]>
Commit | Line | Data |
---|---|---|
386c036b | 1 | /* Target-dependent code for SPARC. |
cda5a58a | 2 | |
386c036b | 3 | Copyright 2003, 2004 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c | 21 | |
c906108c | 22 | #include "defs.h" |
5af923b0 | 23 | #include "arch-utils.h" |
386c036b MK |
24 | #include "dis-asm.h" |
25 | #include "floatformat.h" | |
c906108c | 26 | #include "frame.h" |
386c036b MK |
27 | #include "frame-base.h" |
28 | #include "frame-unwind.h" | |
29 | #include "gdbcore.h" | |
30 | #include "gdbtypes.h" | |
c906108c | 31 | #include "inferior.h" |
386c036b MK |
32 | #include "symtab.h" |
33 | #include "objfiles.h" | |
34 | #include "osabi.h" | |
35 | #include "regcache.h" | |
c906108c SS |
36 | #include "target.h" |
37 | #include "value.h" | |
c906108c | 38 | |
43bd9a9e | 39 | #include "gdb_assert.h" |
386c036b | 40 | #include "gdb_string.h" |
c906108c | 41 | |
386c036b | 42 | #include "sparc-tdep.h" |
c906108c | 43 | |
a54124c5 MK |
44 | struct regset; |
45 | ||
9eb42ed1 MK |
46 | /* This file implements the SPARC 32-bit ABI as defined by the section |
47 | "Low-Level System Information" of the SPARC Compliance Definition | |
48 | (SCD) 2.4.1, which is the 32-bit System V psABI for SPARC. The SCD | |
f2e7c15d | 49 | lists changes with respect to the original 32-bit psABI as defined |
9eb42ed1 | 50 | in the "System V ABI, SPARC Processor Supplement". |
386c036b MK |
51 | |
52 | Note that if we talk about SunOS, we mean SunOS 4.x, which was | |
53 | BSD-based, which is sometimes (retroactively?) referred to as | |
54 | Solaris 1.x. If we talk about Solaris we mean Solaris 2.x and | |
55 | above (Solaris 7, 8 and 9 are nothing but Solaris 2.7, 2.8 and 2.9 | |
56 | suffering from severe version number inflation). Solaris 2.x is | |
57 | also known as SunOS 5.x, since that's what uname(1) says. Solaris | |
58 | 2.x is SVR4-based. */ | |
59 | ||
60 | /* Please use the sparc32_-prefix for 32-bit specific code, the | |
61 | sparc64_-prefix for 64-bit specific code and the sparc_-prefix for | |
62 | code that can handle both. The 64-bit specific code lives in | |
63 | sparc64-tdep.c; don't add any here. */ | |
64 | ||
65 | /* The SPARC Floating-Point Quad-Precision format is similar to | |
66 | big-endian IA-64 Quad-recision format. */ | |
67 | #define floatformat_sparc_quad floatformat_ia64_quad_big | |
68 | ||
69 | /* The stack pointer is offset from the stack frame by a BIAS of 2047 | |
70 | (0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC | |
71 | hosts, so undefine it first. */ | |
72 | #undef BIAS | |
73 | #define BIAS 2047 | |
74 | ||
75 | /* Macros to extract fields from SPARC instructions. */ | |
c906108c SS |
76 | #define X_OP(i) (((i) >> 30) & 0x3) |
77 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
78 | #define X_A(i) (((i) >> 29) & 1) | |
79 | #define X_COND(i) (((i) >> 25) & 0xf) | |
80 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
81 | #define X_IMM22(i) ((i) & 0x3fffff) | |
82 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
075ccec8 | 83 | #define X_RS1(i) (((i) >> 14) & 0x1f) |
c906108c | 84 | #define X_I(i) (((i) >> 13) & 1) |
c906108c | 85 | /* Sign extension macros. */ |
c906108c | 86 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) |
c906108c | 87 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) |
075ccec8 | 88 | #define X_SIMM13(i) ((((i) & 0x1fff) ^ 0x1000) - 0x1000) |
c906108c | 89 | |
386c036b MK |
90 | /* Fetch the instruction at PC. Instructions are always big-endian |
91 | even if the processor operates in little-endian mode. */ | |
92 | ||
93 | unsigned long | |
94 | sparc_fetch_instruction (CORE_ADDR pc) | |
c906108c | 95 | { |
386c036b MK |
96 | unsigned char buf[4]; |
97 | unsigned long insn; | |
98 | int i; | |
99 | ||
690668cc MK |
100 | /* If we can't read the instruction at PC, return zero. */ |
101 | if (target_read_memory (pc, buf, sizeof (buf))) | |
102 | return 0; | |
c906108c | 103 | |
386c036b MK |
104 | insn = 0; |
105 | for (i = 0; i < sizeof (buf); i++) | |
106 | insn = (insn << 8) | buf[i]; | |
107 | return insn; | |
108 | } | |
42cdca6c MK |
109 | \f |
110 | ||
5465445a JB |
111 | /* Return non-zero if the instruction corresponding to PC is an "unimp" |
112 | instruction. */ | |
113 | ||
114 | static int | |
115 | sparc_is_unimp_insn (CORE_ADDR pc) | |
116 | { | |
117 | const unsigned long insn = sparc_fetch_instruction (pc); | |
118 | ||
119 | return ((insn & 0xc1c00000) == 0); | |
120 | } | |
121 | ||
42cdca6c MK |
122 | /* OpenBSD/sparc includes StackGhost, which according to the author's |
123 | website http://stackghost.cerias.purdue.edu "... transparently and | |
124 | automatically protects applications' stack frames; more | |
125 | specifically, it guards the return pointers. The protection | |
126 | mechanisms require no application source or binary modification and | |
127 | imposes only a negligible performance penalty." | |
128 | ||
129 | The same website provides the following description of how | |
130 | StackGhost works: | |
131 | ||
132 | "StackGhost interfaces with the kernel trap handler that would | |
133 | normally write out registers to the stack and the handler that | |
134 | would read them back in. By XORing a cookie into the | |
135 | return-address saved in the user stack when it is actually written | |
136 | to the stack, and then XOR it out when the return-address is pulled | |
137 | from the stack, StackGhost can cause attacker corrupted return | |
138 | pointers to behave in a manner the attacker cannot predict. | |
139 | StackGhost can also use several unused bits in the return pointer | |
140 | to detect a smashed return pointer and abort the process." | |
141 | ||
142 | For GDB this means that whenever we're reading %i7 from a stack | |
143 | frame's window save area, we'll have to XOR the cookie. | |
144 | ||
145 | More information on StackGuard can be found on in: | |
146 | ||
147 | Mike Frantzen and Mike Shuey. "StackGhost: Hardware Facilitated | |
148 | Stack Protection." 2001. Published in USENIX Security Symposium | |
149 | '01. */ | |
150 | ||
151 | /* Fetch StackGhost Per-Process XOR cookie. */ | |
152 | ||
153 | ULONGEST | |
154 | sparc_fetch_wcookie (void) | |
155 | { | |
baf92889 MK |
156 | struct target_ops *ops = ¤t_target; |
157 | char buf[8]; | |
158 | int len; | |
159 | ||
160 | len = target_read_partial (ops, TARGET_OBJECT_WCOOKIE, NULL, buf, 0, 8); | |
161 | if (len == -1) | |
162 | return 0; | |
42cdca6c | 163 | |
baf92889 MK |
164 | /* We should have either an 32-bit or an 64-bit cookie. */ |
165 | gdb_assert (len == 4 || len == 8); | |
166 | ||
167 | return extract_unsigned_integer (buf, len); | |
168 | } | |
386c036b | 169 | \f |
baf92889 | 170 | |
386c036b | 171 | /* Return the contents if register REGNUM as an address. */ |
c906108c | 172 | |
386c036b MK |
173 | static CORE_ADDR |
174 | sparc_address_from_register (int regnum) | |
175 | { | |
176 | ULONGEST addr; | |
c906108c | 177 | |
386c036b MK |
178 | regcache_cooked_read_unsigned (current_regcache, regnum, &addr); |
179 | return addr; | |
180 | } | |
181 | \f | |
c906108c | 182 | |
386c036b MK |
183 | /* The functions on this page are intended to be used to classify |
184 | function arguments. */ | |
c906108c | 185 | |
386c036b | 186 | /* Check whether TYPE is "Integral or Pointer". */ |
c906108c | 187 | |
386c036b MK |
188 | static int |
189 | sparc_integral_or_pointer_p (const struct type *type) | |
c906108c | 190 | { |
386c036b | 191 | switch (TYPE_CODE (type)) |
c906108c | 192 | { |
386c036b MK |
193 | case TYPE_CODE_INT: |
194 | case TYPE_CODE_BOOL: | |
195 | case TYPE_CODE_CHAR: | |
196 | case TYPE_CODE_ENUM: | |
197 | case TYPE_CODE_RANGE: | |
198 | { | |
199 | /* We have byte, half-word, word and extended-word/doubleword | |
200 | integral types. The doubleword is an extension to the | |
f2e7c15d | 201 | original 32-bit ABI by the SCD 2.4.x. */ |
386c036b MK |
202 | int len = TYPE_LENGTH (type); |
203 | return (len == 1 || len == 2 || len == 4 || len == 8); | |
204 | } | |
205 | return 1; | |
206 | case TYPE_CODE_PTR: | |
207 | case TYPE_CODE_REF: | |
208 | { | |
209 | /* Allow either 32-bit or 64-bit pointers. */ | |
210 | int len = TYPE_LENGTH (type); | |
211 | return (len == 4 || len == 8); | |
212 | } | |
213 | return 1; | |
214 | default: | |
215 | break; | |
216 | } | |
c906108c | 217 | |
386c036b MK |
218 | return 0; |
219 | } | |
c906108c | 220 | |
386c036b | 221 | /* Check whether TYPE is "Floating". */ |
c906108c | 222 | |
386c036b MK |
223 | static int |
224 | sparc_floating_p (const struct type *type) | |
225 | { | |
226 | switch (TYPE_CODE (type)) | |
c906108c | 227 | { |
386c036b MK |
228 | case TYPE_CODE_FLT: |
229 | { | |
230 | int len = TYPE_LENGTH (type); | |
231 | return (len == 4 || len == 8 || len == 16); | |
232 | } | |
233 | default: | |
234 | break; | |
235 | } | |
236 | ||
237 | return 0; | |
238 | } | |
c906108c | 239 | |
386c036b | 240 | /* Check whether TYPE is "Structure or Union". */ |
c906108c | 241 | |
386c036b MK |
242 | static int |
243 | sparc_structure_or_union_p (const struct type *type) | |
244 | { | |
245 | switch (TYPE_CODE (type)) | |
246 | { | |
247 | case TYPE_CODE_STRUCT: | |
248 | case TYPE_CODE_UNION: | |
249 | return 1; | |
250 | default: | |
251 | break; | |
c906108c | 252 | } |
386c036b MK |
253 | |
254 | return 0; | |
c906108c | 255 | } |
386c036b MK |
256 | |
257 | /* Register information. */ | |
258 | ||
259 | static const char *sparc32_register_names[] = | |
5af923b0 | 260 | { |
386c036b MK |
261 | "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", |
262 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
263 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
264 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
265 | ||
266 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
267 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
268 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
269 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
270 | ||
271 | "y", "psr", "wim", "tbr", "pc", "npc", "fsr", "csr" | |
5af923b0 MS |
272 | }; |
273 | ||
386c036b MK |
274 | /* Total number of registers. */ |
275 | #define SPARC32_NUM_REGS ARRAY_SIZE (sparc32_register_names) | |
c906108c | 276 | |
386c036b MK |
277 | /* We provide the aliases %d0..%d30 for the floating registers as |
278 | "psuedo" registers. */ | |
279 | ||
280 | static const char *sparc32_pseudo_register_names[] = | |
281 | { | |
282 | "d0", "d2", "d4", "d6", "d8", "d10", "d12", "d14", | |
283 | "d16", "d18", "d20", "d22", "d24", "d26", "d28", "d30" | |
284 | }; | |
285 | ||
286 | /* Total number of pseudo registers. */ | |
287 | #define SPARC32_NUM_PSEUDO_REGS ARRAY_SIZE (sparc32_pseudo_register_names) | |
288 | ||
289 | /* Return the name of register REGNUM. */ | |
290 | ||
291 | static const char * | |
292 | sparc32_register_name (int regnum) | |
293 | { | |
294 | if (regnum >= 0 && regnum < SPARC32_NUM_REGS) | |
295 | return sparc32_register_names[regnum]; | |
296 | ||
297 | if (regnum < SPARC32_NUM_REGS + SPARC32_NUM_PSEUDO_REGS) | |
298 | return sparc32_pseudo_register_names[regnum - SPARC32_NUM_REGS]; | |
299 | ||
300 | return NULL; | |
301 | } | |
302 | ||
303 | /* Return the GDB type object for the "standard" data type of data in | |
304 | register REGNUM. */ | |
305 | ||
306 | static struct type * | |
307 | sparc32_register_type (struct gdbarch *gdbarch, int regnum) | |
308 | { | |
309 | if (regnum >= SPARC_F0_REGNUM && regnum <= SPARC_F31_REGNUM) | |
310 | return builtin_type_float; | |
311 | ||
312 | if (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM) | |
313 | return builtin_type_double; | |
314 | ||
315 | if (regnum == SPARC_SP_REGNUM || regnum == SPARC_FP_REGNUM) | |
316 | return builtin_type_void_data_ptr; | |
317 | ||
318 | if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM) | |
319 | return builtin_type_void_func_ptr; | |
320 | ||
321 | return builtin_type_int32; | |
322 | } | |
323 | ||
324 | static void | |
325 | sparc32_pseudo_register_read (struct gdbarch *gdbarch, | |
326 | struct regcache *regcache, | |
327 | int regnum, void *buf) | |
328 | { | |
329 | gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM); | |
330 | ||
331 | regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM); | |
332 | regcache_raw_read (regcache, regnum, buf); | |
333 | regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4); | |
334 | } | |
335 | ||
336 | static void | |
337 | sparc32_pseudo_register_write (struct gdbarch *gdbarch, | |
338 | struct regcache *regcache, | |
339 | int regnum, const void *buf) | |
340 | { | |
341 | gdb_assert (regnum >= SPARC32_D0_REGNUM && regnum <= SPARC32_D30_REGNUM); | |
342 | ||
343 | regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC32_D0_REGNUM); | |
344 | regcache_raw_write (regcache, regnum, buf); | |
345 | regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4); | |
346 | } | |
347 | \f | |
348 | ||
349 | static CORE_ADDR | |
350 | sparc32_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, | |
351 | CORE_ADDR funcaddr, int using_gcc, | |
352 | struct value **args, int nargs, | |
353 | struct type *value_type, | |
354 | CORE_ADDR *real_pc, CORE_ADDR *bp_addr) | |
c906108c | 355 | { |
386c036b MK |
356 | *bp_addr = sp - 4; |
357 | *real_pc = funcaddr; | |
358 | ||
359 | if (using_struct_return (value_type, using_gcc)) | |
c906108c | 360 | { |
386c036b MK |
361 | char buf[4]; |
362 | ||
363 | /* This is an UNIMP instruction. */ | |
364 | store_unsigned_integer (buf, 4, TYPE_LENGTH (value_type) & 0x1fff); | |
365 | write_memory (sp - 8, buf, 4); | |
366 | return sp - 8; | |
c906108c SS |
367 | } |
368 | ||
386c036b MK |
369 | return sp - 4; |
370 | } | |
371 | ||
372 | static CORE_ADDR | |
373 | sparc32_store_arguments (struct regcache *regcache, int nargs, | |
374 | struct value **args, CORE_ADDR sp, | |
375 | int struct_return, CORE_ADDR struct_addr) | |
376 | { | |
377 | /* Number of words in the "parameter array". */ | |
378 | int num_elements = 0; | |
379 | int element = 0; | |
380 | int i; | |
381 | ||
382 | for (i = 0; i < nargs; i++) | |
c906108c | 383 | { |
4991999e | 384 | struct type *type = value_type (args[i]); |
386c036b MK |
385 | int len = TYPE_LENGTH (type); |
386 | ||
387 | if (sparc_structure_or_union_p (type) | |
388 | || (sparc_floating_p (type) && len == 16)) | |
c906108c | 389 | { |
386c036b MK |
390 | /* Structure, Union and Quad-Precision Arguments. */ |
391 | sp -= len; | |
392 | ||
393 | /* Use doubleword alignment for these values. That's always | |
394 | correct, and wasting a few bytes shouldn't be a problem. */ | |
395 | sp &= ~0x7; | |
396 | ||
397 | write_memory (sp, VALUE_CONTENTS (args[i]), len); | |
398 | args[i] = value_from_pointer (lookup_pointer_type (type), sp); | |
399 | num_elements++; | |
400 | } | |
401 | else if (sparc_floating_p (type)) | |
402 | { | |
403 | /* Floating arguments. */ | |
404 | gdb_assert (len == 4 || len == 8); | |
405 | num_elements += (len / 4); | |
c906108c | 406 | } |
c5aa993b JM |
407 | else |
408 | { | |
386c036b MK |
409 | /* Integral and pointer arguments. */ |
410 | gdb_assert (sparc_integral_or_pointer_p (type)); | |
411 | ||
412 | if (len < 4) | |
413 | args[i] = value_cast (builtin_type_int32, args[i]); | |
414 | num_elements += ((len + 3) / 4); | |
c5aa993b | 415 | } |
c906108c | 416 | } |
c906108c | 417 | |
386c036b MK |
418 | /* Always allocate at least six words. */ |
419 | sp -= max (6, num_elements) * 4; | |
c906108c | 420 | |
386c036b MK |
421 | /* The psABI says that "Software convention requires space for the |
422 | struct/union return value pointer, even if the word is unused." */ | |
423 | sp -= 4; | |
c906108c | 424 | |
386c036b MK |
425 | /* The psABI says that "Although software convention and the |
426 | operating system require every stack frame to be doubleword | |
427 | aligned." */ | |
428 | sp &= ~0x7; | |
c906108c | 429 | |
386c036b | 430 | for (i = 0; i < nargs; i++) |
c906108c | 431 | { |
386c036b | 432 | char *valbuf = VALUE_CONTENTS (args[i]); |
4991999e | 433 | struct type *type = value_type (args[i]); |
386c036b | 434 | int len = TYPE_LENGTH (type); |
c906108c | 435 | |
386c036b | 436 | gdb_assert (len == 4 || len == 8); |
c906108c | 437 | |
386c036b MK |
438 | if (element < 6) |
439 | { | |
440 | int regnum = SPARC_O0_REGNUM + element; | |
c906108c | 441 | |
386c036b MK |
442 | regcache_cooked_write (regcache, regnum, valbuf); |
443 | if (len > 4 && element < 5) | |
444 | regcache_cooked_write (regcache, regnum + 1, valbuf + 4); | |
445 | } | |
5af923b0 | 446 | |
386c036b MK |
447 | /* Always store the argument in memory. */ |
448 | write_memory (sp + 4 + element * 4, valbuf, len); | |
449 | element += len / 4; | |
450 | } | |
c906108c | 451 | |
386c036b | 452 | gdb_assert (element == num_elements); |
c906108c | 453 | |
386c036b | 454 | if (struct_return) |
c906108c | 455 | { |
386c036b | 456 | char buf[4]; |
c906108c | 457 | |
386c036b MK |
458 | store_unsigned_integer (buf, 4, struct_addr); |
459 | write_memory (sp, buf, 4); | |
460 | } | |
c906108c | 461 | |
386c036b | 462 | return sp; |
c906108c SS |
463 | } |
464 | ||
386c036b | 465 | static CORE_ADDR |
7d9b040b | 466 | sparc32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
386c036b MK |
467 | struct regcache *regcache, CORE_ADDR bp_addr, |
468 | int nargs, struct value **args, CORE_ADDR sp, | |
469 | int struct_return, CORE_ADDR struct_addr) | |
c906108c | 470 | { |
386c036b MK |
471 | CORE_ADDR call_pc = (struct_return ? (bp_addr - 12) : (bp_addr - 8)); |
472 | ||
473 | /* Set return address. */ | |
474 | regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, call_pc); | |
475 | ||
476 | /* Set up function arguments. */ | |
477 | sp = sparc32_store_arguments (regcache, nargs, args, sp, | |
478 | struct_return, struct_addr); | |
479 | ||
480 | /* Allocate the 16-word window save area. */ | |
481 | sp -= 16 * 4; | |
c906108c | 482 | |
386c036b MK |
483 | /* Stack should be doubleword aligned at this point. */ |
484 | gdb_assert (sp % 8 == 0); | |
c906108c | 485 | |
386c036b MK |
486 | /* Finally, update the stack pointer. */ |
487 | regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp); | |
488 | ||
489 | return sp; | |
490 | } | |
491 | \f | |
c906108c | 492 | |
386c036b MK |
493 | /* Use the program counter to determine the contents and size of a |
494 | breakpoint instruction. Return a pointer to a string of bytes that | |
495 | encode a breakpoint instruction, store the length of the string in | |
496 | *LEN and optionally adjust *PC to point to the correct memory | |
497 | location for inserting the breakpoint. */ | |
498 | ||
499 | static const unsigned char * | |
500 | sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
501 | { | |
502 | static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 }; | |
c5aa993b | 503 | |
386c036b MK |
504 | *len = sizeof (break_insn); |
505 | return break_insn; | |
c906108c | 506 | } |
386c036b | 507 | \f |
c906108c | 508 | |
386c036b | 509 | /* Allocate and initialize a frame cache. */ |
c906108c | 510 | |
386c036b MK |
511 | static struct sparc_frame_cache * |
512 | sparc_alloc_frame_cache (void) | |
513 | { | |
514 | struct sparc_frame_cache *cache; | |
515 | int i; | |
c906108c | 516 | |
386c036b | 517 | cache = FRAME_OBSTACK_ZALLOC (struct sparc_frame_cache); |
c906108c | 518 | |
386c036b MK |
519 | /* Base address. */ |
520 | cache->base = 0; | |
521 | cache->pc = 0; | |
c906108c | 522 | |
386c036b MK |
523 | /* Frameless until proven otherwise. */ |
524 | cache->frameless_p = 1; | |
525 | ||
526 | cache->struct_return_p = 0; | |
527 | ||
528 | return cache; | |
529 | } | |
530 | ||
531 | CORE_ADDR | |
532 | sparc_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc, | |
533 | struct sparc_frame_cache *cache) | |
c906108c | 534 | { |
386c036b MK |
535 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); |
536 | unsigned long insn; | |
537 | int offset = 0; | |
c906108c | 538 | int dest = -1; |
c906108c | 539 | |
386c036b MK |
540 | if (current_pc <= pc) |
541 | return current_pc; | |
542 | ||
543 | /* We have to handle to "Procedure Linkage Table" (PLT) special. On | |
544 | SPARC the linker usually defines a symbol (typically | |
545 | _PROCEDURE_LINKAGE_TABLE_) at the start of the .plt section. | |
546 | This symbol makes us end up here with PC pointing at the start of | |
547 | the PLT and CURRENT_PC probably pointing at a PLT entry. If we | |
548 | would do our normal prologue analysis, we would probably conclude | |
549 | that we've got a frame when in reality we don't, since the | |
550 | dynamic linker patches up the first PLT with some code that | |
551 | starts with a SAVE instruction. Patch up PC such that it points | |
552 | at the start of our PLT entry. */ | |
553 | if (tdep->plt_entry_size > 0 && in_plt_section (current_pc, NULL)) | |
554 | pc = current_pc - ((current_pc - pc) % tdep->plt_entry_size); | |
c906108c | 555 | |
386c036b MK |
556 | insn = sparc_fetch_instruction (pc); |
557 | ||
558 | /* Recognize a SETHI insn and record its destination. */ | |
559 | if (X_OP (insn) == 0 && X_OP2 (insn) == 0x04) | |
c906108c SS |
560 | { |
561 | dest = X_RD (insn); | |
386c036b MK |
562 | offset += 4; |
563 | ||
564 | insn = sparc_fetch_instruction (pc + 4); | |
c906108c SS |
565 | } |
566 | ||
386c036b MK |
567 | /* Allow for an arithmetic operation on DEST or %g1. */ |
568 | if (X_OP (insn) == 2 && X_I (insn) | |
c906108c SS |
569 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) |
570 | { | |
386c036b | 571 | offset += 4; |
c906108c | 572 | |
386c036b | 573 | insn = sparc_fetch_instruction (pc + 8); |
c906108c | 574 | } |
c906108c | 575 | |
386c036b MK |
576 | /* Check for the SAVE instruction that sets up the frame. */ |
577 | if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) | |
c906108c | 578 | { |
386c036b MK |
579 | cache->frameless_p = 0; |
580 | return pc + offset + 4; | |
c906108c SS |
581 | } |
582 | ||
583 | return pc; | |
584 | } | |
585 | ||
386c036b MK |
586 | static CORE_ADDR |
587 | sparc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
588 | { | |
589 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
590 | return frame_unwind_register_unsigned (next_frame, tdep->pc_regnum); | |
591 | } | |
592 | ||
593 | /* Return PC of first real instruction of the function starting at | |
594 | START_PC. */ | |
f510d44e | 595 | |
386c036b MK |
596 | static CORE_ADDR |
597 | sparc32_skip_prologue (CORE_ADDR start_pc) | |
c906108c | 598 | { |
f510d44e DM |
599 | struct symtab_and_line sal; |
600 | CORE_ADDR func_start, func_end; | |
386c036b | 601 | struct sparc_frame_cache cache; |
f510d44e DM |
602 | |
603 | /* This is the preferred method, find the end of the prologue by | |
604 | using the debugging information. */ | |
605 | if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end)) | |
606 | { | |
607 | sal = find_pc_line (func_start, 0); | |
608 | ||
609 | if (sal.end < func_end | |
610 | && start_pc <= sal.end) | |
611 | return sal.end; | |
612 | } | |
613 | ||
075ccec8 MK |
614 | start_pc = sparc_analyze_prologue (start_pc, 0xffffffffUL, &cache); |
615 | ||
616 | /* The psABI says that "Although the first 6 words of arguments | |
617 | reside in registers, the standard stack frame reserves space for | |
618 | them.". It also suggests that a function may use that space to | |
619 | "write incoming arguments 0 to 5" into that space, and that's | |
620 | indeed what GCC seems to be doing. In that case GCC will | |
621 | generate debug information that points to the stack slots instead | |
622 | of the registers, so we should consider the instructions that | |
623 | write out these incoming arguments onto the stack. Of course we | |
624 | only need to do this if we have a stack frame. */ | |
625 | ||
626 | while (!cache.frameless_p) | |
627 | { | |
628 | unsigned long insn = sparc_fetch_instruction (start_pc); | |
629 | ||
630 | /* Recognize instructions that store incoming arguments in | |
631 | %i0...%i5 into the corresponding stack slot. */ | |
632 | if (X_OP (insn) == 3 && (X_OP3 (insn) & 0x3c) == 0x04 && X_I (insn) | |
633 | && (X_RD (insn) >= 24 && X_RD (insn) <= 29) && X_RS1 (insn) == 30 | |
634 | && X_SIMM13 (insn) == 68 + (X_RD (insn) - 24) * 4) | |
635 | { | |
636 | start_pc += 4; | |
637 | continue; | |
638 | } | |
639 | ||
640 | break; | |
641 | } | |
642 | ||
643 | return start_pc; | |
c906108c SS |
644 | } |
645 | ||
386c036b | 646 | /* Normal frames. */ |
9319a2fe | 647 | |
386c036b MK |
648 | struct sparc_frame_cache * |
649 | sparc_frame_cache (struct frame_info *next_frame, void **this_cache) | |
9319a2fe | 650 | { |
386c036b | 651 | struct sparc_frame_cache *cache; |
9319a2fe | 652 | |
386c036b MK |
653 | if (*this_cache) |
654 | return *this_cache; | |
c906108c | 655 | |
386c036b MK |
656 | cache = sparc_alloc_frame_cache (); |
657 | *this_cache = cache; | |
c906108c | 658 | |
386c036b MK |
659 | cache->pc = frame_func_unwind (next_frame); |
660 | if (cache->pc != 0) | |
c906108c | 661 | { |
386c036b MK |
662 | CORE_ADDR addr_in_block = frame_unwind_address_in_block (next_frame); |
663 | sparc_analyze_prologue (cache->pc, addr_in_block, cache); | |
c906108c | 664 | } |
386c036b MK |
665 | |
666 | if (cache->frameless_p) | |
c906108c | 667 | { |
cbeae229 MK |
668 | /* This function is frameless, so %fp (%i6) holds the frame |
669 | pointer for our calling frame. Use %sp (%o6) as this frame's | |
670 | base address. */ | |
671 | cache->base = | |
672 | frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM); | |
673 | } | |
674 | else | |
675 | { | |
676 | /* For normal frames, %fp (%i6) holds the frame pointer, the | |
677 | base address for the current stack frame. */ | |
678 | cache->base = | |
679 | frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM); | |
c906108c | 680 | } |
c906108c | 681 | |
386c036b | 682 | return cache; |
c906108c | 683 | } |
c906108c | 684 | |
386c036b MK |
685 | struct sparc_frame_cache * |
686 | sparc32_frame_cache (struct frame_info *next_frame, void **this_cache) | |
c906108c | 687 | { |
386c036b MK |
688 | struct sparc_frame_cache *cache; |
689 | struct symbol *sym; | |
c906108c | 690 | |
386c036b MK |
691 | if (*this_cache) |
692 | return *this_cache; | |
c906108c | 693 | |
386c036b | 694 | cache = sparc_frame_cache (next_frame, this_cache); |
c906108c | 695 | |
386c036b MK |
696 | sym = find_pc_function (cache->pc); |
697 | if (sym) | |
c906108c | 698 | { |
386c036b MK |
699 | struct type *type = check_typedef (SYMBOL_TYPE (sym)); |
700 | enum type_code code = TYPE_CODE (type); | |
701 | ||
702 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
703 | { | |
704 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
705 | if (sparc_structure_or_union_p (type) | |
706 | || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)) | |
707 | cache->struct_return_p = 1; | |
708 | } | |
c906108c | 709 | } |
5465445a JB |
710 | else |
711 | { | |
712 | /* There is no debugging information for this function to | |
713 | help us determine whether this function returns a struct | |
714 | or not. So we rely on another heuristic which is to check | |
715 | the instruction at the return address and see if this is | |
716 | an "unimp" instruction. If it is, then it is a struct-return | |
717 | function. */ | |
718 | CORE_ADDR pc; | |
719 | int regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM; | |
720 | ||
721 | pc = frame_unwind_register_unsigned (next_frame, regnum) + 8; | |
722 | if (sparc_is_unimp_insn (pc)) | |
723 | cache->struct_return_p = 1; | |
724 | } | |
c906108c | 725 | |
386c036b MK |
726 | return cache; |
727 | } | |
728 | ||
729 | static void | |
730 | sparc32_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
731 | struct frame_id *this_id) | |
732 | { | |
733 | struct sparc_frame_cache *cache = | |
734 | sparc32_frame_cache (next_frame, this_cache); | |
735 | ||
736 | /* This marks the outermost frame. */ | |
737 | if (cache->base == 0) | |
738 | return; | |
739 | ||
740 | (*this_id) = frame_id_build (cache->base, cache->pc); | |
741 | } | |
c906108c | 742 | |
386c036b MK |
743 | static void |
744 | sparc32_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
745 | int regnum, int *optimizedp, | |
746 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
747 | int *realnump, void *valuep) | |
748 | { | |
749 | struct sparc_frame_cache *cache = | |
750 | sparc32_frame_cache (next_frame, this_cache); | |
c906108c | 751 | |
386c036b | 752 | if (regnum == SPARC32_PC_REGNUM || regnum == SPARC32_NPC_REGNUM) |
c906108c | 753 | { |
386c036b MK |
754 | *optimizedp = 0; |
755 | *lvalp = not_lval; | |
756 | *addrp = 0; | |
757 | *realnump = -1; | |
758 | if (valuep) | |
c906108c | 759 | { |
386c036b MK |
760 | CORE_ADDR pc = (regnum == SPARC32_NPC_REGNUM) ? 4 : 0; |
761 | ||
762 | /* If this functions has a Structure, Union or | |
763 | Quad-Precision return value, we have to skip the UNIMP | |
764 | instruction that encodes the size of the structure. */ | |
765 | if (cache->struct_return_p) | |
766 | pc += 4; | |
767 | ||
768 | regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM; | |
769 | pc += frame_unwind_register_unsigned (next_frame, regnum) + 8; | |
770 | store_unsigned_integer (valuep, 4, pc); | |
c906108c | 771 | } |
c906108c SS |
772 | return; |
773 | } | |
774 | ||
42cdca6c MK |
775 | /* Handle StackGhost. */ |
776 | { | |
777 | ULONGEST wcookie = sparc_fetch_wcookie (); | |
778 | ||
779 | if (wcookie != 0 && !cache->frameless_p && regnum == SPARC_I7_REGNUM) | |
780 | { | |
781 | *optimizedp = 0; | |
782 | *lvalp = not_lval; | |
783 | *addrp = 0; | |
784 | *realnump = -1; | |
785 | if (valuep) | |
786 | { | |
787 | CORE_ADDR addr = cache->base + (regnum - SPARC_L0_REGNUM) * 4; | |
7d34766b | 788 | ULONGEST i7; |
42cdca6c MK |
789 | |
790 | /* Read the value in from memory. */ | |
7d34766b MK |
791 | i7 = get_frame_memory_unsigned (next_frame, addr, 4); |
792 | store_unsigned_integer (valuep, 4, i7 ^ wcookie); | |
42cdca6c MK |
793 | } |
794 | return; | |
795 | } | |
796 | } | |
797 | ||
386c036b MK |
798 | /* The previous frame's `local' and `in' registers have been saved |
799 | in the register save area. */ | |
800 | if (!cache->frameless_p | |
801 | && regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) | |
c906108c | 802 | { |
386c036b MK |
803 | *optimizedp = 0; |
804 | *lvalp = lval_memory; | |
805 | *addrp = cache->base + (regnum - SPARC_L0_REGNUM) * 4; | |
806 | *realnump = -1; | |
807 | if (valuep) | |
c906108c | 808 | { |
386c036b MK |
809 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
810 | ||
811 | /* Read the value in from memory. */ | |
812 | read_memory (*addrp, valuep, register_size (gdbarch, regnum)); | |
c906108c | 813 | } |
386c036b MK |
814 | return; |
815 | } | |
c906108c | 816 | |
386c036b MK |
817 | /* The previous frame's `out' registers are accessable as the |
818 | current frame's `in' registers. */ | |
819 | if (!cache->frameless_p | |
820 | && regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM) | |
821 | regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM); | |
5af923b0 | 822 | |
00b25ff3 AC |
823 | *optimizedp = 0; |
824 | *lvalp = lval_register; | |
825 | *addrp = 0; | |
826 | *realnump = regnum; | |
827 | if (valuep) | |
828 | frame_unwind_register (next_frame, (*realnump), valuep); | |
386c036b | 829 | } |
c906108c | 830 | |
386c036b MK |
831 | static const struct frame_unwind sparc32_frame_unwind = |
832 | { | |
833 | NORMAL_FRAME, | |
834 | sparc32_frame_this_id, | |
835 | sparc32_frame_prev_register | |
836 | }; | |
837 | ||
838 | static const struct frame_unwind * | |
839 | sparc32_frame_sniffer (struct frame_info *next_frame) | |
840 | { | |
841 | return &sparc32_frame_unwind; | |
c906108c | 842 | } |
386c036b | 843 | \f |
c906108c | 844 | |
386c036b MK |
845 | static CORE_ADDR |
846 | sparc32_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
847 | { | |
848 | struct sparc_frame_cache *cache = | |
849 | sparc32_frame_cache (next_frame, this_cache); | |
c906108c | 850 | |
386c036b MK |
851 | return cache->base; |
852 | } | |
c906108c | 853 | |
386c036b MK |
854 | static const struct frame_base sparc32_frame_base = |
855 | { | |
856 | &sparc32_frame_unwind, | |
857 | sparc32_frame_base_address, | |
858 | sparc32_frame_base_address, | |
859 | sparc32_frame_base_address | |
860 | }; | |
c906108c | 861 | |
386c036b MK |
862 | static struct frame_id |
863 | sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
864 | { | |
865 | CORE_ADDR sp; | |
5af923b0 | 866 | |
386c036b MK |
867 | sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM); |
868 | return frame_id_build (sp, frame_pc_unwind (next_frame)); | |
869 | } | |
870 | \f | |
c906108c | 871 | |
386c036b MK |
872 | /* Extract from an array REGBUF containing the (raw) register state, a |
873 | function return value of TYPE, and copy that into VALBUF. */ | |
5af923b0 | 874 | |
386c036b MK |
875 | static void |
876 | sparc32_extract_return_value (struct type *type, struct regcache *regcache, | |
877 | void *valbuf) | |
878 | { | |
879 | int len = TYPE_LENGTH (type); | |
880 | char buf[8]; | |
c906108c | 881 | |
386c036b MK |
882 | gdb_assert (!sparc_structure_or_union_p (type)); |
883 | gdb_assert (!(sparc_floating_p (type) && len == 16)); | |
c906108c | 884 | |
386c036b | 885 | if (sparc_floating_p (type)) |
5af923b0 | 886 | { |
386c036b MK |
887 | /* Floating return values. */ |
888 | regcache_cooked_read (regcache, SPARC_F0_REGNUM, buf); | |
889 | if (len > 4) | |
890 | regcache_cooked_read (regcache, SPARC_F1_REGNUM, buf + 4); | |
891 | memcpy (valbuf, buf, len); | |
5af923b0 MS |
892 | } |
893 | else | |
894 | { | |
386c036b MK |
895 | /* Integral and pointer return values. */ |
896 | gdb_assert (sparc_integral_or_pointer_p (type)); | |
c906108c | 897 | |
386c036b MK |
898 | regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf); |
899 | if (len > 4) | |
900 | { | |
901 | regcache_cooked_read (regcache, SPARC_O1_REGNUM, buf + 4); | |
902 | gdb_assert (len == 8); | |
903 | memcpy (valbuf, buf, 8); | |
904 | } | |
905 | else | |
906 | { | |
907 | /* Just stripping off any unused bytes should preserve the | |
908 | signed-ness just fine. */ | |
909 | memcpy (valbuf, buf + 4 - len, len); | |
910 | } | |
911 | } | |
912 | } | |
c906108c | 913 | |
386c036b MK |
914 | /* Write into the appropriate registers a function return value stored |
915 | in VALBUF of type TYPE. */ | |
c906108c | 916 | |
386c036b MK |
917 | static void |
918 | sparc32_store_return_value (struct type *type, struct regcache *regcache, | |
919 | const void *valbuf) | |
920 | { | |
921 | int len = TYPE_LENGTH (type); | |
922 | char buf[8]; | |
c906108c | 923 | |
386c036b MK |
924 | gdb_assert (!sparc_structure_or_union_p (type)); |
925 | gdb_assert (!(sparc_floating_p (type) && len == 16)); | |
c906108c | 926 | |
386c036b MK |
927 | if (sparc_floating_p (type)) |
928 | { | |
929 | /* Floating return values. */ | |
930 | memcpy (buf, valbuf, len); | |
931 | regcache_cooked_write (regcache, SPARC_F0_REGNUM, buf); | |
932 | if (len > 4) | |
933 | regcache_cooked_write (regcache, SPARC_F1_REGNUM, buf + 4); | |
934 | } | |
935 | else | |
c906108c | 936 | { |
386c036b MK |
937 | /* Integral and pointer return values. */ |
938 | gdb_assert (sparc_integral_or_pointer_p (type)); | |
939 | ||
940 | if (len > 4) | |
2757dd86 | 941 | { |
386c036b MK |
942 | gdb_assert (len == 8); |
943 | memcpy (buf, valbuf, 8); | |
944 | regcache_cooked_write (regcache, SPARC_O1_REGNUM, buf + 4); | |
2757dd86 AC |
945 | } |
946 | else | |
947 | { | |
386c036b MK |
948 | /* ??? Do we need to do any sign-extension here? */ |
949 | memcpy (buf + 4 - len, valbuf, len); | |
2757dd86 | 950 | } |
386c036b | 951 | regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf); |
c906108c SS |
952 | } |
953 | } | |
954 | ||
b9d4c5ed MK |
955 | static enum return_value_convention |
956 | sparc32_return_value (struct gdbarch *gdbarch, struct type *type, | |
957 | struct regcache *regcache, void *readbuf, | |
958 | const void *writebuf) | |
959 | { | |
960 | if (sparc_structure_or_union_p (type) | |
961 | || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)) | |
962 | return RETURN_VALUE_STRUCT_CONVENTION; | |
963 | ||
964 | if (readbuf) | |
965 | sparc32_extract_return_value (type, regcache, readbuf); | |
966 | if (writebuf) | |
967 | sparc32_store_return_value (type, regcache, writebuf); | |
968 | ||
969 | return RETURN_VALUE_REGISTER_CONVENTION; | |
970 | } | |
971 | ||
931aecf5 AC |
972 | #if 0 |
973 | /* NOTE: cagney/2004-01-17: For the moment disable this method. The | |
974 | architecture and CORE-gdb will need new code (and a replacement for | |
74055713 AC |
975 | DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS) before this can be made to |
976 | work robustly. Here is a possible function signature: */ | |
931aecf5 AC |
977 | /* NOTE: cagney/2004-01-17: So far only the 32-bit SPARC ABI has been |
978 | identifed as having a way to robustly recover the address of a | |
979 | struct-convention return-value (after the function has returned). | |
980 | For all other ABIs so far examined, the calling convention makes no | |
981 | guarenteed that the register containing the return-value will be | |
982 | preserved and hence that the return-value's address can be | |
983 | recovered. */ | |
386c036b MK |
984 | /* Extract from REGCACHE, which contains the (raw) register state, the |
985 | address in which a function should return its structure value, as a | |
986 | CORE_ADDR. */ | |
c906108c | 987 | |
386c036b | 988 | static CORE_ADDR |
ca9d58e9 | 989 | sparc32_extract_struct_value_address (struct regcache *regcache) |
386c036b | 990 | { |
9515395e | 991 | ULONGEST sp; |
c906108c | 992 | |
9515395e MK |
993 | regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp); |
994 | return read_memory_unsigned_integer (sp + 64, 4); | |
386c036b | 995 | } |
931aecf5 | 996 | #endif |
c906108c | 997 | |
386c036b MK |
998 | static int |
999 | sparc32_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type) | |
c906108c | 1000 | { |
386c036b MK |
1001 | return (sparc_structure_or_union_p (type) |
1002 | || (sparc_floating_p (type) && TYPE_LENGTH (type) == 16)); | |
1003 | } | |
c906108c | 1004 | |
386c036b MK |
1005 | \f |
1006 | /* The SPARC Architecture doesn't have hardware single-step support, | |
1007 | and most operating systems don't implement it either, so we provide | |
1008 | software single-step mechanism. */ | |
c906108c | 1009 | |
386c036b MK |
1010 | static CORE_ADDR |
1011 | sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc) | |
1012 | { | |
1013 | unsigned long insn = sparc_fetch_instruction (pc); | |
1014 | int conditional_p = X_COND (insn) & 0x7; | |
1015 | int branch_p = 0; | |
1016 | long offset = 0; /* Must be signed for sign-extend. */ | |
c906108c | 1017 | |
386c036b | 1018 | if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0) |
c906108c | 1019 | { |
386c036b MK |
1020 | /* Branch on Integer Register with Prediction (BPr). */ |
1021 | branch_p = 1; | |
1022 | conditional_p = 1; | |
c906108c | 1023 | } |
386c036b | 1024 | else if (X_OP (insn) == 0 && X_OP2 (insn) == 6) |
c906108c | 1025 | { |
386c036b MK |
1026 | /* Branch on Floating-Point Condition Codes (FBfcc). */ |
1027 | branch_p = 1; | |
1028 | offset = 4 * X_DISP22 (insn); | |
c906108c | 1029 | } |
386c036b MK |
1030 | else if (X_OP (insn) == 0 && X_OP2 (insn) == 5) |
1031 | { | |
1032 | /* Branch on Floating-Point Condition Codes with Prediction | |
1033 | (FBPfcc). */ | |
1034 | branch_p = 1; | |
1035 | offset = 4 * X_DISP19 (insn); | |
1036 | } | |
1037 | else if (X_OP (insn) == 0 && X_OP2 (insn) == 2) | |
1038 | { | |
1039 | /* Branch on Integer Condition Codes (Bicc). */ | |
1040 | branch_p = 1; | |
1041 | offset = 4 * X_DISP22 (insn); | |
1042 | } | |
1043 | else if (X_OP (insn) == 0 && X_OP2 (insn) == 1) | |
c906108c | 1044 | { |
386c036b MK |
1045 | /* Branch on Integer Condition Codes with Prediction (BPcc). */ |
1046 | branch_p = 1; | |
1047 | offset = 4 * X_DISP19 (insn); | |
c906108c | 1048 | } |
386c036b MK |
1049 | |
1050 | /* FIXME: Handle DONE and RETRY instructions. */ | |
1051 | ||
1052 | /* FIXME: Handle the Trap instruction. */ | |
1053 | ||
1054 | if (branch_p) | |
c906108c | 1055 | { |
386c036b | 1056 | if (conditional_p) |
c906108c | 1057 | { |
386c036b MK |
1058 | /* For conditional branches, return nPC + 4 iff the annul |
1059 | bit is 1. */ | |
1060 | return (X_A (insn) ? *npc + 4 : 0); | |
c906108c SS |
1061 | } |
1062 | else | |
1063 | { | |
386c036b MK |
1064 | /* For unconditional branches, return the target if its |
1065 | specified condition is "always" and return nPC + 4 if the | |
1066 | condition is "never". If the annul bit is 1, set *NPC to | |
1067 | zero. */ | |
1068 | if (X_COND (insn) == 0x0) | |
1069 | pc = *npc, offset = 4; | |
1070 | if (X_A (insn)) | |
1071 | *npc = 0; | |
1072 | ||
1073 | gdb_assert (offset != 0); | |
1074 | return pc + offset; | |
c906108c SS |
1075 | } |
1076 | } | |
386c036b MK |
1077 | |
1078 | return 0; | |
c906108c SS |
1079 | } |
1080 | ||
386c036b MK |
1081 | void |
1082 | sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p) | |
1083 | { | |
1084 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1085 | static CORE_ADDR npc, nnpc; | |
1086 | static char npc_save[4], nnpc_save[4]; | |
c906108c | 1087 | |
386c036b MK |
1088 | if (insert_breakpoints_p) |
1089 | { | |
8c3900e4 | 1090 | CORE_ADDR pc, orig_npc; |
c906108c | 1091 | |
386c036b | 1092 | pc = sparc_address_from_register (tdep->pc_regnum); |
8c3900e4 | 1093 | orig_npc = npc = sparc_address_from_register (tdep->npc_regnum); |
c906108c | 1094 | |
386c036b MK |
1095 | /* Analyze the instruction at PC. */ |
1096 | nnpc = sparc_analyze_control_transfer (pc, &npc); | |
1097 | if (npc != 0) | |
1098 | target_insert_breakpoint (npc, npc_save); | |
1099 | if (nnpc != 0) | |
1100 | target_insert_breakpoint (nnpc, nnpc_save); | |
c906108c | 1101 | |
386c036b | 1102 | /* Assert that we have set at least one breakpoint, and that |
8c3900e4 DJ |
1103 | they're not set at the same spot - unless we're going |
1104 | from here straight to NULL, i.e. a call or jump to 0. */ | |
1105 | gdb_assert (npc != 0 || nnpc != 0 || orig_npc == 0); | |
1106 | gdb_assert (nnpc != npc || orig_npc == 0); | |
60054393 | 1107 | } |
386c036b | 1108 | else |
c906108c | 1109 | { |
386c036b MK |
1110 | if (npc != 0) |
1111 | target_remove_breakpoint (npc, npc_save); | |
1112 | if (nnpc != 0) | |
1113 | target_remove_breakpoint (nnpc, nnpc_save); | |
c906108c | 1114 | } |
386c036b MK |
1115 | } |
1116 | ||
1117 | static void | |
1118 | sparc_write_pc (CORE_ADDR pc, ptid_t ptid) | |
1119 | { | |
1120 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
1121 | ||
1122 | write_register_pid (tdep->pc_regnum, pc, ptid); | |
1123 | write_register_pid (tdep->npc_regnum, pc + 4, ptid); | |
1124 | } | |
1125 | \f | |
1126 | /* Unglobalize NAME. */ | |
1127 | ||
1128 | char * | |
1129 | sparc_stabs_unglobalize_name (char *name) | |
1130 | { | |
1131 | /* The Sun compilers (Sun ONE Studio, Forte Developer, Sun WorkShop, | |
1132 | SunPRO) convert file static variables into global values, a | |
1133 | process known as globalization. In order to do this, the | |
1134 | compiler will create a unique prefix and prepend it to each file | |
1135 | static variable. For static variables within a function, this | |
1136 | globalization prefix is followed by the function name (nested | |
1137 | static variables within a function are supposed to generate a | |
1138 | warning message, and are left alone). The procedure is | |
1139 | documented in the Stabs Interface Manual, which is distrubuted | |
1140 | with the compilers, although version 4.0 of the manual seems to | |
1141 | be incorrect in some places, at least for SPARC. The | |
1142 | globalization prefix is encoded into an N_OPT stab, with the form | |
1143 | "G=<prefix>". The globalization prefix always seems to start | |
1144 | with a dollar sign '$'; a dot '.' is used as a seperator. So we | |
1145 | simply strip everything up until the last dot. */ | |
c906108c | 1146 | |
386c036b | 1147 | if (name[0] == '$') |
c906108c | 1148 | { |
386c036b MK |
1149 | char *p = strrchr (name, '.'); |
1150 | if (p) | |
1151 | return p + 1; | |
c906108c | 1152 | } |
c906108c | 1153 | |
386c036b MK |
1154 | return name; |
1155 | } | |
1156 | \f | |
5af923b0 | 1157 | |
a54124c5 MK |
1158 | /* Return the appropriate register set for the core section identified |
1159 | by SECT_NAME and SECT_SIZE. */ | |
1160 | ||
1161 | const struct regset * | |
1162 | sparc_regset_from_core_section (struct gdbarch *gdbarch, | |
1163 | const char *sect_name, size_t sect_size) | |
1164 | { | |
1165 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1166 | ||
c558d81a | 1167 | if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset) |
a54124c5 MK |
1168 | return tdep->gregset; |
1169 | ||
c558d81a | 1170 | if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset) |
a54124c5 MK |
1171 | return tdep->fpregset; |
1172 | ||
1173 | return NULL; | |
1174 | } | |
1175 | \f | |
1176 | ||
386c036b MK |
1177 | static struct gdbarch * |
1178 | sparc32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1179 | { | |
1180 | struct gdbarch_tdep *tdep; | |
1181 | struct gdbarch *gdbarch; | |
c906108c | 1182 | |
386c036b MK |
1183 | /* If there is already a candidate, use it. */ |
1184 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1185 | if (arches != NULL) | |
1186 | return arches->gdbarch; | |
c906108c | 1187 | |
386c036b MK |
1188 | /* Allocate space for the new architecture. */ |
1189 | tdep = XMALLOC (struct gdbarch_tdep); | |
1190 | gdbarch = gdbarch_alloc (&info, tdep); | |
5af923b0 | 1191 | |
386c036b MK |
1192 | tdep->pc_regnum = SPARC32_PC_REGNUM; |
1193 | tdep->npc_regnum = SPARC32_NPC_REGNUM; | |
a54124c5 | 1194 | tdep->gregset = NULL; |
c558d81a | 1195 | tdep->sizeof_gregset = 0; |
a54124c5 | 1196 | tdep->fpregset = NULL; |
c558d81a | 1197 | tdep->sizeof_fpregset = 0; |
386c036b MK |
1198 | tdep->plt_entry_size = 0; |
1199 | ||
1200 | set_gdbarch_long_double_bit (gdbarch, 128); | |
1201 | set_gdbarch_long_double_format (gdbarch, &floatformat_sparc_quad); | |
1202 | ||
1203 | set_gdbarch_num_regs (gdbarch, SPARC32_NUM_REGS); | |
1204 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
1205 | set_gdbarch_register_type (gdbarch, sparc32_register_type); | |
1206 | set_gdbarch_num_pseudo_regs (gdbarch, SPARC32_NUM_PSEUDO_REGS); | |
1207 | set_gdbarch_pseudo_register_read (gdbarch, sparc32_pseudo_register_read); | |
1208 | set_gdbarch_pseudo_register_write (gdbarch, sparc32_pseudo_register_write); | |
1209 | ||
1210 | /* Register numbers of various important registers. */ | |
1211 | set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */ | |
1212 | set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); /* %pc */ | |
1213 | set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */ | |
1214 | ||
1215 | /* Call dummy code. */ | |
1216 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
1217 | set_gdbarch_push_dummy_code (gdbarch, sparc32_push_dummy_code); | |
1218 | set_gdbarch_push_dummy_call (gdbarch, sparc32_push_dummy_call); | |
1219 | ||
b9d4c5ed | 1220 | set_gdbarch_return_value (gdbarch, sparc32_return_value); |
386c036b MK |
1221 | set_gdbarch_stabs_argument_has_addr |
1222 | (gdbarch, sparc32_stabs_argument_has_addr); | |
1223 | ||
1224 | set_gdbarch_skip_prologue (gdbarch, sparc32_skip_prologue); | |
1225 | ||
1226 | /* Stack grows downward. */ | |
1227 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
c906108c | 1228 | |
386c036b | 1229 | set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc); |
c906108c | 1230 | |
386c036b | 1231 | set_gdbarch_frame_args_skip (gdbarch, 8); |
5af923b0 | 1232 | |
386c036b | 1233 | set_gdbarch_print_insn (gdbarch, print_insn_sparc); |
c906108c | 1234 | |
386c036b MK |
1235 | set_gdbarch_software_single_step (gdbarch, sparc_software_single_step); |
1236 | set_gdbarch_write_pc (gdbarch, sparc_write_pc); | |
c906108c | 1237 | |
386c036b | 1238 | set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id); |
c906108c | 1239 | |
386c036b | 1240 | set_gdbarch_unwind_pc (gdbarch, sparc_unwind_pc); |
c906108c | 1241 | |
386c036b MK |
1242 | frame_base_set_default (gdbarch, &sparc32_frame_base); |
1243 | ||
1244 | /* Hook in ABI-specific overrides, if they have been registered. */ | |
1245 | gdbarch_init_osabi (info, gdbarch); | |
c906108c | 1246 | |
386c036b | 1247 | frame_unwind_append_sniffer (gdbarch, sparc32_frame_sniffer); |
c906108c | 1248 | |
a54124c5 | 1249 | /* If we have register sets, enable the generic core file support. */ |
4c72d57a | 1250 | if (tdep->gregset) |
a54124c5 MK |
1251 | set_gdbarch_regset_from_core_section (gdbarch, |
1252 | sparc_regset_from_core_section); | |
1253 | ||
386c036b MK |
1254 | return gdbarch; |
1255 | } | |
1256 | \f | |
1257 | /* Helper functions for dealing with register windows. */ | |
1258 | ||
1259 | void | |
1260 | sparc_supply_rwindow (struct regcache *regcache, CORE_ADDR sp, int regnum) | |
c906108c | 1261 | { |
386c036b MK |
1262 | int offset = 0; |
1263 | char buf[8]; | |
1264 | int i; | |
1265 | ||
1266 | if (sp & 1) | |
1267 | { | |
1268 | /* Registers are 64-bit. */ | |
1269 | sp += BIAS; | |
c906108c | 1270 | |
386c036b MK |
1271 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) |
1272 | { | |
1273 | if (regnum == i || regnum == -1) | |
1274 | { | |
1275 | target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8); | |
1276 | regcache_raw_supply (regcache, i, buf); | |
1277 | } | |
1278 | } | |
1279 | } | |
1280 | else | |
c906108c | 1281 | { |
386c036b MK |
1282 | /* Registers are 32-bit. Toss any sign-extension of the stack |
1283 | pointer. */ | |
1284 | sp &= 0xffffffffUL; | |
c906108c | 1285 | |
386c036b MK |
1286 | /* Clear out the top half of the temporary buffer, and put the |
1287 | register value in the bottom half if we're in 64-bit mode. */ | |
1288 | if (gdbarch_ptr_bit (current_gdbarch) == 64) | |
c906108c | 1289 | { |
386c036b MK |
1290 | memset (buf, 0, 4); |
1291 | offset = 4; | |
1292 | } | |
c906108c | 1293 | |
386c036b MK |
1294 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) |
1295 | { | |
1296 | if (regnum == i || regnum == -1) | |
1297 | { | |
1298 | target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4), | |
1299 | buf + offset, 4); | |
42cdca6c MK |
1300 | |
1301 | /* Handle StackGhost. */ | |
1302 | if (i == SPARC_I7_REGNUM) | |
1303 | { | |
1304 | ULONGEST wcookie = sparc_fetch_wcookie (); | |
7d34766b | 1305 | ULONGEST i7 = extract_unsigned_integer (buf + offset, 4); |
42cdca6c | 1306 | |
7d34766b | 1307 | store_unsigned_integer (buf + offset, 4, i7 ^ wcookie); |
42cdca6c MK |
1308 | } |
1309 | ||
386c036b MK |
1310 | regcache_raw_supply (regcache, i, buf); |
1311 | } | |
c906108c SS |
1312 | } |
1313 | } | |
c906108c | 1314 | } |
c906108c SS |
1315 | |
1316 | void | |
386c036b MK |
1317 | sparc_collect_rwindow (const struct regcache *regcache, |
1318 | CORE_ADDR sp, int regnum) | |
c906108c | 1319 | { |
386c036b MK |
1320 | int offset = 0; |
1321 | char buf[8]; | |
1322 | int i; | |
5af923b0 | 1323 | |
386c036b | 1324 | if (sp & 1) |
5af923b0 | 1325 | { |
386c036b MK |
1326 | /* Registers are 64-bit. */ |
1327 | sp += BIAS; | |
c906108c | 1328 | |
386c036b MK |
1329 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) |
1330 | { | |
1331 | if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i) | |
1332 | { | |
1333 | regcache_raw_collect (regcache, i, buf); | |
1334 | target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8); | |
1335 | } | |
1336 | } | |
5af923b0 MS |
1337 | } |
1338 | else | |
1339 | { | |
386c036b MK |
1340 | /* Registers are 32-bit. Toss any sign-extension of the stack |
1341 | pointer. */ | |
1342 | sp &= 0xffffffffUL; | |
1343 | ||
1344 | /* Only use the bottom half if we're in 64-bit mode. */ | |
1345 | if (gdbarch_ptr_bit (current_gdbarch) == 64) | |
1346 | offset = 4; | |
1347 | ||
1348 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) | |
1349 | { | |
1350 | if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i) | |
1351 | { | |
1352 | regcache_raw_collect (regcache, i, buf); | |
42cdca6c MK |
1353 | |
1354 | /* Handle StackGhost. */ | |
1355 | if (i == SPARC_I7_REGNUM) | |
1356 | { | |
1357 | ULONGEST wcookie = sparc_fetch_wcookie (); | |
7d34766b | 1358 | ULONGEST i7 = extract_unsigned_integer (buf + offset, 4); |
42cdca6c | 1359 | |
7d34766b | 1360 | store_unsigned_integer (buf + offset, 4, i7 ^ wcookie); |
42cdca6c MK |
1361 | } |
1362 | ||
386c036b MK |
1363 | target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4), |
1364 | buf + offset, 4); | |
1365 | } | |
1366 | } | |
5af923b0 | 1367 | } |
c906108c SS |
1368 | } |
1369 | ||
386c036b MK |
1370 | /* Helper functions for dealing with register sets. */ |
1371 | ||
c906108c | 1372 | void |
386c036b MK |
1373 | sparc32_supply_gregset (const struct sparc_gregset *gregset, |
1374 | struct regcache *regcache, | |
1375 | int regnum, const void *gregs) | |
c906108c | 1376 | { |
386c036b MK |
1377 | const char *regs = gregs; |
1378 | int i; | |
5af923b0 | 1379 | |
386c036b MK |
1380 | if (regnum == SPARC32_PSR_REGNUM || regnum == -1) |
1381 | regcache_raw_supply (regcache, SPARC32_PSR_REGNUM, | |
1382 | regs + gregset->r_psr_offset); | |
c906108c | 1383 | |
386c036b MK |
1384 | if (regnum == SPARC32_PC_REGNUM || regnum == -1) |
1385 | regcache_raw_supply (regcache, SPARC32_PC_REGNUM, | |
1386 | regs + gregset->r_pc_offset); | |
5af923b0 | 1387 | |
386c036b MK |
1388 | if (regnum == SPARC32_NPC_REGNUM || regnum == -1) |
1389 | regcache_raw_supply (regcache, SPARC32_NPC_REGNUM, | |
1390 | regs + gregset->r_npc_offset); | |
5af923b0 | 1391 | |
386c036b MK |
1392 | if (regnum == SPARC32_Y_REGNUM || regnum == -1) |
1393 | regcache_raw_supply (regcache, SPARC32_Y_REGNUM, | |
1394 | regs + gregset->r_y_offset); | |
5af923b0 | 1395 | |
386c036b MK |
1396 | if (regnum == SPARC_G0_REGNUM || regnum == -1) |
1397 | regcache_raw_supply (regcache, SPARC_G0_REGNUM, NULL); | |
5af923b0 | 1398 | |
386c036b | 1399 | if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1) |
c906108c | 1400 | { |
386c036b MK |
1401 | int offset = gregset->r_g1_offset; |
1402 | ||
1403 | for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++) | |
1404 | { | |
1405 | if (regnum == i || regnum == -1) | |
1406 | regcache_raw_supply (regcache, i, regs + offset); | |
1407 | offset += 4; | |
1408 | } | |
c906108c | 1409 | } |
386c036b MK |
1410 | |
1411 | if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1) | |
c906108c | 1412 | { |
386c036b MK |
1413 | /* Not all of the register set variants include Locals and |
1414 | Inputs. For those that don't, we read them off the stack. */ | |
1415 | if (gregset->r_l0_offset == -1) | |
1416 | { | |
1417 | ULONGEST sp; | |
1418 | ||
1419 | regcache_cooked_read_unsigned (regcache, SPARC_SP_REGNUM, &sp); | |
1420 | sparc_supply_rwindow (regcache, sp, regnum); | |
1421 | } | |
1422 | else | |
1423 | { | |
1424 | int offset = gregset->r_l0_offset; | |
1425 | ||
1426 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) | |
1427 | { | |
1428 | if (regnum == i || regnum == -1) | |
1429 | regcache_raw_supply (regcache, i, regs + offset); | |
1430 | offset += 4; | |
1431 | } | |
1432 | } | |
c906108c SS |
1433 | } |
1434 | } | |
1435 | ||
c5aa993b | 1436 | void |
386c036b MK |
1437 | sparc32_collect_gregset (const struct sparc_gregset *gregset, |
1438 | const struct regcache *regcache, | |
1439 | int regnum, void *gregs) | |
c906108c | 1440 | { |
386c036b MK |
1441 | char *regs = gregs; |
1442 | int i; | |
c5aa993b | 1443 | |
386c036b MK |
1444 | if (regnum == SPARC32_PSR_REGNUM || regnum == -1) |
1445 | regcache_raw_collect (regcache, SPARC32_PSR_REGNUM, | |
1446 | regs + gregset->r_psr_offset); | |
60054393 | 1447 | |
386c036b MK |
1448 | if (regnum == SPARC32_PC_REGNUM || regnum == -1) |
1449 | regcache_raw_collect (regcache, SPARC32_PC_REGNUM, | |
1450 | regs + gregset->r_pc_offset); | |
1451 | ||
1452 | if (regnum == SPARC32_NPC_REGNUM || regnum == -1) | |
1453 | regcache_raw_collect (regcache, SPARC32_NPC_REGNUM, | |
1454 | regs + gregset->r_npc_offset); | |
5af923b0 | 1455 | |
386c036b MK |
1456 | if (regnum == SPARC32_Y_REGNUM || regnum == -1) |
1457 | regcache_raw_collect (regcache, SPARC32_Y_REGNUM, | |
1458 | regs + gregset->r_y_offset); | |
1459 | ||
1460 | if ((regnum >= SPARC_G1_REGNUM && regnum <= SPARC_O7_REGNUM) || regnum == -1) | |
5af923b0 | 1461 | { |
386c036b MK |
1462 | int offset = gregset->r_g1_offset; |
1463 | ||
1464 | /* %g0 is always zero. */ | |
1465 | for (i = SPARC_G1_REGNUM; i <= SPARC_O7_REGNUM; i++) | |
1466 | { | |
1467 | if (regnum == i || regnum == -1) | |
1468 | regcache_raw_collect (regcache, i, regs + offset); | |
1469 | offset += 4; | |
1470 | } | |
5af923b0 | 1471 | } |
386c036b MK |
1472 | |
1473 | if ((regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM) || regnum == -1) | |
5af923b0 | 1474 | { |
386c036b MK |
1475 | /* Not all of the register set variants include Locals and |
1476 | Inputs. For those that don't, we read them off the stack. */ | |
1477 | if (gregset->r_l0_offset != -1) | |
1478 | { | |
1479 | int offset = gregset->r_l0_offset; | |
1480 | ||
1481 | for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++) | |
1482 | { | |
1483 | if (regnum == i || regnum == -1) | |
1484 | regcache_raw_collect (regcache, i, regs + offset); | |
1485 | offset += 4; | |
1486 | } | |
1487 | } | |
5af923b0 | 1488 | } |
c906108c SS |
1489 | } |
1490 | ||
c906108c | 1491 | void |
386c036b MK |
1492 | sparc32_supply_fpregset (struct regcache *regcache, |
1493 | int regnum, const void *fpregs) | |
c906108c | 1494 | { |
386c036b MK |
1495 | const char *regs = fpregs; |
1496 | int i; | |
60054393 | 1497 | |
386c036b | 1498 | for (i = 0; i < 32; i++) |
c906108c | 1499 | { |
386c036b MK |
1500 | if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1) |
1501 | regcache_raw_supply (regcache, SPARC_F0_REGNUM + i, regs + (i * 4)); | |
c906108c | 1502 | } |
5af923b0 | 1503 | |
386c036b MK |
1504 | if (regnum == SPARC32_FSR_REGNUM || regnum == -1) |
1505 | regcache_raw_supply (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4); | |
c906108c SS |
1506 | } |
1507 | ||
386c036b MK |
1508 | void |
1509 | sparc32_collect_fpregset (const struct regcache *regcache, | |
1510 | int regnum, void *fpregs) | |
c906108c | 1511 | { |
386c036b MK |
1512 | char *regs = fpregs; |
1513 | int i; | |
c906108c | 1514 | |
386c036b MK |
1515 | for (i = 0; i < 32; i++) |
1516 | { | |
1517 | if (regnum == (SPARC_F0_REGNUM + i) || regnum == -1) | |
1518 | regcache_raw_collect (regcache, SPARC_F0_REGNUM + i, regs + (i * 4)); | |
1519 | } | |
c906108c | 1520 | |
386c036b MK |
1521 | if (regnum == SPARC32_FSR_REGNUM || regnum == -1) |
1522 | regcache_raw_collect (regcache, SPARC32_FSR_REGNUM, regs + (32 * 4) + 4); | |
c906108c | 1523 | } |
c906108c | 1524 | \f |
c906108c | 1525 | |
386c036b | 1526 | /* SunOS 4. */ |
c906108c | 1527 | |
386c036b MK |
1528 | /* From <machine/reg.h>. */ |
1529 | const struct sparc_gregset sparc32_sunos4_gregset = | |
c906108c | 1530 | { |
386c036b MK |
1531 | 0 * 4, /* %psr */ |
1532 | 1 * 4, /* %pc */ | |
1533 | 2 * 4, /* %npc */ | |
1534 | 3 * 4, /* %y */ | |
1535 | -1, /* %wim */ | |
1536 | -1, /* %tbr */ | |
1537 | 4 * 4, /* %g1 */ | |
1538 | -1 /* %l0 */ | |
1539 | }; | |
1540 | \f | |
c906108c | 1541 | |
386c036b MK |
1542 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1543 | void _initialize_sparc_tdep (void); | |
c906108c SS |
1544 | |
1545 | void | |
386c036b | 1546 | _initialize_sparc_tdep (void) |
c906108c | 1547 | { |
386c036b | 1548 | register_gdbarch_init (bfd_arch_sparc, sparc32_gdbarch_init); |
ef3cf062 | 1549 | } |