 | int regnum; | |
3950 | struct frame_info *frame = get_current_frame (); | |
3951 | CORE_ADDR new_sp = get_frame_base (frame); | |
3952 | mips_extra_func_info_t proc_desc; | |
3953 | ||
3954 | if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)) | |
3955 | { | |
3956 | generic_pop_dummy_frame (); | |
3957 | flush_cached_frames (); | |
3958 | return; | |
3959 | } | |
3960 | ||
3961 | proc_desc = get_frame_extra_info (frame)->proc_desc; | |
3962 | write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame)); | |
3963 | mips_find_saved_regs (frame); | |
3964 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
3965 | if (regnum != SP_REGNUM && regnum != PC_REGNUM | |
3966 | && get_frame_saved_regs (frame)[regnum]) | |
3967 | { | |
3968 | /* Floating point registers must not be sign extended, | |
3969 | in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */ | |
3970 | ||
3971 | if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32) | |
3972 | write_register (regnum, | |
3973 | read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum], | |
3974 | MIPS_SAVED_REGSIZE)); | |
3975 | else | |
3976 | write_register (regnum, | |
3977 | read_memory_integer (get_frame_saved_regs (frame)[regnum], | |
3978 | MIPS_SAVED_REGSIZE)); | |
3979 | } | |
3980 | ||
3981 | write_register (SP_REGNUM, new_sp); | |
3982 | flush_cached_frames (); | |
3983 | ||
3984 | if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc)) | |
3985 | { | |
3986 | struct linked_proc_info *pi_ptr, *prev_ptr; | |
3987 | ||
3988 | for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; | |
3989 | pi_ptr != NULL; | |
3990 | prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) | |
3991 | { | |
3992 | if (&pi_ptr->info == proc_desc) | |
3993 | break; | |
3994 | } | |
3995 | ||
3996 | if (pi_ptr == NULL) | |
3997 | error ("Can't locate dummy extra frame info\n"); | |
3998 | ||
3999 | if (prev_ptr != NULL) | |
4000 | prev_ptr->next = pi_ptr->next; | |
4001 | else | |
4002 | linked_proc_desc_table = pi_ptr->next; | |
4003 | ||
4004 | xfree (pi_ptr); | |
4005 | ||
4006 | write_register (HI_REGNUM, | |
4007 | read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE, | |
4008 | MIPS_SAVED_REGSIZE)); | |
4009 | write_register (LO_REGNUM, | |
4010 | read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE, | |
4011 | MIPS_SAVED_REGSIZE)); | |
4012 | if (MIPS_FPU_TYPE != MIPS_FPU_NONE) | |
4013 | write_register (FCRCS_REGNUM, | |
4014 | read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE, | |
4015 | MIPS_SAVED_REGSIZE)); | |
4016 | } | |
4017 | } | |
4018 | ||
4019 | /* Floating point register management. | |
4020 | ||
4021 | Background: MIPS1 & 2 fp registers are 32 bits wide. To support | |
4022 | 64bit operations, these early MIPS cpus treat fp register pairs | |
4023 | (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp | |
4024 | registers and offer a compatibility mode that emulates the MIPS2 fp | |
4025 | model. When operating in MIPS2 fp compat mode, later cpu's split | |
4026 | double precision floats into two 32-bit chunks and store them in | |
4027 | consecutive fp regs. To display 64-bit floats stored in this | |
4028 | fashion, we have to combine 32 bits from f0 and 32 bits from f1. | |
4029 | Throw in user-configurable endianness and you have a real mess. | |
4030 | ||
4031 | The way this works is: | |
4032 | - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit | |
4033 | double-precision value will be split across two logical registers. | |
4034 | The lower-numbered logical register will hold the low-order bits, | |
4035 | regardless of the processor's endianness. | |
4036 | - If we are on a 64-bit processor, and we are looking for a | |
4037 | single-precision value, it will be in the low ordered bits | |
4038 | of a 64-bit GPR (after mfc1, for example) or a 64-bit register | |
4039 | save slot in memory. | |
4040 | - If we are in 64-bit mode, everything is straightforward. | |
4041 | ||
4042 | Note that this code only deals with "live" registers at the top of the | |
4043 | stack. We will attempt to deal with saved registers later, when | |
4044 | the raw/cooked register interface is in place. (We need a general | |
4045 | interface that can deal with dynamic saved register sizes -- fp | |
4046 | regs could be 32 bits wide in one frame and 64 on the frame above | |
4047 | and below). */ | |
4048 | ||
4049 | static struct type * | |
4050 | mips_float_register_type (void) | |
4051 | { | |
4052 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4053 | return builtin_type_ieee_single_big; | |
4054 | else | |
4055 | return builtin_type_ieee_single_little; | |
4056 | } | |
4057 | ||
4058 | static struct type * | |
4059 | mips_double_register_type (void) | |
4060 | { | |
4061 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4062 | return builtin_type_ieee_double_big; | |
4063 | else | |
4064 | return builtin_type_ieee_double_little; | |
4065 | } | |
4066 | ||
4067 | /* Copy a 32-bit single-precision value from the current frame | |
4068 | into rare_buffer. */ | |
4069 | ||
4070 | static void | |
4071 | mips_read_fp_register_single (struct frame_info *frame, int regno, | |
4072 | char *rare_buffer) | |
4073 | { | |
4074 | int raw_size = REGISTER_RAW_SIZE (regno); | |
4075 | char *raw_buffer = alloca (raw_size); | |
4076 | ||
4077 | if (!frame_register_read (frame, regno, raw_buffer)) | |
4078 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); | |
4079 | if (raw_size == 8) | |
4080 | { | |
4081 | /* We have a 64-bit value for this register. Find the low-order | |
4082 | 32 bits. */ | |
4083 | int offset; | |
4084 | ||
4085 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4086 | offset = 4; | |
4087 | else | |
4088 | offset = 0; | |
4089 | ||
4090 | memcpy (rare_buffer, raw_buffer + offset, 4); | |
4091 | } | |
4092 | else | |
4093 | { | |
4094 | memcpy (rare_buffer, raw_buffer, 4); | |
4095 | } | |
4096 | } | |
4097 | ||
4098 | /* Copy a 64-bit double-precision value from the current frame into | |
4099 | rare_buffer. This may include getting half of it from the next | |
4100 | register. */ | |
4101 | ||
4102 | static void | |
4103 | mips_read_fp_register_double (struct frame_info *frame, int regno, | |
4104 | char *rare_buffer) | |
4105 | { | |
4106 | int raw_size = REGISTER_RAW_SIZE (regno); | |
4107 | ||
4108 | if (raw_size == 8 && !mips2_fp_compat ()) | |
4109 | { | |
4110 | /* We have a 64-bit value for this register, and we should use | |
4111 | all 64 bits. */ | |
4112 | if (!frame_register_read (frame, regno, rare_buffer)) | |
4113 | error ("can't read register %d (%s)", regno, REGISTER_NAME (regno)); | |
4114 | } | |
4115 | else | |
4116 | { | |
4117 | if ((regno - FP0_REGNUM) & 1) | |
4118 | internal_error (__FILE__, __LINE__, | |
4119 | "mips_read_fp_register_double: bad access to " | |
4120 | "odd-numbered FP register"); | |
4121 | ||
4122 | /* mips_read_fp_register_single will find the correct 32 bits from | |
4123 | each register. */ | |
4124 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4125 | { | |
4126 | mips_read_fp_register_single (frame, regno, rare_buffer + 4); | |
4127 | mips_read_fp_register_single (frame, regno + 1, rare_buffer); | |
4128 | } | |
4129 | else | |
4130 | { | |
4131 | mips_read_fp_register_single (frame, regno, rare_buffer); | |
4132 | mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4); | |
4133 | } | |
4134 | } | |
4135 | } | |
4136 | ||
4137 | static void | |
4138 | mips_print_fp_register (struct ui_file *file, struct frame_info *frame, | |
4139 | int regnum) | |
4140 | { /* do values for FP (float) regs */ | |
4141 | char *raw_buffer; | |
4142 | double doub, flt1, flt2; /* doubles extracted from raw hex data */ | |
4143 | int inv1, inv2, namelen; | |
4144 | ||
4145 | raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); | |
4146 | ||
4147 | fprintf_filtered (file, "%s:", REGISTER_NAME (regnum)); | |
4148 | fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)), | |
4149 | ""); | |
4150 | ||
4151 | if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ()) | |
4152 | { | |
4153 | /* 4-byte registers: Print hex and floating. Also print even | |
4154 | numbered registers as doubles. */ | |
4155 | mips_read_fp_register_single (frame, regnum, raw_buffer); | |
4156 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); | |
4157 | ||
4158 | print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file); | |
4159 | ||
4160 | fprintf_filtered (file, " flt: "); | |
4161 | if (inv1) | |
4162 | fprintf_filtered (file, " <invalid float> "); | |
4163 | else | |
4164 | fprintf_filtered (file, "%-17.9g", flt1); | |
4165 | ||
4166 | if (regnum % 2 == 0) | |
4167 | { | |
4168 | mips_read_fp_register_double (frame, regnum, raw_buffer); | |
4169 | doub = unpack_double (mips_double_register_type (), raw_buffer, | |
4170 | &inv2); | |
4171 | ||
4172 | fprintf_filtered (file, " dbl: "); | |
4173 | if (inv2) | |
4174 | fprintf_filtered (file, "<invalid double>"); | |
4175 | else | |
4176 | fprintf_filtered (file, "%-24.17g", doub); | |
4177 | } | |
4178 | } | |
4179 | else | |
4180 | { | |
4181 | /* Eight byte registers: print each one as hex, float and double. */ | |
4182 | mips_read_fp_register_single (frame, regnum, raw_buffer); | |
4183 | flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1); | |
4184 | ||
4185 | mips_read_fp_register_double (frame, regnum, raw_buffer); | |
4186 | doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2); | |
4187 | ||
4188 | ||
4189 | print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file); | |
4190 | ||
4191 | fprintf_filtered (file, " flt: "); | |
4192 | if (inv1) | |
4193 | fprintf_filtered (file, "<invalid float>"); | |
4194 | else | |
4195 | fprintf_filtered (file, "%-17.9g", flt1); | |
4196 | ||
4197 | fprintf_filtered (file, " dbl: "); | |
4198 | if (inv2) | |
4199 | fprintf_filtered (file, "<invalid double>"); | |
4200 | else | |
4201 | fprintf_filtered (file, "%-24.17g", doub); | |
4202 | } | |
4203 | } | |
4204 | ||
4205 | static void | |
4206 | mips_print_register (struct ui_file *file, struct frame_info *frame, | |
4207 | int regnum, int all) | |
4208 | { | |
4209 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
4210 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4211 | int offset; | |
4212 | ||
4213 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) | |
4214 | { | |
4215 | mips_print_fp_register (file, frame, regnum); | |
4216 | return; | |
4217 | } | |
4218 | ||
4219 | /* Get the data in raw format. */ | |
4220 | if (!frame_register_read (frame, regnum, raw_buffer)) | |
4221 | { | |
4222 | fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum)); | |
4223 | return; | |
4224 | } | |
4225 | ||
4226 | fputs_filtered (REGISTER_NAME (regnum), file); | |
4227 | ||
4228 | /* The problem with printing numeric register names (r26, etc.) is that | |
4229 | the user can't use them on input. Probably the best solution is to | |
4230 | fix it so that either the numeric or the funky (a2, etc.) names | |
4231 | are accepted on input. */ | |
4232 | if (regnum < MIPS_NUMREGS) | |
4233 | fprintf_filtered (file, "(r%d): ", regnum); | |
4234 | else | |
4235 | fprintf_filtered (file, ": "); | |
4236 | ||
4237 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4238 | offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); | |
4239 | else | |
4240 | offset = 0; | |
4241 | ||
4242 | print_scalar_formatted (raw_buffer + offset, gdbarch_register_type (gdbarch, regnum), | |
4243 | 'x', 0, file); | |
4244 | } | |
4245 | ||
4246 | /* Replacement for generic do_registers_info. | |
4247 | Print regs in pretty columns. */ | |
4248 | ||
4249 | static int | |
4250 | print_fp_register_row (struct ui_file *file, struct frame_info *frame, | |
4251 | int regnum) | |
4252 | { | |
4253 | fprintf_filtered (file, " "); | |
4254 | mips_print_fp_register (file, frame, regnum); | |
4255 | fprintf_filtered (file, "\n"); | |
4256 | return regnum + 1; | |
4257 | } | |
4258 | ||
4259 | ||
4260 | /* Print a row's worth of GP (int) registers, with name labels above */ | |
4261 | ||
4262 | static int | |
4263 | print_gp_register_row (struct ui_file *file, struct frame_info *frame, | |
4264 | int start_regnum) | |
4265 | { | |
4266 | struct gdbarch *gdbarch = get_frame_arch (frame); | |
4267 | /* do values for GP (int) regs */ | |
4268 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4269 | int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ | |
4270 | int col, byte; | |
4271 | int regnum; | |
4272 | ||
4273 | /* For GP registers, we print a separate row of names above the vals */ | |
4274 | fprintf_filtered (file, " "); | |
4275 | for (col = 0, regnum = start_regnum; | |
4276 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; | |
4277 | regnum++) | |
4278 | { | |
4279 | if (*REGISTER_NAME (regnum) == '\0') | |
4280 | continue; /* unused register */ | |
4281 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) | |
4282 | break; /* end the row: reached FP register */ | |
4283 | fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s", | |
4284 | REGISTER_NAME (regnum)); | |
4285 | col++; | |
4286 | } | |
4287 | /* print the R0 to R31 names */ | |
4288 | if ((start_regnum % NUM_REGS) < MIPS_NUMREGS) | |
4289 | fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS); | |
4290 | else | |
4291 | fprintf_filtered (file, "\n "); | |
4292 | ||
4293 | /* now print the values in hex, 4 or 8 to the row */ | |
4294 | for (col = 0, regnum = start_regnum; | |
4295 | col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; | |
4296 | regnum++) | |
4297 | { | |
4298 | if (*REGISTER_NAME (regnum) == '\0') | |
4299 | continue; /* unused register */ | |
4300 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) | |
4301 | break; /* end row: reached FP register */ | |
4302 | /* OK: get the data in raw format. */ | |
4303 | if (!frame_register_read (frame, regnum, raw_buffer)) | |
4304 | error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); | |
4305 | /* pad small registers */ | |
4306 | for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++) | |
4307 | printf_filtered (" "); | |
4308 | /* Now print the register value in hex, endian order. */ | |
4309 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
4310 | for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum); | |
4311 | byte < REGISTER_RAW_SIZE (regnum); | |
4312 | byte++) | |
4313 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); | |
4314 | else | |
4315 | for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1; | |
4316 | byte >= 0; | |
4317 | byte--) | |
4318 | fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]); | |
4319 | fprintf_filtered (file, " "); | |
4320 | col++; | |
4321 | } | |
4322 | if (col > 0) /* ie. if we actually printed anything... */ | |
4323 | fprintf_filtered (file, "\n"); | |
4324 | ||
4325 | return regnum; | |
4326 | } | |
4327 | ||
4328 | /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ | |
4329 | ||
4330 | static void | |
4331 | mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, | |
4332 | struct frame_info *frame, int regnum, int all) | |
4333 | { | |
4334 | if (regnum != -1) /* do one specified register */ | |
4335 | { | |
4336 | gdb_assert (regnum >= NUM_REGS); | |
4337 | if (*(REGISTER_NAME (regnum)) == '\0') | |
4338 | error ("Not a valid register for the current processor type"); | |
4339 | ||
4340 | mips_print_register (file, frame, regnum, 0); | |
4341 | fprintf_filtered (file, "\n"); | |
4342 | } | |
4343 | else | |
4344 | /* do all (or most) registers */ | |
4345 | { | |
4346 | regnum = NUM_REGS; | |
4347 | while (regnum < NUM_REGS + NUM_PSEUDO_REGS) | |
4348 | { | |
4349 | if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT) | |
4350 | { | |
4351 | if (all) /* true for "INFO ALL-REGISTERS" command */ | |
4352 | regnum = print_fp_register_row (file, frame, regnum); | |
4353 | else | |
4354 | regnum += MIPS_NUMREGS; /* skip floating point regs */ | |
4355 | } | |
4356 | else | |
4357 | regnum = print_gp_register_row (file, frame, regnum); | |
4358 | } | |
4359 | } | |
4360 | } | |
4361 | ||
4362 | /* Is this a branch with a delay slot? */ | |
4363 | ||
4364 | static int is_delayed (unsigned long); | |
4365 | ||
4366 | static int | |
4367 | is_delayed (unsigned long insn) | |
4368 | { | |
4369 | int i; | |
4370 | for (i = 0; i < NUMOPCODES; ++i) | |
4371 | if (mips_opcodes[i].pinfo != INSN_MACRO | |
4372 | && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) | |
4373 | break; | |
4374 | return (i < NUMOPCODES | |
4375 | && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY | |
4376 | | INSN_COND_BRANCH_DELAY | |
4377 | | INSN_COND_BRANCH_LIKELY))); | |
4378 | } | |
4379 | ||
4380 | int | |
4381 | mips_step_skips_delay (CORE_ADDR pc) | |
4382 | { | |
4383 | char buf[MIPS_INSTLEN]; | |
4384 | ||
4385 | /* There is no branch delay slot on MIPS16. */ | |
4386 | if (pc_is_mips16 (pc)) | |
4387 | return 0; | |
4388 | ||
4389 | if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) | |
4390 | /* If error reading memory, guess that it is not a delayed branch. */ | |
4391 | return 0; | |
4392 | return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN)); | |
4393 | } | |
4394 | ||
4395 | ||
4396 | /* Skip the PC past function prologue instructions (32-bit version). | |
4397 | This is a helper function for mips_skip_prologue. */ | |
4398 | ||
4399 | static CORE_ADDR | |
4400 | mips32_skip_prologue (CORE_ADDR pc) | |
4401 | { | |
4402 | t_inst inst; | |
4403 | CORE_ADDR end_pc; | |
4404 | int seen_sp_adjust = 0; | |
4405 | int load_immediate_bytes = 0; | |
4406 | ||
4407 | /* Skip the typical prologue instructions. These are the stack adjustment | |
4408 | instruction and the instructions that save registers on the stack | |
4409 | or in the gcc frame. */ | |
4410 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) | |
4411 | { | |
4412 | unsigned long high_word; | |
4413 | ||
4414 | inst = mips_fetch_instruction (pc); | |
4415 | high_word = (inst >> 16) & 0xffff; | |
4416 | ||
4417 | if (high_word == 0x27bd /* addiu $sp,$sp,offset */ | |
4418 | || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ | |
4419 | seen_sp_adjust = 1; | |
4420 | else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ | |
4421 | inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ | |
4422 | seen_sp_adjust = 1; | |
4423 | else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ | |
4424 | || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ | |
4425 | && (inst & 0x001F0000)) /* reg != $zero */ | |
4426 | continue; | |
4427 | ||
4428 | else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ | |
4429 | continue; | |
4430 | else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) | |
4431 | /* sx reg,n($s8) */ | |
4432 | continue; /* reg != $zero */ | |
4433 | ||
4434 | /* move $s8,$sp. With different versions of gas this will be either | |
4435 | `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. | |
4436 | Accept any one of these. */ | |
4437 | else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) | |
4438 | continue; | |
4439 | ||
4440 | else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ | |
4441 | continue; | |
4442 | else if (high_word == 0x3c1c) /* lui $gp,n */ | |
4443 | continue; | |
4444 | else if (high_word == 0x279c) /* addiu $gp,$gp,n */ | |
4445 | continue; | |
4446 | else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ | |
4447 | || inst == 0x033ce021) /* addu $gp,$t9,$gp */ | |
4448 | continue; | |
4449 | /* The following instructions load $at or $t0 with an immediate | |
4450 | value in preparation for a stack adjustment via | |
4451 | subu $sp,$sp,[$at,$t0]. These instructions could also initialize | |
4452 | a local variable, so we accept them only before a stack adjustment | |
4453 | instruction was seen. */ | |
4454 | else if (!seen_sp_adjust) | |
4455 | { | |
4456 | if (high_word == 0x3c01 || /* lui $at,n */ | |
4457 | high_word == 0x3c08) /* lui $t0,n */ | |
4458 | { | |
4459 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4460 | continue; | |
4461 | } | |
4462 | else if (high_word == 0x3421 || /* ori $at,$at,n */ | |
4463 | high_word == 0x3508 || /* ori $t0,$t0,n */ | |
4464 | high_word == 0x3401 || /* ori $at,$zero,n */ | |
4465 | high_word == 0x3408) /* ori $t0,$zero,n */ | |
4466 | { | |
4467 | load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ | |
4468 | continue; | |
4469 | } | |
4470 | else | |
4471 | break; | |
4472 | } | |
4473 | else | |
4474 | break; | |
4475 | } | |
4476 | ||
4477 | /* In a frameless function, we might have incorrectly | |
4478 | skipped some load immediate instructions. Undo the skipping | |
4479 | if the load immediate was not followed by a stack adjustment. */ | |
4480 | if (load_immediate_bytes && !seen_sp_adjust) | |
4481 | pc -= load_immediate_bytes; | |
4482 | return pc; | |
4483 | } | |
4484 | ||
4485 | /* Skip the PC past function prologue instructions (16-bit version). | |
4486 | This is a helper function for mips_skip_prologue. */ | |
4487 | ||
4488 | static CORE_ADDR | |
4489 | mips16_skip_prologue (CORE_ADDR pc) | |
4490 | { | |
4491 | CORE_ADDR end_pc; | |
4492 | int extend_bytes = 0; | |
4493 | int prev_extend_bytes; | |
4494 | ||
4495 | /* Table of instructions likely to be found in a function prologue. */ | |
4496 | static struct | |
4497 | { | |
4498 | unsigned short inst; | |
4499 | unsigned short mask; | |
4500 | } | |
4501 | table[] = | |
4502 | { | |
4503 | { | |
4504 | 0x6300, 0xff00 | |
4505 | } | |
4506 | , /* addiu $sp,offset */ | |
4507 | { | |
4508 | 0xfb00, 0xff00 | |
4509 | } | |
4510 | , /* daddiu $sp,offset */ | |
4511 | { | |
4512 | 0xd000, 0xf800 | |
4513 | } | |
4514 | , /* sw reg,n($sp) */ | |
4515 | { | |
4516 | 0xf900, 0xff00 | |
4517 | } | |
4518 | , /* sd reg,n($sp) */ | |
4519 | { | |
4520 | 0x6200, 0xff00 | |
4521 | } | |
4522 | , /* sw $ra,n($sp) */ | |
4523 | { | |
4524 | 0xfa00, 0xff00 | |
4525 | } | |
4526 | , /* sd $ra,n($sp) */ | |
4527 | { | |
4528 | 0x673d, 0xffff | |
4529 | } | |
4530 | , /* move $s1,sp */ | |
4531 | { | |
4532 | 0xd980, 0xff80 | |
4533 | } | |
4534 | , /* sw $a0-$a3,n($s1) */ | |
4535 | { | |
4536 | 0x6704, 0xff1c | |
4537 | } | |
4538 | , /* move reg,$a0-$a3 */ | |
4539 | { | |
4540 | 0xe809, 0xf81f | |
4541 | } | |
4542 | , /* entry pseudo-op */ | |
4543 | { | |
4544 | 0x0100, 0xff00 | |
4545 | } | |
4546 | , /* addiu $s1,$sp,n */ | |
4547 | { | |
4548 | 0, 0 | |
4549 | } /* end of table marker */ | |
4550 | }; | |
4551 | ||
4552 | /* Skip the typical prologue instructions. These are the stack adjustment | |
4553 | instruction and the instructions that save registers on the stack | |
4554 | or in the gcc frame. */ | |
4555 | for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) | |
4556 | { | |
4557 | unsigned short inst; | |
4558 | int i; | |
4559 | ||
4560 | inst = mips_fetch_instruction (pc); | |
4561 | ||
4562 | /* Normally we ignore an extend instruction. However, if it is | |
4563 | not followed by a valid prologue instruction, we must adjust | |
4564 | the pc back over the extend so that it won't be considered | |
4565 | part of the prologue. */ | |
4566 | if ((inst & 0xf800) == 0xf000) /* extend */ | |
4567 | { | |
4568 | extend_bytes = MIPS16_INSTLEN; | |
4569 | continue; | |
4570 | } | |
4571 | prev_extend_bytes = extend_bytes; | |
4572 | extend_bytes = 0; | |
4573 | ||
4574 | /* Check for other valid prologue instructions besides extend. */ | |
4575 | for (i = 0; table[i].mask != 0; i++) | |
4576 | if ((inst & table[i].mask) == table[i].inst) /* found, get out */ | |
4577 | break; | |
4578 | if (table[i].mask != 0) /* it was in table? */ | |
4579 | continue; /* ignore it */ | |
4580 | else | |
4581 | /* non-prologue */ | |
4582 | { | |
4583 | /* Return the current pc, adjusted backwards by 2 if | |
4584 | the previous instruction was an extend. */ | |
4585 | return pc - prev_extend_bytes; | |
4586 | } | |
4587 | } | |
4588 | return pc; | |
4589 | } | |
4590 | ||
4591 | /* To skip prologues, I use this predicate. Returns either PC itself | |
4592 | if the code at PC does not look like a function prologue; otherwise | |
4593 | returns an address that (if we're lucky) follows the prologue. If | |
4594 | LENIENT, then we must skip everything which is involved in setting | |
4595 | up the frame (it's OK to skip more, just so long as we don't skip | |
4596 | anything which might clobber the registers which are being saved. | |
4597 | We must skip more in the case where part of the prologue is in the | |
4598 | delay slot of a non-prologue instruction). */ | |
4599 | ||
4600 | static CORE_ADDR | |
4601 | mips_skip_prologue (CORE_ADDR pc) | |
4602 | { | |
4603 | /* See if we can determine the end of the prologue via the symbol table. | |
4604 | If so, then return either PC, or the PC after the prologue, whichever | |
4605 | is greater. */ | |
4606 | ||
4607 | CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); | |
4608 | ||
4609 | if (post_prologue_pc != 0) | |
4610 | return max (pc, post_prologue_pc); | |
4611 | ||
4612 | /* Can't determine prologue from the symbol table, need to examine | |
4613 | instructions. */ | |
4614 | ||
4615 | if (pc_is_mips16 (pc)) | |
4616 | return mips16_skip_prologue (pc); | |
4617 | else | |
4618 | return mips32_skip_prologue (pc); | |
4619 | } | |
4620 | ||
4621 | /* Determine how a return value is stored within the MIPS register | |
4622 | file, given the return type `valtype'. */ | |
4623 | ||
4624 | struct return_value_word | |
4625 | { | |
4626 | int len; | |
4627 | int reg; | |
4628 | int reg_offset; | |
4629 | int buf_offset; | |
4630 | }; | |
4631 | ||
4632 | static void | |
4633 | return_value_location (struct type *valtype, | |
4634 | struct return_value_word *hi, | |
4635 | struct return_value_word *lo) | |
4636 | { | |
4637 | int len = TYPE_LENGTH (valtype); | |
4638 | ||
4639 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT | |
4640 | && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8)) | |
4641 | || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4))) | |
4642 | { | |
4643 | if (!FP_REGISTER_DOUBLE && len == 8) | |
4644 | { | |
4645 | /* We need to break a 64bit float in two 32 bit halves and | |
4646 | spread them across a floating-point register pair. */ | |
4647 | lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0; | |
4648 | hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4; | |
4649 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
4650 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8) | |
4651 | ? 4 : 0); | |
4652 | hi->reg_offset = lo->reg_offset; | |
4653 | lo->reg = FP0_REGNUM + 0; | |
4654 | hi->reg = FP0_REGNUM + 1; | |
4655 | lo->len = 4; | |
4656 | hi->len = 4; | |
4657 | } | |
4658 | else | |
4659 | { | |
4660 | /* The floating point value fits in a single floating-point | |
4661 | register. */ | |
4662 | lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
4663 | && REGISTER_RAW_SIZE (FP0_REGNUM) == 8 | |
4664 | && len == 4) | |
4665 | ? 4 : 0); | |
4666 | lo->reg = FP0_REGNUM; | |
4667 | lo->len = len; | |
4668 | lo->buf_offset = 0; | |
4669 | hi->len = 0; | |
4670 | hi->reg_offset = 0; | |
4671 | hi->buf_offset = 0; | |
4672 | hi->reg = 0; | |
4673 | } | |
4674 | } | |
4675 | else | |
4676 | { | |
4677 | /* Locate a result possibly spread across two registers. */ | |
4678 | int regnum = 2; | |
4679 | lo->reg = regnum + 0; | |
4680 | hi->reg = regnum + 1; | |
4681 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
4682 | && len < MIPS_SAVED_REGSIZE) | |
4683 | { | |
4684 | /* "un-left-justify" the value in the low register */ | |
4685 | lo->reg_offset = MIPS_SAVED_REGSIZE - len; | |
4686 | lo->len = len; | |
4687 | hi->reg_offset = 0; | |
4688 | hi->len = 0; | |
4689 | } | |
4690 | else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
4691 | && len > MIPS_SAVED_REGSIZE /* odd-size structs */ | |
4692 | && len < MIPS_SAVED_REGSIZE * 2 | |
4693 | && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || | |
4694 | TYPE_CODE (valtype) == TYPE_CODE_UNION)) | |
4695 | { | |
4696 | /* "un-left-justify" the value spread across two registers. */ | |
4697 | lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len; | |
4698 | lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset; | |
4699 | hi->reg_offset = 0; | |
4700 | hi->len = len - lo->len; | |
4701 | } | |
4702 | else | |
4703 | { | |
4704 | /* Only perform a partial copy of the second register. */ | |
4705 | lo->reg_offset = 0; | |
4706 | hi->reg_offset = 0; | |
4707 | if (len > MIPS_SAVED_REGSIZE) | |
4708 | { | |
4709 | lo->len = MIPS_SAVED_REGSIZE; | |
4710 | hi->len = len - MIPS_SAVED_REGSIZE; | |
4711 | } | |
4712 | else | |
4713 | { | |
4714 | lo->len = len; | |
4715 | hi->len = 0; | |
4716 | } | |
4717 | } | |
4718 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG | |
4719 | && REGISTER_RAW_SIZE (regnum) == 8 | |
4720 | && MIPS_SAVED_REGSIZE == 4) | |
4721 | { | |
4722 | /* Account for the fact that only the least-signficant part | |
4723 | of the register is being used */ | |
4724 | lo->reg_offset += 4; | |
4725 | hi->reg_offset += 4; | |
4726 | } | |
4727 | lo->buf_offset = 0; | |
4728 | hi->buf_offset = lo->len; | |
4729 | } | |
4730 | } | |
4731 | ||
4732 | /* Given a return value in `regbuf' with a type `valtype', extract and | |
4733 | copy its value into `valbuf'. */ | |
4734 | ||
4735 | static void | |
4736 | mips_eabi_extract_return_value (struct type *valtype, | |
4737 | char regbuf[], | |
4738 | char *valbuf) | |
4739 | { | |
4740 | struct return_value_word lo; | |
4741 | struct return_value_word hi; | |
4742 | return_value_location (valtype, &hi, &lo); | |
4743 | ||
4744 | memcpy (valbuf + lo.buf_offset, | |
4745 | regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
4746 | lo.len); | |
4747 | ||
4748 | if (hi.len > 0) | |
4749 | memcpy (valbuf + hi.buf_offset, | |
4750 | regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
4751 | hi.len); | |
4752 | } | |
4753 | ||
4754 | static void | |
4755 | mips_o64_extract_return_value (struct type *valtype, | |
4756 | char regbuf[], | |
4757 | char *valbuf) | |
4758 | { | |
4759 | struct return_value_word lo; | |
4760 | struct return_value_word hi; | |
4761 | return_value_location (valtype, &hi, &lo); | |
4762 | ||
4763 | memcpy (valbuf + lo.buf_offset, | |
4764 | regbuf + DEPRECATED_REGISTER_BYTE (lo.reg) + lo.reg_offset, | |
4765 | lo.len); | |
4766 | ||
4767 | if (hi.len > 0) | |
4768 | memcpy (valbuf + hi.buf_offset, | |
4769 | regbuf + DEPRECATED_REGISTER_BYTE (hi.reg) + hi.reg_offset, | |
4770 | hi.len); | |
4771 | } | |
4772 | ||
4773 | /* Given a return value in `valbuf' with a type `valtype', write it's | |
4774 | value into the appropriate register. */ | |
4775 | ||
4776 | static void | |
4777 | mips_eabi_store_return_value (struct type *valtype, char *valbuf) | |
4778 | { | |
4779 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4780 | struct return_value_word lo; | |
4781 | struct return_value_word hi; | |
4782 | return_value_location (valtype, &hi, &lo); | |
4783 | ||
4784 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4785 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
4786 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer, | |
4787 | REGISTER_RAW_SIZE (lo.reg)); | |
4788 | ||
4789 | if (hi.len > 0) | |
4790 | { | |
4791 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4792 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
4793 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer, | |
4794 | REGISTER_RAW_SIZE (hi.reg)); | |
4795 | } | |
4796 | } | |
4797 | ||
4798 | static void | |
4799 | mips_o64_store_return_value (struct type *valtype, char *valbuf) | |
4800 | { | |
4801 | char raw_buffer[MAX_REGISTER_SIZE]; | |
4802 | struct return_value_word lo; | |
4803 | struct return_value_word hi; | |
4804 | return_value_location (valtype, &hi, &lo); | |
4805 | ||
4806 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4807 | memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len); | |
4808 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (lo.reg), raw_buffer, | |
4809 | REGISTER_RAW_SIZE (lo.reg)); | |
4810 | ||
4811 | if (hi.len > 0) | |
4812 | { | |
4813 | memset (raw_buffer, 0, sizeof (raw_buffer)); | |
4814 | memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len); | |
4815 | deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (hi.reg), raw_buffer, | |
4816 | REGISTER_RAW_SIZE (hi.reg)); | |
4817 | } | |
4818 | } | |
4819 | ||
4820 | /* O32 ABI stuff. */ | |
4821 | ||
4822 | static void | |
4823 | mips_o32_xfer_return_value (struct type *type, | |
4824 | struct regcache *regcache, | |
4825 | bfd_byte *in, const bfd_byte *out) | |
4826 | { | |
4827 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
4828 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4829 | && TYPE_LENGTH (type) == 4 | |
4830 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4831 | { | |
4832 | /* A single-precision floating-point value. It fits in the | |
4833 | least significant part of FP0. */ | |
4834 | if (mips_debug) | |
4835 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
4836 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type), | |
4837 | TARGET_BYTE_ORDER, in, out, 0); | |
4838 | } | |
4839 | else if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4840 | && TYPE_LENGTH (type) == 8 | |
4841 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4842 | { | |
4843 | /* A double-precision floating-point value. The most | |
4844 | significant part goes in FP1, and the least significant in | |
4845 | FP0. */ | |
4846 | if (mips_debug) | |
4847 | fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n"); | |
4848 | switch (TARGET_BYTE_ORDER) | |
4849 | { | |
4850 | case BFD_ENDIAN_LITTLE: | |
4851 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4, | |
4852 | TARGET_BYTE_ORDER, in, out, 0); | |
4853 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4, | |
4854 | TARGET_BYTE_ORDER, in, out, 4); | |
4855 | break; | |
4856 | case BFD_ENDIAN_BIG: | |
4857 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 1, 4, | |
4858 | TARGET_BYTE_ORDER, in, out, 0); | |
4859 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM + 0, 4, | |
4860 | TARGET_BYTE_ORDER, in, out, 4); | |
4861 | break; | |
4862 | default: | |
4863 | internal_error (__FILE__, __LINE__, "bad switch"); | |
4864 | } | |
4865 | } | |
4866 | #if 0 | |
4867 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4868 | && TYPE_NFIELDS (type) <= 2 | |
4869 | && TYPE_NFIELDS (type) >= 1 | |
4870 | && ((TYPE_NFIELDS (type) == 1 | |
4871 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4872 | == TYPE_CODE_FLT)) | |
4873 | || (TYPE_NFIELDS (type) == 2 | |
4874 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4875 | == TYPE_CODE_FLT) | |
4876 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
4877 | == TYPE_CODE_FLT))) | |
4878 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4879 | { | |
4880 | /* A struct that contains one or two floats. Each value is part | |
4881 | in the least significant part of their floating point | |
4882 | register.. */ | |
4883 | bfd_byte reg[MAX_REGISTER_SIZE]; | |
4884 | int regnum; | |
4885 | int field; | |
4886 | for (field = 0, regnum = FP0_REGNUM; | |
4887 | field < TYPE_NFIELDS (type); | |
4888 | field++, regnum += 2) | |
4889 | { | |
4890 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
4891 | / TARGET_CHAR_BIT); | |
4892 | if (mips_debug) | |
4893 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset); | |
4894 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
4895 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
4896 | TARGET_BYTE_ORDER, in, out, offset); | |
4897 | } | |
4898 | } | |
4899 | #endif | |
4900 | #if 0 | |
4901 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4902 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
4903 | { | |
4904 | /* A structure or union. Extract the left justified value, | |
4905 | regardless of the byte order. I.e. DO NOT USE | |
4906 | mips_xfer_lower. */ | |
4907 | int offset; | |
4908 | int regnum; | |
4909 | for (offset = 0, regnum = V0_REGNUM; | |
4910 | offset < TYPE_LENGTH (type); | |
4911 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
4912 | { | |
4913 | int xfer = REGISTER_RAW_SIZE (regnum); | |
4914 | if (offset + xfer > TYPE_LENGTH (type)) | |
4915 | xfer = TYPE_LENGTH (type) - offset; | |
4916 | if (mips_debug) | |
4917 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
4918 | offset, xfer, regnum); | |
4919 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
4920 | BFD_ENDIAN_UNKNOWN, in, out, offset); | |
4921 | } | |
4922 | } | |
4923 | #endif | |
4924 | else | |
4925 | { | |
4926 | /* A scalar extract each part but least-significant-byte | |
4927 | justified. o32 thinks registers are 4 byte, regardless of | |
4928 | the ISA. mips_stack_argsize controls this. */ | |
4929 | int offset; | |
4930 | int regnum; | |
4931 | for (offset = 0, regnum = V0_REGNUM; | |
4932 | offset < TYPE_LENGTH (type); | |
4933 | offset += mips_stack_argsize (), regnum++) | |
4934 | { | |
4935 | int xfer = mips_stack_argsize (); | |
4936 | int pos = 0; | |
4937 | if (offset + xfer > TYPE_LENGTH (type)) | |
4938 | xfer = TYPE_LENGTH (type) - offset; | |
4939 | if (mips_debug) | |
4940 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
4941 | offset, xfer, regnum); | |
4942 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
4943 | TARGET_BYTE_ORDER, in, out, offset); | |
4944 | } | |
4945 | } | |
4946 | } | |
4947 | ||
4948 | static void | |
4949 | mips_o32_extract_return_value (struct type *type, | |
4950 | struct regcache *regcache, | |
4951 | void *valbuf) | |
4952 | { | |
4953 | mips_o32_xfer_return_value (type, regcache, valbuf, NULL); | |
4954 | } | |
4955 | ||
4956 | static void | |
4957 | mips_o32_store_return_value (struct type *type, char *valbuf) | |
4958 | { | |
4959 | mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf); | |
4960 | } | |
4961 | ||
4962 | /* N32/N44 ABI stuff. */ | |
4963 | ||
4964 | static void | |
4965 | mips_n32n64_xfer_return_value (struct type *type, | |
4966 | struct regcache *regcache, | |
4967 | bfd_byte *in, const bfd_byte *out) | |
4968 | { | |
4969 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
4970 | if (TYPE_CODE (type) == TYPE_CODE_FLT | |
4971 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4972 | { | |
4973 | /* A floating-point value belongs in the least significant part | |
4974 | of FP0. */ | |
4975 | if (mips_debug) | |
4976 | fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n"); | |
4977 | mips_xfer_register (regcache, NUM_REGS + FP0_REGNUM, TYPE_LENGTH (type), | |
4978 | TARGET_BYTE_ORDER, in, out, 0); | |
4979 | } | |
4980 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
4981 | && TYPE_NFIELDS (type) <= 2 | |
4982 | && TYPE_NFIELDS (type) >= 1 | |
4983 | && ((TYPE_NFIELDS (type) == 1 | |
4984 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4985 | == TYPE_CODE_FLT)) | |
4986 | || (TYPE_NFIELDS (type) == 2 | |
4987 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) | |
4988 | == TYPE_CODE_FLT) | |
4989 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1)) | |
4990 | == TYPE_CODE_FLT))) | |
4991 | && tdep->mips_fpu_type != MIPS_FPU_NONE) | |
4992 | { | |
4993 | /* A struct that contains one or two floats. Each value is part | |
4994 | in the least significant part of their floating point | |
4995 | register.. */ | |
4996 | bfd_byte reg[MAX_REGISTER_SIZE]; | |
4997 | int regnum; | |
4998 | int field; | |
4999 | for (field = 0, regnum = FP0_REGNUM; | |
5000 | field < TYPE_NFIELDS (type); | |
5001 | field++, regnum += 2) | |
5002 | { | |
5003 | int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field]) | |
5004 | / TARGET_CHAR_BIT); | |
5005 | if (mips_debug) | |
5006 | fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset); | |
5007 | mips_xfer_register (regcache, NUM_REGS + regnum, | |
5008 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)), | |
5009 | TARGET_BYTE_ORDER, in, out, offset); | |
5010 | } | |
5011 | } | |
5012 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
5013 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
5014 | { | |
5015 | /* A structure or union. Extract the left justified value, | |
5016 | regardless of the byte order. I.e. DO NOT USE | |
5017 | mips_xfer_lower. */ | |
5018 | int offset; | |
5019 | int regnum; | |
5020 | for (offset = 0, regnum = V0_REGNUM; | |
5021 | offset < TYPE_LENGTH (type); | |
5022 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
5023 | { | |
5024 | int xfer = REGISTER_RAW_SIZE (regnum); | |
5025 | if (offset + xfer > TYPE_LENGTH (type)) | |
5026 | xfer = TYPE_LENGTH (type) - offset; | |
5027 | if (mips_debug) | |
5028 | fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n", | |
5029 | offset, xfer, regnum); | |
5030 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
5031 | BFD_ENDIAN_UNKNOWN, in, out, offset); | |
5032 | } | |
5033 | } | |
5034 | else | |
5035 | { | |
5036 | /* A scalar extract each part but least-significant-byte | |
5037 | justified. */ | |
5038 | int offset; | |
5039 | int regnum; | |
5040 | for (offset = 0, regnum = V0_REGNUM; | |
5041 | offset < TYPE_LENGTH (type); | |
5042 | offset += REGISTER_RAW_SIZE (regnum), regnum++) | |
5043 | { | |
5044 | int xfer = REGISTER_RAW_SIZE (regnum); | |
5045 | int pos = 0; | |
5046 | if (offset + xfer > TYPE_LENGTH (type)) | |
5047 | xfer = TYPE_LENGTH (type) - offset; | |
5048 | if (mips_debug) | |
5049 | fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n", | |
5050 | offset, xfer, regnum); | |
5051 | mips_xfer_register (regcache, NUM_REGS + regnum, xfer, | |
5052 | TARGET_BYTE_ORDER, in, out, offset); | |
5053 | } | |
5054 | } | |
5055 | } | |
5056 | ||
5057 | static void | |
5058 | mips_n32n64_extract_return_value (struct type *type, | |
5059 | struct regcache *regcache, | |
5060 | void *valbuf) | |
5061 | { | |
5062 | mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL); | |
5063 | } | |
5064 | ||
5065 | static void | |
5066 | mips_n32n64_store_return_value (struct type *type, char *valbuf) | |
5067 | { | |
5068 | mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf); | |
5069 | } | |
5070 | ||
5071 | static CORE_ADDR | |
5072 | mips_extract_struct_value_address (struct regcache *regcache) | |
5073 | { | |
5074 | /* FIXME: This will only work at random. The caller passes the | |
5075 | struct_return address in V0, but it is not preserved. It may | |
5076 | still be there, or this may be a random value. */ | |
5077 | LONGEST val; | |
5078 | ||
5079 | regcache_cooked_read_signed (regcache, V0_REGNUM, &val); | |
5080 | return val; | |
5081 | } | |
5082 | ||
5083 | /* Exported procedure: Is PC in the signal trampoline code */ | |
5084 | ||
5085 | static int | |
5086 | mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore) | |
5087 | { | |
5088 | if (sigtramp_address == 0) | |
5089 | fixup_sigtramp (); | |
5090 | return (pc >= sigtramp_address && pc < sigtramp_end); | |
5091 | } | |
5092 | ||
5093 | /* Root of all "set mips "/"show mips " commands. This will eventually be | |
5094 | used for all MIPS-specific commands. */ | |
5095 | ||
5096 | static void | |
5097 | show_mips_command (char *args, int from_tty) | |
5098 | { | |
5099 | help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout); | |
5100 | } | |
5101 | ||
5102 | static void | |
5103 | set_mips_command (char *args, int from_tty) | |
5104 | { | |
5105 | printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n"); | |
5106 | help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout); | |
5107 | } | |
5108 | ||
5109 | /* Commands to show/set the MIPS FPU type. */ | |
5110 | ||
5111 | static void | |
5112 | show_mipsfpu_command (char *args, int from_tty) | |
5113 | { | |
5114 | char *fpu; | |
5115 | switch (MIPS_FPU_TYPE) | |
5116 | { | |
5117 | case MIPS_FPU_SINGLE: | |
5118 | fpu = "single-precision"; | |
5119 | break; | |
5120 | case MIPS_FPU_DOUBLE: | |
5121 | fpu = "double-precision"; | |
5122 | break; | |
5123 | case MIPS_FPU_NONE: | |
5124 | fpu = "absent (none)"; | |
5125 | break; | |
5126 | default: | |
5127 | internal_error (__FILE__, __LINE__, "bad switch"); | |
5128 | } | |
5129 | if (mips_fpu_type_auto) | |
5130 | printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", | |
5131 | fpu); | |
5132 | else | |
5133 | printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", | |
5134 | fpu); | |
5135 | } | |
5136 | ||
5137 | ||
5138 | static void | |
5139 | set_mipsfpu_command (char *args, int from_tty) | |
5140 | { | |
5141 | printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); | |
5142 | show_mipsfpu_command (args, from_tty); | |
5143 | } | |
5144 | ||
5145 | static void | |
5146 | set_mipsfpu_single_command (char *args, int from_tty) | |
5147 | { | |
5148 | mips_fpu_type = MIPS_FPU_SINGLE; | |
5149 | mips_fpu_type_auto = 0; | |
5150 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE; | |
5151 | } | |
5152 | ||
5153 | static void | |
5154 | set_mipsfpu_double_command (char *args, int from_tty) | |
5155 | { | |
5156 | mips_fpu_type = MIPS_FPU_DOUBLE; | |
5157 | mips_fpu_type_auto = 0; | |
5158 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE; | |
5159 | } | |
5160 | ||
5161 | static void | |
5162 | set_mipsfpu_none_command (char *args, int from_tty) | |
5163 | { | |
5164 | mips_fpu_type = MIPS_FPU_NONE; | |
5165 | mips_fpu_type_auto = 0; | |
5166 | gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE; | |
5167 | } | |
5168 | ||
5169 | static void | |
5170 | set_mipsfpu_auto_command (char *args, int from_tty) | |
5171 | { | |
5172 | mips_fpu_type_auto = 1; | |
5173 | } | |
5174 | ||
5175 | /* Command to set the processor type. */ | |
5176 | ||
5177 | void | |
5178 | mips_set_processor_type_command (char *args, int from_tty) | |
5179 | { | |
5180 | int i; | |
5181 | ||
5182 | if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') | |
5183 | { | |
5184 | printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); | |
5185 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
5186 | printf_unfiltered ("%s\n", mips_processor_type_table[i].name); | |
5187 | ||
5188 | /* Restore the value. */ | |
5189 | tmp_mips_processor_type = xstrdup (mips_processor_type); | |
5190 | ||
5191 | return; | |
5192 | } | |
5193 | ||
5194 | if (!mips_set_processor_type (tmp_mips_processor_type)) | |
5195 | { | |
5196 | error ("Unknown processor type `%s'.", tmp_mips_processor_type); | |
5197 | /* Restore its value. */ | |
5198 | tmp_mips_processor_type = xstrdup (mips_processor_type); | |
5199 | } | |
5200 | } | |
5201 | ||
5202 | static void | |
5203 | mips_show_processor_type_command (char *args, int from_tty) | |
5204 | { | |
5205 | } | |
5206 | ||
5207 | /* Modify the actual processor type. */ | |
5208 | ||
5209 | static int | |
5210 | mips_set_processor_type (char *str) | |
5211 | { | |
5212 | int i; | |
5213 | ||
5214 | if (str == NULL) | |
5215 | return 0; | |
5216 | ||
5217 | for (i = 0; mips_processor_type_table[i].name != NULL; ++i) | |
5218 | { | |
5219 | if (strcasecmp (str, mips_processor_type_table[i].name) == 0) | |
5220 | { | |
5221 | mips_processor_type = str; | |
5222 | mips_processor_reg_names = mips_processor_type_table[i].regnames; | |
5223 | return 1; | |
5224 | /* FIXME tweak fpu flag too */ | |
5225 | } | |
5226 | } | |
5227 | ||
5228 | return 0; | |
5229 | } | |
5230 | ||
5231 | /* Attempt to identify the particular processor model by reading the | |
5232 | processor id. */ | |
5233 | ||
5234 | char * | |
5235 | mips_read_processor_type (void) | |
5236 | { | |
5237 | CORE_ADDR prid; | |
5238 | ||
5239 | prid = read_register (PRID_REGNUM); | |
5240 | ||
5241 | if ((prid & ~0xf) == 0x700) | |
5242 | return savestring ("r3041", strlen ("r3041")); | |
5243 | ||
5244 | return NULL; | |
5245 | } | |
5246 | ||
5247 | /* Just like reinit_frame_cache, but with the right arguments to be | |
5248 | callable as an sfunc. */ | |
5249 | ||
5250 | static void | |
5251 | reinit_frame_cache_sfunc (char *args, int from_tty, | |
5252 | struct cmd_list_element *c) | |
5253 | { | |
5254 | reinit_frame_cache (); | |
5255 | } | |
5256 | ||
5257 | static int | |
5258 | gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info) | |
5259 | { | |
5260 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
5261 | mips_extra_func_info_t proc_desc; | |
5262 | ||
5263 | /* Search for the function containing this address. Set the low bit | |
5264 | of the address when searching, in case we were given an even address | |
5265 | that is the start of a 16-bit function. If we didn't do this, | |
5266 | the search would fail because the symbol table says the function | |
5267 | starts at an odd address, i.e. 1 byte past the given address. */ | |
5268 | memaddr = ADDR_BITS_REMOVE (memaddr); | |
5269 | proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL); | |
5270 | ||
5271 | /* Make an attempt to determine if this is a 16-bit function. If | |
5272 | the procedure descriptor exists and the address therein is odd, | |
5273 | it's definitely a 16-bit function. Otherwise, we have to just | |
5274 | guess that if the address passed in is odd, it's 16-bits. */ | |
5275 | /* FIXME: cagney/2003-06-26: Is this even necessary? The | |
5276 | disassembler needs to be able to locally determine the ISA, and | |
5277 | not rely on GDB. Otherwize the stand-alone 'objdump -d' will not | |
5278 | work. */ | |
5279 | if (proc_desc) | |
5280 | { | |
5281 | if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) | |
5282 | info->mach = bfd_mach_mips16; | |
5283 | } | |
5284 | else | |
5285 | { | |
5286 | if (pc_is_mips16 (memaddr)) | |
5287 | info->mach = bfd_mach_mips16; | |
5288 | } | |
5289 | ||
5290 | /* Round down the instruction address to the appropriate boundary. */ | |
5291 | memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3); | |
5292 | ||
5293 | /* Set the disassembler options. */ | |
5294 | if (tdep->mips_abi == MIPS_ABI_N32 | |
5295 | || tdep->mips_abi == MIPS_ABI_N64) | |
5296 | { | |
5297 | /* Set up the disassembler info, so that we get the right | |
5298 | register names from libopcodes. */ | |
5299 | if (tdep->mips_abi == MIPS_ABI_N32) | |
5300 | info->disassembler_options = "gpr-names=n32"; | |
5301 | else | |
5302 | info->disassembler_options = "gpr-names=64"; | |
5303 | info->flavour = bfd_target_elf_flavour; | |
5304 | } | |
5305 | else | |
5306 | /* This string is not recognized explicitly by the disassembler, | |
5307 | but it tells the disassembler to not try to guess the ABI from | |
5308 | the bfd elf headers, such that, if the user overrides the ABI | |
5309 | of a program linked as NewABI, the disassembly will follow the | |
5310 | register naming conventions specified by the user. */ | |
5311 | info->disassembler_options = "gpr-names=32"; | |
5312 | ||
5313 | /* Call the appropriate disassembler based on the target endian-ness. */ | |
5314 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
5315 | return print_insn_big_mips (memaddr, info); | |
5316 | else | |
5317 | return print_insn_little_mips (memaddr, info); | |
5318 | } | |
5319 | ||
5320 | /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program | |
5321 | counter value to determine whether a 16- or 32-bit breakpoint should be | |
5322 | used. It returns a pointer to a string of bytes that encode a breakpoint | |
5323 | instruction, stores the length of the string to *lenptr, and adjusts pc | |
5324 | (if necessary) to point to the actual memory location where the | |
5325 | breakpoint should be inserted. */ | |
5326 | ||
5327 | static const unsigned char * | |
5328 | mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr) | |
5329 | { | |
5330 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
5331 | { | |
5332 | if (pc_is_mips16 (*pcptr)) | |
5333 | { | |
5334 | static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5}; | |
5335 | *pcptr = unmake_mips16_addr (*pcptr); | |
5336 | *lenptr = sizeof (mips16_big_breakpoint); | |
5337 | return mips16_big_breakpoint; | |
5338 | } | |
5339 | else | |
5340 | { | |
5341 | /* The IDT board uses an unusual breakpoint value, and | |
5342 | sometimes gets confused when it sees the usual MIPS | |
5343 | breakpoint instruction. */ | |
5344 | static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd}; | |
5345 | static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd}; | |
5346 | static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd}; | |
5347 | ||
5348 | *lenptr = sizeof (big_breakpoint); | |
5349 | ||
5350 | if (strcmp (target_shortname, "mips") == 0) | |
5351 | return idt_big_breakpoint; | |
5352 | else if (strcmp (target_shortname, "ddb") == 0 | |
5353 | || strcmp (target_shortname, "pmon") == 0 | |
5354 | || strcmp (target_shortname, "lsi") == 0) | |
5355 | return pmon_big_breakpoint; | |
5356 | else | |
5357 | return big_breakpoint; | |
5358 | } | |
5359 | } | |
5360 | else | |
5361 | { | |
5362 | if (pc_is_mips16 (*pcptr)) | |
5363 | { | |
5364 | static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8}; | |
5365 | *pcptr = unmake_mips16_addr (*pcptr); | |
5366 | *lenptr = sizeof (mips16_little_breakpoint); | |
5367 | return mips16_little_breakpoint; | |
5368 | } | |
5369 | else | |
5370 | { | |
5371 | static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0}; | |
5372 | static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0}; | |
5373 | static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0}; | |
5374 | ||
5375 | *lenptr = sizeof (little_breakpoint); | |
5376 | ||
5377 | if (strcmp (target_shortname, "mips") == 0) | |
5378 | return idt_little_breakpoint; | |
5379 | else if (strcmp (target_shortname, "ddb") == 0 | |
5380 | || strcmp (target_shortname, "pmon") == 0 | |
5381 | || strcmp (target_shortname, "lsi") == 0) | |
5382 | return pmon_little_breakpoint; | |
5383 | else | |
5384 | return little_breakpoint; | |
5385 | } | |
5386 | } | |
5387 | } | |
5388 | ||
5389 | /* If PC is in a mips16 call or return stub, return the address of the target | |
5390 | PC, which is either the callee or the caller. There are several | |
5391 | cases which must be handled: | |
5392 | ||
5393 | * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
5394 | target PC is in $31 ($ra). | |
5395 | * If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
5396 | and the target PC is in $2. | |
5397 | * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
5398 | before the jal instruction, this is effectively a call stub | |
5399 | and the the target PC is in $2. Otherwise this is effectively | |
5400 | a return stub and the target PC is in $18. | |
5401 | ||
5402 | See the source code for the stubs in gcc/config/mips/mips16.S for | |
5403 | gory details. | |
5404 | ||
5405 | This function implements the SKIP_TRAMPOLINE_CODE macro. | |
5406 | */ | |
5407 | ||
5408 | static CORE_ADDR | |
5409 | mips_skip_stub (CORE_ADDR pc) | |
5410 | { | |
5411 | char *name; | |
5412 | CORE_ADDR start_addr; | |
5413 | ||
5414 | /* Find the starting address and name of the function containing the PC. */ | |
5415 | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | |
5416 | return 0; | |
5417 | ||
5418 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the | |
5419 | target PC is in $31 ($ra). */ | |
5420 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5421 | || strcmp (name, "__mips16_ret_df") == 0) | |
5422 | return read_signed_register (RA_REGNUM); | |
5423 | ||
5424 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5425 | { | |
5426 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub | |
5427 | and the target PC is in $2. */ | |
5428 | if (name[19] >= '0' && name[19] <= '9') | |
5429 | return read_signed_register (2); | |
5430 | ||
5431 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
5432 | before the jal instruction, this is effectively a call stub | |
5433 | and the the target PC is in $2. Otherwise this is effectively | |
5434 | a return stub and the target PC is in $18. */ | |
5435 | else if (name[19] == 's' || name[19] == 'd') | |
5436 | { | |
5437 | if (pc == start_addr) | |
5438 | { | |
5439 | /* Check if the target of the stub is a compiler-generated | |
5440 | stub. Such a stub for a function bar might have a name | |
5441 | like __fn_stub_bar, and might look like this: | |
5442 | mfc1 $4,$f13 | |
5443 | mfc1 $5,$f12 | |
5444 | mfc1 $6,$f15 | |
5445 | mfc1 $7,$f14 | |
5446 | la $1,bar (becomes a lui/addiu pair) | |
5447 | jr $1 | |
5448 | So scan down to the lui/addi and extract the target | |
5449 | address from those two instructions. */ | |
5450 | ||
5451 | CORE_ADDR target_pc = read_signed_register (2); | |
5452 | t_inst inst; | |
5453 | int i; | |
5454 | ||
5455 | /* See if the name of the target function is __fn_stub_*. */ | |
5456 | if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) | |
5457 | return target_pc; | |
5458 | if (strncmp (name, "__fn_stub_", 10) != 0 | |
5459 | && strcmp (name, "etext") != 0 | |
5460 | && strcmp (name, "_etext") != 0) | |
5461 | return target_pc; | |
5462 | ||
5463 | /* Scan through this _fn_stub_ code for the lui/addiu pair. | |
5464 | The limit on the search is arbitrarily set to 20 | |
5465 | instructions. FIXME. */ | |
5466 | for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) | |
5467 | { | |
5468 | inst = mips_fetch_instruction (target_pc); | |
5469 | if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ | |
5470 | pc = (inst << 16) & 0xffff0000; /* high word */ | |
5471 | else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ | |
5472 | return pc | (inst & 0xffff); /* low word */ | |
5473 | } | |
5474 | ||
5475 | /* Couldn't find the lui/addui pair, so return stub address. */ | |
5476 | return target_pc; | |
5477 | } | |
5478 | else | |
5479 | /* This is the 'return' part of a call stub. The return | |
5480 | address is in $r18. */ | |
5481 | return read_signed_register (18); | |
5482 | } | |
5483 | } | |
5484 | return 0; /* not a stub */ | |
5485 | } | |
5486 | ||
5487 | ||
5488 | /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). | |
5489 | This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ | |
5490 | ||
5491 | static int | |
5492 | mips_in_call_stub (CORE_ADDR pc, char *name) | |
5493 | { | |
5494 | CORE_ADDR start_addr; | |
5495 | ||
5496 | /* Find the starting address of the function containing the PC. If the | |
5497 | caller didn't give us a name, look it up at the same time. */ | |
5498 | if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) | |
5499 | return 0; | |
5500 | ||
5501 | if (strncmp (name, "__mips16_call_stub_", 19) == 0) | |
5502 | { | |
5503 | /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ | |
5504 | if (name[19] >= '0' && name[19] <= '9') | |
5505 | return 1; | |
5506 | /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. | |
5507 | before the jal instruction, this is effectively a call stub. */ | |
5508 | else if (name[19] == 's' || name[19] == 'd') | |
5509 | return pc == start_addr; | |
5510 | } | |
5511 | ||
5512 | return 0; /* not a stub */ | |
5513 | } | |
5514 | ||
5515 | ||
5516 | /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). | |
5517 | This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ | |
5518 | ||
5519 | static int | |
5520 | mips_in_return_stub (CORE_ADDR pc, char *name) | |
5521 | { | |
5522 | CORE_ADDR start_addr; | |
5523 | ||
5524 | /* Find the starting address of the function containing the PC. */ | |
5525 | if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) | |
5526 | return 0; | |
5527 | ||
5528 | /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ | |
5529 | if (strcmp (name, "__mips16_ret_sf") == 0 | |
5530 | || strcmp (name, "__mips16_ret_df") == 0) | |
5531 | return 1; | |
5532 | ||
5533 | /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, | |
5534 | i.e. after the jal instruction, this is effectively a return stub. */ | |
5535 | if (strncmp (name, "__mips16_call_stub_", 19) == 0 | |
5536 | && (name[19] == 's' || name[19] == 'd') | |
5537 | && pc != start_addr) | |
5538 | return 1; | |
5539 | ||
5540 | return 0; /* not a stub */ | |
5541 | } | |
5542 | ||
5543 | ||
5544 | /* Return non-zero if the PC is in a library helper function that should | |
5545 | be ignored. This implements the IGNORE_HELPER_CALL macro. */ | |
5546 | ||
5547 | int | |
5548 | mips_ignore_helper (CORE_ADDR pc) | |
5549 | { | |
5550 | char *name; | |
5551 | ||
5552 | /* Find the starting address and name of the function containing the PC. */ | |
5553 | if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) | |
5554 | return 0; | |
5555 | ||
5556 | /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function | |
5557 | that we want to ignore. */ | |
5558 | return (strcmp (name, "__mips16_ret_sf") == 0 | |
5559 | || strcmp (name, "__mips16_ret_df") == 0); | |
5560 | } | |
5561 | ||
5562 | ||
5563 | /* When debugging a 64 MIPS target running a 32 bit ABI, the size of | |
5564 | the register stored on the stack (32) is different to its real raw | |
5565 | size (64). The below ensures that registers are fetched from the | |
5566 | stack using their ABI size and then stored into the RAW_BUFFER | |
5567 | using their raw size. | |
5568 | ||
5569 | The alternative to adding this function would be to add an ABI | |
5570 | macro - REGISTER_STACK_SIZE(). */ | |
5571 | ||
5572 | static void | |
5573 | mips_get_saved_register (char *raw_buffer, | |
5574 | int *optimizedp, | |
5575 | CORE_ADDR *addrp, | |
5576 | struct frame_info *frame, | |
5577 | int regnum, | |
5578 | enum lval_type *lvalp) | |
5579 | { | |
5580 | CORE_ADDR addrx; | |
5581 | enum lval_type lvalx; | |
5582 | int optimizedx; | |
5583 | int realnumx; | |
5584 | ||
5585 | /* Always a pseudo. */ | |
5586 | gdb_assert (regnum >= NUM_REGS); | |
5587 | ||
5588 | /* Make certain that all needed parameters are present. */ | |
5589 | if (addrp == NULL) | |
5590 | addrp = &addrx; | |
5591 | if (lvalp == NULL) | |
5592 | lvalp = &lvalx; | |
5593 | if (optimizedp == NULL) | |
5594 | optimizedp = &optimizedx; | |
5595 | ||
5596 | if ((regnum % NUM_REGS) == SP_REGNUM) | |
5597 | /* The SP_REGNUM is special, its value is stored in saved_regs. | |
5598 | In fact, it is so special that it can even only be fetched | |
5599 | using a raw register number! Once this code as been converted | |
5600 | to frame-unwind the problem goes away. */ | |
5601 | frame_register_unwind (deprecated_get_next_frame_hack (frame), | |
5602 | regnum % NUM_REGS, optimizedp, lvalp, addrp, | |
5603 | &realnumx, raw_buffer); | |
5604 | else | |
5605 | /* Get it from the next frame. */ | |
5606 | frame_register_unwind (deprecated_get_next_frame_hack (frame), | |
5607 | regnum, optimizedp, lvalp, addrp, | |
5608 | &realnumx, raw_buffer); | |
5609 | } | |
5610 | ||
5611 | /* Immediately after a function call, return the saved pc. | |
5612 | Can't always go through the frames for this because on some machines | |
5613 | the new frame is not set up until the new function executes | |
5614 | some instructions. */ | |
5615 | ||
5616 | static CORE_ADDR | |
5617 | mips_saved_pc_after_call (struct frame_info *frame) | |
5618 | { | |
5619 | return read_signed_register (RA_REGNUM); | |
5620 | } | |
5621 | ||
5622 | ||
5623 | /* Convert a dbx stab register number (from `r' declaration) to a GDB | |
5624 | [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
5625 | ||
5626 | static int | |
5627 | mips_stab_reg_to_regnum (int num) | |
5628 | { | |
5629 | int regnum; | |
5630 | if (num >= 0 && num < 32) | |
5631 | regnum = num; | |
5632 | else if (num >= 38 && num < 70) | |
5633 | regnum = num + FP0_REGNUM - 38; | |
5634 | else if (num == 70) | |
5635 | regnum = HI_REGNUM; | |
5636 | else if (num == 71) | |
5637 | regnum = LO_REGNUM; | |
5638 | else | |
5639 | /* This will hopefully (eventually) provoke a warning. Should | |
5640 | we be calling complaint() here? */ | |
5641 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5642 | return NUM_REGS + regnum; | |
5643 | } | |
5644 | ||
5645 | ||
5646 | /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 * | |
5647 | NUM_REGS .. 2 * NUM_REGS) REGNUM. */ | |
5648 | ||
5649 | static int | |
5650 | mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num) | |
5651 | { | |
5652 | int regnum; | |
5653 | if (num >= 0 && num < 32) | |
5654 | regnum = num; | |
5655 | else if (num >= 32 && num < 64) | |
5656 | regnum = num + FP0_REGNUM - 32; | |
5657 | else if (num == 64) | |
5658 | regnum = HI_REGNUM; | |
5659 | else if (num == 65) | |
5660 | regnum = LO_REGNUM; | |
5661 | else | |
5662 | /* This will hopefully (eventually) provoke a warning. Should we | |
5663 | be calling complaint() here? */ | |
5664 | return NUM_REGS + NUM_PSEUDO_REGS; | |
5665 | return NUM_REGS + regnum; | |
5666 | } | |
5667 | ||
5668 | static int | |
5669 | mips_register_sim_regno (int regnum) | |
5670 | { | |
5671 | /* Only makes sense to supply raw registers. */ | |
5672 | gdb_assert (regnum >= 0 && regnum < NUM_REGS); | |
5673 | /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to | |
5674 | decide if it is valid. Should instead define a standard sim/gdb | |
5675 | register numbering scheme. */ | |
5676 | if (REGISTER_NAME (NUM_REGS + regnum) != NULL | |
5677 | && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0') | |
5678 | return regnum; | |
5679 | else | |
5680 | return LEGACY_SIM_REGNO_IGNORE; | |
5681 | } | |
5682 | ||
5683 | ||
5684 | /* Convert an integer into an address. By first converting the value | |
5685 | into a pointer and then extracting it signed, the address is | |
5686 | guarenteed to be correctly sign extended. */ | |
5687 | ||
5688 | static CORE_ADDR | |
5689 | mips_integer_to_address (struct type *type, void *buf) | |
5690 | { | |
5691 | char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5692 | LONGEST val = unpack_long (type, buf); | |
5693 | store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val); | |
5694 | return extract_signed_integer (tmp, | |
5695 | TYPE_LENGTH (builtin_type_void_data_ptr)); | |
5696 | } | |
5697 | ||
5698 | static void | |
5699 | mips_find_abi_section (bfd *abfd, asection *sect, void *obj) | |
5700 | { | |
5701 | enum mips_abi *abip = (enum mips_abi *) obj; | |
5702 | const char *name = bfd_get_section_name (abfd, sect); | |
5703 | ||
5704 | if (*abip != MIPS_ABI_UNKNOWN) | |
5705 | return; | |
5706 | ||
5707 | if (strncmp (name, ".mdebug.", 8) != 0) | |
5708 | return; | |
5709 | ||
5710 | if (strcmp (name, ".mdebug.abi32") == 0) | |
5711 | *abip = MIPS_ABI_O32; | |
5712 | else if (strcmp (name, ".mdebug.abiN32") == 0) | |
5713 | *abip = MIPS_ABI_N32; | |
5714 | else if (strcmp (name, ".mdebug.abi64") == 0) | |
5715 | *abip = MIPS_ABI_N64; | |
5716 | else if (strcmp (name, ".mdebug.abiO64") == 0) | |
5717 | *abip = MIPS_ABI_O64; | |
5718 | else if (strcmp (name, ".mdebug.eabi32") == 0) | |
5719 | *abip = MIPS_ABI_EABI32; | |
5720 | else if (strcmp (name, ".mdebug.eabi64") == 0) | |
5721 | *abip = MIPS_ABI_EABI64; | |
5722 | else | |
5723 | warning ("unsupported ABI %s.", name + 8); | |
5724 | } | |
5725 | ||
5726 | static enum mips_abi | |
5727 | global_mips_abi (void) | |
5728 | { | |
5729 | int i; | |
5730 | ||
5731 | for (i = 0; mips_abi_strings[i] != NULL; i++) | |
5732 | if (mips_abi_strings[i] == mips_abi_string) | |
5733 | return (enum mips_abi) i; | |
5734 | ||
5735 | internal_error (__FILE__, __LINE__, | |
5736 | "unknown ABI string"); | |
5737 | } | |
5738 | ||
5739 | static struct gdbarch * | |
5740 | mips_gdbarch_init (struct gdbarch_info info, | |
5741 | struct gdbarch_list *arches) | |
5742 | { | |
5743 | struct gdbarch *gdbarch; | |
5744 | struct gdbarch_tdep *tdep; | |
5745 | int elf_flags; | |
5746 | enum mips_abi mips_abi, found_abi, wanted_abi; | |
5747 | int num_regs; | |
5748 | ||
5749 | elf_flags = 0; | |
5750 | ||
5751 | if (info.abfd) | |
5752 | { | |
5753 | /* First of all, extract the elf_flags, if available. */ | |
5754 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
5755 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
5756 | } | |
5757 | ||
5758 | /* Check ELF_FLAGS to see if it specifies the ABI being used. */ | |
5759 | switch ((elf_flags & EF_MIPS_ABI)) | |
5760 | { | |
5761 | case E_MIPS_ABI_O32: | |
5762 | mips_abi = MIPS_ABI_O32; | |
5763 | break; | |
5764 | case E_MIPS_ABI_O64: | |
5765 | mips_abi = MIPS_ABI_O64; | |
5766 | break; | |
5767 | case E_MIPS_ABI_EABI32: | |
5768 | mips_abi = MIPS_ABI_EABI32; | |
5769 | break; | |
5770 | case E_MIPS_ABI_EABI64: | |
5771 | mips_abi = MIPS_ABI_EABI64; | |
5772 | break; | |
5773 | default: | |
5774 | if ((elf_flags & EF_MIPS_ABI2)) | |
5775 | mips_abi = MIPS_ABI_N32; | |
5776 | else | |
5777 | mips_abi = MIPS_ABI_UNKNOWN; | |
5778 | break; | |
5779 | } | |
5780 | ||
5781 | /* GCC creates a pseudo-section whose name describes the ABI. */ | |
5782 | if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL) | |
5783 | bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi); | |
5784 | ||
5785 | /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN. | |
5786 | Use the ABI from the last architecture if there is one. */ | |
5787 | if (info.abfd == NULL && arches != NULL) | |
5788 | mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi; | |
5789 | ||
5790 | /* Try the architecture for any hint of the correct ABI. */ | |
5791 | if (mips_abi == MIPS_ABI_UNKNOWN | |
5792 | && info.bfd_arch_info != NULL | |
5793 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
5794 | { | |
5795 | switch (info.bfd_arch_info->mach) | |
5796 | { | |
5797 | case bfd_mach_mips3900: | |
5798 | mips_abi = MIPS_ABI_EABI32; | |
5799 | break; | |
5800 | case bfd_mach_mips4100: | |
5801 | case bfd_mach_mips5000: | |
5802 | mips_abi = MIPS_ABI_EABI64; | |
5803 | break; | |
5804 | case bfd_mach_mips8000: | |
5805 | case bfd_mach_mips10000: | |
5806 | /* On Irix, ELF64 executables use the N64 ABI. The | |
5807 | pseudo-sections which describe the ABI aren't present | |
5808 | on IRIX. (Even for executables created by gcc.) */ | |
5809 | if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour | |
5810 | && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
5811 | mips_abi = MIPS_ABI_N64; | |
5812 | else | |
5813 | mips_abi = MIPS_ABI_N32; | |
5814 | break; | |
5815 | } | |
5816 | } | |
5817 | ||
5818 | if (mips_abi == MIPS_ABI_UNKNOWN) | |
5819 | mips_abi = MIPS_ABI_O32; | |
5820 | ||
5821 | /* Now that we have found what the ABI for this binary would be, | |
5822 | check whether the user is overriding it. */ | |
5823 | found_abi = mips_abi; | |
5824 | wanted_abi = global_mips_abi (); | |
5825 | if (wanted_abi != MIPS_ABI_UNKNOWN) | |
5826 | mips_abi = wanted_abi; | |
5827 | ||
5828 | if (gdbarch_debug) | |
5829 | { | |
5830 | fprintf_unfiltered (gdb_stdlog, | |
5831 | "mips_gdbarch_init: elf_flags = 0x%08x\n", | |
5832 | elf_flags); | |
5833 | fprintf_unfiltered (gdb_stdlog, | |
5834 | "mips_gdbarch_init: mips_abi = %d\n", | |
5835 | mips_abi); | |
5836 | fprintf_unfiltered (gdb_stdlog, | |
5837 | "mips_gdbarch_init: found_mips_abi = %d\n", | |
5838 | found_abi); | |
5839 | } | |
5840 | ||
5841 | /* try to find a pre-existing architecture */ | |
5842 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
5843 | arches != NULL; | |
5844 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
5845 | { | |
5846 | /* MIPS needs to be pedantic about which ABI the object is | |
5847 | using. */ | |
5848 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) | |
5849 | continue; | |
5850 | if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi) | |
5851 | continue; | |
5852 | return arches->gdbarch; | |
5853 | } | |
5854 | ||
5855 | /* Need a new architecture. Fill in a target specific vector. */ | |
5856 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
5857 | gdbarch = gdbarch_alloc (&info, tdep); | |
5858 | tdep->elf_flags = elf_flags; | |
5859 | ||
5860 | /* Initially set everything according to the default ABI/ISA. */ | |
5861 | set_gdbarch_short_bit (gdbarch, 16); | |
5862 | set_gdbarch_int_bit (gdbarch, 32); | |
5863 | set_gdbarch_float_bit (gdbarch, 32); | |
5864 | set_gdbarch_double_bit (gdbarch, 64); | |
5865 | set_gdbarch_long_double_bit (gdbarch, 64); | |
5866 | set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size); | |
5867 | set_gdbarch_deprecated_register_byte (gdbarch, mips_register_byte); | |
5868 | set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p); | |
5869 | set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read); | |
5870 | set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write); | |
5871 | tdep->found_abi = found_abi; | |
5872 | tdep->mips_abi = mips_abi; | |
5873 | ||
5874 | set_gdbarch_elf_make_msymbol_special (gdbarch, | |
5875 | mips_elf_make_msymbol_special); | |
5876 | ||
5877 | ||
5878 | if (info.osabi == GDB_OSABI_IRIX) | |
5879 | num_regs = 71; | |
5880 | else | |
5881 | num_regs = 90; | |
5882 | set_gdbarch_num_regs (gdbarch, num_regs); | |
5883 | set_gdbarch_num_pseudo_regs (gdbarch, num_regs); | |
5884 | ||
5885 | switch (mips_abi) | |
5886 | { | |
5887 | case MIPS_ABI_O32: | |
5888 | set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call); | |
5889 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value); | |
5890 | set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value); | |
5891 | tdep->mips_default_saved_regsize = 4; | |
5892 | tdep->mips_default_stack_argsize = 4; | |
5893 | tdep->mips_fp_register_double = 0; | |
5894 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; | |
5895 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1; | |
5896 | tdep->gdb_target_is_mips64 = 0; | |
5897 | tdep->default_mask_address_p = 0; | |
5898 | set_gdbarch_long_bit (gdbarch, 32); | |
5899 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5900 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5901 | set_gdbarch_deprecated_reg_struct_has_addr | |
5902 | (gdbarch, mips_o32_reg_struct_has_addr); | |
5903 | set_gdbarch_use_struct_convention (gdbarch, | |
5904 | always_use_struct_convention); | |
5905 | break; | |
5906 | case MIPS_ABI_O64: | |
5907 | set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call); | |
5908 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value); | |
5909 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value); | |
5910 | tdep->mips_default_saved_regsize = 8; | |
5911 | tdep->mips_default_stack_argsize = 8; | |
5912 | tdep->mips_fp_register_double = 1; | |
5913 | tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1; | |
5914 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1; | |
5915 | tdep->gdb_target_is_mips64 = 1; | |
5916 | tdep->default_mask_address_p = 0; | |
5917 | set_gdbarch_long_bit (gdbarch, 32); | |
5918 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5919 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5920 | set_gdbarch_deprecated_reg_struct_has_addr | |
5921 | (gdbarch, mips_o32_reg_struct_has_addr); | |
5922 | set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention); | |
5923 | break; | |
5924 | case MIPS_ABI_EABI32: | |
5925 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); | |
5926 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value); | |
5927 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value); | |
5928 | tdep->mips_default_saved_regsize = 4; | |
5929 | tdep->mips_default_stack_argsize = 4; | |
5930 | tdep->mips_fp_register_double = 0; | |
5931 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; | |
5932 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5933 | tdep->gdb_target_is_mips64 = 0; | |
5934 | tdep->default_mask_address_p = 0; | |
5935 | set_gdbarch_long_bit (gdbarch, 32); | |
5936 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5937 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5938 | set_gdbarch_deprecated_reg_struct_has_addr | |
5939 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
5940 | set_gdbarch_use_struct_convention (gdbarch, | |
5941 | mips_eabi_use_struct_convention); | |
5942 | break; | |
5943 | case MIPS_ABI_EABI64: | |
5944 | set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call); | |
5945 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value); | |
5946 | set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value); | |
5947 | tdep->mips_default_saved_regsize = 8; | |
5948 | tdep->mips_default_stack_argsize = 8; | |
5949 | tdep->mips_fp_register_double = 1; | |
5950 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; | |
5951 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5952 | tdep->gdb_target_is_mips64 = 1; | |
5953 | tdep->default_mask_address_p = 0; | |
5954 | set_gdbarch_long_bit (gdbarch, 64); | |
5955 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5956 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5957 | set_gdbarch_deprecated_reg_struct_has_addr | |
5958 | (gdbarch, mips_eabi_reg_struct_has_addr); | |
5959 | set_gdbarch_use_struct_convention (gdbarch, | |
5960 | mips_eabi_use_struct_convention); | |
5961 | break; | |
5962 | case MIPS_ABI_N32: | |
5963 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); | |
5964 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value); | |
5965 | set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value); | |
5966 | tdep->mips_default_saved_regsize = 8; | |
5967 | tdep->mips_default_stack_argsize = 8; | |
5968 | tdep->mips_fp_register_double = 1; | |
5969 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; | |
5970 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5971 | tdep->gdb_target_is_mips64 = 1; | |
5972 | tdep->default_mask_address_p = 0; | |
5973 | set_gdbarch_long_bit (gdbarch, 32); | |
5974 | set_gdbarch_ptr_bit (gdbarch, 32); | |
5975 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5976 | set_gdbarch_use_struct_convention (gdbarch, | |
5977 | mips_n32n64_use_struct_convention); | |
5978 | set_gdbarch_deprecated_reg_struct_has_addr | |
5979 | (gdbarch, mips_n32n64_reg_struct_has_addr); | |
5980 | break; | |
5981 | case MIPS_ABI_N64: | |
5982 | set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call); | |
5983 | set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value); | |
5984 | set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value); | |
5985 | tdep->mips_default_saved_regsize = 8; | |
5986 | tdep->mips_default_stack_argsize = 8; | |
5987 | tdep->mips_fp_register_double = 1; | |
5988 | tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1; | |
5989 | tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1; | |
5990 | tdep->gdb_target_is_mips64 = 1; | |
5991 | tdep->default_mask_address_p = 0; | |
5992 | set_gdbarch_long_bit (gdbarch, 64); | |
5993 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5994 | set_gdbarch_long_long_bit (gdbarch, 64); | |
5995 | set_gdbarch_use_struct_convention (gdbarch, | |
5996 | mips_n32n64_use_struct_convention); | |
5997 | set_gdbarch_deprecated_reg_struct_has_addr | |
5998 | (gdbarch, mips_n32n64_reg_struct_has_addr); | |
5999 | break; | |
6000 | default: | |
6001 | internal_error (__FILE__, __LINE__, | |
6002 | "unknown ABI in switch"); | |
6003 | } | |
6004 | ||
6005 | /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE | |
6006 | that could indicate -gp32 BUT gas/config/tc-mips.c contains the | |
6007 | comment: | |
6008 | ||
6009 | ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE | |
6010 | flag in object files because to do so would make it impossible to | |
6011 | link with libraries compiled without "-gp32". This is | |
6012 | unnecessarily restrictive. | |
6013 | ||
6014 | We could solve this problem by adding "-gp32" multilibs to gcc, | |
6015 | but to set this flag before gcc is built with such multilibs will | |
6016 | break too many systems.'' | |
6017 | ||
6018 | But even more unhelpfully, the default linker output target for | |
6019 | mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even | |
6020 | for 64-bit programs - you need to change the ABI to change this, | |
6021 | and not all gcc targets support that currently. Therefore using | |
6022 | this flag to detect 32-bit mode would do the wrong thing given | |
6023 | the current gcc - it would make GDB treat these 64-bit programs | |
6024 | as 32-bit programs by default. */ | |
6025 | ||
6026 | /* enable/disable the MIPS FPU */ | |
6027 | if (!mips_fpu_type_auto) | |
6028 | tdep->mips_fpu_type = mips_fpu_type; | |
6029 | else if (info.bfd_arch_info != NULL | |
6030 | && info.bfd_arch_info->arch == bfd_arch_mips) | |
6031 | switch (info.bfd_arch_info->mach) | |
6032 | { | |
6033 | case bfd_mach_mips3900: | |
6034 | case bfd_mach_mips4100: | |
6035 | case bfd_mach_mips4111: | |
6036 | tdep->mips_fpu_type = MIPS_FPU_NONE; | |
6037 | break; | |
6038 | case bfd_mach_mips4650: | |
6039 | tdep->mips_fpu_type = MIPS_FPU_SINGLE; | |
6040 | break; | |
6041 | default: | |
6042 | tdep->mips_fpu_type = MIPS_FPU_DOUBLE; | |
6043 | break; | |
6044 | } | |
6045 | else | |
6046 | tdep->mips_fpu_type = MIPS_FPU_DOUBLE; | |
6047 | ||
6048 | /* MIPS version of register names. NOTE: At present the MIPS | |
6049 | register name management is part way between the old - | |
6050 | #undef/#define MIPS_REGISTER_NAMES and the new REGISTER_NAME(nr). | |
6051 | Further work on it is required. */ | |
6052 | set_gdbarch_register_name (gdbarch, mips_register_name); | |
6053 | set_gdbarch_read_pc (gdbarch, mips_read_pc); | |
6054 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
6055 | set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */ | |
6056 | set_gdbarch_read_sp (gdbarch, mips_read_sp); | |
6057 | ||
6058 | /* Add/remove bits from an address. The MIPS needs be careful to | |
6059 | ensure that all 32 bit addresses are sign extended to 64 bits. */ | |
6060 | set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove); | |
6061 | ||
6062 | /* There's a mess in stack frame creation. See comments in | |
6063 | blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */ | |
6064 | set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first); | |
6065 | set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop); | |
6066 | ||
6067 | /* Map debug register numbers onto internal register numbers. */ | |
6068 | set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum); | |
6069 | set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
6070 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
6071 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum); | |
6072 | set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno); | |
6073 | ||
6074 | /* Initialize a frame */ | |
6075 | set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs); | |
6076 | set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info); | |
6077 | ||
6078 | /* MIPS version of CALL_DUMMY */ | |
6079 | ||
6080 | /* NOTE: cagney/2003-08-05: Eventually call dummy location will be | |
6081 | replaced by a command, and all targets will default to on stack | |
6082 | (regardless of the stack's execute status). */ | |
6083 | set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL); | |
6084 | set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame); | |
6085 | set_gdbarch_frame_align (gdbarch, mips_frame_align); | |
6086 | set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); | |
6087 | set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible); | |
6088 | set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual); | |
6089 | set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw); | |
6090 | ||
6091 | set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain); | |
6092 | set_gdbarch_frameless_function_invocation (gdbarch, | |
6093 | generic_frameless_function_invocation_not); | |
6094 | set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc); | |
6095 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
6096 | ||
6097 | set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register); | |
6098 | ||
6099 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
6100 | set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc); | |
6101 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
6102 | ||
6103 | set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue); | |
6104 | set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call); | |
6105 | ||
6106 | set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address); | |
6107 | set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer); | |
6108 | set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address); | |
6109 | ||
6110 | set_gdbarch_function_start_offset (gdbarch, 0); | |
6111 | ||
6112 | set_gdbarch_register_type (gdbarch, mips_register_type); | |
6113 | ||
6114 | set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info); | |
6115 | set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp); | |
6116 | ||
6117 | set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips); | |
6118 | ||
6119 | /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT, | |
6120 | HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT | |
6121 | need to all be folded into the target vector. Since they are | |
6122 | being used as guards for STOPPED_BY_WATCHPOINT, why not have | |
6123 | STOPPED_BY_WATCHPOINT return the type of watchpoint that the code | |
6124 | is sitting on? */ | |
6125 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | |
6126 | ||
6127 | /* Hook in OS ABI-specific overrides, if they have been registered. */ | |
6128 | gdbarch_init_osabi (info, gdbarch); | |
6129 | ||
6130 | set_gdbarch_extract_struct_value_address (gdbarch, | |
6131 | mips_extract_struct_value_address); | |
6132 | ||
6133 | set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub); | |
6134 | ||
6135 | set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub); | |
6136 | set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub); | |
6137 | ||
6138 | return gdbarch; | |
6139 | } | |
6140 | ||
6141 | static void | |
6142 | mips_abi_update (char *ignore_args, int from_tty, | |
6143 | struct cmd_list_element *c) | |
6144 | { | |
6145 | struct gdbarch_info info; | |
6146 | ||
6147 | /* Force the architecture to update, and (if it's a MIPS architecture) | |
6148 | mips_gdbarch_init will take care of the rest. */ | |
6149 | gdbarch_info_init (&info); | |
6150 | gdbarch_update_p (info); | |
6151 | } | |
6152 | ||
6153 | /* Print out which MIPS ABI is in use. */ | |
6154 | ||
6155 | static void | |
6156 | show_mips_abi (char *ignore_args, int from_tty) | |
6157 | { | |
6158 | if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips) | |
6159 | printf_filtered ( | |
6160 | "The MIPS ABI is unknown because the current architecture is not MIPS.\n"); | |
6161 | else | |
6162 | { | |
6163 | enum mips_abi global_abi = global_mips_abi (); | |
6164 | enum mips_abi actual_abi = mips_abi (current_gdbarch); | |
6165 | const char *actual_abi_str = mips_abi_strings[actual_abi]; | |
6166 | ||
6167 | if (global_abi == MIPS_ABI_UNKNOWN) | |
6168 | printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n", | |
6169 | actual_abi_str); | |
6170 | else if (global_abi == actual_abi) | |
6171 | printf_filtered ( | |
6172 | "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n", | |
6173 | actual_abi_str); | |
6174 | else | |
6175 | { | |
6176 | /* Probably shouldn't happen... */ | |
6177 | printf_filtered ( | |
6178 | "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n", | |
6179 | actual_abi_str, | |
6180 | mips_abi_strings[global_abi]); | |
6181 | } | |
6182 | } | |
6183 | } | |
6184 | ||
6185 | static void | |
6186 | mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) | |
6187 | { | |
6188 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
6189 | if (tdep != NULL) | |
6190 | { | |
6191 | int ef_mips_arch; | |
6192 | int ef_mips_32bitmode; | |
6193 | /* determine the ISA */ | |
6194 | switch (tdep->elf_flags & EF_MIPS_ARCH) | |
6195 | { | |
6196 | case E_MIPS_ARCH_1: | |
6197 | ef_mips_arch = 1; | |
6198 | break; | |
6199 | case E_MIPS_ARCH_2: | |
6200 | ef_mips_arch = 2; | |
6201 | break; | |
6202 | case E_MIPS_ARCH_3: | |
6203 | ef_mips_arch = 3; | |
6204 | break; | |
6205 | case E_MIPS_ARCH_4: | |
6206 | ef_mips_arch = 4; | |
6207 | break; | |
6208 | default: | |
6209 | ef_mips_arch = 0; | |
6210 | break; | |
6211 | } | |
6212 | /* determine the size of a pointer */ | |
6213 | ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE); | |
6214 | fprintf_unfiltered (file, | |
6215 | "mips_dump_tdep: tdep->elf_flags = 0x%x\n", | |
6216 | tdep->elf_flags); | |
6217 | fprintf_unfiltered (file, | |
6218 | "mips_dump_tdep: ef_mips_32bitmode = %d\n", | |
6219 | ef_mips_32bitmode); | |
6220 | fprintf_unfiltered (file, | |
6221 | "mips_dump_tdep: ef_mips_arch = %d\n", | |
6222 | ef_mips_arch); | |
6223 | fprintf_unfiltered (file, | |
6224 | "mips_dump_tdep: tdep->mips_abi = %d (%s)\n", | |
6225 | tdep->mips_abi, | |
6226 | mips_abi_strings[tdep->mips_abi]); | |
6227 | fprintf_unfiltered (file, | |
6228 | "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n", | |
6229 | mips_mask_address_p (), | |
6230 | tdep->default_mask_address_p); | |
6231 | } | |
6232 | fprintf_unfiltered (file, | |
6233 | "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n", | |
6234 | FP_REGISTER_DOUBLE); | |
6235 | fprintf_unfiltered (file, | |
6236 | "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n", | |
6237 | MIPS_DEFAULT_FPU_TYPE, | |
6238 | (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6239 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6240 | : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6241 | : "???")); | |
6242 | fprintf_unfiltered (file, | |
6243 | "mips_dump_tdep: MIPS_EABI = %d\n", | |
6244 | MIPS_EABI); | |
6245 | fprintf_unfiltered (file, | |
6246 | "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n", | |
6247 | MIPS_LAST_FP_ARG_REGNUM, | |
6248 | MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1); | |
6249 | fprintf_unfiltered (file, | |
6250 | "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n", | |
6251 | MIPS_FPU_TYPE, | |
6252 | (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none" | |
6253 | : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single" | |
6254 | : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double" | |
6255 | : "???")); | |
6256 | fprintf_unfiltered (file, | |
6257 | "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n", | |
6258 | MIPS_DEFAULT_SAVED_REGSIZE); | |
6259 | fprintf_unfiltered (file, | |
6260 | "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n", | |
6261 | FP_REGISTER_DOUBLE); | |
6262 | fprintf_unfiltered (file, | |
6263 | "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n", | |
6264 | MIPS_DEFAULT_STACK_ARGSIZE); | |
6265 | fprintf_unfiltered (file, | |
6266 | "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n", | |
6267 | MIPS_STACK_ARGSIZE); | |
6268 | fprintf_unfiltered (file, | |
6269 | "mips_dump_tdep: MIPS_REGSIZE = %d\n", | |
6270 | MIPS_REGSIZE); | |
6271 | fprintf_unfiltered (file, | |
6272 | "mips_dump_tdep: A0_REGNUM = %d\n", | |
6273 | A0_REGNUM); | |
6274 | fprintf_unfiltered (file, | |
6275 | "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n", | |
6276 | XSTRING (ADDR_BITS_REMOVE(ADDR))); | |
6277 | fprintf_unfiltered (file, | |
6278 | "mips_dump_tdep: ATTACH_DETACH # %s\n", | |
6279 | XSTRING (ATTACH_DETACH)); | |
6280 | fprintf_unfiltered (file, | |
6281 | "mips_dump_tdep: BADVADDR_REGNUM = %d\n", | |
6282 | BADVADDR_REGNUM); | |
6283 | fprintf_unfiltered (file, | |
6284 | "mips_dump_tdep: CAUSE_REGNUM = %d\n", | |
6285 | CAUSE_REGNUM); | |
6286 | fprintf_unfiltered (file, | |
6287 | "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n", | |
6288 | XSTRING (DWARF_REG_TO_REGNUM (REGNUM))); | |
6289 | fprintf_unfiltered (file, | |
6290 | "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n", | |
6291 | XSTRING (ECOFF_REG_TO_REGNUM (REGNUM))); | |
6292 | fprintf_unfiltered (file, | |
6293 | "mips_dump_tdep: FCRCS_REGNUM = %d\n", | |
6294 | FCRCS_REGNUM); | |
6295 | fprintf_unfiltered (file, | |
6296 | "mips_dump_tdep: FCRIR_REGNUM = %d\n", | |
6297 | FCRIR_REGNUM); | |
6298 | fprintf_unfiltered (file, | |
6299 | "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n", | |
6300 | FIRST_EMBED_REGNUM); | |
6301 | fprintf_unfiltered (file, | |
6302 | "mips_dump_tdep: FPA0_REGNUM = %d\n", | |
6303 | FPA0_REGNUM); | |
6304 | fprintf_unfiltered (file, | |
6305 | "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n", | |
6306 | GDB_TARGET_IS_MIPS64); | |
6307 | fprintf_unfiltered (file, | |
6308 | "mips_dump_tdep: HI_REGNUM = %d\n", | |
6309 | HI_REGNUM); | |
6310 | fprintf_unfiltered (file, | |
6311 | "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n", | |
6312 | XSTRING (IGNORE_HELPER_CALL (PC))); | |
6313 | fprintf_unfiltered (file, | |
6314 | "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n", | |
6315 | XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME))); | |
6316 | fprintf_unfiltered (file, | |
6317 | "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n", | |
6318 | XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME))); | |
6319 | fprintf_unfiltered (file, | |
6320 | "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n", | |
6321 | LAST_EMBED_REGNUM); | |
6322 | fprintf_unfiltered (file, | |
6323 | "mips_dump_tdep: LO_REGNUM = %d\n", | |
6324 | LO_REGNUM); | |
6325 | #ifdef MACHINE_CPROC_FP_OFFSET | |
6326 | fprintf_unfiltered (file, | |
6327 | "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n", | |
6328 | MACHINE_CPROC_FP_OFFSET); | |
6329 | #endif | |
6330 | #ifdef MACHINE_CPROC_PC_OFFSET | |
6331 | fprintf_unfiltered (file, | |
6332 | "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n", | |
6333 | MACHINE_CPROC_PC_OFFSET); | |
6334 | #endif | |
6335 | #ifdef MACHINE_CPROC_SP_OFFSET | |
6336 | fprintf_unfiltered (file, | |
6337 | "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n", | |
6338 | MACHINE_CPROC_SP_OFFSET); | |
6339 | #endif | |
6340 | fprintf_unfiltered (file, | |
6341 | "mips_dump_tdep: MIPS16_INSTLEN = %d\n", | |
6342 | MIPS16_INSTLEN); | |
6343 | fprintf_unfiltered (file, | |
6344 | "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n"); | |
6345 | fprintf_unfiltered (file, | |
6346 | "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n"); | |
6347 | fprintf_unfiltered (file, | |
6348 | "mips_dump_tdep: MIPS_INSTLEN = %d\n", | |
6349 | MIPS_INSTLEN); | |
6350 | fprintf_unfiltered (file, | |
6351 | "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n", | |
6352 | MIPS_LAST_ARG_REGNUM, | |
6353 | MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1); | |
6354 | fprintf_unfiltered (file, | |
6355 | "mips_dump_tdep: MIPS_NUMREGS = %d\n", | |
6356 | MIPS_NUMREGS); | |
6357 | fprintf_unfiltered (file, | |
6358 | "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n"); | |
6359 | fprintf_unfiltered (file, | |
6360 | "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n", | |
6361 | MIPS_SAVED_REGSIZE); | |
6362 | fprintf_unfiltered (file, | |
6363 | "mips_dump_tdep: OP_LDFPR = used?\n"); | |
6364 | fprintf_unfiltered (file, | |
6365 | "mips_dump_tdep: OP_LDGPR = used?\n"); | |
6366 | fprintf_unfiltered (file, | |
6367 | "mips_dump_tdep: PRID_REGNUM = %d\n", | |
6368 | PRID_REGNUM); | |
6369 | fprintf_unfiltered (file, | |
6370 | "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n", | |
6371 | XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME))); | |
6372 | fprintf_unfiltered (file, | |
6373 | "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n"); | |
6374 | fprintf_unfiltered (file, | |
6375 | "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n"); | |
6376 | fprintf_unfiltered (file, | |
6377 | "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n"); | |
6378 | fprintf_unfiltered (file, | |
6379 | "mips_dump_tdep: PROC_FRAME_REG = function?\n"); | |
6380 | fprintf_unfiltered (file, | |
6381 | "mips_dump_tdep: PROC_FREG_MASK = function?\n"); | |
6382 | fprintf_unfiltered (file, | |
6383 | "mips_dump_tdep: PROC_FREG_OFFSET = function?\n"); | |
6384 | fprintf_unfiltered (file, | |
6385 | "mips_dump_tdep: PROC_HIGH_ADDR = function?\n"); | |
6386 | fprintf_unfiltered (file, | |
6387 | "mips_dump_tdep: PROC_LOW_ADDR = function?\n"); | |
6388 | fprintf_unfiltered (file, | |
6389 | "mips_dump_tdep: PROC_PC_REG = function?\n"); | |
6390 | fprintf_unfiltered (file, | |
6391 | "mips_dump_tdep: PROC_REG_MASK = function?\n"); | |
6392 | fprintf_unfiltered (file, | |
6393 | "mips_dump_tdep: PROC_REG_OFFSET = function?\n"); | |
6394 | fprintf_unfiltered (file, | |
6395 | "mips_dump_tdep: PROC_SYMBOL = function?\n"); | |
6396 | fprintf_unfiltered (file, | |
6397 | "mips_dump_tdep: PS_REGNUM = %d\n", | |
6398 | PS_REGNUM); | |
6399 | fprintf_unfiltered (file, | |
6400 | "mips_dump_tdep: RA_REGNUM = %d\n", | |
6401 | RA_REGNUM); | |
6402 | fprintf_unfiltered (file, | |
6403 | "mips_dump_tdep: ROUND_DOWN = function?\n"); | |
6404 | fprintf_unfiltered (file, | |
6405 | "mips_dump_tdep: ROUND_UP = function?\n"); | |
6406 | #ifdef SAVED_BYTES | |
6407 | fprintf_unfiltered (file, | |
6408 | "mips_dump_tdep: SAVED_BYTES = %d\n", | |
6409 | SAVED_BYTES); | |
6410 | #endif | |
6411 | #ifdef SAVED_FP | |
6412 | fprintf_unfiltered (file, | |
6413 | "mips_dump_tdep: SAVED_FP = %d\n", | |
6414 | SAVED_FP); | |
6415 | #endif | |
6416 | #ifdef SAVED_PC | |
6417 | fprintf_unfiltered (file, | |
6418 | "mips_dump_tdep: SAVED_PC = %d\n", | |
6419 | SAVED_PC); | |
6420 | #endif | |
6421 | fprintf_unfiltered (file, | |
6422 | "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n", | |
6423 | XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS))); | |
6424 | fprintf_unfiltered (file, | |
6425 | "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n"); | |
6426 | fprintf_unfiltered (file, | |
6427 | "mips_dump_tdep: SIGFRAME_BASE = %d\n", | |
6428 | SIGFRAME_BASE); | |
6429 | fprintf_unfiltered (file, | |
6430 | "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n", | |
6431 | SIGFRAME_FPREGSAVE_OFF); | |
6432 | fprintf_unfiltered (file, | |
6433 | "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n", | |
6434 | SIGFRAME_PC_OFF); | |
6435 | fprintf_unfiltered (file, | |
6436 | "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n", | |
6437 | SIGFRAME_REGSAVE_OFF); | |
6438 | fprintf_unfiltered (file, | |
6439 | "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n", | |
6440 | SIGFRAME_REG_SIZE); | |
6441 | fprintf_unfiltered (file, | |
6442 | "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n", | |
6443 | XSTRING (SKIP_TRAMPOLINE_CODE (PC))); | |
6444 | fprintf_unfiltered (file, | |
6445 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n", | |
6446 | XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P))); | |
6447 | fprintf_unfiltered (file, | |
6448 | "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n", | |
6449 | SOFTWARE_SINGLE_STEP_P ()); | |
6450 | fprintf_unfiltered (file, | |
6451 | "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n", | |
6452 | XSTRING (STAB_REG_TO_REGNUM (REGNUM))); | |
6453 | #ifdef STACK_END_ADDR | |
6454 | fprintf_unfiltered (file, | |
6455 | "mips_dump_tdep: STACK_END_ADDR = %d\n", | |
6456 | STACK_END_ADDR); | |
6457 | #endif | |
6458 | fprintf_unfiltered (file, | |
6459 | "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n", | |
6460 | XSTRING (STEP_SKIPS_DELAY (PC))); | |
6461 | fprintf_unfiltered (file, | |
6462 | "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n", | |
6463 | STEP_SKIPS_DELAY_P); | |
6464 | fprintf_unfiltered (file, | |
6465 | "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n", | |
6466 | XSTRING (STOPPED_BY_WATCHPOINT (WS))); | |
6467 | fprintf_unfiltered (file, | |
6468 | "mips_dump_tdep: T9_REGNUM = %d\n", | |
6469 | T9_REGNUM); | |
6470 | fprintf_unfiltered (file, | |
6471 | "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n"); | |
6472 | fprintf_unfiltered (file, | |
6473 | "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n", | |
6474 | XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE))); | |
6475 | fprintf_unfiltered (file, | |
6476 | "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n", | |
6477 | XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS)); | |
6478 | #ifdef TRACE_CLEAR | |
6479 | fprintf_unfiltered (file, | |
6480 | "mips_dump_tdep: TRACE_CLEAR # %s\n", | |
6481 | XSTRING (TRACE_CLEAR (THREAD, STATE))); | |
6482 | #endif | |
6483 | #ifdef TRACE_FLAVOR | |
6484 | fprintf_unfiltered (file, | |
6485 | "mips_dump_tdep: TRACE_FLAVOR = %d\n", | |
6486 | TRACE_FLAVOR); | |
6487 | #endif | |
6488 | #ifdef TRACE_FLAVOR_SIZE | |
6489 | fprintf_unfiltered (file, | |
6490 | "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n", | |
6491 | TRACE_FLAVOR_SIZE); | |
6492 | #endif | |
6493 | #ifdef TRACE_SET | |
6494 | fprintf_unfiltered (file, | |
6495 | "mips_dump_tdep: TRACE_SET # %s\n", | |
6496 | XSTRING (TRACE_SET (X,STATE))); | |
6497 | #endif | |
6498 | #ifdef UNUSED_REGNUM | |
6499 | fprintf_unfiltered (file, | |
6500 | "mips_dump_tdep: UNUSED_REGNUM = %d\n", | |
6501 | UNUSED_REGNUM); | |
6502 | #endif | |
6503 | fprintf_unfiltered (file, | |
6504 | "mips_dump_tdep: V0_REGNUM = %d\n", | |
6505 | V0_REGNUM); | |
6506 | fprintf_unfiltered (file, | |
6507 | "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n", | |
6508 | (long) VM_MIN_ADDRESS); | |
6509 | #ifdef VX_NUM_REGS | |
6510 | fprintf_unfiltered (file, | |
6511 | "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n", | |
6512 | VX_NUM_REGS); | |
6513 | #endif | |
6514 | fprintf_unfiltered (file, | |
6515 | "mips_dump_tdep: ZERO_REGNUM = %d\n", | |
6516 | ZERO_REGNUM); | |
6517 | fprintf_unfiltered (file, | |
6518 | "mips_dump_tdep: _PROC_MAGIC_ = %d\n", | |
6519 | _PROC_MAGIC_); | |
6520 | } | |
6521 | ||
6522 | extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */ | |
6523 | ||
6524 | void | |
6525 | _initialize_mips_tdep (void) | |
6526 | { | |
6527 | static struct cmd_list_element *mipsfpulist = NULL; | |
6528 | struct cmd_list_element *c; | |
6529 | ||
6530 | mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN]; | |
6531 | if (MIPS_ABI_LAST + 1 | |
6532 | != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0])) | |
6533 | internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync"); | |
6534 | ||
6535 | gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep); | |
6536 | ||
6537 | /* Add root prefix command for all "set mips"/"show mips" commands */ | |
6538 | add_prefix_cmd ("mips", no_class, set_mips_command, | |
6539 | "Various MIPS specific commands.", | |
6540 | &setmipscmdlist, "set mips ", 0, &setlist); | |
6541 | ||
6542 | add_prefix_cmd ("mips", no_class, show_mips_command, | |
6543 | "Various MIPS specific commands.", | |
6544 | &showmipscmdlist, "show mips ", 0, &showlist); | |
6545 | ||
6546 | /* Allow the user to override the saved register size. */ | |
6547 | add_show_from_set (add_set_enum_cmd ("saved-gpreg-size", | |
6548 | class_obscure, | |
6549 | size_enums, | |
6550 | &mips_saved_regsize_string, "\ | |
6551 | Set size of general purpose registers saved on the stack.\n\ | |
6552 | This option can be set to one of:\n\ | |
6553 | 32 - Force GDB to treat saved GP registers as 32-bit\n\ | |
6554 | 64 - Force GDB to treat saved GP registers as 64-bit\n\ | |
6555 | auto - Allow GDB to use the target's default setting or autodetect the\n\ | |
6556 | saved GP register size from information contained in the executable.\n\ | |
6557 | (default: auto)", | |
6558 | &setmipscmdlist), | |
6559 | &showmipscmdlist); | |
6560 | ||
6561 | /* Allow the user to override the argument stack size. */ | |
6562 | add_show_from_set (add_set_enum_cmd ("stack-arg-size", | |
6563 | class_obscure, | |
6564 | size_enums, | |
6565 | &mips_stack_argsize_string, "\ | |
6566 | Set the amount of stack space reserved for each argument.\n\ | |
6567 | This option can be set to one of:\n\ | |
6568 | 32 - Force GDB to allocate 32-bit chunks per argument\n\ | |
6569 | 64 - Force GDB to allocate 64-bit chunks per argument\n\ | |
6570 | auto - Allow GDB to determine the correct setting from the current\n\ | |
6571 | target and executable (default)", | |
6572 | &setmipscmdlist), | |
6573 | &showmipscmdlist); | |
6574 | ||
6575 | /* Allow the user to override the ABI. */ | |
6576 | c = add_set_enum_cmd | |
6577 | ("abi", class_obscure, mips_abi_strings, &mips_abi_string, | |
6578 | "Set the ABI used by this program.\n" | |
6579 | "This option can be set to one of:\n" | |
6580 | " auto - the default ABI associated with the current binary\n" | |
6581 | " o32\n" | |
6582 | " o64\n" | |
6583 | " n32\n" | |
6584 | " n64\n" | |
6585 | " eabi32\n" | |
6586 | " eabi64", | |
6587 | &setmipscmdlist); | |
6588 | set_cmd_sfunc (c, mips_abi_update); | |
6589 | add_cmd ("abi", class_obscure, show_mips_abi, | |
6590 | "Show ABI in use by MIPS target", &showmipscmdlist); | |
6591 | ||
6592 | /* Let the user turn off floating point and set the fence post for | |
6593 | heuristic_proc_start. */ | |
6594 | ||
6595 | add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, | |
6596 | "Set use of MIPS floating-point coprocessor.", | |
6597 | &mipsfpulist, "set mipsfpu ", 0, &setlist); | |
6598 | add_cmd ("single", class_support, set_mipsfpu_single_command, | |
6599 | "Select single-precision MIPS floating-point coprocessor.", | |
6600 | &mipsfpulist); | |
6601 | add_cmd ("double", class_support, set_mipsfpu_double_command, | |
6602 | "Select double-precision MIPS floating-point coprocessor.", | |
6603 | &mipsfpulist); | |
6604 | add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); | |
6605 | add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); | |
6606 | add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); | |
6607 | add_cmd ("none", class_support, set_mipsfpu_none_command, | |
6608 | "Select no MIPS floating-point coprocessor.", | |
6609 | &mipsfpulist); | |
6610 | add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); | |
6611 | add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); | |
6612 | add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); | |
6613 | add_cmd ("auto", class_support, set_mipsfpu_auto_command, | |
6614 | "Select MIPS floating-point coprocessor automatically.", | |
6615 | &mipsfpulist); | |
6616 | add_cmd ("mipsfpu", class_support, show_mipsfpu_command, | |
6617 | "Show current use of MIPS floating-point coprocessor target.", | |
6618 | &showlist); | |
6619 | ||
6620 | /* We really would like to have both "0" and "unlimited" work, but | |
6621 | command.c doesn't deal with that. So make it a var_zinteger | |
6622 | because the user can always use "999999" or some such for unlimited. */ | |
6623 | c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, | |
6624 | (char *) &heuristic_fence_post, | |
6625 | "\ | |
6626 | Set the distance searched for the start of a function.\n\ | |
6627 | If you are debugging a stripped executable, GDB needs to search through the\n\ | |
6628 | program for the start of a function. This command sets the distance of the\n\ | |
6629 | search. The only need to set it is when debugging a stripped executable.", | |
6630 | &setlist); | |
6631 | /* We need to throw away the frame cache when we set this, since it | |
6632 | might change our ability to get backtraces. */ | |
6633 | set_cmd_sfunc (c, reinit_frame_cache_sfunc); | |
6634 | add_show_from_set (c, &showlist); | |
6635 | ||
6636 | /* Allow the user to control whether the upper bits of 64-bit | |
6637 | addresses should be zeroed. */ | |
6638 | add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\ | |
6639 | Set zeroing of upper 32 bits of 64-bit addresses.\n\ | |
6640 | Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\ | |
6641 | allow GDB to determine the correct value.\n", "\ | |
6642 | Show zeroing of upper 32 bits of 64-bit addresses.", | |
6643 | NULL, show_mask_address, | |
6644 | &setmipscmdlist, &showmipscmdlist); | |
6645 | ||
6646 | /* Allow the user to control the size of 32 bit registers within the | |
6647 | raw remote packet. */ | |
6648 | add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs", | |
6649 | class_obscure, | |
6650 | var_boolean, | |
6651 | (char *)&mips64_transfers_32bit_regs_p, "\ | |
6652 | Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\ | |
6653 | Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\ | |
6654 | that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\ | |
6655 | 64 bits for others. Use \"off\" to disable compatibility mode", | |
6656 | &setlist), | |
6657 | &showlist); | |
6658 | ||
6659 | /* Debug this files internals. */ | |
6660 | add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger, | |
6661 | &mips_debug, "Set mips debugging.\n\ | |
6662 | When non-zero, mips specific debugging is enabled.", &setdebuglist), | |
6663 | &showdebuglist); | |
6664 | } |