]>
Commit | Line | Data |
---|---|---|
1 | /* Perform arithmetic and other operations on values, for GDB. | |
2 | Copyright 1986, 1989, 1991, 1992, 1993, 1994 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
22 | #include "value.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "expression.h" | |
26 | #include "target.h" | |
27 | #include "language.h" | |
28 | #include "demangle.h" | |
29 | #include "gdb_string.h" | |
30 | ||
31 | /* Define whether or not the C operator '/' truncates towards zero for | |
32 | differently signed operands (truncation direction is undefined in C). */ | |
33 | ||
34 | #ifndef TRUNCATION_TOWARDS_ZERO | |
35 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
36 | #endif | |
37 | ||
38 | static value_ptr value_subscripted_rvalue PARAMS ((value_ptr, value_ptr, int)); | |
39 | ||
40 | \f | |
41 | value_ptr | |
42 | value_add (arg1, arg2) | |
43 | value_ptr arg1, arg2; | |
44 | { | |
45 | register value_ptr valint, valptr; | |
46 | register int len; | |
47 | struct type *type1, *type2, *valptrtype; | |
48 | ||
49 | COERCE_NUMBER (arg1); | |
50 | COERCE_NUMBER (arg2); | |
51 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
52 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
53 | ||
54 | if ((TYPE_CODE (type1) == TYPE_CODE_PTR | |
55 | || TYPE_CODE (type2) == TYPE_CODE_PTR) | |
56 | && | |
57 | (TYPE_CODE (type1) == TYPE_CODE_INT | |
58 | || TYPE_CODE (type2) == TYPE_CODE_INT)) | |
59 | /* Exactly one argument is a pointer, and one is an integer. */ | |
60 | { | |
61 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
62 | { | |
63 | valptr = arg1; | |
64 | valint = arg2; | |
65 | valptrtype = type1; | |
66 | } | |
67 | else | |
68 | { | |
69 | valptr = arg2; | |
70 | valint = arg1; | |
71 | valptrtype = type2; | |
72 | } | |
73 | len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype))); | |
74 | if (len == 0) len = 1; /* For (void *) */ | |
75 | return value_from_longest (valptrtype, | |
76 | value_as_long (valptr) | |
77 | + (len * value_as_long (valint))); | |
78 | } | |
79 | ||
80 | return value_binop (arg1, arg2, BINOP_ADD); | |
81 | } | |
82 | ||
83 | value_ptr | |
84 | value_sub (arg1, arg2) | |
85 | value_ptr arg1, arg2; | |
86 | { | |
87 | struct type *type1, *type2; | |
88 | COERCE_NUMBER (arg1); | |
89 | COERCE_NUMBER (arg2); | |
90 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
91 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
92 | ||
93 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
94 | { | |
95 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
96 | { | |
97 | /* pointer - integer. */ | |
98 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
99 | return value_from_longest | |
100 | (VALUE_TYPE (arg1), | |
101 | value_as_long (arg1) - (sz * value_as_long (arg2))); | |
102 | } | |
103 | else if (TYPE_CODE (type2) == TYPE_CODE_PTR | |
104 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type1)) | |
105 | == TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
106 | { | |
107 | /* pointer to <type x> - pointer to <type x>. */ | |
108 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
109 | return value_from_longest | |
110 | (builtin_type_long, /* FIXME -- should be ptrdiff_t */ | |
111 | (value_as_long (arg1) - value_as_long (arg2)) / sz); | |
112 | } | |
113 | else | |
114 | { | |
115 | error ("\ | |
116 | First argument of `-' is a pointer and second argument is neither\n\ | |
117 | an integer nor a pointer of the same type."); | |
118 | } | |
119 | } | |
120 | ||
121 | return value_binop (arg1, arg2, BINOP_SUB); | |
122 | } | |
123 | ||
124 | /* Return the value of ARRAY[IDX]. | |
125 | See comments in value_coerce_array() for rationale for reason for | |
126 | doing lower bounds adjustment here rather than there. | |
127 | FIXME: Perhaps we should validate that the index is valid and if | |
128 | verbosity is set, warn about invalid indices (but still use them). */ | |
129 | ||
130 | value_ptr | |
131 | value_subscript (array, idx) | |
132 | value_ptr array, idx; | |
133 | { | |
134 | value_ptr bound; | |
135 | int c_style = current_language->c_style_arrays; | |
136 | struct type *tarray; | |
137 | ||
138 | COERCE_REF (array); | |
139 | tarray = check_typedef (VALUE_TYPE (array)); | |
140 | COERCE_VARYING_ARRAY (array, tarray); | |
141 | ||
142 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
143 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
144 | { | |
145 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
146 | LONGEST lowerbound, upperbound; | |
147 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
148 | ||
149 | if (VALUE_LVAL (array) != lval_memory) | |
150 | return value_subscripted_rvalue (array, idx, lowerbound); | |
151 | ||
152 | if (c_style == 0) | |
153 | { | |
154 | LONGEST index = value_as_long (idx); | |
155 | if (index >= lowerbound && index <= upperbound) | |
156 | return value_subscripted_rvalue (array, idx, lowerbound); | |
157 | warning ("array or string index out of range"); | |
158 | /* fall doing C stuff */ | |
159 | c_style = 1; | |
160 | } | |
161 | ||
162 | if (lowerbound != 0) | |
163 | { | |
164 | bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); | |
165 | idx = value_sub (idx, bound); | |
166 | } | |
167 | ||
168 | array = value_coerce_array (array); | |
169 | } | |
170 | ||
171 | if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) | |
172 | { | |
173 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
174 | LONGEST index = value_as_long (idx); | |
175 | value_ptr v; | |
176 | int offset, byte, bit_index; | |
177 | LONGEST lowerbound, upperbound; | |
178 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
179 | if (index < lowerbound || index > upperbound) | |
180 | error ("bitstring index out of range"); | |
181 | index -= lowerbound; | |
182 | offset = index / TARGET_CHAR_BIT; | |
183 | byte = *((char*)VALUE_CONTENTS (array) + offset); | |
184 | bit_index = index % TARGET_CHAR_BIT; | |
185 | byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index); | |
186 | v = value_from_longest (LA_BOOL_TYPE, byte & 1); | |
187 | VALUE_BITPOS (v) = bit_index; | |
188 | VALUE_BITSIZE (v) = 1; | |
189 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
190 | if (VALUE_LVAL (array) == lval_internalvar) | |
191 | VALUE_LVAL (v) = lval_internalvar_component; | |
192 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
193 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (array); | |
194 | return v; | |
195 | } | |
196 | ||
197 | if (c_style) | |
198 | return value_ind (value_add (array, idx)); | |
199 | else | |
200 | error ("not an array or string"); | |
201 | } | |
202 | ||
203 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
204 | (eg, a vector register). This routine used to promote floats | |
205 | to doubles, but no longer does. */ | |
206 | ||
207 | static value_ptr | |
208 | value_subscripted_rvalue (array, idx, lowerbound) | |
209 | value_ptr array, idx; | |
210 | int lowerbound; | |
211 | { | |
212 | struct type *array_type = check_typedef (VALUE_TYPE (array)); | |
213 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); | |
214 | unsigned int elt_size = TYPE_LENGTH (elt_type); | |
215 | LONGEST index = value_as_long (idx); | |
216 | unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); | |
217 | value_ptr v; | |
218 | ||
219 | if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) | |
220 | error ("no such vector element"); | |
221 | ||
222 | v = allocate_value (elt_type); | |
223 | if (VALUE_LAZY (array)) | |
224 | VALUE_LAZY (v) = 1; | |
225 | else | |
226 | memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size); | |
227 | ||
228 | if (VALUE_LVAL (array) == lval_internalvar) | |
229 | VALUE_LVAL (v) = lval_internalvar_component; | |
230 | else | |
231 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
232 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
233 | VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; | |
234 | return v; | |
235 | } | |
236 | \f | |
237 | /* Check to see if either argument is a structure. This is called so | |
238 | we know whether to go ahead with the normal binop or look for a | |
239 | user defined function instead. | |
240 | ||
241 | For now, we do not overload the `=' operator. */ | |
242 | ||
243 | int | |
244 | binop_user_defined_p (op, arg1, arg2) | |
245 | enum exp_opcode op; | |
246 | value_ptr arg1, arg2; | |
247 | { | |
248 | struct type *type1, *type2; | |
249 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
250 | return 0; | |
251 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
252 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
253 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT | |
254 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT | |
255 | || (TYPE_CODE (type1) == TYPE_CODE_REF | |
256 | && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT) | |
257 | || (TYPE_CODE (type2) == TYPE_CODE_REF | |
258 | && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT)); | |
259 | } | |
260 | ||
261 | /* Check to see if argument is a structure. This is called so | |
262 | we know whether to go ahead with the normal unop or look for a | |
263 | user defined function instead. | |
264 | ||
265 | For now, we do not overload the `&' operator. */ | |
266 | ||
267 | int unop_user_defined_p (op, arg1) | |
268 | enum exp_opcode op; | |
269 | value_ptr arg1; | |
270 | { | |
271 | struct type *type1; | |
272 | if (op == UNOP_ADDR) | |
273 | return 0; | |
274 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
275 | for (;;) | |
276 | { | |
277 | if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) | |
278 | return 1; | |
279 | else if (TYPE_CODE (type1) == TYPE_CODE_REF) | |
280 | type1 = TYPE_TARGET_TYPE (type1); | |
281 | else | |
282 | return 0; | |
283 | } | |
284 | } | |
285 | ||
286 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
287 | user defined function. Create an argument vector that calls | |
288 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
289 | binary operator which is legal for GNU C++). | |
290 | ||
291 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
292 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
293 | unused. */ | |
294 | ||
295 | value_ptr | |
296 | value_x_binop (arg1, arg2, op, otherop) | |
297 | value_ptr arg1, arg2; | |
298 | enum exp_opcode op, otherop; | |
299 | { | |
300 | value_ptr * argvec; | |
301 | char *ptr; | |
302 | char tstr[13]; | |
303 | int static_memfuncp; | |
304 | ||
305 | COERCE_REF (arg1); | |
306 | COERCE_REF (arg2); | |
307 | COERCE_ENUM (arg1); | |
308 | COERCE_ENUM (arg2); | |
309 | ||
310 | /* now we know that what we have to do is construct our | |
311 | arg vector and find the right function to call it with. */ | |
312 | ||
313 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
314 | error ("Can't do that binary op on that type"); /* FIXME be explicit */ | |
315 | ||
316 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4); | |
317 | argvec[1] = value_addr (arg1); | |
318 | argvec[2] = arg2; | |
319 | argvec[3] = 0; | |
320 | ||
321 | /* make the right function name up */ | |
322 | strcpy(tstr, "operator__"); | |
323 | ptr = tstr+8; | |
324 | switch (op) | |
325 | { | |
326 | case BINOP_ADD: strcpy(ptr,"+"); break; | |
327 | case BINOP_SUB: strcpy(ptr,"-"); break; | |
328 | case BINOP_MUL: strcpy(ptr,"*"); break; | |
329 | case BINOP_DIV: strcpy(ptr,"/"); break; | |
330 | case BINOP_REM: strcpy(ptr,"%"); break; | |
331 | case BINOP_LSH: strcpy(ptr,"<<"); break; | |
332 | case BINOP_RSH: strcpy(ptr,">>"); break; | |
333 | case BINOP_BITWISE_AND: strcpy(ptr,"&"); break; | |
334 | case BINOP_BITWISE_IOR: strcpy(ptr,"|"); break; | |
335 | case BINOP_BITWISE_XOR: strcpy(ptr,"^"); break; | |
336 | case BINOP_LOGICAL_AND: strcpy(ptr,"&&"); break; | |
337 | case BINOP_LOGICAL_OR: strcpy(ptr,"||"); break; | |
338 | case BINOP_MIN: strcpy(ptr,"<?"); break; | |
339 | case BINOP_MAX: strcpy(ptr,">?"); break; | |
340 | case BINOP_ASSIGN: strcpy(ptr,"="); break; | |
341 | case BINOP_ASSIGN_MODIFY: | |
342 | switch (otherop) | |
343 | { | |
344 | case BINOP_ADD: strcpy(ptr,"+="); break; | |
345 | case BINOP_SUB: strcpy(ptr,"-="); break; | |
346 | case BINOP_MUL: strcpy(ptr,"*="); break; | |
347 | case BINOP_DIV: strcpy(ptr,"/="); break; | |
348 | case BINOP_REM: strcpy(ptr,"%="); break; | |
349 | case BINOP_BITWISE_AND: strcpy(ptr,"&="); break; | |
350 | case BINOP_BITWISE_IOR: strcpy(ptr,"|="); break; | |
351 | case BINOP_BITWISE_XOR: strcpy(ptr,"^="); break; | |
352 | case BINOP_MOD: /* invalid */ | |
353 | default: | |
354 | error ("Invalid binary operation specified."); | |
355 | } | |
356 | break; | |
357 | case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break; | |
358 | case BINOP_EQUAL: strcpy(ptr,"=="); break; | |
359 | case BINOP_NOTEQUAL: strcpy(ptr,"!="); break; | |
360 | case BINOP_LESS: strcpy(ptr,"<"); break; | |
361 | case BINOP_GTR: strcpy(ptr,">"); break; | |
362 | case BINOP_GEQ: strcpy(ptr,">="); break; | |
363 | case BINOP_LEQ: strcpy(ptr,"<="); break; | |
364 | case BINOP_MOD: /* invalid */ | |
365 | default: | |
366 | error ("Invalid binary operation specified."); | |
367 | } | |
368 | ||
369 | argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); | |
370 | ||
371 | if (argvec[0]) | |
372 | { | |
373 | if (static_memfuncp) | |
374 | { | |
375 | argvec[1] = argvec[0]; | |
376 | argvec++; | |
377 | } | |
378 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
379 | } | |
380 | error ("member function %s not found", tstr); | |
381 | #ifdef lint | |
382 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
383 | #endif | |
384 | } | |
385 | ||
386 | /* We know that arg1 is a structure, so try to find a unary user | |
387 | defined operator that matches the operator in question. | |
388 | Create an argument vector that calls arg1.operator @ (arg1) | |
389 | and return that value (where '@' is (almost) any unary operator which | |
390 | is legal for GNU C++). */ | |
391 | ||
392 | value_ptr | |
393 | value_x_unop (arg1, op) | |
394 | value_ptr arg1; | |
395 | enum exp_opcode op; | |
396 | { | |
397 | value_ptr * argvec; | |
398 | char *ptr, *mangle_ptr; | |
399 | char tstr[13], mangle_tstr[13]; | |
400 | int static_memfuncp; | |
401 | ||
402 | COERCE_REF (arg1); | |
403 | COERCE_ENUM (arg1); | |
404 | ||
405 | /* now we know that what we have to do is construct our | |
406 | arg vector and find the right function to call it with. */ | |
407 | ||
408 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
409 | error ("Can't do that unary op on that type"); /* FIXME be explicit */ | |
410 | ||
411 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3); | |
412 | argvec[1] = value_addr (arg1); | |
413 | argvec[2] = 0; | |
414 | ||
415 | /* make the right function name up */ | |
416 | strcpy(tstr,"operator__"); | |
417 | ptr = tstr+8; | |
418 | strcpy(mangle_tstr, "__"); | |
419 | mangle_ptr = mangle_tstr+2; | |
420 | switch (op) | |
421 | { | |
422 | case UNOP_PREINCREMENT: strcpy(ptr,"++"); break; | |
423 | case UNOP_PREDECREMENT: strcpy(ptr,"++"); break; | |
424 | case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break; | |
425 | case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break; | |
426 | case UNOP_LOGICAL_NOT: strcpy(ptr,"!"); break; | |
427 | case UNOP_COMPLEMENT: strcpy(ptr,"~"); break; | |
428 | case UNOP_NEG: strcpy(ptr,"-"); break; | |
429 | default: | |
430 | error ("Invalid binary operation specified."); | |
431 | } | |
432 | ||
433 | argvec[0] = value_struct_elt (&arg1, argvec+1, tstr, &static_memfuncp, "structure"); | |
434 | ||
435 | if (argvec[0]) | |
436 | { | |
437 | if (static_memfuncp) | |
438 | { | |
439 | argvec[1] = argvec[0]; | |
440 | argvec++; | |
441 | } | |
442 | return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1); | |
443 | } | |
444 | error ("member function %s not found", tstr); | |
445 | return 0; /* For lint -- never reached */ | |
446 | } | |
447 | ||
448 | \f | |
449 | /* Concatenate two values with the following conditions: | |
450 | ||
451 | (1) Both values must be either bitstring values or character string | |
452 | values and the resulting value consists of the concatenation of | |
453 | ARG1 followed by ARG2. | |
454 | ||
455 | or | |
456 | ||
457 | One value must be an integer value and the other value must be | |
458 | either a bitstring value or character string value, which is | |
459 | to be repeated by the number of times specified by the integer | |
460 | value. | |
461 | ||
462 | ||
463 | (2) Boolean values are also allowed and are treated as bit string | |
464 | values of length 1. | |
465 | ||
466 | (3) Character values are also allowed and are treated as character | |
467 | string values of length 1. | |
468 | */ | |
469 | ||
470 | value_ptr | |
471 | value_concat (arg1, arg2) | |
472 | value_ptr arg1, arg2; | |
473 | { | |
474 | register value_ptr inval1, inval2, outval; | |
475 | int inval1len, inval2len; | |
476 | int count, idx; | |
477 | char *ptr; | |
478 | char inchar; | |
479 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); | |
480 | struct type *type2 = check_typedef (VALUE_TYPE (arg2)); | |
481 | ||
482 | COERCE_VARYING_ARRAY (arg1, type1); | |
483 | COERCE_VARYING_ARRAY (arg2, type2); | |
484 | ||
485 | /* First figure out if we are dealing with two values to be concatenated | |
486 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
487 | first of two concatenated values, or the repeat count. INVAL2 is set | |
488 | to the second of the two concatenated values or the value to be | |
489 | repeated. */ | |
490 | ||
491 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
492 | { | |
493 | struct type *tmp = type1; | |
494 | type1 = tmp; | |
495 | tmp = type2; | |
496 | inval1 = arg2; | |
497 | inval2 = arg1; | |
498 | } | |
499 | else | |
500 | { | |
501 | inval1 = arg1; | |
502 | inval2 = arg2; | |
503 | } | |
504 | ||
505 | /* Now process the input values. */ | |
506 | ||
507 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
508 | { | |
509 | /* We have a repeat count. Validate the second value and then | |
510 | construct a value repeated that many times. */ | |
511 | if (TYPE_CODE (type2) == TYPE_CODE_STRING | |
512 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
513 | { | |
514 | count = longest_to_int (value_as_long (inval1)); | |
515 | inval2len = TYPE_LENGTH (type2); | |
516 | ptr = (char *) alloca (count * inval2len); | |
517 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
518 | { | |
519 | inchar = (char) unpack_long (type2, | |
520 | VALUE_CONTENTS (inval2)); | |
521 | for (idx = 0; idx < count; idx++) | |
522 | { | |
523 | *(ptr + idx) = inchar; | |
524 | } | |
525 | } | |
526 | else | |
527 | { | |
528 | for (idx = 0; idx < count; idx++) | |
529 | { | |
530 | memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2), | |
531 | inval2len); | |
532 | } | |
533 | } | |
534 | outval = value_string (ptr, count * inval2len); | |
535 | } | |
536 | else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING | |
537 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
538 | { | |
539 | error ("unimplemented support for bitstring/boolean repeats"); | |
540 | } | |
541 | else | |
542 | { | |
543 | error ("can't repeat values of that type"); | |
544 | } | |
545 | } | |
546 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
547 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
548 | { | |
549 | /* We have two character strings to concatenate. */ | |
550 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
551 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
552 | { | |
553 | error ("Strings can only be concatenated with other strings."); | |
554 | } | |
555 | inval1len = TYPE_LENGTH (type1); | |
556 | inval2len = TYPE_LENGTH (type2); | |
557 | ptr = (char *) alloca (inval1len + inval2len); | |
558 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
559 | { | |
560 | *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1)); | |
561 | } | |
562 | else | |
563 | { | |
564 | memcpy (ptr, VALUE_CONTENTS (inval1), inval1len); | |
565 | } | |
566 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
567 | { | |
568 | *(ptr + inval1len) = | |
569 | (char) unpack_long (type2, VALUE_CONTENTS (inval2)); | |
570 | } | |
571 | else | |
572 | { | |
573 | memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len); | |
574 | } | |
575 | outval = value_string (ptr, inval1len + inval2len); | |
576 | } | |
577 | else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING | |
578 | || TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
579 | { | |
580 | /* We have two bitstrings to concatenate. */ | |
581 | if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING | |
582 | && TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
583 | { | |
584 | error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."); | |
585 | } | |
586 | error ("unimplemented support for bitstring/boolean concatenation."); | |
587 | } | |
588 | else | |
589 | { | |
590 | /* We don't know how to concatenate these operands. */ | |
591 | error ("illegal operands for concatenation."); | |
592 | } | |
593 | return (outval); | |
594 | } | |
595 | ||
596 | \f | |
597 | ||
598 | /* Perform a binary operation on two operands which have reasonable | |
599 | representations as integers or floats. This includes booleans, | |
600 | characters, integers, or floats. | |
601 | Does not support addition and subtraction on pointers; | |
602 | use value_add or value_sub if you want to handle those possibilities. */ | |
603 | ||
604 | value_ptr | |
605 | value_binop (arg1, arg2, op) | |
606 | value_ptr arg1, arg2; | |
607 | enum exp_opcode op; | |
608 | { | |
609 | register value_ptr val; | |
610 | struct type *type1, *type2; | |
611 | ||
612 | COERCE_REF (arg1); | |
613 | COERCE_REF (arg2); | |
614 | COERCE_ENUM (arg1); | |
615 | COERCE_ENUM (arg2); | |
616 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
617 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
618 | ||
619 | if ((TYPE_CODE (type1) != TYPE_CODE_FLT | |
620 | && TYPE_CODE (type1) != TYPE_CODE_CHAR | |
621 | && TYPE_CODE (type1) != TYPE_CODE_INT | |
622 | && TYPE_CODE (type1) != TYPE_CODE_BOOL | |
623 | && TYPE_CODE (type1) != TYPE_CODE_RANGE) | |
624 | || | |
625 | (TYPE_CODE (type2) != TYPE_CODE_FLT | |
626 | && TYPE_CODE (type2) != TYPE_CODE_CHAR | |
627 | && TYPE_CODE (type2) != TYPE_CODE_INT | |
628 | && TYPE_CODE (type2) != TYPE_CODE_BOOL | |
629 | && TYPE_CODE (type2) != TYPE_CODE_RANGE)) | |
630 | error ("Argument to arithmetic operation not a number or boolean."); | |
631 | ||
632 | if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
633 | || | |
634 | TYPE_CODE (type2) == TYPE_CODE_FLT) | |
635 | { | |
636 | /* FIXME-if-picky-about-floating-accuracy: Should be doing this | |
637 | in target format. real.c in GCC probably has the necessary | |
638 | code. */ | |
639 | DOUBLEST v1, v2, v; | |
640 | v1 = value_as_double (arg1); | |
641 | v2 = value_as_double (arg2); | |
642 | switch (op) | |
643 | { | |
644 | case BINOP_ADD: | |
645 | v = v1 + v2; | |
646 | break; | |
647 | ||
648 | case BINOP_SUB: | |
649 | v = v1 - v2; | |
650 | break; | |
651 | ||
652 | case BINOP_MUL: | |
653 | v = v1 * v2; | |
654 | break; | |
655 | ||
656 | case BINOP_DIV: | |
657 | v = v1 / v2; | |
658 | break; | |
659 | ||
660 | default: | |
661 | error ("Integer-only operation on floating point number."); | |
662 | } | |
663 | ||
664 | /* If either arg was long double, make sure that value is also long | |
665 | double. */ | |
666 | ||
667 | if (TYPE_LENGTH(type1) * 8 > TARGET_DOUBLE_BIT | |
668 | || TYPE_LENGTH(type2) * 8 > TARGET_DOUBLE_BIT) | |
669 | val = allocate_value (builtin_type_long_double); | |
670 | else | |
671 | val = allocate_value (builtin_type_double); | |
672 | ||
673 | store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), | |
674 | v); | |
675 | } | |
676 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
677 | && | |
678 | TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
679 | { | |
680 | LONGEST v1, v2, v; | |
681 | v1 = value_as_long (arg1); | |
682 | v2 = value_as_long (arg2); | |
683 | ||
684 | switch (op) | |
685 | { | |
686 | case BINOP_BITWISE_AND: | |
687 | v = v1 & v2; | |
688 | break; | |
689 | ||
690 | case BINOP_BITWISE_IOR: | |
691 | v = v1 | v2; | |
692 | break; | |
693 | ||
694 | case BINOP_BITWISE_XOR: | |
695 | v = v1 ^ v2; | |
696 | break; | |
697 | ||
698 | default: | |
699 | error ("Invalid operation on booleans."); | |
700 | } | |
701 | ||
702 | val = allocate_value (type1); | |
703 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
704 | TYPE_LENGTH (type1), | |
705 | v); | |
706 | } | |
707 | else | |
708 | /* Integral operations here. */ | |
709 | /* FIXME: Also mixed integral/booleans, with result an integer. */ | |
710 | /* FIXME: This implements ANSI C rules (also correct for C++). | |
711 | What about FORTRAN and chill? */ | |
712 | { | |
713 | unsigned int promoted_len1 = TYPE_LENGTH (type1); | |
714 | unsigned int promoted_len2 = TYPE_LENGTH (type2); | |
715 | int is_unsigned1 = TYPE_UNSIGNED (type1); | |
716 | int is_unsigned2 = TYPE_UNSIGNED (type2); | |
717 | unsigned int result_len; | |
718 | int unsigned_operation; | |
719 | ||
720 | /* Determine type length and signedness after promotion for | |
721 | both operands. */ | |
722 | if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) | |
723 | { | |
724 | is_unsigned1 = 0; | |
725 | promoted_len1 = TYPE_LENGTH (builtin_type_int); | |
726 | } | |
727 | if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) | |
728 | { | |
729 | is_unsigned2 = 0; | |
730 | promoted_len2 = TYPE_LENGTH (builtin_type_int); | |
731 | } | |
732 | ||
733 | /* Determine type length of the result, and if the operation should | |
734 | be done unsigned. | |
735 | Use the signedness of the operand with the greater length. | |
736 | If both operands are of equal length, use unsigned operation | |
737 | if one of the operands is unsigned. */ | |
738 | if (promoted_len1 > promoted_len2) | |
739 | { | |
740 | unsigned_operation = is_unsigned1; | |
741 | result_len = promoted_len1; | |
742 | } | |
743 | else if (promoted_len2 > promoted_len1) | |
744 | { | |
745 | unsigned_operation = is_unsigned2; | |
746 | result_len = promoted_len2; | |
747 | } | |
748 | else | |
749 | { | |
750 | unsigned_operation = is_unsigned1 || is_unsigned2; | |
751 | result_len = promoted_len1; | |
752 | } | |
753 | ||
754 | if (unsigned_operation) | |
755 | { | |
756 | unsigned LONGEST v1, v2, v; | |
757 | v1 = (unsigned LONGEST) value_as_long (arg1); | |
758 | v2 = (unsigned LONGEST) value_as_long (arg2); | |
759 | ||
760 | /* Truncate values to the type length of the result. */ | |
761 | if (result_len < sizeof (unsigned LONGEST)) | |
762 | { | |
763 | v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
764 | v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
765 | } | |
766 | ||
767 | switch (op) | |
768 | { | |
769 | case BINOP_ADD: | |
770 | v = v1 + v2; | |
771 | break; | |
772 | ||
773 | case BINOP_SUB: | |
774 | v = v1 - v2; | |
775 | break; | |
776 | ||
777 | case BINOP_MUL: | |
778 | v = v1 * v2; | |
779 | break; | |
780 | ||
781 | case BINOP_DIV: | |
782 | v = v1 / v2; | |
783 | break; | |
784 | ||
785 | case BINOP_REM: | |
786 | v = v1 % v2; | |
787 | break; | |
788 | ||
789 | case BINOP_MOD: | |
790 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
791 | v1 mod 0 has a defined value, v1. */ | |
792 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
793 | if (current_language -> la_language == language_chill | |
794 | && value_as_long (arg2) <= 0) | |
795 | { | |
796 | error ("Second operand of MOD must be greater than zero."); | |
797 | } | |
798 | if (v2 == 0) | |
799 | { | |
800 | v = v1; | |
801 | } | |
802 | else | |
803 | { | |
804 | v = v1/v2; | |
805 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ | |
806 | v = v1 - (v2 * v); | |
807 | } | |
808 | break; | |
809 | ||
810 | case BINOP_LSH: | |
811 | v = v1 << v2; | |
812 | break; | |
813 | ||
814 | case BINOP_RSH: | |
815 | v = v1 >> v2; | |
816 | break; | |
817 | ||
818 | case BINOP_BITWISE_AND: | |
819 | v = v1 & v2; | |
820 | break; | |
821 | ||
822 | case BINOP_BITWISE_IOR: | |
823 | v = v1 | v2; | |
824 | break; | |
825 | ||
826 | case BINOP_BITWISE_XOR: | |
827 | v = v1 ^ v2; | |
828 | break; | |
829 | ||
830 | case BINOP_LOGICAL_AND: | |
831 | v = v1 && v2; | |
832 | break; | |
833 | ||
834 | case BINOP_LOGICAL_OR: | |
835 | v = v1 || v2; | |
836 | break; | |
837 | ||
838 | case BINOP_MIN: | |
839 | v = v1 < v2 ? v1 : v2; | |
840 | break; | |
841 | ||
842 | case BINOP_MAX: | |
843 | v = v1 > v2 ? v1 : v2; | |
844 | break; | |
845 | ||
846 | case BINOP_EQUAL: | |
847 | v = v1 == v2; | |
848 | break; | |
849 | ||
850 | case BINOP_LESS: | |
851 | v = v1 < v2; | |
852 | break; | |
853 | ||
854 | default: | |
855 | error ("Invalid binary operation on numbers."); | |
856 | } | |
857 | ||
858 | /* This is a kludge to get around the fact that we don't | |
859 | know how to determine the result type from the types of | |
860 | the operands. (I'm not really sure how much we feel the | |
861 | need to duplicate the exact rules of the current | |
862 | language. They can get really hairy. But not to do so | |
863 | makes it hard to document just what we *do* do). */ | |
864 | ||
865 | /* Can't just call init_type because we wouldn't know what | |
866 | name to give the type. */ | |
867 | val = allocate_value | |
868 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
869 | ? builtin_type_unsigned_long_long | |
870 | : builtin_type_unsigned_long); | |
871 | store_unsigned_integer (VALUE_CONTENTS_RAW (val), | |
872 | TYPE_LENGTH (VALUE_TYPE (val)), | |
873 | v); | |
874 | } | |
875 | else | |
876 | { | |
877 | LONGEST v1, v2, v; | |
878 | v1 = value_as_long (arg1); | |
879 | v2 = value_as_long (arg2); | |
880 | ||
881 | switch (op) | |
882 | { | |
883 | case BINOP_ADD: | |
884 | v = v1 + v2; | |
885 | break; | |
886 | ||
887 | case BINOP_SUB: | |
888 | v = v1 - v2; | |
889 | break; | |
890 | ||
891 | case BINOP_MUL: | |
892 | v = v1 * v2; | |
893 | break; | |
894 | ||
895 | case BINOP_DIV: | |
896 | v = v1 / v2; | |
897 | break; | |
898 | ||
899 | case BINOP_REM: | |
900 | v = v1 % v2; | |
901 | break; | |
902 | ||
903 | case BINOP_MOD: | |
904 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
905 | X mod 0 has a defined value, X. */ | |
906 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
907 | if (current_language -> la_language == language_chill | |
908 | && v2 <= 0) | |
909 | { | |
910 | error ("Second operand of MOD must be greater than zero."); | |
911 | } | |
912 | if (v2 == 0) | |
913 | { | |
914 | v = v1; | |
915 | } | |
916 | else | |
917 | { | |
918 | v = v1/v2; | |
919 | /* Compute floor. */ | |
920 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
921 | { | |
922 | v--; | |
923 | } | |
924 | v = v1 - (v2 * v); | |
925 | } | |
926 | break; | |
927 | ||
928 | case BINOP_LSH: | |
929 | v = v1 << v2; | |
930 | break; | |
931 | ||
932 | case BINOP_RSH: | |
933 | v = v1 >> v2; | |
934 | break; | |
935 | ||
936 | case BINOP_BITWISE_AND: | |
937 | v = v1 & v2; | |
938 | break; | |
939 | ||
940 | case BINOP_BITWISE_IOR: | |
941 | v = v1 | v2; | |
942 | break; | |
943 | ||
944 | case BINOP_BITWISE_XOR: | |
945 | v = v1 ^ v2; | |
946 | break; | |
947 | ||
948 | case BINOP_LOGICAL_AND: | |
949 | v = v1 && v2; | |
950 | break; | |
951 | ||
952 | case BINOP_LOGICAL_OR: | |
953 | v = v1 || v2; | |
954 | break; | |
955 | ||
956 | case BINOP_MIN: | |
957 | v = v1 < v2 ? v1 : v2; | |
958 | break; | |
959 | ||
960 | case BINOP_MAX: | |
961 | v = v1 > v2 ? v1 : v2; | |
962 | break; | |
963 | ||
964 | case BINOP_EQUAL: | |
965 | v = v1 == v2; | |
966 | break; | |
967 | ||
968 | case BINOP_LESS: | |
969 | v = v1 < v2; | |
970 | break; | |
971 | ||
972 | default: | |
973 | error ("Invalid binary operation on numbers."); | |
974 | } | |
975 | ||
976 | /* This is a kludge to get around the fact that we don't | |
977 | know how to determine the result type from the types of | |
978 | the operands. (I'm not really sure how much we feel the | |
979 | need to duplicate the exact rules of the current | |
980 | language. They can get really hairy. But not to do so | |
981 | makes it hard to document just what we *do* do). */ | |
982 | ||
983 | /* Can't just call init_type because we wouldn't know what | |
984 | name to give the type. */ | |
985 | val = allocate_value | |
986 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
987 | ? builtin_type_long_long | |
988 | : builtin_type_long); | |
989 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
990 | TYPE_LENGTH (VALUE_TYPE (val)), | |
991 | v); | |
992 | } | |
993 | } | |
994 | ||
995 | return val; | |
996 | } | |
997 | \f | |
998 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
999 | ||
1000 | int | |
1001 | value_logical_not (arg1) | |
1002 | value_ptr arg1; | |
1003 | { | |
1004 | register int len; | |
1005 | register char *p; | |
1006 | struct type *type1; | |
1007 | ||
1008 | COERCE_NUMBER (arg1); | |
1009 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1010 | ||
1011 | if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
1012 | return 0 == value_as_double (arg1); | |
1013 | ||
1014 | len = TYPE_LENGTH (type1); | |
1015 | p = VALUE_CONTENTS (arg1); | |
1016 | ||
1017 | while (--len >= 0) | |
1018 | { | |
1019 | if (*p++) | |
1020 | break; | |
1021 | } | |
1022 | ||
1023 | return len < 0; | |
1024 | } | |
1025 | ||
1026 | /* Simulate the C operator == by returning a 1 | |
1027 | iff ARG1 and ARG2 have equal contents. */ | |
1028 | ||
1029 | int | |
1030 | value_equal (arg1, arg2) | |
1031 | register value_ptr arg1, arg2; | |
1032 | ||
1033 | { | |
1034 | register int len; | |
1035 | register char *p1, *p2; | |
1036 | struct type *type1, *type2; | |
1037 | enum type_code code1; | |
1038 | enum type_code code2; | |
1039 | ||
1040 | COERCE_NUMBER (arg1); | |
1041 | COERCE_NUMBER (arg2); | |
1042 | ||
1043 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1044 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1045 | code1 = TYPE_CODE (type1); | |
1046 | code2 = TYPE_CODE (type2); | |
1047 | ||
1048 | if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) | |
1049 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1050 | BINOP_EQUAL))); | |
1051 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) | |
1052 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) | |
1053 | return value_as_double (arg1) == value_as_double (arg2); | |
1054 | ||
1055 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1056 | is bigger. */ | |
1057 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) | |
1058 | return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2); | |
1059 | else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) | |
1060 | return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2); | |
1061 | ||
1062 | else if (code1 == code2 | |
1063 | && ((len = (int) TYPE_LENGTH (type1)) | |
1064 | == (int) TYPE_LENGTH (type2))) | |
1065 | { | |
1066 | p1 = VALUE_CONTENTS (arg1); | |
1067 | p2 = VALUE_CONTENTS (arg2); | |
1068 | while (--len >= 0) | |
1069 | { | |
1070 | if (*p1++ != *p2++) | |
1071 | break; | |
1072 | } | |
1073 | return len < 0; | |
1074 | } | |
1075 | else | |
1076 | { | |
1077 | error ("Invalid type combination in equality test."); | |
1078 | return 0; /* For lint -- never reached */ | |
1079 | } | |
1080 | } | |
1081 | ||
1082 | /* Simulate the C operator < by returning 1 | |
1083 | iff ARG1's contents are less than ARG2's. */ | |
1084 | ||
1085 | int | |
1086 | value_less (arg1, arg2) | |
1087 | register value_ptr arg1, arg2; | |
1088 | { | |
1089 | register enum type_code code1; | |
1090 | register enum type_code code2; | |
1091 | struct type *type1, *type2; | |
1092 | ||
1093 | COERCE_NUMBER (arg1); | |
1094 | COERCE_NUMBER (arg2); | |
1095 | ||
1096 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1097 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1098 | code1 = TYPE_CODE (type1); | |
1099 | code2 = TYPE_CODE (type2); | |
1100 | ||
1101 | if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT) | |
1102 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1103 | BINOP_LESS))); | |
1104 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT) | |
1105 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT)) | |
1106 | return value_as_double (arg1) < value_as_double (arg2); | |
1107 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
1108 | return value_as_pointer (arg1) < value_as_pointer (arg2); | |
1109 | ||
1110 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1111 | is bigger. */ | |
1112 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT) | |
1113 | return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2); | |
1114 | else if (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT) | |
1115 | return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2); | |
1116 | ||
1117 | else | |
1118 | { | |
1119 | error ("Invalid type combination in ordering comparison."); | |
1120 | return 0; | |
1121 | } | |
1122 | } | |
1123 | \f | |
1124 | /* The unary operators - and ~. Both free the argument ARG1. */ | |
1125 | ||
1126 | value_ptr | |
1127 | value_neg (arg1) | |
1128 | register value_ptr arg1; | |
1129 | { | |
1130 | register struct type *type; | |
1131 | ||
1132 | COERCE_REF (arg1); | |
1133 | COERCE_ENUM (arg1); | |
1134 | ||
1135 | type = check_typedef (VALUE_TYPE (arg1)); | |
1136 | ||
1137 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1138 | return value_from_double (type, - value_as_double (arg1)); | |
1139 | else if (TYPE_CODE (type) == TYPE_CODE_INT) | |
1140 | return value_from_longest (type, - value_as_long (arg1)); | |
1141 | else { | |
1142 | error ("Argument to negate operation not a number."); | |
1143 | return 0; /* For lint -- never reached */ | |
1144 | } | |
1145 | } | |
1146 | ||
1147 | value_ptr | |
1148 | value_complement (arg1) | |
1149 | register value_ptr arg1; | |
1150 | { | |
1151 | COERCE_REF (arg1); | |
1152 | COERCE_ENUM (arg1); | |
1153 | ||
1154 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_INT) | |
1155 | error ("Argument to complement operation not an integer."); | |
1156 | ||
1157 | return value_from_longest (VALUE_TYPE (arg1), ~ value_as_long (arg1)); | |
1158 | } | |
1159 | \f | |
1160 | /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE, | |
1161 | and whose VALUE_CONTENTS is valaddr. | |
1162 | Return -1 if out of range, -2 other error. */ | |
1163 | ||
1164 | int | |
1165 | value_bit_index (type, valaddr, index) | |
1166 | struct type *type; | |
1167 | char *valaddr; | |
1168 | int index; | |
1169 | { | |
1170 | LONGEST low_bound, high_bound; | |
1171 | LONGEST word; | |
1172 | unsigned rel_index; | |
1173 | struct type *range = TYPE_FIELD_TYPE (type, 0); | |
1174 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1175 | return -2; | |
1176 | if (index < low_bound || index > high_bound) | |
1177 | return -1; | |
1178 | rel_index = index - low_bound; | |
1179 | word = unpack_long (builtin_type_unsigned_char, | |
1180 | valaddr + (rel_index / TARGET_CHAR_BIT)); | |
1181 | rel_index %= TARGET_CHAR_BIT; | |
1182 | if (BITS_BIG_ENDIAN) | |
1183 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; | |
1184 | return (word >> rel_index) & 1; | |
1185 | } | |
1186 | ||
1187 | value_ptr | |
1188 | value_in (element, set) | |
1189 | value_ptr element, set; | |
1190 | { | |
1191 | int member; | |
1192 | struct type *settype = check_typedef (VALUE_TYPE (set)); | |
1193 | struct type *eltype = check_typedef (VALUE_TYPE (element)); | |
1194 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) | |
1195 | eltype = TYPE_TARGET_TYPE (eltype); | |
1196 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
1197 | error ("Second argument of 'IN' has wrong type"); | |
1198 | if (TYPE_CODE (eltype) != TYPE_CODE_INT | |
1199 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1200 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1201 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
1202 | error ("First argument of 'IN' has wrong type"); | |
1203 | member = value_bit_index (settype, VALUE_CONTENTS (set), | |
1204 | value_as_long (element)); | |
1205 | if (member < 0) | |
1206 | error ("First argument of 'IN' not in range"); | |
1207 | return value_from_longest (LA_BOOL_TYPE, member); | |
1208 | } | |
1209 | ||
1210 | void | |
1211 | _initialize_valarith () | |
1212 | { | |
1213 | } |