]>
Commit | Line | Data |
---|---|---|
1 | /* Disassemble support for GDB. | |
2 | ||
3 | Copyright (C) 2000-2016 Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 3 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
19 | ||
20 | #include "defs.h" | |
21 | #include "target.h" | |
22 | #include "value.h" | |
23 | #include "ui-out.h" | |
24 | #include "disasm.h" | |
25 | #include "gdbcore.h" | |
26 | #include "dis-asm.h" | |
27 | #include "source.h" | |
28 | ||
29 | /* Disassemble functions. | |
30 | FIXME: We should get rid of all the duplicate code in gdb that does | |
31 | the same thing: disassemble_command() and the gdbtk variation. */ | |
32 | ||
33 | /* This structure is used to store line number information for the | |
34 | deprecated /m option. | |
35 | We need a different sort of line table from the normal one cuz we can't | |
36 | depend upon implicit line-end pc's for lines to do the | |
37 | reordering in this function. */ | |
38 | ||
39 | struct deprecated_dis_line_entry | |
40 | { | |
41 | int line; | |
42 | CORE_ADDR start_pc; | |
43 | CORE_ADDR end_pc; | |
44 | }; | |
45 | ||
46 | /* This Structure is used to store line number information. | |
47 | We need a different sort of line table from the normal one cuz we can't | |
48 | depend upon implicit line-end pc's for lines to do the | |
49 | reordering in this function. */ | |
50 | ||
51 | struct dis_line_entry | |
52 | { | |
53 | struct symtab *symtab; | |
54 | int line; | |
55 | }; | |
56 | ||
57 | /* Hash function for dis_line_entry. */ | |
58 | ||
59 | static hashval_t | |
60 | hash_dis_line_entry (const void *item) | |
61 | { | |
62 | const struct dis_line_entry *dle = (const struct dis_line_entry *) item; | |
63 | ||
64 | return htab_hash_pointer (dle->symtab) + dle->line; | |
65 | } | |
66 | ||
67 | /* Equal function for dis_line_entry. */ | |
68 | ||
69 | static int | |
70 | eq_dis_line_entry (const void *item_lhs, const void *item_rhs) | |
71 | { | |
72 | const struct dis_line_entry *lhs = (const struct dis_line_entry *) item_lhs; | |
73 | const struct dis_line_entry *rhs = (const struct dis_line_entry *) item_rhs; | |
74 | ||
75 | return (lhs->symtab == rhs->symtab | |
76 | && lhs->line == rhs->line); | |
77 | } | |
78 | ||
79 | /* Create the table to manage lines for mixed source/disassembly. */ | |
80 | ||
81 | static htab_t | |
82 | allocate_dis_line_table (void) | |
83 | { | |
84 | return htab_create_alloc (41, | |
85 | hash_dis_line_entry, eq_dis_line_entry, | |
86 | xfree, xcalloc, xfree); | |
87 | } | |
88 | ||
89 | /* Add a new dis_line_entry containing SYMTAB and LINE to TABLE. */ | |
90 | ||
91 | static void | |
92 | add_dis_line_entry (htab_t table, struct symtab *symtab, int line) | |
93 | { | |
94 | void **slot; | |
95 | struct dis_line_entry dle, *dlep; | |
96 | ||
97 | dle.symtab = symtab; | |
98 | dle.line = line; | |
99 | slot = htab_find_slot (table, &dle, INSERT); | |
100 | if (*slot == NULL) | |
101 | { | |
102 | dlep = XNEW (struct dis_line_entry); | |
103 | dlep->symtab = symtab; | |
104 | dlep->line = line; | |
105 | *slot = dlep; | |
106 | } | |
107 | } | |
108 | ||
109 | /* Return non-zero if SYMTAB, LINE are in TABLE. */ | |
110 | ||
111 | static int | |
112 | line_has_code_p (htab_t table, struct symtab *symtab, int line) | |
113 | { | |
114 | struct dis_line_entry dle; | |
115 | ||
116 | dle.symtab = symtab; | |
117 | dle.line = line; | |
118 | return htab_find (table, &dle) != NULL; | |
119 | } | |
120 | ||
121 | /* Like target_read_memory, but slightly different parameters. */ | |
122 | static int | |
123 | dis_asm_read_memory (bfd_vma memaddr, gdb_byte *myaddr, unsigned int len, | |
124 | struct disassemble_info *info) | |
125 | { | |
126 | return target_read_code (memaddr, myaddr, len); | |
127 | } | |
128 | ||
129 | /* Like memory_error with slightly different parameters. */ | |
130 | static void | |
131 | dis_asm_memory_error (int err, bfd_vma memaddr, | |
132 | struct disassemble_info *info) | |
133 | { | |
134 | memory_error (TARGET_XFER_E_IO, memaddr); | |
135 | } | |
136 | ||
137 | /* Like print_address with slightly different parameters. */ | |
138 | static void | |
139 | dis_asm_print_address (bfd_vma addr, struct disassemble_info *info) | |
140 | { | |
141 | struct gdbarch *gdbarch = (struct gdbarch *) info->application_data; | |
142 | ||
143 | print_address (gdbarch, addr, (struct ui_file *) info->stream); | |
144 | } | |
145 | ||
146 | static int | |
147 | compare_lines (const void *mle1p, const void *mle2p) | |
148 | { | |
149 | struct deprecated_dis_line_entry *mle1, *mle2; | |
150 | int val; | |
151 | ||
152 | mle1 = (struct deprecated_dis_line_entry *) mle1p; | |
153 | mle2 = (struct deprecated_dis_line_entry *) mle2p; | |
154 | ||
155 | /* End of sequence markers have a line number of 0 but don't want to | |
156 | be sorted to the head of the list, instead sort by PC. */ | |
157 | if (mle1->line == 0 || mle2->line == 0) | |
158 | { | |
159 | val = mle1->start_pc - mle2->start_pc; | |
160 | if (val == 0) | |
161 | val = mle1->line - mle2->line; | |
162 | } | |
163 | else | |
164 | { | |
165 | val = mle1->line - mle2->line; | |
166 | if (val == 0) | |
167 | val = mle1->start_pc - mle2->start_pc; | |
168 | } | |
169 | return val; | |
170 | } | |
171 | ||
172 | /* See disasm.h. */ | |
173 | ||
174 | int | |
175 | gdb_pretty_print_insn (struct gdbarch *gdbarch, struct ui_out *uiout, | |
176 | struct disassemble_info * di, | |
177 | const struct disasm_insn *insn, int flags, | |
178 | struct ui_file *stb) | |
179 | { | |
180 | /* parts of the symbolic representation of the address */ | |
181 | int unmapped; | |
182 | int offset; | |
183 | int line; | |
184 | int size; | |
185 | struct cleanup *ui_out_chain; | |
186 | char *filename = NULL; | |
187 | char *name = NULL; | |
188 | CORE_ADDR pc; | |
189 | ||
190 | ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); | |
191 | pc = insn->addr; | |
192 | ||
193 | if (insn->number != 0) | |
194 | { | |
195 | ui_out_field_fmt (uiout, "insn-number", "%u", insn->number); | |
196 | ui_out_text (uiout, "\t"); | |
197 | } | |
198 | ||
199 | if ((flags & DISASSEMBLY_SPECULATIVE) != 0) | |
200 | { | |
201 | if (insn->is_speculative) | |
202 | { | |
203 | ui_out_field_string (uiout, "is-speculative", "?"); | |
204 | ||
205 | /* The speculative execution indication overwrites the first | |
206 | character of the PC prefix. | |
207 | We assume a PC prefix length of 3 characters. */ | |
208 | if ((flags & DISASSEMBLY_OMIT_PC) == 0) | |
209 | ui_out_text (uiout, pc_prefix (pc) + 1); | |
210 | else | |
211 | ui_out_text (uiout, " "); | |
212 | } | |
213 | else if ((flags & DISASSEMBLY_OMIT_PC) == 0) | |
214 | ui_out_text (uiout, pc_prefix (pc)); | |
215 | else | |
216 | ui_out_text (uiout, " "); | |
217 | } | |
218 | else if ((flags & DISASSEMBLY_OMIT_PC) == 0) | |
219 | ui_out_text (uiout, pc_prefix (pc)); | |
220 | ui_out_field_core_addr (uiout, "address", gdbarch, pc); | |
221 | ||
222 | if (!build_address_symbolic (gdbarch, pc, 0, &name, &offset, &filename, | |
223 | &line, &unmapped)) | |
224 | { | |
225 | /* We don't care now about line, filename and unmapped. But we might in | |
226 | the future. */ | |
227 | ui_out_text (uiout, " <"); | |
228 | if ((flags & DISASSEMBLY_OMIT_FNAME) == 0) | |
229 | ui_out_field_string (uiout, "func-name", name); | |
230 | ui_out_text (uiout, "+"); | |
231 | ui_out_field_int (uiout, "offset", offset); | |
232 | ui_out_text (uiout, ">:\t"); | |
233 | } | |
234 | else | |
235 | ui_out_text (uiout, ":\t"); | |
236 | ||
237 | if (filename != NULL) | |
238 | xfree (filename); | |
239 | if (name != NULL) | |
240 | xfree (name); | |
241 | ||
242 | ui_file_rewind (stb); | |
243 | if (flags & DISASSEMBLY_RAW_INSN) | |
244 | { | |
245 | CORE_ADDR end_pc; | |
246 | bfd_byte data; | |
247 | int err; | |
248 | const char *spacer = ""; | |
249 | ||
250 | /* Build the opcodes using a temporary stream so we can | |
251 | write them out in a single go for the MI. */ | |
252 | struct ui_file *opcode_stream = mem_fileopen (); | |
253 | struct cleanup *cleanups = | |
254 | make_cleanup_ui_file_delete (opcode_stream); | |
255 | ||
256 | size = gdbarch_print_insn (gdbarch, pc, di); | |
257 | end_pc = pc + size; | |
258 | ||
259 | for (;pc < end_pc; ++pc) | |
260 | { | |
261 | err = (*di->read_memory_func) (pc, &data, 1, di); | |
262 | if (err != 0) | |
263 | (*di->memory_error_func) (err, pc, di); | |
264 | fprintf_filtered (opcode_stream, "%s%02x", | |
265 | spacer, (unsigned) data); | |
266 | spacer = " "; | |
267 | } | |
268 | ||
269 | ui_out_field_stream (uiout, "opcodes", opcode_stream); | |
270 | ui_out_text (uiout, "\t"); | |
271 | ||
272 | do_cleanups (cleanups); | |
273 | } | |
274 | else | |
275 | size = gdbarch_print_insn (gdbarch, pc, di); | |
276 | ||
277 | ui_out_field_stream (uiout, "inst", stb); | |
278 | ui_file_rewind (stb); | |
279 | do_cleanups (ui_out_chain); | |
280 | ui_out_text (uiout, "\n"); | |
281 | ||
282 | return size; | |
283 | } | |
284 | ||
285 | static int | |
286 | dump_insns (struct gdbarch *gdbarch, struct ui_out *uiout, | |
287 | struct disassemble_info * di, | |
288 | CORE_ADDR low, CORE_ADDR high, | |
289 | int how_many, int flags, struct ui_file *stb, | |
290 | CORE_ADDR *end_pc) | |
291 | { | |
292 | struct disasm_insn insn; | |
293 | int num_displayed = 0; | |
294 | ||
295 | memset (&insn, 0, sizeof (insn)); | |
296 | insn.addr = low; | |
297 | ||
298 | while (insn.addr < high && (how_many < 0 || num_displayed < how_many)) | |
299 | { | |
300 | int size; | |
301 | ||
302 | size = gdb_pretty_print_insn (gdbarch, uiout, di, &insn, flags, stb); | |
303 | if (size <= 0) | |
304 | break; | |
305 | ||
306 | ++num_displayed; | |
307 | insn.addr += size; | |
308 | ||
309 | /* Allow user to bail out with ^C. */ | |
310 | QUIT; | |
311 | } | |
312 | ||
313 | if (end_pc != NULL) | |
314 | *end_pc = insn.addr; | |
315 | ||
316 | return num_displayed; | |
317 | } | |
318 | ||
319 | /* The idea here is to present a source-O-centric view of a | |
320 | function to the user. This means that things are presented | |
321 | in source order, with (possibly) out of order assembly | |
322 | immediately following. | |
323 | ||
324 | N.B. This view is deprecated. */ | |
325 | ||
326 | static void | |
327 | do_mixed_source_and_assembly_deprecated | |
328 | (struct gdbarch *gdbarch, struct ui_out *uiout, | |
329 | struct disassemble_info *di, struct symtab *symtab, | |
330 | CORE_ADDR low, CORE_ADDR high, | |
331 | int how_many, int flags, struct ui_file *stb) | |
332 | { | |
333 | int newlines = 0; | |
334 | int nlines; | |
335 | struct linetable_entry *le; | |
336 | struct deprecated_dis_line_entry *mle; | |
337 | struct symtab_and_line sal; | |
338 | int i; | |
339 | int out_of_order = 0; | |
340 | int next_line = 0; | |
341 | int num_displayed = 0; | |
342 | print_source_lines_flags psl_flags = 0; | |
343 | struct cleanup *ui_out_chain; | |
344 | struct cleanup *ui_out_tuple_chain = make_cleanup (null_cleanup, 0); | |
345 | struct cleanup *ui_out_list_chain = make_cleanup (null_cleanup, 0); | |
346 | ||
347 | gdb_assert (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL); | |
348 | ||
349 | nlines = SYMTAB_LINETABLE (symtab)->nitems; | |
350 | le = SYMTAB_LINETABLE (symtab)->item; | |
351 | ||
352 | if (flags & DISASSEMBLY_FILENAME) | |
353 | psl_flags |= PRINT_SOURCE_LINES_FILENAME; | |
354 | ||
355 | mle = (struct deprecated_dis_line_entry *) | |
356 | alloca (nlines * sizeof (struct deprecated_dis_line_entry)); | |
357 | ||
358 | /* Copy linetable entries for this function into our data | |
359 | structure, creating end_pc's and setting out_of_order as | |
360 | appropriate. */ | |
361 | ||
362 | /* First, skip all the preceding functions. */ | |
363 | ||
364 | for (i = 0; i < nlines - 1 && le[i].pc < low; i++); | |
365 | ||
366 | /* Now, copy all entries before the end of this function. */ | |
367 | ||
368 | for (; i < nlines - 1 && le[i].pc < high; i++) | |
369 | { | |
370 | if (le[i].line == le[i + 1].line && le[i].pc == le[i + 1].pc) | |
371 | continue; /* Ignore duplicates. */ | |
372 | ||
373 | /* Skip any end-of-function markers. */ | |
374 | if (le[i].line == 0) | |
375 | continue; | |
376 | ||
377 | mle[newlines].line = le[i].line; | |
378 | if (le[i].line > le[i + 1].line) | |
379 | out_of_order = 1; | |
380 | mle[newlines].start_pc = le[i].pc; | |
381 | mle[newlines].end_pc = le[i + 1].pc; | |
382 | newlines++; | |
383 | } | |
384 | ||
385 | /* If we're on the last line, and it's part of the function, | |
386 | then we need to get the end pc in a special way. */ | |
387 | ||
388 | if (i == nlines - 1 && le[i].pc < high) | |
389 | { | |
390 | mle[newlines].line = le[i].line; | |
391 | mle[newlines].start_pc = le[i].pc; | |
392 | sal = find_pc_line (le[i].pc, 0); | |
393 | mle[newlines].end_pc = sal.end; | |
394 | newlines++; | |
395 | } | |
396 | ||
397 | /* Now, sort mle by line #s (and, then by addresses within lines). */ | |
398 | ||
399 | if (out_of_order) | |
400 | qsort (mle, newlines, sizeof (struct deprecated_dis_line_entry), | |
401 | compare_lines); | |
402 | ||
403 | /* Now, for each line entry, emit the specified lines (unless | |
404 | they have been emitted before), followed by the assembly code | |
405 | for that line. */ | |
406 | ||
407 | ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns"); | |
408 | ||
409 | for (i = 0; i < newlines; i++) | |
410 | { | |
411 | /* Print out everything from next_line to the current line. */ | |
412 | if (mle[i].line >= next_line) | |
413 | { | |
414 | if (next_line != 0) | |
415 | { | |
416 | /* Just one line to print. */ | |
417 | if (next_line == mle[i].line) | |
418 | { | |
419 | ui_out_tuple_chain | |
420 | = make_cleanup_ui_out_tuple_begin_end (uiout, | |
421 | "src_and_asm_line"); | |
422 | print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags); | |
423 | } | |
424 | else | |
425 | { | |
426 | /* Several source lines w/o asm instructions associated. */ | |
427 | for (; next_line < mle[i].line; next_line++) | |
428 | { | |
429 | struct cleanup *ui_out_list_chain_line; | |
430 | struct cleanup *ui_out_tuple_chain_line; | |
431 | ||
432 | ui_out_tuple_chain_line | |
433 | = make_cleanup_ui_out_tuple_begin_end (uiout, | |
434 | "src_and_asm_line"); | |
435 | print_source_lines (symtab, next_line, next_line + 1, | |
436 | psl_flags); | |
437 | ui_out_list_chain_line | |
438 | = make_cleanup_ui_out_list_begin_end (uiout, | |
439 | "line_asm_insn"); | |
440 | do_cleanups (ui_out_list_chain_line); | |
441 | do_cleanups (ui_out_tuple_chain_line); | |
442 | } | |
443 | /* Print the last line and leave list open for | |
444 | asm instructions to be added. */ | |
445 | ui_out_tuple_chain | |
446 | = make_cleanup_ui_out_tuple_begin_end (uiout, | |
447 | "src_and_asm_line"); | |
448 | print_source_lines (symtab, next_line, mle[i].line + 1, psl_flags); | |
449 | } | |
450 | } | |
451 | else | |
452 | { | |
453 | ui_out_tuple_chain | |
454 | = make_cleanup_ui_out_tuple_begin_end (uiout, | |
455 | "src_and_asm_line"); | |
456 | print_source_lines (symtab, mle[i].line, mle[i].line + 1, psl_flags); | |
457 | } | |
458 | ||
459 | next_line = mle[i].line + 1; | |
460 | ui_out_list_chain | |
461 | = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn"); | |
462 | } | |
463 | ||
464 | num_displayed += dump_insns (gdbarch, uiout, di, | |
465 | mle[i].start_pc, mle[i].end_pc, | |
466 | how_many, flags, stb, NULL); | |
467 | ||
468 | /* When we've reached the end of the mle array, or we've seen the last | |
469 | assembly range for this source line, close out the list/tuple. */ | |
470 | if (i == (newlines - 1) || mle[i + 1].line > mle[i].line) | |
471 | { | |
472 | do_cleanups (ui_out_list_chain); | |
473 | do_cleanups (ui_out_tuple_chain); | |
474 | ui_out_tuple_chain = make_cleanup (null_cleanup, 0); | |
475 | ui_out_list_chain = make_cleanup (null_cleanup, 0); | |
476 | ui_out_text (uiout, "\n"); | |
477 | } | |
478 | if (how_many >= 0 && num_displayed >= how_many) | |
479 | break; | |
480 | } | |
481 | do_cleanups (ui_out_chain); | |
482 | } | |
483 | ||
484 | /* The idea here is to present a source-O-centric view of a | |
485 | function to the user. This means that things are presented | |
486 | in source order, with (possibly) out of order assembly | |
487 | immediately following. */ | |
488 | ||
489 | static void | |
490 | do_mixed_source_and_assembly (struct gdbarch *gdbarch, struct ui_out *uiout, | |
491 | struct disassemble_info *di, | |
492 | struct symtab *main_symtab, | |
493 | CORE_ADDR low, CORE_ADDR high, | |
494 | int how_many, int flags, struct ui_file *stb) | |
495 | { | |
496 | int newlines = 0; | |
497 | const struct linetable_entry *le, *first_le; | |
498 | struct symtab_and_line sal; | |
499 | int i, nlines; | |
500 | int out_of_order = 0; | |
501 | int next_line = 0; | |
502 | int num_displayed = 0; | |
503 | print_source_lines_flags psl_flags = 0; | |
504 | struct cleanup *cleanups; | |
505 | struct cleanup *ui_out_chain; | |
506 | struct cleanup *ui_out_tuple_chain; | |
507 | struct cleanup *ui_out_list_chain; | |
508 | CORE_ADDR pc; | |
509 | struct symtab *last_symtab; | |
510 | int last_line; | |
511 | htab_t dis_line_table; | |
512 | ||
513 | gdb_assert (main_symtab != NULL && SYMTAB_LINETABLE (main_symtab) != NULL); | |
514 | ||
515 | /* First pass: collect the list of all source files and lines. | |
516 | We do this so that we can only print lines containing code once. | |
517 | We try to print the source text leading up to the next instruction, | |
518 | but if that text is for code that will be disassembled later, then | |
519 | we'll want to defer printing it until later with its associated code. */ | |
520 | ||
521 | dis_line_table = allocate_dis_line_table (); | |
522 | cleanups = make_cleanup_htab_delete (dis_line_table); | |
523 | ||
524 | pc = low; | |
525 | ||
526 | /* The prologue may be empty, but there may still be a line number entry | |
527 | for the opening brace which is distinct from the first line of code. | |
528 | If the prologue has been eliminated find_pc_line may return the source | |
529 | line after the opening brace. We still want to print this opening brace. | |
530 | first_le is used to implement this. */ | |
531 | ||
532 | nlines = SYMTAB_LINETABLE (main_symtab)->nitems; | |
533 | le = SYMTAB_LINETABLE (main_symtab)->item; | |
534 | first_le = NULL; | |
535 | ||
536 | /* Skip all the preceding functions. */ | |
537 | for (i = 0; i < nlines && le[i].pc < low; i++) | |
538 | continue; | |
539 | ||
540 | if (i < nlines && le[i].pc < high) | |
541 | first_le = &le[i]; | |
542 | ||
543 | /* Add lines for every pc value. */ | |
544 | while (pc < high) | |
545 | { | |
546 | struct symtab_and_line sal; | |
547 | int length; | |
548 | ||
549 | sal = find_pc_line (pc, 0); | |
550 | length = gdb_insn_length (gdbarch, pc); | |
551 | pc += length; | |
552 | ||
553 | if (sal.symtab != NULL) | |
554 | add_dis_line_entry (dis_line_table, sal.symtab, sal.line); | |
555 | } | |
556 | ||
557 | /* Second pass: print the disassembly. | |
558 | ||
559 | Output format, from an MI perspective: | |
560 | The result is a ui_out list, field name "asm_insns", where elements have | |
561 | name "src_and_asm_line". | |
562 | Each element is a tuple of source line specs (field names line, file, | |
563 | fullname), and field "line_asm_insn" which contains the disassembly. | |
564 | Field "line_asm_insn" is a list of tuples: address, func-name, offset, | |
565 | opcodes, inst. | |
566 | ||
567 | CLI output works on top of this because MI ignores ui_out_text output, | |
568 | which is where we put file name and source line contents output. | |
569 | ||
570 | Cleanup usage: | |
571 | cleanups: | |
572 | For things created at the beginning of this function and need to be | |
573 | kept until the end of this function. | |
574 | ui_out_chain | |
575 | Handles the outer "asm_insns" list. | |
576 | ui_out_tuple_chain | |
577 | The tuples for each group of consecutive disassemblies. | |
578 | ui_out_list_chain | |
579 | List of consecutive source lines or disassembled insns. */ | |
580 | ||
581 | if (flags & DISASSEMBLY_FILENAME) | |
582 | psl_flags |= PRINT_SOURCE_LINES_FILENAME; | |
583 | ||
584 | ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns"); | |
585 | ||
586 | ui_out_tuple_chain = NULL; | |
587 | ui_out_list_chain = NULL; | |
588 | ||
589 | last_symtab = NULL; | |
590 | last_line = 0; | |
591 | pc = low; | |
592 | ||
593 | while (pc < high) | |
594 | { | |
595 | struct linetable_entry *le = NULL; | |
596 | struct symtab_and_line sal; | |
597 | CORE_ADDR end_pc; | |
598 | int start_preceding_line_to_display = 0; | |
599 | int end_preceding_line_to_display = 0; | |
600 | int new_source_line = 0; | |
601 | ||
602 | sal = find_pc_line (pc, 0); | |
603 | ||
604 | if (sal.symtab != last_symtab) | |
605 | { | |
606 | /* New source file. */ | |
607 | new_source_line = 1; | |
608 | ||
609 | /* If this is the first line of output, check for any preceding | |
610 | lines. */ | |
611 | if (last_line == 0 | |
612 | && first_le != NULL | |
613 | && first_le->line < sal.line) | |
614 | { | |
615 | start_preceding_line_to_display = first_le->line; | |
616 | end_preceding_line_to_display = sal.line; | |
617 | } | |
618 | } | |
619 | else | |
620 | { | |
621 | /* Same source file as last time. */ | |
622 | if (sal.symtab != NULL) | |
623 | { | |
624 | if (sal.line > last_line + 1 && last_line != 0) | |
625 | { | |
626 | int l; | |
627 | ||
628 | /* Several preceding source lines. Print the trailing ones | |
629 | not associated with code that we'll print later. */ | |
630 | for (l = sal.line - 1; l > last_line; --l) | |
631 | { | |
632 | if (line_has_code_p (dis_line_table, sal.symtab, l)) | |
633 | break; | |
634 | } | |
635 | if (l < sal.line - 1) | |
636 | { | |
637 | start_preceding_line_to_display = l + 1; | |
638 | end_preceding_line_to_display = sal.line; | |
639 | } | |
640 | } | |
641 | if (sal.line != last_line) | |
642 | new_source_line = 1; | |
643 | else | |
644 | { | |
645 | /* Same source line as last time. This can happen, depending | |
646 | on the debug info. */ | |
647 | } | |
648 | } | |
649 | } | |
650 | ||
651 | if (new_source_line) | |
652 | { | |
653 | /* Skip the newline if this is the first instruction. */ | |
654 | if (pc > low) | |
655 | ui_out_text (uiout, "\n"); | |
656 | if (ui_out_tuple_chain != NULL) | |
657 | { | |
658 | gdb_assert (ui_out_list_chain != NULL); | |
659 | do_cleanups (ui_out_list_chain); | |
660 | do_cleanups (ui_out_tuple_chain); | |
661 | } | |
662 | if (sal.symtab != last_symtab | |
663 | && !(flags & DISASSEMBLY_FILENAME)) | |
664 | { | |
665 | /* Remember MI ignores ui_out_text. | |
666 | We don't have to do anything here for MI because MI | |
667 | output includes the source specs for each line. */ | |
668 | if (sal.symtab != NULL) | |
669 | { | |
670 | ui_out_text (uiout, | |
671 | symtab_to_filename_for_display (sal.symtab)); | |
672 | } | |
673 | else | |
674 | ui_out_text (uiout, "unknown"); | |
675 | ui_out_text (uiout, ":\n"); | |
676 | } | |
677 | if (start_preceding_line_to_display > 0) | |
678 | { | |
679 | /* Several source lines w/o asm instructions associated. | |
680 | We need to preserve the structure of the output, so output | |
681 | a bunch of line tuples with no asm entries. */ | |
682 | int l; | |
683 | struct cleanup *ui_out_list_chain_line; | |
684 | struct cleanup *ui_out_tuple_chain_line; | |
685 | ||
686 | gdb_assert (sal.symtab != NULL); | |
687 | for (l = start_preceding_line_to_display; | |
688 | l < end_preceding_line_to_display; | |
689 | ++l) | |
690 | { | |
691 | ui_out_tuple_chain_line | |
692 | = make_cleanup_ui_out_tuple_begin_end (uiout, | |
693 | "src_and_asm_line"); | |
694 | print_source_lines (sal.symtab, l, l + 1, psl_flags); | |
695 | ui_out_list_chain_line | |
696 | = make_cleanup_ui_out_list_begin_end (uiout, | |
697 | "line_asm_insn"); | |
698 | do_cleanups (ui_out_list_chain_line); | |
699 | do_cleanups (ui_out_tuple_chain_line); | |
700 | } | |
701 | } | |
702 | ui_out_tuple_chain | |
703 | = make_cleanup_ui_out_tuple_begin_end (uiout, "src_and_asm_line"); | |
704 | if (sal.symtab != NULL) | |
705 | print_source_lines (sal.symtab, sal.line, sal.line + 1, psl_flags); | |
706 | else | |
707 | ui_out_text (uiout, _("--- no source info for this pc ---\n")); | |
708 | ui_out_list_chain | |
709 | = make_cleanup_ui_out_list_begin_end (uiout, "line_asm_insn"); | |
710 | } | |
711 | else | |
712 | { | |
713 | /* Here we're appending instructions to an existing line. | |
714 | By construction the very first insn will have a symtab | |
715 | and follow the new_source_line path above. */ | |
716 | gdb_assert (ui_out_tuple_chain != NULL); | |
717 | gdb_assert (ui_out_list_chain != NULL); | |
718 | } | |
719 | ||
720 | if (sal.end != 0) | |
721 | end_pc = min (sal.end, high); | |
722 | else | |
723 | end_pc = pc + 1; | |
724 | num_displayed += dump_insns (gdbarch, uiout, di, pc, end_pc, | |
725 | how_many, flags, stb, &end_pc); | |
726 | pc = end_pc; | |
727 | ||
728 | if (how_many >= 0 && num_displayed >= how_many) | |
729 | break; | |
730 | ||
731 | last_symtab = sal.symtab; | |
732 | last_line = sal.line; | |
733 | } | |
734 | ||
735 | do_cleanups (ui_out_chain); | |
736 | do_cleanups (cleanups); | |
737 | } | |
738 | ||
739 | static void | |
740 | do_assembly_only (struct gdbarch *gdbarch, struct ui_out *uiout, | |
741 | struct disassemble_info * di, | |
742 | CORE_ADDR low, CORE_ADDR high, | |
743 | int how_many, int flags, struct ui_file *stb) | |
744 | { | |
745 | int num_displayed = 0; | |
746 | struct cleanup *ui_out_chain; | |
747 | ||
748 | ui_out_chain = make_cleanup_ui_out_list_begin_end (uiout, "asm_insns"); | |
749 | ||
750 | num_displayed = dump_insns (gdbarch, uiout, di, low, high, how_many, | |
751 | flags, stb, NULL); | |
752 | ||
753 | do_cleanups (ui_out_chain); | |
754 | } | |
755 | ||
756 | /* Initialize the disassemble info struct ready for the specified | |
757 | stream. */ | |
758 | ||
759 | static int ATTRIBUTE_PRINTF (2, 3) | |
760 | fprintf_disasm (void *stream, const char *format, ...) | |
761 | { | |
762 | va_list args; | |
763 | ||
764 | va_start (args, format); | |
765 | vfprintf_filtered ((struct ui_file *) stream, format, args); | |
766 | va_end (args); | |
767 | /* Something non -ve. */ | |
768 | return 0; | |
769 | } | |
770 | ||
771 | struct disassemble_info | |
772 | gdb_disassemble_info (struct gdbarch *gdbarch, struct ui_file *file) | |
773 | { | |
774 | struct disassemble_info di; | |
775 | ||
776 | init_disassemble_info (&di, file, fprintf_disasm); | |
777 | di.flavour = bfd_target_unknown_flavour; | |
778 | di.memory_error_func = dis_asm_memory_error; | |
779 | di.print_address_func = dis_asm_print_address; | |
780 | /* NOTE: cagney/2003-04-28: The original code, from the old Insight | |
781 | disassembler had a local optomization here. By default it would | |
782 | access the executable file, instead of the target memory (there | |
783 | was a growing list of exceptions though). Unfortunately, the | |
784 | heuristic was flawed. Commands like "disassemble &variable" | |
785 | didn't work as they relied on the access going to the target. | |
786 | Further, it has been supperseeded by trust-read-only-sections | |
787 | (although that should be superseeded by target_trust..._p()). */ | |
788 | di.read_memory_func = dis_asm_read_memory; | |
789 | di.arch = gdbarch_bfd_arch_info (gdbarch)->arch; | |
790 | di.mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
791 | di.endian = gdbarch_byte_order (gdbarch); | |
792 | di.endian_code = gdbarch_byte_order_for_code (gdbarch); | |
793 | di.application_data = gdbarch; | |
794 | disassemble_init_for_target (&di); | |
795 | return di; | |
796 | } | |
797 | ||
798 | void | |
799 | gdb_disassembly (struct gdbarch *gdbarch, struct ui_out *uiout, | |
800 | char *file_string, int flags, int how_many, | |
801 | CORE_ADDR low, CORE_ADDR high) | |
802 | { | |
803 | struct ui_file *stb = mem_fileopen (); | |
804 | struct cleanup *cleanups = make_cleanup_ui_file_delete (stb); | |
805 | struct disassemble_info di = gdb_disassemble_info (gdbarch, stb); | |
806 | struct symtab *symtab; | |
807 | struct linetable_entry *le = NULL; | |
808 | int nlines = -1; | |
809 | ||
810 | /* Assume symtab is valid for whole PC range. */ | |
811 | symtab = find_pc_line_symtab (low); | |
812 | ||
813 | if (symtab != NULL && SYMTAB_LINETABLE (symtab) != NULL) | |
814 | nlines = SYMTAB_LINETABLE (symtab)->nitems; | |
815 | ||
816 | if (!(flags & (DISASSEMBLY_SOURCE_DEPRECATED | DISASSEMBLY_SOURCE)) | |
817 | || nlines <= 0) | |
818 | do_assembly_only (gdbarch, uiout, &di, low, high, how_many, flags, stb); | |
819 | ||
820 | else if (flags & DISASSEMBLY_SOURCE) | |
821 | do_mixed_source_and_assembly (gdbarch, uiout, &di, symtab, low, high, | |
822 | how_many, flags, stb); | |
823 | ||
824 | else if (flags & DISASSEMBLY_SOURCE_DEPRECATED) | |
825 | do_mixed_source_and_assembly_deprecated (gdbarch, uiout, &di, symtab, | |
826 | low, high, how_many, flags, stb); | |
827 | ||
828 | do_cleanups (cleanups); | |
829 | gdb_flush (gdb_stdout); | |
830 | } | |
831 | ||
832 | /* Print the instruction at address MEMADDR in debugged memory, | |
833 | on STREAM. Returns the length of the instruction, in bytes, | |
834 | and, if requested, the number of branch delay slot instructions. */ | |
835 | ||
836 | int | |
837 | gdb_print_insn (struct gdbarch *gdbarch, CORE_ADDR memaddr, | |
838 | struct ui_file *stream, int *branch_delay_insns) | |
839 | { | |
840 | struct disassemble_info di; | |
841 | int length; | |
842 | ||
843 | di = gdb_disassemble_info (gdbarch, stream); | |
844 | length = gdbarch_print_insn (gdbarch, memaddr, &di); | |
845 | if (branch_delay_insns) | |
846 | { | |
847 | if (di.insn_info_valid) | |
848 | *branch_delay_insns = di.branch_delay_insns; | |
849 | else | |
850 | *branch_delay_insns = 0; | |
851 | } | |
852 | return length; | |
853 | } | |
854 | ||
855 | static void | |
856 | do_ui_file_delete (void *arg) | |
857 | { | |
858 | ui_file_delete ((struct ui_file *) arg); | |
859 | } | |
860 | ||
861 | /* Return the length in bytes of the instruction at address MEMADDR in | |
862 | debugged memory. */ | |
863 | ||
864 | int | |
865 | gdb_insn_length (struct gdbarch *gdbarch, CORE_ADDR addr) | |
866 | { | |
867 | static struct ui_file *null_stream = NULL; | |
868 | ||
869 | /* Dummy file descriptor for the disassembler. */ | |
870 | if (!null_stream) | |
871 | { | |
872 | null_stream = ui_file_new (); | |
873 | make_final_cleanup (do_ui_file_delete, null_stream); | |
874 | } | |
875 | ||
876 | return gdb_print_insn (gdbarch, addr, null_stream, NULL); | |
877 | } | |
878 | ||
879 | /* fprintf-function for gdb_buffered_insn_length. This function is a | |
880 | nop, we don't want to print anything, we just want to compute the | |
881 | length of the insn. */ | |
882 | ||
883 | static int ATTRIBUTE_PRINTF (2, 3) | |
884 | gdb_buffered_insn_length_fprintf (void *stream, const char *format, ...) | |
885 | { | |
886 | return 0; | |
887 | } | |
888 | ||
889 | /* Initialize a struct disassemble_info for gdb_buffered_insn_length. */ | |
890 | ||
891 | static void | |
892 | gdb_buffered_insn_length_init_dis (struct gdbarch *gdbarch, | |
893 | struct disassemble_info *di, | |
894 | const gdb_byte *insn, int max_len, | |
895 | CORE_ADDR addr) | |
896 | { | |
897 | init_disassemble_info (di, NULL, gdb_buffered_insn_length_fprintf); | |
898 | ||
899 | /* init_disassemble_info installs buffer_read_memory, etc. | |
900 | so we don't need to do that here. | |
901 | The cast is necessary until disassemble_info is const-ified. */ | |
902 | di->buffer = (gdb_byte *) insn; | |
903 | di->buffer_length = max_len; | |
904 | di->buffer_vma = addr; | |
905 | ||
906 | di->arch = gdbarch_bfd_arch_info (gdbarch)->arch; | |
907 | di->mach = gdbarch_bfd_arch_info (gdbarch)->mach; | |
908 | di->endian = gdbarch_byte_order (gdbarch); | |
909 | di->endian_code = gdbarch_byte_order_for_code (gdbarch); | |
910 | ||
911 | disassemble_init_for_target (di); | |
912 | } | |
913 | ||
914 | /* Return the length in bytes of INSN. MAX_LEN is the size of the | |
915 | buffer containing INSN. */ | |
916 | ||
917 | int | |
918 | gdb_buffered_insn_length (struct gdbarch *gdbarch, | |
919 | const gdb_byte *insn, int max_len, CORE_ADDR addr) | |
920 | { | |
921 | struct disassemble_info di; | |
922 | ||
923 | gdb_buffered_insn_length_init_dis (gdbarch, &di, insn, max_len, addr); | |
924 | ||
925 | return gdbarch_print_insn (gdbarch, addr, &di); | |
926 | } |