]>
Commit | Line | Data |
---|---|---|
1 | /* Print values for GDB, the GNU debugger. | |
2 | Copyright 1986, 1988, 1989, 1991, 1992, 1993, 1994 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
22 | #include "gdb_string.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "gdbcore.h" | |
27 | #include "gdbcmd.h" | |
28 | #include "target.h" | |
29 | #include "obstack.h" | |
30 | #include "language.h" | |
31 | #include "demangle.h" | |
32 | #include "annotate.h" | |
33 | ||
34 | #include <errno.h> | |
35 | ||
36 | /* Prototypes for local functions */ | |
37 | ||
38 | static void | |
39 | print_hex_chars PARAMS ((GDB_FILE *, unsigned char *, unsigned int)); | |
40 | ||
41 | static void | |
42 | show_print PARAMS ((char *, int)); | |
43 | ||
44 | static void | |
45 | set_print PARAMS ((char *, int)); | |
46 | ||
47 | static void | |
48 | set_radix PARAMS ((char *, int)); | |
49 | ||
50 | static void | |
51 | show_radix PARAMS ((char *, int)); | |
52 | ||
53 | static void | |
54 | set_input_radix PARAMS ((char *, int, struct cmd_list_element *)); | |
55 | ||
56 | static void | |
57 | set_input_radix_1 PARAMS ((int, unsigned)); | |
58 | ||
59 | static void | |
60 | set_output_radix PARAMS ((char *, int, struct cmd_list_element *)); | |
61 | ||
62 | static void | |
63 | set_output_radix_1 PARAMS ((int, unsigned)); | |
64 | ||
65 | /* Maximum number of chars to print for a string pointer value or vector | |
66 | contents, or UINT_MAX for no limit. Note that "set print elements 0" | |
67 | stores UINT_MAX in print_max, which displays in a show command as | |
68 | "unlimited". */ | |
69 | ||
70 | unsigned int print_max; | |
71 | #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ | |
72 | ||
73 | /* Default input and output radixes, and output format letter. */ | |
74 | ||
75 | unsigned input_radix = 10; | |
76 | unsigned output_radix = 10; | |
77 | int output_format = 0; | |
78 | ||
79 | /* Print repeat counts if there are more than this many repetitions of an | |
80 | element in an array. Referenced by the low level language dependent | |
81 | print routines. */ | |
82 | ||
83 | unsigned int repeat_count_threshold = 10; | |
84 | ||
85 | /* If nonzero, stops printing of char arrays at first null. */ | |
86 | ||
87 | int stop_print_at_null; | |
88 | ||
89 | /* Controls pretty printing of structures. */ | |
90 | ||
91 | int prettyprint_structs; | |
92 | ||
93 | /* Controls pretty printing of arrays. */ | |
94 | ||
95 | int prettyprint_arrays; | |
96 | ||
97 | /* If nonzero, causes unions inside structures or other unions to be | |
98 | printed. */ | |
99 | ||
100 | int unionprint; /* Controls printing of nested unions. */ | |
101 | ||
102 | /* If nonzero, causes machine addresses to be printed in certain contexts. */ | |
103 | ||
104 | int addressprint; /* Controls printing of machine addresses */ | |
105 | ||
106 | \f | |
107 | /* Print data of type TYPE located at VALADDR (within GDB), which came from | |
108 | the inferior at address ADDRESS, onto stdio stream STREAM according to | |
109 | FORMAT (a letter, or 0 for natural format using TYPE). | |
110 | ||
111 | If DEREF_REF is nonzero, then dereference references, otherwise just print | |
112 | them like pointers. | |
113 | ||
114 | The PRETTY parameter controls prettyprinting. | |
115 | ||
116 | If the data are a string pointer, returns the number of string characters | |
117 | printed. | |
118 | ||
119 | FIXME: The data at VALADDR is in target byte order. If gdb is ever | |
120 | enhanced to be able to debug more than the single target it was compiled | |
121 | for (specific CPU type and thus specific target byte ordering), then | |
122 | either the print routines are going to have to take this into account, | |
123 | or the data is going to have to be passed into here already converted | |
124 | to the host byte ordering, whichever is more convenient. */ | |
125 | ||
126 | ||
127 | int | |
128 | val_print (type, valaddr, address, stream, format, deref_ref, recurse, pretty) | |
129 | struct type *type; | |
130 | char *valaddr; | |
131 | CORE_ADDR address; | |
132 | GDB_FILE *stream; | |
133 | int format; | |
134 | int deref_ref; | |
135 | int recurse; | |
136 | enum val_prettyprint pretty; | |
137 | { | |
138 | struct type *real_type = check_typedef (type); | |
139 | if (pretty == Val_pretty_default) | |
140 | { | |
141 | pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint; | |
142 | } | |
143 | ||
144 | QUIT; | |
145 | ||
146 | /* Ensure that the type is complete and not just a stub. If the type is | |
147 | only a stub and we can't find and substitute its complete type, then | |
148 | print appropriate string and return. */ | |
149 | ||
150 | if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB) | |
151 | { | |
152 | fprintf_filtered (stream, "<incomplete type>"); | |
153 | gdb_flush (stream); | |
154 | return (0); | |
155 | } | |
156 | ||
157 | return (LA_VAL_PRINT (type, valaddr, address, stream, format, deref_ref, | |
158 | recurse, pretty)); | |
159 | } | |
160 | ||
161 | /* Print the value VAL in C-ish syntax on stream STREAM. | |
162 | FORMAT is a format-letter, or 0 for print in natural format of data type. | |
163 | If the object printed is a string pointer, returns | |
164 | the number of string bytes printed. */ | |
165 | ||
166 | int | |
167 | value_print (val, stream, format, pretty) | |
168 | value_ptr val; | |
169 | GDB_FILE *stream; | |
170 | int format; | |
171 | enum val_prettyprint pretty; | |
172 | { | |
173 | if (val == 0) | |
174 | { | |
175 | printf_filtered ("<address of value unknown>"); | |
176 | return 0; | |
177 | } | |
178 | if (VALUE_OPTIMIZED_OUT (val)) | |
179 | { | |
180 | printf_filtered ("<value optimized out>"); | |
181 | return 0; | |
182 | } | |
183 | return LA_VALUE_PRINT (val, stream, format, pretty); | |
184 | } | |
185 | ||
186 | /* Called by various <lang>_val_print routines to print | |
187 | TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the | |
188 | value. STREAM is where to print the value. */ | |
189 | ||
190 | void | |
191 | val_print_type_code_int (type, valaddr, stream) | |
192 | struct type *type; | |
193 | char *valaddr; | |
194 | GDB_FILE *stream; | |
195 | { | |
196 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) | |
197 | { | |
198 | LONGEST val; | |
199 | ||
200 | if (TYPE_UNSIGNED (type) | |
201 | && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), | |
202 | &val)) | |
203 | { | |
204 | print_longest (stream, 'u', 0, val); | |
205 | } | |
206 | else | |
207 | { | |
208 | /* Signed, or we couldn't turn an unsigned value into a | |
209 | LONGEST. For signed values, one could assume two's | |
210 | complement (a reasonable assumption, I think) and do | |
211 | better than this. */ | |
212 | print_hex_chars (stream, (unsigned char *) valaddr, | |
213 | TYPE_LENGTH (type)); | |
214 | } | |
215 | } | |
216 | else | |
217 | { | |
218 | #ifdef PRINT_TYPELESS_INTEGER | |
219 | PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr)); | |
220 | #else | |
221 | print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, | |
222 | unpack_long (type, valaddr)); | |
223 | #endif | |
224 | } | |
225 | } | |
226 | ||
227 | /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. | |
228 | The raison d'etre of this function is to consolidate printing of LONG_LONG's | |
229 | into this one function. Some platforms have long longs but don't have a | |
230 | printf() that supports "ll" in the format string. We handle these by seeing | |
231 | if the number is actually a long, and if not we just bail out and print the | |
232 | number in hex. The format chars b,h,w,g are from | |
233 | print_scalar_formatted(). If USE_LOCAL, format it according to the current | |
234 | language (this should be used for most integers which GDB prints, the | |
235 | exception is things like protocols where the format of the integer is | |
236 | a protocol thing, not a user-visible thing). */ | |
237 | ||
238 | void | |
239 | print_longest (stream, format, use_local, val_long) | |
240 | GDB_FILE *stream; | |
241 | int format; | |
242 | int use_local; | |
243 | LONGEST val_long; | |
244 | { | |
245 | #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG) | |
246 | long vtop, vbot; | |
247 | ||
248 | vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT); | |
249 | vbot = (long) val_long; | |
250 | ||
251 | if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX)) | |
252 | || ((format == 'u' || format == 'x') && (unsigned long long)val_long > UINT_MAX)) | |
253 | { | |
254 | fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot); | |
255 | return; | |
256 | } | |
257 | #endif | |
258 | ||
259 | #ifdef PRINTF_HAS_LONG_LONG | |
260 | switch (format) | |
261 | { | |
262 | case 'd': | |
263 | fprintf_filtered (stream, | |
264 | use_local ? local_decimal_format_custom ("ll") | |
265 | : "%lld", | |
266 | val_long); | |
267 | break; | |
268 | case 'u': | |
269 | fprintf_filtered (stream, "%llu", val_long); | |
270 | break; | |
271 | case 'x': | |
272 | fprintf_filtered (stream, | |
273 | use_local ? local_hex_format_custom ("ll") | |
274 | : "%llx", | |
275 | val_long); | |
276 | break; | |
277 | case 'o': | |
278 | fprintf_filtered (stream, | |
279 | use_local ? local_octal_format_custom ("ll") | |
280 | : "%llo", | |
281 | val_long); | |
282 | break; | |
283 | case 'b': | |
284 | fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long); | |
285 | break; | |
286 | case 'h': | |
287 | fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long); | |
288 | break; | |
289 | case 'w': | |
290 | fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long); | |
291 | break; | |
292 | case 'g': | |
293 | fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long); | |
294 | break; | |
295 | default: | |
296 | abort (); | |
297 | } | |
298 | #else /* !PRINTF_HAS_LONG_LONG */ | |
299 | /* In the following it is important to coerce (val_long) to a long. It does | |
300 | nothing if !LONG_LONG, but it will chop off the top half (which we know | |
301 | we can ignore) if the host supports long longs. */ | |
302 | ||
303 | switch (format) | |
304 | { | |
305 | case 'd': | |
306 | fprintf_filtered (stream, | |
307 | use_local ? local_decimal_format_custom ("l") | |
308 | : "%ld", | |
309 | (long) val_long); | |
310 | break; | |
311 | case 'u': | |
312 | fprintf_filtered (stream, "%lu", (unsigned long) val_long); | |
313 | break; | |
314 | case 'x': | |
315 | fprintf_filtered (stream, | |
316 | use_local ? local_hex_format_custom ("l") | |
317 | : "%lx", | |
318 | (long) val_long); | |
319 | break; | |
320 | case 'o': | |
321 | fprintf_filtered (stream, | |
322 | use_local ? local_octal_format_custom ("l") | |
323 | : "%lo", | |
324 | (long) val_long); | |
325 | break; | |
326 | case 'b': | |
327 | fprintf_filtered (stream, local_hex_format_custom ("02l"), | |
328 | (long) val_long); | |
329 | break; | |
330 | case 'h': | |
331 | fprintf_filtered (stream, local_hex_format_custom ("04l"), | |
332 | (long) val_long); | |
333 | break; | |
334 | case 'w': | |
335 | fprintf_filtered (stream, local_hex_format_custom ("08l"), | |
336 | (long) val_long); | |
337 | break; | |
338 | case 'g': | |
339 | fprintf_filtered (stream, local_hex_format_custom ("016l"), | |
340 | (long) val_long); | |
341 | break; | |
342 | default: | |
343 | abort (); | |
344 | } | |
345 | #endif /* !PRINTF_HAS_LONG_LONG */ | |
346 | } | |
347 | ||
348 | /* This used to be a macro, but I don't think it is called often enough | |
349 | to merit such treatment. */ | |
350 | /* Convert a LONGEST to an int. This is used in contexts (e.g. number of | |
351 | arguments to a function, number in a value history, register number, etc.) | |
352 | where the value must not be larger than can fit in an int. */ | |
353 | ||
354 | int | |
355 | longest_to_int (arg) | |
356 | LONGEST arg; | |
357 | { | |
358 | ||
359 | /* This check is in case a system header has botched the | |
360 | definition of INT_MIN, like on BSDI. */ | |
361 | if (sizeof (LONGEST) <= sizeof (int)) | |
362 | return arg; | |
363 | ||
364 | if (arg > INT_MAX || arg < INT_MIN) | |
365 | error ("Value out of range."); | |
366 | ||
367 | return arg; | |
368 | } | |
369 | ||
370 | /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR, | |
371 | on STREAM. */ | |
372 | ||
373 | void | |
374 | print_floating (valaddr, type, stream) | |
375 | char *valaddr; | |
376 | struct type *type; | |
377 | GDB_FILE *stream; | |
378 | { | |
379 | DOUBLEST doub; | |
380 | int inv; | |
381 | unsigned len = TYPE_LENGTH (type); | |
382 | ||
383 | #if defined (IEEE_FLOAT) | |
384 | ||
385 | /* Check for NaN's. Note that this code does not depend on us being | |
386 | on an IEEE conforming system. It only depends on the target | |
387 | machine using IEEE representation. This means (a) | |
388 | cross-debugging works right, and (2) IEEE_FLOAT can (and should) | |
389 | be defined for systems like the 68881, which uses IEEE | |
390 | representation, but is not IEEE conforming. */ | |
391 | ||
392 | { | |
393 | unsigned long low, high; | |
394 | /* Is the sign bit 0? */ | |
395 | int nonnegative; | |
396 | /* Is it is a NaN (i.e. the exponent is all ones and | |
397 | the fraction is nonzero)? */ | |
398 | int is_nan; | |
399 | ||
400 | if (len == 4) | |
401 | { | |
402 | /* It's single precision. */ | |
403 | /* Assume that floating point byte order is the same as | |
404 | integer byte order. */ | |
405 | low = extract_unsigned_integer (valaddr, 4); | |
406 | nonnegative = ((low & 0x80000000) == 0); | |
407 | is_nan = ((((low >> 23) & 0xFF) == 0xFF) | |
408 | && 0 != (low & 0x7FFFFF)); | |
409 | low &= 0x7fffff; | |
410 | high = 0; | |
411 | } | |
412 | else if (len == 8) | |
413 | { | |
414 | /* It's double precision. Get the high and low words. */ | |
415 | ||
416 | /* Assume that floating point byte order is the same as | |
417 | integer byte order. */ | |
418 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
419 | { | |
420 | low = extract_unsigned_integer (valaddr + 4, 4); | |
421 | high = extract_unsigned_integer (valaddr, 4); | |
422 | } | |
423 | else | |
424 | { | |
425 | low = extract_unsigned_integer (valaddr, 4); | |
426 | high = extract_unsigned_integer (valaddr + 4, 4); | |
427 | } | |
428 | nonnegative = ((high & 0x80000000) == 0); | |
429 | is_nan = (((high >> 20) & 0x7ff) == 0x7ff | |
430 | && ! ((((high & 0xfffff) == 0)) && (low == 0))); | |
431 | high &= 0xfffff; | |
432 | } | |
433 | else | |
434 | /* Extended. We can't detect NaNs for extendeds yet. Also note | |
435 | that currently extendeds get nuked to double in | |
436 | REGISTER_CONVERTIBLE. */ | |
437 | is_nan = 0; | |
438 | ||
439 | if (is_nan) | |
440 | { | |
441 | /* The meaning of the sign and fraction is not defined by IEEE. | |
442 | But the user might know what they mean. For example, they | |
443 | (in an implementation-defined manner) distinguish between | |
444 | signaling and quiet NaN's. */ | |
445 | if (high) | |
446 | fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + nonnegative, | |
447 | high, low); | |
448 | else | |
449 | fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low); | |
450 | return; | |
451 | } | |
452 | } | |
453 | #endif /* IEEE_FLOAT. */ | |
454 | ||
455 | doub = unpack_double (type, valaddr, &inv); | |
456 | if (inv) | |
457 | { | |
458 | fprintf_filtered (stream, "<invalid float value>"); | |
459 | return; | |
460 | } | |
461 | ||
462 | if (len < sizeof (double)) | |
463 | fprintf_filtered (stream, "%.9g", (double) doub); | |
464 | else if (len == sizeof (double)) | |
465 | fprintf_filtered (stream, "%.17g", (double) doub); | |
466 | else | |
467 | fprintf_filtered (stream, "%.35Lg", doub); | |
468 | } | |
469 | ||
470 | /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ | |
471 | ||
472 | static void | |
473 | print_hex_chars (stream, valaddr, len) | |
474 | GDB_FILE *stream; | |
475 | unsigned char *valaddr; | |
476 | unsigned len; | |
477 | { | |
478 | unsigned char *p; | |
479 | ||
480 | /* FIXME: We should be not printing leading zeroes in most cases. */ | |
481 | ||
482 | fprintf_filtered (stream, local_hex_format_prefix ()); | |
483 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
484 | { | |
485 | for (p = valaddr; | |
486 | p < valaddr + len; | |
487 | p++) | |
488 | { | |
489 | fprintf_filtered (stream, "%02x", *p); | |
490 | } | |
491 | } | |
492 | else | |
493 | { | |
494 | for (p = valaddr + len - 1; | |
495 | p >= valaddr; | |
496 | p--) | |
497 | { | |
498 | fprintf_filtered (stream, "%02x", *p); | |
499 | } | |
500 | } | |
501 | fprintf_filtered (stream, local_hex_format_suffix ()); | |
502 | } | |
503 | ||
504 | /* Called by various <lang>_val_print routines to print elements of an | |
505 | array in the form "<elem1>, <elem2>, <elem3>, ...". | |
506 | ||
507 | (FIXME?) Assumes array element separator is a comma, which is correct | |
508 | for all languages currently handled. | |
509 | (FIXME?) Some languages have a notation for repeated array elements, | |
510 | perhaps we should try to use that notation when appropriate. | |
511 | */ | |
512 | ||
513 | void | |
514 | val_print_array_elements (type, valaddr, address, stream, format, deref_ref, | |
515 | recurse, pretty, i) | |
516 | struct type *type; | |
517 | char *valaddr; | |
518 | CORE_ADDR address; | |
519 | GDB_FILE *stream; | |
520 | int format; | |
521 | int deref_ref; | |
522 | int recurse; | |
523 | enum val_prettyprint pretty; | |
524 | unsigned int i; | |
525 | { | |
526 | unsigned int things_printed = 0; | |
527 | unsigned len; | |
528 | struct type *elttype; | |
529 | unsigned eltlen; | |
530 | /* Position of the array element we are examining to see | |
531 | whether it is repeated. */ | |
532 | unsigned int rep1; | |
533 | /* Number of repetitions we have detected so far. */ | |
534 | unsigned int reps; | |
535 | ||
536 | elttype = TYPE_TARGET_TYPE (type); | |
537 | eltlen = TYPE_LENGTH (check_typedef (elttype)); | |
538 | len = TYPE_LENGTH (type) / eltlen; | |
539 | ||
540 | annotate_array_section_begin (i, elttype); | |
541 | ||
542 | for (; i < len && things_printed < print_max; i++) | |
543 | { | |
544 | if (i != 0) | |
545 | { | |
546 | if (prettyprint_arrays) | |
547 | { | |
548 | fprintf_filtered (stream, ",\n"); | |
549 | print_spaces_filtered (2 + 2 * recurse, stream); | |
550 | } | |
551 | else | |
552 | { | |
553 | fprintf_filtered (stream, ", "); | |
554 | } | |
555 | } | |
556 | wrap_here (n_spaces (2 + 2 * recurse)); | |
557 | ||
558 | rep1 = i + 1; | |
559 | reps = 1; | |
560 | while ((rep1 < len) && | |
561 | !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen)) | |
562 | { | |
563 | ++reps; | |
564 | ++rep1; | |
565 | } | |
566 | ||
567 | if (reps > repeat_count_threshold) | |
568 | { | |
569 | val_print (elttype, valaddr + i * eltlen, 0, stream, format, | |
570 | deref_ref, recurse + 1, pretty); | |
571 | annotate_elt_rep (reps); | |
572 | fprintf_filtered (stream, " <repeats %u times>", reps); | |
573 | annotate_elt_rep_end (); | |
574 | ||
575 | i = rep1 - 1; | |
576 | things_printed += repeat_count_threshold; | |
577 | } | |
578 | else | |
579 | { | |
580 | val_print (elttype, valaddr + i * eltlen, 0, stream, format, | |
581 | deref_ref, recurse + 1, pretty); | |
582 | annotate_elt (); | |
583 | things_printed++; | |
584 | } | |
585 | } | |
586 | annotate_array_section_end (); | |
587 | if (i < len) | |
588 | { | |
589 | fprintf_filtered (stream, "..."); | |
590 | } | |
591 | } | |
592 | ||
593 | /* Print a string from the inferior, starting at ADDR and printing up to LEN | |
594 | characters, to STREAM. If LEN is zero, printing stops at the first null | |
595 | byte, otherwise printing proceeds (including null bytes) until either | |
596 | print_max or LEN characters have been printed, whichever is smaller. */ | |
597 | ||
598 | /* FIXME: All callers supply LEN of zero. Supplying a non-zero LEN is | |
599 | pointless, this routine just then becomes a convoluted version of | |
600 | target_read_memory_partial. Removing all the LEN stuff would simplify | |
601 | this routine enormously. | |
602 | ||
603 | FIXME: Use target_read_string. */ | |
604 | ||
605 | int | |
606 | val_print_string (addr, len, stream) | |
607 | CORE_ADDR addr; | |
608 | unsigned int len; | |
609 | GDB_FILE *stream; | |
610 | { | |
611 | int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ | |
612 | int errcode; /* Errno returned from bad reads. */ | |
613 | unsigned int fetchlimit; /* Maximum number of bytes to fetch. */ | |
614 | unsigned int nfetch; /* Bytes to fetch / bytes fetched. */ | |
615 | unsigned int chunksize; /* Size of each fetch, in bytes. */ | |
616 | unsigned int bufsize; /* Size of current fetch buffer. */ | |
617 | char *buffer = NULL; /* Dynamically growable fetch buffer. */ | |
618 | char *bufptr; /* Pointer to next available byte in buffer. */ | |
619 | char *limit; /* First location past end of fetch buffer. */ | |
620 | struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ | |
621 | char peekchar; /* Place into which we can read one char. */ | |
622 | ||
623 | /* First we need to figure out the limit on the number of characters we are | |
624 | going to attempt to fetch and print. This is actually pretty simple. If | |
625 | LEN is nonzero, then the limit is the minimum of LEN and print_max. If | |
626 | LEN is zero, then the limit is print_max. This is true regardless of | |
627 | whether print_max is zero, UINT_MAX (unlimited), or something in between, | |
628 | because finding the null byte (or available memory) is what actually | |
629 | limits the fetch. */ | |
630 | ||
631 | fetchlimit = (len == 0 ? print_max : min (len, print_max)); | |
632 | ||
633 | /* Now decide how large of chunks to try to read in one operation. This | |
634 | is also pretty simple. If LEN is nonzero, then we want fetchlimit bytes, | |
635 | so we might as well read them all in one operation. If LEN is zero, we | |
636 | are looking for a null terminator to end the fetching, so we might as | |
637 | well read in blocks that are large enough to be efficient, but not so | |
638 | large as to be slow if fetchlimit happens to be large. So we choose the | |
639 | minimum of 8 and fetchlimit. We used to use 200 instead of 8 but | |
640 | 200 is way too big for remote debugging over a serial line. */ | |
641 | ||
642 | chunksize = (len == 0 ? min (8, fetchlimit) : fetchlimit); | |
643 | ||
644 | /* Loop until we either have all the characters to print, or we encounter | |
645 | some error, such as bumping into the end of the address space. */ | |
646 | ||
647 | bufsize = 0; | |
648 | do { | |
649 | QUIT; | |
650 | /* Figure out how much to fetch this time, and grow the buffer to fit. */ | |
651 | nfetch = min (chunksize, fetchlimit - bufsize); | |
652 | bufsize += nfetch; | |
653 | if (buffer == NULL) | |
654 | { | |
655 | buffer = (char *) xmalloc (bufsize); | |
656 | bufptr = buffer; | |
657 | } | |
658 | else | |
659 | { | |
660 | discard_cleanups (old_chain); | |
661 | buffer = (char *) xrealloc (buffer, bufsize); | |
662 | bufptr = buffer + bufsize - nfetch; | |
663 | } | |
664 | old_chain = make_cleanup (free, buffer); | |
665 | ||
666 | /* Read as much as we can. */ | |
667 | nfetch = target_read_memory_partial (addr, bufptr, nfetch, &errcode); | |
668 | if (len != 0) | |
669 | { | |
670 | addr += nfetch; | |
671 | bufptr += nfetch; | |
672 | } | |
673 | else | |
674 | { | |
675 | /* Scan this chunk for the null byte that terminates the string | |
676 | to print. If found, we don't need to fetch any more. Note | |
677 | that bufptr is explicitly left pointing at the next character | |
678 | after the null byte, or at the next character after the end of | |
679 | the buffer. */ | |
680 | limit = bufptr + nfetch; | |
681 | while (bufptr < limit) | |
682 | { | |
683 | ++addr; | |
684 | ++bufptr; | |
685 | if (bufptr[-1] == '\0') | |
686 | { | |
687 | /* We don't care about any error which happened after | |
688 | the NULL terminator. */ | |
689 | errcode = 0; | |
690 | break; | |
691 | } | |
692 | } | |
693 | } | |
694 | } while (errcode == 0 /* no error */ | |
695 | && bufsize < fetchlimit /* no overrun */ | |
696 | && !(len == 0 && *(bufptr - 1) == '\0')); /* no null term */ | |
697 | ||
698 | /* bufptr and addr now point immediately beyond the last byte which we | |
699 | consider part of the string (including a '\0' which ends the string). */ | |
700 | ||
701 | /* We now have either successfully filled the buffer to fetchlimit, or | |
702 | terminated early due to an error or finding a null byte when LEN is | |
703 | zero. */ | |
704 | ||
705 | if (len == 0 && bufptr > buffer && *(bufptr - 1) != '\0') | |
706 | { | |
707 | /* We didn't find a null terminator we were looking for. Attempt | |
708 | to peek at the next character. If not successful, or it is not | |
709 | a null byte, then force ellipsis to be printed. */ | |
710 | if (target_read_memory (addr, &peekchar, 1) != 0 || peekchar != '\0') | |
711 | { | |
712 | force_ellipsis = 1; | |
713 | } | |
714 | } | |
715 | else if ((len != 0 && errcode != 0) || (len > bufptr - buffer)) | |
716 | { | |
717 | /* Getting an error when we have a requested length, or fetching less | |
718 | than the number of characters actually requested, always make us | |
719 | print ellipsis. */ | |
720 | force_ellipsis = 1; | |
721 | } | |
722 | ||
723 | QUIT; | |
724 | ||
725 | /* If we get an error before fetching anything, don't print a string. | |
726 | But if we fetch something and then get an error, print the string | |
727 | and then the error message. */ | |
728 | if (errcode == 0 || bufptr > buffer) | |
729 | { | |
730 | if (addressprint) | |
731 | { | |
732 | fputs_filtered (" ", stream); | |
733 | } | |
734 | LA_PRINT_STRING (stream, buffer, bufptr - buffer, force_ellipsis); | |
735 | } | |
736 | ||
737 | if (errcode != 0) | |
738 | { | |
739 | if (errcode == EIO) | |
740 | { | |
741 | fprintf_filtered (stream, " <Address "); | |
742 | print_address_numeric (addr, 1, stream); | |
743 | fprintf_filtered (stream, " out of bounds>"); | |
744 | } | |
745 | else | |
746 | { | |
747 | fprintf_filtered (stream, " <Error reading address "); | |
748 | print_address_numeric (addr, 1, stream); | |
749 | fprintf_filtered (stream, ": %s>", safe_strerror (errcode)); | |
750 | } | |
751 | } | |
752 | gdb_flush (stream); | |
753 | do_cleanups (old_chain); | |
754 | return (bufptr - buffer); | |
755 | } | |
756 | ||
757 | \f | |
758 | /* Validate an input or output radix setting, and make sure the user | |
759 | knows what they really did here. Radix setting is confusing, e.g. | |
760 | setting the input radix to "10" never changes it! */ | |
761 | ||
762 | /* ARGSUSED */ | |
763 | static void | |
764 | set_input_radix (args, from_tty, c) | |
765 | char *args; | |
766 | int from_tty; | |
767 | struct cmd_list_element *c; | |
768 | { | |
769 | set_input_radix_1 (from_tty, *(unsigned *)c->var); | |
770 | } | |
771 | ||
772 | /* ARGSUSED */ | |
773 | static void | |
774 | set_input_radix_1 (from_tty, radix) | |
775 | int from_tty; | |
776 | unsigned radix; | |
777 | { | |
778 | /* We don't currently disallow any input radix except 0 or 1, which don't | |
779 | make any mathematical sense. In theory, we can deal with any input | |
780 | radix greater than 1, even if we don't have unique digits for every | |
781 | value from 0 to radix-1, but in practice we lose on large radix values. | |
782 | We should either fix the lossage or restrict the radix range more. | |
783 | (FIXME). */ | |
784 | ||
785 | if (radix < 2) | |
786 | { | |
787 | error ("Nonsense input radix ``decimal %u''; input radix unchanged.", | |
788 | radix); | |
789 | } | |
790 | input_radix = radix; | |
791 | if (from_tty) | |
792 | { | |
793 | printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n", | |
794 | radix, radix, radix); | |
795 | } | |
796 | } | |
797 | ||
798 | /* ARGSUSED */ | |
799 | static void | |
800 | set_output_radix (args, from_tty, c) | |
801 | char *args; | |
802 | int from_tty; | |
803 | struct cmd_list_element *c; | |
804 | { | |
805 | set_output_radix_1 (from_tty, *(unsigned *)c->var); | |
806 | } | |
807 | ||
808 | static void | |
809 | set_output_radix_1 (from_tty, radix) | |
810 | int from_tty; | |
811 | unsigned radix; | |
812 | { | |
813 | /* Validate the radix and disallow ones that we aren't prepared to | |
814 | handle correctly, leaving the radix unchanged. */ | |
815 | switch (radix) | |
816 | { | |
817 | case 16: | |
818 | output_format = 'x'; /* hex */ | |
819 | break; | |
820 | case 10: | |
821 | output_format = 0; /* decimal */ | |
822 | break; | |
823 | case 8: | |
824 | output_format = 'o'; /* octal */ | |
825 | break; | |
826 | default: | |
827 | error ("Unsupported output radix ``decimal %u''; output radix unchanged.", | |
828 | radix); | |
829 | } | |
830 | output_radix = radix; | |
831 | if (from_tty) | |
832 | { | |
833 | printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n", | |
834 | radix, radix, radix); | |
835 | } | |
836 | } | |
837 | ||
838 | /* Set both the input and output radix at once. Try to set the output radix | |
839 | first, since it has the most restrictive range. An radix that is valid as | |
840 | an output radix is also valid as an input radix. | |
841 | ||
842 | It may be useful to have an unusual input radix. If the user wishes to | |
843 | set an input radix that is not valid as an output radix, he needs to use | |
844 | the 'set input-radix' command. */ | |
845 | ||
846 | static void | |
847 | set_radix (arg, from_tty) | |
848 | char *arg; | |
849 | int from_tty; | |
850 | { | |
851 | unsigned radix; | |
852 | ||
853 | radix = (arg == NULL) ? 10 : parse_and_eval_address (arg); | |
854 | set_output_radix_1 (0, radix); | |
855 | set_input_radix_1 (0, radix); | |
856 | if (from_tty) | |
857 | { | |
858 | printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n", | |
859 | radix, radix, radix); | |
860 | } | |
861 | } | |
862 | ||
863 | /* Show both the input and output radices. */ | |
864 | ||
865 | /*ARGSUSED*/ | |
866 | static void | |
867 | show_radix (arg, from_tty) | |
868 | char *arg; | |
869 | int from_tty; | |
870 | { | |
871 | if (from_tty) | |
872 | { | |
873 | if (input_radix == output_radix) | |
874 | { | |
875 | printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n", | |
876 | input_radix, input_radix, input_radix); | |
877 | } | |
878 | else | |
879 | { | |
880 | printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n", | |
881 | input_radix, input_radix, input_radix); | |
882 | printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n", | |
883 | output_radix, output_radix, output_radix); | |
884 | } | |
885 | } | |
886 | } | |
887 | ||
888 | \f | |
889 | /*ARGSUSED*/ | |
890 | static void | |
891 | set_print (arg, from_tty) | |
892 | char *arg; | |
893 | int from_tty; | |
894 | { | |
895 | printf_unfiltered ( | |
896 | "\"set print\" must be followed by the name of a print subcommand.\n"); | |
897 | help_list (setprintlist, "set print ", -1, gdb_stdout); | |
898 | } | |
899 | ||
900 | /*ARGSUSED*/ | |
901 | static void | |
902 | show_print (args, from_tty) | |
903 | char *args; | |
904 | int from_tty; | |
905 | { | |
906 | cmd_show_list (showprintlist, from_tty, ""); | |
907 | } | |
908 | \f | |
909 | void | |
910 | _initialize_valprint () | |
911 | { | |
912 | struct cmd_list_element *c; | |
913 | ||
914 | add_prefix_cmd ("print", no_class, set_print, | |
915 | "Generic command for setting how things print.", | |
916 | &setprintlist, "set print ", 0, &setlist); | |
917 | add_alias_cmd ("p", "print", no_class, 1, &setlist); | |
918 | /* prefer set print to set prompt */ | |
919 | add_alias_cmd ("pr", "print", no_class, 1, &setlist); | |
920 | ||
921 | add_prefix_cmd ("print", no_class, show_print, | |
922 | "Generic command for showing print settings.", | |
923 | &showprintlist, "show print ", 0, &showlist); | |
924 | add_alias_cmd ("p", "print", no_class, 1, &showlist); | |
925 | add_alias_cmd ("pr", "print", no_class, 1, &showlist); | |
926 | ||
927 | add_show_from_set | |
928 | (add_set_cmd ("elements", no_class, var_uinteger, (char *)&print_max, | |
929 | "Set limit on string chars or array elements to print.\n\ | |
930 | \"set print elements 0\" causes there to be no limit.", | |
931 | &setprintlist), | |
932 | &showprintlist); | |
933 | ||
934 | add_show_from_set | |
935 | (add_set_cmd ("null-stop", no_class, var_boolean, | |
936 | (char *)&stop_print_at_null, | |
937 | "Set printing of char arrays to stop at first null char.", | |
938 | &setprintlist), | |
939 | &showprintlist); | |
940 | ||
941 | add_show_from_set | |
942 | (add_set_cmd ("repeats", no_class, var_uinteger, | |
943 | (char *)&repeat_count_threshold, | |
944 | "Set threshold for repeated print elements.\n\ | |
945 | \"set print repeats 0\" causes all elements to be individually printed.", | |
946 | &setprintlist), | |
947 | &showprintlist); | |
948 | ||
949 | add_show_from_set | |
950 | (add_set_cmd ("pretty", class_support, var_boolean, | |
951 | (char *)&prettyprint_structs, | |
952 | "Set prettyprinting of structures.", | |
953 | &setprintlist), | |
954 | &showprintlist); | |
955 | ||
956 | add_show_from_set | |
957 | (add_set_cmd ("union", class_support, var_boolean, (char *)&unionprint, | |
958 | "Set printing of unions interior to structures.", | |
959 | &setprintlist), | |
960 | &showprintlist); | |
961 | ||
962 | add_show_from_set | |
963 | (add_set_cmd ("array", class_support, var_boolean, | |
964 | (char *)&prettyprint_arrays, | |
965 | "Set prettyprinting of arrays.", | |
966 | &setprintlist), | |
967 | &showprintlist); | |
968 | ||
969 | add_show_from_set | |
970 | (add_set_cmd ("address", class_support, var_boolean, (char *)&addressprint, | |
971 | "Set printing of addresses.", | |
972 | &setprintlist), | |
973 | &showprintlist); | |
974 | ||
975 | c = add_set_cmd ("input-radix", class_support, var_uinteger, | |
976 | (char *)&input_radix, | |
977 | "Set default input radix for entering numbers.", | |
978 | &setlist); | |
979 | add_show_from_set (c, &showlist); | |
980 | c->function.sfunc = set_input_radix; | |
981 | ||
982 | c = add_set_cmd ("output-radix", class_support, var_uinteger, | |
983 | (char *)&output_radix, | |
984 | "Set default output radix for printing of values.", | |
985 | &setlist); | |
986 | add_show_from_set (c, &showlist); | |
987 | c->function.sfunc = set_output_radix; | |
988 | ||
989 | /* The "set radix" and "show radix" commands are special in that they are | |
990 | like normal set and show commands but allow two normally independent | |
991 | variables to be either set or shown with a single command. So the | |
992 | usual add_set_cmd() and add_show_from_set() commands aren't really | |
993 | appropriate. */ | |
994 | add_cmd ("radix", class_support, set_radix, | |
995 | "Set default input and output number radices.\n\ | |
996 | Use 'set input-radix' or 'set output-radix' to independently set each.\n\ | |
997 | Without an argument, sets both radices back to the default value of 10.", | |
998 | &setlist); | |
999 | add_cmd ("radix", class_support, show_radix, | |
1000 | "Show the default input and output number radices.\n\ | |
1001 | Use 'show input-radix' or 'show output-radix' to independently show each.", | |
1002 | &showlist); | |
1003 | ||
1004 | /* Give people the defaults which they are used to. */ | |
1005 | prettyprint_structs = 0; | |
1006 | prettyprint_arrays = 0; | |
1007 | unionprint = 1; | |
1008 | addressprint = 1; | |
1009 | print_max = PRINT_MAX_DEFAULT; | |
1010 | } |