]>
Commit | Line | Data |
---|---|---|
252b5132 | 1 | /* tc-i960.c - All the i80960-specific stuff |
f7e42eb4 | 2 | Copyright 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, |
9d83078b | 3 | 1999, 2000, 2001, 2002, 2003 |
252b5132 RH |
4 | Free Software Foundation, Inc. |
5 | ||
6 | This file is part of GAS. | |
7 | ||
8 | GAS is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2, or (at your option) | |
11 | any later version. | |
12 | ||
13 | GAS is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with GAS; see the file COPYING. If not, write to the Free | |
20 | Software Foundation, 59 Temple Place - Suite 330, Boston, MA | |
21 | 02111-1307, USA. */ | |
22 | ||
92774660 | 23 | /* See comment on md_parse_option for 80960-specific invocation options. */ |
252b5132 RH |
24 | |
25 | /* There are 4 different lengths of (potentially) symbol-based displacements | |
26 | in the 80960 instruction set, each of which could require address fix-ups | |
27 | and (in the case of external symbols) emission of relocation directives: | |
28 | ||
29 | 32-bit (MEMB) | |
30 | This is a standard length for the base assembler and requires no | |
31 | special action. | |
32 | ||
33 | 13-bit (COBR) | |
34 | This is a non-standard length, but the base assembler has a | |
35 | hook for bit field address fixups: the fixS structure can | |
36 | point to a descriptor of the field, in which case our | |
37 | md_number_to_field() routine gets called to process it. | |
38 | ||
39 | I made the hook a little cleaner by having fix_new() (in the base | |
40 | assembler) return a pointer to the fixS in question. And I made it a | |
41 | little simpler by storing the field size (in this case 13) instead of | |
42 | of a pointer to another structure: 80960 displacements are ALWAYS | |
43 | stored in the low-order bits of a 4-byte word. | |
44 | ||
45 | Since the target of a COBR cannot be external, no relocation | |
46 | directives for this size displacement have to be generated. | |
47 | But the base assembler had to be modified to issue error | |
48 | messages if the symbol did turn out to be external. | |
49 | ||
50 | 24-bit (CTRL) | |
51 | Fixups are handled as for the 13-bit case (except that 24 is stored | |
52 | in the fixS). | |
53 | ||
54 | The relocation directive generated is the same as that for the 32-bit | |
55 | displacement, except that it's PC-relative (the 32-bit displacement | |
56 | never is). The i80960 version of the linker needs a mod to | |
57 | distinguish and handle the 24-bit case. | |
58 | ||
59 | 12-bit (MEMA) | |
60 | MEMA formats are always promoted to MEMB (32-bit) if the displacement | |
61 | is based on a symbol, because it could be relocated at link time. | |
62 | The only time we use the 12-bit format is if an absolute value of | |
63 | less than 4096 is specified, in which case we need neither a fixup nor | |
64 | a relocation directive. */ | |
65 | ||
66 | #include <stdio.h> | |
252b5132 RH |
67 | |
68 | #include "as.h" | |
69 | ||
3882b010 | 70 | #include "safe-ctype.h" |
252b5132 RH |
71 | #include "obstack.h" |
72 | ||
73 | #include "opcode/i960.h" | |
74 | ||
75 | #if defined (OBJ_AOUT) || defined (OBJ_BOUT) | |
76 | ||
77 | #define TC_S_IS_SYSPROC(s) ((1<=S_GET_OTHER(s)) && (S_GET_OTHER(s)<=32)) | |
78 | #define TC_S_IS_BALNAME(s) (S_GET_OTHER(s) == N_BALNAME) | |
79 | #define TC_S_IS_CALLNAME(s) (S_GET_OTHER(s) == N_CALLNAME) | |
80 | #define TC_S_IS_BADPROC(s) ((S_GET_OTHER(s) != 0) && !TC_S_IS_CALLNAME(s) && !TC_S_IS_BALNAME(s) && !TC_S_IS_SYSPROC(s)) | |
81 | ||
82 | #define TC_S_SET_SYSPROC(s, p) (S_SET_OTHER((s), (p)+1)) | |
83 | #define TC_S_GET_SYSPROC(s) (S_GET_OTHER(s)-1) | |
84 | ||
85 | #define TC_S_FORCE_TO_BALNAME(s) (S_SET_OTHER((s), N_BALNAME)) | |
86 | #define TC_S_FORCE_TO_CALLNAME(s) (S_SET_OTHER((s), N_CALLNAME)) | |
87 | #define TC_S_FORCE_TO_SYSPROC(s) {;} | |
88 | ||
89 | #else /* ! OBJ_A/BOUT */ | |
90 | #ifdef OBJ_COFF | |
91 | ||
92 | #define TC_S_IS_SYSPROC(s) (S_GET_STORAGE_CLASS(s) == C_SCALL) | |
93 | #define TC_S_IS_BALNAME(s) (SF_GET_BALNAME(s)) | |
94 | #define TC_S_IS_CALLNAME(s) (SF_GET_CALLNAME(s)) | |
95 | #define TC_S_IS_BADPROC(s) (TC_S_IS_SYSPROC(s) && TC_S_GET_SYSPROC(s) < 0 && 31 < TC_S_GET_SYSPROC(s)) | |
96 | ||
97 | #define TC_S_SET_SYSPROC(s, p) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx = (p)) | |
98 | #define TC_S_GET_SYSPROC(s) ((s)->sy_symbol.ost_auxent[1].x_sc.x_stindx) | |
99 | ||
100 | #define TC_S_FORCE_TO_BALNAME(s) (SF_SET_BALNAME(s)) | |
101 | #define TC_S_FORCE_TO_CALLNAME(s) (SF_SET_CALLNAME(s)) | |
102 | #define TC_S_FORCE_TO_SYSPROC(s) (S_SET_STORAGE_CLASS((s), C_SCALL)) | |
103 | ||
104 | #else /* ! OBJ_COFF */ | |
bedf545c ILT |
105 | #ifdef OBJ_ELF |
106 | #define TC_S_IS_SYSPROC(s) 0 | |
107 | ||
108 | #define TC_S_IS_BALNAME(s) 0 | |
109 | #define TC_S_IS_CALLNAME(s) 0 | |
110 | #define TC_S_IS_BADPROC(s) 0 | |
111 | ||
112 | #define TC_S_SET_SYSPROC(s, p) | |
113 | #define TC_S_GET_SYSPROC(s) 0 | |
114 | ||
115 | #define TC_S_FORCE_TO_BALNAME(s) | |
116 | #define TC_S_FORCE_TO_CALLNAME(s) | |
117 | #define TC_S_FORCE_TO_SYSPROC(s) | |
118 | #else | |
119 | #error COFF, a.out, b.out, and ELF are the only supported formats. | |
120 | #endif /* ! OBJ_ELF */ | |
252b5132 RH |
121 | #endif /* ! OBJ_COFF */ |
122 | #endif /* ! OBJ_A/BOUT */ | |
123 | ||
124 | extern char *input_line_pointer; | |
125 | ||
126 | #if !defined (BFD_ASSEMBLER) && !defined (BFD) | |
127 | #ifdef OBJ_COFF | |
128 | const int md_reloc_size = sizeof (struct reloc); | |
129 | #else /* OBJ_COFF */ | |
130 | const int md_reloc_size = sizeof (struct relocation_info); | |
131 | #endif /* OBJ_COFF */ | |
132 | #endif | |
133 | ||
134 | /* Local i80960 routines. */ | |
b9195351 AM |
135 | struct memS; |
136 | struct regop; | |
137 | ||
138 | /* Emit branch-prediction instrumentation code */ | |
139 | static void brcnt_emit PARAMS ((void)); | |
140 | /* Return next branch local label */ | |
141 | static char *brlab_next PARAMS ((void)); | |
142 | /* Generate COBR instruction */ | |
143 | static void cobr_fmt PARAMS ((char *[], long, struct i960_opcode *)); | |
144 | /* Generate CTRL instruction */ | |
145 | static void ctrl_fmt PARAMS ((char *, long, int)); | |
146 | /* Emit (internally) binary */ | |
147 | static char *emit PARAMS ((long)); | |
148 | /* Break arguments out of comma-separated list */ | |
149 | static int get_args PARAMS ((char *, char *[])); | |
150 | /* Handle COBR or CTRL displacement */ | |
151 | static void get_cdisp PARAMS ((char *, char *, long, int, int, int)); | |
152 | /* Find index specification string */ | |
153 | static char *get_ispec PARAMS ((char *)); | |
154 | /* Translate text to register number */ | |
155 | static int get_regnum PARAMS ((char *)); | |
156 | /* Lexical scan of instruction source */ | |
157 | static int i_scan PARAMS ((char *, char *[])); | |
158 | /* Generate MEMA or MEMB instruction */ | |
159 | static void mem_fmt PARAMS ((char *[], struct i960_opcode *, int)); | |
160 | /* Convert MEMA instruction to MEMB format */ | |
161 | static void mema_to_memb PARAMS ((char *)); | |
162 | /* Parse an expression */ | |
163 | static void parse_expr PARAMS ((char *, expressionS *)); | |
164 | /* Parse and replace a 'ldconst' pseudo-op */ | |
165 | static int parse_ldconst PARAMS ((char *[])); | |
166 | /* Parse a memory operand */ | |
167 | static void parse_memop PARAMS ((struct memS *, char *, int)); | |
168 | /* Parse machine-dependent pseudo-op */ | |
169 | static void parse_po PARAMS ((int)); | |
170 | /* Parse a register operand */ | |
171 | static void parse_regop PARAMS ((struct regop *, char *, char)); | |
172 | /* Generate a REG format instruction */ | |
173 | static void reg_fmt PARAMS ((char *[], struct i960_opcode *)); | |
174 | /* "De-optimize" cobr into compare/branch */ | |
175 | static void relax_cobr PARAMS ((fragS *)); | |
176 | /* Process '.leafproc' pseudo-op */ | |
177 | static void s_leafproc PARAMS ((int, char *[])); | |
178 | /* Process '.sysproc' pseudo-op */ | |
179 | static void s_sysproc PARAMS ((int, char *[])); | |
0234cb7c | 180 | /* Will a 'shlo' substitute for a 'ldconst'? */ |
b9195351 AM |
181 | static int shift_ok PARAMS ((int)); |
182 | /* Give syntax error */ | |
183 | static void syntax PARAMS ((void)); | |
184 | /* Target chip supports spec-func register? */ | |
185 | static int targ_has_sfr PARAMS ((int)); | |
186 | /* Target chip supports instruction set? */ | |
187 | static int targ_has_iclass PARAMS ((int)); | |
252b5132 RH |
188 | |
189 | /* See md_parse_option() for meanings of these options */ | |
190 | static char norelax; /* True if -norelax switch seen */ | |
191 | static char instrument_branches; /* True if -b switch seen */ | |
192 | ||
193 | /* Characters that always start a comment. | |
194 | If the pre-processor is disabled, these aren't very useful. | |
195 | */ | |
196 | const char comment_chars[] = "#"; | |
197 | ||
198 | /* Characters that only start a comment at the beginning of | |
199 | a line. If the line seems to have the form '# 123 filename' | |
200 | .line and .file directives will appear in the pre-processed output. | |
201 | ||
202 | Note that input_file.c hand checks for '#' at the beginning of the | |
203 | first line of the input file. This is because the compiler outputs | |
204 | #NO_APP at the beginning of its output. | |
205 | */ | |
206 | ||
92774660 | 207 | /* Also note that comments started like this one will always work. */ |
252b5132 | 208 | |
9d83078b | 209 | const char line_comment_chars[] = "#"; |
252b5132 | 210 | |
63a0b638 | 211 | const char line_separator_chars[] = ";"; |
252b5132 RH |
212 | |
213 | /* Chars that can be used to separate mant from exp in floating point nums */ | |
214 | const char EXP_CHARS[] = "eE"; | |
215 | ||
216 | /* Chars that mean this number is a floating point constant, | |
217 | as in 0f12.456 or 0d1.2345e12 | |
218 | */ | |
219 | const char FLT_CHARS[] = "fFdDtT"; | |
220 | ||
252b5132 RH |
221 | /* Table used by base assembler to relax addresses based on varying length |
222 | instructions. The fields are: | |
223 | 1) most positive reach of this state, | |
224 | 2) most negative reach of this state, | |
225 | 3) how many bytes this mode will add to the size of the current frag | |
226 | 4) which index into the table to try if we can't fit into this one. | |
227 | ||
228 | For i80960, the only application is the (de-)optimization of cobr | |
229 | instructions into separate compare and branch instructions when a 13-bit | |
230 | displacement won't hack it. | |
231 | */ | |
232 | const relax_typeS md_relax_table[] = | |
233 | { | |
234 | {0, 0, 0, 0}, /* State 0 => no more relaxation possible */ | |
235 | {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */ | |
236 | {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */ | |
237 | }; | |
238 | ||
239 | static void s_endian PARAMS ((int)); | |
240 | ||
241 | /* These are the machine dependent pseudo-ops. | |
242 | ||
243 | This table describes all the machine specific pseudo-ops the assembler | |
244 | has to support. The fields are: | |
245 | pseudo-op name without dot | |
246 | function to call to execute this pseudo-op | |
247 | integer arg to pass to the function | |
248 | */ | |
249 | #define S_LEAFPROC 1 | |
250 | #define S_SYSPROC 2 | |
251 | ||
252 | const pseudo_typeS md_pseudo_table[] = | |
253 | { | |
254 | {"bss", s_lcomm, 1}, | |
255 | {"endian", s_endian, 0}, | |
256 | {"extended", float_cons, 't'}, | |
257 | {"leafproc", parse_po, S_LEAFPROC}, | |
258 | {"sysproc", parse_po, S_SYSPROC}, | |
259 | ||
260 | {"word", cons, 4}, | |
261 | {"quad", cons, 16}, | |
262 | ||
263 | {0, 0, 0} | |
264 | }; | |
265 | \f | |
266 | /* Macros to extract info from an 'expressionS' structure 'e' */ | |
267 | #define adds(e) e.X_add_symbol | |
268 | #define offs(e) e.X_add_number | |
269 | ||
252b5132 RH |
270 | /* Branch-prediction bits for CTRL/COBR format opcodes */ |
271 | #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */ | |
272 | #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */ | |
273 | #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */ | |
274 | ||
252b5132 RH |
275 | /* Some instruction opcodes that we need explicitly */ |
276 | #define BE 0x12000000 | |
277 | #define BG 0x11000000 | |
278 | #define BGE 0x13000000 | |
279 | #define BL 0x14000000 | |
280 | #define BLE 0x16000000 | |
281 | #define BNE 0x15000000 | |
282 | #define BNO 0x10000000 | |
283 | #define BO 0x17000000 | |
284 | #define CHKBIT 0x5a002700 | |
285 | #define CMPI 0x5a002080 | |
286 | #define CMPO 0x5a002000 | |
287 | ||
288 | #define B 0x08000000 | |
289 | #define BAL 0x0b000000 | |
290 | #define CALL 0x09000000 | |
291 | #define CALLS 0x66003800 | |
292 | #define RET 0x0a000000 | |
293 | ||
92774660 | 294 | /* These masks are used to build up a set of MEMB mode bits. */ |
252b5132 RH |
295 | #define A_BIT 0x0400 |
296 | #define I_BIT 0x0800 | |
297 | #define MEMB_BIT 0x1000 | |
298 | #define D_BIT 0x2000 | |
299 | ||
252b5132 RH |
300 | /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is |
301 | used). */ | |
302 | #define MEMA_ABASE 0x2000 | |
303 | ||
304 | /* Info from which a MEMA or MEMB format instruction can be generated */ | |
b9195351 | 305 | typedef struct memS |
252b5132 RH |
306 | { |
307 | /* (First) 32 bits of instruction */ | |
308 | long opcode; | |
309 | /* 0-(none), 12- or, 32-bit displacement needed */ | |
310 | int disp; | |
311 | /* The expression in the source instruction from which the | |
312 | displacement should be determined. */ | |
313 | char *e; | |
314 | } | |
252b5132 RH |
315 | memS; |
316 | ||
252b5132 RH |
317 | /* The two pieces of info we need to generate a register operand */ |
318 | struct regop | |
319 | { | |
320 | int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */ | |
321 | int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */ | |
322 | int n; /* Register number or literal value */ | |
323 | }; | |
324 | ||
252b5132 RH |
325 | /* Number and assembler mnemonic for all registers that can appear in |
326 | operands. */ | |
327 | static const struct | |
328 | { | |
329 | char *reg_name; | |
330 | int reg_num; | |
331 | } | |
332 | regnames[] = | |
333 | { | |
334 | { "pfp", 0 }, | |
335 | { "sp", 1 }, | |
336 | { "rip", 2 }, | |
337 | { "r3", 3 }, | |
338 | { "r4", 4 }, | |
339 | { "r5", 5 }, | |
340 | { "r6", 6 }, | |
341 | { "r7", 7 }, | |
342 | { "r8", 8 }, | |
343 | { "r9", 9 }, | |
344 | { "r10", 10 }, | |
345 | { "r11", 11 }, | |
346 | { "r12", 12 }, | |
347 | { "r13", 13 }, | |
348 | { "r14", 14 }, | |
349 | { "r15", 15 }, | |
350 | { "g0", 16 }, | |
351 | { "g1", 17 }, | |
352 | { "g2", 18 }, | |
353 | { "g3", 19 }, | |
354 | { "g4", 20 }, | |
355 | { "g5", 21 }, | |
356 | { "g6", 22 }, | |
357 | { "g7", 23 }, | |
358 | { "g8", 24 }, | |
359 | { "g9", 25 }, | |
360 | { "g10", 26 }, | |
361 | { "g11", 27 }, | |
362 | { "g12", 28 }, | |
363 | { "g13", 29 }, | |
364 | { "g14", 30 }, | |
365 | { "fp", 31 }, | |
366 | ||
367 | /* Numbers for special-function registers are for assembler internal | |
368 | use only: they are scaled back to range [0-31] for binary output. */ | |
369 | #define SF0 32 | |
370 | ||
371 | { "sf0", 32 }, | |
372 | { "sf1", 33 }, | |
373 | { "sf2", 34 }, | |
374 | { "sf3", 35 }, | |
375 | { "sf4", 36 }, | |
376 | { "sf5", 37 }, | |
377 | { "sf6", 38 }, | |
378 | { "sf7", 39 }, | |
379 | { "sf8", 40 }, | |
380 | { "sf9", 41 }, | |
381 | { "sf10", 42 }, | |
382 | { "sf11", 43 }, | |
383 | { "sf12", 44 }, | |
384 | { "sf13", 45 }, | |
385 | { "sf14", 46 }, | |
386 | { "sf15", 47 }, | |
387 | { "sf16", 48 }, | |
388 | { "sf17", 49 }, | |
389 | { "sf18", 50 }, | |
390 | { "sf19", 51 }, | |
391 | { "sf20", 52 }, | |
392 | { "sf21", 53 }, | |
393 | { "sf22", 54 }, | |
394 | { "sf23", 55 }, | |
395 | { "sf24", 56 }, | |
396 | { "sf25", 57 }, | |
397 | { "sf26", 58 }, | |
398 | { "sf27", 59 }, | |
399 | { "sf28", 60 }, | |
400 | { "sf29", 61 }, | |
401 | { "sf30", 62 }, | |
402 | { "sf31", 63 }, | |
403 | ||
404 | /* Numbers for floating point registers are for assembler internal | |
405 | use only: they are scaled back to [0-3] for binary output. */ | |
406 | #define FP0 64 | |
407 | ||
408 | { "fp0", 64 }, | |
409 | { "fp1", 65 }, | |
410 | { "fp2", 66 }, | |
411 | { "fp3", 67 }, | |
412 | ||
413 | { NULL, 0 }, /* END OF LIST */ | |
414 | }; | |
415 | ||
416 | #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0)) | |
417 | #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0)) | |
418 | #define IS_FP_REG(n) ((n) >= FP0) | |
419 | ||
420 | /* Number and assembler mnemonic for all registers that can appear as | |
421 | 'abase' (indirect addressing) registers. */ | |
422 | static const struct | |
423 | { | |
424 | char *areg_name; | |
425 | int areg_num; | |
426 | } | |
427 | aregs[] = | |
428 | { | |
429 | { "(pfp)", 0 }, | |
430 | { "(sp)", 1 }, | |
431 | { "(rip)", 2 }, | |
432 | { "(r3)", 3 }, | |
433 | { "(r4)", 4 }, | |
434 | { "(r5)", 5 }, | |
435 | { "(r6)", 6 }, | |
436 | { "(r7)", 7 }, | |
437 | { "(r8)", 8 }, | |
438 | { "(r9)", 9 }, | |
439 | { "(r10)", 10 }, | |
440 | { "(r11)", 11 }, | |
441 | { "(r12)", 12 }, | |
442 | { "(r13)", 13 }, | |
443 | { "(r14)", 14 }, | |
444 | { "(r15)", 15 }, | |
445 | { "(g0)", 16 }, | |
446 | { "(g1)", 17 }, | |
447 | { "(g2)", 18 }, | |
448 | { "(g3)", 19 }, | |
449 | { "(g4)", 20 }, | |
450 | { "(g5)", 21 }, | |
451 | { "(g6)", 22 }, | |
452 | { "(g7)", 23 }, | |
453 | { "(g8)", 24 }, | |
454 | { "(g9)", 25 }, | |
455 | { "(g10)", 26 }, | |
456 | { "(g11)", 27 }, | |
457 | { "(g12)", 28 }, | |
458 | { "(g13)", 29 }, | |
459 | { "(g14)", 30 }, | |
460 | { "(fp)", 31 }, | |
461 | ||
462 | #define IPREL 32 | |
463 | /* For assembler internal use only: this number never appears in binary | |
464 | output. */ | |
465 | { "(ip)", IPREL }, | |
466 | ||
467 | { NULL, 0 }, /* END OF LIST */ | |
468 | }; | |
469 | ||
252b5132 RH |
470 | /* Hash tables */ |
471 | static struct hash_control *op_hash; /* Opcode mnemonics */ | |
472 | static struct hash_control *reg_hash; /* Register name hash table */ | |
473 | static struct hash_control *areg_hash; /* Abase register hash table */ | |
474 | ||
252b5132 RH |
475 | /* Architecture for which we are assembling */ |
476 | #define ARCH_ANY 0 /* Default: no architecture checking done */ | |
477 | #define ARCH_KA 1 | |
478 | #define ARCH_KB 2 | |
479 | #define ARCH_MC 3 | |
480 | #define ARCH_CA 4 | |
481 | #define ARCH_JX 5 | |
482 | #define ARCH_HX 6 | |
483 | int architecture = ARCH_ANY; /* Architecture requested on invocation line */ | |
484 | int iclasses_seen; /* OR of instruction classes (I_* constants) | |
485 | * for which we've actually assembled | |
486 | * instructions. | |
487 | */ | |
488 | ||
252b5132 RH |
489 | /* BRANCH-PREDICTION INSTRUMENTATION |
490 | ||
491 | The following supports generation of branch-prediction instrumentation | |
492 | (turned on by -b switch). The instrumentation collects counts | |
493 | of branches taken/not-taken for later input to a utility that will | |
494 | set the branch prediction bits of the instructions in accordance with | |
495 | the behavior observed. (Note that the KX series does not have | |
496 | brach-prediction.) | |
497 | ||
498 | The instrumentation consists of: | |
499 | ||
500 | (1) before and after each conditional branch, a call to an external | |
501 | routine that increments and steps over an inline counter. The | |
502 | counter itself, initialized to 0, immediately follows the call | |
503 | instruction. For each branch, the counter following the branch | |
504 | is the number of times the branch was not taken, and the difference | |
505 | between the counters is the number of times it was taken. An | |
506 | example of an instrumented conditional branch: | |
507 | ||
508 | call BR_CNT_FUNC | |
509 | .word 0 | |
510 | LBRANCH23: be label | |
511 | call BR_CNT_FUNC | |
512 | .word 0 | |
513 | ||
514 | (2) a table of pointers to the instrumented branches, so that an | |
515 | external postprocessing routine can locate all of the counters. | |
516 | the table begins with a 2-word header: a pointer to the next in | |
517 | a linked list of such tables (initialized to 0); and a count | |
518 | of the number of entries in the table (exclusive of the header. | |
519 | ||
520 | Note that input source code is expected to already contain calls | |
521 | an external routine that will link the branch local table into a | |
522 | list of such tables. | |
523 | */ | |
524 | ||
525 | /* Number of branches instrumented so far. Also used to generate | |
526 | unique local labels for each instrumented branch. */ | |
527 | static int br_cnt; | |
528 | ||
529 | #define BR_LABEL_BASE "LBRANCH" | |
530 | /* Basename of local labels on instrumented branches, to avoid | |
531 | conflict with compiler- generated local labels. */ | |
532 | ||
533 | #define BR_CNT_FUNC "__inc_branch" | |
534 | /* Name of the external routine that will increment (and step over) an | |
535 | inline counter. */ | |
536 | ||
537 | #define BR_TAB_NAME "__BRANCH_TABLE__" | |
538 | /* Name of the table of pointers to branches. A local (i.e., | |
539 | non-external) symbol. */ | |
540 | \f | |
541 | /***************************************************************************** | |
542 | md_begin: One-time initialization. | |
543 | ||
544 | Set up hash tables. | |
545 | ||
546 | *************************************************************************** */ | |
547 | void | |
548 | md_begin () | |
549 | { | |
550 | int i; /* Loop counter */ | |
551 | const struct i960_opcode *oP; /* Pointer into opcode table */ | |
552 | const char *retval; /* Value returned by hash functions */ | |
553 | ||
554 | op_hash = hash_new (); | |
555 | reg_hash = hash_new (); | |
556 | areg_hash = hash_new (); | |
557 | ||
558 | /* For some reason, the base assembler uses an empty string for "no | |
559 | error message", instead of a NULL pointer. */ | |
560 | retval = 0; | |
561 | ||
562 | for (oP = i960_opcodes; oP->name && !retval; oP++) | |
563 | retval = hash_insert (op_hash, oP->name, (PTR) oP); | |
564 | ||
565 | for (i = 0; regnames[i].reg_name && !retval; i++) | |
566 | retval = hash_insert (reg_hash, regnames[i].reg_name, | |
567 | (char *) ®names[i].reg_num); | |
568 | ||
569 | for (i = 0; aregs[i].areg_name && !retval; i++) | |
570 | retval = hash_insert (areg_hash, aregs[i].areg_name, | |
571 | (char *) &aregs[i].areg_num); | |
572 | ||
573 | if (retval) | |
574 | as_fatal (_("Hashing returned \"%s\"."), retval); | |
575 | } | |
576 | ||
577 | /***************************************************************************** | |
578 | md_assemble: Assemble an instruction | |
579 | ||
580 | Assumptions about the passed-in text: | |
581 | - all comments, labels removed | |
582 | - text is an instruction | |
583 | - all white space compressed to single blanks | |
584 | - all character constants have been replaced with decimal | |
585 | ||
586 | *************************************************************************** */ | |
587 | void | |
588 | md_assemble (textP) | |
589 | char *textP; /* Source text of instruction */ | |
590 | { | |
591 | /* Parsed instruction text, containing NO whitespace: arg[0]->opcode | |
592 | mnemonic arg[1-3]->operands, with char constants replaced by | |
593 | decimal numbers. */ | |
594 | char *args[4]; | |
595 | ||
596 | int n_ops; /* Number of instruction operands */ | |
597 | /* Pointer to instruction description */ | |
598 | struct i960_opcode *oP; | |
599 | /* TRUE iff opcode mnemonic included branch-prediction suffix (".f" | |
600 | or ".t"). */ | |
601 | int branch_predict; | |
602 | /* Setting of branch-prediction bit(s) to be OR'd into instruction | |
603 | opcode of CTRL/COBR format instructions. */ | |
604 | long bp_bits; | |
605 | ||
606 | int n; /* Offset of last character in opcode mnemonic */ | |
607 | ||
608 | const char *bp_error_msg = _("branch prediction invalid on this opcode"); | |
609 | ||
252b5132 RH |
610 | /* Parse instruction into opcode and operands */ |
611 | memset (args, '\0', sizeof (args)); | |
612 | n_ops = i_scan (textP, args); | |
613 | if (n_ops == -1) | |
614 | { | |
615 | return; /* Error message already issued */ | |
616 | } | |
617 | ||
618 | /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */ | |
619 | if (!strcmp (args[0], "ldconst")) | |
620 | { | |
621 | n_ops = parse_ldconst (args); | |
622 | if (n_ops == -1) | |
623 | { | |
624 | return; | |
625 | } | |
626 | } | |
627 | ||
252b5132 RH |
628 | /* Check for branch-prediction suffix on opcode mnemonic, strip it off */ |
629 | n = strlen (args[0]) - 1; | |
630 | branch_predict = 0; | |
631 | bp_bits = 0; | |
632 | if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f')) | |
633 | { | |
634 | /* We could check here to see if the target architecture | |
635 | supports branch prediction, but why bother? The bit will | |
636 | just be ignored by processors that don't use it. */ | |
637 | branch_predict = 1; | |
638 | bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN; | |
639 | args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */ | |
640 | } | |
641 | ||
642 | /* Look up opcode mnemonic in table and check number of operands. | |
643 | Check that opcode is legal for the target architecture. If all | |
644 | looks good, assemble instruction. */ | |
645 | oP = (struct i960_opcode *) hash_find (op_hash, args[0]); | |
646 | if (!oP || !targ_has_iclass (oP->iclass)) | |
647 | { | |
648 | as_bad (_("invalid opcode, \"%s\"."), args[0]); | |
649 | ||
650 | } | |
651 | else if (n_ops != oP->num_ops) | |
652 | { | |
653 | as_bad (_("improper number of operands. expecting %d, got %d"), | |
654 | oP->num_ops, n_ops); | |
655 | } | |
656 | else | |
657 | { | |
658 | switch (oP->format) | |
659 | { | |
660 | case FBRA: | |
661 | case CTRL: | |
662 | ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops); | |
663 | if (oP->format == FBRA) | |
664 | { | |
665 | /* Now generate a 'bno' to same arg */ | |
666 | ctrl_fmt (args[1], BNO | bp_bits, 1); | |
667 | } | |
668 | break; | |
669 | case COBR: | |
670 | case COJ: | |
671 | cobr_fmt (args, oP->opcode | bp_bits, oP); | |
672 | break; | |
673 | case REG: | |
674 | if (branch_predict) | |
675 | { | |
676 | as_warn (bp_error_msg); | |
677 | } | |
678 | reg_fmt (args, oP); | |
679 | break; | |
680 | case MEM1: | |
681 | if (args[0][0] == 'c' && args[0][1] == 'a') | |
682 | { | |
683 | if (branch_predict) | |
684 | { | |
685 | as_warn (bp_error_msg); | |
686 | } | |
687 | mem_fmt (args, oP, 1); | |
688 | break; | |
689 | } | |
690 | case MEM2: | |
691 | case MEM4: | |
692 | case MEM8: | |
693 | case MEM12: | |
694 | case MEM16: | |
695 | if (branch_predict) | |
696 | { | |
697 | as_warn (bp_error_msg); | |
698 | } | |
699 | mem_fmt (args, oP, 0); | |
700 | break; | |
701 | case CALLJ: | |
702 | if (branch_predict) | |
703 | { | |
704 | as_warn (bp_error_msg); | |
705 | } | |
706 | /* Output opcode & set up "fixup" (relocation); flag | |
707 | relocation as 'callj' type. */ | |
708 | know (oP->num_ops == 1); | |
709 | get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1); | |
710 | break; | |
711 | default: | |
712 | BAD_CASE (oP->format); | |
713 | break; | |
714 | } | |
715 | } | |
716 | } /* md_assemble() */ | |
717 | ||
718 | /***************************************************************************** | |
719 | md_number_to_chars: convert a number to target byte order | |
720 | ||
721 | *************************************************************************** */ | |
722 | void | |
723 | md_number_to_chars (buf, value, n) | |
724 | char *buf; | |
725 | valueT value; | |
726 | int n; | |
727 | { | |
728 | number_to_chars_littleendian (buf, value, n); | |
729 | } | |
730 | ||
731 | /***************************************************************************** | |
732 | md_chars_to_number: convert from target byte order to host byte order. | |
733 | ||
734 | *************************************************************************** */ | |
b9195351 AM |
735 | static int md_chars_to_number PARAMS ((unsigned char *, int)); |
736 | ||
737 | static int | |
252b5132 RH |
738 | md_chars_to_number (val, n) |
739 | unsigned char *val; /* Value in target byte order */ | |
740 | int n; /* Number of bytes in the input */ | |
741 | { | |
742 | int retval; | |
743 | ||
744 | for (retval = 0; n--;) | |
745 | { | |
746 | retval <<= 8; | |
747 | retval |= val[n]; | |
748 | } | |
749 | return retval; | |
750 | } | |
751 | ||
252b5132 | 752 | #define MAX_LITTLENUMS 6 |
bc805888 | 753 | #define LNUM_SIZE sizeof (LITTLENUM_TYPE) |
252b5132 RH |
754 | |
755 | /***************************************************************************** | |
756 | md_atof: convert ascii to floating point | |
757 | ||
758 | Turn a string at input_line_pointer into a floating point constant of type | |
759 | 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS | |
760 | emitted is returned at 'sizeP'. An error message is returned, or a pointer | |
761 | to an empty message if OK. | |
762 | ||
763 | Note we call the i386 floating point routine, rather than complicating | |
764 | things with more files or symbolic links. | |
765 | ||
766 | *************************************************************************** */ | |
767 | char * | |
768 | md_atof (type, litP, sizeP) | |
769 | int type; | |
770 | char *litP; | |
771 | int *sizeP; | |
772 | { | |
773 | LITTLENUM_TYPE words[MAX_LITTLENUMS]; | |
774 | LITTLENUM_TYPE *wordP; | |
775 | int prec; | |
776 | char *t; | |
252b5132 RH |
777 | |
778 | switch (type) | |
779 | { | |
780 | case 'f': | |
781 | case 'F': | |
782 | prec = 2; | |
783 | break; | |
784 | ||
785 | case 'd': | |
786 | case 'D': | |
787 | prec = 4; | |
788 | break; | |
789 | ||
790 | case 't': | |
791 | case 'T': | |
792 | prec = 5; | |
793 | type = 'x'; /* That's what atof_ieee() understands */ | |
794 | break; | |
795 | ||
796 | default: | |
797 | *sizeP = 0; | |
798 | return _("Bad call to md_atof()"); | |
799 | } | |
800 | ||
801 | t = atof_ieee (input_line_pointer, type, words); | |
802 | if (t) | |
803 | { | |
804 | input_line_pointer = t; | |
805 | } | |
806 | ||
807 | *sizeP = prec * LNUM_SIZE; | |
808 | ||
809 | /* Output the LITTLENUMs in REVERSE order in accord with i80960 | |
810 | word-order. (Dunno why atof_ieee doesn't do it in the right | |
811 | order in the first place -- probably because it's a hack of | |
812 | atof_m68k.) */ | |
813 | ||
814 | for (wordP = words + prec - 1; prec--;) | |
815 | { | |
816 | md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE); | |
817 | litP += sizeof (LITTLENUM_TYPE); | |
818 | } | |
819 | ||
820 | return 0; | |
821 | } | |
822 | ||
252b5132 RH |
823 | /***************************************************************************** |
824 | md_number_to_imm | |
825 | ||
826 | *************************************************************************** */ | |
b9195351 | 827 | static void md_number_to_imm PARAMS ((char *, long, int)); |
252b5132 | 828 | |
b9195351 AM |
829 | static void |
830 | md_number_to_imm (buf, val, n) | |
252b5132 RH |
831 | char *buf; |
832 | long val; | |
833 | int n; | |
834 | { | |
835 | md_number_to_chars (buf, val, n); | |
836 | } | |
837 | ||
838 | /***************************************************************************** | |
839 | md_number_to_field: | |
840 | ||
841 | Stick a value (an address fixup) into a bit field of | |
842 | previously-generated instruction. | |
843 | ||
844 | *************************************************************************** */ | |
b9195351 AM |
845 | static void md_number_to_field PARAMS ((char *, long, bit_fixS *)); |
846 | ||
847 | static void | |
252b5132 RH |
848 | md_number_to_field (instrP, val, bfixP) |
849 | char *instrP; /* Pointer to instruction to be fixed */ | |
850 | long val; /* Address fixup value */ | |
851 | bit_fixS *bfixP; /* Description of bit field to be fixed up */ | |
852 | { | |
853 | int numbits; /* Length of bit field to be fixed */ | |
854 | long instr; /* 32-bit instruction to be fixed-up */ | |
855 | long sign; /* 0 or -1, according to sign bit of 'val' */ | |
856 | ||
857 | /* Convert instruction back to host byte order. */ | |
858 | instr = md_chars_to_number (instrP, 4); | |
859 | ||
860 | /* Surprise! -- we stored the number of bits to be modified rather | |
861 | than a pointer to a structure. */ | |
862 | numbits = (int) bfixP; | |
863 | if (numbits == 1) | |
864 | { | |
865 | /* This is a no-op, stuck here by reloc_callj() */ | |
866 | return; | |
867 | } | |
868 | ||
869 | know ((numbits == 13) || (numbits == 24)); | |
870 | ||
871 | /* Propagate sign bit of 'val' for the given number of bits. Result | |
872 | should be all 0 or all 1. */ | |
873 | sign = val >> ((int) numbits - 1); | |
874 | if (((val < 0) && (sign != -1)) | |
875 | || ((val > 0) && (sign != 0))) | |
876 | { | |
877 | as_bad (_("Fixup of %ld too large for field width of %d"), | |
878 | val, numbits); | |
879 | } | |
880 | else | |
881 | { | |
882 | /* Put bit field into instruction and write back in target | |
883 | * byte order. | |
884 | */ | |
885 | val &= ~(-1 << (int) numbits); /* Clear unused sign bits */ | |
886 | instr |= val; | |
887 | md_number_to_chars (instrP, instr, 4); | |
888 | } | |
889 | } /* md_number_to_field() */ | |
890 | \f | |
891 | ||
892 | /***************************************************************************** | |
893 | md_parse_option | |
894 | Invocation line includes a switch not recognized by the base assembler. | |
895 | See if it's a processor-specific option. For the 960, these are: | |
896 | ||
897 | -norelax: | |
898 | Conditional branch instructions that require displacements | |
899 | greater than 13 bits (or that have external targets) should | |
900 | generate errors. The default is to replace each such | |
901 | instruction with the corresponding compare (or chkbit) and | |
902 | branch instructions. Note that the Intel "j" cobr directives | |
903 | are ALWAYS "de-optimized" in this way when necessary, | |
904 | regardless of the setting of this option. | |
905 | ||
906 | -b: | |
907 | Add code to collect information about branches taken, for | |
908 | later optimization of branch prediction bits by a separate | |
909 | tool. COBR and CNTL format instructions have branch | |
910 | prediction bits (in the CX architecture); if "BR" represents | |
911 | an instruction in one of these classes, the following rep- | |
912 | resents the code generated by the assembler: | |
913 | ||
914 | call <increment routine> | |
915 | .word 0 # pre-counter | |
916 | Label: BR | |
917 | call <increment routine> | |
918 | .word 0 # post-counter | |
919 | ||
920 | A table of all such "Labels" is also generated. | |
921 | ||
252b5132 RH |
922 | -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA: |
923 | Select the 80960 architecture. Instructions or features not | |
924 | supported by the selected architecture cause fatal errors. | |
925 | The default is to generate code for any instruction or feature | |
926 | that is supported by SOME version of the 960 (even if this | |
927 | means mixing architectures!). | |
928 | ||
929 | ****************************************************************************/ | |
930 | ||
5a38dc70 | 931 | const char *md_shortopts = "A:b"; |
252b5132 RH |
932 | struct option md_longopts[] = |
933 | { | |
934 | #define OPTION_LINKRELAX (OPTION_MD_BASE) | |
935 | {"linkrelax", no_argument, NULL, OPTION_LINKRELAX}, | |
936 | {"link-relax", no_argument, NULL, OPTION_LINKRELAX}, | |
937 | #define OPTION_NORELAX (OPTION_MD_BASE + 1) | |
938 | {"norelax", no_argument, NULL, OPTION_NORELAX}, | |
939 | {"no-relax", no_argument, NULL, OPTION_NORELAX}, | |
940 | {NULL, no_argument, NULL, 0} | |
941 | }; | |
942 | size_t md_longopts_size = sizeof (md_longopts); | |
943 | ||
944 | struct tabentry | |
945 | { | |
946 | char *flag; | |
947 | int arch; | |
948 | }; | |
949 | static const struct tabentry arch_tab[] = | |
950 | { | |
951 | {"KA", ARCH_KA}, | |
952 | {"KB", ARCH_KB}, | |
953 | {"SA", ARCH_KA}, /* Synonym for KA */ | |
954 | {"SB", ARCH_KB}, /* Synonym for KB */ | |
955 | {"KC", ARCH_MC}, /* Synonym for MC */ | |
956 | {"MC", ARCH_MC}, | |
957 | {"CA", ARCH_CA}, | |
958 | {"JX", ARCH_JX}, | |
959 | {"HX", ARCH_HX}, | |
960 | {NULL, 0} | |
961 | }; | |
962 | ||
963 | int | |
964 | md_parse_option (c, arg) | |
965 | int c; | |
966 | char *arg; | |
967 | { | |
968 | switch (c) | |
969 | { | |
970 | case OPTION_LINKRELAX: | |
971 | linkrelax = 1; | |
972 | flag_keep_locals = 1; | |
973 | break; | |
974 | ||
975 | case OPTION_NORELAX: | |
976 | norelax = 1; | |
977 | break; | |
978 | ||
979 | case 'b': | |
980 | instrument_branches = 1; | |
981 | break; | |
982 | ||
983 | case 'A': | |
984 | { | |
985 | const struct tabentry *tp; | |
986 | char *p = arg; | |
987 | ||
988 | for (tp = arch_tab; tp->flag != NULL; tp++) | |
989 | if (!strcmp (p, tp->flag)) | |
990 | break; | |
991 | ||
992 | if (tp->flag == NULL) | |
993 | { | |
994 | as_bad (_("invalid architecture %s"), p); | |
995 | return 0; | |
996 | } | |
997 | else | |
998 | architecture = tp->arch; | |
999 | } | |
1000 | break; | |
1001 | ||
1002 | default: | |
1003 | return 0; | |
1004 | } | |
1005 | ||
1006 | return 1; | |
1007 | } | |
1008 | ||
1009 | void | |
1010 | md_show_usage (stream) | |
1011 | FILE *stream; | |
1012 | { | |
1013 | int i; | |
1014 | fprintf (stream, _("I960 options:\n")); | |
1015 | for (i = 0; arch_tab[i].flag; i++) | |
1016 | fprintf (stream, "%s-A%s", i ? " | " : "", arch_tab[i].flag); | |
1017 | fprintf (stream, _("\n\ | |
1018 | specify variant of 960 architecture\n\ | |
1019 | -b add code to collect statistics about branches taken\n\ | |
1020 | -link-relax preserve individual alignment directives so linker\n\ | |
1021 | can do relaxing (b.out format only)\n\ | |
1022 | -no-relax don't alter compare-and-branch instructions for\n\ | |
1023 | long displacements\n")); | |
1024 | } | |
1025 | \f | |
1026 | ||
252b5132 RH |
1027 | /***************************************************************************** |
1028 | md_convert_frag: | |
1029 | Called by base assembler after address relaxation is finished: modify | |
1030 | variable fragments according to how much relaxation was done. | |
1031 | ||
1032 | If the fragment substate is still 1, a 13-bit displacement was enough | |
1033 | to reach the symbol in question. Set up an address fixup, but otherwise | |
1034 | leave the cobr instruction alone. | |
1035 | ||
1036 | If the fragment substate is 2, a 13-bit displacement was not enough. | |
1037 | Replace the cobr with a two instructions (a compare and a branch). | |
1038 | ||
1039 | *************************************************************************** */ | |
bedf545c | 1040 | #ifndef BFD_ASSEMBLER |
252b5132 RH |
1041 | void |
1042 | md_convert_frag (headers, seg, fragP) | |
b9195351 AM |
1043 | object_headers *headers ATTRIBUTE_UNUSED; |
1044 | segT seg ATTRIBUTE_UNUSED; | |
252b5132 | 1045 | fragS *fragP; |
bedf545c ILT |
1046 | #else |
1047 | void | |
1048 | md_convert_frag (abfd, sec, fragP) | |
b9195351 AM |
1049 | bfd *abfd ATTRIBUTE_UNUSED; |
1050 | segT sec ATTRIBUTE_UNUSED; | |
bedf545c ILT |
1051 | fragS *fragP; |
1052 | #endif | |
252b5132 RH |
1053 | { |
1054 | fixS *fixP; /* Structure describing needed address fix */ | |
1055 | ||
1056 | switch (fragP->fr_subtype) | |
1057 | { | |
1058 | case 1: | |
1059 | /* LEAVE SINGLE COBR INSTRUCTION */ | |
1060 | fixP = fix_new (fragP, | |
1061 | fragP->fr_opcode - fragP->fr_literal, | |
1062 | 4, | |
1063 | fragP->fr_symbol, | |
1064 | fragP->fr_offset, | |
1065 | 1, | |
1066 | NO_RELOC); | |
1067 | ||
1068 | fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */ | |
1069 | break; | |
1070 | case 2: | |
1071 | /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */ | |
1072 | relax_cobr (fragP); | |
1073 | break; | |
1074 | default: | |
1075 | BAD_CASE (fragP->fr_subtype); | |
1076 | break; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | /***************************************************************************** | |
1081 | md_estimate_size_before_relax: How much does it look like *fragP will grow? | |
1082 | ||
1083 | Called by base assembler just before address relaxation. | |
1084 | Return the amount by which the fragment will grow. | |
1085 | ||
1086 | Any symbol that is now undefined will not become defined; cobr's | |
1087 | based on undefined symbols will have to be replaced with a compare | |
1088 | instruction and a branch instruction, and the code fragment will grow | |
1089 | by 4 bytes. | |
1090 | ||
1091 | *************************************************************************** */ | |
1092 | int | |
1093 | md_estimate_size_before_relax (fragP, segment_type) | |
1094 | register fragS *fragP; | |
1095 | register segT segment_type; | |
1096 | { | |
1097 | /* If symbol is undefined in this segment, go to "relaxed" state | |
1098 | (compare and branch instructions instead of cobr) right now. */ | |
1099 | if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type) | |
1100 | { | |
1101 | relax_cobr (fragP); | |
1102 | return 4; | |
1103 | } | |
91975467 JW |
1104 | |
1105 | return md_relax_table[fragP->fr_subtype].rlx_length; | |
252b5132 RH |
1106 | } /* md_estimate_size_before_relax() */ |
1107 | ||
bedf545c | 1108 | #if defined(OBJ_AOUT) | defined(OBJ_BOUT) |
252b5132 RH |
1109 | |
1110 | /***************************************************************************** | |
1111 | md_ri_to_chars: | |
1112 | This routine exists in order to overcome machine byte-order problems | |
1113 | when dealing with bit-field entries in the relocation_info struct. | |
1114 | ||
1115 | But relocation info will be used on the host machine only (only | |
1116 | executable code is actually downloaded to the i80960). Therefore, | |
1117 | we leave it in host byte order. | |
1118 | ||
1119 | The above comment is no longer true. This routine now really | |
1120 | does do the reordering (Ian Taylor 28 Aug 92). | |
1121 | ||
1122 | *************************************************************************** */ | |
30cdfbed | 1123 | static void md_ri_to_chars PARAMS ((char *, struct relocation_info *)); |
bedf545c ILT |
1124 | |
1125 | static void | |
252b5132 RH |
1126 | md_ri_to_chars (where, ri) |
1127 | char *where; | |
1128 | struct relocation_info *ri; | |
1129 | { | |
1130 | md_number_to_chars (where, ri->r_address, | |
1131 | sizeof (ri->r_address)); | |
1132 | where[4] = ri->r_index & 0x0ff; | |
1133 | where[5] = (ri->r_index >> 8) & 0x0ff; | |
1134 | where[6] = (ri->r_index >> 16) & 0x0ff; | |
1135 | where[7] = ((ri->r_pcrel << 0) | |
1136 | | (ri->r_length << 1) | |
1137 | | (ri->r_extern << 3) | |
1138 | | (ri->r_bsr << 4) | |
1139 | | (ri->r_disp << 5) | |
1140 | | (ri->r_callj << 6)); | |
1141 | } | |
1142 | ||
bedf545c ILT |
1143 | #endif /* defined(OBJ_AOUT) | defined(OBJ_BOUT) */ |
1144 | ||
252b5132 RH |
1145 | \f |
1146 | /* FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER */ | |
1147 | ||
1148 | /***************************************************************************** | |
1149 | brcnt_emit: Emit code to increment inline branch counter. | |
1150 | ||
1151 | See the comments above the declaration of 'br_cnt' for details on | |
1152 | branch-prediction instrumentation. | |
1153 | *************************************************************************** */ | |
1154 | static void | |
1155 | brcnt_emit () | |
1156 | { | |
1157 | ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */ | |
1158 | emit (0); /* Emit inline counter to be incremented */ | |
1159 | } | |
1160 | ||
1161 | /***************************************************************************** | |
1162 | brlab_next: generate the next branch local label | |
1163 | ||
1164 | See the comments above the declaration of 'br_cnt' for details on | |
1165 | branch-prediction instrumentation. | |
1166 | *************************************************************************** */ | |
1167 | static char * | |
1168 | brlab_next () | |
1169 | { | |
1170 | static char buf[20]; | |
1171 | ||
1172 | sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++); | |
1173 | return buf; | |
1174 | } | |
1175 | ||
1176 | /***************************************************************************** | |
1177 | brtab_emit: generate the fetch-prediction branch table. | |
1178 | ||
1179 | See the comments above the declaration of 'br_cnt' for details on | |
1180 | branch-prediction instrumentation. | |
1181 | ||
1182 | The code emitted here would be functionally equivalent to the following | |
1183 | example assembler source. | |
1184 | ||
1185 | .data | |
1186 | .align 2 | |
1187 | BR_TAB_NAME: | |
1188 | .word 0 # link to next table | |
1189 | .word 3 # length of table | |
1190 | .word LBRANCH0 # 1st entry in table proper | |
1191 | .word LBRANCH1 | |
1192 | .word LBRANCH2 | |
1193 | **************************************************************************** */ | |
1194 | void | |
1195 | brtab_emit () | |
1196 | { | |
1197 | int i; | |
1198 | char buf[20]; | |
1199 | char *p; /* Where the binary was output to */ | |
1200 | /* Pointer to description of deferred address fixup. */ | |
1201 | fixS *fixP; | |
1202 | ||
1203 | if (!instrument_branches) | |
1204 | { | |
1205 | return; | |
1206 | } | |
1207 | ||
1208 | subseg_set (data_section, 0); /* .data */ | |
1209 | frag_align (2, 0, 0); /* .align 2 */ | |
1210 | record_alignment (now_seg, 2); | |
1211 | colon (BR_TAB_NAME); /* BR_TAB_NAME: */ | |
1212 | emit (0); /* .word 0 #link to next table */ | |
1213 | emit (br_cnt); /* .word n #length of table */ | |
1214 | ||
1215 | for (i = 0; i < br_cnt; i++) | |
1216 | { | |
1217 | sprintf (buf, "%s%d", BR_LABEL_BASE, i); | |
1218 | p = emit (0); | |
1219 | fixP = fix_new (frag_now, | |
1220 | p - frag_now->fr_literal, | |
1221 | 4, | |
1222 | symbol_find (buf), | |
1223 | 0, | |
1224 | 0, | |
1225 | NO_RELOC); | |
1226 | } | |
1227 | } | |
1228 | ||
1229 | /***************************************************************************** | |
1230 | cobr_fmt: generate a COBR-format instruction | |
1231 | ||
1232 | *************************************************************************** */ | |
b9195351 | 1233 | static void |
252b5132 RH |
1234 | cobr_fmt (arg, opcode, oP) |
1235 | /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */ | |
1236 | char *arg[]; | |
1237 | /* Opcode, with branch-prediction bits already set if necessary. */ | |
1238 | long opcode; | |
1239 | /* Pointer to description of instruction. */ | |
1240 | struct i960_opcode *oP; | |
1241 | { | |
1242 | long instr; /* 32-bit instruction */ | |
1243 | struct regop regop; /* Description of register operand */ | |
1244 | int n; /* Number of operands */ | |
1245 | int var_frag; /* 1 if varying length code fragment should | |
1246 | * be emitted; 0 if an address fix | |
1247 | * should be emitted. | |
1248 | */ | |
1249 | ||
1250 | instr = opcode; | |
1251 | n = oP->num_ops; | |
1252 | ||
1253 | if (n >= 1) | |
1254 | { | |
1255 | /* First operand (if any) of a COBR is always a register | |
1256 | operand. Parse it. */ | |
1257 | parse_regop (®op, arg[1], oP->operand[0]); | |
1258 | instr |= (regop.n << 19) | (regop.mode << 13); | |
1259 | } | |
1260 | if (n >= 2) | |
1261 | { | |
1262 | /* Second operand (if any) of a COBR is always a register | |
1263 | operand. Parse it. */ | |
1264 | parse_regop (®op, arg[2], oP->operand[1]); | |
1265 | instr |= (regop.n << 14) | regop.special; | |
1266 | } | |
1267 | ||
252b5132 RH |
1268 | if (n < 3) |
1269 | { | |
1270 | emit (instr); | |
1271 | ||
1272 | } | |
1273 | else | |
1274 | { | |
1275 | if (instrument_branches) | |
1276 | { | |
1277 | brcnt_emit (); | |
1278 | colon (brlab_next ()); | |
1279 | } | |
1280 | ||
1281 | /* A third operand to a COBR is always a displacement. Parse | |
1282 | it; if it's relaxable (a cobr "j" directive, or any cobr | |
1283 | other than bbs/bbc when the "-norelax" option is not in use) | |
1284 | set up a variable code fragment; otherwise set up an address | |
1285 | fix. */ | |
1286 | var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */ | |
1287 | get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0); | |
1288 | ||
1289 | if (instrument_branches) | |
1290 | { | |
1291 | brcnt_emit (); | |
1292 | } | |
1293 | } | |
1294 | } /* cobr_fmt() */ | |
1295 | ||
252b5132 RH |
1296 | /***************************************************************************** |
1297 | ctrl_fmt: generate a CTRL-format instruction | |
1298 | ||
1299 | *************************************************************************** */ | |
b9195351 | 1300 | static void |
252b5132 RH |
1301 | ctrl_fmt (targP, opcode, num_ops) |
1302 | char *targP; /* Pointer to text of lone operand (if any) */ | |
1303 | long opcode; /* Template of instruction */ | |
1304 | int num_ops; /* Number of operands */ | |
1305 | { | |
1306 | int instrument; /* TRUE iff we should add instrumentation to track | |
1307 | * how often the branch is taken | |
1308 | */ | |
1309 | ||
252b5132 RH |
1310 | if (num_ops == 0) |
1311 | { | |
1312 | emit (opcode); /* Output opcode */ | |
1313 | } | |
1314 | else | |
1315 | { | |
1316 | ||
1317 | instrument = instrument_branches && (opcode != CALL) | |
1318 | && (opcode != B) && (opcode != RET) && (opcode != BAL); | |
1319 | ||
1320 | if (instrument) | |
1321 | { | |
1322 | brcnt_emit (); | |
1323 | colon (brlab_next ()); | |
1324 | } | |
1325 | ||
0234cb7c | 1326 | /* The operand MUST be an ip-relative displacement. Parse it |
252b5132 RH |
1327 | * and set up address fix for the instruction we just output. |
1328 | */ | |
1329 | get_cdisp (targP, "CTRL", opcode, 24, 0, 0); | |
1330 | ||
1331 | if (instrument) | |
1332 | { | |
1333 | brcnt_emit (); | |
1334 | } | |
1335 | } | |
1336 | ||
1337 | } | |
1338 | ||
252b5132 RH |
1339 | /***************************************************************************** |
1340 | emit: output instruction binary | |
1341 | ||
1342 | Output instruction binary, in target byte order, 4 bytes at a time. | |
1343 | Return pointer to where it was placed. | |
1344 | ||
1345 | *************************************************************************** */ | |
b9195351 | 1346 | static char * |
252b5132 RH |
1347 | emit (instr) |
1348 | long instr; /* Word to be output, host byte order */ | |
1349 | { | |
1350 | char *toP; /* Where to output it */ | |
1351 | ||
1352 | toP = frag_more (4); /* Allocate storage */ | |
1353 | md_number_to_chars (toP, instr, 4); /* Convert to target byte order */ | |
1354 | return toP; | |
1355 | } | |
1356 | ||
252b5132 RH |
1357 | /***************************************************************************** |
1358 | get_args: break individual arguments out of comma-separated list | |
1359 | ||
1360 | Input assumptions: | |
1361 | - all comments and labels have been removed | |
1362 | - all strings of whitespace have been collapsed to a single blank. | |
1363 | - all character constants ('x') have been replaced with decimal | |
1364 | ||
1365 | Output: | |
1366 | args[0] is untouched. args[1] points to first operand, etc. All args: | |
1367 | - are NULL-terminated | |
1368 | - contain no whitespace | |
1369 | ||
1370 | Return value: | |
1371 | Number of operands (0,1,2, or 3) or -1 on error. | |
1372 | ||
1373 | *************************************************************************** */ | |
1374 | static int | |
1375 | get_args (p, args) | |
1376 | /* Pointer to comma-separated operands; MUCKED BY US */ | |
1377 | register char *p; | |
1378 | /* Output arg: pointers to operands placed in args[1-3]. MUST | |
1379 | ACCOMMODATE 4 ENTRIES (args[0-3]). */ | |
1380 | char *args[]; | |
1381 | { | |
1382 | register int n; /* Number of operands */ | |
1383 | register char *to; | |
1384 | ||
1385 | /* Skip lead white space */ | |
1386 | while (*p == ' ') | |
1387 | { | |
1388 | p++; | |
1389 | } | |
1390 | ||
1391 | if (*p == '\0') | |
1392 | { | |
1393 | return 0; | |
1394 | } | |
1395 | ||
1396 | n = 1; | |
1397 | args[1] = p; | |
1398 | ||
1399 | /* Squeze blanks out by moving non-blanks toward start of string. | |
1400 | * Isolate operands, whenever comma is found. | |
1401 | */ | |
1402 | to = p; | |
1403 | while (*p != '\0') | |
1404 | { | |
1405 | ||
1406 | if (*p == ' ' | |
3882b010 L |
1407 | && (! ISALNUM (p[1]) |
1408 | || ! ISALNUM (p[-1]))) | |
252b5132 RH |
1409 | { |
1410 | p++; | |
1411 | ||
1412 | } | |
1413 | else if (*p == ',') | |
1414 | { | |
1415 | ||
1416 | /* Start of operand */ | |
1417 | if (n == 3) | |
1418 | { | |
1419 | as_bad (_("too many operands")); | |
1420 | return -1; | |
1421 | } | |
1422 | *to++ = '\0'; /* Terminate argument */ | |
1423 | args[++n] = to; /* Start next argument */ | |
1424 | p++; | |
1425 | ||
1426 | } | |
1427 | else | |
1428 | { | |
1429 | *to++ = *p++; | |
1430 | } | |
1431 | } | |
1432 | *to = '\0'; | |
1433 | return n; | |
1434 | } | |
1435 | ||
252b5132 RH |
1436 | /***************************************************************************** |
1437 | get_cdisp: handle displacement for a COBR or CTRL instruction. | |
1438 | ||
1439 | Parse displacement for a COBR or CTRL instruction. | |
1440 | ||
1441 | If successful, output the instruction opcode and set up for it, | |
1442 | depending on the arg 'var_frag', either: | |
1443 | o an address fixup to be done when all symbol values are known, or | |
1444 | o a varying length code fragment, with address fixup info. This | |
1445 | will be done for cobr instructions that may have to be relaxed | |
1446 | in to compare/branch instructions (8 bytes) if the final | |
1447 | address displacement is greater than 13 bits. | |
1448 | ||
1449 | ****************************************************************************/ | |
b9195351 | 1450 | static void |
252b5132 RH |
1451 | get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj) |
1452 | /* displacement as specified in source instruction */ | |
1453 | char *dispP; | |
1454 | /* "COBR" or "CTRL" (for use in error message) */ | |
1455 | char *ifmtP; | |
1456 | /* Instruction needing the displacement */ | |
1457 | long instr; | |
1458 | /* # bits of displacement (13 for COBR, 24 for CTRL) */ | |
1459 | int numbits; | |
1460 | /* 1 if varying length code fragment should be emitted; | |
1461 | * 0 if an address fix should be emitted. | |
1462 | */ | |
1463 | int var_frag; | |
1464 | /* 1 if callj relocation should be done; else 0 */ | |
1465 | int callj; | |
1466 | { | |
1467 | expressionS e; /* Parsed expression */ | |
1468 | fixS *fixP; /* Structure describing needed address fix */ | |
1469 | char *outP; /* Where instruction binary is output to */ | |
1470 | ||
1471 | fixP = NULL; | |
1472 | ||
1473 | parse_expr (dispP, &e); | |
1474 | switch (e.X_op) | |
1475 | { | |
1476 | case O_illegal: | |
1477 | as_bad (_("expression syntax error")); | |
1478 | ||
1479 | case O_symbol: | |
1480 | if (S_GET_SEGMENT (e.X_add_symbol) == now_seg | |
1481 | || S_GET_SEGMENT (e.X_add_symbol) == undefined_section) | |
1482 | { | |
1483 | if (var_frag) | |
1484 | { | |
1485 | outP = frag_more (8); /* Allocate worst-case storage */ | |
1486 | md_number_to_chars (outP, instr, 4); | |
1487 | frag_variant (rs_machine_dependent, 4, 4, 1, | |
1488 | adds (e), offs (e), outP); | |
1489 | } | |
1490 | else | |
1491 | { | |
1492 | /* Set up a new fix structure, so address can be updated | |
1493 | * when all symbol values are known. | |
1494 | */ | |
1495 | outP = emit (instr); | |
1496 | fixP = fix_new (frag_now, | |
1497 | outP - frag_now->fr_literal, | |
1498 | 4, | |
1499 | adds (e), | |
1500 | offs (e), | |
1501 | 1, | |
1502 | NO_RELOC); | |
1503 | ||
1504 | fixP->fx_tcbit = callj; | |
1505 | ||
1506 | /* We want to modify a bit field when the address is | |
1507 | * known. But we don't need all the garbage in the | |
1508 | * bit_fix structure. So we're going to lie and store | |
1509 | * the number of bits affected instead of a pointer. | |
1510 | */ | |
1511 | fixP->fx_bit_fixP = (bit_fixS *) numbits; | |
1512 | } | |
1513 | } | |
1514 | else | |
1515 | as_bad (_("attempt to branch into different segment")); | |
1516 | break; | |
1517 | ||
1518 | default: | |
1519 | as_bad (_("target of %s instruction must be a label"), ifmtP); | |
1520 | break; | |
1521 | } | |
1522 | } | |
1523 | ||
252b5132 RH |
1524 | /***************************************************************************** |
1525 | get_ispec: parse a memory operand for an index specification | |
1526 | ||
1527 | Here, an "index specification" is taken to be anything surrounded | |
1528 | by square brackets and NOT followed by anything else. | |
1529 | ||
1530 | If it's found, detach it from the input string, remove the surrounding | |
1531 | square brackets, and return a pointer to it. Otherwise, return NULL. | |
1532 | ||
1533 | *************************************************************************** */ | |
b9195351 | 1534 | static char * |
252b5132 RH |
1535 | get_ispec (textP) |
1536 | /* Pointer to memory operand from source instruction, no white space. */ | |
1537 | char *textP; | |
1538 | { | |
1539 | /* Points to start of index specification. */ | |
1540 | char *start; | |
1541 | /* Points to end of index specification. */ | |
1542 | char *end; | |
1543 | ||
1544 | /* Find opening square bracket, if any. */ | |
1545 | start = strchr (textP, '['); | |
1546 | ||
1547 | if (start != NULL) | |
1548 | { | |
1549 | ||
1550 | /* Eliminate '[', detach from rest of operand */ | |
1551 | *start++ = '\0'; | |
1552 | ||
1553 | end = strchr (start, ']'); | |
1554 | ||
1555 | if (end == NULL) | |
1556 | { | |
1557 | as_bad (_("unmatched '['")); | |
1558 | ||
1559 | } | |
1560 | else | |
1561 | { | |
1562 | /* Eliminate ']' and make sure it was the last thing | |
1563 | * in the string. | |
1564 | */ | |
1565 | *end = '\0'; | |
1566 | if (*(end + 1) != '\0') | |
1567 | { | |
1568 | as_bad (_("garbage after index spec ignored")); | |
1569 | } | |
1570 | } | |
1571 | } | |
1572 | return start; | |
1573 | } | |
1574 | ||
1575 | /***************************************************************************** | |
1576 | get_regnum: | |
1577 | ||
1578 | Look up a (suspected) register name in the register table and return the | |
1579 | associated register number (or -1 if not found). | |
1580 | ||
1581 | *************************************************************************** */ | |
b9195351 | 1582 | static int |
252b5132 RH |
1583 | get_regnum (regname) |
1584 | char *regname; /* Suspected register name */ | |
1585 | { | |
1586 | int *rP; | |
1587 | ||
1588 | rP = (int *) hash_find (reg_hash, regname); | |
1589 | return (rP == NULL) ? -1 : *rP; | |
1590 | } | |
1591 | ||
252b5132 RH |
1592 | /***************************************************************************** |
1593 | i_scan: perform lexical scan of ascii assembler instruction. | |
1594 | ||
1595 | Input assumptions: | |
1596 | - input string is an i80960 instruction (not a pseudo-op) | |
1597 | - all comments and labels have been removed | |
1598 | - all strings of whitespace have been collapsed to a single blank. | |
1599 | ||
1600 | Output: | |
1601 | args[0] points to opcode, other entries point to operands. All strings: | |
1602 | - are NULL-terminated | |
1603 | - contain no whitespace | |
1604 | - have character constants ('x') replaced with a decimal number | |
1605 | ||
1606 | Return value: | |
1607 | Number of operands (0,1,2, or 3) or -1 on error. | |
1608 | ||
1609 | *************************************************************************** */ | |
1610 | static int | |
1611 | i_scan (iP, args) | |
92774660 | 1612 | /* Pointer to ascii instruction; MUCKED BY US. */ |
252b5132 RH |
1613 | register char *iP; |
1614 | /* Output arg: pointers to opcode and operands placed here. MUST | |
1615 | ACCOMMODATE 4 ENTRIES. */ | |
1616 | char *args[]; | |
1617 | { | |
1618 | ||
1619 | /* Isolate opcode */ | |
1620 | if (*(iP) == ' ') | |
1621 | { | |
1622 | iP++; | |
1623 | } /* Skip lead space, if any */ | |
1624 | args[0] = iP; | |
1625 | for (; *iP != ' '; iP++) | |
1626 | { | |
1627 | if (*iP == '\0') | |
1628 | { | |
1629 | /* There are no operands */ | |
1630 | if (args[0] == iP) | |
1631 | { | |
1632 | /* We never moved: there was no opcode either! */ | |
1633 | as_bad (_("missing opcode")); | |
1634 | return -1; | |
1635 | } | |
1636 | return 0; | |
1637 | } | |
1638 | } | |
1639 | *iP++ = '\0'; /* Terminate opcode */ | |
1640 | return (get_args (iP, args)); | |
1641 | } /* i_scan() */ | |
1642 | ||
252b5132 RH |
1643 | /***************************************************************************** |
1644 | mem_fmt: generate a MEMA- or MEMB-format instruction | |
1645 | ||
1646 | *************************************************************************** */ | |
1647 | static void | |
1648 | mem_fmt (args, oP, callx) | |
1649 | char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ | |
1650 | struct i960_opcode *oP; /* Pointer to description of instruction */ | |
1651 | int callx; /* Is this a callx opcode */ | |
1652 | { | |
1653 | int i; /* Loop counter */ | |
1654 | struct regop regop; /* Description of register operand */ | |
1655 | char opdesc; /* Operand descriptor byte */ | |
1656 | memS instr; /* Description of binary to be output */ | |
1657 | char *outP; /* Where the binary was output to */ | |
1658 | expressionS expr; /* Parsed expression */ | |
1659 | /* ->description of deferred address fixup */ | |
1660 | fixS *fixP; | |
1661 | ||
1662 | #ifdef OBJ_COFF | |
1663 | /* COFF support isn't in place yet for callx relaxing. */ | |
1664 | callx = 0; | |
1665 | #endif | |
1666 | ||
1667 | memset (&instr, '\0', sizeof (memS)); | |
1668 | instr.opcode = oP->opcode; | |
1669 | ||
92774660 | 1670 | /* Process operands. */ |
252b5132 RH |
1671 | for (i = 1; i <= oP->num_ops; i++) |
1672 | { | |
1673 | opdesc = oP->operand[i - 1]; | |
1674 | ||
1675 | if (MEMOP (opdesc)) | |
1676 | { | |
1677 | parse_memop (&instr, args[i], oP->format); | |
1678 | } | |
1679 | else | |
1680 | { | |
1681 | parse_regop (®op, args[i], opdesc); | |
1682 | instr.opcode |= regop.n << 19; | |
1683 | } | |
1684 | } | |
1685 | ||
1686 | /* Parse the displacement; this must be done before emitting the | |
1687 | opcode, in case it is an expression using `.'. */ | |
1688 | parse_expr (instr.e, &expr); | |
1689 | ||
1690 | /* Output opcode */ | |
1691 | outP = emit (instr.opcode); | |
1692 | ||
1693 | if (instr.disp == 0) | |
1694 | { | |
1695 | return; | |
1696 | } | |
1697 | ||
1698 | /* Process the displacement */ | |
1699 | switch (expr.X_op) | |
1700 | { | |
1701 | case O_illegal: | |
1702 | as_bad (_("expression syntax error")); | |
1703 | break; | |
1704 | ||
1705 | case O_constant: | |
1706 | if (instr.disp == 32) | |
1707 | { | |
1708 | (void) emit (offs (expr)); /* Output displacement */ | |
1709 | } | |
1710 | else | |
1711 | { | |
1712 | /* 12-bit displacement */ | |
1713 | if (offs (expr) & ~0xfff) | |
1714 | { | |
1715 | /* Won't fit in 12 bits: convert already-output | |
1716 | * instruction to MEMB format, output | |
1717 | * displacement. | |
1718 | */ | |
1719 | mema_to_memb (outP); | |
1720 | (void) emit (offs (expr)); | |
1721 | } | |
1722 | else | |
1723 | { | |
1724 | /* WILL fit in 12 bits: OR into opcode and | |
1725 | * overwrite the binary we already put out | |
1726 | */ | |
1727 | instr.opcode |= offs (expr); | |
1728 | md_number_to_chars (outP, instr.opcode, 4); | |
1729 | } | |
1730 | } | |
1731 | break; | |
1732 | ||
1733 | default: | |
1734 | if (instr.disp == 12) | |
1735 | { | |
1736 | /* Displacement is dependent on a symbol, whose value | |
1737 | * may change at link time. We HAVE to reserve 32 bits. | |
1738 | * Convert already-output opcode to MEMB format. | |
1739 | */ | |
1740 | mema_to_memb (outP); | |
1741 | } | |
1742 | ||
1743 | /* Output 0 displacement and set up address fixup for when | |
1744 | * this symbol's value becomes known. | |
1745 | */ | |
1746 | outP = emit ((long) 0); | |
1747 | fixP = fix_new_exp (frag_now, | |
1748 | outP - frag_now->fr_literal, | |
1749 | 4, | |
1750 | &expr, | |
1751 | 0, | |
1752 | NO_RELOC); | |
1753 | /* Steve's linker relaxing hack. Mark this 32-bit relocation as | |
1754 | being in the instruction stream, specifically as part of a callx | |
1755 | instruction. */ | |
1756 | fixP->fx_bsr = callx; | |
1757 | break; | |
1758 | } | |
1759 | } /* memfmt() */ | |
1760 | ||
252b5132 RH |
1761 | /***************************************************************************** |
1762 | mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode. | |
1763 | ||
1764 | There are 2 possible MEMA formats: | |
1765 | - displacement only | |
1766 | - displacement + abase | |
1767 | ||
1768 | They are distinguished by the setting of the MEMA_ABASE bit. | |
1769 | ||
1770 | *************************************************************************** */ | |
1771 | static void | |
1772 | mema_to_memb (opcodeP) | |
1773 | char *opcodeP; /* Where to find the opcode, in target byte order */ | |
1774 | { | |
1775 | long opcode; /* Opcode in host byte order */ | |
1776 | long mode; /* Mode bits for MEMB instruction */ | |
1777 | ||
1778 | opcode = md_chars_to_number (opcodeP, 4); | |
1779 | know (!(opcode & MEMB_BIT)); | |
1780 | ||
1781 | mode = MEMB_BIT | D_BIT; | |
1782 | if (opcode & MEMA_ABASE) | |
1783 | { | |
1784 | mode |= A_BIT; | |
1785 | } | |
1786 | ||
1787 | opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */ | |
1788 | opcode |= mode; /* Set MEMB mode bits */ | |
1789 | ||
1790 | md_number_to_chars (opcodeP, opcode, 4); | |
1791 | } /* mema_to_memb() */ | |
1792 | ||
252b5132 RH |
1793 | /***************************************************************************** |
1794 | parse_expr: parse an expression | |
1795 | ||
1796 | Use base assembler's expression parser to parse an expression. | |
1797 | It, unfortunately, runs off a global which we have to save/restore | |
1798 | in order to make it work for us. | |
1799 | ||
1800 | An empty expression string is treated as an absolute 0. | |
1801 | ||
1802 | Sets O_illegal regardless of expression evaluation if entire input | |
1803 | string is not consumed in the evaluation -- tolerate no dangling junk! | |
1804 | ||
1805 | *************************************************************************** */ | |
1806 | static void | |
1807 | parse_expr (textP, expP) | |
1808 | char *textP; /* Text of expression to be parsed */ | |
1809 | expressionS *expP; /* Where to put the results of parsing */ | |
1810 | { | |
1811 | char *save_in; /* Save global here */ | |
1812 | symbolS *symP; | |
1813 | ||
1814 | know (textP); | |
1815 | ||
1816 | if (*textP == '\0') | |
1817 | { | |
1818 | /* Treat empty string as absolute 0 */ | |
1819 | expP->X_add_symbol = expP->X_op_symbol = NULL; | |
1820 | expP->X_add_number = 0; | |
1821 | expP->X_op = O_constant; | |
1822 | } | |
1823 | else | |
1824 | { | |
1825 | save_in = input_line_pointer; /* Save global */ | |
1826 | input_line_pointer = textP; /* Make parser work for us */ | |
1827 | ||
1828 | (void) expression (expP); | |
1829 | if ((size_t) (input_line_pointer - textP) != strlen (textP)) | |
1830 | { | |
1831 | /* Did not consume all of the input */ | |
1832 | expP->X_op = O_illegal; | |
1833 | } | |
1834 | symP = expP->X_add_symbol; | |
1835 | if (symP && (hash_find (reg_hash, S_GET_NAME (symP)))) | |
1836 | { | |
1837 | /* Register name in an expression */ | |
1838 | /* FIXME: this isn't much of a check any more. */ | |
1839 | expP->X_op = O_illegal; | |
1840 | } | |
1841 | ||
1842 | input_line_pointer = save_in; /* Restore global */ | |
1843 | } | |
1844 | } | |
1845 | ||
252b5132 RH |
1846 | /***************************************************************************** |
1847 | parse_ldcont: | |
1848 | Parse and replace a 'ldconst' pseudo-instruction with an appropriate | |
1849 | i80960 instruction. | |
1850 | ||
1851 | Assumes the input consists of: | |
1852 | arg[0] opcode mnemonic ('ldconst') | |
1853 | arg[1] first operand (constant) | |
1854 | arg[2] name of register to be loaded | |
1855 | ||
1856 | Replaces opcode and/or operands as appropriate. | |
1857 | ||
1858 | Returns the new number of arguments, or -1 on failure. | |
1859 | ||
1860 | *************************************************************************** */ | |
b9195351 | 1861 | static int |
252b5132 RH |
1862 | parse_ldconst (arg) |
1863 | char *arg[]; /* See above */ | |
1864 | { | |
1865 | int n; /* Constant to be loaded */ | |
1866 | int shift; /* Shift count for "shlo" instruction */ | |
1867 | static char buf[5]; /* Literal for first operand */ | |
1868 | static char buf2[5]; /* Literal for second operand */ | |
1869 | expressionS e; /* Parsed expression */ | |
1870 | ||
252b5132 RH |
1871 | arg[3] = NULL; /* So we can tell at the end if it got used or not */ |
1872 | ||
1873 | parse_expr (arg[1], &e); | |
1874 | switch (e.X_op) | |
1875 | { | |
1876 | default: | |
1877 | /* We're dependent on one or more symbols -- use "lda" */ | |
1878 | arg[0] = "lda"; | |
1879 | break; | |
1880 | ||
1881 | case O_constant: | |
1882 | /* Try the following mappings: | |
1883 | * ldconst 0,<reg> ->mov 0,<reg> | |
1884 | * ldconst 31,<reg> ->mov 31,<reg> | |
1885 | * ldconst 32,<reg> ->addo 1,31,<reg> | |
1886 | * ldconst 62,<reg> ->addo 31,31,<reg> | |
1887 | * ldconst 64,<reg> ->shlo 8,3,<reg> | |
1888 | * ldconst -1,<reg> ->subo 1,0,<reg> | |
1889 | * ldconst -31,<reg>->subo 31,0,<reg> | |
1890 | * | |
0234cb7c | 1891 | * anything else becomes: |
252b5132 RH |
1892 | * lda xxx,<reg> |
1893 | */ | |
1894 | n = offs (e); | |
1895 | if ((0 <= n) && (n <= 31)) | |
1896 | { | |
1897 | arg[0] = "mov"; | |
1898 | ||
1899 | } | |
1900 | else if ((-31 <= n) && (n <= -1)) | |
1901 | { | |
1902 | arg[0] = "subo"; | |
1903 | arg[3] = arg[2]; | |
1904 | sprintf (buf, "%d", -n); | |
1905 | arg[1] = buf; | |
1906 | arg[2] = "0"; | |
1907 | ||
1908 | } | |
1909 | else if ((32 <= n) && (n <= 62)) | |
1910 | { | |
1911 | arg[0] = "addo"; | |
1912 | arg[3] = arg[2]; | |
1913 | arg[1] = "31"; | |
1914 | sprintf (buf, "%d", n - 31); | |
1915 | arg[2] = buf; | |
1916 | ||
1917 | } | |
1918 | else if ((shift = shift_ok (n)) != 0) | |
1919 | { | |
1920 | arg[0] = "shlo"; | |
1921 | arg[3] = arg[2]; | |
1922 | sprintf (buf, "%d", shift); | |
1923 | arg[1] = buf; | |
1924 | sprintf (buf2, "%d", n >> shift); | |
1925 | arg[2] = buf2; | |
1926 | ||
1927 | } | |
1928 | else | |
1929 | { | |
1930 | arg[0] = "lda"; | |
1931 | } | |
1932 | break; | |
1933 | ||
1934 | case O_illegal: | |
1935 | as_bad (_("invalid constant")); | |
1936 | return -1; | |
1937 | break; | |
1938 | } | |
1939 | return (arg[3] == 0) ? 2 : 3; | |
1940 | } | |
1941 | ||
1942 | /***************************************************************************** | |
1943 | parse_memop: parse a memory operand | |
1944 | ||
1945 | This routine is based on the observation that the 4 mode bits of the | |
1946 | MEMB format, taken individually, have fairly consistent meaning: | |
1947 | ||
1948 | M3 (bit 13): 1 if displacement is present (D_BIT) | |
1949 | M2 (bit 12): 1 for MEMB instructions (MEMB_BIT) | |
1950 | M1 (bit 11): 1 if index is present (I_BIT) | |
1951 | M0 (bit 10): 1 if abase is present (A_BIT) | |
1952 | ||
1953 | So we parse the memory operand and set bits in the mode as we find | |
1954 | things. Then at the end, if we go to MEMB format, we need only set | |
1955 | the MEMB bit (M2) and our mode is built for us. | |
1956 | ||
1957 | Unfortunately, I said "fairly consistent". The exceptions: | |
1958 | ||
1959 | DBIA | |
1960 | 0100 Would seem illegal, but means "abase-only". | |
1961 | ||
1962 | 0101 Would seem to mean "abase-only" -- it means IP-relative. | |
1963 | Must be converted to 0100. | |
1964 | ||
1965 | 0110 Would seem to mean "index-only", but is reserved. | |
1966 | We turn on the D bit and provide a 0 displacement. | |
1967 | ||
1968 | The other thing to observe is that we parse from the right, peeling | |
1969 | things * off as we go: first any index spec, then any abase, then | |
1970 | the displacement. | |
1971 | ||
1972 | *************************************************************************** */ | |
b9195351 | 1973 | static void |
252b5132 RH |
1974 | parse_memop (memP, argP, optype) |
1975 | memS *memP; /* Where to put the results */ | |
1976 | char *argP; /* Text of the operand to be parsed */ | |
1977 | int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */ | |
1978 | { | |
1979 | char *indexP; /* Pointer to index specification with "[]" removed */ | |
1980 | char *p; /* Temp char pointer */ | |
1981 | char iprel_flag; /* True if this is an IP-relative operand */ | |
1982 | int regnum; /* Register number */ | |
1983 | /* Scale factor: 1,2,4,8, or 16. Later converted to internal format | |
1984 | (0,1,2,3,4 respectively). */ | |
1985 | int scale; | |
1986 | int mode; /* MEMB mode bits */ | |
1987 | int *intP; /* Pointer to register number */ | |
1988 | ||
1989 | /* The following table contains the default scale factors for each | |
1990 | type of memory instruction. It is accessed using (optype-MEM1) | |
1991 | as an index -- thus it assumes the 'optype' constants are | |
1992 | assigned consecutive values, in the order they appear in this | |
1993 | table. */ | |
1994 | static const int def_scale[] = | |
1995 | { | |
1996 | 1, /* MEM1 */ | |
1997 | 2, /* MEM2 */ | |
1998 | 4, /* MEM4 */ | |
1999 | 8, /* MEM8 */ | |
2000 | -1, /* MEM12 -- no valid default */ | |
2001 | 16 /* MEM16 */ | |
2002 | }; | |
2003 | ||
252b5132 RH |
2004 | iprel_flag = mode = 0; |
2005 | ||
2006 | /* Any index present? */ | |
2007 | indexP = get_ispec (argP); | |
2008 | if (indexP) | |
2009 | { | |
2010 | p = strchr (indexP, '*'); | |
2011 | if (p == NULL) | |
2012 | { | |
2013 | /* No explicit scale -- use default for this instruction | |
2014 | type and assembler mode. */ | |
2015 | if (flag_mri) | |
2016 | scale = 1; | |
2017 | else | |
2018 | /* GNU960 compatibility */ | |
2019 | scale = def_scale[optype - MEM1]; | |
2020 | } | |
2021 | else | |
2022 | { | |
2023 | *p++ = '\0'; /* Eliminate '*' */ | |
2024 | ||
2025 | /* Now indexP->a '\0'-terminated register name, | |
2026 | * and p->a scale factor. | |
2027 | */ | |
2028 | ||
2029 | if (!strcmp (p, "16")) | |
2030 | { | |
2031 | scale = 16; | |
2032 | } | |
2033 | else if (strchr ("1248", *p) && (p[1] == '\0')) | |
2034 | { | |
2035 | scale = *p - '0'; | |
2036 | } | |
2037 | else | |
2038 | { | |
2039 | scale = -1; | |
2040 | } | |
2041 | } | |
2042 | ||
2043 | regnum = get_regnum (indexP); /* Get index reg. # */ | |
2044 | if (!IS_RG_REG (regnum)) | |
2045 | { | |
2046 | as_bad (_("invalid index register")); | |
2047 | return; | |
2048 | } | |
2049 | ||
2050 | /* Convert scale to its binary encoding */ | |
2051 | switch (scale) | |
2052 | { | |
2053 | case 1: | |
2054 | scale = 0 << 7; | |
2055 | break; | |
2056 | case 2: | |
2057 | scale = 1 << 7; | |
2058 | break; | |
2059 | case 4: | |
2060 | scale = 2 << 7; | |
2061 | break; | |
2062 | case 8: | |
2063 | scale = 3 << 7; | |
2064 | break; | |
2065 | case 16: | |
2066 | scale = 4 << 7; | |
2067 | break; | |
2068 | default: | |
2069 | as_bad (_("invalid scale factor")); | |
2070 | return; | |
2071 | }; | |
2072 | ||
2073 | memP->opcode |= scale | regnum; /* Set index bits in opcode */ | |
2074 | mode |= I_BIT; /* Found a valid index spec */ | |
2075 | } | |
2076 | ||
2077 | /* Any abase (Register Indirect) specification present? */ | |
2078 | if ((p = strrchr (argP, '(')) != NULL) | |
2079 | { | |
2080 | /* "(" is there -- does it start a legal abase spec? If not, it | |
2081 | could be part of a displacement expression. */ | |
2082 | intP = (int *) hash_find (areg_hash, p); | |
2083 | if (intP != NULL) | |
2084 | { | |
2085 | /* Got an abase here */ | |
2086 | regnum = *intP; | |
2087 | *p = '\0'; /* discard register spec */ | |
2088 | if (regnum == IPREL) | |
2089 | { | |
2090 | /* We have to specialcase ip-rel mode */ | |
2091 | iprel_flag = 1; | |
2092 | } | |
2093 | else | |
2094 | { | |
2095 | memP->opcode |= regnum << 14; | |
2096 | mode |= A_BIT; | |
2097 | } | |
2098 | } | |
2099 | } | |
2100 | ||
2101 | /* Any expression present? */ | |
2102 | memP->e = argP; | |
2103 | if (*argP != '\0') | |
2104 | { | |
2105 | mode |= D_BIT; | |
2106 | } | |
2107 | ||
2108 | /* Special-case ip-relative addressing */ | |
2109 | if (iprel_flag) | |
2110 | { | |
2111 | if (mode & I_BIT) | |
2112 | { | |
2113 | syntax (); | |
2114 | } | |
2115 | else | |
2116 | { | |
2117 | memP->opcode |= 5 << 10; /* IP-relative mode */ | |
2118 | memP->disp = 32; | |
2119 | } | |
2120 | return; | |
2121 | } | |
2122 | ||
2123 | /* Handle all other modes */ | |
2124 | switch (mode) | |
2125 | { | |
2126 | case D_BIT | A_BIT: | |
2127 | /* Go with MEMA instruction format for now (grow to MEMB later | |
2128 | if 12 bits is not enough for the displacement). MEMA format | |
2129 | has a single mode bit: set it to indicate that abase is | |
2130 | present. */ | |
2131 | memP->opcode |= MEMA_ABASE; | |
2132 | memP->disp = 12; | |
2133 | break; | |
2134 | ||
2135 | case D_BIT: | |
2136 | /* Go with MEMA instruction format for now (grow to MEMB later | |
2137 | if 12 bits is not enough for the displacement). */ | |
2138 | memP->disp = 12; | |
2139 | break; | |
2140 | ||
2141 | case A_BIT: | |
2142 | /* For some reason, the bit string for this mode is not | |
2143 | consistent: it should be 0 (exclusive of the MEMB bit), so we | |
2144 | set it "by hand" here. */ | |
2145 | memP->opcode |= MEMB_BIT; | |
2146 | break; | |
2147 | ||
2148 | case A_BIT | I_BIT: | |
2149 | /* set MEMB bit in mode, and OR in mode bits */ | |
2150 | memP->opcode |= mode | MEMB_BIT; | |
2151 | break; | |
2152 | ||
2153 | case I_BIT: | |
2154 | /* Treat missing displacement as displacement of 0. */ | |
2155 | mode |= D_BIT; | |
2156 | /* Fall into next case. */ | |
2157 | case D_BIT | A_BIT | I_BIT: | |
2158 | case D_BIT | I_BIT: | |
2159 | /* set MEMB bit in mode, and OR in mode bits */ | |
2160 | memP->opcode |= mode | MEMB_BIT; | |
2161 | memP->disp = 32; | |
2162 | break; | |
2163 | ||
2164 | default: | |
2165 | syntax (); | |
2166 | break; | |
2167 | } | |
2168 | } | |
2169 | ||
2170 | /***************************************************************************** | |
2171 | parse_po: parse machine-dependent pseudo-op | |
2172 | ||
2173 | This is a top-level routine for machine-dependent pseudo-ops. It slurps | |
2174 | up the rest of the input line, breaks out the individual arguments, | |
2175 | and dispatches them to the correct handler. | |
2176 | *************************************************************************** */ | |
b9195351 | 2177 | static void |
252b5132 RH |
2178 | parse_po (po_num) |
2179 | int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */ | |
2180 | { | |
2181 | /* Pointers operands, with no embedded whitespace. | |
2182 | arg[0] unused, arg[1-3]->operands */ | |
2183 | char *args[4]; | |
2184 | int n_ops; /* Number of operands */ | |
2185 | char *p; /* Pointer to beginning of unparsed argument string */ | |
2186 | char eol; /* Character that indicated end of line */ | |
2187 | ||
2188 | extern char is_end_of_line[]; | |
2189 | ||
92774660 | 2190 | /* Advance input pointer to end of line. */ |
252b5132 RH |
2191 | p = input_line_pointer; |
2192 | while (!is_end_of_line[(unsigned char) *input_line_pointer]) | |
2193 | { | |
2194 | input_line_pointer++; | |
2195 | } | |
2196 | eol = *input_line_pointer; /* Save end-of-line char */ | |
2197 | *input_line_pointer = '\0'; /* Terminate argument list */ | |
2198 | ||
2199 | /* Parse out operands */ | |
2200 | n_ops = get_args (p, args); | |
2201 | if (n_ops == -1) | |
2202 | { | |
2203 | return; | |
2204 | } | |
2205 | ||
2206 | /* Dispatch to correct handler */ | |
2207 | switch (po_num) | |
2208 | { | |
2209 | case S_SYSPROC: | |
2210 | s_sysproc (n_ops, args); | |
2211 | break; | |
2212 | case S_LEAFPROC: | |
2213 | s_leafproc (n_ops, args); | |
2214 | break; | |
2215 | default: | |
2216 | BAD_CASE (po_num); | |
2217 | break; | |
2218 | } | |
2219 | ||
2220 | /* Restore eol, so line numbers get updated correctly. Base | |
2221 | assembler assumes we leave input pointer pointing at char | |
2222 | following the eol. */ | |
2223 | *input_line_pointer++ = eol; | |
2224 | } | |
2225 | ||
2226 | /***************************************************************************** | |
2227 | parse_regop: parse a register operand. | |
2228 | ||
2229 | In case of illegal operand, issue a message and return some valid | |
2230 | information so instruction processing can continue. | |
2231 | *************************************************************************** */ | |
b9195351 | 2232 | static void |
252b5132 RH |
2233 | parse_regop (regopP, optext, opdesc) |
2234 | struct regop *regopP; /* Where to put description of register operand */ | |
2235 | char *optext; /* Text of operand */ | |
2236 | char opdesc; /* Descriptor byte: what's legal for this operand */ | |
2237 | { | |
2238 | int n; /* Register number */ | |
2239 | expressionS e; /* Parsed expression */ | |
2240 | ||
2241 | /* See if operand is a register */ | |
2242 | n = get_regnum (optext); | |
2243 | if (n >= 0) | |
2244 | { | |
2245 | if (IS_RG_REG (n)) | |
2246 | { | |
2247 | /* global or local register */ | |
2248 | if (!REG_ALIGN (opdesc, n)) | |
2249 | { | |
2250 | as_bad (_("unaligned register")); | |
2251 | } | |
2252 | regopP->n = n; | |
2253 | regopP->mode = 0; | |
2254 | regopP->special = 0; | |
2255 | return; | |
2256 | } | |
2257 | else if (IS_FP_REG (n) && FP_OK (opdesc)) | |
2258 | { | |
2259 | /* Floating point register, and it's allowed */ | |
2260 | regopP->n = n - FP0; | |
2261 | regopP->mode = 1; | |
2262 | regopP->special = 0; | |
2263 | return; | |
2264 | } | |
2265 | else if (IS_SF_REG (n) && SFR_OK (opdesc)) | |
2266 | { | |
2267 | /* Special-function register, and it's allowed */ | |
2268 | regopP->n = n - SF0; | |
2269 | regopP->mode = 0; | |
2270 | regopP->special = 1; | |
2271 | if (!targ_has_sfr (regopP->n)) | |
2272 | { | |
2273 | as_bad (_("no such sfr in this architecture")); | |
2274 | } | |
2275 | return; | |
2276 | } | |
2277 | } | |
2278 | else if (LIT_OK (opdesc)) | |
2279 | { | |
2280 | /* How about a literal? */ | |
2281 | regopP->mode = 1; | |
2282 | regopP->special = 0; | |
2283 | if (FP_OK (opdesc)) | |
2284 | { /* floating point literal acceptable */ | |
2285 | /* Skip over 0f, 0d, or 0e prefix */ | |
2286 | if ((optext[0] == '0') | |
2287 | && (optext[1] >= 'd') | |
2288 | && (optext[1] <= 'f')) | |
2289 | { | |
2290 | optext += 2; | |
2291 | } | |
2292 | ||
2293 | if (!strcmp (optext, "0.0") || !strcmp (optext, "0")) | |
2294 | { | |
2295 | regopP->n = 0x10; | |
2296 | return; | |
2297 | } | |
2298 | if (!strcmp (optext, "1.0") || !strcmp (optext, "1")) | |
2299 | { | |
2300 | regopP->n = 0x16; | |
2301 | return; | |
2302 | } | |
2303 | ||
2304 | } | |
2305 | else | |
2306 | { /* fixed point literal acceptable */ | |
2307 | parse_expr (optext, &e); | |
2308 | if (e.X_op != O_constant | |
2309 | || (offs (e) < 0) || (offs (e) > 31)) | |
2310 | { | |
2311 | as_bad (_("illegal literal")); | |
2312 | offs (e) = 0; | |
2313 | } | |
2314 | regopP->n = offs (e); | |
2315 | return; | |
2316 | } | |
2317 | } | |
2318 | ||
2319 | /* Nothing worked */ | |
2320 | syntax (); | |
2321 | regopP->mode = 0; /* Register r0 is always a good one */ | |
2322 | regopP->n = 0; | |
2323 | regopP->special = 0; | |
2324 | } /* parse_regop() */ | |
2325 | ||
2326 | /***************************************************************************** | |
2327 | reg_fmt: generate a REG-format instruction | |
2328 | ||
2329 | *************************************************************************** */ | |
2330 | static void | |
2331 | reg_fmt (args, oP) | |
2332 | char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */ | |
2333 | struct i960_opcode *oP; /* Pointer to description of instruction */ | |
2334 | { | |
2335 | long instr; /* Binary to be output */ | |
2336 | struct regop regop; /* Description of register operand */ | |
2337 | int n_ops; /* Number of operands */ | |
2338 | ||
252b5132 RH |
2339 | instr = oP->opcode; |
2340 | n_ops = oP->num_ops; | |
2341 | ||
2342 | if (n_ops >= 1) | |
2343 | { | |
2344 | parse_regop (®op, args[1], oP->operand[0]); | |
2345 | ||
2346 | if ((n_ops == 1) && !(instr & M3)) | |
2347 | { | |
2348 | /* 1-operand instruction in which the dst field should | |
2349 | * be used (instead of src1). | |
2350 | */ | |
2351 | regop.n <<= 19; | |
2352 | if (regop.special) | |
2353 | { | |
2354 | regop.mode = regop.special; | |
2355 | } | |
2356 | regop.mode <<= 13; | |
2357 | regop.special = 0; | |
2358 | } | |
2359 | else | |
2360 | { | |
2361 | /* regop.n goes in bit 0, needs no shifting */ | |
2362 | regop.mode <<= 11; | |
2363 | regop.special <<= 5; | |
2364 | } | |
2365 | instr |= regop.n | regop.mode | regop.special; | |
2366 | } | |
2367 | ||
2368 | if (n_ops >= 2) | |
2369 | { | |
2370 | parse_regop (®op, args[2], oP->operand[1]); | |
2371 | ||
2372 | if ((n_ops == 2) && !(instr & M3)) | |
2373 | { | |
2374 | /* 2-operand instruction in which the dst field should | |
2375 | * be used instead of src2). | |
2376 | */ | |
2377 | regop.n <<= 19; | |
2378 | if (regop.special) | |
2379 | { | |
2380 | regop.mode = regop.special; | |
2381 | } | |
2382 | regop.mode <<= 13; | |
2383 | regop.special = 0; | |
2384 | } | |
2385 | else | |
2386 | { | |
2387 | regop.n <<= 14; | |
2388 | regop.mode <<= 12; | |
2389 | regop.special <<= 6; | |
2390 | } | |
2391 | instr |= regop.n | regop.mode | regop.special; | |
2392 | } | |
2393 | if (n_ops == 3) | |
2394 | { | |
2395 | parse_regop (®op, args[3], oP->operand[2]); | |
2396 | if (regop.special) | |
2397 | { | |
2398 | regop.mode = regop.special; | |
2399 | } | |
2400 | instr |= (regop.n <<= 19) | (regop.mode <<= 13); | |
2401 | } | |
2402 | emit (instr); | |
2403 | } | |
2404 | ||
252b5132 RH |
2405 | /***************************************************************************** |
2406 | relax_cobr: | |
2407 | Replace cobr instruction in a code fragment with equivalent branch and | |
2408 | compare instructions, so it can reach beyond a 13-bit displacement. | |
2409 | Set up an address fix/relocation for the new branch instruction. | |
2410 | ||
2411 | *************************************************************************** */ | |
2412 | ||
2413 | /* This "conditional jump" table maps cobr instructions into | |
2414 | equivalent compare and branch opcodes. */ | |
2415 | static const | |
2416 | struct | |
2417 | { | |
2418 | long compare; | |
2419 | long branch; | |
2420 | } | |
2421 | ||
2422 | coj[] = | |
2423 | { /* COBR OPCODE: */ | |
2424 | { CHKBIT, BNO }, /* 0x30 - bbc */ | |
2425 | { CMPO, BG }, /* 0x31 - cmpobg */ | |
2426 | { CMPO, BE }, /* 0x32 - cmpobe */ | |
2427 | { CMPO, BGE }, /* 0x33 - cmpobge */ | |
2428 | { CMPO, BL }, /* 0x34 - cmpobl */ | |
2429 | { CMPO, BNE }, /* 0x35 - cmpobne */ | |
2430 | { CMPO, BLE }, /* 0x36 - cmpoble */ | |
2431 | { CHKBIT, BO }, /* 0x37 - bbs */ | |
2432 | { CMPI, BNO }, /* 0x38 - cmpibno */ | |
2433 | { CMPI, BG }, /* 0x39 - cmpibg */ | |
2434 | { CMPI, BE }, /* 0x3a - cmpibe */ | |
2435 | { CMPI, BGE }, /* 0x3b - cmpibge */ | |
2436 | { CMPI, BL }, /* 0x3c - cmpibl */ | |
2437 | { CMPI, BNE }, /* 0x3d - cmpibne */ | |
2438 | { CMPI, BLE }, /* 0x3e - cmpible */ | |
2439 | { CMPI, BO }, /* 0x3f - cmpibo */ | |
2440 | }; | |
2441 | ||
b9195351 | 2442 | static void |
252b5132 RH |
2443 | relax_cobr (fragP) |
2444 | register fragS *fragP; /* fragP->fr_opcode is assumed to point to | |
2445 | * the cobr instruction, which comes at the | |
2446 | * end of the code fragment. | |
2447 | */ | |
2448 | { | |
2449 | int opcode, src1, src2, m1, s2; | |
2450 | /* Bit fields from cobr instruction */ | |
2451 | long bp_bits; /* Branch prediction bits from cobr instruction */ | |
2452 | long instr; /* A single i960 instruction */ | |
2453 | /* ->instruction to be replaced */ | |
2454 | char *iP; | |
2455 | fixS *fixP; /* Relocation that can be done at assembly time */ | |
2456 | ||
2457 | /* PICK UP & PARSE COBR INSTRUCTION */ | |
2458 | iP = fragP->fr_opcode; | |
2459 | instr = md_chars_to_number (iP, 4); | |
2460 | opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */ | |
2461 | src1 = (instr >> 19) & 0x1f; | |
2462 | m1 = (instr >> 13) & 1; | |
2463 | s2 = instr & 1; | |
2464 | src2 = (instr >> 14) & 0x1f; | |
2465 | bp_bits = instr & BP_MASK; | |
2466 | ||
2467 | /* GENERATE AND OUTPUT COMPARE INSTRUCTION */ | |
2468 | instr = coj[opcode].compare | |
2469 | | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14); | |
2470 | md_number_to_chars (iP, instr, 4); | |
2471 | ||
2472 | /* OUTPUT BRANCH INSTRUCTION */ | |
2473 | md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4); | |
2474 | ||
2475 | /* SET UP ADDRESS FIXUP/RELOCATION */ | |
2476 | fixP = fix_new (fragP, | |
2477 | iP + 4 - fragP->fr_literal, | |
2478 | 4, | |
2479 | fragP->fr_symbol, | |
2480 | fragP->fr_offset, | |
2481 | 1, | |
2482 | NO_RELOC); | |
2483 | ||
2484 | fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */ | |
2485 | ||
2486 | fragP->fr_fix += 4; | |
2487 | frag_wane (fragP); | |
2488 | } | |
2489 | ||
252b5132 RH |
2490 | /***************************************************************************** |
2491 | reloc_callj: Relocate a 'callj' instruction | |
2492 | ||
2493 | This is a "non-(GNU)-standard" machine-dependent hook. The base | |
2494 | assembler calls it when it decides it can relocate an address at | |
2495 | assembly time instead of emitting a relocation directive. | |
2496 | ||
2497 | Check to see if the relocation involves a 'callj' instruction to a: | |
2498 | sysproc: Replace the default 'call' instruction with a 'calls' | |
2499 | leafproc: Replace the default 'call' instruction with a 'bal'. | |
2500 | other proc: Do nothing. | |
2501 | ||
2502 | See b.out.h for details on the 'n_other' field in a symbol structure. | |
2503 | ||
2504 | IMPORTANT!: | |
2505 | Assumes the caller has already figured out, in the case of a leafproc, | |
2506 | to use the 'bal' entry point, and has substituted that symbol into the | |
2507 | passed fixup structure. | |
2508 | ||
2509 | *************************************************************************** */ | |
a161fe53 | 2510 | int |
252b5132 RH |
2511 | reloc_callj (fixP) |
2512 | /* Relocation that can be done at assembly time */ | |
2513 | fixS *fixP; | |
2514 | { | |
2515 | /* Points to the binary for the instruction being relocated. */ | |
2516 | char *where; | |
2517 | ||
2518 | if (!fixP->fx_tcbit) | |
2519 | { | |
2520 | /* This wasn't a callj instruction in the first place */ | |
a161fe53 | 2521 | return 0; |
252b5132 RH |
2522 | } |
2523 | ||
2524 | where = fixP->fx_frag->fr_literal + fixP->fx_where; | |
2525 | ||
2526 | if (TC_S_IS_SYSPROC (fixP->fx_addsy)) | |
2527 | { | |
2528 | /* Symbol is a .sysproc: replace 'call' with 'calls'. System | |
2529 | procedure number is (other-1). */ | |
2530 | md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4); | |
2531 | ||
2532 | /* Nothing else needs to be done for this instruction. Make | |
2533 | sure 'md_number_to_field()' will perform a no-op. */ | |
2534 | fixP->fx_bit_fixP = (bit_fixS *) 1; | |
252b5132 RH |
2535 | } |
2536 | else if (TC_S_IS_CALLNAME (fixP->fx_addsy)) | |
2537 | { | |
2538 | /* Should not happen: see block comment above */ | |
2539 | as_fatal (_("Trying to 'bal' to %s"), S_GET_NAME (fixP->fx_addsy)); | |
2540 | } | |
2541 | else if (TC_S_IS_BALNAME (fixP->fx_addsy)) | |
2542 | { | |
2543 | /* Replace 'call' with 'bal'; both instructions have the same | |
2544 | format, so calling code should complete relocation as if | |
2545 | nothing happened here. */ | |
2546 | md_number_to_chars (where, BAL, 4); | |
2547 | } | |
2548 | else if (TC_S_IS_BADPROC (fixP->fx_addsy)) | |
2549 | { | |
2550 | as_bad (_("Looks like a proc, but can't tell what kind.\n")); | |
2551 | } /* switch on proc type */ | |
2552 | ||
2553 | /* else Symbol is neither a sysproc nor a leafproc */ | |
a161fe53 | 2554 | return 0; |
252b5132 RH |
2555 | } |
2556 | ||
252b5132 RH |
2557 | /***************************************************************************** |
2558 | s_leafproc: process .leafproc pseudo-op | |
2559 | ||
2560 | .leafproc takes two arguments, the second one is optional: | |
2561 | arg[1]: name of 'call' entry point to leaf procedure | |
2562 | arg[2]: name of 'bal' entry point to leaf procedure | |
2563 | ||
2564 | If the two arguments are identical, or if the second one is missing, | |
2565 | the first argument is taken to be the 'bal' entry point. | |
2566 | ||
2567 | If there are 2 distinct arguments, we must make sure that the 'bal' | |
2568 | entry point immediately follows the 'call' entry point in the linked | |
2569 | list of symbols. | |
2570 | ||
2571 | *************************************************************************** */ | |
2572 | static void | |
2573 | s_leafproc (n_ops, args) | |
2574 | int n_ops; /* Number of operands */ | |
2575 | char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ | |
2576 | { | |
2577 | symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */ | |
2578 | symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */ | |
2579 | ||
2580 | if ((n_ops != 1) && (n_ops != 2)) | |
2581 | { | |
2582 | as_bad (_("should have 1 or 2 operands")); | |
2583 | return; | |
2584 | } /* Check number of arguments */ | |
2585 | ||
92774660 | 2586 | /* Find or create symbol for 'call' entry point. */ |
252b5132 RH |
2587 | callP = symbol_find_or_make (args[1]); |
2588 | ||
2589 | if (TC_S_IS_CALLNAME (callP)) | |
2590 | { | |
2591 | as_warn (_("Redefining leafproc %s"), S_GET_NAME (callP)); | |
2592 | } /* is leafproc */ | |
2593 | ||
2594 | /* If that was the only argument, use it as the 'bal' entry point. | |
2595 | * Otherwise, mark it as the 'call' entry point and find or create | |
2596 | * another symbol for the 'bal' entry point. | |
2597 | */ | |
2598 | if ((n_ops == 1) || !strcmp (args[1], args[2])) | |
2599 | { | |
2600 | TC_S_FORCE_TO_BALNAME (callP); | |
2601 | ||
2602 | } | |
2603 | else | |
2604 | { | |
2605 | TC_S_FORCE_TO_CALLNAME (callP); | |
2606 | ||
2607 | balP = symbol_find_or_make (args[2]); | |
2608 | if (TC_S_IS_CALLNAME (balP)) | |
2609 | { | |
2610 | as_warn (_("Redefining leafproc %s"), S_GET_NAME (balP)); | |
2611 | } | |
2612 | TC_S_FORCE_TO_BALNAME (balP); | |
2613 | ||
76171f81 | 2614 | #ifndef OBJ_ELF |
252b5132 | 2615 | tc_set_bal_of_call (callP, balP); |
76171f81 | 2616 | #endif |
252b5132 RH |
2617 | } /* if only one arg, or the args are the same */ |
2618 | } | |
2619 | ||
252b5132 RH |
2620 | /* |
2621 | s_sysproc: process .sysproc pseudo-op | |
2622 | ||
2623 | .sysproc takes two arguments: | |
2624 | arg[1]: name of entry point to system procedure | |
2625 | arg[2]: 'entry_num' (index) of system procedure in the range | |
2626 | [0,31] inclusive. | |
2627 | ||
2628 | For [ab].out, we store the 'entrynum' in the 'n_other' field of | |
2629 | the symbol. Since that entry is normally 0, we bias 'entrynum' | |
2630 | by adding 1 to it. It must be unbiased before it is used. */ | |
2631 | static void | |
2632 | s_sysproc (n_ops, args) | |
2633 | int n_ops; /* Number of operands */ | |
2634 | char *args[]; /* args[1]->1st operand, args[2]->2nd operand */ | |
2635 | { | |
2636 | expressionS exp; | |
2637 | symbolS *symP; | |
2638 | ||
2639 | if (n_ops != 2) | |
2640 | { | |
2641 | as_bad (_("should have two operands")); | |
2642 | return; | |
2643 | } /* bad arg count */ | |
2644 | ||
92774660 | 2645 | /* Parse "entry_num" argument and check it for validity. */ |
252b5132 RH |
2646 | parse_expr (args[2], &exp); |
2647 | if (exp.X_op != O_constant | |
2648 | || (offs (exp) < 0) | |
2649 | || (offs (exp) > 31)) | |
2650 | { | |
2651 | as_bad (_("'entry_num' must be absolute number in [0,31]")); | |
2652 | return; | |
2653 | } | |
2654 | ||
2655 | /* Find/make symbol and stick entry number (biased by +1) into it */ | |
2656 | symP = symbol_find_or_make (args[1]); | |
2657 | ||
2658 | if (TC_S_IS_SYSPROC (symP)) | |
2659 | { | |
2660 | as_warn (_("Redefining entrynum for sysproc %s"), S_GET_NAME (symP)); | |
2661 | } /* redefining */ | |
2662 | ||
2663 | TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */ | |
2664 | TC_S_FORCE_TO_SYSPROC (symP); | |
2665 | } | |
2666 | ||
252b5132 RH |
2667 | /***************************************************************************** |
2668 | shift_ok: | |
2669 | Determine if a "shlo" instruction can be used to implement a "ldconst". | |
2670 | This means that some number X < 32 can be shifted left to produce the | |
2671 | constant of interest. | |
2672 | ||
2673 | Return the shift count, or 0 if we can't do it. | |
2674 | Caller calculates X by shifting original constant right 'shift' places. | |
2675 | ||
2676 | *************************************************************************** */ | |
b9195351 | 2677 | static int |
252b5132 RH |
2678 | shift_ok (n) |
2679 | int n; /* The constant of interest */ | |
2680 | { | |
2681 | int shift; /* The shift count */ | |
2682 | ||
2683 | if (n <= 0) | |
2684 | { | |
2685 | /* Can't do it for negative numbers */ | |
2686 | return 0; | |
2687 | } | |
2688 | ||
2689 | /* Shift 'n' right until a 1 is about to be lost */ | |
2690 | for (shift = 0; (n & 1) == 0; shift++) | |
2691 | { | |
2692 | n >>= 1; | |
2693 | } | |
2694 | ||
2695 | if (n >= 32) | |
2696 | { | |
2697 | return 0; | |
2698 | } | |
2699 | return shift; | |
2700 | } | |
2701 | ||
252b5132 RH |
2702 | /* syntax: issue syntax error */ |
2703 | ||
2704 | static void | |
2705 | syntax () | |
2706 | { | |
2707 | as_bad (_("syntax error")); | |
2708 | } /* syntax() */ | |
2709 | ||
252b5132 RH |
2710 | /* targ_has_sfr: |
2711 | ||
2712 | Return TRUE iff the target architecture supports the specified | |
2713 | special-function register (sfr). */ | |
2714 | ||
b9195351 | 2715 | static int |
252b5132 RH |
2716 | targ_has_sfr (n) |
2717 | int n; /* Number (0-31) of sfr */ | |
2718 | { | |
2719 | switch (architecture) | |
2720 | { | |
2721 | case ARCH_KA: | |
2722 | case ARCH_KB: | |
2723 | case ARCH_MC: | |
2724 | case ARCH_JX: | |
2725 | return 0; | |
2726 | case ARCH_HX: | |
2727 | return ((0 <= n) && (n <= 4)); | |
2728 | case ARCH_CA: | |
2729 | default: | |
2730 | return ((0 <= n) && (n <= 2)); | |
2731 | } | |
2732 | } | |
2733 | ||
252b5132 RH |
2734 | /* targ_has_iclass: |
2735 | ||
2736 | Return TRUE iff the target architecture supports the indicated | |
2737 | class of instructions. */ | |
b9195351 | 2738 | static int |
252b5132 RH |
2739 | targ_has_iclass (ic) |
2740 | /* Instruction class; one of: | |
2741 | I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM, I_CX2, I_HX, I_HX2 | |
2742 | */ | |
2743 | int ic; | |
2744 | { | |
2745 | iclasses_seen |= ic; | |
2746 | switch (architecture) | |
2747 | { | |
2748 | case ARCH_KA: | |
2749 | return ic & (I_BASE | I_KX); | |
2750 | case ARCH_KB: | |
2751 | return ic & (I_BASE | I_KX | I_FP | I_DEC); | |
2752 | case ARCH_MC: | |
2753 | return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL); | |
2754 | case ARCH_CA: | |
2755 | return ic & (I_BASE | I_CX | I_CX2 | I_CASIM); | |
2756 | case ARCH_JX: | |
2757 | return ic & (I_BASE | I_CX2 | I_JX); | |
2758 | case ARCH_HX: | |
2759 | return ic & (I_BASE | I_CX2 | I_JX | I_HX); | |
2760 | default: | |
2761 | if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL)) | |
2762 | && (iclasses_seen & (I_CX | I_CX2))) | |
2763 | { | |
2764 | as_warn (_("architecture of opcode conflicts with that of earlier instruction(s)")); | |
2765 | iclasses_seen &= ~ic; | |
2766 | } | |
2767 | return 1; | |
2768 | } | |
2769 | } | |
2770 | ||
2771 | /* Handle the MRI .endian pseudo-op. */ | |
2772 | ||
2773 | static void | |
2774 | s_endian (ignore) | |
b9195351 | 2775 | int ignore ATTRIBUTE_UNUSED; |
252b5132 RH |
2776 | { |
2777 | char *name; | |
2778 | char c; | |
2779 | ||
2780 | name = input_line_pointer; | |
2781 | c = get_symbol_end (); | |
2782 | if (strcasecmp (name, "little") == 0) | |
2783 | ; | |
2784 | else if (strcasecmp (name, "big") == 0) | |
2785 | as_bad (_("big endian mode is not supported")); | |
2786 | else | |
2787 | as_warn (_("ignoring unrecognized .endian type `%s'"), name); | |
2788 | ||
2789 | *input_line_pointer = c; | |
2790 | ||
2791 | demand_empty_rest_of_line (); | |
2792 | } | |
2793 | ||
92774660 | 2794 | /* We have no need to default values of symbols. */ |
252b5132 | 2795 | |
252b5132 RH |
2796 | symbolS * |
2797 | md_undefined_symbol (name) | |
b9195351 | 2798 | char *name ATTRIBUTE_UNUSED; |
252b5132 RH |
2799 | { |
2800 | return 0; | |
2801 | } | |
2802 | ||
2803 | /* Exactly what point is a PC-relative offset relative TO? | |
2804 | On the i960, they're relative to the address of the instruction, | |
92774660 | 2805 | which we have set up as the address of the fixup too. */ |
252b5132 RH |
2806 | long |
2807 | md_pcrel_from (fixP) | |
2808 | fixS *fixP; | |
2809 | { | |
2810 | return fixP->fx_where + fixP->fx_frag->fr_address; | |
2811 | } | |
2812 | ||
2813 | void | |
94f592af | 2814 | md_apply_fix3 (fixP, valP, seg) |
252b5132 | 2815 | fixS *fixP; |
a161fe53 | 2816 | valueT *valP; |
94f592af | 2817 | segT seg ATTRIBUTE_UNUSED; |
252b5132 | 2818 | { |
a161fe53 | 2819 | long val = *valP; |
252b5132 RH |
2820 | char *place = fixP->fx_where + fixP->fx_frag->fr_literal; |
2821 | ||
2822 | if (!fixP->fx_bit_fixP) | |
2823 | { | |
76171f81 | 2824 | #ifndef BFD_ASSEMBLER |
252b5132 RH |
2825 | /* For callx, we always want to write out zero, and emit a |
2826 | symbolic relocation. */ | |
2827 | if (fixP->fx_bsr) | |
2828 | val = 0; | |
2829 | ||
2830 | fixP->fx_addnumber = val; | |
bedf545c ILT |
2831 | #endif |
2832 | ||
b9195351 | 2833 | md_number_to_imm (place, val, fixP->fx_size); |
252b5132 | 2834 | } |
a161fe53 AM |
2835 | else if ((int) fixP->fx_bit_fixP == 13 |
2836 | && fixP->fx_addsy != NULL | |
2837 | && S_GET_SEGMENT (fixP->fx_addsy) == undefined_section) | |
2838 | { | |
2839 | /* This is a COBR instruction. They have only a | |
2840 | 13-bit displacement and are only to be used | |
2841 | for local branches: flag as error, don't generate | |
2842 | relocation. */ | |
2843 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
2844 | _("can't use COBR format with external label")); | |
2845 | fixP->fx_addsy = NULL; | |
2846 | } | |
252b5132 RH |
2847 | else |
2848 | md_number_to_field (place, val, fixP->fx_bit_fixP); | |
bedf545c | 2849 | |
a161fe53 | 2850 | if (fixP->fx_addsy == NULL) |
94f592af | 2851 | fixP->fx_done = 1; |
252b5132 RH |
2852 | } |
2853 | ||
2854 | #if defined(OBJ_AOUT) | defined(OBJ_BOUT) | |
2855 | void | |
2856 | tc_bout_fix_to_chars (where, fixP, segment_address_in_file) | |
2857 | char *where; | |
2858 | fixS *fixP; | |
2859 | relax_addressT segment_address_in_file; | |
2860 | { | |
2861 | static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2}; | |
2862 | struct relocation_info ri; | |
2863 | symbolS *symbolP; | |
2864 | ||
2865 | memset ((char *) &ri, '\0', sizeof (ri)); | |
2866 | symbolP = fixP->fx_addsy; | |
2867 | know (symbolP != 0 || fixP->fx_r_type != NO_RELOC); | |
2868 | ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */ | |
2869 | /* These two 'cuz of NS32K */ | |
2870 | ri.r_callj = fixP->fx_tcbit; | |
2871 | if (fixP->fx_bit_fixP) | |
2872 | ri.r_length = 2; | |
2873 | else | |
2874 | ri.r_length = nbytes_r_length[fixP->fx_size]; | |
2875 | ri.r_pcrel = fixP->fx_pcrel; | |
2876 | ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file; | |
2877 | ||
2878 | if (fixP->fx_r_type != NO_RELOC) | |
2879 | { | |
2880 | switch (fixP->fx_r_type) | |
2881 | { | |
2882 | case rs_align: | |
2883 | ri.r_index = -2; | |
2884 | ri.r_pcrel = 1; | |
2885 | ri.r_length = fixP->fx_size - 1; | |
2886 | break; | |
2887 | case rs_org: | |
2888 | ri.r_index = -2; | |
2889 | ri.r_pcrel = 0; | |
2890 | break; | |
2891 | case rs_fill: | |
2892 | ri.r_index = -1; | |
2893 | break; | |
2894 | default: | |
2895 | abort (); | |
2896 | } | |
2897 | ri.r_extern = 0; | |
2898 | } | |
2899 | else if (linkrelax || !S_IS_DEFINED (symbolP) || fixP->fx_bsr) | |
2900 | { | |
2901 | ri.r_extern = 1; | |
2902 | ri.r_index = symbolP->sy_number; | |
2903 | } | |
2904 | else | |
2905 | { | |
2906 | ri.r_extern = 0; | |
2907 | ri.r_index = S_GET_TYPE (symbolP); | |
2908 | } | |
2909 | ||
92774660 | 2910 | /* Output the relocation information in machine-dependent form. */ |
252b5132 RH |
2911 | md_ri_to_chars (where, &ri); |
2912 | } | |
2913 | ||
2914 | #endif /* OBJ_AOUT or OBJ_BOUT */ | |
2915 | ||
2916 | #if defined (OBJ_COFF) && defined (BFD) | |
2917 | short | |
2918 | tc_coff_fix2rtype (fixP) | |
2919 | fixS *fixP; | |
2920 | { | |
2921 | if (fixP->fx_bsr) | |
2922 | abort (); | |
2923 | ||
2924 | if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) | |
2925 | return R_RELLONG; | |
2926 | ||
2927 | if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) | |
2928 | return R_IPRMED; | |
2929 | ||
2930 | abort (); | |
2931 | return 0; | |
2932 | } | |
2933 | ||
2934 | int | |
2935 | tc_coff_sizemachdep (frag) | |
2936 | fragS *frag; | |
2937 | { | |
2938 | if (frag->fr_next) | |
2939 | return frag->fr_next->fr_address - frag->fr_address; | |
2940 | else | |
2941 | return 0; | |
2942 | } | |
2943 | #endif | |
2944 | ||
2945 | /* Align an address by rounding it up to the specified boundary. */ | |
2946 | valueT | |
2947 | md_section_align (seg, addr) | |
2948 | segT seg; | |
2949 | valueT addr; /* Address to be rounded up */ | |
2950 | { | |
bedf545c ILT |
2951 | int align; |
2952 | #ifdef BFD_ASSEMBLER | |
2953 | align = bfd_get_section_alignment (stdoutput, seg); | |
2954 | #else | |
2955 | align = section_alignment[(int) seg]; | |
2956 | #endif | |
2957 | return (addr + (1 << align) - 1) & (-1 << align); | |
2958 | } | |
252b5132 RH |
2959 | |
2960 | extern int coff_flags; | |
2961 | ||
2962 | #ifdef OBJ_COFF | |
2963 | void | |
2964 | tc_headers_hook (headers) | |
2965 | object_headers *headers; | |
2966 | { | |
2967 | switch (architecture) | |
2968 | { | |
2969 | case ARCH_KA: | |
2970 | coff_flags |= F_I960KA; | |
2971 | break; | |
2972 | ||
2973 | case ARCH_KB: | |
2974 | coff_flags |= F_I960KB; | |
2975 | break; | |
2976 | ||
2977 | case ARCH_MC: | |
2978 | coff_flags |= F_I960MC; | |
2979 | break; | |
2980 | ||
2981 | case ARCH_CA: | |
2982 | coff_flags |= F_I960CA; | |
2983 | break; | |
2984 | ||
2985 | case ARCH_JX: | |
2986 | coff_flags |= F_I960JX; | |
2987 | break; | |
2988 | ||
2989 | case ARCH_HX: | |
2990 | coff_flags |= F_I960HX; | |
2991 | break; | |
2992 | ||
2993 | default: | |
2994 | if (iclasses_seen == I_BASE) | |
2995 | coff_flags |= F_I960CORE; | |
2996 | else if (iclasses_seen & I_CX) | |
2997 | coff_flags |= F_I960CA; | |
2998 | else if (iclasses_seen & I_HX) | |
2999 | coff_flags |= F_I960HX; | |
3000 | else if (iclasses_seen & I_JX) | |
3001 | coff_flags |= F_I960JX; | |
3002 | else if (iclasses_seen & I_CX2) | |
3003 | coff_flags |= F_I960CA; | |
3004 | else if (iclasses_seen & I_MIL) | |
3005 | coff_flags |= F_I960MC; | |
3006 | else if (iclasses_seen & (I_DEC | I_FP)) | |
3007 | coff_flags |= F_I960KB; | |
3008 | else | |
3009 | coff_flags |= F_I960KA; | |
3010 | break; | |
3011 | } | |
3012 | ||
3013 | if (flag_readonly_data_in_text) | |
3014 | { | |
3015 | headers->filehdr.f_magic = I960RWMAGIC; | |
3016 | headers->aouthdr.magic = OMAGIC; | |
3017 | } | |
3018 | else | |
3019 | { | |
3020 | headers->filehdr.f_magic = I960ROMAGIC; | |
3021 | headers->aouthdr.magic = NMAGIC; | |
3022 | } /* set magic numbers */ | |
3023 | } | |
3024 | ||
3025 | #endif /* OBJ_COFF */ | |
3026 | ||
bedf545c ILT |
3027 | #ifndef BFD_ASSEMBLER |
3028 | ||
252b5132 RH |
3029 | /* Things going on here: |
3030 | ||
3031 | For bout, We need to assure a couple of simplifying | |
3032 | assumptions about leafprocs for the linker: the leafproc | |
3033 | entry symbols will be defined in the same assembly in | |
3034 | which they're declared with the '.leafproc' directive; | |
3035 | and if a leafproc has both 'call' and 'bal' entry points | |
3036 | they are both global or both local. | |
3037 | ||
3038 | For coff, the call symbol has a second aux entry that | |
3039 | contains the bal entry point. The bal symbol becomes a | |
3040 | label. | |
3041 | ||
3042 | For coff representation, the call symbol has a second aux entry that | |
3043 | contains the bal entry point. The bal symbol becomes a label. */ | |
3044 | ||
3045 | void | |
3046 | tc_crawl_symbol_chain (headers) | |
b9195351 | 3047 | object_headers *headers ATTRIBUTE_UNUSED; |
252b5132 RH |
3048 | { |
3049 | symbolS *symbolP; | |
3050 | ||
3051 | for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP)) | |
3052 | { | |
3053 | #ifdef OBJ_COFF | |
3054 | if (TC_S_IS_SYSPROC (symbolP)) | |
3055 | { | |
3056 | /* second aux entry already contains the sysproc number */ | |
3057 | S_SET_NUMBER_AUXILIARY (symbolP, 2); | |
3058 | S_SET_STORAGE_CLASS (symbolP, C_SCALL); | |
3059 | S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); | |
3060 | continue; | |
3061 | } /* rewrite sysproc */ | |
3062 | #endif /* OBJ_COFF */ | |
3063 | ||
3064 | if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP)) | |
3065 | { | |
3066 | continue; | |
3067 | } /* Not a leafproc symbol */ | |
3068 | ||
3069 | if (!S_IS_DEFINED (symbolP)) | |
3070 | { | |
3071 | as_bad (_("leafproc symbol '%s' undefined"), S_GET_NAME (symbolP)); | |
3072 | } /* undefined leaf */ | |
3073 | ||
3074 | if (TC_S_IS_CALLNAME (symbolP)) | |
3075 | { | |
3076 | symbolS *balP = tc_get_bal_of_call (symbolP); | |
3077 | if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP)) | |
3078 | { | |
3079 | S_SET_EXTERNAL (symbolP); | |
3080 | S_SET_EXTERNAL (balP); | |
3081 | as_warn (_("Warning: making leafproc entries %s and %s both global\n"), | |
3082 | S_GET_NAME (symbolP), S_GET_NAME (balP)); | |
3083 | } /* externality mismatch */ | |
3084 | } /* if callname */ | |
3085 | } /* walk the symbol chain */ | |
3086 | } | |
3087 | ||
bedf545c ILT |
3088 | #endif /* ! BFD_ASSEMBLER */ |
3089 | ||
252b5132 RH |
3090 | /* For aout or bout, the bal immediately follows the call. |
3091 | ||
3092 | For coff, we cheat and store a pointer to the bal symbol in the | |
3093 | second aux entry of the call. */ | |
3094 | ||
3095 | #undef OBJ_ABOUT | |
3096 | #ifdef OBJ_AOUT | |
3097 | #define OBJ_ABOUT | |
3098 | #endif | |
3099 | #ifdef OBJ_BOUT | |
3100 | #define OBJ_ABOUT | |
3101 | #endif | |
3102 | ||
3103 | void | |
3104 | tc_set_bal_of_call (callP, balP) | |
b9195351 AM |
3105 | symbolS *callP ATTRIBUTE_UNUSED; |
3106 | symbolS *balP ATTRIBUTE_UNUSED; | |
252b5132 RH |
3107 | { |
3108 | know (TC_S_IS_CALLNAME (callP)); | |
3109 | know (TC_S_IS_BALNAME (balP)); | |
3110 | ||
3111 | #ifdef OBJ_COFF | |
3112 | ||
3113 | callP->sy_tc = balP; | |
3114 | S_SET_NUMBER_AUXILIARY (callP, 2); | |
3115 | ||
3116 | #else /* ! OBJ_COFF */ | |
3117 | #ifdef OBJ_ABOUT | |
3118 | ||
3119 | /* If the 'bal' entry doesn't immediately follow the 'call' | |
3120 | * symbol, unlink it from the symbol list and re-insert it. | |
3121 | */ | |
3122 | if (symbol_next (callP) != balP) | |
3123 | { | |
3124 | symbol_remove (balP, &symbol_rootP, &symbol_lastP); | |
3125 | symbol_append (balP, callP, &symbol_rootP, &symbol_lastP); | |
3126 | } /* if not in order */ | |
3127 | ||
3128 | #else /* ! OBJ_ABOUT */ | |
bedf545c | 3129 | as_fatal ("Only supported for a.out, b.out, or COFF"); |
252b5132 RH |
3130 | #endif /* ! OBJ_ABOUT */ |
3131 | #endif /* ! OBJ_COFF */ | |
3132 | } | |
3133 | ||
3134 | symbolS * | |
3135 | tc_get_bal_of_call (callP) | |
b9195351 | 3136 | symbolS *callP ATTRIBUTE_UNUSED; |
252b5132 RH |
3137 | { |
3138 | symbolS *retval; | |
3139 | ||
3140 | know (TC_S_IS_CALLNAME (callP)); | |
3141 | ||
3142 | #ifdef OBJ_COFF | |
3143 | retval = callP->sy_tc; | |
3144 | #else | |
3145 | #ifdef OBJ_ABOUT | |
3146 | retval = symbol_next (callP); | |
3147 | #else | |
bedf545c | 3148 | as_fatal ("Only supported for a.out, b.out, or COFF"); |
252b5132 RH |
3149 | #endif /* ! OBJ_ABOUT */ |
3150 | #endif /* ! OBJ_COFF */ | |
3151 | ||
3152 | know (TC_S_IS_BALNAME (retval)); | |
3153 | return retval; | |
3154 | } /* _tc_get_bal_of_call() */ | |
3155 | ||
b9195351 | 3156 | #ifdef OBJ_COFF |
252b5132 RH |
3157 | void |
3158 | tc_coff_symbol_emit_hook (symbolP) | |
b9195351 | 3159 | symbolS *symbolP ATTRIBUTE_UNUSED; |
252b5132 RH |
3160 | { |
3161 | if (TC_S_IS_CALLNAME (symbolP)) | |
3162 | { | |
252b5132 RH |
3163 | symbolS *balP = tc_get_bal_of_call (symbolP); |
3164 | ||
3165 | #if 0 | |
3166 | /* second aux entry contains the bal entry point */ | |
3167 | S_SET_NUMBER_AUXILIARY (symbolP, 2); | |
3168 | #endif | |
3169 | symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP); | |
3170 | if (S_GET_STORAGE_CLASS (symbolP) == C_EXT) | |
3171 | S_SET_STORAGE_CLASS (symbolP, C_LEAFEXT); | |
3172 | else | |
3173 | S_SET_STORAGE_CLASS (symbolP, C_LEAFSTAT); | |
3174 | S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT)); | |
3175 | /* fix up the bal symbol */ | |
3176 | S_SET_STORAGE_CLASS (balP, C_LABEL); | |
252b5132 RH |
3177 | } /* only on calls */ |
3178 | } | |
b9195351 | 3179 | #endif /* OBJ_COFF */ |
252b5132 RH |
3180 | |
3181 | void | |
3182 | i960_handle_align (fragp) | |
b9195351 | 3183 | fragS *fragp ATTRIBUTE_UNUSED; |
252b5132 RH |
3184 | { |
3185 | if (!linkrelax) | |
3186 | return; | |
3187 | ||
3188 | #ifndef OBJ_BOUT | |
3189 | ||
3190 | as_bad (_("option --link-relax is only supported in b.out format")); | |
3191 | linkrelax = 0; | |
3192 | return; | |
3193 | ||
3194 | #else | |
3195 | ||
3196 | /* The text section "ends" with another alignment reloc, to which we | |
3197 | aren't adding padding. */ | |
3198 | if (fragp->fr_next == text_last_frag | |
3199 | || fragp->fr_next == data_last_frag) | |
3200 | return; | |
3201 | ||
3202 | /* alignment directive */ | |
3203 | fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, | |
3204 | (int) fragp->fr_type); | |
3205 | #endif /* OBJ_BOUT */ | |
3206 | } | |
3207 | ||
3208 | int | |
a161fe53 | 3209 | i960_validate_fix (fixP, this_segment_type) |
252b5132 | 3210 | fixS *fixP; |
b9195351 | 3211 | segT this_segment_type ATTRIBUTE_UNUSED; |
252b5132 | 3212 | { |
a161fe53 | 3213 | if (fixP->fx_tcbit && TC_S_IS_CALLNAME (fixP->fx_addsy)) |
252b5132 RH |
3214 | { |
3215 | /* Relocation should be done via the associated 'bal' | |
92774660 | 3216 | entry point symbol. */ |
252b5132 | 3217 | |
a161fe53 | 3218 | if (!TC_S_IS_BALNAME (tc_get_bal_of_call (fixP->fx_addsy))) |
252b5132 | 3219 | { |
a161fe53 AM |
3220 | as_bad_where (fixP->fx_file, fixP->fx_line, |
3221 | _("No 'bal' entry point for leafproc %s"), | |
3222 | S_GET_NAME (fixP->fx_addsy)); | |
3223 | return 0; | |
252b5132 | 3224 | } |
a161fe53 | 3225 | fixP->fx_addsy = tc_get_bal_of_call (fixP->fx_addsy); |
252b5132 | 3226 | } |
a161fe53 AM |
3227 | |
3228 | return 1; | |
252b5132 RH |
3229 | } |
3230 | ||
bedf545c ILT |
3231 | #ifdef BFD_ASSEMBLER |
3232 | ||
3233 | /* From cgen.c: */ | |
3234 | ||
b9195351 AM |
3235 | static short tc_bfd_fix2rtype PARAMS ((fixS *)); |
3236 | ||
bedf545c ILT |
3237 | static short |
3238 | tc_bfd_fix2rtype (fixP) | |
3239 | fixS *fixP; | |
3240 | { | |
3241 | #if 0 | |
3242 | if (fixP->fx_bsr) | |
3243 | abort (); | |
3244 | #endif | |
3245 | ||
3246 | if (fixP->fx_pcrel == 0 && fixP->fx_size == 4) | |
3247 | return BFD_RELOC_32; | |
3248 | ||
3249 | if (fixP->fx_pcrel != 0 && fixP->fx_size == 4) | |
3250 | return BFD_RELOC_24_PCREL; | |
3251 | ||
3252 | abort (); | |
3253 | return 0; | |
3254 | } | |
3255 | ||
3256 | /* Translate internal representation of relocation info to BFD target | |
3257 | format. | |
3258 | ||
3259 | FIXME: To what extent can we get all relevant targets to use this? */ | |
3260 | ||
3261 | arelent * | |
3262 | tc_gen_reloc (section, fixP) | |
b9195351 | 3263 | asection *section ATTRIBUTE_UNUSED; |
bedf545c ILT |
3264 | fixS *fixP; |
3265 | { | |
3266 | arelent * reloc; | |
3267 | ||
3268 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
3269 | ||
3270 | /* HACK: Is this right? */ | |
3271 | fixP->fx_r_type = tc_bfd_fix2rtype (fixP); | |
3272 | ||
3273 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixP->fx_r_type); | |
3274 | if (reloc->howto == (reloc_howto_type *) NULL) | |
3275 | { | |
3276 | as_bad_where (fixP->fx_file, fixP->fx_line, | |
3277 | "internal error: can't export reloc type %d (`%s')", | |
3278 | fixP->fx_r_type, | |
3279 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
3280 | return NULL; | |
3281 | } | |
3282 | ||
3283 | assert (!fixP->fx_pcrel == !reloc->howto->pc_relative); | |
3284 | ||
49309057 ILT |
3285 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); |
3286 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixP->fx_addsy); | |
bedf545c ILT |
3287 | reloc->address = fixP->fx_frag->fr_address + fixP->fx_where; |
3288 | reloc->addend = fixP->fx_addnumber; | |
3289 | ||
3290 | return reloc; | |
3291 | } | |
3292 | ||
3293 | /* end from cgen.c */ | |
3294 | ||
3295 | #endif /* BFD_ASSEMBLER */ | |
3296 | ||
252b5132 | 3297 | /* end of tc-i960.c */ |