]>
Commit | Line | Data |
---|---|---|
cfc14b3a MK |
1 | /* Frame unwinder for frames with DWARF Call Frame Information. |
2 | ||
0b302171 | 3 | Copyright (C) 2003-2005, 2007-2012 Free Software Foundation, Inc. |
cfc14b3a MK |
4 | |
5 | Contributed by Mark Kettenis. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
cfc14b3a MK |
12 | (at your option) any later version. |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
cfc14b3a MK |
21 | |
22 | #include "defs.h" | |
23 | #include "dwarf2expr.h" | |
fa8f86ff | 24 | #include "dwarf2.h" |
cfc14b3a MK |
25 | #include "frame.h" |
26 | #include "frame-base.h" | |
27 | #include "frame-unwind.h" | |
28 | #include "gdbcore.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "symtab.h" | |
31 | #include "objfiles.h" | |
32 | #include "regcache.h" | |
f2da6b3a | 33 | #include "value.h" |
cfc14b3a MK |
34 | |
35 | #include "gdb_assert.h" | |
36 | #include "gdb_string.h" | |
37 | ||
6896c0c7 | 38 | #include "complaints.h" |
cfc14b3a | 39 | #include "dwarf2-frame.h" |
9f6f94ff TT |
40 | #include "ax.h" |
41 | #include "dwarf2loc.h" | |
8fbca658 | 42 | #include "exceptions.h" |
111c6489 | 43 | #include "dwarf2-frame-tailcall.h" |
cfc14b3a | 44 | |
ae0d2f24 UW |
45 | struct comp_unit; |
46 | ||
cfc14b3a MK |
47 | /* Call Frame Information (CFI). */ |
48 | ||
49 | /* Common Information Entry (CIE). */ | |
50 | ||
51 | struct dwarf2_cie | |
52 | { | |
ae0d2f24 UW |
53 | /* Computation Unit for this CIE. */ |
54 | struct comp_unit *unit; | |
55 | ||
cfc14b3a MK |
56 | /* Offset into the .debug_frame section where this CIE was found. |
57 | Used to identify this CIE. */ | |
58 | ULONGEST cie_pointer; | |
59 | ||
60 | /* Constant that is factored out of all advance location | |
61 | instructions. */ | |
62 | ULONGEST code_alignment_factor; | |
63 | ||
64 | /* Constants that is factored out of all offset instructions. */ | |
65 | LONGEST data_alignment_factor; | |
66 | ||
67 | /* Return address column. */ | |
68 | ULONGEST return_address_register; | |
69 | ||
70 | /* Instruction sequence to initialize a register set. */ | |
f664829e DE |
71 | const gdb_byte *initial_instructions; |
72 | const gdb_byte *end; | |
cfc14b3a | 73 | |
303b6f5d DJ |
74 | /* Saved augmentation, in case it's needed later. */ |
75 | char *augmentation; | |
76 | ||
cfc14b3a | 77 | /* Encoding of addresses. */ |
852483bc | 78 | gdb_byte encoding; |
cfc14b3a | 79 | |
ae0d2f24 UW |
80 | /* Target address size in bytes. */ |
81 | int addr_size; | |
82 | ||
0963b4bd | 83 | /* Target pointer size in bytes. */ |
8da614df CV |
84 | int ptr_size; |
85 | ||
7131cb6e RH |
86 | /* True if a 'z' augmentation existed. */ |
87 | unsigned char saw_z_augmentation; | |
88 | ||
56c987f6 AO |
89 | /* True if an 'S' augmentation existed. */ |
90 | unsigned char signal_frame; | |
91 | ||
303b6f5d DJ |
92 | /* The version recorded in the CIE. */ |
93 | unsigned char version; | |
2dc7f7b3 TT |
94 | |
95 | /* The segment size. */ | |
96 | unsigned char segment_size; | |
b01c8410 | 97 | }; |
303b6f5d | 98 | |
b01c8410 PP |
99 | struct dwarf2_cie_table |
100 | { | |
101 | int num_entries; | |
102 | struct dwarf2_cie **entries; | |
cfc14b3a MK |
103 | }; |
104 | ||
105 | /* Frame Description Entry (FDE). */ | |
106 | ||
107 | struct dwarf2_fde | |
108 | { | |
109 | /* CIE for this FDE. */ | |
110 | struct dwarf2_cie *cie; | |
111 | ||
112 | /* First location associated with this FDE. */ | |
113 | CORE_ADDR initial_location; | |
114 | ||
115 | /* Number of bytes of program instructions described by this FDE. */ | |
116 | CORE_ADDR address_range; | |
117 | ||
118 | /* Instruction sequence. */ | |
f664829e DE |
119 | const gdb_byte *instructions; |
120 | const gdb_byte *end; | |
cfc14b3a | 121 | |
4bf8967c AS |
122 | /* True if this FDE is read from a .eh_frame instead of a .debug_frame |
123 | section. */ | |
124 | unsigned char eh_frame_p; | |
b01c8410 | 125 | }; |
4bf8967c | 126 | |
b01c8410 PP |
127 | struct dwarf2_fde_table |
128 | { | |
129 | int num_entries; | |
130 | struct dwarf2_fde **entries; | |
cfc14b3a MK |
131 | }; |
132 | ||
ae0d2f24 UW |
133 | /* A minimal decoding of DWARF2 compilation units. We only decode |
134 | what's needed to get to the call frame information. */ | |
135 | ||
136 | struct comp_unit | |
137 | { | |
138 | /* Keep the bfd convenient. */ | |
139 | bfd *abfd; | |
140 | ||
141 | struct objfile *objfile; | |
142 | ||
ae0d2f24 UW |
143 | /* Pointer to the .debug_frame section loaded into memory. */ |
144 | gdb_byte *dwarf_frame_buffer; | |
145 | ||
146 | /* Length of the loaded .debug_frame section. */ | |
c098b58b | 147 | bfd_size_type dwarf_frame_size; |
ae0d2f24 UW |
148 | |
149 | /* Pointer to the .debug_frame section. */ | |
150 | asection *dwarf_frame_section; | |
151 | ||
152 | /* Base for DW_EH_PE_datarel encodings. */ | |
153 | bfd_vma dbase; | |
154 | ||
155 | /* Base for DW_EH_PE_textrel encodings. */ | |
156 | bfd_vma tbase; | |
157 | }; | |
158 | ||
ac56253d TT |
159 | static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc, |
160 | CORE_ADDR *out_offset); | |
4fc771b8 DJ |
161 | |
162 | static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, | |
163 | int eh_frame_p); | |
ae0d2f24 UW |
164 | |
165 | static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, | |
0d45f56e | 166 | int ptr_len, const gdb_byte *buf, |
ae0d2f24 UW |
167 | unsigned int *bytes_read_ptr, |
168 | CORE_ADDR func_base); | |
cfc14b3a MK |
169 | \f |
170 | ||
171 | /* Structure describing a frame state. */ | |
172 | ||
173 | struct dwarf2_frame_state | |
174 | { | |
175 | /* Each register save state can be described in terms of a CFA slot, | |
176 | another register, or a location expression. */ | |
177 | struct dwarf2_frame_state_reg_info | |
178 | { | |
05cbe71a | 179 | struct dwarf2_frame_state_reg *reg; |
cfc14b3a MK |
180 | int num_regs; |
181 | ||
2fd481e1 PP |
182 | LONGEST cfa_offset; |
183 | ULONGEST cfa_reg; | |
184 | enum { | |
185 | CFA_UNSET, | |
186 | CFA_REG_OFFSET, | |
187 | CFA_EXP | |
188 | } cfa_how; | |
0d45f56e | 189 | const gdb_byte *cfa_exp; |
2fd481e1 | 190 | |
cfc14b3a MK |
191 | /* Used to implement DW_CFA_remember_state. */ |
192 | struct dwarf2_frame_state_reg_info *prev; | |
193 | } regs; | |
194 | ||
cfc14b3a MK |
195 | /* The PC described by the current frame state. */ |
196 | CORE_ADDR pc; | |
197 | ||
198 | /* Initial register set from the CIE. | |
199 | Used to implement DW_CFA_restore. */ | |
200 | struct dwarf2_frame_state_reg_info initial; | |
201 | ||
202 | /* The information we care about from the CIE. */ | |
203 | LONGEST data_align; | |
204 | ULONGEST code_align; | |
205 | ULONGEST retaddr_column; | |
303b6f5d DJ |
206 | |
207 | /* Flags for known producer quirks. */ | |
208 | ||
209 | /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa | |
210 | and DW_CFA_def_cfa_offset takes a factored offset. */ | |
211 | int armcc_cfa_offsets_sf; | |
212 | ||
213 | /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that | |
214 | the CFA is defined as REG - OFFSET rather than REG + OFFSET. */ | |
215 | int armcc_cfa_offsets_reversed; | |
cfc14b3a MK |
216 | }; |
217 | ||
218 | /* Store the length the expression for the CFA in the `cfa_reg' field, | |
219 | which is unused in that case. */ | |
220 | #define cfa_exp_len cfa_reg | |
221 | ||
f57d151a | 222 | /* Assert that the register set RS is large enough to store gdbarch_num_regs |
cfc14b3a MK |
223 | columns. If necessary, enlarge the register set. */ |
224 | ||
225 | static void | |
226 | dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, | |
227 | int num_regs) | |
228 | { | |
229 | size_t size = sizeof (struct dwarf2_frame_state_reg); | |
230 | ||
231 | if (num_regs <= rs->num_regs) | |
232 | return; | |
233 | ||
234 | rs->reg = (struct dwarf2_frame_state_reg *) | |
235 | xrealloc (rs->reg, num_regs * size); | |
236 | ||
237 | /* Initialize newly allocated registers. */ | |
2473a4a9 | 238 | memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); |
cfc14b3a MK |
239 | rs->num_regs = num_regs; |
240 | } | |
241 | ||
242 | /* Copy the register columns in register set RS into newly allocated | |
243 | memory and return a pointer to this newly created copy. */ | |
244 | ||
245 | static struct dwarf2_frame_state_reg * | |
246 | dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) | |
247 | { | |
d10891d4 | 248 | size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg); |
cfc14b3a MK |
249 | struct dwarf2_frame_state_reg *reg; |
250 | ||
251 | reg = (struct dwarf2_frame_state_reg *) xmalloc (size); | |
252 | memcpy (reg, rs->reg, size); | |
253 | ||
254 | return reg; | |
255 | } | |
256 | ||
257 | /* Release the memory allocated to register set RS. */ | |
258 | ||
259 | static void | |
260 | dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) | |
261 | { | |
262 | if (rs) | |
263 | { | |
264 | dwarf2_frame_state_free_regs (rs->prev); | |
265 | ||
266 | xfree (rs->reg); | |
267 | xfree (rs); | |
268 | } | |
269 | } | |
270 | ||
271 | /* Release the memory allocated to the frame state FS. */ | |
272 | ||
273 | static void | |
274 | dwarf2_frame_state_free (void *p) | |
275 | { | |
276 | struct dwarf2_frame_state *fs = p; | |
277 | ||
278 | dwarf2_frame_state_free_regs (fs->initial.prev); | |
279 | dwarf2_frame_state_free_regs (fs->regs.prev); | |
280 | xfree (fs->initial.reg); | |
281 | xfree (fs->regs.reg); | |
282 | xfree (fs); | |
283 | } | |
284 | \f | |
285 | ||
286 | /* Helper functions for execute_stack_op. */ | |
287 | ||
288 | static CORE_ADDR | |
289 | read_reg (void *baton, int reg) | |
290 | { | |
4a4e5149 DJ |
291 | struct frame_info *this_frame = (struct frame_info *) baton; |
292 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
cfc14b3a | 293 | int regnum; |
852483bc | 294 | gdb_byte *buf; |
cfc14b3a | 295 | |
ad010def | 296 | regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg); |
cfc14b3a | 297 | |
852483bc | 298 | buf = alloca (register_size (gdbarch, regnum)); |
4a4e5149 | 299 | get_frame_register (this_frame, regnum, buf); |
f2da6b3a DJ |
300 | |
301 | /* Convert the register to an integer. This returns a LONGEST | |
302 | rather than a CORE_ADDR, but unpack_pointer does the same thing | |
303 | under the covers, and this makes more sense for non-pointer | |
304 | registers. Maybe read_reg and the associated interfaces should | |
305 | deal with "struct value" instead of CORE_ADDR. */ | |
306 | return unpack_long (register_type (gdbarch, regnum), buf); | |
cfc14b3a MK |
307 | } |
308 | ||
309 | static void | |
852483bc | 310 | read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) |
cfc14b3a MK |
311 | { |
312 | read_memory (addr, buf, len); | |
313 | } | |
314 | ||
a6a5a945 LM |
315 | /* Execute the required actions for both the DW_CFA_restore and |
316 | DW_CFA_restore_extended instructions. */ | |
317 | static void | |
318 | dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, | |
319 | struct dwarf2_frame_state *fs, int eh_frame_p) | |
320 | { | |
321 | ULONGEST reg; | |
322 | ||
323 | gdb_assert (fs->initial.reg); | |
324 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); | |
325 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
326 | ||
327 | /* Check if this register was explicitly initialized in the | |
328 | CIE initial instructions. If not, default the rule to | |
329 | UNSPECIFIED. */ | |
330 | if (reg < fs->initial.num_regs) | |
331 | fs->regs.reg[reg] = fs->initial.reg[reg]; | |
332 | else | |
333 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; | |
334 | ||
335 | if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) | |
336 | complaint (&symfile_complaints, _("\ | |
337 | incomplete CFI data; DW_CFA_restore unspecified\n\ | |
5af949e3 | 338 | register %s (#%d) at %s"), |
a6a5a945 LM |
339 | gdbarch_register_name |
340 | (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)), | |
341 | gdbarch_dwarf2_reg_to_regnum (gdbarch, reg), | |
5af949e3 | 342 | paddress (gdbarch, fs->pc)); |
a6a5a945 LM |
343 | } |
344 | ||
9e8b7a03 JK |
345 | /* Virtual method table for execute_stack_op below. */ |
346 | ||
347 | static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs = | |
348 | { | |
349 | read_reg, | |
350 | read_mem, | |
523f3620 JK |
351 | ctx_no_get_frame_base, |
352 | ctx_no_get_frame_cfa, | |
353 | ctx_no_get_frame_pc, | |
354 | ctx_no_get_tls_address, | |
355 | ctx_no_dwarf_call, | |
8e3b41a9 | 356 | ctx_no_get_base_type, |
3019eac3 DE |
357 | ctx_no_push_dwarf_reg_entry_value, |
358 | ctx_no_get_addr_index | |
9e8b7a03 JK |
359 | }; |
360 | ||
cfc14b3a | 361 | static CORE_ADDR |
0d45f56e | 362 | execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size, |
ac56253d TT |
363 | CORE_ADDR offset, struct frame_info *this_frame, |
364 | CORE_ADDR initial, int initial_in_stack_memory) | |
cfc14b3a MK |
365 | { |
366 | struct dwarf_expr_context *ctx; | |
367 | CORE_ADDR result; | |
4a227398 | 368 | struct cleanup *old_chain; |
cfc14b3a MK |
369 | |
370 | ctx = new_dwarf_expr_context (); | |
4a227398 | 371 | old_chain = make_cleanup_free_dwarf_expr_context (ctx); |
72fc29ff | 372 | make_cleanup_value_free_to_mark (value_mark ()); |
4a227398 | 373 | |
f7fd4728 | 374 | ctx->gdbarch = get_frame_arch (this_frame); |
ae0d2f24 | 375 | ctx->addr_size = addr_size; |
181cebd4 | 376 | ctx->ref_addr_size = -1; |
ac56253d | 377 | ctx->offset = offset; |
4a4e5149 | 378 | ctx->baton = this_frame; |
9e8b7a03 | 379 | ctx->funcs = &dwarf2_frame_ctx_funcs; |
cfc14b3a | 380 | |
8a9b8146 | 381 | dwarf_expr_push_address (ctx, initial, initial_in_stack_memory); |
cfc14b3a | 382 | dwarf_expr_eval (ctx, exp, len); |
cfc14b3a | 383 | |
f2c7657e UW |
384 | if (ctx->location == DWARF_VALUE_MEMORY) |
385 | result = dwarf_expr_fetch_address (ctx, 0); | |
386 | else if (ctx->location == DWARF_VALUE_REGISTER) | |
8a9b8146 | 387 | result = read_reg (this_frame, value_as_long (dwarf_expr_fetch (ctx, 0))); |
f2c7657e | 388 | else |
cec03d70 TT |
389 | { |
390 | /* This is actually invalid DWARF, but if we ever do run across | |
391 | it somehow, we might as well support it. So, instead, report | |
392 | it as unimplemented. */ | |
3e43a32a MS |
393 | error (_("\ |
394 | Not implemented: computing unwound register using explicit value operator")); | |
cec03d70 | 395 | } |
cfc14b3a | 396 | |
4a227398 | 397 | do_cleanups (old_chain); |
cfc14b3a MK |
398 | |
399 | return result; | |
400 | } | |
401 | \f | |
402 | ||
111c6489 JK |
403 | /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior |
404 | PC. Modify FS state accordingly. Return current INSN_PTR where the | |
405 | execution has stopped, one can resume it on the next call. */ | |
406 | ||
407 | static const gdb_byte * | |
0d45f56e | 408 | execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr, |
9f6f94ff TT |
409 | const gdb_byte *insn_end, struct gdbarch *gdbarch, |
410 | CORE_ADDR pc, struct dwarf2_frame_state *fs) | |
cfc14b3a | 411 | { |
ae0d2f24 | 412 | int eh_frame_p = fde->eh_frame_p; |
cfc14b3a | 413 | int bytes_read; |
e17a4113 | 414 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
cfc14b3a MK |
415 | |
416 | while (insn_ptr < insn_end && fs->pc <= pc) | |
417 | { | |
852483bc | 418 | gdb_byte insn = *insn_ptr++; |
9fccedf7 DE |
419 | uint64_t utmp, reg; |
420 | int64_t offset; | |
cfc14b3a MK |
421 | |
422 | if ((insn & 0xc0) == DW_CFA_advance_loc) | |
423 | fs->pc += (insn & 0x3f) * fs->code_align; | |
424 | else if ((insn & 0xc0) == DW_CFA_offset) | |
425 | { | |
426 | reg = insn & 0x3f; | |
4fc771b8 | 427 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
f664829e | 428 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
cfc14b3a MK |
429 | offset = utmp * fs->data_align; |
430 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
05cbe71a | 431 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
cfc14b3a MK |
432 | fs->regs.reg[reg].loc.offset = offset; |
433 | } | |
434 | else if ((insn & 0xc0) == DW_CFA_restore) | |
435 | { | |
cfc14b3a | 436 | reg = insn & 0x3f; |
a6a5a945 | 437 | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
cfc14b3a MK |
438 | } |
439 | else | |
440 | { | |
441 | switch (insn) | |
442 | { | |
443 | case DW_CFA_set_loc: | |
ae0d2f24 | 444 | fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, |
8da614df | 445 | fde->cie->ptr_size, insn_ptr, |
ae0d2f24 UW |
446 | &bytes_read, fde->initial_location); |
447 | /* Apply the objfile offset for relocatable objects. */ | |
448 | fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets, | |
449 | SECT_OFF_TEXT (fde->cie->unit->objfile)); | |
cfc14b3a MK |
450 | insn_ptr += bytes_read; |
451 | break; | |
452 | ||
453 | case DW_CFA_advance_loc1: | |
e17a4113 | 454 | utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); |
cfc14b3a MK |
455 | fs->pc += utmp * fs->code_align; |
456 | insn_ptr++; | |
457 | break; | |
458 | case DW_CFA_advance_loc2: | |
e17a4113 | 459 | utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); |
cfc14b3a MK |
460 | fs->pc += utmp * fs->code_align; |
461 | insn_ptr += 2; | |
462 | break; | |
463 | case DW_CFA_advance_loc4: | |
e17a4113 | 464 | utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); |
cfc14b3a MK |
465 | fs->pc += utmp * fs->code_align; |
466 | insn_ptr += 4; | |
467 | break; | |
468 | ||
469 | case DW_CFA_offset_extended: | |
f664829e | 470 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 471 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
f664829e | 472 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
cfc14b3a MK |
473 | offset = utmp * fs->data_align; |
474 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
05cbe71a | 475 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
cfc14b3a MK |
476 | fs->regs.reg[reg].loc.offset = offset; |
477 | break; | |
478 | ||
479 | case DW_CFA_restore_extended: | |
f664829e | 480 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
a6a5a945 | 481 | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
cfc14b3a MK |
482 | break; |
483 | ||
484 | case DW_CFA_undefined: | |
f664829e | 485 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 486 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 487 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 488 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; |
cfc14b3a MK |
489 | break; |
490 | ||
491 | case DW_CFA_same_value: | |
f664829e | 492 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 493 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 494 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 495 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; |
cfc14b3a MK |
496 | break; |
497 | ||
498 | case DW_CFA_register: | |
f664829e | 499 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 500 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
f664829e | 501 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
4fc771b8 | 502 | utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); |
cfc14b3a | 503 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 504 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; |
cfc14b3a MK |
505 | fs->regs.reg[reg].loc.reg = utmp; |
506 | break; | |
507 | ||
508 | case DW_CFA_remember_state: | |
509 | { | |
510 | struct dwarf2_frame_state_reg_info *new_rs; | |
511 | ||
512 | new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); | |
513 | *new_rs = fs->regs; | |
514 | fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); | |
515 | fs->regs.prev = new_rs; | |
516 | } | |
517 | break; | |
518 | ||
519 | case DW_CFA_restore_state: | |
520 | { | |
521 | struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; | |
522 | ||
50ea7769 MK |
523 | if (old_rs == NULL) |
524 | { | |
e2e0b3e5 | 525 | complaint (&symfile_complaints, _("\ |
5af949e3 UW |
526 | bad CFI data; mismatched DW_CFA_restore_state at %s"), |
527 | paddress (gdbarch, fs->pc)); | |
50ea7769 MK |
528 | } |
529 | else | |
530 | { | |
531 | xfree (fs->regs.reg); | |
532 | fs->regs = *old_rs; | |
533 | xfree (old_rs); | |
534 | } | |
cfc14b3a MK |
535 | } |
536 | break; | |
537 | ||
538 | case DW_CFA_def_cfa: | |
f664829e DE |
539 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
540 | fs->regs.cfa_reg = reg; | |
541 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | |
303b6f5d DJ |
542 | |
543 | if (fs->armcc_cfa_offsets_sf) | |
544 | utmp *= fs->data_align; | |
545 | ||
2fd481e1 PP |
546 | fs->regs.cfa_offset = utmp; |
547 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
cfc14b3a MK |
548 | break; |
549 | ||
550 | case DW_CFA_def_cfa_register: | |
f664829e DE |
551 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
552 | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, | |
2fd481e1 PP |
553 | eh_frame_p); |
554 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
cfc14b3a MK |
555 | break; |
556 | ||
557 | case DW_CFA_def_cfa_offset: | |
f664829e | 558 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
303b6f5d DJ |
559 | |
560 | if (fs->armcc_cfa_offsets_sf) | |
561 | utmp *= fs->data_align; | |
562 | ||
2fd481e1 | 563 | fs->regs.cfa_offset = utmp; |
cfc14b3a MK |
564 | /* cfa_how deliberately not set. */ |
565 | break; | |
566 | ||
a8504492 MK |
567 | case DW_CFA_nop: |
568 | break; | |
569 | ||
cfc14b3a | 570 | case DW_CFA_def_cfa_expression: |
f664829e DE |
571 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
572 | fs->regs.cfa_exp_len = utmp; | |
2fd481e1 PP |
573 | fs->regs.cfa_exp = insn_ptr; |
574 | fs->regs.cfa_how = CFA_EXP; | |
575 | insn_ptr += fs->regs.cfa_exp_len; | |
cfc14b3a MK |
576 | break; |
577 | ||
578 | case DW_CFA_expression: | |
f664829e | 579 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 580 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 581 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
f664829e | 582 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
cfc14b3a MK |
583 | fs->regs.reg[reg].loc.exp = insn_ptr; |
584 | fs->regs.reg[reg].exp_len = utmp; | |
05cbe71a | 585 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; |
cfc14b3a MK |
586 | insn_ptr += utmp; |
587 | break; | |
588 | ||
a8504492 | 589 | case DW_CFA_offset_extended_sf: |
f664829e | 590 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 591 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
f664829e | 592 | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
f6da8dd8 | 593 | offset *= fs->data_align; |
a8504492 | 594 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 595 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
a8504492 MK |
596 | fs->regs.reg[reg].loc.offset = offset; |
597 | break; | |
598 | ||
46ea248b | 599 | case DW_CFA_val_offset: |
f664829e | 600 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
46ea248b | 601 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
f664829e | 602 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
46ea248b AO |
603 | offset = utmp * fs->data_align; |
604 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | |
605 | fs->regs.reg[reg].loc.offset = offset; | |
606 | break; | |
607 | ||
608 | case DW_CFA_val_offset_sf: | |
f664829e | 609 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
46ea248b | 610 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
f664829e | 611 | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
46ea248b AO |
612 | offset *= fs->data_align; |
613 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | |
614 | fs->regs.reg[reg].loc.offset = offset; | |
615 | break; | |
616 | ||
617 | case DW_CFA_val_expression: | |
f664829e | 618 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
46ea248b | 619 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
f664829e | 620 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
46ea248b AO |
621 | fs->regs.reg[reg].loc.exp = insn_ptr; |
622 | fs->regs.reg[reg].exp_len = utmp; | |
623 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | |
624 | insn_ptr += utmp; | |
625 | break; | |
626 | ||
a8504492 | 627 | case DW_CFA_def_cfa_sf: |
f664829e DE |
628 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
629 | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, | |
2fd481e1 | 630 | eh_frame_p); |
f664829e | 631 | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
2fd481e1 PP |
632 | fs->regs.cfa_offset = offset * fs->data_align; |
633 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
a8504492 MK |
634 | break; |
635 | ||
636 | case DW_CFA_def_cfa_offset_sf: | |
f664829e | 637 | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); |
2fd481e1 | 638 | fs->regs.cfa_offset = offset * fs->data_align; |
a8504492 | 639 | /* cfa_how deliberately not set. */ |
cfc14b3a MK |
640 | break; |
641 | ||
a77f4086 MK |
642 | case DW_CFA_GNU_window_save: |
643 | /* This is SPARC-specific code, and contains hard-coded | |
644 | constants for the register numbering scheme used by | |
645 | GCC. Rather than having a architecture-specific | |
646 | operation that's only ever used by a single | |
647 | architecture, we provide the implementation here. | |
648 | Incidentally that's what GCC does too in its | |
649 | unwinder. */ | |
650 | { | |
4a4e5149 | 651 | int size = register_size (gdbarch, 0); |
9a619af0 | 652 | |
a77f4086 MK |
653 | dwarf2_frame_state_alloc_regs (&fs->regs, 32); |
654 | for (reg = 8; reg < 16; reg++) | |
655 | { | |
656 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; | |
657 | fs->regs.reg[reg].loc.reg = reg + 16; | |
658 | } | |
659 | for (reg = 16; reg < 32; reg++) | |
660 | { | |
661 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | |
662 | fs->regs.reg[reg].loc.offset = (reg - 16) * size; | |
663 | } | |
664 | } | |
665 | break; | |
666 | ||
cfc14b3a MK |
667 | case DW_CFA_GNU_args_size: |
668 | /* Ignored. */ | |
f664829e | 669 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); |
cfc14b3a MK |
670 | break; |
671 | ||
58894217 | 672 | case DW_CFA_GNU_negative_offset_extended: |
f664829e | 673 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); |
4fc771b8 | 674 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
f664829e | 675 | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &offset); |
58894217 JK |
676 | offset *= fs->data_align; |
677 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
678 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | |
679 | fs->regs.reg[reg].loc.offset = -offset; | |
680 | break; | |
681 | ||
cfc14b3a | 682 | default: |
3e43a32a MS |
683 | internal_error (__FILE__, __LINE__, |
684 | _("Unknown CFI encountered.")); | |
cfc14b3a MK |
685 | } |
686 | } | |
687 | } | |
688 | ||
111c6489 JK |
689 | if (fs->initial.reg == NULL) |
690 | { | |
691 | /* Don't allow remember/restore between CIE and FDE programs. */ | |
692 | dwarf2_frame_state_free_regs (fs->regs.prev); | |
693 | fs->regs.prev = NULL; | |
694 | } | |
695 | ||
696 | return insn_ptr; | |
cfc14b3a | 697 | } |
8f22cb90 | 698 | \f |
cfc14b3a | 699 | |
8f22cb90 | 700 | /* Architecture-specific operations. */ |
cfc14b3a | 701 | |
8f22cb90 MK |
702 | /* Per-architecture data key. */ |
703 | static struct gdbarch_data *dwarf2_frame_data; | |
704 | ||
705 | struct dwarf2_frame_ops | |
706 | { | |
707 | /* Pre-initialize the register state REG for register REGNUM. */ | |
aff37fc1 DM |
708 | void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, |
709 | struct frame_info *); | |
3ed09a32 | 710 | |
4a4e5149 | 711 | /* Check whether the THIS_FRAME is a signal trampoline. */ |
3ed09a32 | 712 | int (*signal_frame_p) (struct gdbarch *, struct frame_info *); |
4bf8967c | 713 | |
4fc771b8 DJ |
714 | /* Convert .eh_frame register number to DWARF register number, or |
715 | adjust .debug_frame register number. */ | |
716 | int (*adjust_regnum) (struct gdbarch *, int, int); | |
cfc14b3a MK |
717 | }; |
718 | ||
8f22cb90 MK |
719 | /* Default architecture-specific register state initialization |
720 | function. */ | |
721 | ||
722 | static void | |
723 | dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 | 724 | struct dwarf2_frame_state_reg *reg, |
4a4e5149 | 725 | struct frame_info *this_frame) |
8f22cb90 MK |
726 | { |
727 | /* If we have a register that acts as a program counter, mark it as | |
728 | a destination for the return address. If we have a register that | |
729 | serves as the stack pointer, arrange for it to be filled with the | |
730 | call frame address (CFA). The other registers are marked as | |
731 | unspecified. | |
732 | ||
733 | We copy the return address to the program counter, since many | |
734 | parts in GDB assume that it is possible to get the return address | |
735 | by unwinding the program counter register. However, on ISA's | |
736 | with a dedicated return address register, the CFI usually only | |
737 | contains information to unwind that return address register. | |
738 | ||
739 | The reason we're treating the stack pointer special here is | |
740 | because in many cases GCC doesn't emit CFI for the stack pointer | |
741 | and implicitly assumes that it is equal to the CFA. This makes | |
742 | some sense since the DWARF specification (version 3, draft 8, | |
743 | p. 102) says that: | |
744 | ||
745 | "Typically, the CFA is defined to be the value of the stack | |
746 | pointer at the call site in the previous frame (which may be | |
747 | different from its value on entry to the current frame)." | |
748 | ||
749 | However, this isn't true for all platforms supported by GCC | |
750 | (e.g. IBM S/390 and zSeries). Those architectures should provide | |
751 | their own architecture-specific initialization function. */ | |
05cbe71a | 752 | |
ad010def | 753 | if (regnum == gdbarch_pc_regnum (gdbarch)) |
8f22cb90 | 754 | reg->how = DWARF2_FRAME_REG_RA; |
ad010def | 755 | else if (regnum == gdbarch_sp_regnum (gdbarch)) |
8f22cb90 MK |
756 | reg->how = DWARF2_FRAME_REG_CFA; |
757 | } | |
05cbe71a | 758 | |
8f22cb90 | 759 | /* Return a default for the architecture-specific operations. */ |
05cbe71a | 760 | |
8f22cb90 | 761 | static void * |
030f20e1 | 762 | dwarf2_frame_init (struct obstack *obstack) |
8f22cb90 MK |
763 | { |
764 | struct dwarf2_frame_ops *ops; | |
765 | ||
030f20e1 | 766 | ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); |
8f22cb90 MK |
767 | ops->init_reg = dwarf2_frame_default_init_reg; |
768 | return ops; | |
769 | } | |
05cbe71a | 770 | |
8f22cb90 MK |
771 | /* Set the architecture-specific register state initialization |
772 | function for GDBARCH to INIT_REG. */ | |
773 | ||
774 | void | |
775 | dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, | |
776 | void (*init_reg) (struct gdbarch *, int, | |
aff37fc1 DM |
777 | struct dwarf2_frame_state_reg *, |
778 | struct frame_info *)) | |
8f22cb90 | 779 | { |
030f20e1 | 780 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
8f22cb90 | 781 | |
8f22cb90 MK |
782 | ops->init_reg = init_reg; |
783 | } | |
784 | ||
785 | /* Pre-initialize the register state REG for register REGNUM. */ | |
05cbe71a MK |
786 | |
787 | static void | |
788 | dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 | 789 | struct dwarf2_frame_state_reg *reg, |
4a4e5149 | 790 | struct frame_info *this_frame) |
05cbe71a | 791 | { |
030f20e1 | 792 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
8f22cb90 | 793 | |
4a4e5149 | 794 | ops->init_reg (gdbarch, regnum, reg, this_frame); |
05cbe71a | 795 | } |
3ed09a32 DJ |
796 | |
797 | /* Set the architecture-specific signal trampoline recognition | |
798 | function for GDBARCH to SIGNAL_FRAME_P. */ | |
799 | ||
800 | void | |
801 | dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, | |
802 | int (*signal_frame_p) (struct gdbarch *, | |
803 | struct frame_info *)) | |
804 | { | |
805 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
806 | ||
807 | ops->signal_frame_p = signal_frame_p; | |
808 | } | |
809 | ||
810 | /* Query the architecture-specific signal frame recognizer for | |
4a4e5149 | 811 | THIS_FRAME. */ |
3ed09a32 DJ |
812 | |
813 | static int | |
814 | dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, | |
4a4e5149 | 815 | struct frame_info *this_frame) |
3ed09a32 DJ |
816 | { |
817 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
818 | ||
819 | if (ops->signal_frame_p == NULL) | |
820 | return 0; | |
4a4e5149 | 821 | return ops->signal_frame_p (gdbarch, this_frame); |
3ed09a32 | 822 | } |
4bf8967c | 823 | |
4fc771b8 DJ |
824 | /* Set the architecture-specific adjustment of .eh_frame and .debug_frame |
825 | register numbers. */ | |
4bf8967c AS |
826 | |
827 | void | |
4fc771b8 DJ |
828 | dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, |
829 | int (*adjust_regnum) (struct gdbarch *, | |
830 | int, int)) | |
4bf8967c AS |
831 | { |
832 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
833 | ||
4fc771b8 | 834 | ops->adjust_regnum = adjust_regnum; |
4bf8967c AS |
835 | } |
836 | ||
4fc771b8 DJ |
837 | /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame |
838 | register. */ | |
4bf8967c | 839 | |
4fc771b8 | 840 | static int |
3e43a32a MS |
841 | dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, |
842 | int regnum, int eh_frame_p) | |
4bf8967c AS |
843 | { |
844 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
845 | ||
4fc771b8 | 846 | if (ops->adjust_regnum == NULL) |
4bf8967c | 847 | return regnum; |
4fc771b8 | 848 | return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); |
4bf8967c | 849 | } |
303b6f5d DJ |
850 | |
851 | static void | |
852 | dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, | |
853 | struct dwarf2_fde *fde) | |
854 | { | |
303b6f5d DJ |
855 | struct symtab *s; |
856 | ||
857 | s = find_pc_symtab (fs->pc); | |
a6c727b2 | 858 | if (s == NULL) |
303b6f5d DJ |
859 | return; |
860 | ||
a6c727b2 DJ |
861 | if (producer_is_realview (s->producer)) |
862 | { | |
863 | if (fde->cie->version == 1) | |
864 | fs->armcc_cfa_offsets_sf = 1; | |
865 | ||
866 | if (fde->cie->version == 1) | |
867 | fs->armcc_cfa_offsets_reversed = 1; | |
868 | ||
869 | /* The reversed offset problem is present in some compilers | |
870 | using DWARF3, but it was eventually fixed. Check the ARM | |
871 | defined augmentations, which are in the format "armcc" followed | |
872 | by a list of one-character options. The "+" option means | |
873 | this problem is fixed (no quirk needed). If the armcc | |
874 | augmentation is missing, the quirk is needed. */ | |
875 | if (fde->cie->version == 3 | |
876 | && (strncmp (fde->cie->augmentation, "armcc", 5) != 0 | |
877 | || strchr (fde->cie->augmentation + 5, '+') == NULL)) | |
878 | fs->armcc_cfa_offsets_reversed = 1; | |
879 | ||
880 | return; | |
881 | } | |
303b6f5d | 882 | } |
8f22cb90 MK |
883 | \f |
884 | ||
9f6f94ff TT |
885 | void |
886 | dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc, | |
887 | struct gdbarch *gdbarch, | |
888 | CORE_ADDR pc, | |
889 | struct dwarf2_per_cu_data *data) | |
890 | { | |
891 | const int num_regs = gdbarch_num_regs (gdbarch) | |
892 | + gdbarch_num_pseudo_regs (gdbarch); | |
893 | struct dwarf2_fde *fde; | |
22e048c9 | 894 | CORE_ADDR text_offset; |
9f6f94ff TT |
895 | struct dwarf2_frame_state fs; |
896 | int addr_size; | |
897 | ||
898 | memset (&fs, 0, sizeof (struct dwarf2_frame_state)); | |
899 | ||
900 | fs.pc = pc; | |
901 | ||
902 | /* Find the correct FDE. */ | |
903 | fde = dwarf2_frame_find_fde (&fs.pc, &text_offset); | |
904 | if (fde == NULL) | |
905 | error (_("Could not compute CFA; needed to translate this expression")); | |
906 | ||
907 | /* Extract any interesting information from the CIE. */ | |
908 | fs.data_align = fde->cie->data_alignment_factor; | |
909 | fs.code_align = fde->cie->code_alignment_factor; | |
910 | fs.retaddr_column = fde->cie->return_address_register; | |
911 | addr_size = fde->cie->addr_size; | |
912 | ||
913 | /* Check for "quirks" - known bugs in producers. */ | |
914 | dwarf2_frame_find_quirks (&fs, fde); | |
915 | ||
916 | /* First decode all the insns in the CIE. */ | |
917 | execute_cfa_program (fde, fde->cie->initial_instructions, | |
918 | fde->cie->end, gdbarch, pc, &fs); | |
919 | ||
920 | /* Save the initialized register set. */ | |
921 | fs.initial = fs.regs; | |
922 | fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs); | |
923 | ||
924 | /* Then decode the insns in the FDE up to our target PC. */ | |
925 | execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs); | |
926 | ||
927 | /* Calculate the CFA. */ | |
928 | switch (fs.regs.cfa_how) | |
929 | { | |
930 | case CFA_REG_OFFSET: | |
931 | { | |
932 | int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg); | |
933 | ||
934 | if (regnum == -1) | |
935 | error (_("Unable to access DWARF register number %d"), | |
936 | (int) fs.regs.cfa_reg); /* FIXME */ | |
937 | ax_reg (expr, regnum); | |
938 | ||
939 | if (fs.regs.cfa_offset != 0) | |
940 | { | |
941 | if (fs.armcc_cfa_offsets_reversed) | |
942 | ax_const_l (expr, -fs.regs.cfa_offset); | |
943 | else | |
944 | ax_const_l (expr, fs.regs.cfa_offset); | |
945 | ax_simple (expr, aop_add); | |
946 | } | |
947 | } | |
948 | break; | |
949 | ||
950 | case CFA_EXP: | |
951 | ax_const_l (expr, text_offset); | |
952 | dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size, | |
953 | fs.regs.cfa_exp, | |
954 | fs.regs.cfa_exp + fs.regs.cfa_exp_len, | |
955 | data); | |
956 | break; | |
957 | ||
958 | default: | |
959 | internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); | |
960 | } | |
961 | } | |
962 | ||
963 | \f | |
8f22cb90 MK |
964 | struct dwarf2_frame_cache |
965 | { | |
966 | /* DWARF Call Frame Address. */ | |
967 | CORE_ADDR cfa; | |
968 | ||
8fbca658 PA |
969 | /* Set if the return address column was marked as unavailable |
970 | (required non-collected memory or registers to compute). */ | |
971 | int unavailable_retaddr; | |
972 | ||
0228dfb9 DJ |
973 | /* Set if the return address column was marked as undefined. */ |
974 | int undefined_retaddr; | |
975 | ||
8f22cb90 MK |
976 | /* Saved registers, indexed by GDB register number, not by DWARF |
977 | register number. */ | |
978 | struct dwarf2_frame_state_reg *reg; | |
8d5a9abc MK |
979 | |
980 | /* Return address register. */ | |
981 | struct dwarf2_frame_state_reg retaddr_reg; | |
ae0d2f24 UW |
982 | |
983 | /* Target address size in bytes. */ | |
984 | int addr_size; | |
ac56253d TT |
985 | |
986 | /* The .text offset. */ | |
987 | CORE_ADDR text_offset; | |
111c6489 JK |
988 | |
989 | /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME | |
990 | sequence. If NULL then it is a normal case with no TAILCALL_FRAME | |
991 | involved. Non-bottom frames of a virtual tail call frames chain use | |
992 | dwarf2_tailcall_frame_unwind unwinder so this field does not apply for | |
993 | them. */ | |
994 | void *tailcall_cache; | |
8f22cb90 | 995 | }; |
05cbe71a | 996 | |
b9362cc7 | 997 | static struct dwarf2_frame_cache * |
4a4e5149 | 998 | dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache) |
cfc14b3a MK |
999 | { |
1000 | struct cleanup *old_chain; | |
4a4e5149 | 1001 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
ad010def UW |
1002 | const int num_regs = gdbarch_num_regs (gdbarch) |
1003 | + gdbarch_num_pseudo_regs (gdbarch); | |
cfc14b3a MK |
1004 | struct dwarf2_frame_cache *cache; |
1005 | struct dwarf2_frame_state *fs; | |
1006 | struct dwarf2_fde *fde; | |
8fbca658 | 1007 | volatile struct gdb_exception ex; |
111c6489 JK |
1008 | CORE_ADDR entry_pc; |
1009 | LONGEST entry_cfa_sp_offset; | |
1010 | int entry_cfa_sp_offset_p = 0; | |
1011 | const gdb_byte *instr; | |
cfc14b3a MK |
1012 | |
1013 | if (*this_cache) | |
1014 | return *this_cache; | |
1015 | ||
1016 | /* Allocate a new cache. */ | |
1017 | cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); | |
1018 | cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); | |
8fbca658 | 1019 | *this_cache = cache; |
cfc14b3a MK |
1020 | |
1021 | /* Allocate and initialize the frame state. */ | |
8fbca658 | 1022 | fs = XZALLOC (struct dwarf2_frame_state); |
cfc14b3a MK |
1023 | old_chain = make_cleanup (dwarf2_frame_state_free, fs); |
1024 | ||
1025 | /* Unwind the PC. | |
1026 | ||
4a4e5149 | 1027 | Note that if the next frame is never supposed to return (i.e. a call |
cfc14b3a | 1028 | to abort), the compiler might optimize away the instruction at |
4a4e5149 | 1029 | its return address. As a result the return address will |
cfc14b3a | 1030 | point at some random instruction, and the CFI for that |
e4e9607c | 1031 | instruction is probably worthless to us. GCC's unwinder solves |
cfc14b3a MK |
1032 | this problem by substracting 1 from the return address to get an |
1033 | address in the middle of a presumed call instruction (or the | |
1034 | instruction in the associated delay slot). This should only be | |
1035 | done for "normal" frames and not for resume-type frames (signal | |
e4e9607c | 1036 | handlers, sentinel frames, dummy frames). The function |
ad1193e7 | 1037 | get_frame_address_in_block does just this. It's not clear how |
e4e9607c MK |
1038 | reliable the method is though; there is the potential for the |
1039 | register state pre-call being different to that on return. */ | |
4a4e5149 | 1040 | fs->pc = get_frame_address_in_block (this_frame); |
cfc14b3a MK |
1041 | |
1042 | /* Find the correct FDE. */ | |
ac56253d | 1043 | fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset); |
cfc14b3a MK |
1044 | gdb_assert (fde != NULL); |
1045 | ||
1046 | /* Extract any interesting information from the CIE. */ | |
1047 | fs->data_align = fde->cie->data_alignment_factor; | |
1048 | fs->code_align = fde->cie->code_alignment_factor; | |
1049 | fs->retaddr_column = fde->cie->return_address_register; | |
ae0d2f24 | 1050 | cache->addr_size = fde->cie->addr_size; |
cfc14b3a | 1051 | |
303b6f5d DJ |
1052 | /* Check for "quirks" - known bugs in producers. */ |
1053 | dwarf2_frame_find_quirks (fs, fde); | |
1054 | ||
cfc14b3a | 1055 | /* First decode all the insns in the CIE. */ |
ae0d2f24 | 1056 | execute_cfa_program (fde, fde->cie->initial_instructions, |
9f6f94ff | 1057 | fde->cie->end, gdbarch, get_frame_pc (this_frame), fs); |
cfc14b3a MK |
1058 | |
1059 | /* Save the initialized register set. */ | |
1060 | fs->initial = fs->regs; | |
1061 | fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); | |
1062 | ||
111c6489 JK |
1063 | if (get_frame_func_if_available (this_frame, &entry_pc)) |
1064 | { | |
1065 | /* Decode the insns in the FDE up to the entry PC. */ | |
1066 | instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, | |
1067 | entry_pc, fs); | |
1068 | ||
1069 | if (fs->regs.cfa_how == CFA_REG_OFFSET | |
1070 | && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg) | |
1071 | == gdbarch_sp_regnum (gdbarch))) | |
1072 | { | |
1073 | entry_cfa_sp_offset = fs->regs.cfa_offset; | |
1074 | entry_cfa_sp_offset_p = 1; | |
1075 | } | |
1076 | } | |
1077 | else | |
1078 | instr = fde->instructions; | |
1079 | ||
cfc14b3a | 1080 | /* Then decode the insns in the FDE up to our target PC. */ |
111c6489 | 1081 | execute_cfa_program (fde, instr, fde->end, gdbarch, |
9f6f94ff | 1082 | get_frame_pc (this_frame), fs); |
cfc14b3a | 1083 | |
8fbca658 | 1084 | TRY_CATCH (ex, RETURN_MASK_ERROR) |
cfc14b3a | 1085 | { |
8fbca658 PA |
1086 | /* Calculate the CFA. */ |
1087 | switch (fs->regs.cfa_how) | |
1088 | { | |
1089 | case CFA_REG_OFFSET: | |
1090 | cache->cfa = read_reg (this_frame, fs->regs.cfa_reg); | |
1091 | if (fs->armcc_cfa_offsets_reversed) | |
1092 | cache->cfa -= fs->regs.cfa_offset; | |
1093 | else | |
1094 | cache->cfa += fs->regs.cfa_offset; | |
1095 | break; | |
1096 | ||
1097 | case CFA_EXP: | |
1098 | cache->cfa = | |
1099 | execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len, | |
1100 | cache->addr_size, cache->text_offset, | |
1101 | this_frame, 0, 0); | |
1102 | break; | |
1103 | ||
1104 | default: | |
1105 | internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); | |
1106 | } | |
1107 | } | |
1108 | if (ex.reason < 0) | |
1109 | { | |
1110 | if (ex.error == NOT_AVAILABLE_ERROR) | |
1111 | { | |
1112 | cache->unavailable_retaddr = 1; | |
1113 | return cache; | |
1114 | } | |
cfc14b3a | 1115 | |
8fbca658 | 1116 | throw_exception (ex); |
cfc14b3a MK |
1117 | } |
1118 | ||
05cbe71a | 1119 | /* Initialize the register state. */ |
3e2c4033 AC |
1120 | { |
1121 | int regnum; | |
e4e9607c | 1122 | |
3e2c4033 | 1123 | for (regnum = 0; regnum < num_regs; regnum++) |
4a4e5149 | 1124 | dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); |
3e2c4033 AC |
1125 | } |
1126 | ||
1127 | /* Go through the DWARF2 CFI generated table and save its register | |
79c4cb80 MK |
1128 | location information in the cache. Note that we don't skip the |
1129 | return address column; it's perfectly all right for it to | |
1130 | correspond to a real register. If it doesn't correspond to a | |
1131 | real register, or if we shouldn't treat it as such, | |
055d23b8 | 1132 | gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside |
f57d151a | 1133 | the range [0, gdbarch_num_regs). */ |
3e2c4033 AC |
1134 | { |
1135 | int column; /* CFI speak for "register number". */ | |
e4e9607c | 1136 | |
3e2c4033 AC |
1137 | for (column = 0; column < fs->regs.num_regs; column++) |
1138 | { | |
3e2c4033 | 1139 | /* Use the GDB register number as the destination index. */ |
ad010def | 1140 | int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column); |
3e2c4033 AC |
1141 | |
1142 | /* If there's no corresponding GDB register, ignore it. */ | |
1143 | if (regnum < 0 || regnum >= num_regs) | |
1144 | continue; | |
1145 | ||
1146 | /* NOTE: cagney/2003-09-05: CFI should specify the disposition | |
e4e9607c MK |
1147 | of all debug info registers. If it doesn't, complain (but |
1148 | not too loudly). It turns out that GCC assumes that an | |
3e2c4033 AC |
1149 | unspecified register implies "same value" when CFI (draft |
1150 | 7) specifies nothing at all. Such a register could equally | |
1151 | be interpreted as "undefined". Also note that this check | |
e4e9607c MK |
1152 | isn't sufficient; it only checks that all registers in the |
1153 | range [0 .. max column] are specified, and won't detect | |
3e2c4033 | 1154 | problems when a debug info register falls outside of the |
e4e9607c | 1155 | table. We need a way of iterating through all the valid |
3e2c4033 | 1156 | DWARF2 register numbers. */ |
05cbe71a | 1157 | if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) |
f059bf6f AC |
1158 | { |
1159 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) | |
e2e0b3e5 | 1160 | complaint (&symfile_complaints, _("\ |
5af949e3 | 1161 | incomplete CFI data; unspecified registers (e.g., %s) at %s"), |
f059bf6f | 1162 | gdbarch_register_name (gdbarch, regnum), |
5af949e3 | 1163 | paddress (gdbarch, fs->pc)); |
f059bf6f | 1164 | } |
35889917 MK |
1165 | else |
1166 | cache->reg[regnum] = fs->regs.reg[column]; | |
3e2c4033 AC |
1167 | } |
1168 | } | |
cfc14b3a | 1169 | |
8d5a9abc MK |
1170 | /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information |
1171 | we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */ | |
35889917 MK |
1172 | { |
1173 | int regnum; | |
1174 | ||
1175 | for (regnum = 0; regnum < num_regs; regnum++) | |
1176 | { | |
8d5a9abc MK |
1177 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA |
1178 | || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) | |
35889917 | 1179 | { |
05cbe71a MK |
1180 | struct dwarf2_frame_state_reg *retaddr_reg = |
1181 | &fs->regs.reg[fs->retaddr_column]; | |
1182 | ||
d4f10bf2 MK |
1183 | /* It seems rather bizarre to specify an "empty" column as |
1184 | the return adress column. However, this is exactly | |
1185 | what GCC does on some targets. It turns out that GCC | |
1186 | assumes that the return address can be found in the | |
1187 | register corresponding to the return address column. | |
8d5a9abc MK |
1188 | Incidentally, that's how we should treat a return |
1189 | address column specifying "same value" too. */ | |
d4f10bf2 | 1190 | if (fs->retaddr_column < fs->regs.num_regs |
05cbe71a MK |
1191 | && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED |
1192 | && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) | |
8d5a9abc MK |
1193 | { |
1194 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) | |
1195 | cache->reg[regnum] = *retaddr_reg; | |
1196 | else | |
1197 | cache->retaddr_reg = *retaddr_reg; | |
1198 | } | |
35889917 MK |
1199 | else |
1200 | { | |
8d5a9abc MK |
1201 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) |
1202 | { | |
1203 | cache->reg[regnum].loc.reg = fs->retaddr_column; | |
1204 | cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; | |
1205 | } | |
1206 | else | |
1207 | { | |
1208 | cache->retaddr_reg.loc.reg = fs->retaddr_column; | |
1209 | cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; | |
1210 | } | |
35889917 MK |
1211 | } |
1212 | } | |
1213 | } | |
1214 | } | |
cfc14b3a | 1215 | |
0228dfb9 DJ |
1216 | if (fs->retaddr_column < fs->regs.num_regs |
1217 | && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) | |
1218 | cache->undefined_retaddr = 1; | |
1219 | ||
cfc14b3a MK |
1220 | do_cleanups (old_chain); |
1221 | ||
111c6489 JK |
1222 | /* Try to find a virtual tail call frames chain with bottom (callee) frame |
1223 | starting at THIS_FRAME. */ | |
1224 | dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache, | |
1225 | (entry_cfa_sp_offset_p | |
1226 | ? &entry_cfa_sp_offset : NULL)); | |
1227 | ||
cfc14b3a MK |
1228 | return cache; |
1229 | } | |
1230 | ||
8fbca658 PA |
1231 | static enum unwind_stop_reason |
1232 | dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame, | |
1233 | void **this_cache) | |
1234 | { | |
1235 | struct dwarf2_frame_cache *cache | |
1236 | = dwarf2_frame_cache (this_frame, this_cache); | |
1237 | ||
1238 | if (cache->unavailable_retaddr) | |
1239 | return UNWIND_UNAVAILABLE; | |
1240 | ||
1241 | if (cache->undefined_retaddr) | |
1242 | return UNWIND_OUTERMOST; | |
1243 | ||
1244 | return UNWIND_NO_REASON; | |
1245 | } | |
1246 | ||
cfc14b3a | 1247 | static void |
4a4e5149 | 1248 | dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache, |
cfc14b3a MK |
1249 | struct frame_id *this_id) |
1250 | { | |
1251 | struct dwarf2_frame_cache *cache = | |
4a4e5149 | 1252 | dwarf2_frame_cache (this_frame, this_cache); |
cfc14b3a | 1253 | |
8fbca658 PA |
1254 | if (cache->unavailable_retaddr) |
1255 | return; | |
1256 | ||
0228dfb9 DJ |
1257 | if (cache->undefined_retaddr) |
1258 | return; | |
1259 | ||
4a4e5149 | 1260 | (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); |
93d42b30 DJ |
1261 | } |
1262 | ||
4a4e5149 DJ |
1263 | static struct value * |
1264 | dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1265 | int regnum) | |
93d42b30 | 1266 | { |
4a4e5149 | 1267 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
93d42b30 | 1268 | struct dwarf2_frame_cache *cache = |
4a4e5149 DJ |
1269 | dwarf2_frame_cache (this_frame, this_cache); |
1270 | CORE_ADDR addr; | |
1271 | int realnum; | |
cfc14b3a | 1272 | |
111c6489 JK |
1273 | /* Non-bottom frames of a virtual tail call frames chain use |
1274 | dwarf2_tailcall_frame_unwind unwinder so this code does not apply for | |
1275 | them. If dwarf2_tailcall_prev_register_first does not have specific value | |
1276 | unwind the register, tail call frames are assumed to have the register set | |
1277 | of the top caller. */ | |
1278 | if (cache->tailcall_cache) | |
1279 | { | |
1280 | struct value *val; | |
1281 | ||
1282 | val = dwarf2_tailcall_prev_register_first (this_frame, | |
1283 | &cache->tailcall_cache, | |
1284 | regnum); | |
1285 | if (val) | |
1286 | return val; | |
1287 | } | |
1288 | ||
cfc14b3a MK |
1289 | switch (cache->reg[regnum].how) |
1290 | { | |
05cbe71a | 1291 | case DWARF2_FRAME_REG_UNDEFINED: |
3e2c4033 | 1292 | /* If CFI explicitly specified that the value isn't defined, |
e4e9607c | 1293 | mark it as optimized away; the value isn't available. */ |
4a4e5149 | 1294 | return frame_unwind_got_optimized (this_frame, regnum); |
cfc14b3a | 1295 | |
05cbe71a | 1296 | case DWARF2_FRAME_REG_SAVED_OFFSET: |
4a4e5149 DJ |
1297 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1298 | return frame_unwind_got_memory (this_frame, regnum, addr); | |
cfc14b3a | 1299 | |
05cbe71a | 1300 | case DWARF2_FRAME_REG_SAVED_REG: |
4a4e5149 DJ |
1301 | realnum |
1302 | = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg); | |
1303 | return frame_unwind_got_register (this_frame, regnum, realnum); | |
cfc14b3a | 1304 | |
05cbe71a | 1305 | case DWARF2_FRAME_REG_SAVED_EXP: |
4a4e5149 DJ |
1306 | addr = execute_stack_op (cache->reg[regnum].loc.exp, |
1307 | cache->reg[regnum].exp_len, | |
ac56253d TT |
1308 | cache->addr_size, cache->text_offset, |
1309 | this_frame, cache->cfa, 1); | |
4a4e5149 | 1310 | return frame_unwind_got_memory (this_frame, regnum, addr); |
cfc14b3a | 1311 | |
46ea248b | 1312 | case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: |
4a4e5149 DJ |
1313 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1314 | return frame_unwind_got_constant (this_frame, regnum, addr); | |
46ea248b AO |
1315 | |
1316 | case DWARF2_FRAME_REG_SAVED_VAL_EXP: | |
4a4e5149 DJ |
1317 | addr = execute_stack_op (cache->reg[regnum].loc.exp, |
1318 | cache->reg[regnum].exp_len, | |
ac56253d TT |
1319 | cache->addr_size, cache->text_offset, |
1320 | this_frame, cache->cfa, 1); | |
4a4e5149 | 1321 | return frame_unwind_got_constant (this_frame, regnum, addr); |
46ea248b | 1322 | |
05cbe71a | 1323 | case DWARF2_FRAME_REG_UNSPECIFIED: |
3e2c4033 AC |
1324 | /* GCC, in its infinite wisdom decided to not provide unwind |
1325 | information for registers that are "same value". Since | |
1326 | DWARF2 (3 draft 7) doesn't define such behavior, said | |
1327 | registers are actually undefined (which is different to CFI | |
1328 | "undefined"). Code above issues a complaint about this. | |
1329 | Here just fudge the books, assume GCC, and that the value is | |
1330 | more inner on the stack. */ | |
4a4e5149 | 1331 | return frame_unwind_got_register (this_frame, regnum, regnum); |
3e2c4033 | 1332 | |
05cbe71a | 1333 | case DWARF2_FRAME_REG_SAME_VALUE: |
4a4e5149 | 1334 | return frame_unwind_got_register (this_frame, regnum, regnum); |
cfc14b3a | 1335 | |
05cbe71a | 1336 | case DWARF2_FRAME_REG_CFA: |
4a4e5149 | 1337 | return frame_unwind_got_address (this_frame, regnum, cache->cfa); |
35889917 | 1338 | |
ea7963f0 | 1339 | case DWARF2_FRAME_REG_CFA_OFFSET: |
4a4e5149 DJ |
1340 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1341 | return frame_unwind_got_address (this_frame, regnum, addr); | |
ea7963f0 | 1342 | |
8d5a9abc | 1343 | case DWARF2_FRAME_REG_RA_OFFSET: |
4a4e5149 DJ |
1344 | addr = cache->reg[regnum].loc.offset; |
1345 | regnum = gdbarch_dwarf2_reg_to_regnum | |
1346 | (gdbarch, cache->retaddr_reg.loc.reg); | |
1347 | addr += get_frame_register_unsigned (this_frame, regnum); | |
1348 | return frame_unwind_got_address (this_frame, regnum, addr); | |
8d5a9abc | 1349 | |
b39cc962 DJ |
1350 | case DWARF2_FRAME_REG_FN: |
1351 | return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); | |
1352 | ||
cfc14b3a | 1353 | default: |
e2e0b3e5 | 1354 | internal_error (__FILE__, __LINE__, _("Unknown register rule.")); |
cfc14b3a MK |
1355 | } |
1356 | } | |
1357 | ||
111c6489 JK |
1358 | /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail |
1359 | call frames chain. */ | |
1360 | ||
1361 | static void | |
1362 | dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache) | |
1363 | { | |
1364 | struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache); | |
1365 | ||
1366 | if (cache->tailcall_cache) | |
1367 | dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache); | |
1368 | } | |
1369 | ||
4a4e5149 DJ |
1370 | static int |
1371 | dwarf2_frame_sniffer (const struct frame_unwind *self, | |
1372 | struct frame_info *this_frame, void **this_cache) | |
cfc14b3a | 1373 | { |
1ce5d6dd | 1374 | /* Grab an address that is guarenteed to reside somewhere within the |
4a4e5149 | 1375 | function. get_frame_pc(), with a no-return next function, can |
93d42b30 DJ |
1376 | end up returning something past the end of this function's body. |
1377 | If the frame we're sniffing for is a signal frame whose start | |
1378 | address is placed on the stack by the OS, its FDE must | |
4a4e5149 DJ |
1379 | extend one byte before its start address or we could potentially |
1380 | select the FDE of the previous function. */ | |
1381 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
ac56253d | 1382 | struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL); |
9a619af0 | 1383 | |
56c987f6 | 1384 | if (!fde) |
4a4e5149 | 1385 | return 0; |
3ed09a32 DJ |
1386 | |
1387 | /* On some targets, signal trampolines may have unwind information. | |
1388 | We need to recognize them so that we set the frame type | |
1389 | correctly. */ | |
1390 | ||
56c987f6 | 1391 | if (fde->cie->signal_frame |
4a4e5149 DJ |
1392 | || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), |
1393 | this_frame)) | |
1394 | return self->type == SIGTRAMP_FRAME; | |
1395 | ||
111c6489 JK |
1396 | if (self->type != NORMAL_FRAME) |
1397 | return 0; | |
1398 | ||
1399 | /* Preinitializa the cache so that TAILCALL_FRAME can find the record by | |
1400 | dwarf2_tailcall_sniffer_first. */ | |
1401 | dwarf2_frame_cache (this_frame, this_cache); | |
1402 | ||
1403 | return 1; | |
4a4e5149 DJ |
1404 | } |
1405 | ||
1406 | static const struct frame_unwind dwarf2_frame_unwind = | |
1407 | { | |
1408 | NORMAL_FRAME, | |
8fbca658 | 1409 | dwarf2_frame_unwind_stop_reason, |
4a4e5149 DJ |
1410 | dwarf2_frame_this_id, |
1411 | dwarf2_frame_prev_register, | |
1412 | NULL, | |
111c6489 JK |
1413 | dwarf2_frame_sniffer, |
1414 | dwarf2_frame_dealloc_cache | |
4a4e5149 DJ |
1415 | }; |
1416 | ||
1417 | static const struct frame_unwind dwarf2_signal_frame_unwind = | |
1418 | { | |
1419 | SIGTRAMP_FRAME, | |
8fbca658 | 1420 | dwarf2_frame_unwind_stop_reason, |
4a4e5149 DJ |
1421 | dwarf2_frame_this_id, |
1422 | dwarf2_frame_prev_register, | |
1423 | NULL, | |
111c6489 JK |
1424 | dwarf2_frame_sniffer, |
1425 | ||
1426 | /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */ | |
1427 | NULL | |
4a4e5149 | 1428 | }; |
cfc14b3a | 1429 | |
4a4e5149 DJ |
1430 | /* Append the DWARF-2 frame unwinders to GDBARCH's list. */ |
1431 | ||
1432 | void | |
1433 | dwarf2_append_unwinders (struct gdbarch *gdbarch) | |
1434 | { | |
111c6489 JK |
1435 | /* TAILCALL_FRAME must be first to find the record by |
1436 | dwarf2_tailcall_sniffer_first. */ | |
1437 | frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind); | |
1438 | ||
4a4e5149 DJ |
1439 | frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); |
1440 | frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); | |
cfc14b3a MK |
1441 | } |
1442 | \f | |
1443 | ||
1444 | /* There is no explicitly defined relationship between the CFA and the | |
1445 | location of frame's local variables and arguments/parameters. | |
1446 | Therefore, frame base methods on this page should probably only be | |
1447 | used as a last resort, just to avoid printing total garbage as a | |
1448 | response to the "info frame" command. */ | |
1449 | ||
1450 | static CORE_ADDR | |
4a4e5149 | 1451 | dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache) |
cfc14b3a MK |
1452 | { |
1453 | struct dwarf2_frame_cache *cache = | |
4a4e5149 | 1454 | dwarf2_frame_cache (this_frame, this_cache); |
cfc14b3a MK |
1455 | |
1456 | return cache->cfa; | |
1457 | } | |
1458 | ||
1459 | static const struct frame_base dwarf2_frame_base = | |
1460 | { | |
1461 | &dwarf2_frame_unwind, | |
1462 | dwarf2_frame_base_address, | |
1463 | dwarf2_frame_base_address, | |
1464 | dwarf2_frame_base_address | |
1465 | }; | |
1466 | ||
1467 | const struct frame_base * | |
4a4e5149 | 1468 | dwarf2_frame_base_sniffer (struct frame_info *this_frame) |
cfc14b3a | 1469 | { |
4a4e5149 | 1470 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
9a619af0 | 1471 | |
ac56253d | 1472 | if (dwarf2_frame_find_fde (&block_addr, NULL)) |
cfc14b3a MK |
1473 | return &dwarf2_frame_base; |
1474 | ||
1475 | return NULL; | |
1476 | } | |
e7802207 TT |
1477 | |
1478 | /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from | |
1479 | the DWARF unwinder. This is used to implement | |
1480 | DW_OP_call_frame_cfa. */ | |
1481 | ||
1482 | CORE_ADDR | |
1483 | dwarf2_frame_cfa (struct frame_info *this_frame) | |
1484 | { | |
1485 | while (get_frame_type (this_frame) == INLINE_FRAME) | |
1486 | this_frame = get_prev_frame (this_frame); | |
1487 | /* This restriction could be lifted if other unwinders are known to | |
1488 | compute the frame base in a way compatible with the DWARF | |
1489 | unwinder. */ | |
111c6489 JK |
1490 | if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind) |
1491 | && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind)) | |
e7802207 | 1492 | error (_("can't compute CFA for this frame")); |
c0bf857d PA |
1493 | if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE) |
1494 | throw_error (NOT_AVAILABLE_ERROR, | |
1495 | _("can't compute CFA for this frame: " | |
1496 | "required registers or memory are unavailable")); | |
e7802207 TT |
1497 | return get_frame_base (this_frame); |
1498 | } | |
cfc14b3a | 1499 | \f |
8f22cb90 | 1500 | const struct objfile_data *dwarf2_frame_objfile_data; |
0d0e1a63 | 1501 | |
cfc14b3a | 1502 | static unsigned int |
f664829e | 1503 | read_1_byte (bfd *abfd, const gdb_byte *buf) |
cfc14b3a | 1504 | { |
852483bc | 1505 | return bfd_get_8 (abfd, buf); |
cfc14b3a MK |
1506 | } |
1507 | ||
1508 | static unsigned int | |
f664829e | 1509 | read_4_bytes (bfd *abfd, const gdb_byte *buf) |
cfc14b3a | 1510 | { |
852483bc | 1511 | return bfd_get_32 (abfd, buf); |
cfc14b3a MK |
1512 | } |
1513 | ||
1514 | static ULONGEST | |
f664829e | 1515 | read_8_bytes (bfd *abfd, const gdb_byte *buf) |
cfc14b3a | 1516 | { |
852483bc | 1517 | return bfd_get_64 (abfd, buf); |
cfc14b3a MK |
1518 | } |
1519 | ||
1520 | static ULONGEST | |
f664829e DE |
1521 | read_initial_length (bfd *abfd, const gdb_byte *buf, |
1522 | unsigned int *bytes_read_ptr) | |
cfc14b3a MK |
1523 | { |
1524 | LONGEST result; | |
1525 | ||
852483bc | 1526 | result = bfd_get_32 (abfd, buf); |
cfc14b3a MK |
1527 | if (result == 0xffffffff) |
1528 | { | |
852483bc | 1529 | result = bfd_get_64 (abfd, buf + 4); |
cfc14b3a MK |
1530 | *bytes_read_ptr = 12; |
1531 | } | |
1532 | else | |
1533 | *bytes_read_ptr = 4; | |
1534 | ||
1535 | return result; | |
1536 | } | |
1537 | \f | |
1538 | ||
1539 | /* Pointer encoding helper functions. */ | |
1540 | ||
1541 | /* GCC supports exception handling based on DWARF2 CFI. However, for | |
1542 | technical reasons, it encodes addresses in its FDE's in a different | |
1543 | way. Several "pointer encodings" are supported. The encoding | |
1544 | that's used for a particular FDE is determined by the 'R' | |
1545 | augmentation in the associated CIE. The argument of this | |
1546 | augmentation is a single byte. | |
1547 | ||
1548 | The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a | |
1549 | LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether | |
1550 | the address is signed or unsigned. Bits 4, 5 and 6 encode how the | |
1551 | address should be interpreted (absolute, relative to the current | |
1552 | position in the FDE, ...). Bit 7, indicates that the address | |
1553 | should be dereferenced. */ | |
1554 | ||
852483bc | 1555 | static gdb_byte |
cfc14b3a MK |
1556 | encoding_for_size (unsigned int size) |
1557 | { | |
1558 | switch (size) | |
1559 | { | |
1560 | case 2: | |
1561 | return DW_EH_PE_udata2; | |
1562 | case 4: | |
1563 | return DW_EH_PE_udata4; | |
1564 | case 8: | |
1565 | return DW_EH_PE_udata8; | |
1566 | default: | |
e2e0b3e5 | 1567 | internal_error (__FILE__, __LINE__, _("Unsupported address size")); |
cfc14b3a MK |
1568 | } |
1569 | } | |
1570 | ||
cfc14b3a | 1571 | static CORE_ADDR |
852483bc | 1572 | read_encoded_value (struct comp_unit *unit, gdb_byte encoding, |
0d45f56e TT |
1573 | int ptr_len, const gdb_byte *buf, |
1574 | unsigned int *bytes_read_ptr, | |
ae0d2f24 | 1575 | CORE_ADDR func_base) |
cfc14b3a | 1576 | { |
68f6cf99 | 1577 | ptrdiff_t offset; |
cfc14b3a MK |
1578 | CORE_ADDR base; |
1579 | ||
1580 | /* GCC currently doesn't generate DW_EH_PE_indirect encodings for | |
1581 | FDE's. */ | |
1582 | if (encoding & DW_EH_PE_indirect) | |
1583 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 1584 | _("Unsupported encoding: DW_EH_PE_indirect")); |
cfc14b3a | 1585 | |
68f6cf99 MK |
1586 | *bytes_read_ptr = 0; |
1587 | ||
cfc14b3a MK |
1588 | switch (encoding & 0x70) |
1589 | { | |
1590 | case DW_EH_PE_absptr: | |
1591 | base = 0; | |
1592 | break; | |
1593 | case DW_EH_PE_pcrel: | |
f2fec864 | 1594 | base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section); |
852483bc | 1595 | base += (buf - unit->dwarf_frame_buffer); |
cfc14b3a | 1596 | break; |
0912c7f2 MK |
1597 | case DW_EH_PE_datarel: |
1598 | base = unit->dbase; | |
1599 | break; | |
0fd85043 CV |
1600 | case DW_EH_PE_textrel: |
1601 | base = unit->tbase; | |
1602 | break; | |
03ac2a74 | 1603 | case DW_EH_PE_funcrel: |
ae0d2f24 | 1604 | base = func_base; |
03ac2a74 | 1605 | break; |
68f6cf99 MK |
1606 | case DW_EH_PE_aligned: |
1607 | base = 0; | |
852483bc | 1608 | offset = buf - unit->dwarf_frame_buffer; |
68f6cf99 MK |
1609 | if ((offset % ptr_len) != 0) |
1610 | { | |
1611 | *bytes_read_ptr = ptr_len - (offset % ptr_len); | |
1612 | buf += *bytes_read_ptr; | |
1613 | } | |
1614 | break; | |
cfc14b3a | 1615 | default: |
3e43a32a MS |
1616 | internal_error (__FILE__, __LINE__, |
1617 | _("Invalid or unsupported encoding")); | |
cfc14b3a MK |
1618 | } |
1619 | ||
b04de778 | 1620 | if ((encoding & 0x07) == 0x00) |
f2fec864 DJ |
1621 | { |
1622 | encoding |= encoding_for_size (ptr_len); | |
1623 | if (bfd_get_sign_extend_vma (unit->abfd)) | |
1624 | encoding |= DW_EH_PE_signed; | |
1625 | } | |
cfc14b3a MK |
1626 | |
1627 | switch (encoding & 0x0f) | |
1628 | { | |
a81b10ae MK |
1629 | case DW_EH_PE_uleb128: |
1630 | { | |
9fccedf7 | 1631 | uint64_t value; |
0d45f56e | 1632 | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
9a619af0 | 1633 | |
f664829e | 1634 | *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf; |
a81b10ae MK |
1635 | return base + value; |
1636 | } | |
cfc14b3a | 1637 | case DW_EH_PE_udata2: |
68f6cf99 | 1638 | *bytes_read_ptr += 2; |
cfc14b3a MK |
1639 | return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); |
1640 | case DW_EH_PE_udata4: | |
68f6cf99 | 1641 | *bytes_read_ptr += 4; |
cfc14b3a MK |
1642 | return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); |
1643 | case DW_EH_PE_udata8: | |
68f6cf99 | 1644 | *bytes_read_ptr += 8; |
cfc14b3a | 1645 | return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); |
a81b10ae MK |
1646 | case DW_EH_PE_sleb128: |
1647 | { | |
9fccedf7 | 1648 | int64_t value; |
0d45f56e | 1649 | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
9a619af0 | 1650 | |
f664829e | 1651 | *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf; |
a81b10ae MK |
1652 | return base + value; |
1653 | } | |
cfc14b3a | 1654 | case DW_EH_PE_sdata2: |
68f6cf99 | 1655 | *bytes_read_ptr += 2; |
cfc14b3a MK |
1656 | return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); |
1657 | case DW_EH_PE_sdata4: | |
68f6cf99 | 1658 | *bytes_read_ptr += 4; |
cfc14b3a MK |
1659 | return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); |
1660 | case DW_EH_PE_sdata8: | |
68f6cf99 | 1661 | *bytes_read_ptr += 8; |
cfc14b3a MK |
1662 | return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); |
1663 | default: | |
3e43a32a MS |
1664 | internal_error (__FILE__, __LINE__, |
1665 | _("Invalid or unsupported encoding")); | |
cfc14b3a MK |
1666 | } |
1667 | } | |
1668 | \f | |
1669 | ||
b01c8410 PP |
1670 | static int |
1671 | bsearch_cie_cmp (const void *key, const void *element) | |
cfc14b3a | 1672 | { |
b01c8410 PP |
1673 | ULONGEST cie_pointer = *(ULONGEST *) key; |
1674 | struct dwarf2_cie *cie = *(struct dwarf2_cie **) element; | |
cfc14b3a | 1675 | |
b01c8410 PP |
1676 | if (cie_pointer == cie->cie_pointer) |
1677 | return 0; | |
cfc14b3a | 1678 | |
b01c8410 PP |
1679 | return (cie_pointer < cie->cie_pointer) ? -1 : 1; |
1680 | } | |
1681 | ||
1682 | /* Find CIE with the given CIE_POINTER in CIE_TABLE. */ | |
1683 | static struct dwarf2_cie * | |
1684 | find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer) | |
1685 | { | |
1686 | struct dwarf2_cie **p_cie; | |
cfc14b3a | 1687 | |
65a97ab3 PP |
1688 | /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to |
1689 | bsearch be non-NULL. */ | |
1690 | if (cie_table->entries == NULL) | |
1691 | { | |
1692 | gdb_assert (cie_table->num_entries == 0); | |
1693 | return NULL; | |
1694 | } | |
1695 | ||
b01c8410 PP |
1696 | p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries, |
1697 | sizeof (cie_table->entries[0]), bsearch_cie_cmp); | |
1698 | if (p_cie != NULL) | |
1699 | return *p_cie; | |
cfc14b3a MK |
1700 | return NULL; |
1701 | } | |
1702 | ||
b01c8410 | 1703 | /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */ |
cfc14b3a | 1704 | static void |
b01c8410 | 1705 | add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie) |
cfc14b3a | 1706 | { |
b01c8410 PP |
1707 | const int n = cie_table->num_entries; |
1708 | ||
1709 | gdb_assert (n < 1 | |
1710 | || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer); | |
1711 | ||
1712 | cie_table->entries = | |
1713 | xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0])); | |
1714 | cie_table->entries[n] = cie; | |
1715 | cie_table->num_entries = n + 1; | |
1716 | } | |
1717 | ||
1718 | static int | |
1719 | bsearch_fde_cmp (const void *key, const void *element) | |
1720 | { | |
1721 | CORE_ADDR seek_pc = *(CORE_ADDR *) key; | |
1722 | struct dwarf2_fde *fde = *(struct dwarf2_fde **) element; | |
9a619af0 | 1723 | |
b01c8410 PP |
1724 | if (seek_pc < fde->initial_location) |
1725 | return -1; | |
1726 | if (seek_pc < fde->initial_location + fde->address_range) | |
1727 | return 0; | |
1728 | return 1; | |
cfc14b3a MK |
1729 | } |
1730 | ||
1731 | /* Find the FDE for *PC. Return a pointer to the FDE, and store the | |
1732 | inital location associated with it into *PC. */ | |
1733 | ||
1734 | static struct dwarf2_fde * | |
ac56253d | 1735 | dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset) |
cfc14b3a MK |
1736 | { |
1737 | struct objfile *objfile; | |
1738 | ||
1739 | ALL_OBJFILES (objfile) | |
1740 | { | |
b01c8410 PP |
1741 | struct dwarf2_fde_table *fde_table; |
1742 | struct dwarf2_fde **p_fde; | |
cfc14b3a | 1743 | CORE_ADDR offset; |
b01c8410 | 1744 | CORE_ADDR seek_pc; |
cfc14b3a | 1745 | |
b01c8410 PP |
1746 | fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); |
1747 | if (fde_table == NULL) | |
be391dca TT |
1748 | { |
1749 | dwarf2_build_frame_info (objfile); | |
1750 | fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); | |
1751 | } | |
1752 | gdb_assert (fde_table != NULL); | |
1753 | ||
1754 | if (fde_table->num_entries == 0) | |
4ae9ee8e DJ |
1755 | continue; |
1756 | ||
1757 | gdb_assert (objfile->section_offsets); | |
1758 | offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
1759 | ||
b01c8410 PP |
1760 | gdb_assert (fde_table->num_entries > 0); |
1761 | if (*pc < offset + fde_table->entries[0]->initial_location) | |
1762 | continue; | |
1763 | ||
1764 | seek_pc = *pc - offset; | |
1765 | p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries, | |
1766 | sizeof (fde_table->entries[0]), bsearch_fde_cmp); | |
1767 | if (p_fde != NULL) | |
1768 | { | |
1769 | *pc = (*p_fde)->initial_location + offset; | |
ac56253d TT |
1770 | if (out_offset) |
1771 | *out_offset = offset; | |
b01c8410 PP |
1772 | return *p_fde; |
1773 | } | |
cfc14b3a | 1774 | } |
cfc14b3a MK |
1775 | return NULL; |
1776 | } | |
1777 | ||
b01c8410 | 1778 | /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */ |
cfc14b3a | 1779 | static void |
b01c8410 | 1780 | add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) |
cfc14b3a | 1781 | { |
b01c8410 PP |
1782 | if (fde->address_range == 0) |
1783 | /* Discard useless FDEs. */ | |
1784 | return; | |
1785 | ||
1786 | fde_table->num_entries += 1; | |
1787 | fde_table->entries = | |
1788 | xrealloc (fde_table->entries, | |
1789 | fde_table->num_entries * sizeof (fde_table->entries[0])); | |
1790 | fde_table->entries[fde_table->num_entries - 1] = fde; | |
cfc14b3a MK |
1791 | } |
1792 | ||
1793 | #ifdef CC_HAS_LONG_LONG | |
1794 | #define DW64_CIE_ID 0xffffffffffffffffULL | |
1795 | #else | |
1796 | #define DW64_CIE_ID ~0 | |
1797 | #endif | |
1798 | ||
8bd90839 FM |
1799 | /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE |
1800 | or any of them. */ | |
1801 | ||
1802 | enum eh_frame_type | |
1803 | { | |
1804 | EH_CIE_TYPE_ID = 1 << 0, | |
1805 | EH_FDE_TYPE_ID = 1 << 1, | |
1806 | EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID | |
1807 | }; | |
1808 | ||
f664829e DE |
1809 | static const gdb_byte *decode_frame_entry (struct comp_unit *unit, |
1810 | const gdb_byte *start, | |
1811 | int eh_frame_p, | |
1812 | struct dwarf2_cie_table *cie_table, | |
1813 | struct dwarf2_fde_table *fde_table, | |
1814 | enum eh_frame_type entry_type); | |
8bd90839 FM |
1815 | |
1816 | /* Decode the next CIE or FDE, entry_type specifies the expected type. | |
1817 | Return NULL if invalid input, otherwise the next byte to be processed. */ | |
cfc14b3a | 1818 | |
f664829e DE |
1819 | static const gdb_byte * |
1820 | decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start, | |
1821 | int eh_frame_p, | |
b01c8410 | 1822 | struct dwarf2_cie_table *cie_table, |
8bd90839 FM |
1823 | struct dwarf2_fde_table *fde_table, |
1824 | enum eh_frame_type entry_type) | |
cfc14b3a | 1825 | { |
5e2b427d | 1826 | struct gdbarch *gdbarch = get_objfile_arch (unit->objfile); |
f664829e | 1827 | const gdb_byte *buf, *end; |
cfc14b3a MK |
1828 | LONGEST length; |
1829 | unsigned int bytes_read; | |
6896c0c7 RH |
1830 | int dwarf64_p; |
1831 | ULONGEST cie_id; | |
cfc14b3a | 1832 | ULONGEST cie_pointer; |
9fccedf7 DE |
1833 | int64_t sleb128; |
1834 | uint64_t uleb128; | |
cfc14b3a | 1835 | |
6896c0c7 | 1836 | buf = start; |
cfc14b3a MK |
1837 | length = read_initial_length (unit->abfd, buf, &bytes_read); |
1838 | buf += bytes_read; | |
1839 | end = buf + length; | |
1840 | ||
0963b4bd | 1841 | /* Are we still within the section? */ |
6896c0c7 RH |
1842 | if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) |
1843 | return NULL; | |
1844 | ||
cfc14b3a MK |
1845 | if (length == 0) |
1846 | return end; | |
1847 | ||
6896c0c7 RH |
1848 | /* Distinguish between 32 and 64-bit encoded frame info. */ |
1849 | dwarf64_p = (bytes_read == 12); | |
cfc14b3a | 1850 | |
6896c0c7 | 1851 | /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ |
cfc14b3a MK |
1852 | if (eh_frame_p) |
1853 | cie_id = 0; | |
1854 | else if (dwarf64_p) | |
1855 | cie_id = DW64_CIE_ID; | |
6896c0c7 RH |
1856 | else |
1857 | cie_id = DW_CIE_ID; | |
cfc14b3a MK |
1858 | |
1859 | if (dwarf64_p) | |
1860 | { | |
1861 | cie_pointer = read_8_bytes (unit->abfd, buf); | |
1862 | buf += 8; | |
1863 | } | |
1864 | else | |
1865 | { | |
1866 | cie_pointer = read_4_bytes (unit->abfd, buf); | |
1867 | buf += 4; | |
1868 | } | |
1869 | ||
1870 | if (cie_pointer == cie_id) | |
1871 | { | |
1872 | /* This is a CIE. */ | |
1873 | struct dwarf2_cie *cie; | |
1874 | char *augmentation; | |
28ba0b33 | 1875 | unsigned int cie_version; |
cfc14b3a | 1876 | |
8bd90839 FM |
1877 | /* Check that a CIE was expected. */ |
1878 | if ((entry_type & EH_CIE_TYPE_ID) == 0) | |
1879 | error (_("Found a CIE when not expecting it.")); | |
1880 | ||
cfc14b3a MK |
1881 | /* Record the offset into the .debug_frame section of this CIE. */ |
1882 | cie_pointer = start - unit->dwarf_frame_buffer; | |
1883 | ||
1884 | /* Check whether we've already read it. */ | |
b01c8410 | 1885 | if (find_cie (cie_table, cie_pointer)) |
cfc14b3a MK |
1886 | return end; |
1887 | ||
1888 | cie = (struct dwarf2_cie *) | |
8b92e4d5 | 1889 | obstack_alloc (&unit->objfile->objfile_obstack, |
cfc14b3a MK |
1890 | sizeof (struct dwarf2_cie)); |
1891 | cie->initial_instructions = NULL; | |
1892 | cie->cie_pointer = cie_pointer; | |
1893 | ||
1894 | /* The encoding for FDE's in a normal .debug_frame section | |
32b05c07 MK |
1895 | depends on the target address size. */ |
1896 | cie->encoding = DW_EH_PE_absptr; | |
cfc14b3a | 1897 | |
56c987f6 AO |
1898 | /* We'll determine the final value later, but we need to |
1899 | initialize it conservatively. */ | |
1900 | cie->signal_frame = 0; | |
1901 | ||
cfc14b3a | 1902 | /* Check version number. */ |
28ba0b33 | 1903 | cie_version = read_1_byte (unit->abfd, buf); |
2dc7f7b3 | 1904 | if (cie_version != 1 && cie_version != 3 && cie_version != 4) |
6896c0c7 | 1905 | return NULL; |
303b6f5d | 1906 | cie->version = cie_version; |
cfc14b3a MK |
1907 | buf += 1; |
1908 | ||
1909 | /* Interpret the interesting bits of the augmentation. */ | |
303b6f5d | 1910 | cie->augmentation = augmentation = (char *) buf; |
852483bc | 1911 | buf += (strlen (augmentation) + 1); |
cfc14b3a | 1912 | |
303b6f5d DJ |
1913 | /* Ignore armcc augmentations. We only use them for quirks, |
1914 | and that doesn't happen until later. */ | |
1915 | if (strncmp (augmentation, "armcc", 5) == 0) | |
1916 | augmentation += strlen (augmentation); | |
1917 | ||
cfc14b3a MK |
1918 | /* The GCC 2.x "eh" augmentation has a pointer immediately |
1919 | following the augmentation string, so it must be handled | |
1920 | first. */ | |
1921 | if (augmentation[0] == 'e' && augmentation[1] == 'h') | |
1922 | { | |
1923 | /* Skip. */ | |
5e2b427d | 1924 | buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
cfc14b3a MK |
1925 | augmentation += 2; |
1926 | } | |
1927 | ||
2dc7f7b3 TT |
1928 | if (cie->version >= 4) |
1929 | { | |
1930 | /* FIXME: check that this is the same as from the CU header. */ | |
1931 | cie->addr_size = read_1_byte (unit->abfd, buf); | |
1932 | ++buf; | |
1933 | cie->segment_size = read_1_byte (unit->abfd, buf); | |
1934 | ++buf; | |
1935 | } | |
1936 | else | |
1937 | { | |
8da614df | 1938 | cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch); |
2dc7f7b3 TT |
1939 | cie->segment_size = 0; |
1940 | } | |
8da614df CV |
1941 | /* Address values in .eh_frame sections are defined to have the |
1942 | target's pointer size. Watchout: This breaks frame info for | |
1943 | targets with pointer size < address size, unless a .debug_frame | |
0963b4bd | 1944 | section exists as well. */ |
8da614df CV |
1945 | if (eh_frame_p) |
1946 | cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | |
1947 | else | |
1948 | cie->ptr_size = cie->addr_size; | |
2dc7f7b3 | 1949 | |
f664829e DE |
1950 | buf = gdb_read_uleb128 (buf, end, &uleb128); |
1951 | if (buf == NULL) | |
1952 | return NULL; | |
1953 | cie->code_alignment_factor = uleb128; | |
cfc14b3a | 1954 | |
f664829e DE |
1955 | buf = gdb_read_sleb128 (buf, end, &sleb128); |
1956 | if (buf == NULL) | |
1957 | return NULL; | |
1958 | cie->data_alignment_factor = sleb128; | |
cfc14b3a | 1959 | |
28ba0b33 PB |
1960 | if (cie_version == 1) |
1961 | { | |
1962 | cie->return_address_register = read_1_byte (unit->abfd, buf); | |
f664829e | 1963 | ++buf; |
28ba0b33 PB |
1964 | } |
1965 | else | |
f664829e DE |
1966 | { |
1967 | buf = gdb_read_uleb128 (buf, end, &uleb128); | |
1968 | if (buf == NULL) | |
1969 | return NULL; | |
1970 | cie->return_address_register = uleb128; | |
1971 | } | |
1972 | ||
4fc771b8 | 1973 | cie->return_address_register |
5e2b427d | 1974 | = dwarf2_frame_adjust_regnum (gdbarch, |
4fc771b8 DJ |
1975 | cie->return_address_register, |
1976 | eh_frame_p); | |
4bf8967c | 1977 | |
7131cb6e RH |
1978 | cie->saw_z_augmentation = (*augmentation == 'z'); |
1979 | if (cie->saw_z_augmentation) | |
cfc14b3a | 1980 | { |
9fccedf7 | 1981 | uint64_t length; |
cfc14b3a | 1982 | |
f664829e DE |
1983 | buf = gdb_read_uleb128 (buf, end, &length); |
1984 | if (buf == NULL) | |
6896c0c7 | 1985 | return NULL; |
cfc14b3a MK |
1986 | cie->initial_instructions = buf + length; |
1987 | augmentation++; | |
1988 | } | |
1989 | ||
1990 | while (*augmentation) | |
1991 | { | |
1992 | /* "L" indicates a byte showing how the LSDA pointer is encoded. */ | |
1993 | if (*augmentation == 'L') | |
1994 | { | |
1995 | /* Skip. */ | |
1996 | buf++; | |
1997 | augmentation++; | |
1998 | } | |
1999 | ||
2000 | /* "R" indicates a byte indicating how FDE addresses are encoded. */ | |
2001 | else if (*augmentation == 'R') | |
2002 | { | |
2003 | cie->encoding = *buf++; | |
2004 | augmentation++; | |
2005 | } | |
2006 | ||
2007 | /* "P" indicates a personality routine in the CIE augmentation. */ | |
2008 | else if (*augmentation == 'P') | |
2009 | { | |
1234d960 | 2010 | /* Skip. Avoid indirection since we throw away the result. */ |
852483bc | 2011 | gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; |
8da614df | 2012 | read_encoded_value (unit, encoding, cie->ptr_size, |
ae0d2f24 | 2013 | buf, &bytes_read, 0); |
f724bf08 | 2014 | buf += bytes_read; |
cfc14b3a MK |
2015 | augmentation++; |
2016 | } | |
2017 | ||
56c987f6 AO |
2018 | /* "S" indicates a signal frame, such that the return |
2019 | address must not be decremented to locate the call frame | |
2020 | info for the previous frame; it might even be the first | |
2021 | instruction of a function, so decrementing it would take | |
2022 | us to a different function. */ | |
2023 | else if (*augmentation == 'S') | |
2024 | { | |
2025 | cie->signal_frame = 1; | |
2026 | augmentation++; | |
2027 | } | |
2028 | ||
3e9a2e52 DJ |
2029 | /* Otherwise we have an unknown augmentation. Assume that either |
2030 | there is no augmentation data, or we saw a 'z' prefix. */ | |
cfc14b3a MK |
2031 | else |
2032 | { | |
3e9a2e52 DJ |
2033 | if (cie->initial_instructions) |
2034 | buf = cie->initial_instructions; | |
cfc14b3a MK |
2035 | break; |
2036 | } | |
2037 | } | |
2038 | ||
2039 | cie->initial_instructions = buf; | |
2040 | cie->end = end; | |
b01c8410 | 2041 | cie->unit = unit; |
cfc14b3a | 2042 | |
b01c8410 | 2043 | add_cie (cie_table, cie); |
cfc14b3a MK |
2044 | } |
2045 | else | |
2046 | { | |
2047 | /* This is a FDE. */ | |
2048 | struct dwarf2_fde *fde; | |
2049 | ||
8bd90839 FM |
2050 | /* Check that an FDE was expected. */ |
2051 | if ((entry_type & EH_FDE_TYPE_ID) == 0) | |
2052 | error (_("Found an FDE when not expecting it.")); | |
2053 | ||
6896c0c7 RH |
2054 | /* In an .eh_frame section, the CIE pointer is the delta between the |
2055 | address within the FDE where the CIE pointer is stored and the | |
2056 | address of the CIE. Convert it to an offset into the .eh_frame | |
2057 | section. */ | |
cfc14b3a MK |
2058 | if (eh_frame_p) |
2059 | { | |
cfc14b3a MK |
2060 | cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; |
2061 | cie_pointer -= (dwarf64_p ? 8 : 4); | |
2062 | } | |
2063 | ||
6896c0c7 RH |
2064 | /* In either case, validate the result is still within the section. */ |
2065 | if (cie_pointer >= unit->dwarf_frame_size) | |
2066 | return NULL; | |
2067 | ||
cfc14b3a | 2068 | fde = (struct dwarf2_fde *) |
8b92e4d5 | 2069 | obstack_alloc (&unit->objfile->objfile_obstack, |
cfc14b3a | 2070 | sizeof (struct dwarf2_fde)); |
b01c8410 | 2071 | fde->cie = find_cie (cie_table, cie_pointer); |
cfc14b3a MK |
2072 | if (fde->cie == NULL) |
2073 | { | |
2074 | decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, | |
8bd90839 FM |
2075 | eh_frame_p, cie_table, fde_table, |
2076 | EH_CIE_TYPE_ID); | |
b01c8410 | 2077 | fde->cie = find_cie (cie_table, cie_pointer); |
cfc14b3a MK |
2078 | } |
2079 | ||
2080 | gdb_assert (fde->cie != NULL); | |
2081 | ||
2082 | fde->initial_location = | |
8da614df | 2083 | read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size, |
ae0d2f24 | 2084 | buf, &bytes_read, 0); |
cfc14b3a MK |
2085 | buf += bytes_read; |
2086 | ||
2087 | fde->address_range = | |
ae0d2f24 | 2088 | read_encoded_value (unit, fde->cie->encoding & 0x0f, |
8da614df | 2089 | fde->cie->ptr_size, buf, &bytes_read, 0); |
cfc14b3a MK |
2090 | buf += bytes_read; |
2091 | ||
7131cb6e RH |
2092 | /* A 'z' augmentation in the CIE implies the presence of an |
2093 | augmentation field in the FDE as well. The only thing known | |
2094 | to be in here at present is the LSDA entry for EH. So we | |
2095 | can skip the whole thing. */ | |
2096 | if (fde->cie->saw_z_augmentation) | |
2097 | { | |
9fccedf7 | 2098 | uint64_t length; |
7131cb6e | 2099 | |
f664829e DE |
2100 | buf = gdb_read_uleb128 (buf, end, &length); |
2101 | if (buf == NULL) | |
2102 | return NULL; | |
2103 | buf += length; | |
6896c0c7 RH |
2104 | if (buf > end) |
2105 | return NULL; | |
7131cb6e RH |
2106 | } |
2107 | ||
cfc14b3a MK |
2108 | fde->instructions = buf; |
2109 | fde->end = end; | |
2110 | ||
4bf8967c AS |
2111 | fde->eh_frame_p = eh_frame_p; |
2112 | ||
b01c8410 | 2113 | add_fde (fde_table, fde); |
cfc14b3a MK |
2114 | } |
2115 | ||
2116 | return end; | |
2117 | } | |
6896c0c7 | 2118 | |
8bd90839 FM |
2119 | /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we |
2120 | expect an FDE or a CIE. */ | |
2121 | ||
f664829e DE |
2122 | static const gdb_byte * |
2123 | decode_frame_entry (struct comp_unit *unit, const gdb_byte *start, | |
2124 | int eh_frame_p, | |
b01c8410 | 2125 | struct dwarf2_cie_table *cie_table, |
8bd90839 FM |
2126 | struct dwarf2_fde_table *fde_table, |
2127 | enum eh_frame_type entry_type) | |
6896c0c7 RH |
2128 | { |
2129 | enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; | |
f664829e | 2130 | const gdb_byte *ret; |
6896c0c7 RH |
2131 | ptrdiff_t start_offset; |
2132 | ||
2133 | while (1) | |
2134 | { | |
b01c8410 | 2135 | ret = decode_frame_entry_1 (unit, start, eh_frame_p, |
8bd90839 | 2136 | cie_table, fde_table, entry_type); |
6896c0c7 RH |
2137 | if (ret != NULL) |
2138 | break; | |
2139 | ||
2140 | /* We have corrupt input data of some form. */ | |
2141 | ||
2142 | /* ??? Try, weakly, to work around compiler/assembler/linker bugs | |
2143 | and mismatches wrt padding and alignment of debug sections. */ | |
2144 | /* Note that there is no requirement in the standard for any | |
2145 | alignment at all in the frame unwind sections. Testing for | |
2146 | alignment before trying to interpret data would be incorrect. | |
2147 | ||
2148 | However, GCC traditionally arranged for frame sections to be | |
2149 | sized such that the FDE length and CIE fields happen to be | |
2150 | aligned (in theory, for performance). This, unfortunately, | |
2151 | was done with .align directives, which had the side effect of | |
2152 | forcing the section to be aligned by the linker. | |
2153 | ||
2154 | This becomes a problem when you have some other producer that | |
2155 | creates frame sections that are not as strictly aligned. That | |
2156 | produces a hole in the frame info that gets filled by the | |
2157 | linker with zeros. | |
2158 | ||
2159 | The GCC behaviour is arguably a bug, but it's effectively now | |
2160 | part of the ABI, so we're now stuck with it, at least at the | |
2161 | object file level. A smart linker may decide, in the process | |
2162 | of compressing duplicate CIE information, that it can rewrite | |
2163 | the entire output section without this extra padding. */ | |
2164 | ||
2165 | start_offset = start - unit->dwarf_frame_buffer; | |
2166 | if (workaround < ALIGN4 && (start_offset & 3) != 0) | |
2167 | { | |
2168 | start += 4 - (start_offset & 3); | |
2169 | workaround = ALIGN4; | |
2170 | continue; | |
2171 | } | |
2172 | if (workaround < ALIGN8 && (start_offset & 7) != 0) | |
2173 | { | |
2174 | start += 8 - (start_offset & 7); | |
2175 | workaround = ALIGN8; | |
2176 | continue; | |
2177 | } | |
2178 | ||
2179 | /* Nothing left to try. Arrange to return as if we've consumed | |
2180 | the entire input section. Hopefully we'll get valid info from | |
2181 | the other of .debug_frame/.eh_frame. */ | |
2182 | workaround = FAIL; | |
2183 | ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; | |
2184 | break; | |
2185 | } | |
2186 | ||
2187 | switch (workaround) | |
2188 | { | |
2189 | case NONE: | |
2190 | break; | |
2191 | ||
2192 | case ALIGN4: | |
3e43a32a MS |
2193 | complaint (&symfile_complaints, _("\ |
2194 | Corrupt data in %s:%s; align 4 workaround apparently succeeded"), | |
6896c0c7 RH |
2195 | unit->dwarf_frame_section->owner->filename, |
2196 | unit->dwarf_frame_section->name); | |
2197 | break; | |
2198 | ||
2199 | case ALIGN8: | |
3e43a32a MS |
2200 | complaint (&symfile_complaints, _("\ |
2201 | Corrupt data in %s:%s; align 8 workaround apparently succeeded"), | |
6896c0c7 RH |
2202 | unit->dwarf_frame_section->owner->filename, |
2203 | unit->dwarf_frame_section->name); | |
2204 | break; | |
2205 | ||
2206 | default: | |
2207 | complaint (&symfile_complaints, | |
e2e0b3e5 | 2208 | _("Corrupt data in %s:%s"), |
6896c0c7 RH |
2209 | unit->dwarf_frame_section->owner->filename, |
2210 | unit->dwarf_frame_section->name); | |
2211 | break; | |
2212 | } | |
2213 | ||
2214 | return ret; | |
2215 | } | |
cfc14b3a | 2216 | \f |
b01c8410 PP |
2217 | static int |
2218 | qsort_fde_cmp (const void *a, const void *b) | |
2219 | { | |
2220 | struct dwarf2_fde *aa = *(struct dwarf2_fde **)a; | |
2221 | struct dwarf2_fde *bb = *(struct dwarf2_fde **)b; | |
e5af178f | 2222 | |
b01c8410 | 2223 | if (aa->initial_location == bb->initial_location) |
e5af178f PP |
2224 | { |
2225 | if (aa->address_range != bb->address_range | |
2226 | && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) | |
2227 | /* Linker bug, e.g. gold/10400. | |
2228 | Work around it by keeping stable sort order. */ | |
2229 | return (a < b) ? -1 : 1; | |
2230 | else | |
2231 | /* Put eh_frame entries after debug_frame ones. */ | |
2232 | return aa->eh_frame_p - bb->eh_frame_p; | |
2233 | } | |
b01c8410 PP |
2234 | |
2235 | return (aa->initial_location < bb->initial_location) ? -1 : 1; | |
2236 | } | |
2237 | ||
cfc14b3a MK |
2238 | void |
2239 | dwarf2_build_frame_info (struct objfile *objfile) | |
2240 | { | |
ae0d2f24 | 2241 | struct comp_unit *unit; |
f664829e | 2242 | const gdb_byte *frame_ptr; |
b01c8410 PP |
2243 | struct dwarf2_cie_table cie_table; |
2244 | struct dwarf2_fde_table fde_table; | |
be391dca | 2245 | struct dwarf2_fde_table *fde_table2; |
8bd90839 | 2246 | volatile struct gdb_exception e; |
b01c8410 PP |
2247 | |
2248 | cie_table.num_entries = 0; | |
2249 | cie_table.entries = NULL; | |
2250 | ||
2251 | fde_table.num_entries = 0; | |
2252 | fde_table.entries = NULL; | |
cfc14b3a MK |
2253 | |
2254 | /* Build a minimal decoding of the DWARF2 compilation unit. */ | |
ae0d2f24 UW |
2255 | unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack, |
2256 | sizeof (struct comp_unit)); | |
2257 | unit->abfd = objfile->obfd; | |
2258 | unit->objfile = objfile; | |
2259 | unit->dbase = 0; | |
2260 | unit->tbase = 0; | |
cfc14b3a | 2261 | |
d40102a1 | 2262 | if (objfile->separate_debug_objfile_backlink == NULL) |
cfc14b3a | 2263 | { |
d40102a1 JB |
2264 | /* Do not read .eh_frame from separate file as they must be also |
2265 | present in the main file. */ | |
2266 | dwarf2_get_section_info (objfile, DWARF2_EH_FRAME, | |
2267 | &unit->dwarf_frame_section, | |
2268 | &unit->dwarf_frame_buffer, | |
2269 | &unit->dwarf_frame_size); | |
2270 | if (unit->dwarf_frame_size) | |
b01c8410 | 2271 | { |
d40102a1 JB |
2272 | asection *got, *txt; |
2273 | ||
2274 | /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base | |
2275 | that is used for the i386/amd64 target, which currently is | |
2276 | the only target in GCC that supports/uses the | |
2277 | DW_EH_PE_datarel encoding. */ | |
2278 | got = bfd_get_section_by_name (unit->abfd, ".got"); | |
2279 | if (got) | |
2280 | unit->dbase = got->vma; | |
2281 | ||
2282 | /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 | |
2283 | so far. */ | |
2284 | txt = bfd_get_section_by_name (unit->abfd, ".text"); | |
2285 | if (txt) | |
2286 | unit->tbase = txt->vma; | |
2287 | ||
8bd90839 FM |
2288 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2289 | { | |
2290 | frame_ptr = unit->dwarf_frame_buffer; | |
2291 | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | |
2292 | frame_ptr = decode_frame_entry (unit, frame_ptr, 1, | |
2293 | &cie_table, &fde_table, | |
2294 | EH_CIE_OR_FDE_TYPE_ID); | |
2295 | } | |
2296 | ||
2297 | if (e.reason < 0) | |
2298 | { | |
2299 | warning (_("skipping .eh_frame info of %s: %s"), | |
2300 | objfile->name, e.message); | |
2301 | ||
2302 | if (fde_table.num_entries != 0) | |
2303 | { | |
2304 | xfree (fde_table.entries); | |
2305 | fde_table.entries = NULL; | |
2306 | fde_table.num_entries = 0; | |
2307 | } | |
2308 | /* The cie_table is discarded by the next if. */ | |
2309 | } | |
d40102a1 JB |
2310 | |
2311 | if (cie_table.num_entries != 0) | |
2312 | { | |
2313 | /* Reinit cie_table: debug_frame has different CIEs. */ | |
2314 | xfree (cie_table.entries); | |
2315 | cie_table.num_entries = 0; | |
2316 | cie_table.entries = NULL; | |
2317 | } | |
b01c8410 | 2318 | } |
cfc14b3a MK |
2319 | } |
2320 | ||
3017a003 | 2321 | dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME, |
dce234bc PP |
2322 | &unit->dwarf_frame_section, |
2323 | &unit->dwarf_frame_buffer, | |
2324 | &unit->dwarf_frame_size); | |
2325 | if (unit->dwarf_frame_size) | |
cfc14b3a | 2326 | { |
8bd90839 FM |
2327 | int num_old_fde_entries = fde_table.num_entries; |
2328 | ||
2329 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
2330 | { | |
2331 | frame_ptr = unit->dwarf_frame_buffer; | |
2332 | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | |
2333 | frame_ptr = decode_frame_entry (unit, frame_ptr, 0, | |
2334 | &cie_table, &fde_table, | |
2335 | EH_CIE_OR_FDE_TYPE_ID); | |
2336 | } | |
2337 | if (e.reason < 0) | |
2338 | { | |
2339 | warning (_("skipping .debug_frame info of %s: %s"), | |
2340 | objfile->name, e.message); | |
2341 | ||
2342 | if (fde_table.num_entries != 0) | |
2343 | { | |
2344 | fde_table.num_entries = num_old_fde_entries; | |
2345 | if (num_old_fde_entries == 0) | |
2346 | { | |
2347 | xfree (fde_table.entries); | |
2348 | fde_table.entries = NULL; | |
2349 | } | |
2350 | else | |
2351 | { | |
2352 | fde_table.entries = xrealloc (fde_table.entries, | |
2353 | fde_table.num_entries * | |
2354 | sizeof (fde_table.entries[0])); | |
2355 | } | |
2356 | } | |
2357 | fde_table.num_entries = num_old_fde_entries; | |
2358 | /* The cie_table is discarded by the next if. */ | |
2359 | } | |
b01c8410 PP |
2360 | } |
2361 | ||
2362 | /* Discard the cie_table, it is no longer needed. */ | |
2363 | if (cie_table.num_entries != 0) | |
2364 | { | |
2365 | xfree (cie_table.entries); | |
2366 | cie_table.entries = NULL; /* Paranoia. */ | |
2367 | cie_table.num_entries = 0; /* Paranoia. */ | |
2368 | } | |
2369 | ||
be391dca TT |
2370 | /* Copy fde_table to obstack: it is needed at runtime. */ |
2371 | fde_table2 = (struct dwarf2_fde_table *) | |
2372 | obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2)); | |
2373 | ||
2374 | if (fde_table.num_entries == 0) | |
2375 | { | |
2376 | fde_table2->entries = NULL; | |
2377 | fde_table2->num_entries = 0; | |
2378 | } | |
2379 | else | |
b01c8410 | 2380 | { |
875cdfbb PA |
2381 | struct dwarf2_fde *fde_prev = NULL; |
2382 | struct dwarf2_fde *first_non_zero_fde = NULL; | |
2383 | int i; | |
b01c8410 PP |
2384 | |
2385 | /* Prepare FDE table for lookups. */ | |
2386 | qsort (fde_table.entries, fde_table.num_entries, | |
2387 | sizeof (fde_table.entries[0]), qsort_fde_cmp); | |
2388 | ||
875cdfbb PA |
2389 | /* Check for leftovers from --gc-sections. The GNU linker sets |
2390 | the relevant symbols to zero, but doesn't zero the FDE *end* | |
2391 | ranges because there's no relocation there. It's (offset, | |
2392 | length), not (start, end). On targets where address zero is | |
2393 | just another valid address this can be a problem, since the | |
2394 | FDEs appear to be non-empty in the output --- we could pick | |
2395 | out the wrong FDE. To work around this, when overlaps are | |
2396 | detected, we prefer FDEs that do not start at zero. | |
2397 | ||
2398 | Start by finding the first FDE with non-zero start. Below | |
2399 | we'll discard all FDEs that start at zero and overlap this | |
2400 | one. */ | |
2401 | for (i = 0; i < fde_table.num_entries; i++) | |
2402 | { | |
2403 | struct dwarf2_fde *fde = fde_table.entries[i]; | |
b01c8410 | 2404 | |
875cdfbb PA |
2405 | if (fde->initial_location != 0) |
2406 | { | |
2407 | first_non_zero_fde = fde; | |
2408 | break; | |
2409 | } | |
2410 | } | |
2411 | ||
2412 | /* Since we'll be doing bsearch, squeeze out identical (except | |
2413 | for eh_frame_p) fde entries so bsearch result is predictable. | |
2414 | Also discard leftovers from --gc-sections. */ | |
be391dca | 2415 | fde_table2->num_entries = 0; |
875cdfbb PA |
2416 | for (i = 0; i < fde_table.num_entries; i++) |
2417 | { | |
2418 | struct dwarf2_fde *fde = fde_table.entries[i]; | |
2419 | ||
2420 | if (fde->initial_location == 0 | |
2421 | && first_non_zero_fde != NULL | |
2422 | && (first_non_zero_fde->initial_location | |
2423 | < fde->initial_location + fde->address_range)) | |
2424 | continue; | |
2425 | ||
2426 | if (fde_prev != NULL | |
2427 | && fde_prev->initial_location == fde->initial_location) | |
2428 | continue; | |
2429 | ||
2430 | obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i], | |
2431 | sizeof (fde_table.entries[0])); | |
2432 | ++fde_table2->num_entries; | |
2433 | fde_prev = fde; | |
2434 | } | |
b01c8410 | 2435 | fde_table2->entries = obstack_finish (&objfile->objfile_obstack); |
b01c8410 PP |
2436 | |
2437 | /* Discard the original fde_table. */ | |
2438 | xfree (fde_table.entries); | |
cfc14b3a | 2439 | } |
be391dca TT |
2440 | |
2441 | set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2); | |
cfc14b3a | 2442 | } |
0d0e1a63 MK |
2443 | |
2444 | /* Provide a prototype to silence -Wmissing-prototypes. */ | |
2445 | void _initialize_dwarf2_frame (void); | |
2446 | ||
2447 | void | |
2448 | _initialize_dwarf2_frame (void) | |
2449 | { | |
030f20e1 | 2450 | dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); |
8f22cb90 | 2451 | dwarf2_frame_objfile_data = register_objfile_data (); |
0d0e1a63 | 2452 | } |