]>
Commit | Line | Data |
---|---|---|
1 | /* Implementation of the GDB variable objects API. | |
2 | Copyright 1999, 2000, 2001 Free Software Foundation, Inc. | |
3 | ||
4 | This program is free software; you can redistribute it and/or modify | |
5 | it under the terms of the GNU General Public License as published by | |
6 | the Free Software Foundation; either version 2 of the License, or | |
7 | (at your option) any later version. | |
8 | ||
9 | This program is distributed in the hope that it will be useful, | |
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | GNU General Public License for more details. | |
13 | ||
14 | You should have received a copy of the GNU General Public License | |
15 | along with this program; if not, write to the Free Software | |
16 | Foundation, Inc., 59 Temple Place - Suite 330, | |
17 | Boston, MA 02111-1307, USA. */ | |
18 | ||
19 | #include "defs.h" | |
20 | #include "value.h" | |
21 | #include "expression.h" | |
22 | #include "frame.h" | |
23 | #include "language.h" | |
24 | #include "wrapper.h" | |
25 | #include "gdbcmd.h" | |
26 | #include <math.h> | |
27 | ||
28 | #include "varobj.h" | |
29 | ||
30 | /* Non-zero if we want to see trace of varobj level stuff. */ | |
31 | ||
32 | int varobjdebug = 0; | |
33 | ||
34 | /* String representations of gdb's format codes */ | |
35 | char *varobj_format_string[] = | |
36 | {"natural", "binary", "decimal", "hexadecimal", "octal"}; | |
37 | ||
38 | /* String representations of gdb's known languages */ | |
39 | char *varobj_language_string[] = | |
40 | {"unknown", "C", "C++", "Java"}; | |
41 | ||
42 | /* Data structures */ | |
43 | ||
44 | /* Every root variable has one of these structures saved in its | |
45 | varobj. Members which must be free'd are noted. */ | |
46 | struct varobj_root | |
47 | { | |
48 | ||
49 | /* Alloc'd expression for this parent. */ | |
50 | struct expression *exp; | |
51 | ||
52 | /* Block for which this expression is valid */ | |
53 | struct block *valid_block; | |
54 | ||
55 | /* The frame for this expression */ | |
56 | CORE_ADDR frame; | |
57 | ||
58 | /* If 1, "update" always recomputes the frame & valid block | |
59 | using the currently selected frame. */ | |
60 | int use_selected_frame; | |
61 | ||
62 | /* Language info for this variable and its children */ | |
63 | struct language_specific *lang; | |
64 | ||
65 | /* The varobj for this root node. */ | |
66 | struct varobj *rootvar; | |
67 | ||
68 | /* Next root variable */ | |
69 | struct varobj_root *next; | |
70 | }; | |
71 | ||
72 | /* Every variable in the system has a structure of this type defined | |
73 | for it. This structure holds all information necessary to manipulate | |
74 | a particular object variable. Members which must be freed are noted. */ | |
75 | struct varobj | |
76 | { | |
77 | ||
78 | /* Alloc'd name of the variable for this object.. If this variable is a | |
79 | child, then this name will be the child's source name. | |
80 | (bar, not foo.bar) */ | |
81 | /* NOTE: This is the "expression" */ | |
82 | char *name; | |
83 | ||
84 | /* The alloc'd name for this variable's object. This is here for | |
85 | convenience when constructing this object's children. */ | |
86 | char *obj_name; | |
87 | ||
88 | /* Index of this variable in its parent or -1 */ | |
89 | int index; | |
90 | ||
91 | /* The type of this variable. This may NEVER be NULL. */ | |
92 | struct type *type; | |
93 | ||
94 | /* The value of this expression or subexpression. This may be NULL. */ | |
95 | value_ptr value; | |
96 | ||
97 | /* Did an error occur evaluating the expression or getting its value? */ | |
98 | int error; | |
99 | ||
100 | /* The number of (immediate) children this variable has */ | |
101 | int num_children; | |
102 | ||
103 | /* If this object is a child, this points to its immediate parent. */ | |
104 | struct varobj *parent; | |
105 | ||
106 | /* A list of this object's children */ | |
107 | struct varobj_child *children; | |
108 | ||
109 | /* Description of the root variable. Points to root variable for children. */ | |
110 | struct varobj_root *root; | |
111 | ||
112 | /* The format of the output for this object */ | |
113 | enum varobj_display_formats format; | |
114 | }; | |
115 | ||
116 | /* Every variable keeps a linked list of its children, described | |
117 | by the following structure. */ | |
118 | /* FIXME: Deprecated. All should use vlist instead */ | |
119 | ||
120 | struct varobj_child | |
121 | { | |
122 | ||
123 | /* Pointer to the child's data */ | |
124 | struct varobj *child; | |
125 | ||
126 | /* Pointer to the next child */ | |
127 | struct varobj_child *next; | |
128 | }; | |
129 | ||
130 | /* A stack of varobjs */ | |
131 | /* FIXME: Deprecated. All should use vlist instead */ | |
132 | ||
133 | struct vstack | |
134 | { | |
135 | struct varobj *var; | |
136 | struct vstack *next; | |
137 | }; | |
138 | ||
139 | struct cpstack | |
140 | { | |
141 | char *name; | |
142 | struct cpstack *next; | |
143 | }; | |
144 | ||
145 | /* A list of varobjs */ | |
146 | ||
147 | struct vlist | |
148 | { | |
149 | struct varobj *var; | |
150 | struct vlist *next; | |
151 | }; | |
152 | ||
153 | /* Private function prototypes */ | |
154 | ||
155 | /* Helper functions for the above subcommands. */ | |
156 | ||
157 | static int delete_variable (struct cpstack **, struct varobj *, int); | |
158 | ||
159 | static void delete_variable_1 (struct cpstack **, int *, | |
160 | struct varobj *, int, int); | |
161 | ||
162 | static int install_variable (struct varobj *); | |
163 | ||
164 | static void uninstall_variable (struct varobj *); | |
165 | ||
166 | static struct varobj *child_exists (struct varobj *, char *); | |
167 | ||
168 | static struct varobj *create_child (struct varobj *, int, char *); | |
169 | ||
170 | static void save_child_in_parent (struct varobj *, struct varobj *); | |
171 | ||
172 | static void remove_child_from_parent (struct varobj *, struct varobj *); | |
173 | ||
174 | /* Utility routines */ | |
175 | ||
176 | static struct varobj *new_variable (void); | |
177 | ||
178 | static struct varobj *new_root_variable (void); | |
179 | ||
180 | static void free_variable (struct varobj *var); | |
181 | ||
182 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); | |
183 | ||
184 | static struct type *get_type (struct varobj *var); | |
185 | ||
186 | static struct type *get_type_deref (struct varobj *var); | |
187 | ||
188 | static struct type *get_target_type (struct type *); | |
189 | ||
190 | static enum varobj_display_formats variable_default_display (struct varobj *); | |
191 | ||
192 | static int my_value_equal (value_ptr, value_ptr, int *); | |
193 | ||
194 | static void vpush (struct vstack **pstack, struct varobj *var); | |
195 | ||
196 | static struct varobj *vpop (struct vstack **pstack); | |
197 | ||
198 | static void cppush (struct cpstack **pstack, char *name); | |
199 | ||
200 | static char *cppop (struct cpstack **pstack); | |
201 | ||
202 | /* Language-specific routines. */ | |
203 | ||
204 | static enum varobj_languages variable_language (struct varobj *var); | |
205 | ||
206 | static int number_of_children (struct varobj *); | |
207 | ||
208 | static char *name_of_variable (struct varobj *); | |
209 | ||
210 | static char *name_of_child (struct varobj *, int); | |
211 | ||
212 | static value_ptr value_of_root (struct varobj **var_handle, int *); | |
213 | ||
214 | static value_ptr value_of_child (struct varobj *parent, int index); | |
215 | ||
216 | static struct type *type_of_child (struct varobj *var); | |
217 | ||
218 | static int variable_editable (struct varobj *var); | |
219 | ||
220 | static char *my_value_of_variable (struct varobj *var); | |
221 | ||
222 | static int type_changeable (struct varobj *var); | |
223 | ||
224 | /* C implementation */ | |
225 | ||
226 | static int c_number_of_children (struct varobj *var); | |
227 | ||
228 | static char *c_name_of_variable (struct varobj *parent); | |
229 | ||
230 | static char *c_name_of_child (struct varobj *parent, int index); | |
231 | ||
232 | static value_ptr c_value_of_root (struct varobj **var_handle); | |
233 | ||
234 | static value_ptr c_value_of_child (struct varobj *parent, int index); | |
235 | ||
236 | static struct type *c_type_of_child (struct varobj *parent, int index); | |
237 | ||
238 | static int c_variable_editable (struct varobj *var); | |
239 | ||
240 | static char *c_value_of_variable (struct varobj *var); | |
241 | ||
242 | /* C++ implementation */ | |
243 | ||
244 | static int cplus_number_of_children (struct varobj *var); | |
245 | ||
246 | static void cplus_class_num_children (struct type *type, int children[3]); | |
247 | ||
248 | static char *cplus_name_of_variable (struct varobj *parent); | |
249 | ||
250 | static char *cplus_name_of_child (struct varobj *parent, int index); | |
251 | ||
252 | static value_ptr cplus_value_of_root (struct varobj **var_handle); | |
253 | ||
254 | static value_ptr cplus_value_of_child (struct varobj *parent, int index); | |
255 | ||
256 | static struct type *cplus_type_of_child (struct varobj *parent, int index); | |
257 | ||
258 | static int cplus_variable_editable (struct varobj *var); | |
259 | ||
260 | static char *cplus_value_of_variable (struct varobj *var); | |
261 | ||
262 | /* Java implementation */ | |
263 | ||
264 | static int java_number_of_children (struct varobj *var); | |
265 | ||
266 | static char *java_name_of_variable (struct varobj *parent); | |
267 | ||
268 | static char *java_name_of_child (struct varobj *parent, int index); | |
269 | ||
270 | static value_ptr java_value_of_root (struct varobj **var_handle); | |
271 | ||
272 | static value_ptr java_value_of_child (struct varobj *parent, int index); | |
273 | ||
274 | static struct type *java_type_of_child (struct varobj *parent, int index); | |
275 | ||
276 | static int java_variable_editable (struct varobj *var); | |
277 | ||
278 | static char *java_value_of_variable (struct varobj *var); | |
279 | ||
280 | /* The language specific vector */ | |
281 | ||
282 | struct language_specific | |
283 | { | |
284 | ||
285 | /* The language of this variable */ | |
286 | enum varobj_languages language; | |
287 | ||
288 | /* The number of children of PARENT. */ | |
289 | int (*number_of_children) (struct varobj * parent); | |
290 | ||
291 | /* The name (expression) of a root varobj. */ | |
292 | char *(*name_of_variable) (struct varobj * parent); | |
293 | ||
294 | /* The name of the INDEX'th child of PARENT. */ | |
295 | char *(*name_of_child) (struct varobj * parent, int index); | |
296 | ||
297 | /* The value_ptr of the root variable ROOT. */ | |
298 | value_ptr (*value_of_root) (struct varobj ** root_handle); | |
299 | ||
300 | /* The value_ptr of the INDEX'th child of PARENT. */ | |
301 | value_ptr (*value_of_child) (struct varobj * parent, int index); | |
302 | ||
303 | /* The type of the INDEX'th child of PARENT. */ | |
304 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
305 | ||
306 | /* Is VAR editable? */ | |
307 | int (*variable_editable) (struct varobj * var); | |
308 | ||
309 | /* The current value of VAR. */ | |
310 | char *(*value_of_variable) (struct varobj * var); | |
311 | }; | |
312 | ||
313 | /* Array of known source language routines. */ | |
314 | static struct language_specific | |
315 | languages[vlang_end][sizeof (struct language_specific)] = | |
316 | { | |
317 | /* Unknown (try treating as C */ | |
318 | { | |
319 | vlang_unknown, | |
320 | c_number_of_children, | |
321 | c_name_of_variable, | |
322 | c_name_of_child, | |
323 | c_value_of_root, | |
324 | c_value_of_child, | |
325 | c_type_of_child, | |
326 | c_variable_editable, | |
327 | c_value_of_variable | |
328 | } | |
329 | , | |
330 | /* C */ | |
331 | { | |
332 | vlang_c, | |
333 | c_number_of_children, | |
334 | c_name_of_variable, | |
335 | c_name_of_child, | |
336 | c_value_of_root, | |
337 | c_value_of_child, | |
338 | c_type_of_child, | |
339 | c_variable_editable, | |
340 | c_value_of_variable | |
341 | } | |
342 | , | |
343 | /* C++ */ | |
344 | { | |
345 | vlang_cplus, | |
346 | cplus_number_of_children, | |
347 | cplus_name_of_variable, | |
348 | cplus_name_of_child, | |
349 | cplus_value_of_root, | |
350 | cplus_value_of_child, | |
351 | cplus_type_of_child, | |
352 | cplus_variable_editable, | |
353 | cplus_value_of_variable | |
354 | } | |
355 | , | |
356 | /* Java */ | |
357 | { | |
358 | vlang_java, | |
359 | java_number_of_children, | |
360 | java_name_of_variable, | |
361 | java_name_of_child, | |
362 | java_value_of_root, | |
363 | java_value_of_child, | |
364 | java_type_of_child, | |
365 | java_variable_editable, | |
366 | java_value_of_variable | |
367 | } | |
368 | }; | |
369 | ||
370 | /* A little convenience enum for dealing with C++/Java */ | |
371 | enum vsections | |
372 | { | |
373 | v_public = 0, v_private, v_protected | |
374 | }; | |
375 | ||
376 | /* Private data */ | |
377 | ||
378 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
379 | static int format_code[] = | |
380 | {0, 't', 'd', 'x', 'o'}; | |
381 | ||
382 | /* Header of the list of root variable objects */ | |
383 | static struct varobj_root *rootlist; | |
384 | static int rootcount = 0; /* number of root varobjs in the list */ | |
385 | ||
386 | /* Prime number indicating the number of buckets in the hash table */ | |
387 | /* A prime large enough to avoid too many colisions */ | |
388 | #define VAROBJ_TABLE_SIZE 227 | |
389 | ||
390 | /* Pointer to the varobj hash table (built at run time) */ | |
391 | static struct vlist **varobj_table; | |
392 | ||
393 | /* Is the variable X one of our "fake" children? */ | |
394 | #define CPLUS_FAKE_CHILD(x) \ | |
395 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
396 | \f | |
397 | ||
398 | /* API Implementation */ | |
399 | ||
400 | /* Creates a varobj (not its children) */ | |
401 | ||
402 | struct varobj * | |
403 | varobj_create (char *objname, | |
404 | char *expression, CORE_ADDR frame, | |
405 | enum varobj_type type) | |
406 | { | |
407 | struct varobj *var; | |
408 | struct frame_info *fi; | |
409 | struct frame_info *old_fi = NULL; | |
410 | struct block *block; | |
411 | struct cleanup *old_chain; | |
412 | ||
413 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
414 | var = new_root_variable (); | |
415 | old_chain = make_cleanup_free_variable (var); | |
416 | ||
417 | if (expression != NULL) | |
418 | { | |
419 | char *p; | |
420 | enum varobj_languages lang; | |
421 | ||
422 | /* Parse and evaluate the expression, filling in as much | |
423 | of the variable's data as possible */ | |
424 | ||
425 | /* Allow creator to specify context of variable */ | |
426 | if ((type == USE_CURRENT_FRAME) | |
427 | || (type == USE_SELECTED_FRAME)) | |
428 | fi = selected_frame; | |
429 | else | |
430 | fi = find_frame_addr_in_frame_chain (frame); | |
431 | ||
432 | /* frame = -2 means always use selected frame */ | |
433 | if (type == USE_SELECTED_FRAME) | |
434 | var->root->use_selected_frame = 1; | |
435 | ||
436 | block = NULL; | |
437 | if (fi != NULL) | |
438 | block = get_frame_block (fi); | |
439 | ||
440 | p = expression; | |
441 | innermost_block = NULL; | |
442 | /* Wrap the call to parse expression, so we can | |
443 | return a sensible error. */ | |
444 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
445 | { | |
446 | return NULL; | |
447 | } | |
448 | ||
449 | /* Don't allow variables to be created for types. */ | |
450 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
451 | { | |
452 | do_cleanups (old_chain); | |
453 | fprintf_unfiltered (gdb_stderr, | |
454 | "Attempt to use a type name as an expression."); | |
455 | return NULL; | |
456 | } | |
457 | ||
458 | var->format = variable_default_display (var); | |
459 | var->root->valid_block = innermost_block; | |
460 | var->name = savestring (expression, strlen (expression)); | |
461 | ||
462 | /* When the frame is different from the current frame, | |
463 | we must select the appropriate frame before parsing | |
464 | the expression, otherwise the value will not be current. | |
465 | Since select_frame is so benign, just call it for all cases. */ | |
466 | if (fi != NULL) | |
467 | { | |
468 | var->root->frame = FRAME_FP (fi); | |
469 | old_fi = selected_frame; | |
470 | select_frame (fi, -1); | |
471 | } | |
472 | ||
473 | /* We definitively need to catch errors here. | |
474 | If evaluate_expression succeeds we got the value we wanted. | |
475 | But if it fails, we still go on with a call to evaluate_type() */ | |
476 | if (gdb_evaluate_expression (var->root->exp, &var->value)) | |
477 | { | |
478 | /* no error */ | |
479 | release_value (var->value); | |
480 | if (VALUE_LAZY (var->value)) | |
481 | gdb_value_fetch_lazy (var->value); | |
482 | } | |
483 | else | |
484 | var->value = evaluate_type (var->root->exp); | |
485 | ||
486 | var->type = VALUE_TYPE (var->value); | |
487 | ||
488 | /* Set language info */ | |
489 | lang = variable_language (var); | |
490 | var->root->lang = languages[lang]; | |
491 | ||
492 | /* Set ourselves as our root */ | |
493 | var->root->rootvar = var; | |
494 | ||
495 | /* Reset the selected frame */ | |
496 | if (fi != NULL) | |
497 | select_frame (old_fi, -1); | |
498 | } | |
499 | ||
500 | /* If the variable object name is null, that means this | |
501 | is a temporary variable, so don't install it. */ | |
502 | ||
503 | if ((var != NULL) && (objname != NULL)) | |
504 | { | |
505 | var->obj_name = savestring (objname, strlen (objname)); | |
506 | ||
507 | /* If a varobj name is duplicated, the install will fail so | |
508 | we must clenup */ | |
509 | if (!install_variable (var)) | |
510 | { | |
511 | do_cleanups (old_chain); | |
512 | return NULL; | |
513 | } | |
514 | } | |
515 | ||
516 | discard_cleanups (old_chain); | |
517 | return var; | |
518 | } | |
519 | ||
520 | /* Generates an unique name that can be used for a varobj */ | |
521 | ||
522 | char * | |
523 | varobj_gen_name (void) | |
524 | { | |
525 | static int id = 0; | |
526 | char obj_name[31]; | |
527 | ||
528 | /* generate a name for this object */ | |
529 | id++; | |
530 | sprintf (obj_name, "var%d", id); | |
531 | ||
532 | return xstrdup (obj_name); | |
533 | } | |
534 | ||
535 | /* Given an "objname", returns the pointer to the corresponding varobj | |
536 | or NULL if not found */ | |
537 | ||
538 | struct varobj * | |
539 | varobj_get_handle (char *objname) | |
540 | { | |
541 | struct vlist *cv; | |
542 | const char *chp; | |
543 | unsigned int index = 0; | |
544 | unsigned int i = 1; | |
545 | ||
546 | for (chp = objname; *chp; chp++) | |
547 | { | |
548 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
549 | } | |
550 | ||
551 | cv = *(varobj_table + index); | |
552 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
553 | cv = cv->next; | |
554 | ||
555 | if (cv == NULL) | |
556 | error ("Variable object not found"); | |
557 | ||
558 | return cv->var; | |
559 | } | |
560 | ||
561 | /* Given the handle, return the name of the object */ | |
562 | ||
563 | char * | |
564 | varobj_get_objname (struct varobj *var) | |
565 | { | |
566 | return var->obj_name; | |
567 | } | |
568 | ||
569 | /* Given the handle, return the expression represented by the object */ | |
570 | ||
571 | char * | |
572 | varobj_get_expression (struct varobj *var) | |
573 | { | |
574 | return name_of_variable (var); | |
575 | } | |
576 | ||
577 | /* Deletes a varobj and all its children if only_children == 0, | |
578 | otherwise deletes only the children; returns a malloc'ed list of all the | |
579 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
580 | ||
581 | int | |
582 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
583 | { | |
584 | int delcount; | |
585 | int mycount; | |
586 | struct cpstack *result = NULL; | |
587 | char **cp; | |
588 | ||
589 | /* Initialize a stack for temporary results */ | |
590 | cppush (&result, NULL); | |
591 | ||
592 | if (only_children) | |
593 | /* Delete only the variable children */ | |
594 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
595 | else | |
596 | /* Delete the variable and all its children */ | |
597 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
598 | ||
599 | /* We may have been asked to return a list of what has been deleted */ | |
600 | if (dellist != NULL) | |
601 | { | |
602 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
603 | ||
604 | cp = *dellist; | |
605 | mycount = delcount; | |
606 | *cp = cppop (&result); | |
607 | while ((*cp != NULL) && (mycount > 0)) | |
608 | { | |
609 | mycount--; | |
610 | cp++; | |
611 | *cp = cppop (&result); | |
612 | } | |
613 | ||
614 | if (mycount || (*cp != NULL)) | |
615 | warning ("varobj_delete: assertion failed - mycount(=%d) <> 0", mycount); | |
616 | } | |
617 | ||
618 | return delcount; | |
619 | } | |
620 | ||
621 | /* Set/Get variable object display format */ | |
622 | ||
623 | enum varobj_display_formats | |
624 | varobj_set_display_format (struct varobj *var, | |
625 | enum varobj_display_formats format) | |
626 | { | |
627 | switch (format) | |
628 | { | |
629 | case FORMAT_NATURAL: | |
630 | case FORMAT_BINARY: | |
631 | case FORMAT_DECIMAL: | |
632 | case FORMAT_HEXADECIMAL: | |
633 | case FORMAT_OCTAL: | |
634 | var->format = format; | |
635 | break; | |
636 | ||
637 | default: | |
638 | var->format = variable_default_display (var); | |
639 | } | |
640 | ||
641 | return var->format; | |
642 | } | |
643 | ||
644 | enum varobj_display_formats | |
645 | varobj_get_display_format (struct varobj *var) | |
646 | { | |
647 | return var->format; | |
648 | } | |
649 | ||
650 | int | |
651 | varobj_get_num_children (struct varobj *var) | |
652 | { | |
653 | if (var->num_children == -1) | |
654 | var->num_children = number_of_children (var); | |
655 | ||
656 | return var->num_children; | |
657 | } | |
658 | ||
659 | /* Creates a list of the immediate children of a variable object; | |
660 | the return code is the number of such children or -1 on error */ | |
661 | ||
662 | int | |
663 | varobj_list_children (struct varobj *var, struct varobj ***childlist) | |
664 | { | |
665 | struct varobj *child; | |
666 | char *name; | |
667 | int i; | |
668 | ||
669 | /* sanity check: have we been passed a pointer? */ | |
670 | if (childlist == NULL) | |
671 | return -1; | |
672 | ||
673 | *childlist = NULL; | |
674 | ||
675 | if (var->num_children == -1) | |
676 | var->num_children = number_of_children (var); | |
677 | ||
678 | /* List of children */ | |
679 | *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *)); | |
680 | ||
681 | for (i = 0; i < var->num_children; i++) | |
682 | { | |
683 | /* Mark as the end in case we bail out */ | |
684 | *((*childlist) + i) = NULL; | |
685 | ||
686 | /* check if child exists, if not create */ | |
687 | name = name_of_child (var, i); | |
688 | child = child_exists (var, name); | |
689 | if (child == NULL) | |
690 | child = create_child (var, i, name); | |
691 | ||
692 | *((*childlist) + i) = child; | |
693 | } | |
694 | ||
695 | /* End of list is marked by a NULL pointer */ | |
696 | *((*childlist) + i) = NULL; | |
697 | ||
698 | return var->num_children; | |
699 | } | |
700 | ||
701 | /* Obtain the type of an object Variable as a string similar to the one gdb | |
702 | prints on the console */ | |
703 | ||
704 | char * | |
705 | varobj_get_type (struct varobj *var) | |
706 | { | |
707 | value_ptr val; | |
708 | struct cleanup *old_chain; | |
709 | struct ui_file *stb; | |
710 | char *thetype; | |
711 | long length; | |
712 | ||
713 | /* For the "fake" variables, do not return a type. (It's type is | |
714 | NULL, too.) */ | |
715 | if (CPLUS_FAKE_CHILD (var)) | |
716 | return NULL; | |
717 | ||
718 | stb = mem_fileopen (); | |
719 | old_chain = make_cleanup_ui_file_delete (stb); | |
720 | ||
721 | /* To print the type, we simply create a zero value_ptr and | |
722 | cast it to our type. We then typeprint this variable. */ | |
723 | val = value_zero (var->type, not_lval); | |
724 | type_print (VALUE_TYPE (val), "", stb, -1); | |
725 | ||
726 | thetype = ui_file_xstrdup (stb, &length); | |
727 | do_cleanups (old_chain); | |
728 | return thetype; | |
729 | } | |
730 | ||
731 | enum varobj_languages | |
732 | varobj_get_language (struct varobj *var) | |
733 | { | |
734 | return variable_language (var); | |
735 | } | |
736 | ||
737 | int | |
738 | varobj_get_attributes (struct varobj *var) | |
739 | { | |
740 | int attributes = 0; | |
741 | ||
742 | if (variable_editable (var)) | |
743 | /* FIXME: define masks for attributes */ | |
744 | attributes |= 0x00000001; /* Editable */ | |
745 | ||
746 | return attributes; | |
747 | } | |
748 | ||
749 | char * | |
750 | varobj_get_value (struct varobj *var) | |
751 | { | |
752 | return my_value_of_variable (var); | |
753 | } | |
754 | ||
755 | /* Set the value of an object variable (if it is editable) to the | |
756 | value of the given expression */ | |
757 | /* Note: Invokes functions that can call error() */ | |
758 | ||
759 | int | |
760 | varobj_set_value (struct varobj *var, char *expression) | |
761 | { | |
762 | value_ptr val; | |
763 | int offset = 0; | |
764 | ||
765 | /* The argument "expression" contains the variable's new value. | |
766 | We need to first construct a legal expression for this -- ugh! */ | |
767 | /* Does this cover all the bases? */ | |
768 | struct expression *exp; | |
769 | value_ptr value; | |
770 | int saved_input_radix = input_radix; | |
771 | ||
772 | if (variable_editable (var) && !var->error) | |
773 | { | |
774 | char *s = expression; | |
775 | int i; | |
776 | value_ptr temp; | |
777 | ||
778 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ | |
779 | if (!gdb_parse_exp_1 (&s, 0, 0, &exp)) | |
780 | /* We cannot proceed without a well-formed expression. */ | |
781 | return 0; | |
782 | if (!gdb_evaluate_expression (exp, &value)) | |
783 | { | |
784 | /* We cannot proceed without a valid expression. */ | |
785 | xfree (exp); | |
786 | return 0; | |
787 | } | |
788 | ||
789 | /* If our parent is "public", "private", or "protected", we could | |
790 | be asking to modify the value of a baseclass. If so, we need to | |
791 | adjust our address by the offset of our baseclass in the subclass, | |
792 | since VALUE_ADDRESS (var->value) points at the start of the subclass. | |
793 | For some reason, value_cast doesn't take care of this properly. */ | |
794 | temp = var->value; | |
795 | if (var->parent != NULL && CPLUS_FAKE_CHILD (var->parent)) | |
796 | { | |
797 | struct varobj *super, *sub; | |
798 | struct type *type; | |
799 | super = var->parent->parent; | |
800 | sub = super->parent; | |
801 | if (sub != NULL) | |
802 | { | |
803 | /* Yes, it is a baseclass */ | |
804 | type = get_type_deref (sub); | |
805 | ||
806 | if (super->index < TYPE_N_BASECLASSES (type)) | |
807 | { | |
808 | temp = value_copy (var->value); | |
809 | for (i = 0; i < super->index; i++) | |
810 | offset += TYPE_LENGTH (TYPE_FIELD_TYPE (type, i)); | |
811 | } | |
812 | } | |
813 | } | |
814 | ||
815 | VALUE_ADDRESS (temp) += offset; | |
816 | if (!gdb_value_assign (temp, value, &val)) | |
817 | return 0; | |
818 | VALUE_ADDRESS (val) -= offset; | |
819 | value_free (var->value); | |
820 | release_value (val); | |
821 | var->value = val; | |
822 | input_radix = saved_input_radix; | |
823 | return 1; | |
824 | } | |
825 | ||
826 | return 0; | |
827 | } | |
828 | ||
829 | /* Returns a malloc'ed list with all root variable objects */ | |
830 | int | |
831 | varobj_list (struct varobj ***varlist) | |
832 | { | |
833 | struct varobj **cv; | |
834 | struct varobj_root *croot; | |
835 | int mycount = rootcount; | |
836 | ||
837 | /* Alloc (rootcount + 1) entries for the result */ | |
838 | *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *)); | |
839 | ||
840 | cv = *varlist; | |
841 | croot = rootlist; | |
842 | while ((croot != NULL) && (mycount > 0)) | |
843 | { | |
844 | *cv = croot->rootvar; | |
845 | mycount--; | |
846 | cv++; | |
847 | croot = croot->next; | |
848 | } | |
849 | /* Mark the end of the list */ | |
850 | *cv = NULL; | |
851 | ||
852 | if (mycount || (croot != NULL)) | |
853 | warning ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)", | |
854 | rootcount, mycount); | |
855 | ||
856 | return rootcount; | |
857 | } | |
858 | ||
859 | /* Update the values for a variable and its children. This is a | |
860 | two-pronged attack. First, re-parse the value for the root's | |
861 | expression to see if it's changed. Then go all the way | |
862 | through its children, reconstructing them and noting if they've | |
863 | changed. | |
864 | Return value: | |
865 | -1 if there was an error updating the varobj | |
866 | -2 if the type changed | |
867 | Otherwise it is the number of children + parent changed | |
868 | ||
869 | Only root variables can be updated... | |
870 | ||
871 | NOTE: This function may delete the caller's varobj. If it | |
872 | returns -2, then it has done this and VARP will be modified | |
873 | to point to the new varobj. */ | |
874 | ||
875 | int | |
876 | varobj_update (struct varobj **varp, struct varobj ***changelist) | |
877 | { | |
878 | int changed = 0; | |
879 | int type_changed; | |
880 | int i; | |
881 | int vleft; | |
882 | int error2; | |
883 | struct varobj *v; | |
884 | struct varobj **cv; | |
885 | struct varobj **templist = NULL; | |
886 | value_ptr new; | |
887 | struct vstack *stack = NULL; | |
888 | struct vstack *result = NULL; | |
889 | struct frame_info *old_fi; | |
890 | ||
891 | /* sanity check: have we been passed a pointer? */ | |
892 | if (changelist == NULL) | |
893 | return -1; | |
894 | ||
895 | /* Only root variables can be updated... */ | |
896 | if ((*varp)->root->rootvar != *varp) | |
897 | /* Not a root var */ | |
898 | return -1; | |
899 | ||
900 | /* Save the selected stack frame, since we will need to change it | |
901 | in order to evaluate expressions. */ | |
902 | old_fi = selected_frame; | |
903 | ||
904 | /* Update the root variable. value_of_root can return NULL | |
905 | if the variable is no longer around, i.e. we stepped out of | |
906 | the frame in which a local existed. We are letting the | |
907 | value_of_root variable dispose of the varobj if the type | |
908 | has changed. */ | |
909 | type_changed = 1; | |
910 | new = value_of_root (varp, &type_changed); | |
911 | if (new == NULL) | |
912 | { | |
913 | (*varp)->error = 1; | |
914 | return -1; | |
915 | } | |
916 | ||
917 | /* Initialize a stack for temporary results */ | |
918 | vpush (&result, NULL); | |
919 | ||
920 | /* If this is a "use_selected_frame" varobj, and its type has changed, | |
921 | them note that it's changed. */ | |
922 | if (type_changed) | |
923 | { | |
924 | vpush (&result, *varp); | |
925 | changed++; | |
926 | } | |
927 | /* If values are not equal, note that it's changed. | |
928 | There a couple of exceptions here, though. | |
929 | We don't want some types to be reported as "changed". */ | |
930 | else if (type_changeable (*varp) && !my_value_equal ((*varp)->value, new, &error2)) | |
931 | { | |
932 | vpush (&result, *varp); | |
933 | changed++; | |
934 | /* error2 replaces var->error since this new value | |
935 | WILL replace the old one. */ | |
936 | (*varp)->error = error2; | |
937 | } | |
938 | ||
939 | /* We must always keep around the new value for this root | |
940 | variable expression, or we lose the updated children! */ | |
941 | value_free ((*varp)->value); | |
942 | (*varp)->value = new; | |
943 | ||
944 | /* Initialize a stack */ | |
945 | vpush (&stack, NULL); | |
946 | ||
947 | /* Push the root's children */ | |
948 | if ((*varp)->children != NULL) | |
949 | { | |
950 | struct varobj_child *c; | |
951 | for (c = (*varp)->children; c != NULL; c = c->next) | |
952 | vpush (&stack, c->child); | |
953 | } | |
954 | ||
955 | /* Walk through the children, reconstructing them all. */ | |
956 | v = vpop (&stack); | |
957 | while (v != NULL) | |
958 | { | |
959 | /* Push any children */ | |
960 | if (v->children != NULL) | |
961 | { | |
962 | struct varobj_child *c; | |
963 | for (c = v->children; c != NULL; c = c->next) | |
964 | vpush (&stack, c->child); | |
965 | } | |
966 | ||
967 | /* Update this variable */ | |
968 | new = value_of_child (v->parent, v->index); | |
969 | if (type_changeable (v) && !my_value_equal (v->value, new, &error2)) | |
970 | { | |
971 | /* Note that it's changed */ | |
972 | vpush (&result, v); | |
973 | changed++; | |
974 | } | |
975 | /* error2 replaces v->error since this new value | |
976 | WILL replace the old one. */ | |
977 | v->error = error2; | |
978 | ||
979 | /* We must always keep new values, since children depend on it. */ | |
980 | if (v->value != NULL) | |
981 | value_free (v->value); | |
982 | v->value = new; | |
983 | ||
984 | /* Get next child */ | |
985 | v = vpop (&stack); | |
986 | } | |
987 | ||
988 | /* Alloc (changed + 1) list entries */ | |
989 | /* FIXME: add a cleanup for the allocated list(s) | |
990 | because one day the select_frame called below can longjump */ | |
991 | *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *)); | |
992 | if (changed > 1) | |
993 | { | |
994 | templist = xmalloc ((changed + 1) * sizeof (struct varobj *)); | |
995 | cv = templist; | |
996 | } | |
997 | else | |
998 | cv = *changelist; | |
999 | ||
1000 | /* Copy from result stack to list */ | |
1001 | vleft = changed; | |
1002 | *cv = vpop (&result); | |
1003 | while ((*cv != NULL) && (vleft > 0)) | |
1004 | { | |
1005 | vleft--; | |
1006 | cv++; | |
1007 | *cv = vpop (&result); | |
1008 | } | |
1009 | if (vleft) | |
1010 | warning ("varobj_update: assertion failed - vleft <> 0"); | |
1011 | ||
1012 | if (changed > 1) | |
1013 | { | |
1014 | /* Now we revert the order. */ | |
1015 | for (i=0; i < changed; i++) | |
1016 | *(*changelist + i) = *(templist + changed -1 - i); | |
1017 | *(*changelist + changed) = NULL; | |
1018 | } | |
1019 | ||
1020 | /* Restore selected frame */ | |
1021 | select_frame (old_fi, -1); | |
1022 | ||
1023 | if (type_changed) | |
1024 | return -2; | |
1025 | else | |
1026 | return changed; | |
1027 | } | |
1028 | \f | |
1029 | ||
1030 | /* Helper functions */ | |
1031 | ||
1032 | /* | |
1033 | * Variable object construction/destruction | |
1034 | */ | |
1035 | ||
1036 | static int | |
1037 | delete_variable (struct cpstack **resultp, struct varobj *var, | |
1038 | int only_children_p) | |
1039 | { | |
1040 | int delcount = 0; | |
1041 | ||
1042 | delete_variable_1 (resultp, &delcount, var, | |
1043 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1044 | ||
1045 | return delcount; | |
1046 | } | |
1047 | ||
1048 | /* Delete the variable object VAR and its children */ | |
1049 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1050 | and the parent is not removed we dump core. It must be always | |
1051 | initially called with remove_from_parent_p set */ | |
1052 | static void | |
1053 | delete_variable_1 (struct cpstack **resultp, int *delcountp, struct varobj *var, | |
1054 | int only_children_p, int remove_from_parent_p) | |
1055 | { | |
1056 | struct varobj_child *vc; | |
1057 | struct varobj_child *next; | |
1058 | ||
1059 | /* Delete any children of this variable, too. */ | |
1060 | for (vc = var->children; vc != NULL; vc = next) | |
1061 | { | |
1062 | if (!remove_from_parent_p) | |
1063 | vc->child->parent = NULL; | |
1064 | delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p); | |
1065 | next = vc->next; | |
1066 | xfree (vc); | |
1067 | } | |
1068 | ||
1069 | /* if we were called to delete only the children we are done here */ | |
1070 | if (only_children_p) | |
1071 | return; | |
1072 | ||
1073 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
1074 | /* If the name is null, this is a temporary variable, that has not | |
1075 | yet been installed, don't report it, it belongs to the caller... */ | |
1076 | if (var->obj_name != NULL) | |
1077 | { | |
1078 | cppush (resultp, xstrdup (var->obj_name)); | |
1079 | *delcountp = *delcountp + 1; | |
1080 | } | |
1081 | ||
1082 | /* If this variable has a parent, remove it from its parent's list */ | |
1083 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1084 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1085 | expensive list search to find the element to remove when we are | |
1086 | discarding the list afterwards */ | |
1087 | if ((remove_from_parent_p) && | |
1088 | (var->parent != NULL)) | |
1089 | { | |
1090 | remove_child_from_parent (var->parent, var); | |
1091 | } | |
1092 | ||
1093 | if (var->obj_name != NULL) | |
1094 | uninstall_variable (var); | |
1095 | ||
1096 | /* Free memory associated with this variable */ | |
1097 | free_variable (var); | |
1098 | } | |
1099 | ||
1100 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1101 | static int | |
1102 | install_variable (struct varobj *var) | |
1103 | { | |
1104 | struct vlist *cv; | |
1105 | struct vlist *newvl; | |
1106 | const char *chp; | |
1107 | unsigned int index = 0; | |
1108 | unsigned int i = 1; | |
1109 | ||
1110 | for (chp = var->obj_name; *chp; chp++) | |
1111 | { | |
1112 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1113 | } | |
1114 | ||
1115 | cv = *(varobj_table + index); | |
1116 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1117 | cv = cv->next; | |
1118 | ||
1119 | if (cv != NULL) | |
1120 | error ("Duplicate variable object name"); | |
1121 | ||
1122 | /* Add varobj to hash table */ | |
1123 | newvl = xmalloc (sizeof (struct vlist)); | |
1124 | newvl->next = *(varobj_table + index); | |
1125 | newvl->var = var; | |
1126 | *(varobj_table + index) = newvl; | |
1127 | ||
1128 | /* If root, add varobj to root list */ | |
1129 | if (var->root->rootvar == var) | |
1130 | { | |
1131 | /* Add to list of root variables */ | |
1132 | if (rootlist == NULL) | |
1133 | var->root->next = NULL; | |
1134 | else | |
1135 | var->root->next = rootlist; | |
1136 | rootlist = var->root; | |
1137 | rootcount++; | |
1138 | } | |
1139 | ||
1140 | return 1; /* OK */ | |
1141 | } | |
1142 | ||
1143 | /* Unistall the object VAR. */ | |
1144 | static void | |
1145 | uninstall_variable (struct varobj *var) | |
1146 | { | |
1147 | struct vlist *cv; | |
1148 | struct vlist *prev; | |
1149 | struct varobj_root *cr; | |
1150 | struct varobj_root *prer; | |
1151 | const char *chp; | |
1152 | unsigned int index = 0; | |
1153 | unsigned int i = 1; | |
1154 | ||
1155 | /* Remove varobj from hash table */ | |
1156 | for (chp = var->obj_name; *chp; chp++) | |
1157 | { | |
1158 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1159 | } | |
1160 | ||
1161 | cv = *(varobj_table + index); | |
1162 | prev = NULL; | |
1163 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1164 | { | |
1165 | prev = cv; | |
1166 | cv = cv->next; | |
1167 | } | |
1168 | ||
1169 | if (varobjdebug) | |
1170 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
1171 | ||
1172 | if (cv == NULL) | |
1173 | { | |
1174 | warning ("Assertion failed: Could not find variable object \"%s\" to delete", var->obj_name); | |
1175 | return; | |
1176 | } | |
1177 | ||
1178 | if (prev == NULL) | |
1179 | *(varobj_table + index) = cv->next; | |
1180 | else | |
1181 | prev->next = cv->next; | |
1182 | ||
1183 | xfree (cv); | |
1184 | ||
1185 | /* If root, remove varobj from root list */ | |
1186 | if (var->root->rootvar == var) | |
1187 | { | |
1188 | /* Remove from list of root variables */ | |
1189 | if (rootlist == var->root) | |
1190 | rootlist = var->root->next; | |
1191 | else | |
1192 | { | |
1193 | prer = NULL; | |
1194 | cr = rootlist; | |
1195 | while ((cr != NULL) && (cr->rootvar != var)) | |
1196 | { | |
1197 | prer = cr; | |
1198 | cr = cr->next; | |
1199 | } | |
1200 | if (cr == NULL) | |
1201 | { | |
1202 | warning ("Assertion failed: Could not find varobj \"%s\" in root list", var->obj_name); | |
1203 | return; | |
1204 | } | |
1205 | if (prer == NULL) | |
1206 | rootlist = NULL; | |
1207 | else | |
1208 | prer->next = cr->next; | |
1209 | } | |
1210 | rootcount--; | |
1211 | } | |
1212 | ||
1213 | } | |
1214 | ||
1215 | /* Does a child with the name NAME exist in VAR? If so, return its data. | |
1216 | If not, return NULL. */ | |
1217 | static struct varobj * | |
1218 | child_exists (struct varobj *var, char *name) | |
1219 | { | |
1220 | struct varobj_child *vc; | |
1221 | ||
1222 | for (vc = var->children; vc != NULL; vc = vc->next) | |
1223 | { | |
1224 | if (STREQ (vc->child->name, name)) | |
1225 | return vc->child; | |
1226 | } | |
1227 | ||
1228 | return NULL; | |
1229 | } | |
1230 | ||
1231 | /* Create and install a child of the parent of the given name */ | |
1232 | static struct varobj * | |
1233 | create_child (struct varobj *parent, int index, char *name) | |
1234 | { | |
1235 | struct varobj *child; | |
1236 | char *childs_name; | |
1237 | ||
1238 | child = new_variable (); | |
1239 | ||
1240 | /* name is allocated by name_of_child */ | |
1241 | child->name = name; | |
1242 | child->index = index; | |
1243 | child->value = value_of_child (parent, index); | |
1244 | if (child->value == NULL || parent->error) | |
1245 | child->error = 1; | |
1246 | child->parent = parent; | |
1247 | child->root = parent->root; | |
1248 | childs_name = (char *) xmalloc ((strlen (parent->obj_name) + strlen (name) + 2) | |
1249 | * sizeof (char)); | |
1250 | sprintf (childs_name, "%s.%s", parent->obj_name, name); | |
1251 | child->obj_name = childs_name; | |
1252 | install_variable (child); | |
1253 | ||
1254 | /* Save a pointer to this child in the parent */ | |
1255 | save_child_in_parent (parent, child); | |
1256 | ||
1257 | /* Note the type of this child */ | |
1258 | child->type = type_of_child (child); | |
1259 | ||
1260 | return child; | |
1261 | } | |
1262 | ||
1263 | /* FIXME: This should be a generic add to list */ | |
1264 | /* Save CHILD in the PARENT's data. */ | |
1265 | static void | |
1266 | save_child_in_parent (struct varobj *parent, struct varobj *child) | |
1267 | { | |
1268 | struct varobj_child *vc; | |
1269 | ||
1270 | /* Insert the child at the top */ | |
1271 | vc = parent->children; | |
1272 | parent->children = | |
1273 | (struct varobj_child *) xmalloc (sizeof (struct varobj_child)); | |
1274 | ||
1275 | parent->children->next = vc; | |
1276 | parent->children->child = child; | |
1277 | } | |
1278 | ||
1279 | /* FIXME: This should be a generic remove from list */ | |
1280 | /* Remove the CHILD from the PARENT's list of children. */ | |
1281 | static void | |
1282 | remove_child_from_parent (struct varobj *parent, struct varobj *child) | |
1283 | { | |
1284 | struct varobj_child *vc, *prev; | |
1285 | ||
1286 | /* Find the child in the parent's list */ | |
1287 | prev = NULL; | |
1288 | for (vc = parent->children; vc != NULL;) | |
1289 | { | |
1290 | if (vc->child == child) | |
1291 | break; | |
1292 | prev = vc; | |
1293 | vc = vc->next; | |
1294 | } | |
1295 | ||
1296 | if (prev == NULL) | |
1297 | parent->children = vc->next; | |
1298 | else | |
1299 | prev->next = vc->next; | |
1300 | ||
1301 | } | |
1302 | \f | |
1303 | ||
1304 | /* | |
1305 | * Miscellaneous utility functions. | |
1306 | */ | |
1307 | ||
1308 | /* Allocate memory and initialize a new variable */ | |
1309 | static struct varobj * | |
1310 | new_variable (void) | |
1311 | { | |
1312 | struct varobj *var; | |
1313 | ||
1314 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
1315 | var->name = NULL; | |
1316 | var->obj_name = NULL; | |
1317 | var->index = -1; | |
1318 | var->type = NULL; | |
1319 | var->value = NULL; | |
1320 | var->error = 0; | |
1321 | var->num_children = -1; | |
1322 | var->parent = NULL; | |
1323 | var->children = NULL; | |
1324 | var->format = 0; | |
1325 | var->root = NULL; | |
1326 | ||
1327 | return var; | |
1328 | } | |
1329 | ||
1330 | /* Allocate memory and initialize a new root variable */ | |
1331 | static struct varobj * | |
1332 | new_root_variable (void) | |
1333 | { | |
1334 | struct varobj *var = new_variable (); | |
1335 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; | |
1336 | var->root->lang = NULL; | |
1337 | var->root->exp = NULL; | |
1338 | var->root->valid_block = NULL; | |
1339 | var->root->frame = (CORE_ADDR) -1; | |
1340 | var->root->use_selected_frame = 0; | |
1341 | var->root->rootvar = NULL; | |
1342 | ||
1343 | return var; | |
1344 | } | |
1345 | ||
1346 | /* Free any allocated memory associated with VAR. */ | |
1347 | static void | |
1348 | free_variable (struct varobj *var) | |
1349 | { | |
1350 | /* Free the expression if this is a root variable. */ | |
1351 | if (var->root->rootvar == var) | |
1352 | { | |
1353 | free_current_contents ((char **) &var->root->exp); | |
1354 | xfree (var->root); | |
1355 | } | |
1356 | ||
1357 | xfree (var->name); | |
1358 | xfree (var->obj_name); | |
1359 | xfree (var); | |
1360 | } | |
1361 | ||
1362 | static void | |
1363 | do_free_variable_cleanup (void *var) | |
1364 | { | |
1365 | free_variable (var); | |
1366 | } | |
1367 | ||
1368 | static struct cleanup * | |
1369 | make_cleanup_free_variable (struct varobj *var) | |
1370 | { | |
1371 | return make_cleanup (do_free_variable_cleanup, var); | |
1372 | } | |
1373 | ||
1374 | /* This returns the type of the variable. This skips past typedefs | |
1375 | and returns the real type of the variable. It also dereferences | |
1376 | pointers and references. */ | |
1377 | static struct type * | |
1378 | get_type (struct varobj *var) | |
1379 | { | |
1380 | struct type *type; | |
1381 | type = var->type; | |
1382 | ||
1383 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1384 | type = TYPE_TARGET_TYPE (type); | |
1385 | ||
1386 | return type; | |
1387 | } | |
1388 | ||
1389 | /* This returns the type of the variable, dereferencing pointers, too. */ | |
1390 | static struct type * | |
1391 | get_type_deref (struct varobj *var) | |
1392 | { | |
1393 | struct type *type; | |
1394 | ||
1395 | type = get_type (var); | |
1396 | ||
1397 | if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR | |
1398 | || TYPE_CODE (type) == TYPE_CODE_REF)) | |
1399 | type = get_target_type (type); | |
1400 | ||
1401 | return type; | |
1402 | } | |
1403 | ||
1404 | /* This returns the target type (or NULL) of TYPE, also skipping | |
1405 | past typedefs, just like get_type (). */ | |
1406 | static struct type * | |
1407 | get_target_type (struct type *type) | |
1408 | { | |
1409 | if (type != NULL) | |
1410 | { | |
1411 | type = TYPE_TARGET_TYPE (type); | |
1412 | while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF) | |
1413 | type = TYPE_TARGET_TYPE (type); | |
1414 | } | |
1415 | ||
1416 | return type; | |
1417 | } | |
1418 | ||
1419 | /* What is the default display for this variable? We assume that | |
1420 | everything is "natural". Any exceptions? */ | |
1421 | static enum varobj_display_formats | |
1422 | variable_default_display (struct varobj *var) | |
1423 | { | |
1424 | return FORMAT_NATURAL; | |
1425 | } | |
1426 | ||
1427 | /* This function is similar to gdb's value_equal, except that this | |
1428 | one is "safe" -- it NEVER longjmps. It determines if the VAR's | |
1429 | value is the same as VAL2. */ | |
1430 | static int | |
1431 | my_value_equal (value_ptr val1, value_ptr val2, int *error2) | |
1432 | { | |
1433 | int r, err1, err2; | |
1434 | ||
1435 | *error2 = 0; | |
1436 | /* Special case: NULL values. If both are null, say | |
1437 | they're equal. */ | |
1438 | if (val1 == NULL && val2 == NULL) | |
1439 | return 1; | |
1440 | else if (val1 == NULL || val2 == NULL) | |
1441 | return 0; | |
1442 | ||
1443 | /* This is bogus, but unfortunately necessary. We must know | |
1444 | exactly what caused an error -- reading val1 or val2 -- so | |
1445 | that we can really determine if we think that something has changed. */ | |
1446 | err1 = 0; | |
1447 | err2 = 0; | |
1448 | /* We do need to catch errors here because the whole purpose | |
1449 | is to test if value_equal() has errored */ | |
1450 | if (!gdb_value_equal (val1, val1, &r)) | |
1451 | err1 = 1; | |
1452 | ||
1453 | if (!gdb_value_equal (val2, val2, &r)) | |
1454 | *error2 = err2 = 1; | |
1455 | ||
1456 | if (err1 != err2) | |
1457 | return 0; | |
1458 | ||
1459 | if (!gdb_value_equal (val1, val2, &r)) | |
1460 | { | |
1461 | /* An error occurred, this could have happened if | |
1462 | either val1 or val2 errored. ERR1 and ERR2 tell | |
1463 | us which of these it is. If both errored, then | |
1464 | we assume nothing has changed. If one of them is | |
1465 | valid, though, then something has changed. */ | |
1466 | if (err1 == err2) | |
1467 | { | |
1468 | /* both the old and new values caused errors, so | |
1469 | we say the value did not change */ | |
1470 | /* This is indeterminate, though. Perhaps we should | |
1471 | be safe and say, yes, it changed anyway?? */ | |
1472 | return 1; | |
1473 | } | |
1474 | else | |
1475 | { | |
1476 | return 0; | |
1477 | } | |
1478 | } | |
1479 | ||
1480 | return r; | |
1481 | } | |
1482 | ||
1483 | /* FIXME: The following should be generic for any pointer */ | |
1484 | static void | |
1485 | vpush (struct vstack **pstack, struct varobj *var) | |
1486 | { | |
1487 | struct vstack *s; | |
1488 | ||
1489 | s = (struct vstack *) xmalloc (sizeof (struct vstack)); | |
1490 | s->var = var; | |
1491 | s->next = *pstack; | |
1492 | *pstack = s; | |
1493 | } | |
1494 | ||
1495 | /* FIXME: The following should be generic for any pointer */ | |
1496 | static struct varobj * | |
1497 | vpop (struct vstack **pstack) | |
1498 | { | |
1499 | struct vstack *s; | |
1500 | struct varobj *v; | |
1501 | ||
1502 | if ((*pstack)->var == NULL && (*pstack)->next == NULL) | |
1503 | return NULL; | |
1504 | ||
1505 | s = *pstack; | |
1506 | v = s->var; | |
1507 | *pstack = (*pstack)->next; | |
1508 | xfree (s); | |
1509 | ||
1510 | return v; | |
1511 | } | |
1512 | ||
1513 | /* FIXME: The following should be generic for any pointer */ | |
1514 | static void | |
1515 | cppush (struct cpstack **pstack, char *name) | |
1516 | { | |
1517 | struct cpstack *s; | |
1518 | ||
1519 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
1520 | s->name = name; | |
1521 | s->next = *pstack; | |
1522 | *pstack = s; | |
1523 | } | |
1524 | ||
1525 | /* FIXME: The following should be generic for any pointer */ | |
1526 | static char * | |
1527 | cppop (struct cpstack **pstack) | |
1528 | { | |
1529 | struct cpstack *s; | |
1530 | char *v; | |
1531 | ||
1532 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
1533 | return NULL; | |
1534 | ||
1535 | s = *pstack; | |
1536 | v = s->name; | |
1537 | *pstack = (*pstack)->next; | |
1538 | xfree (s); | |
1539 | ||
1540 | return v; | |
1541 | } | |
1542 | \f | |
1543 | /* | |
1544 | * Language-dependencies | |
1545 | */ | |
1546 | ||
1547 | /* Common entry points */ | |
1548 | ||
1549 | /* Get the language of variable VAR. */ | |
1550 | static enum varobj_languages | |
1551 | variable_language (struct varobj *var) | |
1552 | { | |
1553 | enum varobj_languages lang; | |
1554 | ||
1555 | switch (var->root->exp->language_defn->la_language) | |
1556 | { | |
1557 | default: | |
1558 | case language_c: | |
1559 | lang = vlang_c; | |
1560 | break; | |
1561 | case language_cplus: | |
1562 | lang = vlang_cplus; | |
1563 | break; | |
1564 | case language_java: | |
1565 | lang = vlang_java; | |
1566 | break; | |
1567 | } | |
1568 | ||
1569 | return lang; | |
1570 | } | |
1571 | ||
1572 | /* Return the number of children for a given variable. | |
1573 | The result of this function is defined by the language | |
1574 | implementation. The number of children returned by this function | |
1575 | is the number of children that the user will see in the variable | |
1576 | display. */ | |
1577 | static int | |
1578 | number_of_children (struct varobj *var) | |
1579 | { | |
1580 | return (*var->root->lang->number_of_children) (var);; | |
1581 | } | |
1582 | ||
1583 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
1584 | static char * | |
1585 | name_of_variable (struct varobj *var) | |
1586 | { | |
1587 | return (*var->root->lang->name_of_variable) (var); | |
1588 | } | |
1589 | ||
1590 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
1591 | static char * | |
1592 | name_of_child (struct varobj *var, int index) | |
1593 | { | |
1594 | return (*var->root->lang->name_of_child) (var, index); | |
1595 | } | |
1596 | ||
1597 | /* What is the value_ptr of the root variable VAR? | |
1598 | TYPE_CHANGED controls what to do if the type of a | |
1599 | use_selected_frame = 1 variable changes. On input, | |
1600 | TYPE_CHANGED = 1 means discard the old varobj, and replace | |
1601 | it with this one. TYPE_CHANGED = 0 means leave it around. | |
1602 | NB: In both cases, var_handle will point to the new varobj, | |
1603 | so if you use TYPE_CHANGED = 0, you will have to stash the | |
1604 | old varobj pointer away somewhere before calling this. | |
1605 | On return, TYPE_CHANGED will be 1 if the type has changed, and | |
1606 | 0 otherwise. */ | |
1607 | static value_ptr | |
1608 | value_of_root (struct varobj **var_handle, int *type_changed) | |
1609 | { | |
1610 | struct varobj *var; | |
1611 | ||
1612 | if (var_handle == NULL) | |
1613 | return NULL; | |
1614 | ||
1615 | var = *var_handle; | |
1616 | ||
1617 | /* This should really be an exception, since this should | |
1618 | only get called with a root variable. */ | |
1619 | ||
1620 | if (var->root->rootvar != var) | |
1621 | return NULL; | |
1622 | ||
1623 | if (var->root->use_selected_frame) | |
1624 | { | |
1625 | struct varobj *tmp_var; | |
1626 | char *old_type, *new_type; | |
1627 | old_type = varobj_get_type (var); | |
1628 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
1629 | USE_SELECTED_FRAME); | |
1630 | if (tmp_var == NULL) | |
1631 | { | |
1632 | return NULL; | |
1633 | } | |
1634 | new_type = varobj_get_type (tmp_var); | |
1635 | if (strcmp(old_type, new_type) == 0) | |
1636 | { | |
1637 | varobj_delete (tmp_var, NULL, 0); | |
1638 | *type_changed = 0; | |
1639 | } | |
1640 | else | |
1641 | { | |
1642 | if (*type_changed) | |
1643 | { | |
1644 | tmp_var->obj_name = | |
1645 | savestring (var->obj_name, strlen (var->obj_name)); | |
1646 | varobj_delete (var, NULL, 0); | |
1647 | } | |
1648 | else | |
1649 | { | |
1650 | tmp_var->obj_name = varobj_gen_name (); | |
1651 | } | |
1652 | install_variable (tmp_var); | |
1653 | *var_handle = tmp_var; | |
1654 | var = *var_handle; | |
1655 | *type_changed = 1; | |
1656 | } | |
1657 | } | |
1658 | else | |
1659 | { | |
1660 | *type_changed = 0; | |
1661 | } | |
1662 | ||
1663 | return (*var->root->lang->value_of_root) (var_handle); | |
1664 | } | |
1665 | ||
1666 | /* What is the value_ptr for the INDEX'th child of PARENT? */ | |
1667 | static value_ptr | |
1668 | value_of_child (struct varobj *parent, int index) | |
1669 | { | |
1670 | value_ptr value; | |
1671 | ||
1672 | value = (*parent->root->lang->value_of_child) (parent, index); | |
1673 | ||
1674 | /* If we're being lazy, fetch the real value of the variable. */ | |
1675 | if (value != NULL && VALUE_LAZY (value)) | |
1676 | gdb_value_fetch_lazy (value); | |
1677 | ||
1678 | return value; | |
1679 | } | |
1680 | ||
1681 | /* What is the type of VAR? */ | |
1682 | static struct type * | |
1683 | type_of_child (struct varobj *var) | |
1684 | { | |
1685 | ||
1686 | /* If the child had no evaluation errors, var->value | |
1687 | will be non-NULL and contain a valid type. */ | |
1688 | if (var->value != NULL) | |
1689 | return VALUE_TYPE (var->value); | |
1690 | ||
1691 | /* Otherwise, we must compute the type. */ | |
1692 | return (*var->root->lang->type_of_child) (var->parent, var->index); | |
1693 | } | |
1694 | ||
1695 | /* Is this variable editable? Use the variable's type to make | |
1696 | this determination. */ | |
1697 | static int | |
1698 | variable_editable (struct varobj *var) | |
1699 | { | |
1700 | return (*var->root->lang->variable_editable) (var); | |
1701 | } | |
1702 | ||
1703 | /* GDB already has a command called "value_of_variable". Sigh. */ | |
1704 | static char * | |
1705 | my_value_of_variable (struct varobj *var) | |
1706 | { | |
1707 | return (*var->root->lang->value_of_variable) (var); | |
1708 | } | |
1709 | ||
1710 | /* Is VAR something that can change? Depending on language, | |
1711 | some variable's values never change. For example, | |
1712 | struct and unions never change values. */ | |
1713 | static int | |
1714 | type_changeable (struct varobj *var) | |
1715 | { | |
1716 | int r; | |
1717 | struct type *type; | |
1718 | ||
1719 | if (CPLUS_FAKE_CHILD (var)) | |
1720 | return 0; | |
1721 | ||
1722 | type = get_type (var); | |
1723 | ||
1724 | switch (TYPE_CODE (type)) | |
1725 | { | |
1726 | case TYPE_CODE_STRUCT: | |
1727 | case TYPE_CODE_UNION: | |
1728 | case TYPE_CODE_ARRAY: | |
1729 | r = 0; | |
1730 | break; | |
1731 | ||
1732 | default: | |
1733 | r = 1; | |
1734 | } | |
1735 | ||
1736 | return r; | |
1737 | } | |
1738 | ||
1739 | /* C */ | |
1740 | static int | |
1741 | c_number_of_children (struct varobj *var) | |
1742 | { | |
1743 | struct type *type; | |
1744 | struct type *target; | |
1745 | int children; | |
1746 | ||
1747 | type = get_type (var); | |
1748 | target = get_target_type (type); | |
1749 | children = 0; | |
1750 | ||
1751 | switch (TYPE_CODE (type)) | |
1752 | { | |
1753 | case TYPE_CODE_ARRAY: | |
1754 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
1755 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED) | |
1756 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); | |
1757 | else | |
1758 | children = -1; | |
1759 | break; | |
1760 | ||
1761 | case TYPE_CODE_STRUCT: | |
1762 | case TYPE_CODE_UNION: | |
1763 | children = TYPE_NFIELDS (type); | |
1764 | break; | |
1765 | ||
1766 | case TYPE_CODE_PTR: | |
1767 | /* This is where things get compilcated. All pointers have one child. | |
1768 | Except, of course, for struct and union ptr, which we automagically | |
1769 | dereference for the user and function ptrs, which have no children. | |
1770 | We also don't dereference void* as we don't know what to show. | |
1771 | We can show char* so we allow it to be dereferenced. If you decide | |
1772 | to test for it, please mind that a little magic is necessary to | |
1773 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
1774 | TYPE_NAME == "char" */ | |
1775 | ||
1776 | switch (TYPE_CODE (target)) | |
1777 | { | |
1778 | case TYPE_CODE_STRUCT: | |
1779 | case TYPE_CODE_UNION: | |
1780 | children = TYPE_NFIELDS (target); | |
1781 | break; | |
1782 | ||
1783 | case TYPE_CODE_FUNC: | |
1784 | case TYPE_CODE_VOID: | |
1785 | children = 0; | |
1786 | break; | |
1787 | ||
1788 | default: | |
1789 | children = 1; | |
1790 | } | |
1791 | break; | |
1792 | ||
1793 | default: | |
1794 | /* Other types have no children */ | |
1795 | break; | |
1796 | } | |
1797 | ||
1798 | return children; | |
1799 | } | |
1800 | ||
1801 | static char * | |
1802 | c_name_of_variable (struct varobj *parent) | |
1803 | { | |
1804 | return savestring (parent->name, strlen (parent->name)); | |
1805 | } | |
1806 | ||
1807 | static char * | |
1808 | c_name_of_child (struct varobj *parent, int index) | |
1809 | { | |
1810 | struct type *type; | |
1811 | struct type *target; | |
1812 | char *name; | |
1813 | char *string; | |
1814 | ||
1815 | type = get_type (parent); | |
1816 | target = get_target_type (type); | |
1817 | ||
1818 | switch (TYPE_CODE (type)) | |
1819 | { | |
1820 | case TYPE_CODE_ARRAY: | |
1821 | { | |
1822 | /* We never get here unless parent->num_children is greater than 0... */ | |
1823 | int len = 1; | |
1824 | while ((int) pow ((double) 10, (double) len) < index) | |
1825 | len++; | |
1826 | name = (char *) xmalloc (1 + len * sizeof (char)); | |
1827 | sprintf (name, "%d", index); | |
1828 | } | |
1829 | break; | |
1830 | ||
1831 | case TYPE_CODE_STRUCT: | |
1832 | case TYPE_CODE_UNION: | |
1833 | string = TYPE_FIELD_NAME (type, index); | |
1834 | name = savestring (string, strlen (string)); | |
1835 | break; | |
1836 | ||
1837 | case TYPE_CODE_PTR: | |
1838 | switch (TYPE_CODE (target)) | |
1839 | { | |
1840 | case TYPE_CODE_STRUCT: | |
1841 | case TYPE_CODE_UNION: | |
1842 | string = TYPE_FIELD_NAME (target, index); | |
1843 | name = savestring (string, strlen (string)); | |
1844 | break; | |
1845 | ||
1846 | default: | |
1847 | name = (char *) xmalloc ((strlen (parent->name) + 2) * sizeof (char)); | |
1848 | sprintf (name, "*%s", parent->name); | |
1849 | break; | |
1850 | } | |
1851 | break; | |
1852 | ||
1853 | default: | |
1854 | /* This should not happen */ | |
1855 | name = xstrdup ("???"); | |
1856 | } | |
1857 | ||
1858 | return name; | |
1859 | } | |
1860 | ||
1861 | static value_ptr | |
1862 | c_value_of_root (struct varobj **var_handle) | |
1863 | { | |
1864 | value_ptr new_val; | |
1865 | struct varobj *var = *var_handle; | |
1866 | struct frame_info *fi; | |
1867 | int within_scope; | |
1868 | ||
1869 | /* Only root variables can be updated... */ | |
1870 | if (var->root->rootvar != var) | |
1871 | /* Not a root var */ | |
1872 | return NULL; | |
1873 | ||
1874 | ||
1875 | /* Determine whether the variable is still around. */ | |
1876 | if (var->root->valid_block == NULL) | |
1877 | within_scope = 1; | |
1878 | else | |
1879 | { | |
1880 | reinit_frame_cache (); | |
1881 | ||
1882 | ||
1883 | fi = find_frame_addr_in_frame_chain (var->root->frame); | |
1884 | ||
1885 | within_scope = fi != NULL; | |
1886 | /* FIXME: select_frame could fail */ | |
1887 | if (within_scope) | |
1888 | select_frame (fi, -1); | |
1889 | } | |
1890 | ||
1891 | if (within_scope) | |
1892 | { | |
1893 | /* We need to catch errors here, because if evaluate | |
1894 | expression fails we just want to make val->error = 1 and | |
1895 | go on */ | |
1896 | if (gdb_evaluate_expression (var->root->exp, &new_val)) | |
1897 | { | |
1898 | if (VALUE_LAZY (new_val)) | |
1899 | { | |
1900 | /* We need to catch errors because if | |
1901 | value_fetch_lazy fails we still want to continue | |
1902 | (after making val->error = 1) */ | |
1903 | /* FIXME: Shouldn't be using VALUE_CONTENTS? The | |
1904 | comment on value_fetch_lazy() says it is only | |
1905 | called from the macro... */ | |
1906 | if (!gdb_value_fetch_lazy (new_val)) | |
1907 | var->error = 1; | |
1908 | else | |
1909 | var->error = 0; | |
1910 | } | |
1911 | } | |
1912 | else | |
1913 | var->error = 1; | |
1914 | ||
1915 | release_value (new_val); | |
1916 | return new_val; | |
1917 | } | |
1918 | ||
1919 | return NULL; | |
1920 | } | |
1921 | ||
1922 | static value_ptr | |
1923 | c_value_of_child (struct varobj *parent, int index) | |
1924 | { | |
1925 | value_ptr value, temp, indval; | |
1926 | struct type *type, *target; | |
1927 | char *name; | |
1928 | ||
1929 | type = get_type (parent); | |
1930 | target = get_target_type (type); | |
1931 | name = name_of_child (parent, index); | |
1932 | temp = parent->value; | |
1933 | value = NULL; | |
1934 | ||
1935 | if (temp != NULL) | |
1936 | { | |
1937 | switch (TYPE_CODE (type)) | |
1938 | { | |
1939 | case TYPE_CODE_ARRAY: | |
1940 | #if 0 | |
1941 | /* This breaks if the array lives in a (vector) register. */ | |
1942 | value = value_slice (temp, index, 1); | |
1943 | temp = value_coerce_array (value); | |
1944 | gdb_value_ind (temp, &value); | |
1945 | #else | |
1946 | indval = value_from_longest (builtin_type_int, (LONGEST) index); | |
1947 | gdb_value_subscript (temp, indval, &value); | |
1948 | #endif | |
1949 | break; | |
1950 | ||
1951 | case TYPE_CODE_STRUCT: | |
1952 | case TYPE_CODE_UNION: | |
1953 | value = value_struct_elt (&temp, NULL, name, NULL, "vstructure"); | |
1954 | break; | |
1955 | ||
1956 | case TYPE_CODE_PTR: | |
1957 | switch (TYPE_CODE (target)) | |
1958 | { | |
1959 | case TYPE_CODE_STRUCT: | |
1960 | case TYPE_CODE_UNION: | |
1961 | value = value_struct_elt (&temp, NULL, name, NULL, "vstructure"); | |
1962 | break; | |
1963 | ||
1964 | default: | |
1965 | gdb_value_ind (temp, &value); | |
1966 | break; | |
1967 | } | |
1968 | break; | |
1969 | ||
1970 | default: | |
1971 | break; | |
1972 | } | |
1973 | } | |
1974 | ||
1975 | if (value != NULL) | |
1976 | release_value (value); | |
1977 | ||
1978 | return value; | |
1979 | } | |
1980 | ||
1981 | static struct type * | |
1982 | c_type_of_child (struct varobj *parent, int index) | |
1983 | { | |
1984 | struct type *type; | |
1985 | char *name = name_of_child (parent, index); | |
1986 | ||
1987 | switch (TYPE_CODE (parent->type)) | |
1988 | { | |
1989 | case TYPE_CODE_ARRAY: | |
1990 | type = TYPE_TARGET_TYPE (parent->type); | |
1991 | break; | |
1992 | ||
1993 | case TYPE_CODE_STRUCT: | |
1994 | case TYPE_CODE_UNION: | |
1995 | type = lookup_struct_elt_type (parent->type, name, 0); | |
1996 | break; | |
1997 | ||
1998 | case TYPE_CODE_PTR: | |
1999 | switch (TYPE_CODE (TYPE_TARGET_TYPE (parent->type))) | |
2000 | { | |
2001 | case TYPE_CODE_STRUCT: | |
2002 | case TYPE_CODE_UNION: | |
2003 | type = lookup_struct_elt_type (parent->type, name, 0); | |
2004 | break; | |
2005 | ||
2006 | default: | |
2007 | type = TYPE_TARGET_TYPE (parent->type); | |
2008 | break; | |
2009 | } | |
2010 | break; | |
2011 | ||
2012 | default: | |
2013 | /* This should not happen as only the above types have children */ | |
2014 | warning ("Child of parent whose type does not allow children"); | |
2015 | /* FIXME: Can we still go on? */ | |
2016 | type = NULL; | |
2017 | break; | |
2018 | } | |
2019 | ||
2020 | return type; | |
2021 | } | |
2022 | ||
2023 | static int | |
2024 | c_variable_editable (struct varobj *var) | |
2025 | { | |
2026 | switch (TYPE_CODE (get_type (var))) | |
2027 | { | |
2028 | case TYPE_CODE_STRUCT: | |
2029 | case TYPE_CODE_UNION: | |
2030 | case TYPE_CODE_ARRAY: | |
2031 | case TYPE_CODE_FUNC: | |
2032 | case TYPE_CODE_MEMBER: | |
2033 | case TYPE_CODE_METHOD: | |
2034 | return 0; | |
2035 | break; | |
2036 | ||
2037 | default: | |
2038 | return 1; | |
2039 | break; | |
2040 | } | |
2041 | } | |
2042 | ||
2043 | static char * | |
2044 | c_value_of_variable (struct varobj *var) | |
2045 | { | |
2046 | struct type *type; | |
2047 | value_ptr val; | |
2048 | ||
2049 | if (var->value != NULL) | |
2050 | val = var->value; | |
2051 | else | |
2052 | { | |
2053 | /* This can happen if we attempt to get the value of a struct | |
2054 | member when the parent is an invalid pointer. */ | |
2055 | return xstrdup ("???"); | |
2056 | } | |
2057 | ||
2058 | /* BOGUS: if val_print sees a struct/class, it will print out its | |
2059 | children instead of "{...}" */ | |
2060 | type = get_type (var); | |
2061 | switch (TYPE_CODE (type)) | |
2062 | { | |
2063 | case TYPE_CODE_STRUCT: | |
2064 | case TYPE_CODE_UNION: | |
2065 | return xstrdup ("{...}"); | |
2066 | /* break; */ | |
2067 | ||
2068 | case TYPE_CODE_ARRAY: | |
2069 | { | |
2070 | char number[18]; | |
2071 | sprintf (number, "[%d]", var->num_children); | |
2072 | return xstrdup (number); | |
2073 | } | |
2074 | /* break; */ | |
2075 | ||
2076 | default: | |
2077 | { | |
2078 | long dummy; | |
2079 | struct ui_file *stb = mem_fileopen (); | |
2080 | struct cleanup *old_chain = make_cleanup_ui_file_delete (stb); | |
2081 | char *thevalue; | |
2082 | ||
2083 | if (VALUE_LAZY (val)) | |
2084 | gdb_value_fetch_lazy (val); | |
2085 | val_print (VALUE_TYPE (val), VALUE_CONTENTS_RAW (val), 0, | |
2086 | VALUE_ADDRESS (val), | |
2087 | stb, format_code[(int) var->format], 1, 0, 0); | |
2088 | thevalue = ui_file_xstrdup (stb, &dummy); | |
2089 | do_cleanups (old_chain); | |
2090 | return thevalue; | |
2091 | } | |
2092 | /* break; */ | |
2093 | } | |
2094 | } | |
2095 | \f | |
2096 | ||
2097 | /* C++ */ | |
2098 | ||
2099 | static int | |
2100 | cplus_number_of_children (struct varobj *var) | |
2101 | { | |
2102 | struct type *type; | |
2103 | int children, dont_know; | |
2104 | ||
2105 | dont_know = 1; | |
2106 | children = 0; | |
2107 | ||
2108 | if (!CPLUS_FAKE_CHILD (var)) | |
2109 | { | |
2110 | type = get_type_deref (var); | |
2111 | ||
2112 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
2113 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) | |
2114 | { | |
2115 | int kids[3]; | |
2116 | ||
2117 | cplus_class_num_children (type, kids); | |
2118 | if (kids[v_public] != 0) | |
2119 | children++; | |
2120 | if (kids[v_private] != 0) | |
2121 | children++; | |
2122 | if (kids[v_protected] != 0) | |
2123 | children++; | |
2124 | ||
2125 | /* Add any baseclasses */ | |
2126 | children += TYPE_N_BASECLASSES (type); | |
2127 | dont_know = 0; | |
2128 | ||
2129 | /* FIXME: save children in var */ | |
2130 | } | |
2131 | } | |
2132 | else | |
2133 | { | |
2134 | int kids[3]; | |
2135 | ||
2136 | type = get_type_deref (var->parent); | |
2137 | ||
2138 | cplus_class_num_children (type, kids); | |
2139 | if (STREQ (var->name, "public")) | |
2140 | children = kids[v_public]; | |
2141 | else if (STREQ (var->name, "private")) | |
2142 | children = kids[v_private]; | |
2143 | else | |
2144 | children = kids[v_protected]; | |
2145 | dont_know = 0; | |
2146 | } | |
2147 | ||
2148 | if (dont_know) | |
2149 | children = c_number_of_children (var); | |
2150 | ||
2151 | return children; | |
2152 | } | |
2153 | ||
2154 | /* Compute # of public, private, and protected variables in this class. | |
2155 | That means we need to descend into all baseclasses and find out | |
2156 | how many are there, too. */ | |
2157 | static void | |
2158 | cplus_class_num_children (struct type *type, int children[3]) | |
2159 | { | |
2160 | int i; | |
2161 | ||
2162 | children[v_public] = 0; | |
2163 | children[v_private] = 0; | |
2164 | children[v_protected] = 0; | |
2165 | ||
2166 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) | |
2167 | { | |
2168 | /* If we have a virtual table pointer, omit it. */ | |
2169 | if (TYPE_VPTR_BASETYPE (type) == type | |
2170 | && TYPE_VPTR_FIELDNO (type) == i) | |
2171 | continue; | |
2172 | ||
2173 | if (TYPE_FIELD_PROTECTED (type, i)) | |
2174 | children[v_protected]++; | |
2175 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
2176 | children[v_private]++; | |
2177 | else | |
2178 | children[v_public]++; | |
2179 | } | |
2180 | } | |
2181 | ||
2182 | static char * | |
2183 | cplus_name_of_variable (struct varobj *parent) | |
2184 | { | |
2185 | return c_name_of_variable (parent); | |
2186 | } | |
2187 | ||
2188 | static char * | |
2189 | cplus_name_of_child (struct varobj *parent, int index) | |
2190 | { | |
2191 | char *name; | |
2192 | struct type *type; | |
2193 | int children[3]; | |
2194 | ||
2195 | if (CPLUS_FAKE_CHILD (parent)) | |
2196 | { | |
2197 | /* Looking for children of public, private, or protected. */ | |
2198 | type = get_type_deref (parent->parent); | |
2199 | } | |
2200 | else | |
2201 | type = get_type_deref (parent); | |
2202 | ||
2203 | name = NULL; | |
2204 | switch (TYPE_CODE (type)) | |
2205 | { | |
2206 | case TYPE_CODE_STRUCT: | |
2207 | case TYPE_CODE_UNION: | |
2208 | cplus_class_num_children (type, children); | |
2209 | ||
2210 | if (CPLUS_FAKE_CHILD (parent)) | |
2211 | { | |
2212 | /* FIXME: This assumes that type orders | |
2213 | inherited, public, private, protected */ | |
2214 | int i = index + TYPE_N_BASECLASSES (type); | |
2215 | if (STREQ (parent->name, "private") || STREQ (parent->name, "protected")) | |
2216 | i += children[v_public]; | |
2217 | if (STREQ (parent->name, "protected")) | |
2218 | i += children[v_private]; | |
2219 | ||
2220 | name = TYPE_FIELD_NAME (type, i); | |
2221 | } | |
2222 | else if (index < TYPE_N_BASECLASSES (type)) | |
2223 | name = TYPE_FIELD_NAME (type, index); | |
2224 | else | |
2225 | { | |
2226 | /* Everything beyond the baseclasses can | |
2227 | only be "public", "private", or "protected" */ | |
2228 | index -= TYPE_N_BASECLASSES (type); | |
2229 | switch (index) | |
2230 | { | |
2231 | case 0: | |
2232 | if (children[v_public] != 0) | |
2233 | { | |
2234 | name = "public"; | |
2235 | break; | |
2236 | } | |
2237 | case 1: | |
2238 | if (children[v_private] != 0) | |
2239 | { | |
2240 | name = "private"; | |
2241 | break; | |
2242 | } | |
2243 | case 2: | |
2244 | if (children[v_protected] != 0) | |
2245 | { | |
2246 | name = "protected"; | |
2247 | break; | |
2248 | } | |
2249 | default: | |
2250 | /* error! */ | |
2251 | break; | |
2252 | } | |
2253 | } | |
2254 | break; | |
2255 | ||
2256 | default: | |
2257 | break; | |
2258 | } | |
2259 | ||
2260 | if (name == NULL) | |
2261 | return c_name_of_child (parent, index); | |
2262 | else | |
2263 | { | |
2264 | if (name != NULL) | |
2265 | name = savestring (name, strlen (name)); | |
2266 | } | |
2267 | ||
2268 | return name; | |
2269 | } | |
2270 | ||
2271 | static value_ptr | |
2272 | cplus_value_of_root (struct varobj **var_handle) | |
2273 | { | |
2274 | return c_value_of_root (var_handle); | |
2275 | } | |
2276 | ||
2277 | static value_ptr | |
2278 | cplus_value_of_child (struct varobj *parent, int index) | |
2279 | { | |
2280 | struct type *type; | |
2281 | value_ptr value; | |
2282 | char *name; | |
2283 | ||
2284 | if (CPLUS_FAKE_CHILD (parent)) | |
2285 | type = get_type_deref (parent->parent); | |
2286 | else | |
2287 | type = get_type_deref (parent); | |
2288 | ||
2289 | value = NULL; | |
2290 | name = name_of_child (parent, index); | |
2291 | ||
2292 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
2293 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) | |
2294 | { | |
2295 | if (CPLUS_FAKE_CHILD (parent)) | |
2296 | { | |
2297 | value_ptr temp = parent->parent->value; | |
2298 | value = value_struct_elt (&temp, NULL, name, | |
2299 | NULL, "cplus_structure"); | |
2300 | release_value (value); | |
2301 | } | |
2302 | else if (index >= TYPE_N_BASECLASSES (type)) | |
2303 | { | |
2304 | /* public, private, or protected */ | |
2305 | return NULL; | |
2306 | } | |
2307 | else | |
2308 | { | |
2309 | /* Baseclass */ | |
2310 | if (parent->value != NULL) | |
2311 | { | |
2312 | value_ptr temp; | |
2313 | ||
2314 | if (TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_PTR | |
2315 | || TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_REF) | |
2316 | gdb_value_ind (parent->value, &temp); | |
2317 | else | |
2318 | temp = parent->value; | |
2319 | ||
2320 | value = value_cast (TYPE_FIELD_TYPE (type, index), temp); | |
2321 | release_value (value); | |
2322 | } | |
2323 | } | |
2324 | } | |
2325 | ||
2326 | if (value == NULL) | |
2327 | return c_value_of_child (parent, index); | |
2328 | ||
2329 | return value; | |
2330 | } | |
2331 | ||
2332 | static struct type * | |
2333 | cplus_type_of_child (struct varobj *parent, int index) | |
2334 | { | |
2335 | struct type *type, *t; | |
2336 | ||
2337 | t = get_type_deref (parent); | |
2338 | type = NULL; | |
2339 | switch (TYPE_CODE (t)) | |
2340 | { | |
2341 | case TYPE_CODE_STRUCT: | |
2342 | case TYPE_CODE_UNION: | |
2343 | if (index >= TYPE_N_BASECLASSES (t)) | |
2344 | { | |
2345 | /* special */ | |
2346 | return NULL; | |
2347 | } | |
2348 | else | |
2349 | { | |
2350 | /* Baseclass */ | |
2351 | type = TYPE_FIELD_TYPE (t, index); | |
2352 | } | |
2353 | break; | |
2354 | ||
2355 | default: | |
2356 | break; | |
2357 | } | |
2358 | ||
2359 | if (type == NULL) | |
2360 | return c_type_of_child (parent, index); | |
2361 | ||
2362 | return type; | |
2363 | } | |
2364 | ||
2365 | static int | |
2366 | cplus_variable_editable (struct varobj *var) | |
2367 | { | |
2368 | if (CPLUS_FAKE_CHILD (var)) | |
2369 | return 0; | |
2370 | ||
2371 | return c_variable_editable (var); | |
2372 | } | |
2373 | ||
2374 | static char * | |
2375 | cplus_value_of_variable (struct varobj *var) | |
2376 | { | |
2377 | ||
2378 | /* If we have one of our special types, don't print out | |
2379 | any value. */ | |
2380 | if (CPLUS_FAKE_CHILD (var)) | |
2381 | return xstrdup (""); | |
2382 | ||
2383 | return c_value_of_variable (var); | |
2384 | } | |
2385 | \f | |
2386 | /* Java */ | |
2387 | ||
2388 | static int | |
2389 | java_number_of_children (struct varobj *var) | |
2390 | { | |
2391 | return cplus_number_of_children (var); | |
2392 | } | |
2393 | ||
2394 | static char * | |
2395 | java_name_of_variable (struct varobj *parent) | |
2396 | { | |
2397 | char *p, *name; | |
2398 | ||
2399 | name = cplus_name_of_variable (parent); | |
2400 | /* If the name has "-" in it, it is because we | |
2401 | needed to escape periods in the name... */ | |
2402 | p = name; | |
2403 | ||
2404 | while (*p != '\000') | |
2405 | { | |
2406 | if (*p == '-') | |
2407 | *p = '.'; | |
2408 | p++; | |
2409 | } | |
2410 | ||
2411 | return name; | |
2412 | } | |
2413 | ||
2414 | static char * | |
2415 | java_name_of_child (struct varobj *parent, int index) | |
2416 | { | |
2417 | char *name, *p; | |
2418 | ||
2419 | name = cplus_name_of_child (parent, index); | |
2420 | /* Escape any periods in the name... */ | |
2421 | p = name; | |
2422 | ||
2423 | while (*p != '\000') | |
2424 | { | |
2425 | if (*p == '.') | |
2426 | *p = '-'; | |
2427 | p++; | |
2428 | } | |
2429 | ||
2430 | return name; | |
2431 | } | |
2432 | ||
2433 | static value_ptr | |
2434 | java_value_of_root (struct varobj **var_handle) | |
2435 | { | |
2436 | return cplus_value_of_root (var_handle); | |
2437 | } | |
2438 | ||
2439 | static value_ptr | |
2440 | java_value_of_child (struct varobj *parent, int index) | |
2441 | { | |
2442 | return cplus_value_of_child (parent, index); | |
2443 | } | |
2444 | ||
2445 | static struct type * | |
2446 | java_type_of_child (struct varobj *parent, int index) | |
2447 | { | |
2448 | return cplus_type_of_child (parent, index); | |
2449 | } | |
2450 | ||
2451 | static int | |
2452 | java_variable_editable (struct varobj *var) | |
2453 | { | |
2454 | return cplus_variable_editable (var); | |
2455 | } | |
2456 | ||
2457 | static char * | |
2458 | java_value_of_variable (struct varobj *var) | |
2459 | { | |
2460 | return cplus_value_of_variable (var); | |
2461 | } | |
2462 | \f | |
2463 | extern void _initialize_varobj (void); | |
2464 | void | |
2465 | _initialize_varobj (void) | |
2466 | { | |
2467 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
2468 | ||
2469 | varobj_table = xmalloc (sizeof_table); | |
2470 | memset (varobj_table, 0, sizeof_table); | |
2471 | ||
2472 | add_show_from_set ( | |
2473 | add_set_cmd ("debugvarobj", class_maintenance, var_zinteger, | |
2474 | (char *) &varobjdebug, | |
2475 | "Set varobj debugging.\n\ | |
2476 | When non-zero, varobj debugging is enabled.", &setlist), | |
2477 | &showlist); | |
2478 | } |