]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Print values for GDB, the GNU debugger. |
5c1c87f0 | 2 | |
8acc9f48 | 3 | Copyright (C) 1986-2013 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "gdb_string.h" | |
22 | #include "symtab.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
26 | #include "gdbcmd.h" | |
27 | #include "target.h" | |
c906108c | 28 | #include "language.h" |
c906108c SS |
29 | #include "annotate.h" |
30 | #include "valprint.h" | |
39424bef | 31 | #include "floatformat.h" |
d16aafd8 | 32 | #include "doublest.h" |
19ca80ba | 33 | #include "exceptions.h" |
7678ef8f | 34 | #include "dfp.h" |
a6bac58e | 35 | #include "python/python.h" |
0c3acc09 | 36 | #include "ada-lang.h" |
3b2b8fea TT |
37 | #include "gdb_obstack.h" |
38 | #include "charset.h" | |
39 | #include <ctype.h> | |
c906108c SS |
40 | |
41 | #include <errno.h> | |
42 | ||
0d63ecda KS |
43 | /* Maximum number of wchars returned from wchar_iterate. */ |
44 | #define MAX_WCHARS 4 | |
45 | ||
46 | /* A convenience macro to compute the size of a wchar_t buffer containing X | |
47 | characters. */ | |
48 | #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t)) | |
49 | ||
50 | /* Character buffer size saved while iterating over wchars. */ | |
51 | #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS) | |
52 | ||
53 | /* A structure to encapsulate state information from iterated | |
54 | character conversions. */ | |
55 | struct converted_character | |
56 | { | |
57 | /* The number of characters converted. */ | |
58 | int num_chars; | |
59 | ||
60 | /* The result of the conversion. See charset.h for more. */ | |
61 | enum wchar_iterate_result result; | |
62 | ||
63 | /* The (saved) converted character(s). */ | |
64 | gdb_wchar_t chars[WCHAR_BUFLEN_MAX]; | |
65 | ||
66 | /* The first converted target byte. */ | |
67 | const gdb_byte *buf; | |
68 | ||
69 | /* The number of bytes converted. */ | |
70 | size_t buflen; | |
71 | ||
72 | /* How many times this character(s) is repeated. */ | |
73 | int repeat_count; | |
74 | }; | |
75 | ||
76 | typedef struct converted_character converted_character_d; | |
77 | DEF_VEC_O (converted_character_d); | |
78 | ||
79 | ||
c906108c SS |
80 | /* Prototypes for local functions */ |
81 | ||
777ea8f1 | 82 | static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
917317f4 JM |
83 | int len, int *errnoptr); |
84 | ||
a14ed312 | 85 | static void show_print (char *, int); |
c906108c | 86 | |
a14ed312 | 87 | static void set_print (char *, int); |
c906108c | 88 | |
a14ed312 | 89 | static void set_radix (char *, int); |
c906108c | 90 | |
a14ed312 | 91 | static void show_radix (char *, int); |
c906108c | 92 | |
a14ed312 | 93 | static void set_input_radix (char *, int, struct cmd_list_element *); |
c906108c | 94 | |
a14ed312 | 95 | static void set_input_radix_1 (int, unsigned); |
c906108c | 96 | |
a14ed312 | 97 | static void set_output_radix (char *, int, struct cmd_list_element *); |
c906108c | 98 | |
a14ed312 | 99 | static void set_output_radix_1 (int, unsigned); |
c906108c | 100 | |
a14ed312 | 101 | void _initialize_valprint (void); |
c906108c | 102 | |
581e13c1 | 103 | #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */ |
79a45b7d TT |
104 | |
105 | struct value_print_options user_print_options = | |
106 | { | |
107 | Val_pretty_default, /* pretty */ | |
108 | 0, /* prettyprint_arrays */ | |
109 | 0, /* prettyprint_structs */ | |
110 | 0, /* vtblprint */ | |
111 | 1, /* unionprint */ | |
112 | 1, /* addressprint */ | |
113 | 0, /* objectprint */ | |
114 | PRINT_MAX_DEFAULT, /* print_max */ | |
115 | 10, /* repeat_count_threshold */ | |
116 | 0, /* output_format */ | |
117 | 0, /* format */ | |
118 | 0, /* stop_print_at_null */ | |
79a45b7d TT |
119 | 0, /* print_array_indexes */ |
120 | 0, /* deref_ref */ | |
121 | 1, /* static_field_print */ | |
a6bac58e TT |
122 | 1, /* pascal_static_field_print */ |
123 | 0, /* raw */ | |
9cb709b6 TT |
124 | 0, /* summary */ |
125 | 1 /* symbol_print */ | |
79a45b7d TT |
126 | }; |
127 | ||
128 | /* Initialize *OPTS to be a copy of the user print options. */ | |
129 | void | |
130 | get_user_print_options (struct value_print_options *opts) | |
131 | { | |
132 | *opts = user_print_options; | |
133 | } | |
134 | ||
135 | /* Initialize *OPTS to be a copy of the user print options, but with | |
136 | pretty-printing disabled. */ | |
137 | void | |
138 | get_raw_print_options (struct value_print_options *opts) | |
139 | { | |
140 | *opts = user_print_options; | |
141 | opts->pretty = Val_no_prettyprint; | |
142 | } | |
143 | ||
144 | /* Initialize *OPTS to be a copy of the user print options, but using | |
145 | FORMAT as the formatting option. */ | |
146 | void | |
147 | get_formatted_print_options (struct value_print_options *opts, | |
148 | char format) | |
149 | { | |
150 | *opts = user_print_options; | |
151 | opts->format = format; | |
152 | } | |
153 | ||
920d2a44 AC |
154 | static void |
155 | show_print_max (struct ui_file *file, int from_tty, | |
156 | struct cmd_list_element *c, const char *value) | |
157 | { | |
3e43a32a MS |
158 | fprintf_filtered (file, |
159 | _("Limit on string chars or array " | |
160 | "elements to print is %s.\n"), | |
920d2a44 AC |
161 | value); |
162 | } | |
163 | ||
c906108c SS |
164 | |
165 | /* Default input and output radixes, and output format letter. */ | |
166 | ||
167 | unsigned input_radix = 10; | |
920d2a44 AC |
168 | static void |
169 | show_input_radix (struct ui_file *file, int from_tty, | |
170 | struct cmd_list_element *c, const char *value) | |
171 | { | |
3e43a32a MS |
172 | fprintf_filtered (file, |
173 | _("Default input radix for entering numbers is %s.\n"), | |
920d2a44 AC |
174 | value); |
175 | } | |
176 | ||
c906108c | 177 | unsigned output_radix = 10; |
920d2a44 AC |
178 | static void |
179 | show_output_radix (struct ui_file *file, int from_tty, | |
180 | struct cmd_list_element *c, const char *value) | |
181 | { | |
3e43a32a MS |
182 | fprintf_filtered (file, |
183 | _("Default output radix for printing of values is %s.\n"), | |
920d2a44 AC |
184 | value); |
185 | } | |
c906108c | 186 | |
e79af960 JB |
187 | /* By default we print arrays without printing the index of each element in |
188 | the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */ | |
189 | ||
e79af960 JB |
190 | static void |
191 | show_print_array_indexes (struct ui_file *file, int from_tty, | |
192 | struct cmd_list_element *c, const char *value) | |
193 | { | |
194 | fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value); | |
195 | } | |
196 | ||
c906108c SS |
197 | /* Print repeat counts if there are more than this many repetitions of an |
198 | element in an array. Referenced by the low level language dependent | |
581e13c1 | 199 | print routines. */ |
c906108c | 200 | |
920d2a44 AC |
201 | static void |
202 | show_repeat_count_threshold (struct ui_file *file, int from_tty, | |
203 | struct cmd_list_element *c, const char *value) | |
204 | { | |
205 | fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"), | |
206 | value); | |
207 | } | |
c906108c | 208 | |
581e13c1 | 209 | /* If nonzero, stops printing of char arrays at first null. */ |
c906108c | 210 | |
920d2a44 AC |
211 | static void |
212 | show_stop_print_at_null (struct ui_file *file, int from_tty, | |
213 | struct cmd_list_element *c, const char *value) | |
214 | { | |
3e43a32a MS |
215 | fprintf_filtered (file, |
216 | _("Printing of char arrays to stop " | |
217 | "at first null char is %s.\n"), | |
920d2a44 AC |
218 | value); |
219 | } | |
c906108c | 220 | |
581e13c1 | 221 | /* Controls pretty printing of structures. */ |
c906108c | 222 | |
920d2a44 AC |
223 | static void |
224 | show_prettyprint_structs (struct ui_file *file, int from_tty, | |
225 | struct cmd_list_element *c, const char *value) | |
226 | { | |
227 | fprintf_filtered (file, _("Prettyprinting of structures is %s.\n"), value); | |
228 | } | |
c906108c SS |
229 | |
230 | /* Controls pretty printing of arrays. */ | |
231 | ||
920d2a44 AC |
232 | static void |
233 | show_prettyprint_arrays (struct ui_file *file, int from_tty, | |
234 | struct cmd_list_element *c, const char *value) | |
235 | { | |
236 | fprintf_filtered (file, _("Prettyprinting of arrays is %s.\n"), value); | |
237 | } | |
c906108c SS |
238 | |
239 | /* If nonzero, causes unions inside structures or other unions to be | |
581e13c1 | 240 | printed. */ |
c906108c | 241 | |
920d2a44 AC |
242 | static void |
243 | show_unionprint (struct ui_file *file, int from_tty, | |
244 | struct cmd_list_element *c, const char *value) | |
245 | { | |
3e43a32a MS |
246 | fprintf_filtered (file, |
247 | _("Printing of unions interior to structures is %s.\n"), | |
920d2a44 AC |
248 | value); |
249 | } | |
c906108c | 250 | |
581e13c1 | 251 | /* If nonzero, causes machine addresses to be printed in certain contexts. */ |
c906108c | 252 | |
920d2a44 AC |
253 | static void |
254 | show_addressprint (struct ui_file *file, int from_tty, | |
255 | struct cmd_list_element *c, const char *value) | |
256 | { | |
257 | fprintf_filtered (file, _("Printing of addresses is %s.\n"), value); | |
258 | } | |
9cb709b6 TT |
259 | |
260 | static void | |
261 | show_symbol_print (struct ui_file *file, int from_tty, | |
262 | struct cmd_list_element *c, const char *value) | |
263 | { | |
264 | fprintf_filtered (file, | |
265 | _("Printing of symbols when printing pointers is %s.\n"), | |
266 | value); | |
267 | } | |
268 | ||
c906108c | 269 | \f |
c5aa993b | 270 | |
a6bac58e TT |
271 | /* A helper function for val_print. When printing in "summary" mode, |
272 | we want to print scalar arguments, but not aggregate arguments. | |
273 | This function distinguishes between the two. */ | |
274 | ||
275 | static int | |
276 | scalar_type_p (struct type *type) | |
277 | { | |
278 | CHECK_TYPEDEF (type); | |
279 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
280 | { | |
281 | type = TYPE_TARGET_TYPE (type); | |
282 | CHECK_TYPEDEF (type); | |
283 | } | |
284 | switch (TYPE_CODE (type)) | |
285 | { | |
286 | case TYPE_CODE_ARRAY: | |
287 | case TYPE_CODE_STRUCT: | |
288 | case TYPE_CODE_UNION: | |
289 | case TYPE_CODE_SET: | |
290 | case TYPE_CODE_STRING: | |
a6bac58e TT |
291 | return 0; |
292 | default: | |
293 | return 1; | |
294 | } | |
295 | } | |
296 | ||
a72c8f6a | 297 | /* See its definition in value.h. */ |
0e03807e | 298 | |
a72c8f6a | 299 | int |
0e03807e TT |
300 | valprint_check_validity (struct ui_file *stream, |
301 | struct type *type, | |
4e07d55f | 302 | int embedded_offset, |
0e03807e TT |
303 | const struct value *val) |
304 | { | |
305 | CHECK_TYPEDEF (type); | |
306 | ||
307 | if (TYPE_CODE (type) != TYPE_CODE_UNION | |
308 | && TYPE_CODE (type) != TYPE_CODE_STRUCT | |
309 | && TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
310 | { | |
4e07d55f PA |
311 | if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset, |
312 | TARGET_CHAR_BIT * TYPE_LENGTH (type))) | |
0e03807e | 313 | { |
585fdaa1 | 314 | val_print_optimized_out (stream); |
0e03807e TT |
315 | return 0; |
316 | } | |
8cf6f0b1 | 317 | |
4e07d55f | 318 | if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset, |
8cf6f0b1 TT |
319 | TARGET_CHAR_BIT * TYPE_LENGTH (type))) |
320 | { | |
321 | fputs_filtered (_("<synthetic pointer>"), stream); | |
322 | return 0; | |
323 | } | |
4e07d55f PA |
324 | |
325 | if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) | |
326 | { | |
327 | val_print_unavailable (stream); | |
328 | return 0; | |
329 | } | |
0e03807e TT |
330 | } |
331 | ||
332 | return 1; | |
333 | } | |
334 | ||
585fdaa1 PA |
335 | void |
336 | val_print_optimized_out (struct ui_file *stream) | |
337 | { | |
338 | fprintf_filtered (stream, _("<optimized out>")); | |
339 | } | |
340 | ||
4e07d55f PA |
341 | void |
342 | val_print_unavailable (struct ui_file *stream) | |
343 | { | |
344 | fprintf_filtered (stream, _("<unavailable>")); | |
345 | } | |
346 | ||
8af8e3bc PA |
347 | void |
348 | val_print_invalid_address (struct ui_file *stream) | |
349 | { | |
350 | fprintf_filtered (stream, _("<invalid address>")); | |
351 | } | |
352 | ||
e88acd96 TT |
353 | /* A generic val_print that is suitable for use by language |
354 | implementations of the la_val_print method. This function can | |
355 | handle most type codes, though not all, notably exception | |
356 | TYPE_CODE_UNION and TYPE_CODE_STRUCT, which must be implemented by | |
357 | the caller. | |
358 | ||
359 | Most arguments are as to val_print. | |
360 | ||
361 | The additional DECORATIONS argument can be used to customize the | |
362 | output in some small, language-specific ways. */ | |
363 | ||
364 | void | |
365 | generic_val_print (struct type *type, const gdb_byte *valaddr, | |
366 | int embedded_offset, CORE_ADDR address, | |
367 | struct ui_file *stream, int recurse, | |
368 | const struct value *original_value, | |
369 | const struct value_print_options *options, | |
370 | const struct generic_val_print_decorations *decorations) | |
371 | { | |
372 | struct gdbarch *gdbarch = get_type_arch (type); | |
e88acd96 TT |
373 | unsigned int i = 0; /* Number of characters printed. */ |
374 | unsigned len; | |
375 | struct type *elttype, *unresolved_elttype; | |
376 | struct type *unresolved_type = type; | |
e88acd96 TT |
377 | LONGEST val; |
378 | CORE_ADDR addr; | |
379 | ||
380 | CHECK_TYPEDEF (type); | |
381 | switch (TYPE_CODE (type)) | |
382 | { | |
383 | case TYPE_CODE_ARRAY: | |
384 | unresolved_elttype = TYPE_TARGET_TYPE (type); | |
385 | elttype = check_typedef (unresolved_elttype); | |
386 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0) | |
387 | { | |
388 | LONGEST low_bound, high_bound; | |
389 | ||
390 | if (!get_array_bounds (type, &low_bound, &high_bound)) | |
391 | error (_("Could not determine the array high bound")); | |
392 | ||
393 | if (options->prettyprint_arrays) | |
394 | { | |
395 | print_spaces_filtered (2 + 2 * recurse, stream); | |
396 | } | |
397 | ||
398 | fprintf_filtered (stream, "{"); | |
399 | val_print_array_elements (type, valaddr, embedded_offset, | |
400 | address, stream, | |
401 | recurse, original_value, options, 0); | |
402 | fprintf_filtered (stream, "}"); | |
403 | break; | |
404 | } | |
405 | /* Array of unspecified length: treat like pointer to first | |
406 | elt. */ | |
407 | addr = address + embedded_offset; | |
408 | goto print_unpacked_pointer; | |
409 | ||
410 | case TYPE_CODE_MEMBERPTR: | |
411 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
412 | original_value, options, 0, stream); | |
413 | break; | |
414 | ||
415 | case TYPE_CODE_PTR: | |
416 | if (options->format && options->format != 's') | |
417 | { | |
418 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
419 | original_value, options, 0, stream); | |
420 | break; | |
421 | } | |
422 | unresolved_elttype = TYPE_TARGET_TYPE (type); | |
423 | elttype = check_typedef (unresolved_elttype); | |
424 | { | |
425 | addr = unpack_pointer (type, valaddr + embedded_offset); | |
426 | print_unpacked_pointer: | |
427 | ||
428 | if (TYPE_CODE (elttype) == TYPE_CODE_FUNC) | |
429 | { | |
430 | /* Try to print what function it points to. */ | |
edf0c1b7 | 431 | print_function_pointer_address (options, gdbarch, addr, stream); |
e88acd96 TT |
432 | return; |
433 | } | |
434 | ||
9cb709b6 TT |
435 | if (options->symbol_print) |
436 | print_address_demangle (options, gdbarch, addr, stream, demangle); | |
437 | else if (options->addressprint) | |
e88acd96 TT |
438 | fputs_filtered (paddress (gdbarch, addr), stream); |
439 | } | |
440 | break; | |
441 | ||
442 | case TYPE_CODE_REF: | |
443 | elttype = check_typedef (TYPE_TARGET_TYPE (type)); | |
444 | if (options->addressprint) | |
445 | { | |
446 | CORE_ADDR addr | |
447 | = extract_typed_address (valaddr + embedded_offset, type); | |
448 | ||
449 | fprintf_filtered (stream, "@"); | |
450 | fputs_filtered (paddress (gdbarch, addr), stream); | |
451 | if (options->deref_ref) | |
452 | fputs_filtered (": ", stream); | |
453 | } | |
454 | /* De-reference the reference. */ | |
455 | if (options->deref_ref) | |
456 | { | |
457 | if (TYPE_CODE (elttype) != TYPE_CODE_UNDEF) | |
458 | { | |
459 | struct value *deref_val; | |
460 | ||
461 | deref_val = coerce_ref_if_computed (original_value); | |
462 | if (deref_val != NULL) | |
463 | { | |
464 | /* More complicated computed references are not supported. */ | |
465 | gdb_assert (embedded_offset == 0); | |
466 | } | |
467 | else | |
468 | deref_val = value_at (TYPE_TARGET_TYPE (type), | |
469 | unpack_pointer (type, | |
470 | (valaddr | |
471 | + embedded_offset))); | |
472 | ||
473 | common_val_print (deref_val, stream, recurse, options, | |
474 | current_language); | |
475 | } | |
476 | else | |
477 | fputs_filtered ("???", stream); | |
478 | } | |
479 | break; | |
480 | ||
481 | case TYPE_CODE_ENUM: | |
482 | if (options->format) | |
483 | { | |
484 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
485 | original_value, options, 0, stream); | |
486 | break; | |
487 | } | |
488 | len = TYPE_NFIELDS (type); | |
489 | val = unpack_long (type, valaddr + embedded_offset); | |
490 | for (i = 0; i < len; i++) | |
491 | { | |
492 | QUIT; | |
14e75d8e | 493 | if (val == TYPE_FIELD_ENUMVAL (type, i)) |
e88acd96 TT |
494 | { |
495 | break; | |
496 | } | |
497 | } | |
498 | if (i < len) | |
499 | { | |
500 | fputs_filtered (TYPE_FIELD_NAME (type, i), stream); | |
501 | } | |
502 | else if (TYPE_FLAG_ENUM (type)) | |
503 | { | |
504 | int first = 1; | |
505 | ||
506 | /* We have a "flag" enum, so we try to decompose it into | |
507 | pieces as appropriate. A flag enum has disjoint | |
508 | constants by definition. */ | |
509 | fputs_filtered ("(", stream); | |
510 | for (i = 0; i < len; ++i) | |
511 | { | |
512 | QUIT; | |
513 | ||
14e75d8e | 514 | if ((val & TYPE_FIELD_ENUMVAL (type, i)) != 0) |
e88acd96 TT |
515 | { |
516 | if (!first) | |
517 | fputs_filtered (" | ", stream); | |
518 | first = 0; | |
519 | ||
14e75d8e | 520 | val &= ~TYPE_FIELD_ENUMVAL (type, i); |
e88acd96 TT |
521 | fputs_filtered (TYPE_FIELD_NAME (type, i), stream); |
522 | } | |
523 | } | |
524 | ||
525 | if (first || val != 0) | |
526 | { | |
527 | if (!first) | |
528 | fputs_filtered (" | ", stream); | |
529 | fputs_filtered ("unknown: ", stream); | |
530 | print_longest (stream, 'd', 0, val); | |
531 | } | |
532 | ||
533 | fputs_filtered (")", stream); | |
534 | } | |
535 | else | |
536 | print_longest (stream, 'd', 0, val); | |
537 | break; | |
538 | ||
539 | case TYPE_CODE_FLAGS: | |
540 | if (options->format) | |
541 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
542 | original_value, options, 0, stream); | |
543 | else | |
544 | val_print_type_code_flags (type, valaddr + embedded_offset, | |
545 | stream); | |
546 | break; | |
547 | ||
548 | case TYPE_CODE_FUNC: | |
549 | case TYPE_CODE_METHOD: | |
550 | if (options->format) | |
551 | { | |
552 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
553 | original_value, options, 0, stream); | |
554 | break; | |
555 | } | |
556 | /* FIXME, we should consider, at least for ANSI C language, | |
557 | eliminating the distinction made between FUNCs and POINTERs | |
558 | to FUNCs. */ | |
559 | fprintf_filtered (stream, "{"); | |
560 | type_print (type, "", stream, -1); | |
561 | fprintf_filtered (stream, "} "); | |
562 | /* Try to print what function it points to, and its address. */ | |
edf0c1b7 | 563 | print_address_demangle (options, gdbarch, address, stream, demangle); |
e88acd96 TT |
564 | break; |
565 | ||
566 | case TYPE_CODE_BOOL: | |
567 | if (options->format || options->output_format) | |
568 | { | |
569 | struct value_print_options opts = *options; | |
570 | opts.format = (options->format ? options->format | |
571 | : options->output_format); | |
572 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
573 | original_value, &opts, 0, stream); | |
574 | } | |
575 | else | |
576 | { | |
577 | val = unpack_long (type, valaddr + embedded_offset); | |
578 | if (val == 0) | |
579 | fputs_filtered (decorations->false_name, stream); | |
580 | else if (val == 1) | |
581 | fputs_filtered (decorations->true_name, stream); | |
582 | else | |
583 | print_longest (stream, 'd', 0, val); | |
584 | } | |
585 | break; | |
586 | ||
587 | case TYPE_CODE_RANGE: | |
588 | /* FIXME: create_range_type does not set the unsigned bit in a | |
589 | range type (I think it probably should copy it from the | |
590 | target type), so we won't print values which are too large to | |
591 | fit in a signed integer correctly. */ | |
592 | /* FIXME: Doesn't handle ranges of enums correctly. (Can't just | |
593 | print with the target type, though, because the size of our | |
594 | type and the target type might differ). */ | |
595 | ||
596 | /* FALLTHROUGH */ | |
597 | ||
598 | case TYPE_CODE_INT: | |
599 | if (options->format || options->output_format) | |
600 | { | |
601 | struct value_print_options opts = *options; | |
602 | ||
603 | opts.format = (options->format ? options->format | |
604 | : options->output_format); | |
605 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
606 | original_value, &opts, 0, stream); | |
607 | } | |
608 | else | |
609 | val_print_type_code_int (type, valaddr + embedded_offset, stream); | |
610 | break; | |
611 | ||
612 | case TYPE_CODE_CHAR: | |
613 | if (options->format || options->output_format) | |
614 | { | |
615 | struct value_print_options opts = *options; | |
616 | ||
617 | opts.format = (options->format ? options->format | |
618 | : options->output_format); | |
619 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
620 | original_value, &opts, 0, stream); | |
621 | } | |
622 | else | |
623 | { | |
624 | val = unpack_long (type, valaddr + embedded_offset); | |
625 | if (TYPE_UNSIGNED (type)) | |
626 | fprintf_filtered (stream, "%u", (unsigned int) val); | |
627 | else | |
628 | fprintf_filtered (stream, "%d", (int) val); | |
629 | fputs_filtered (" ", stream); | |
630 | LA_PRINT_CHAR (val, unresolved_type, stream); | |
631 | } | |
632 | break; | |
633 | ||
634 | case TYPE_CODE_FLT: | |
635 | if (options->format) | |
636 | { | |
637 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
638 | original_value, options, 0, stream); | |
639 | } | |
640 | else | |
641 | { | |
642 | print_floating (valaddr + embedded_offset, type, stream); | |
643 | } | |
644 | break; | |
645 | ||
646 | case TYPE_CODE_DECFLOAT: | |
647 | if (options->format) | |
648 | val_print_scalar_formatted (type, valaddr, embedded_offset, | |
649 | original_value, options, 0, stream); | |
650 | else | |
651 | print_decimal_floating (valaddr + embedded_offset, | |
652 | type, stream); | |
653 | break; | |
654 | ||
655 | case TYPE_CODE_VOID: | |
656 | fputs_filtered (decorations->void_name, stream); | |
657 | break; | |
658 | ||
659 | case TYPE_CODE_ERROR: | |
660 | fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type)); | |
661 | break; | |
662 | ||
663 | case TYPE_CODE_UNDEF: | |
664 | /* This happens (without TYPE_FLAG_STUB set) on systems which | |
665 | don't use dbx xrefs (NO_DBX_XREFS in gcc) if a file has a | |
666 | "struct foo *bar" and no complete type for struct foo in that | |
667 | file. */ | |
668 | fprintf_filtered (stream, _("<incomplete type>")); | |
669 | break; | |
670 | ||
671 | case TYPE_CODE_COMPLEX: | |
672 | fprintf_filtered (stream, "%s", decorations->complex_prefix); | |
673 | if (options->format) | |
674 | val_print_scalar_formatted (TYPE_TARGET_TYPE (type), | |
675 | valaddr, embedded_offset, | |
676 | original_value, options, 0, stream); | |
677 | else | |
678 | print_floating (valaddr + embedded_offset, | |
679 | TYPE_TARGET_TYPE (type), | |
680 | stream); | |
681 | fprintf_filtered (stream, "%s", decorations->complex_infix); | |
682 | if (options->format) | |
683 | val_print_scalar_formatted (TYPE_TARGET_TYPE (type), | |
684 | valaddr, | |
685 | embedded_offset | |
686 | + TYPE_LENGTH (TYPE_TARGET_TYPE (type)), | |
687 | original_value, | |
688 | options, 0, stream); | |
689 | else | |
690 | print_floating (valaddr + embedded_offset | |
691 | + TYPE_LENGTH (TYPE_TARGET_TYPE (type)), | |
692 | TYPE_TARGET_TYPE (type), | |
693 | stream); | |
694 | fprintf_filtered (stream, "%s", decorations->complex_suffix); | |
695 | break; | |
696 | ||
697 | case TYPE_CODE_UNION: | |
698 | case TYPE_CODE_STRUCT: | |
699 | case TYPE_CODE_METHODPTR: | |
700 | default: | |
701 | error (_("Unhandled type code %d in symbol table."), | |
702 | TYPE_CODE (type)); | |
703 | } | |
704 | gdb_flush (stream); | |
705 | } | |
706 | ||
32b72a42 PA |
707 | /* Print using the given LANGUAGE the data of type TYPE located at |
708 | VALADDR + EMBEDDED_OFFSET (within GDB), which came from the | |
709 | inferior at address ADDRESS + EMBEDDED_OFFSET, onto stdio stream | |
710 | STREAM according to OPTIONS. VAL is the whole object that came | |
711 | from ADDRESS. VALADDR must point to the head of VAL's contents | |
712 | buffer. | |
713 | ||
714 | The language printers will pass down an adjusted EMBEDDED_OFFSET to | |
715 | further helper subroutines as subfields of TYPE are printed. In | |
716 | such cases, VALADDR is passed down unadjusted, as well as VAL, so | |
717 | that VAL can be queried for metadata about the contents data being | |
718 | printed, using EMBEDDED_OFFSET as an offset into VAL's contents | |
719 | buffer. For example: "has this field been optimized out", or "I'm | |
720 | printing an object while inspecting a traceframe; has this | |
721 | particular piece of data been collected?". | |
722 | ||
723 | RECURSE indicates the amount of indentation to supply before | |
724 | continuation lines; this amount is roughly twice the value of | |
35c0084b | 725 | RECURSE. */ |
32b72a42 | 726 | |
35c0084b | 727 | void |
fc1a4b47 | 728 | val_print (struct type *type, const gdb_byte *valaddr, int embedded_offset, |
79a45b7d | 729 | CORE_ADDR address, struct ui_file *stream, int recurse, |
0e03807e | 730 | const struct value *val, |
79a45b7d | 731 | const struct value_print_options *options, |
d8ca156b | 732 | const struct language_defn *language) |
c906108c | 733 | { |
19ca80ba DJ |
734 | volatile struct gdb_exception except; |
735 | int ret = 0; | |
79a45b7d | 736 | struct value_print_options local_opts = *options; |
c906108c | 737 | struct type *real_type = check_typedef (type); |
79a45b7d TT |
738 | |
739 | if (local_opts.pretty == Val_pretty_default) | |
740 | local_opts.pretty = (local_opts.prettyprint_structs | |
741 | ? Val_prettyprint : Val_no_prettyprint); | |
c5aa993b | 742 | |
c906108c SS |
743 | QUIT; |
744 | ||
745 | /* Ensure that the type is complete and not just a stub. If the type is | |
746 | only a stub and we can't find and substitute its complete type, then | |
747 | print appropriate string and return. */ | |
748 | ||
74a9bb82 | 749 | if (TYPE_STUB (real_type)) |
c906108c | 750 | { |
0e03807e | 751 | fprintf_filtered (stream, _("<incomplete type>")); |
c906108c | 752 | gdb_flush (stream); |
35c0084b | 753 | return; |
c906108c | 754 | } |
c5aa993b | 755 | |
0e03807e | 756 | if (!valprint_check_validity (stream, real_type, embedded_offset, val)) |
35c0084b | 757 | return; |
0e03807e | 758 | |
a6bac58e TT |
759 | if (!options->raw) |
760 | { | |
761 | ret = apply_val_pretty_printer (type, valaddr, embedded_offset, | |
0e03807e TT |
762 | address, stream, recurse, |
763 | val, options, language); | |
a6bac58e | 764 | if (ret) |
35c0084b | 765 | return; |
a6bac58e TT |
766 | } |
767 | ||
768 | /* Handle summary mode. If the value is a scalar, print it; | |
769 | otherwise, print an ellipsis. */ | |
770 | if (options->summary && !scalar_type_p (type)) | |
771 | { | |
772 | fprintf_filtered (stream, "..."); | |
35c0084b | 773 | return; |
a6bac58e TT |
774 | } |
775 | ||
19ca80ba DJ |
776 | TRY_CATCH (except, RETURN_MASK_ERROR) |
777 | { | |
d3eab38a TT |
778 | language->la_val_print (type, valaddr, embedded_offset, address, |
779 | stream, recurse, val, | |
780 | &local_opts); | |
19ca80ba DJ |
781 | } |
782 | if (except.reason < 0) | |
783 | fprintf_filtered (stream, _("<error reading variable>")); | |
c906108c SS |
784 | } |
785 | ||
806048c6 | 786 | /* Check whether the value VAL is printable. Return 1 if it is; |
6501578c YQ |
787 | return 0 and print an appropriate error message to STREAM according to |
788 | OPTIONS if it is not. */ | |
c906108c | 789 | |
806048c6 | 790 | static int |
6501578c YQ |
791 | value_check_printable (struct value *val, struct ui_file *stream, |
792 | const struct value_print_options *options) | |
c906108c SS |
793 | { |
794 | if (val == 0) | |
795 | { | |
806048c6 | 796 | fprintf_filtered (stream, _("<address of value unknown>")); |
c906108c SS |
797 | return 0; |
798 | } | |
806048c6 | 799 | |
0e03807e | 800 | if (value_entirely_optimized_out (val)) |
c906108c | 801 | { |
6501578c YQ |
802 | if (options->summary && !scalar_type_p (value_type (val))) |
803 | fprintf_filtered (stream, "..."); | |
804 | else | |
805 | val_print_optimized_out (stream); | |
c906108c SS |
806 | return 0; |
807 | } | |
806048c6 | 808 | |
bc3b79fd TJB |
809 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_INTERNAL_FUNCTION) |
810 | { | |
811 | fprintf_filtered (stream, _("<internal function %s>"), | |
812 | value_internal_function_name (val)); | |
813 | return 0; | |
814 | } | |
815 | ||
806048c6 DJ |
816 | return 1; |
817 | } | |
818 | ||
d8ca156b | 819 | /* Print using the given LANGUAGE the value VAL onto stream STREAM according |
79a45b7d | 820 | to OPTIONS. |
806048c6 | 821 | |
806048c6 DJ |
822 | This is a preferable interface to val_print, above, because it uses |
823 | GDB's value mechanism. */ | |
824 | ||
a1f5dd1b | 825 | void |
79a45b7d TT |
826 | common_val_print (struct value *val, struct ui_file *stream, int recurse, |
827 | const struct value_print_options *options, | |
d8ca156b | 828 | const struct language_defn *language) |
806048c6 | 829 | { |
6501578c | 830 | if (!value_check_printable (val, stream, options)) |
a1f5dd1b | 831 | return; |
806048c6 | 832 | |
0c3acc09 JB |
833 | if (language->la_language == language_ada) |
834 | /* The value might have a dynamic type, which would cause trouble | |
835 | below when trying to extract the value contents (since the value | |
836 | size is determined from the type size which is unknown). So | |
837 | get a fixed representation of our value. */ | |
838 | val = ada_to_fixed_value (val); | |
839 | ||
a1f5dd1b TT |
840 | val_print (value_type (val), value_contents_for_printing (val), |
841 | value_embedded_offset (val), value_address (val), | |
842 | stream, recurse, | |
843 | val, options, language); | |
806048c6 DJ |
844 | } |
845 | ||
7348c5e1 | 846 | /* Print on stream STREAM the value VAL according to OPTIONS. The value |
8e069a98 | 847 | is printed using the current_language syntax. */ |
7348c5e1 | 848 | |
8e069a98 | 849 | void |
79a45b7d TT |
850 | value_print (struct value *val, struct ui_file *stream, |
851 | const struct value_print_options *options) | |
806048c6 | 852 | { |
6501578c | 853 | if (!value_check_printable (val, stream, options)) |
8e069a98 | 854 | return; |
806048c6 | 855 | |
a6bac58e TT |
856 | if (!options->raw) |
857 | { | |
858 | int r = apply_val_pretty_printer (value_type (val), | |
0e03807e | 859 | value_contents_for_printing (val), |
a6bac58e TT |
860 | value_embedded_offset (val), |
861 | value_address (val), | |
0e03807e TT |
862 | stream, 0, |
863 | val, options, current_language); | |
a109c7c1 | 864 | |
a6bac58e | 865 | if (r) |
8e069a98 | 866 | return; |
a6bac58e TT |
867 | } |
868 | ||
8e069a98 | 869 | LA_VALUE_PRINT (val, stream, options); |
c906108c SS |
870 | } |
871 | ||
872 | /* Called by various <lang>_val_print routines to print | |
873 | TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the | |
874 | value. STREAM is where to print the value. */ | |
875 | ||
876 | void | |
fc1a4b47 | 877 | val_print_type_code_int (struct type *type, const gdb_byte *valaddr, |
fba45db2 | 878 | struct ui_file *stream) |
c906108c | 879 | { |
50810684 | 880 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
d44e8473 | 881 | |
c906108c SS |
882 | if (TYPE_LENGTH (type) > sizeof (LONGEST)) |
883 | { | |
884 | LONGEST val; | |
885 | ||
886 | if (TYPE_UNSIGNED (type) | |
887 | && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type), | |
e17a4113 | 888 | byte_order, &val)) |
c906108c SS |
889 | { |
890 | print_longest (stream, 'u', 0, val); | |
891 | } | |
892 | else | |
893 | { | |
894 | /* Signed, or we couldn't turn an unsigned value into a | |
895 | LONGEST. For signed values, one could assume two's | |
896 | complement (a reasonable assumption, I think) and do | |
897 | better than this. */ | |
898 | print_hex_chars (stream, (unsigned char *) valaddr, | |
d44e8473 | 899 | TYPE_LENGTH (type), byte_order); |
c906108c SS |
900 | } |
901 | } | |
902 | else | |
903 | { | |
c906108c SS |
904 | print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0, |
905 | unpack_long (type, valaddr)); | |
c906108c SS |
906 | } |
907 | } | |
908 | ||
4f2aea11 MK |
909 | void |
910 | val_print_type_code_flags (struct type *type, const gdb_byte *valaddr, | |
911 | struct ui_file *stream) | |
912 | { | |
befae759 | 913 | ULONGEST val = unpack_long (type, valaddr); |
4f2aea11 MK |
914 | int bitpos, nfields = TYPE_NFIELDS (type); |
915 | ||
916 | fputs_filtered ("[ ", stream); | |
917 | for (bitpos = 0; bitpos < nfields; bitpos++) | |
918 | { | |
316703b9 MK |
919 | if (TYPE_FIELD_BITPOS (type, bitpos) != -1 |
920 | && (val & ((ULONGEST)1 << bitpos))) | |
4f2aea11 MK |
921 | { |
922 | if (TYPE_FIELD_NAME (type, bitpos)) | |
923 | fprintf_filtered (stream, "%s ", TYPE_FIELD_NAME (type, bitpos)); | |
924 | else | |
925 | fprintf_filtered (stream, "#%d ", bitpos); | |
926 | } | |
927 | } | |
928 | fputs_filtered ("]", stream); | |
19c37f24 | 929 | } |
ab2188aa PA |
930 | |
931 | /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR, | |
932 | according to OPTIONS and SIZE on STREAM. Format i is not supported | |
933 | at this level. | |
934 | ||
935 | This is how the elements of an array or structure are printed | |
936 | with a format. */ | |
ab2188aa PA |
937 | |
938 | void | |
939 | val_print_scalar_formatted (struct type *type, | |
940 | const gdb_byte *valaddr, int embedded_offset, | |
941 | const struct value *val, | |
942 | const struct value_print_options *options, | |
943 | int size, | |
944 | struct ui_file *stream) | |
945 | { | |
946 | gdb_assert (val != NULL); | |
947 | gdb_assert (valaddr == value_contents_for_printing_const (val)); | |
948 | ||
949 | /* If we get here with a string format, try again without it. Go | |
950 | all the way back to the language printers, which may call us | |
951 | again. */ | |
952 | if (options->format == 's') | |
953 | { | |
954 | struct value_print_options opts = *options; | |
955 | opts.format = 0; | |
956 | opts.deref_ref = 0; | |
957 | val_print (type, valaddr, embedded_offset, 0, stream, 0, val, &opts, | |
958 | current_language); | |
959 | return; | |
960 | } | |
961 | ||
962 | /* A scalar object that does not have all bits available can't be | |
963 | printed, because all bits contribute to its representation. */ | |
964 | if (!value_bits_valid (val, TARGET_CHAR_BIT * embedded_offset, | |
965 | TARGET_CHAR_BIT * TYPE_LENGTH (type))) | |
966 | val_print_optimized_out (stream); | |
4e07d55f PA |
967 | else if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type))) |
968 | val_print_unavailable (stream); | |
ab2188aa PA |
969 | else |
970 | print_scalar_formatted (valaddr + embedded_offset, type, | |
971 | options, size, stream); | |
4f2aea11 MK |
972 | } |
973 | ||
c906108c SS |
974 | /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g. |
975 | The raison d'etre of this function is to consolidate printing of | |
581e13c1 | 976 | LONG_LONG's into this one function. The format chars b,h,w,g are |
bb599908 | 977 | from print_scalar_formatted(). Numbers are printed using C |
581e13c1 | 978 | format. |
bb599908 PH |
979 | |
980 | USE_C_FORMAT means to use C format in all cases. Without it, | |
981 | 'o' and 'x' format do not include the standard C radix prefix | |
982 | (leading 0 or 0x). | |
983 | ||
984 | Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL | |
985 | and was intended to request formating according to the current | |
986 | language and would be used for most integers that GDB prints. The | |
987 | exceptional cases were things like protocols where the format of | |
988 | the integer is a protocol thing, not a user-visible thing). The | |
989 | parameter remains to preserve the information of what things might | |
990 | be printed with language-specific format, should we ever resurrect | |
581e13c1 | 991 | that capability. */ |
c906108c SS |
992 | |
993 | void | |
bb599908 | 994 | print_longest (struct ui_file *stream, int format, int use_c_format, |
fba45db2 | 995 | LONGEST val_long) |
c906108c | 996 | { |
2bfb72ee AC |
997 | const char *val; |
998 | ||
c906108c SS |
999 | switch (format) |
1000 | { | |
1001 | case 'd': | |
bb599908 | 1002 | val = int_string (val_long, 10, 1, 0, 1); break; |
c906108c | 1003 | case 'u': |
bb599908 | 1004 | val = int_string (val_long, 10, 0, 0, 1); break; |
c906108c | 1005 | case 'x': |
bb599908 | 1006 | val = int_string (val_long, 16, 0, 0, use_c_format); break; |
c906108c | 1007 | case 'b': |
bb599908 | 1008 | val = int_string (val_long, 16, 0, 2, 1); break; |
c906108c | 1009 | case 'h': |
bb599908 | 1010 | val = int_string (val_long, 16, 0, 4, 1); break; |
c906108c | 1011 | case 'w': |
bb599908 | 1012 | val = int_string (val_long, 16, 0, 8, 1); break; |
c906108c | 1013 | case 'g': |
bb599908 | 1014 | val = int_string (val_long, 16, 0, 16, 1); break; |
c906108c SS |
1015 | break; |
1016 | case 'o': | |
bb599908 | 1017 | val = int_string (val_long, 8, 0, 0, use_c_format); break; |
c906108c | 1018 | default: |
3e43a32a MS |
1019 | internal_error (__FILE__, __LINE__, |
1020 | _("failed internal consistency check")); | |
bb599908 | 1021 | } |
2bfb72ee | 1022 | fputs_filtered (val, stream); |
c906108c SS |
1023 | } |
1024 | ||
c906108c SS |
1025 | /* This used to be a macro, but I don't think it is called often enough |
1026 | to merit such treatment. */ | |
1027 | /* Convert a LONGEST to an int. This is used in contexts (e.g. number of | |
1028 | arguments to a function, number in a value history, register number, etc.) | |
1029 | where the value must not be larger than can fit in an int. */ | |
1030 | ||
1031 | int | |
fba45db2 | 1032 | longest_to_int (LONGEST arg) |
c906108c | 1033 | { |
581e13c1 | 1034 | /* Let the compiler do the work. */ |
c906108c SS |
1035 | int rtnval = (int) arg; |
1036 | ||
581e13c1 | 1037 | /* Check for overflows or underflows. */ |
c906108c SS |
1038 | if (sizeof (LONGEST) > sizeof (int)) |
1039 | { | |
1040 | if (rtnval != arg) | |
1041 | { | |
8a3fe4f8 | 1042 | error (_("Value out of range.")); |
c906108c SS |
1043 | } |
1044 | } | |
1045 | return (rtnval); | |
1046 | } | |
1047 | ||
a73c86fb AC |
1048 | /* Print a floating point value of type TYPE (not always a |
1049 | TYPE_CODE_FLT), pointed to in GDB by VALADDR, on STREAM. */ | |
c906108c SS |
1050 | |
1051 | void | |
fc1a4b47 | 1052 | print_floating (const gdb_byte *valaddr, struct type *type, |
c84141d6 | 1053 | struct ui_file *stream) |
c906108c SS |
1054 | { |
1055 | DOUBLEST doub; | |
1056 | int inv; | |
a73c86fb | 1057 | const struct floatformat *fmt = NULL; |
c906108c | 1058 | unsigned len = TYPE_LENGTH (type); |
20389057 | 1059 | enum float_kind kind; |
c5aa993b | 1060 | |
a73c86fb AC |
1061 | /* If it is a floating-point, check for obvious problems. */ |
1062 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1063 | fmt = floatformat_from_type (type); | |
20389057 | 1064 | if (fmt != NULL) |
39424bef | 1065 | { |
20389057 DJ |
1066 | kind = floatformat_classify (fmt, valaddr); |
1067 | if (kind == float_nan) | |
1068 | { | |
1069 | if (floatformat_is_negative (fmt, valaddr)) | |
1070 | fprintf_filtered (stream, "-"); | |
1071 | fprintf_filtered (stream, "nan("); | |
1072 | fputs_filtered ("0x", stream); | |
1073 | fputs_filtered (floatformat_mantissa (fmt, valaddr), stream); | |
1074 | fprintf_filtered (stream, ")"); | |
1075 | return; | |
1076 | } | |
1077 | else if (kind == float_infinite) | |
1078 | { | |
1079 | if (floatformat_is_negative (fmt, valaddr)) | |
1080 | fputs_filtered ("-", stream); | |
1081 | fputs_filtered ("inf", stream); | |
1082 | return; | |
1083 | } | |
7355ddba | 1084 | } |
c906108c | 1085 | |
a73c86fb AC |
1086 | /* NOTE: cagney/2002-01-15: The TYPE passed into print_floating() |
1087 | isn't necessarily a TYPE_CODE_FLT. Consequently, unpack_double | |
1088 | needs to be used as that takes care of any necessary type | |
1089 | conversions. Such conversions are of course direct to DOUBLEST | |
1090 | and disregard any possible target floating point limitations. | |
1091 | For instance, a u64 would be converted and displayed exactly on a | |
1092 | host with 80 bit DOUBLEST but with loss of information on a host | |
1093 | with 64 bit DOUBLEST. */ | |
c2f05ac9 | 1094 | |
c906108c SS |
1095 | doub = unpack_double (type, valaddr, &inv); |
1096 | if (inv) | |
1097 | { | |
1098 | fprintf_filtered (stream, "<invalid float value>"); | |
1099 | return; | |
1100 | } | |
1101 | ||
39424bef MK |
1102 | /* FIXME: kettenis/2001-01-20: The following code makes too much |
1103 | assumptions about the host and target floating point format. */ | |
1104 | ||
a73c86fb | 1105 | /* NOTE: cagney/2002-02-03: Since the TYPE of what was passed in may |
c41b8590 | 1106 | not necessarily be a TYPE_CODE_FLT, the below ignores that and |
a73c86fb AC |
1107 | instead uses the type's length to determine the precision of the |
1108 | floating-point value being printed. */ | |
c2f05ac9 | 1109 | |
c906108c | 1110 | if (len < sizeof (double)) |
c5aa993b | 1111 | fprintf_filtered (stream, "%.9g", (double) doub); |
c906108c | 1112 | else if (len == sizeof (double)) |
c5aa993b | 1113 | fprintf_filtered (stream, "%.17g", (double) doub); |
c906108c SS |
1114 | else |
1115 | #ifdef PRINTF_HAS_LONG_DOUBLE | |
1116 | fprintf_filtered (stream, "%.35Lg", doub); | |
1117 | #else | |
39424bef MK |
1118 | /* This at least wins with values that are representable as |
1119 | doubles. */ | |
c906108c SS |
1120 | fprintf_filtered (stream, "%.17g", (double) doub); |
1121 | #endif | |
1122 | } | |
1123 | ||
7678ef8f TJB |
1124 | void |
1125 | print_decimal_floating (const gdb_byte *valaddr, struct type *type, | |
1126 | struct ui_file *stream) | |
1127 | { | |
e17a4113 | 1128 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
7678ef8f TJB |
1129 | char decstr[MAX_DECIMAL_STRING]; |
1130 | unsigned len = TYPE_LENGTH (type); | |
1131 | ||
e17a4113 | 1132 | decimal_to_string (valaddr, len, byte_order, decstr); |
7678ef8f TJB |
1133 | fputs_filtered (decstr, stream); |
1134 | return; | |
1135 | } | |
1136 | ||
c5aa993b | 1137 | void |
fc1a4b47 | 1138 | print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 1139 | unsigned len, enum bfd_endian byte_order) |
c906108c SS |
1140 | { |
1141 | ||
1142 | #define BITS_IN_BYTES 8 | |
1143 | ||
fc1a4b47 | 1144 | const gdb_byte *p; |
745b8ca0 | 1145 | unsigned int i; |
c5aa993b | 1146 | int b; |
c906108c SS |
1147 | |
1148 | /* Declared "int" so it will be signed. | |
581e13c1 MS |
1149 | This ensures that right shift will shift in zeros. */ |
1150 | ||
c5aa993b | 1151 | const int mask = 0x080; |
c906108c SS |
1152 | |
1153 | /* FIXME: We should be not printing leading zeroes in most cases. */ | |
1154 | ||
d44e8473 | 1155 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
1156 | { |
1157 | for (p = valaddr; | |
1158 | p < valaddr + len; | |
1159 | p++) | |
1160 | { | |
c5aa993b | 1161 | /* Every byte has 8 binary characters; peel off |
581e13c1 MS |
1162 | and print from the MSB end. */ |
1163 | ||
c5aa993b JM |
1164 | for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) |
1165 | { | |
1166 | if (*p & (mask >> i)) | |
1167 | b = 1; | |
1168 | else | |
1169 | b = 0; | |
1170 | ||
1171 | fprintf_filtered (stream, "%1d", b); | |
1172 | } | |
c906108c SS |
1173 | } |
1174 | } | |
1175 | else | |
1176 | { | |
1177 | for (p = valaddr + len - 1; | |
1178 | p >= valaddr; | |
1179 | p--) | |
1180 | { | |
c5aa993b JM |
1181 | for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++) |
1182 | { | |
1183 | if (*p & (mask >> i)) | |
1184 | b = 1; | |
1185 | else | |
1186 | b = 0; | |
1187 | ||
1188 | fprintf_filtered (stream, "%1d", b); | |
1189 | } | |
c906108c SS |
1190 | } |
1191 | } | |
c906108c SS |
1192 | } |
1193 | ||
1194 | /* VALADDR points to an integer of LEN bytes. | |
581e13c1 MS |
1195 | Print it in octal on stream or format it in buf. */ |
1196 | ||
c906108c | 1197 | void |
fc1a4b47 | 1198 | print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 1199 | unsigned len, enum bfd_endian byte_order) |
c906108c | 1200 | { |
fc1a4b47 | 1201 | const gdb_byte *p; |
c906108c | 1202 | unsigned char octa1, octa2, octa3, carry; |
c5aa993b JM |
1203 | int cycle; |
1204 | ||
c906108c SS |
1205 | /* FIXME: We should be not printing leading zeroes in most cases. */ |
1206 | ||
1207 | ||
1208 | /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track | |
1209 | * the extra bits, which cycle every three bytes: | |
1210 | * | |
1211 | * Byte side: 0 1 2 3 | |
1212 | * | | | | | |
1213 | * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 | | |
1214 | * | |
1215 | * Octal side: 0 1 carry 3 4 carry ... | |
1216 | * | |
1217 | * Cycle number: 0 1 2 | |
1218 | * | |
1219 | * But of course we are printing from the high side, so we have to | |
1220 | * figure out where in the cycle we are so that we end up with no | |
1221 | * left over bits at the end. | |
1222 | */ | |
1223 | #define BITS_IN_OCTAL 3 | |
1224 | #define HIGH_ZERO 0340 | |
1225 | #define LOW_ZERO 0016 | |
1226 | #define CARRY_ZERO 0003 | |
1227 | #define HIGH_ONE 0200 | |
1228 | #define MID_ONE 0160 | |
1229 | #define LOW_ONE 0016 | |
1230 | #define CARRY_ONE 0001 | |
1231 | #define HIGH_TWO 0300 | |
1232 | #define MID_TWO 0070 | |
1233 | #define LOW_TWO 0007 | |
1234 | ||
1235 | /* For 32 we start in cycle 2, with two bits and one bit carry; | |
581e13c1 MS |
1236 | for 64 in cycle in cycle 1, with one bit and a two bit carry. */ |
1237 | ||
c906108c SS |
1238 | cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL; |
1239 | carry = 0; | |
c5aa993b | 1240 | |
bb599908 | 1241 | fputs_filtered ("0", stream); |
d44e8473 | 1242 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
1243 | { |
1244 | for (p = valaddr; | |
1245 | p < valaddr + len; | |
1246 | p++) | |
1247 | { | |
c5aa993b JM |
1248 | switch (cycle) |
1249 | { | |
1250 | case 0: | |
581e13c1 MS |
1251 | /* No carry in, carry out two bits. */ |
1252 | ||
c5aa993b JM |
1253 | octa1 = (HIGH_ZERO & *p) >> 5; |
1254 | octa2 = (LOW_ZERO & *p) >> 2; | |
1255 | carry = (CARRY_ZERO & *p); | |
1256 | fprintf_filtered (stream, "%o", octa1); | |
1257 | fprintf_filtered (stream, "%o", octa2); | |
1258 | break; | |
1259 | ||
1260 | case 1: | |
581e13c1 MS |
1261 | /* Carry in two bits, carry out one bit. */ |
1262 | ||
c5aa993b JM |
1263 | octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
1264 | octa2 = (MID_ONE & *p) >> 4; | |
1265 | octa3 = (LOW_ONE & *p) >> 1; | |
1266 | carry = (CARRY_ONE & *p); | |
1267 | fprintf_filtered (stream, "%o", octa1); | |
1268 | fprintf_filtered (stream, "%o", octa2); | |
1269 | fprintf_filtered (stream, "%o", octa3); | |
1270 | break; | |
1271 | ||
1272 | case 2: | |
581e13c1 MS |
1273 | /* Carry in one bit, no carry out. */ |
1274 | ||
c5aa993b JM |
1275 | octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
1276 | octa2 = (MID_TWO & *p) >> 3; | |
1277 | octa3 = (LOW_TWO & *p); | |
1278 | carry = 0; | |
1279 | fprintf_filtered (stream, "%o", octa1); | |
1280 | fprintf_filtered (stream, "%o", octa2); | |
1281 | fprintf_filtered (stream, "%o", octa3); | |
1282 | break; | |
1283 | ||
1284 | default: | |
8a3fe4f8 | 1285 | error (_("Internal error in octal conversion;")); |
c5aa993b JM |
1286 | } |
1287 | ||
1288 | cycle++; | |
1289 | cycle = cycle % BITS_IN_OCTAL; | |
c906108c SS |
1290 | } |
1291 | } | |
1292 | else | |
1293 | { | |
1294 | for (p = valaddr + len - 1; | |
1295 | p >= valaddr; | |
1296 | p--) | |
1297 | { | |
c5aa993b JM |
1298 | switch (cycle) |
1299 | { | |
1300 | case 0: | |
1301 | /* Carry out, no carry in */ | |
581e13c1 | 1302 | |
c5aa993b JM |
1303 | octa1 = (HIGH_ZERO & *p) >> 5; |
1304 | octa2 = (LOW_ZERO & *p) >> 2; | |
1305 | carry = (CARRY_ZERO & *p); | |
1306 | fprintf_filtered (stream, "%o", octa1); | |
1307 | fprintf_filtered (stream, "%o", octa2); | |
1308 | break; | |
1309 | ||
1310 | case 1: | |
1311 | /* Carry in, carry out */ | |
581e13c1 | 1312 | |
c5aa993b JM |
1313 | octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7); |
1314 | octa2 = (MID_ONE & *p) >> 4; | |
1315 | octa3 = (LOW_ONE & *p) >> 1; | |
1316 | carry = (CARRY_ONE & *p); | |
1317 | fprintf_filtered (stream, "%o", octa1); | |
1318 | fprintf_filtered (stream, "%o", octa2); | |
1319 | fprintf_filtered (stream, "%o", octa3); | |
1320 | break; | |
1321 | ||
1322 | case 2: | |
1323 | /* Carry in, no carry out */ | |
581e13c1 | 1324 | |
c5aa993b JM |
1325 | octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6); |
1326 | octa2 = (MID_TWO & *p) >> 3; | |
1327 | octa3 = (LOW_TWO & *p); | |
1328 | carry = 0; | |
1329 | fprintf_filtered (stream, "%o", octa1); | |
1330 | fprintf_filtered (stream, "%o", octa2); | |
1331 | fprintf_filtered (stream, "%o", octa3); | |
1332 | break; | |
1333 | ||
1334 | default: | |
8a3fe4f8 | 1335 | error (_("Internal error in octal conversion;")); |
c5aa993b JM |
1336 | } |
1337 | ||
1338 | cycle++; | |
1339 | cycle = cycle % BITS_IN_OCTAL; | |
c906108c SS |
1340 | } |
1341 | } | |
1342 | ||
c906108c SS |
1343 | } |
1344 | ||
1345 | /* VALADDR points to an integer of LEN bytes. | |
581e13c1 MS |
1346 | Print it in decimal on stream or format it in buf. */ |
1347 | ||
c906108c | 1348 | void |
fc1a4b47 | 1349 | print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 1350 | unsigned len, enum bfd_endian byte_order) |
c906108c SS |
1351 | { |
1352 | #define TEN 10 | |
c5aa993b | 1353 | #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */ |
c906108c SS |
1354 | #define CARRY_LEFT( x ) ((x) % TEN) |
1355 | #define SHIFT( x ) ((x) << 4) | |
c906108c SS |
1356 | #define LOW_NIBBLE( x ) ( (x) & 0x00F) |
1357 | #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4) | |
1358 | ||
fc1a4b47 | 1359 | const gdb_byte *p; |
c906108c | 1360 | unsigned char *digits; |
c5aa993b JM |
1361 | int carry; |
1362 | int decimal_len; | |
1363 | int i, j, decimal_digits; | |
1364 | int dummy; | |
1365 | int flip; | |
1366 | ||
c906108c | 1367 | /* Base-ten number is less than twice as many digits |
581e13c1 MS |
1368 | as the base 16 number, which is 2 digits per byte. */ |
1369 | ||
c906108c | 1370 | decimal_len = len * 2 * 2; |
3c37485b | 1371 | digits = xmalloc (decimal_len); |
c906108c | 1372 | |
c5aa993b JM |
1373 | for (i = 0; i < decimal_len; i++) |
1374 | { | |
c906108c | 1375 | digits[i] = 0; |
c5aa993b | 1376 | } |
c906108c | 1377 | |
c906108c SS |
1378 | /* Ok, we have an unknown number of bytes of data to be printed in |
1379 | * decimal. | |
1380 | * | |
1381 | * Given a hex number (in nibbles) as XYZ, we start by taking X and | |
1382 | * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply | |
1383 | * the nibbles by 16, add Y and re-decimalize. Repeat with Z. | |
1384 | * | |
1385 | * The trick is that "digits" holds a base-10 number, but sometimes | |
581e13c1 | 1386 | * the individual digits are > 10. |
c906108c SS |
1387 | * |
1388 | * Outer loop is per nibble (hex digit) of input, from MSD end to | |
1389 | * LSD end. | |
1390 | */ | |
c5aa993b | 1391 | decimal_digits = 0; /* Number of decimal digits so far */ |
d44e8473 | 1392 | p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1; |
c906108c | 1393 | flip = 0; |
d44e8473 | 1394 | while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr)) |
c5aa993b | 1395 | { |
c906108c SS |
1396 | /* |
1397 | * Multiply current base-ten number by 16 in place. | |
1398 | * Each digit was between 0 and 9, now is between | |
1399 | * 0 and 144. | |
1400 | */ | |
c5aa993b JM |
1401 | for (j = 0; j < decimal_digits; j++) |
1402 | { | |
1403 | digits[j] = SHIFT (digits[j]); | |
1404 | } | |
1405 | ||
c906108c SS |
1406 | /* Take the next nibble off the input and add it to what |
1407 | * we've got in the LSB position. Bottom 'digit' is now | |
1408 | * between 0 and 159. | |
1409 | * | |
1410 | * "flip" is used to run this loop twice for each byte. | |
1411 | */ | |
c5aa993b JM |
1412 | if (flip == 0) |
1413 | { | |
581e13c1 MS |
1414 | /* Take top nibble. */ |
1415 | ||
c5aa993b JM |
1416 | digits[0] += HIGH_NIBBLE (*p); |
1417 | flip = 1; | |
1418 | } | |
1419 | else | |
1420 | { | |
581e13c1 MS |
1421 | /* Take low nibble and bump our pointer "p". */ |
1422 | ||
c5aa993b | 1423 | digits[0] += LOW_NIBBLE (*p); |
d44e8473 MD |
1424 | if (byte_order == BFD_ENDIAN_BIG) |
1425 | p++; | |
1426 | else | |
1427 | p--; | |
c5aa993b JM |
1428 | flip = 0; |
1429 | } | |
c906108c SS |
1430 | |
1431 | /* Re-decimalize. We have to do this often enough | |
1432 | * that we don't overflow, but once per nibble is | |
1433 | * overkill. Easier this way, though. Note that the | |
1434 | * carry is often larger than 10 (e.g. max initial | |
1435 | * carry out of lowest nibble is 15, could bubble all | |
1436 | * the way up greater than 10). So we have to do | |
1437 | * the carrying beyond the last current digit. | |
1438 | */ | |
1439 | carry = 0; | |
c5aa993b JM |
1440 | for (j = 0; j < decimal_len - 1; j++) |
1441 | { | |
1442 | digits[j] += carry; | |
1443 | ||
1444 | /* "/" won't handle an unsigned char with | |
1445 | * a value that if signed would be negative. | |
1446 | * So extend to longword int via "dummy". | |
1447 | */ | |
1448 | dummy = digits[j]; | |
1449 | carry = CARRY_OUT (dummy); | |
1450 | digits[j] = CARRY_LEFT (dummy); | |
1451 | ||
1452 | if (j >= decimal_digits && carry == 0) | |
1453 | { | |
1454 | /* | |
1455 | * All higher digits are 0 and we | |
1456 | * no longer have a carry. | |
1457 | * | |
1458 | * Note: "j" is 0-based, "decimal_digits" is | |
1459 | * 1-based. | |
1460 | */ | |
1461 | decimal_digits = j + 1; | |
1462 | break; | |
1463 | } | |
1464 | } | |
1465 | } | |
c906108c SS |
1466 | |
1467 | /* Ok, now "digits" is the decimal representation, with | |
581e13c1 MS |
1468 | the "decimal_digits" actual digits. Print! */ |
1469 | ||
c5aa993b JM |
1470 | for (i = decimal_digits - 1; i >= 0; i--) |
1471 | { | |
1472 | fprintf_filtered (stream, "%1d", digits[i]); | |
1473 | } | |
b8c9b27d | 1474 | xfree (digits); |
c906108c SS |
1475 | } |
1476 | ||
1477 | /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */ | |
1478 | ||
6b9acc27 | 1479 | void |
fc1a4b47 | 1480 | print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr, |
d44e8473 | 1481 | unsigned len, enum bfd_endian byte_order) |
c906108c | 1482 | { |
fc1a4b47 | 1483 | const gdb_byte *p; |
c906108c SS |
1484 | |
1485 | /* FIXME: We should be not printing leading zeroes in most cases. */ | |
1486 | ||
bb599908 | 1487 | fputs_filtered ("0x", stream); |
d44e8473 | 1488 | if (byte_order == BFD_ENDIAN_BIG) |
c906108c SS |
1489 | { |
1490 | for (p = valaddr; | |
1491 | p < valaddr + len; | |
1492 | p++) | |
1493 | { | |
1494 | fprintf_filtered (stream, "%02x", *p); | |
1495 | } | |
1496 | } | |
1497 | else | |
1498 | { | |
1499 | for (p = valaddr + len - 1; | |
1500 | p >= valaddr; | |
1501 | p--) | |
1502 | { | |
1503 | fprintf_filtered (stream, "%02x", *p); | |
1504 | } | |
1505 | } | |
c906108c SS |
1506 | } |
1507 | ||
3e43a32a | 1508 | /* VALADDR points to a char integer of LEN bytes. |
581e13c1 | 1509 | Print it out in appropriate language form on stream. |
6b9acc27 JJ |
1510 | Omit any leading zero chars. */ |
1511 | ||
1512 | void | |
6c7a06a3 TT |
1513 | print_char_chars (struct ui_file *stream, struct type *type, |
1514 | const gdb_byte *valaddr, | |
d44e8473 | 1515 | unsigned len, enum bfd_endian byte_order) |
6b9acc27 | 1516 | { |
fc1a4b47 | 1517 | const gdb_byte *p; |
6b9acc27 | 1518 | |
d44e8473 | 1519 | if (byte_order == BFD_ENDIAN_BIG) |
6b9acc27 JJ |
1520 | { |
1521 | p = valaddr; | |
1522 | while (p < valaddr + len - 1 && *p == 0) | |
1523 | ++p; | |
1524 | ||
1525 | while (p < valaddr + len) | |
1526 | { | |
6c7a06a3 | 1527 | LA_EMIT_CHAR (*p, type, stream, '\''); |
6b9acc27 JJ |
1528 | ++p; |
1529 | } | |
1530 | } | |
1531 | else | |
1532 | { | |
1533 | p = valaddr + len - 1; | |
1534 | while (p > valaddr && *p == 0) | |
1535 | --p; | |
1536 | ||
1537 | while (p >= valaddr) | |
1538 | { | |
6c7a06a3 | 1539 | LA_EMIT_CHAR (*p, type, stream, '\''); |
6b9acc27 JJ |
1540 | --p; |
1541 | } | |
1542 | } | |
1543 | } | |
1544 | ||
132c57b4 TT |
1545 | /* Print function pointer with inferior address ADDRESS onto stdio |
1546 | stream STREAM. */ | |
1547 | ||
1548 | void | |
edf0c1b7 TT |
1549 | print_function_pointer_address (const struct value_print_options *options, |
1550 | struct gdbarch *gdbarch, | |
132c57b4 | 1551 | CORE_ADDR address, |
edf0c1b7 | 1552 | struct ui_file *stream) |
132c57b4 TT |
1553 | { |
1554 | CORE_ADDR func_addr | |
1555 | = gdbarch_convert_from_func_ptr_addr (gdbarch, address, | |
1556 | ¤t_target); | |
1557 | ||
1558 | /* If the function pointer is represented by a description, print | |
1559 | the address of the description. */ | |
edf0c1b7 | 1560 | if (options->addressprint && func_addr != address) |
132c57b4 TT |
1561 | { |
1562 | fputs_filtered ("@", stream); | |
1563 | fputs_filtered (paddress (gdbarch, address), stream); | |
1564 | fputs_filtered (": ", stream); | |
1565 | } | |
edf0c1b7 | 1566 | print_address_demangle (options, gdbarch, func_addr, stream, demangle); |
132c57b4 TT |
1567 | } |
1568 | ||
1569 | ||
79a45b7d | 1570 | /* Print on STREAM using the given OPTIONS the index for the element |
e79af960 JB |
1571 | at INDEX of an array whose index type is INDEX_TYPE. */ |
1572 | ||
1573 | void | |
1574 | maybe_print_array_index (struct type *index_type, LONGEST index, | |
79a45b7d TT |
1575 | struct ui_file *stream, |
1576 | const struct value_print_options *options) | |
e79af960 JB |
1577 | { |
1578 | struct value *index_value; | |
1579 | ||
79a45b7d | 1580 | if (!options->print_array_indexes) |
e79af960 JB |
1581 | return; |
1582 | ||
1583 | index_value = value_from_longest (index_type, index); | |
1584 | ||
79a45b7d TT |
1585 | LA_PRINT_ARRAY_INDEX (index_value, stream, options); |
1586 | } | |
e79af960 | 1587 | |
c906108c | 1588 | /* Called by various <lang>_val_print routines to print elements of an |
c5aa993b | 1589 | array in the form "<elem1>, <elem2>, <elem3>, ...". |
c906108c | 1590 | |
c5aa993b JM |
1591 | (FIXME?) Assumes array element separator is a comma, which is correct |
1592 | for all languages currently handled. | |
1593 | (FIXME?) Some languages have a notation for repeated array elements, | |
581e13c1 | 1594 | perhaps we should try to use that notation when appropriate. */ |
c906108c SS |
1595 | |
1596 | void | |
490f124f PA |
1597 | val_print_array_elements (struct type *type, |
1598 | const gdb_byte *valaddr, int embedded_offset, | |
a2bd3dcd | 1599 | CORE_ADDR address, struct ui_file *stream, |
79a45b7d | 1600 | int recurse, |
0e03807e | 1601 | const struct value *val, |
79a45b7d | 1602 | const struct value_print_options *options, |
fba45db2 | 1603 | unsigned int i) |
c906108c SS |
1604 | { |
1605 | unsigned int things_printed = 0; | |
1606 | unsigned len; | |
e79af960 | 1607 | struct type *elttype, *index_type; |
c906108c SS |
1608 | unsigned eltlen; |
1609 | /* Position of the array element we are examining to see | |
1610 | whether it is repeated. */ | |
1611 | unsigned int rep1; | |
1612 | /* Number of repetitions we have detected so far. */ | |
1613 | unsigned int reps; | |
dbc98a8b | 1614 | LONGEST low_bound, high_bound; |
c5aa993b | 1615 | |
c906108c SS |
1616 | elttype = TYPE_TARGET_TYPE (type); |
1617 | eltlen = TYPE_LENGTH (check_typedef (elttype)); | |
e79af960 | 1618 | index_type = TYPE_INDEX_TYPE (type); |
c906108c | 1619 | |
dbc98a8b | 1620 | if (get_array_bounds (type, &low_bound, &high_bound)) |
75be741b JB |
1621 | { |
1622 | /* The array length should normally be HIGH_BOUND - LOW_BOUND + 1. | |
1623 | But we have to be a little extra careful, because some languages | |
1624 | such as Ada allow LOW_BOUND to be greater than HIGH_BOUND for | |
1625 | empty arrays. In that situation, the array length is just zero, | |
1626 | not negative! */ | |
1627 | if (low_bound > high_bound) | |
1628 | len = 0; | |
1629 | else | |
1630 | len = high_bound - low_bound + 1; | |
1631 | } | |
e936309c JB |
1632 | else |
1633 | { | |
dbc98a8b KW |
1634 | warning (_("unable to get bounds of array, assuming null array")); |
1635 | low_bound = 0; | |
1636 | len = 0; | |
168de233 JB |
1637 | } |
1638 | ||
c906108c SS |
1639 | annotate_array_section_begin (i, elttype); |
1640 | ||
79a45b7d | 1641 | for (; i < len && things_printed < options->print_max; i++) |
c906108c SS |
1642 | { |
1643 | if (i != 0) | |
1644 | { | |
79a45b7d | 1645 | if (options->prettyprint_arrays) |
c906108c SS |
1646 | { |
1647 | fprintf_filtered (stream, ",\n"); | |
1648 | print_spaces_filtered (2 + 2 * recurse, stream); | |
1649 | } | |
1650 | else | |
1651 | { | |
1652 | fprintf_filtered (stream, ", "); | |
1653 | } | |
1654 | } | |
1655 | wrap_here (n_spaces (2 + 2 * recurse)); | |
dbc98a8b | 1656 | maybe_print_array_index (index_type, i + low_bound, |
79a45b7d | 1657 | stream, options); |
c906108c SS |
1658 | |
1659 | rep1 = i + 1; | |
1660 | reps = 1; | |
35bef4fd TT |
1661 | /* Only check for reps if repeat_count_threshold is not set to |
1662 | UINT_MAX (unlimited). */ | |
1663 | if (options->repeat_count_threshold < UINT_MAX) | |
c906108c | 1664 | { |
35bef4fd TT |
1665 | while (rep1 < len |
1666 | && value_available_contents_eq (val, | |
1667 | embedded_offset + i * eltlen, | |
1668 | val, | |
1669 | (embedded_offset | |
1670 | + rep1 * eltlen), | |
1671 | eltlen)) | |
1672 | { | |
1673 | ++reps; | |
1674 | ++rep1; | |
1675 | } | |
c906108c SS |
1676 | } |
1677 | ||
79a45b7d | 1678 | if (reps > options->repeat_count_threshold) |
c906108c | 1679 | { |
490f124f PA |
1680 | val_print (elttype, valaddr, embedded_offset + i * eltlen, |
1681 | address, stream, recurse + 1, val, options, | |
1682 | current_language); | |
c906108c SS |
1683 | annotate_elt_rep (reps); |
1684 | fprintf_filtered (stream, " <repeats %u times>", reps); | |
1685 | annotate_elt_rep_end (); | |
1686 | ||
1687 | i = rep1 - 1; | |
79a45b7d | 1688 | things_printed += options->repeat_count_threshold; |
c906108c SS |
1689 | } |
1690 | else | |
1691 | { | |
490f124f PA |
1692 | val_print (elttype, valaddr, embedded_offset + i * eltlen, |
1693 | address, | |
0e03807e | 1694 | stream, recurse + 1, val, options, current_language); |
c906108c SS |
1695 | annotate_elt (); |
1696 | things_printed++; | |
1697 | } | |
1698 | } | |
1699 | annotate_array_section_end (); | |
1700 | if (i < len) | |
1701 | { | |
1702 | fprintf_filtered (stream, "..."); | |
1703 | } | |
1704 | } | |
1705 | ||
917317f4 JM |
1706 | /* Read LEN bytes of target memory at address MEMADDR, placing the |
1707 | results in GDB's memory at MYADDR. Returns a count of the bytes | |
1708 | actually read, and optionally an errno value in the location | |
581e13c1 | 1709 | pointed to by ERRNOPTR if ERRNOPTR is non-null. */ |
917317f4 JM |
1710 | |
1711 | /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this | |
1712 | function be eliminated. */ | |
1713 | ||
1714 | static int | |
3e43a32a MS |
1715 | partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr, |
1716 | int len, int *errnoptr) | |
917317f4 | 1717 | { |
581e13c1 MS |
1718 | int nread; /* Number of bytes actually read. */ |
1719 | int errcode; /* Error from last read. */ | |
917317f4 | 1720 | |
581e13c1 | 1721 | /* First try a complete read. */ |
917317f4 JM |
1722 | errcode = target_read_memory (memaddr, myaddr, len); |
1723 | if (errcode == 0) | |
1724 | { | |
581e13c1 | 1725 | /* Got it all. */ |
917317f4 JM |
1726 | nread = len; |
1727 | } | |
1728 | else | |
1729 | { | |
581e13c1 | 1730 | /* Loop, reading one byte at a time until we get as much as we can. */ |
917317f4 JM |
1731 | for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--) |
1732 | { | |
1733 | errcode = target_read_memory (memaddr++, myaddr++, 1); | |
1734 | } | |
581e13c1 | 1735 | /* If an error, the last read was unsuccessful, so adjust count. */ |
917317f4 JM |
1736 | if (errcode != 0) |
1737 | { | |
1738 | nread--; | |
1739 | } | |
1740 | } | |
1741 | if (errnoptr != NULL) | |
1742 | { | |
1743 | *errnoptr = errcode; | |
1744 | } | |
1745 | return (nread); | |
1746 | } | |
1747 | ||
ae6a3a4c TJB |
1748 | /* Read a string from the inferior, at ADDR, with LEN characters of WIDTH bytes |
1749 | each. Fetch at most FETCHLIMIT characters. BUFFER will be set to a newly | |
1750 | allocated buffer containing the string, which the caller is responsible to | |
1751 | free, and BYTES_READ will be set to the number of bytes read. Returns 0 on | |
1752 | success, or errno on failure. | |
1753 | ||
1754 | If LEN > 0, reads exactly LEN characters (including eventual NULs in | |
1755 | the middle or end of the string). If LEN is -1, stops at the first | |
1756 | null character (not necessarily the first null byte) up to a maximum | |
1757 | of FETCHLIMIT characters. Set FETCHLIMIT to UINT_MAX to read as many | |
1758 | characters as possible from the string. | |
1759 | ||
1760 | Unless an exception is thrown, BUFFER will always be allocated, even on | |
1761 | failure. In this case, some characters might have been read before the | |
1762 | failure happened. Check BYTES_READ to recognize this situation. | |
1763 | ||
1764 | Note: There was a FIXME asking to make this code use target_read_string, | |
1765 | but this function is more general (can read past null characters, up to | |
581e13c1 | 1766 | given LEN). Besides, it is used much more often than target_read_string |
ae6a3a4c TJB |
1767 | so it is more tested. Perhaps callers of target_read_string should use |
1768 | this function instead? */ | |
c906108c SS |
1769 | |
1770 | int | |
ae6a3a4c | 1771 | read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit, |
e17a4113 | 1772 | enum bfd_endian byte_order, gdb_byte **buffer, int *bytes_read) |
c906108c | 1773 | { |
ae6a3a4c TJB |
1774 | int found_nul; /* Non-zero if we found the nul char. */ |
1775 | int errcode; /* Errno returned from bad reads. */ | |
1776 | unsigned int nfetch; /* Chars to fetch / chars fetched. */ | |
1777 | unsigned int chunksize; /* Size of each fetch, in chars. */ | |
3e43a32a MS |
1778 | gdb_byte *bufptr; /* Pointer to next available byte in |
1779 | buffer. */ | |
ae6a3a4c TJB |
1780 | gdb_byte *limit; /* First location past end of fetch buffer. */ |
1781 | struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ | |
1782 | ||
1783 | /* Decide how large of chunks to try to read in one operation. This | |
c906108c SS |
1784 | is also pretty simple. If LEN >= zero, then we want fetchlimit chars, |
1785 | so we might as well read them all in one operation. If LEN is -1, we | |
ae6a3a4c | 1786 | are looking for a NUL terminator to end the fetching, so we might as |
c906108c SS |
1787 | well read in blocks that are large enough to be efficient, but not so |
1788 | large as to be slow if fetchlimit happens to be large. So we choose the | |
1789 | minimum of 8 and fetchlimit. We used to use 200 instead of 8 but | |
1790 | 200 is way too big for remote debugging over a serial line. */ | |
1791 | ||
1792 | chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit); | |
1793 | ||
ae6a3a4c TJB |
1794 | /* Loop until we either have all the characters, or we encounter |
1795 | some error, such as bumping into the end of the address space. */ | |
c906108c SS |
1796 | |
1797 | found_nul = 0; | |
b5096abe PM |
1798 | *buffer = NULL; |
1799 | ||
1800 | old_chain = make_cleanup (free_current_contents, buffer); | |
c906108c SS |
1801 | |
1802 | if (len > 0) | |
1803 | { | |
ae6a3a4c TJB |
1804 | *buffer = (gdb_byte *) xmalloc (len * width); |
1805 | bufptr = *buffer; | |
c906108c | 1806 | |
917317f4 | 1807 | nfetch = partial_memory_read (addr, bufptr, len * width, &errcode) |
c906108c SS |
1808 | / width; |
1809 | addr += nfetch * width; | |
1810 | bufptr += nfetch * width; | |
1811 | } | |
1812 | else if (len == -1) | |
1813 | { | |
1814 | unsigned long bufsize = 0; | |
ae6a3a4c | 1815 | |
c906108c SS |
1816 | do |
1817 | { | |
1818 | QUIT; | |
1819 | nfetch = min (chunksize, fetchlimit - bufsize); | |
1820 | ||
ae6a3a4c TJB |
1821 | if (*buffer == NULL) |
1822 | *buffer = (gdb_byte *) xmalloc (nfetch * width); | |
c906108c | 1823 | else |
b5096abe PM |
1824 | *buffer = (gdb_byte *) xrealloc (*buffer, |
1825 | (nfetch + bufsize) * width); | |
c906108c | 1826 | |
ae6a3a4c | 1827 | bufptr = *buffer + bufsize * width; |
c906108c SS |
1828 | bufsize += nfetch; |
1829 | ||
ae6a3a4c | 1830 | /* Read as much as we can. */ |
917317f4 | 1831 | nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode) |
ae6a3a4c | 1832 | / width; |
c906108c | 1833 | |
ae6a3a4c | 1834 | /* Scan this chunk for the null character that terminates the string |
c906108c SS |
1835 | to print. If found, we don't need to fetch any more. Note |
1836 | that bufptr is explicitly left pointing at the next character | |
ae6a3a4c TJB |
1837 | after the null character, or at the next character after the end |
1838 | of the buffer. */ | |
c906108c SS |
1839 | |
1840 | limit = bufptr + nfetch * width; | |
1841 | while (bufptr < limit) | |
1842 | { | |
1843 | unsigned long c; | |
1844 | ||
e17a4113 | 1845 | c = extract_unsigned_integer (bufptr, width, byte_order); |
c906108c SS |
1846 | addr += width; |
1847 | bufptr += width; | |
1848 | if (c == 0) | |
1849 | { | |
1850 | /* We don't care about any error which happened after | |
ae6a3a4c | 1851 | the NUL terminator. */ |
c906108c SS |
1852 | errcode = 0; |
1853 | found_nul = 1; | |
1854 | break; | |
1855 | } | |
1856 | } | |
1857 | } | |
c5aa993b | 1858 | while (errcode == 0 /* no error */ |
ae6a3a4c TJB |
1859 | && bufptr - *buffer < fetchlimit * width /* no overrun */ |
1860 | && !found_nul); /* haven't found NUL yet */ | |
c906108c SS |
1861 | } |
1862 | else | |
ae6a3a4c TJB |
1863 | { /* Length of string is really 0! */ |
1864 | /* We always allocate *buffer. */ | |
1865 | *buffer = bufptr = xmalloc (1); | |
c906108c SS |
1866 | errcode = 0; |
1867 | } | |
1868 | ||
1869 | /* bufptr and addr now point immediately beyond the last byte which we | |
1870 | consider part of the string (including a '\0' which ends the string). */ | |
ae6a3a4c TJB |
1871 | *bytes_read = bufptr - *buffer; |
1872 | ||
1873 | QUIT; | |
1874 | ||
1875 | discard_cleanups (old_chain); | |
1876 | ||
1877 | return errcode; | |
1878 | } | |
1879 | ||
3b2b8fea TT |
1880 | /* Return true if print_wchar can display W without resorting to a |
1881 | numeric escape, false otherwise. */ | |
1882 | ||
1883 | static int | |
1884 | wchar_printable (gdb_wchar_t w) | |
1885 | { | |
1886 | return (gdb_iswprint (w) | |
1887 | || w == LCST ('\a') || w == LCST ('\b') | |
1888 | || w == LCST ('\f') || w == LCST ('\n') | |
1889 | || w == LCST ('\r') || w == LCST ('\t') | |
1890 | || w == LCST ('\v')); | |
1891 | } | |
1892 | ||
1893 | /* A helper function that converts the contents of STRING to wide | |
1894 | characters and then appends them to OUTPUT. */ | |
1895 | ||
1896 | static void | |
1897 | append_string_as_wide (const char *string, | |
1898 | struct obstack *output) | |
1899 | { | |
1900 | for (; *string; ++string) | |
1901 | { | |
1902 | gdb_wchar_t w = gdb_btowc (*string); | |
1903 | obstack_grow (output, &w, sizeof (gdb_wchar_t)); | |
1904 | } | |
1905 | } | |
1906 | ||
1907 | /* Print a wide character W to OUTPUT. ORIG is a pointer to the | |
1908 | original (target) bytes representing the character, ORIG_LEN is the | |
1909 | number of valid bytes. WIDTH is the number of bytes in a base | |
1910 | characters of the type. OUTPUT is an obstack to which wide | |
1911 | characters are emitted. QUOTER is a (narrow) character indicating | |
1912 | the style of quotes surrounding the character to be printed. | |
1913 | NEED_ESCAPE is an in/out flag which is used to track numeric | |
1914 | escapes across calls. */ | |
1915 | ||
1916 | static void | |
1917 | print_wchar (gdb_wint_t w, const gdb_byte *orig, | |
1918 | int orig_len, int width, | |
1919 | enum bfd_endian byte_order, | |
1920 | struct obstack *output, | |
1921 | int quoter, int *need_escapep) | |
1922 | { | |
1923 | int need_escape = *need_escapep; | |
1924 | ||
1925 | *need_escapep = 0; | |
1926 | if (gdb_iswprint (w) && (!need_escape || (!gdb_iswdigit (w) | |
1927 | && w != LCST ('8') | |
1928 | && w != LCST ('9')))) | |
1929 | { | |
1930 | gdb_wchar_t wchar = w; | |
1931 | ||
1932 | if (w == gdb_btowc (quoter) || w == LCST ('\\')) | |
1933 | obstack_grow_wstr (output, LCST ("\\")); | |
1934 | obstack_grow (output, &wchar, sizeof (gdb_wchar_t)); | |
1935 | } | |
1936 | else | |
1937 | { | |
1938 | switch (w) | |
1939 | { | |
1940 | case LCST ('\a'): | |
1941 | obstack_grow_wstr (output, LCST ("\\a")); | |
1942 | break; | |
1943 | case LCST ('\b'): | |
1944 | obstack_grow_wstr (output, LCST ("\\b")); | |
1945 | break; | |
1946 | case LCST ('\f'): | |
1947 | obstack_grow_wstr (output, LCST ("\\f")); | |
1948 | break; | |
1949 | case LCST ('\n'): | |
1950 | obstack_grow_wstr (output, LCST ("\\n")); | |
1951 | break; | |
1952 | case LCST ('\r'): | |
1953 | obstack_grow_wstr (output, LCST ("\\r")); | |
1954 | break; | |
1955 | case LCST ('\t'): | |
1956 | obstack_grow_wstr (output, LCST ("\\t")); | |
1957 | break; | |
1958 | case LCST ('\v'): | |
1959 | obstack_grow_wstr (output, LCST ("\\v")); | |
1960 | break; | |
1961 | default: | |
1962 | { | |
1963 | int i; | |
1964 | ||
1965 | for (i = 0; i + width <= orig_len; i += width) | |
1966 | { | |
1967 | char octal[30]; | |
1968 | ULONGEST value; | |
1969 | ||
1970 | value = extract_unsigned_integer (&orig[i], width, | |
1971 | byte_order); | |
1972 | /* If the value fits in 3 octal digits, print it that | |
1973 | way. Otherwise, print it as a hex escape. */ | |
1974 | if (value <= 0777) | |
08850b56 PM |
1975 | xsnprintf (octal, sizeof (octal), "\\%.3o", |
1976 | (int) (value & 0777)); | |
3b2b8fea | 1977 | else |
08850b56 | 1978 | xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value); |
3b2b8fea TT |
1979 | append_string_as_wide (octal, output); |
1980 | } | |
1981 | /* If we somehow have extra bytes, print them now. */ | |
1982 | while (i < orig_len) | |
1983 | { | |
1984 | char octal[5]; | |
1985 | ||
08850b56 | 1986 | xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff); |
3b2b8fea TT |
1987 | append_string_as_wide (octal, output); |
1988 | ++i; | |
1989 | } | |
1990 | ||
1991 | *need_escapep = 1; | |
1992 | } | |
1993 | break; | |
1994 | } | |
1995 | } | |
1996 | } | |
1997 | ||
1998 | /* Print the character C on STREAM as part of the contents of a | |
1999 | literal string whose delimiter is QUOTER. ENCODING names the | |
2000 | encoding of C. */ | |
2001 | ||
2002 | void | |
2003 | generic_emit_char (int c, struct type *type, struct ui_file *stream, | |
2004 | int quoter, const char *encoding) | |
2005 | { | |
2006 | enum bfd_endian byte_order | |
2007 | = gdbarch_byte_order (get_type_arch (type)); | |
2008 | struct obstack wchar_buf, output; | |
2009 | struct cleanup *cleanups; | |
2010 | gdb_byte *buf; | |
2011 | struct wchar_iterator *iter; | |
2012 | int need_escape = 0; | |
2013 | ||
2014 | buf = alloca (TYPE_LENGTH (type)); | |
2015 | pack_long (buf, type, c); | |
2016 | ||
2017 | iter = make_wchar_iterator (buf, TYPE_LENGTH (type), | |
2018 | encoding, TYPE_LENGTH (type)); | |
2019 | cleanups = make_cleanup_wchar_iterator (iter); | |
2020 | ||
2021 | /* This holds the printable form of the wchar_t data. */ | |
2022 | obstack_init (&wchar_buf); | |
2023 | make_cleanup_obstack_free (&wchar_buf); | |
2024 | ||
2025 | while (1) | |
2026 | { | |
2027 | int num_chars; | |
2028 | gdb_wchar_t *chars; | |
2029 | const gdb_byte *buf; | |
2030 | size_t buflen; | |
2031 | int print_escape = 1; | |
2032 | enum wchar_iterate_result result; | |
2033 | ||
2034 | num_chars = wchar_iterate (iter, &result, &chars, &buf, &buflen); | |
2035 | if (num_chars < 0) | |
2036 | break; | |
2037 | if (num_chars > 0) | |
2038 | { | |
2039 | /* If all characters are printable, print them. Otherwise, | |
2040 | we're going to have to print an escape sequence. We | |
2041 | check all characters because we want to print the target | |
2042 | bytes in the escape sequence, and we don't know character | |
2043 | boundaries there. */ | |
2044 | int i; | |
2045 | ||
2046 | print_escape = 0; | |
2047 | for (i = 0; i < num_chars; ++i) | |
2048 | if (!wchar_printable (chars[i])) | |
2049 | { | |
2050 | print_escape = 1; | |
2051 | break; | |
2052 | } | |
2053 | ||
2054 | if (!print_escape) | |
2055 | { | |
2056 | for (i = 0; i < num_chars; ++i) | |
2057 | print_wchar (chars[i], buf, buflen, | |
2058 | TYPE_LENGTH (type), byte_order, | |
2059 | &wchar_buf, quoter, &need_escape); | |
2060 | } | |
2061 | } | |
2062 | ||
2063 | /* This handles the NUM_CHARS == 0 case as well. */ | |
2064 | if (print_escape) | |
2065 | print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type), | |
2066 | byte_order, &wchar_buf, quoter, &need_escape); | |
2067 | } | |
2068 | ||
2069 | /* The output in the host encoding. */ | |
2070 | obstack_init (&output); | |
2071 | make_cleanup_obstack_free (&output); | |
2072 | ||
2073 | convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), | |
ac91cd70 | 2074 | (gdb_byte *) obstack_base (&wchar_buf), |
3b2b8fea | 2075 | obstack_object_size (&wchar_buf), |
fff10684 | 2076 | sizeof (gdb_wchar_t), &output, translit_char); |
3b2b8fea TT |
2077 | obstack_1grow (&output, '\0'); |
2078 | ||
2079 | fputs_filtered (obstack_base (&output), stream); | |
2080 | ||
2081 | do_cleanups (cleanups); | |
2082 | } | |
2083 | ||
0d63ecda KS |
2084 | /* Return the repeat count of the next character/byte in ITER, |
2085 | storing the result in VEC. */ | |
2086 | ||
2087 | static int | |
2088 | count_next_character (struct wchar_iterator *iter, | |
2089 | VEC (converted_character_d) **vec) | |
2090 | { | |
2091 | struct converted_character *current; | |
2092 | ||
2093 | if (VEC_empty (converted_character_d, *vec)) | |
2094 | { | |
2095 | struct converted_character tmp; | |
2096 | gdb_wchar_t *chars; | |
2097 | ||
2098 | tmp.num_chars | |
2099 | = wchar_iterate (iter, &tmp.result, &chars, &tmp.buf, &tmp.buflen); | |
2100 | if (tmp.num_chars > 0) | |
2101 | { | |
2102 | gdb_assert (tmp.num_chars < MAX_WCHARS); | |
2103 | memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t)); | |
2104 | } | |
2105 | VEC_safe_push (converted_character_d, *vec, &tmp); | |
2106 | } | |
2107 | ||
2108 | current = VEC_last (converted_character_d, *vec); | |
2109 | ||
2110 | /* Count repeated characters or bytes. */ | |
2111 | current->repeat_count = 1; | |
2112 | if (current->num_chars == -1) | |
2113 | { | |
2114 | /* EOF */ | |
2115 | return -1; | |
2116 | } | |
2117 | else | |
2118 | { | |
2119 | gdb_wchar_t *chars; | |
2120 | struct converted_character d; | |
2121 | int repeat; | |
2122 | ||
2123 | d.repeat_count = 0; | |
2124 | ||
2125 | while (1) | |
2126 | { | |
2127 | /* Get the next character. */ | |
2128 | d.num_chars | |
2129 | = wchar_iterate (iter, &d.result, &chars, &d.buf, &d.buflen); | |
2130 | ||
2131 | /* If a character was successfully converted, save the character | |
2132 | into the converted character. */ | |
2133 | if (d.num_chars > 0) | |
2134 | { | |
2135 | gdb_assert (d.num_chars < MAX_WCHARS); | |
2136 | memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars)); | |
2137 | } | |
2138 | ||
2139 | /* Determine if the current character is the same as this | |
2140 | new character. */ | |
2141 | if (d.num_chars == current->num_chars && d.result == current->result) | |
2142 | { | |
2143 | /* There are two cases to consider: | |
2144 | ||
2145 | 1) Equality of converted character (num_chars > 0) | |
2146 | 2) Equality of non-converted character (num_chars == 0) */ | |
2147 | if ((current->num_chars > 0 | |
2148 | && memcmp (current->chars, d.chars, | |
2149 | WCHAR_BUFLEN (current->num_chars)) == 0) | |
2150 | || (current->num_chars == 0 | |
2151 | && current->buflen == d.buflen | |
2152 | && memcmp (current->buf, d.buf, current->buflen) == 0)) | |
2153 | ++current->repeat_count; | |
2154 | else | |
2155 | break; | |
2156 | } | |
2157 | else | |
2158 | break; | |
2159 | } | |
2160 | ||
2161 | /* Push this next converted character onto the result vector. */ | |
2162 | repeat = current->repeat_count; | |
2163 | VEC_safe_push (converted_character_d, *vec, &d); | |
2164 | return repeat; | |
2165 | } | |
2166 | } | |
2167 | ||
2168 | /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote | |
2169 | character to use with string output. WIDTH is the size of the output | |
2170 | character type. BYTE_ORDER is the the target byte order. OPTIONS | |
2171 | is the user's print options. */ | |
2172 | ||
2173 | static void | |
2174 | print_converted_chars_to_obstack (struct obstack *obstack, | |
2175 | VEC (converted_character_d) *chars, | |
2176 | int quote_char, int width, | |
2177 | enum bfd_endian byte_order, | |
2178 | const struct value_print_options *options) | |
2179 | { | |
2180 | unsigned int idx; | |
2181 | struct converted_character *elem; | |
2182 | enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last; | |
2183 | gdb_wchar_t wide_quote_char = gdb_btowc (quote_char); | |
2184 | int need_escape = 0; | |
2185 | ||
2186 | /* Set the start state. */ | |
2187 | idx = 0; | |
2188 | last = state = START; | |
2189 | elem = NULL; | |
2190 | ||
2191 | while (1) | |
2192 | { | |
2193 | switch (state) | |
2194 | { | |
2195 | case START: | |
2196 | /* Nothing to do. */ | |
2197 | break; | |
2198 | ||
2199 | case SINGLE: | |
2200 | { | |
2201 | int j; | |
2202 | ||
2203 | /* We are outputting a single character | |
2204 | (< options->repeat_count_threshold). */ | |
2205 | ||
2206 | if (last != SINGLE) | |
2207 | { | |
2208 | /* We were outputting some other type of content, so we | |
2209 | must output and a comma and a quote. */ | |
2210 | if (last != START) | |
2211 | obstack_grow_wstr (obstack, LCST (", ")); | |
0d63ecda KS |
2212 | obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
2213 | } | |
2214 | /* Output the character. */ | |
2215 | for (j = 0; j < elem->repeat_count; ++j) | |
2216 | { | |
2217 | if (elem->result == wchar_iterate_ok) | |
2218 | print_wchar (elem->chars[0], elem->buf, elem->buflen, width, | |
2219 | byte_order, obstack, quote_char, &need_escape); | |
2220 | else | |
2221 | print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, | |
2222 | byte_order, obstack, quote_char, &need_escape); | |
2223 | } | |
2224 | } | |
2225 | break; | |
2226 | ||
2227 | case REPEAT: | |
2228 | { | |
2229 | int j; | |
2230 | char *s; | |
2231 | ||
2232 | /* We are outputting a character with a repeat count | |
2233 | greater than options->repeat_count_threshold. */ | |
2234 | ||
2235 | if (last == SINGLE) | |
2236 | { | |
2237 | /* We were outputting a single string. Terminate the | |
2238 | string. */ | |
0d63ecda KS |
2239 | obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
2240 | } | |
2241 | if (last != START) | |
2242 | obstack_grow_wstr (obstack, LCST (", ")); | |
2243 | ||
2244 | /* Output the character and repeat string. */ | |
2245 | obstack_grow_wstr (obstack, LCST ("'")); | |
2246 | if (elem->result == wchar_iterate_ok) | |
2247 | print_wchar (elem->chars[0], elem->buf, elem->buflen, width, | |
2248 | byte_order, obstack, quote_char, &need_escape); | |
2249 | else | |
2250 | print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, | |
2251 | byte_order, obstack, quote_char, &need_escape); | |
2252 | obstack_grow_wstr (obstack, LCST ("'")); | |
2253 | s = xstrprintf (_(" <repeats %u times>"), elem->repeat_count); | |
2254 | for (j = 0; s[j]; ++j) | |
2255 | { | |
2256 | gdb_wchar_t w = gdb_btowc (s[j]); | |
2257 | obstack_grow (obstack, &w, sizeof (gdb_wchar_t)); | |
2258 | } | |
2259 | xfree (s); | |
2260 | } | |
2261 | break; | |
2262 | ||
2263 | case INCOMPLETE: | |
2264 | /* We are outputting an incomplete sequence. */ | |
2265 | if (last == SINGLE) | |
2266 | { | |
2267 | /* If we were outputting a string of SINGLE characters, | |
2268 | terminate the quote. */ | |
0d63ecda KS |
2269 | obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
2270 | } | |
2271 | if (last != START) | |
2272 | obstack_grow_wstr (obstack, LCST (", ")); | |
2273 | ||
2274 | /* Output the incomplete sequence string. */ | |
2275 | obstack_grow_wstr (obstack, LCST ("<incomplete sequence ")); | |
2276 | print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order, | |
2277 | obstack, 0, &need_escape); | |
2278 | obstack_grow_wstr (obstack, LCST (">")); | |
2279 | ||
2280 | /* We do not attempt to outupt anything after this. */ | |
2281 | state = FINISH; | |
2282 | break; | |
2283 | ||
2284 | case FINISH: | |
2285 | /* All done. If we were outputting a string of SINGLE | |
2286 | characters, the string must be terminated. Otherwise, | |
2287 | REPEAT and INCOMPLETE are always left properly terminated. */ | |
2288 | if (last == SINGLE) | |
e93a8774 | 2289 | obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t)); |
0d63ecda KS |
2290 | |
2291 | return; | |
2292 | } | |
2293 | ||
2294 | /* Get the next element and state. */ | |
2295 | last = state; | |
2296 | if (state != FINISH) | |
2297 | { | |
2298 | elem = VEC_index (converted_character_d, chars, idx++); | |
2299 | switch (elem->result) | |
2300 | { | |
2301 | case wchar_iterate_ok: | |
2302 | case wchar_iterate_invalid: | |
2303 | if (elem->repeat_count > options->repeat_count_threshold) | |
2304 | state = REPEAT; | |
2305 | else | |
2306 | state = SINGLE; | |
2307 | break; | |
2308 | ||
2309 | case wchar_iterate_incomplete: | |
2310 | state = INCOMPLETE; | |
2311 | break; | |
2312 | ||
2313 | case wchar_iterate_eof: | |
2314 | state = FINISH; | |
2315 | break; | |
2316 | } | |
2317 | } | |
2318 | } | |
2319 | } | |
2320 | ||
3b2b8fea TT |
2321 | /* Print the character string STRING, printing at most LENGTH |
2322 | characters. LENGTH is -1 if the string is nul terminated. TYPE is | |
2323 | the type of each character. OPTIONS holds the printing options; | |
2324 | printing stops early if the number hits print_max; repeat counts | |
2325 | are printed as appropriate. Print ellipses at the end if we had to | |
2326 | stop before printing LENGTH characters, or if FORCE_ELLIPSES. | |
2327 | QUOTE_CHAR is the character to print at each end of the string. If | |
2328 | C_STYLE_TERMINATOR is true, and the last character is 0, then it is | |
2329 | omitted. */ | |
2330 | ||
2331 | void | |
2332 | generic_printstr (struct ui_file *stream, struct type *type, | |
2333 | const gdb_byte *string, unsigned int length, | |
2334 | const char *encoding, int force_ellipses, | |
2335 | int quote_char, int c_style_terminator, | |
2336 | const struct value_print_options *options) | |
2337 | { | |
2338 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); | |
2339 | unsigned int i; | |
3b2b8fea TT |
2340 | int width = TYPE_LENGTH (type); |
2341 | struct obstack wchar_buf, output; | |
2342 | struct cleanup *cleanup; | |
2343 | struct wchar_iterator *iter; | |
2344 | int finished = 0; | |
0d63ecda KS |
2345 | struct converted_character *last; |
2346 | VEC (converted_character_d) *converted_chars; | |
3b2b8fea TT |
2347 | |
2348 | if (length == -1) | |
2349 | { | |
2350 | unsigned long current_char = 1; | |
2351 | ||
2352 | for (i = 0; current_char; ++i) | |
2353 | { | |
2354 | QUIT; | |
2355 | current_char = extract_unsigned_integer (string + i * width, | |
2356 | width, byte_order); | |
2357 | } | |
2358 | length = i; | |
2359 | } | |
2360 | ||
2361 | /* If the string was not truncated due to `set print elements', and | |
2362 | the last byte of it is a null, we don't print that, in | |
2363 | traditional C style. */ | |
2364 | if (c_style_terminator | |
2365 | && !force_ellipses | |
2366 | && length > 0 | |
2367 | && (extract_unsigned_integer (string + (length - 1) * width, | |
2368 | width, byte_order) == 0)) | |
2369 | length--; | |
2370 | ||
2371 | if (length == 0) | |
2372 | { | |
2373 | fputs_filtered ("\"\"", stream); | |
2374 | return; | |
2375 | } | |
2376 | ||
2377 | /* Arrange to iterate over the characters, in wchar_t form. */ | |
2378 | iter = make_wchar_iterator (string, length * width, encoding, width); | |
2379 | cleanup = make_cleanup_wchar_iterator (iter); | |
0d63ecda KS |
2380 | converted_chars = NULL; |
2381 | make_cleanup (VEC_cleanup (converted_character_d), &converted_chars); | |
3b2b8fea | 2382 | |
0d63ecda KS |
2383 | /* Convert characters until the string is over or the maximum |
2384 | number of printed characters has been reached. */ | |
2385 | i = 0; | |
2386 | while (i < options->print_max) | |
3b2b8fea | 2387 | { |
0d63ecda | 2388 | int r; |
3b2b8fea TT |
2389 | |
2390 | QUIT; | |
2391 | ||
0d63ecda KS |
2392 | /* Grab the next character and repeat count. */ |
2393 | r = count_next_character (iter, &converted_chars); | |
3b2b8fea | 2394 | |
0d63ecda KS |
2395 | /* If less than zero, the end of the input string was reached. */ |
2396 | if (r < 0) | |
2397 | break; | |
3b2b8fea | 2398 | |
0d63ecda KS |
2399 | /* Otherwise, add the count to the total print count and get |
2400 | the next character. */ | |
2401 | i += r; | |
2402 | } | |
3b2b8fea | 2403 | |
0d63ecda KS |
2404 | /* Get the last element and determine if the entire string was |
2405 | processed. */ | |
2406 | last = VEC_last (converted_character_d, converted_chars); | |
2407 | finished = (last->result == wchar_iterate_eof); | |
3b2b8fea | 2408 | |
0d63ecda KS |
2409 | /* Ensure that CONVERTED_CHARS is terminated. */ |
2410 | last->result = wchar_iterate_eof; | |
3b2b8fea | 2411 | |
0d63ecda KS |
2412 | /* WCHAR_BUF is the obstack we use to represent the string in |
2413 | wchar_t form. */ | |
2414 | obstack_init (&wchar_buf); | |
2415 | make_cleanup_obstack_free (&wchar_buf); | |
3b2b8fea | 2416 | |
0d63ecda KS |
2417 | /* Print the output string to the obstack. */ |
2418 | print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char, | |
2419 | width, byte_order, options); | |
3b2b8fea TT |
2420 | |
2421 | if (force_ellipses || !finished) | |
2422 | obstack_grow_wstr (&wchar_buf, LCST ("...")); | |
2423 | ||
2424 | /* OUTPUT is where we collect `char's for printing. */ | |
2425 | obstack_init (&output); | |
2426 | make_cleanup_obstack_free (&output); | |
2427 | ||
2428 | convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (), | |
ac91cd70 | 2429 | (gdb_byte *) obstack_base (&wchar_buf), |
3b2b8fea | 2430 | obstack_object_size (&wchar_buf), |
fff10684 | 2431 | sizeof (gdb_wchar_t), &output, translit_char); |
3b2b8fea TT |
2432 | obstack_1grow (&output, '\0'); |
2433 | ||
2434 | fputs_filtered (obstack_base (&output), stream); | |
2435 | ||
2436 | do_cleanups (cleanup); | |
2437 | } | |
2438 | ||
ae6a3a4c TJB |
2439 | /* Print a string from the inferior, starting at ADDR and printing up to LEN |
2440 | characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing | |
2441 | stops at the first null byte, otherwise printing proceeds (including null | |
2442 | bytes) until either print_max or LEN characters have been printed, | |
09ca9e2e TT |
2443 | whichever is smaller. ENCODING is the name of the string's |
2444 | encoding. It can be NULL, in which case the target encoding is | |
2445 | assumed. */ | |
ae6a3a4c TJB |
2446 | |
2447 | int | |
09ca9e2e TT |
2448 | val_print_string (struct type *elttype, const char *encoding, |
2449 | CORE_ADDR addr, int len, | |
6c7a06a3 | 2450 | struct ui_file *stream, |
ae6a3a4c TJB |
2451 | const struct value_print_options *options) |
2452 | { | |
2453 | int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */ | |
2454 | int errcode; /* Errno returned from bad reads. */ | |
581e13c1 | 2455 | int found_nul; /* Non-zero if we found the nul char. */ |
ae6a3a4c TJB |
2456 | unsigned int fetchlimit; /* Maximum number of chars to print. */ |
2457 | int bytes_read; | |
2458 | gdb_byte *buffer = NULL; /* Dynamically growable fetch buffer. */ | |
2459 | struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */ | |
5af949e3 | 2460 | struct gdbarch *gdbarch = get_type_arch (elttype); |
e17a4113 | 2461 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
6c7a06a3 | 2462 | int width = TYPE_LENGTH (elttype); |
ae6a3a4c TJB |
2463 | |
2464 | /* First we need to figure out the limit on the number of characters we are | |
2465 | going to attempt to fetch and print. This is actually pretty simple. If | |
2466 | LEN >= zero, then the limit is the minimum of LEN and print_max. If | |
2467 | LEN is -1, then the limit is print_max. This is true regardless of | |
2468 | whether print_max is zero, UINT_MAX (unlimited), or something in between, | |
2469 | because finding the null byte (or available memory) is what actually | |
2470 | limits the fetch. */ | |
2471 | ||
3e43a32a MS |
2472 | fetchlimit = (len == -1 ? options->print_max : min (len, |
2473 | options->print_max)); | |
ae6a3a4c | 2474 | |
e17a4113 UW |
2475 | errcode = read_string (addr, len, width, fetchlimit, byte_order, |
2476 | &buffer, &bytes_read); | |
ae6a3a4c TJB |
2477 | old_chain = make_cleanup (xfree, buffer); |
2478 | ||
2479 | addr += bytes_read; | |
c906108c | 2480 | |
3e43a32a MS |
2481 | /* We now have either successfully filled the buffer to fetchlimit, |
2482 | or terminated early due to an error or finding a null char when | |
2483 | LEN is -1. */ | |
ae6a3a4c TJB |
2484 | |
2485 | /* Determine found_nul by looking at the last character read. */ | |
e17a4113 UW |
2486 | found_nul = extract_unsigned_integer (buffer + bytes_read - width, width, |
2487 | byte_order) == 0; | |
c906108c SS |
2488 | if (len == -1 && !found_nul) |
2489 | { | |
777ea8f1 | 2490 | gdb_byte *peekbuf; |
c906108c | 2491 | |
ae6a3a4c | 2492 | /* We didn't find a NUL terminator we were looking for. Attempt |
c5aa993b JM |
2493 | to peek at the next character. If not successful, or it is not |
2494 | a null byte, then force ellipsis to be printed. */ | |
c906108c | 2495 | |
777ea8f1 | 2496 | peekbuf = (gdb_byte *) alloca (width); |
c906108c SS |
2497 | |
2498 | if (target_read_memory (addr, peekbuf, width) == 0 | |
e17a4113 | 2499 | && extract_unsigned_integer (peekbuf, width, byte_order) != 0) |
c906108c SS |
2500 | force_ellipsis = 1; |
2501 | } | |
ae6a3a4c | 2502 | else if ((len >= 0 && errcode != 0) || (len > bytes_read / width)) |
c906108c SS |
2503 | { |
2504 | /* Getting an error when we have a requested length, or fetching less | |
c5aa993b | 2505 | than the number of characters actually requested, always make us |
ae6a3a4c | 2506 | print ellipsis. */ |
c906108c SS |
2507 | force_ellipsis = 1; |
2508 | } | |
2509 | ||
c906108c SS |
2510 | /* If we get an error before fetching anything, don't print a string. |
2511 | But if we fetch something and then get an error, print the string | |
2512 | and then the error message. */ | |
ae6a3a4c | 2513 | if (errcode == 0 || bytes_read > 0) |
c906108c | 2514 | { |
be759fcf | 2515 | LA_PRINT_STRING (stream, elttype, buffer, bytes_read / width, |
3a772aa4 | 2516 | encoding, force_ellipsis, options); |
c906108c SS |
2517 | } |
2518 | ||
2519 | if (errcode != 0) | |
2520 | { | |
2521 | if (errcode == EIO) | |
2522 | { | |
b012acdd | 2523 | fprintf_filtered (stream, "<Address "); |
5af949e3 | 2524 | fputs_filtered (paddress (gdbarch, addr), stream); |
c906108c SS |
2525 | fprintf_filtered (stream, " out of bounds>"); |
2526 | } | |
2527 | else | |
2528 | { | |
b012acdd | 2529 | fprintf_filtered (stream, "<Error reading address "); |
5af949e3 | 2530 | fputs_filtered (paddress (gdbarch, addr), stream); |
c906108c SS |
2531 | fprintf_filtered (stream, ": %s>", safe_strerror (errcode)); |
2532 | } | |
2533 | } | |
ae6a3a4c | 2534 | |
c906108c SS |
2535 | gdb_flush (stream); |
2536 | do_cleanups (old_chain); | |
ae6a3a4c TJB |
2537 | |
2538 | return (bytes_read / width); | |
c906108c | 2539 | } |
c906108c | 2540 | \f |
c5aa993b | 2541 | |
09e6485f PA |
2542 | /* The 'set input-radix' command writes to this auxiliary variable. |
2543 | If the requested radix is valid, INPUT_RADIX is updated; otherwise, | |
2544 | it is left unchanged. */ | |
2545 | ||
2546 | static unsigned input_radix_1 = 10; | |
2547 | ||
c906108c SS |
2548 | /* Validate an input or output radix setting, and make sure the user |
2549 | knows what they really did here. Radix setting is confusing, e.g. | |
2550 | setting the input radix to "10" never changes it! */ | |
2551 | ||
c906108c | 2552 | static void |
fba45db2 | 2553 | set_input_radix (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2554 | { |
09e6485f | 2555 | set_input_radix_1 (from_tty, input_radix_1); |
c906108c SS |
2556 | } |
2557 | ||
c906108c | 2558 | static void |
fba45db2 | 2559 | set_input_radix_1 (int from_tty, unsigned radix) |
c906108c SS |
2560 | { |
2561 | /* We don't currently disallow any input radix except 0 or 1, which don't | |
2562 | make any mathematical sense. In theory, we can deal with any input | |
2563 | radix greater than 1, even if we don't have unique digits for every | |
2564 | value from 0 to radix-1, but in practice we lose on large radix values. | |
2565 | We should either fix the lossage or restrict the radix range more. | |
581e13c1 | 2566 | (FIXME). */ |
c906108c SS |
2567 | |
2568 | if (radix < 2) | |
2569 | { | |
09e6485f | 2570 | input_radix_1 = input_radix; |
8a3fe4f8 | 2571 | error (_("Nonsense input radix ``decimal %u''; input radix unchanged."), |
c906108c SS |
2572 | radix); |
2573 | } | |
09e6485f | 2574 | input_radix_1 = input_radix = radix; |
c906108c SS |
2575 | if (from_tty) |
2576 | { | |
3e43a32a MS |
2577 | printf_filtered (_("Input radix now set to " |
2578 | "decimal %u, hex %x, octal %o.\n"), | |
c906108c SS |
2579 | radix, radix, radix); |
2580 | } | |
2581 | } | |
2582 | ||
09e6485f PA |
2583 | /* The 'set output-radix' command writes to this auxiliary variable. |
2584 | If the requested radix is valid, OUTPUT_RADIX is updated, | |
2585 | otherwise, it is left unchanged. */ | |
2586 | ||
2587 | static unsigned output_radix_1 = 10; | |
2588 | ||
c906108c | 2589 | static void |
fba45db2 | 2590 | set_output_radix (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 2591 | { |
09e6485f | 2592 | set_output_radix_1 (from_tty, output_radix_1); |
c906108c SS |
2593 | } |
2594 | ||
2595 | static void | |
fba45db2 | 2596 | set_output_radix_1 (int from_tty, unsigned radix) |
c906108c SS |
2597 | { |
2598 | /* Validate the radix and disallow ones that we aren't prepared to | |
581e13c1 | 2599 | handle correctly, leaving the radix unchanged. */ |
c906108c SS |
2600 | switch (radix) |
2601 | { | |
2602 | case 16: | |
79a45b7d | 2603 | user_print_options.output_format = 'x'; /* hex */ |
c906108c SS |
2604 | break; |
2605 | case 10: | |
79a45b7d | 2606 | user_print_options.output_format = 0; /* decimal */ |
c906108c SS |
2607 | break; |
2608 | case 8: | |
79a45b7d | 2609 | user_print_options.output_format = 'o'; /* octal */ |
c906108c SS |
2610 | break; |
2611 | default: | |
09e6485f | 2612 | output_radix_1 = output_radix; |
3e43a32a MS |
2613 | error (_("Unsupported output radix ``decimal %u''; " |
2614 | "output radix unchanged."), | |
c906108c SS |
2615 | radix); |
2616 | } | |
09e6485f | 2617 | output_radix_1 = output_radix = radix; |
c906108c SS |
2618 | if (from_tty) |
2619 | { | |
3e43a32a MS |
2620 | printf_filtered (_("Output radix now set to " |
2621 | "decimal %u, hex %x, octal %o.\n"), | |
c906108c SS |
2622 | radix, radix, radix); |
2623 | } | |
2624 | } | |
2625 | ||
2626 | /* Set both the input and output radix at once. Try to set the output radix | |
2627 | first, since it has the most restrictive range. An radix that is valid as | |
2628 | an output radix is also valid as an input radix. | |
2629 | ||
2630 | It may be useful to have an unusual input radix. If the user wishes to | |
2631 | set an input radix that is not valid as an output radix, he needs to use | |
581e13c1 | 2632 | the 'set input-radix' command. */ |
c906108c SS |
2633 | |
2634 | static void | |
fba45db2 | 2635 | set_radix (char *arg, int from_tty) |
c906108c SS |
2636 | { |
2637 | unsigned radix; | |
2638 | ||
bb518678 | 2639 | radix = (arg == NULL) ? 10 : parse_and_eval_long (arg); |
c906108c SS |
2640 | set_output_radix_1 (0, radix); |
2641 | set_input_radix_1 (0, radix); | |
2642 | if (from_tty) | |
2643 | { | |
3e43a32a MS |
2644 | printf_filtered (_("Input and output radices now set to " |
2645 | "decimal %u, hex %x, octal %o.\n"), | |
c906108c SS |
2646 | radix, radix, radix); |
2647 | } | |
2648 | } | |
2649 | ||
581e13c1 | 2650 | /* Show both the input and output radices. */ |
c906108c | 2651 | |
c906108c | 2652 | static void |
fba45db2 | 2653 | show_radix (char *arg, int from_tty) |
c906108c SS |
2654 | { |
2655 | if (from_tty) | |
2656 | { | |
2657 | if (input_radix == output_radix) | |
2658 | { | |
3e43a32a MS |
2659 | printf_filtered (_("Input and output radices set to " |
2660 | "decimal %u, hex %x, octal %o.\n"), | |
c906108c SS |
2661 | input_radix, input_radix, input_radix); |
2662 | } | |
2663 | else | |
2664 | { | |
3e43a32a MS |
2665 | printf_filtered (_("Input radix set to decimal " |
2666 | "%u, hex %x, octal %o.\n"), | |
c906108c | 2667 | input_radix, input_radix, input_radix); |
3e43a32a MS |
2668 | printf_filtered (_("Output radix set to decimal " |
2669 | "%u, hex %x, octal %o.\n"), | |
c906108c SS |
2670 | output_radix, output_radix, output_radix); |
2671 | } | |
2672 | } | |
2673 | } | |
c906108c | 2674 | \f |
c5aa993b | 2675 | |
c906108c | 2676 | static void |
fba45db2 | 2677 | set_print (char *arg, int from_tty) |
c906108c SS |
2678 | { |
2679 | printf_unfiltered ( | |
c5aa993b | 2680 | "\"set print\" must be followed by the name of a print subcommand.\n"); |
c906108c SS |
2681 | help_list (setprintlist, "set print ", -1, gdb_stdout); |
2682 | } | |
2683 | ||
c906108c | 2684 | static void |
fba45db2 | 2685 | show_print (char *args, int from_tty) |
c906108c SS |
2686 | { |
2687 | cmd_show_list (showprintlist, from_tty, ""); | |
2688 | } | |
2689 | \f | |
2690 | void | |
fba45db2 | 2691 | _initialize_valprint (void) |
c906108c | 2692 | { |
c906108c | 2693 | add_prefix_cmd ("print", no_class, set_print, |
1bedd215 | 2694 | _("Generic command for setting how things print."), |
c906108c | 2695 | &setprintlist, "set print ", 0, &setlist); |
c5aa993b | 2696 | add_alias_cmd ("p", "print", no_class, 1, &setlist); |
581e13c1 | 2697 | /* Prefer set print to set prompt. */ |
c906108c SS |
2698 | add_alias_cmd ("pr", "print", no_class, 1, &setlist); |
2699 | ||
2700 | add_prefix_cmd ("print", no_class, show_print, | |
1bedd215 | 2701 | _("Generic command for showing print settings."), |
c906108c | 2702 | &showprintlist, "show print ", 0, &showlist); |
c5aa993b JM |
2703 | add_alias_cmd ("p", "print", no_class, 1, &showlist); |
2704 | add_alias_cmd ("pr", "print", no_class, 1, &showlist); | |
c906108c | 2705 | |
79a45b7d TT |
2706 | add_setshow_uinteger_cmd ("elements", no_class, |
2707 | &user_print_options.print_max, _("\ | |
35096d9d AC |
2708 | Set limit on string chars or array elements to print."), _("\ |
2709 | Show limit on string chars or array elements to print."), _("\ | |
f81d1120 | 2710 | \"set print elements unlimited\" causes there to be no limit."), |
35096d9d | 2711 | NULL, |
920d2a44 | 2712 | show_print_max, |
35096d9d | 2713 | &setprintlist, &showprintlist); |
c906108c | 2714 | |
79a45b7d TT |
2715 | add_setshow_boolean_cmd ("null-stop", no_class, |
2716 | &user_print_options.stop_print_at_null, _("\ | |
5bf193a2 AC |
2717 | Set printing of char arrays to stop at first null char."), _("\ |
2718 | Show printing of char arrays to stop at first null char."), NULL, | |
2719 | NULL, | |
920d2a44 | 2720 | show_stop_print_at_null, |
5bf193a2 | 2721 | &setprintlist, &showprintlist); |
c906108c | 2722 | |
35096d9d | 2723 | add_setshow_uinteger_cmd ("repeats", no_class, |
79a45b7d | 2724 | &user_print_options.repeat_count_threshold, _("\ |
35096d9d AC |
2725 | Set threshold for repeated print elements."), _("\ |
2726 | Show threshold for repeated print elements."), _("\ | |
f81d1120 | 2727 | \"set print repeats unlimited\" causes all elements to be individually printed."), |
35096d9d | 2728 | NULL, |
920d2a44 | 2729 | show_repeat_count_threshold, |
35096d9d | 2730 | &setprintlist, &showprintlist); |
c906108c | 2731 | |
79a45b7d TT |
2732 | add_setshow_boolean_cmd ("pretty", class_support, |
2733 | &user_print_options.prettyprint_structs, _("\ | |
5bf193a2 AC |
2734 | Set prettyprinting of structures."), _("\ |
2735 | Show prettyprinting of structures."), NULL, | |
2736 | NULL, | |
920d2a44 | 2737 | show_prettyprint_structs, |
5bf193a2 AC |
2738 | &setprintlist, &showprintlist); |
2739 | ||
79a45b7d TT |
2740 | add_setshow_boolean_cmd ("union", class_support, |
2741 | &user_print_options.unionprint, _("\ | |
5bf193a2 AC |
2742 | Set printing of unions interior to structures."), _("\ |
2743 | Show printing of unions interior to structures."), NULL, | |
2744 | NULL, | |
920d2a44 | 2745 | show_unionprint, |
5bf193a2 AC |
2746 | &setprintlist, &showprintlist); |
2747 | ||
79a45b7d TT |
2748 | add_setshow_boolean_cmd ("array", class_support, |
2749 | &user_print_options.prettyprint_arrays, _("\ | |
5bf193a2 AC |
2750 | Set prettyprinting of arrays."), _("\ |
2751 | Show prettyprinting of arrays."), NULL, | |
2752 | NULL, | |
920d2a44 | 2753 | show_prettyprint_arrays, |
5bf193a2 AC |
2754 | &setprintlist, &showprintlist); |
2755 | ||
79a45b7d TT |
2756 | add_setshow_boolean_cmd ("address", class_support, |
2757 | &user_print_options.addressprint, _("\ | |
5bf193a2 AC |
2758 | Set printing of addresses."), _("\ |
2759 | Show printing of addresses."), NULL, | |
2760 | NULL, | |
920d2a44 | 2761 | show_addressprint, |
5bf193a2 | 2762 | &setprintlist, &showprintlist); |
c906108c | 2763 | |
9cb709b6 TT |
2764 | add_setshow_boolean_cmd ("symbol", class_support, |
2765 | &user_print_options.symbol_print, _("\ | |
2766 | Set printing of symbol names when printing pointers."), _("\ | |
2767 | Show printing of symbol names when printing pointers."), | |
2768 | NULL, NULL, | |
2769 | show_symbol_print, | |
2770 | &setprintlist, &showprintlist); | |
2771 | ||
1e8fb976 PA |
2772 | add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1, |
2773 | _("\ | |
35096d9d AC |
2774 | Set default input radix for entering numbers."), _("\ |
2775 | Show default input radix for entering numbers."), NULL, | |
1e8fb976 PA |
2776 | set_input_radix, |
2777 | show_input_radix, | |
2778 | &setlist, &showlist); | |
35096d9d | 2779 | |
1e8fb976 PA |
2780 | add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1, |
2781 | _("\ | |
35096d9d AC |
2782 | Set default output radix for printing of values."), _("\ |
2783 | Show default output radix for printing of values."), NULL, | |
1e8fb976 PA |
2784 | set_output_radix, |
2785 | show_output_radix, | |
2786 | &setlist, &showlist); | |
c906108c | 2787 | |
cb1a6d5f AC |
2788 | /* The "set radix" and "show radix" commands are special in that |
2789 | they are like normal set and show commands but allow two normally | |
2790 | independent variables to be either set or shown with a single | |
b66df561 | 2791 | command. So the usual deprecated_add_set_cmd() and [deleted] |
581e13c1 | 2792 | add_show_from_set() commands aren't really appropriate. */ |
b66df561 AC |
2793 | /* FIXME: i18n: With the new add_setshow_integer command, that is no |
2794 | longer true - show can display anything. */ | |
1a966eab AC |
2795 | add_cmd ("radix", class_support, set_radix, _("\ |
2796 | Set default input and output number radices.\n\ | |
c906108c | 2797 | Use 'set input-radix' or 'set output-radix' to independently set each.\n\ |
1a966eab | 2798 | Without an argument, sets both radices back to the default value of 10."), |
c906108c | 2799 | &setlist); |
1a966eab AC |
2800 | add_cmd ("radix", class_support, show_radix, _("\ |
2801 | Show the default input and output number radices.\n\ | |
2802 | Use 'show input-radix' or 'show output-radix' to independently show each."), | |
c906108c SS |
2803 | &showlist); |
2804 | ||
e79af960 | 2805 | add_setshow_boolean_cmd ("array-indexes", class_support, |
79a45b7d | 2806 | &user_print_options.print_array_indexes, _("\ |
e79af960 JB |
2807 | Set printing of array indexes."), _("\ |
2808 | Show printing of array indexes"), NULL, NULL, show_print_array_indexes, | |
2809 | &setprintlist, &showprintlist); | |
c906108c | 2810 | } |