]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Native support code for HPUX PA-RISC. |
b83266a0 | 2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998, 1999 |
c906108c SS |
3 | Free Software Foundation, Inc. |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, | |
23 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
24 | |
25 | ||
26 | #include "defs.h" | |
27 | #include "inferior.h" | |
28 | #include "target.h" | |
29 | #include <sys/ptrace.h> | |
30 | #include "gdbcore.h" | |
31 | #include <wait.h> | |
32 | #include <signal.h> | |
33 | ||
34 | extern CORE_ADDR text_end; | |
35 | ||
36 | static void fetch_register PARAMS ((int)); | |
37 | ||
38 | void | |
39 | fetch_inferior_registers (regno) | |
40 | int regno; | |
41 | { | |
42 | if (regno == -1) | |
43 | for (regno = 0; regno < NUM_REGS; regno++) | |
44 | fetch_register (regno); | |
45 | else | |
46 | fetch_register (regno); | |
47 | } | |
48 | ||
49 | /* Store our register values back into the inferior. | |
50 | If REGNO is -1, do this for all registers. | |
51 | Otherwise, REGNO specifies which register (so we can save time). */ | |
52 | ||
53 | void | |
54 | store_inferior_registers (regno) | |
55 | int regno; | |
56 | { | |
57 | register unsigned int regaddr; | |
58 | char buf[80]; | |
c906108c SS |
59 | register int i; |
60 | unsigned int offset = U_REGS_OFFSET; | |
61 | int scratch; | |
62 | ||
63 | if (regno >= 0) | |
64 | { | |
65 | if (CANNOT_STORE_REGISTER (regno)) | |
66 | return; | |
67 | regaddr = register_addr (regno, offset); | |
68 | errno = 0; | |
69 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) | |
b83266a0 SS |
70 | { |
71 | scratch = *(int *) ®isters[REGISTER_BYTE (regno)] | 0x3; | |
72 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
73 | scratch); | |
74 | if (errno != 0) | |
75 | { | |
c906108c | 76 | /* Error, even if attached. Failing to write these two |
c5aa993b | 77 | registers is pretty serious. */ |
b83266a0 SS |
78 | sprintf (buf, "writing register number %d", regno); |
79 | perror_with_name (buf); | |
80 | } | |
81 | } | |
c906108c | 82 | else |
c5aa993b | 83 | for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int)) |
c906108c SS |
84 | { |
85 | errno = 0; | |
86 | call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, | |
b83266a0 | 87 | *(int *) ®isters[REGISTER_BYTE (regno) + i]); |
c906108c SS |
88 | if (errno != 0) |
89 | { | |
90 | /* Warning, not error, in case we are attached; sometimes the | |
91 | kernel doesn't let us at the registers. */ | |
92 | char *err = safe_strerror (errno); | |
93 | char *msg = alloca (strlen (err) + 128); | |
94 | sprintf (msg, "writing register %s: %s", | |
95 | REGISTER_NAME (regno), err); | |
96 | warning (msg); | |
97 | return; | |
98 | } | |
c5aa993b | 99 | regaddr += sizeof (int); |
c906108c SS |
100 | } |
101 | } | |
102 | else | |
103 | for (regno = 0; regno < NUM_REGS; regno++) | |
104 | store_inferior_registers (regno); | |
105 | } | |
106 | ||
c906108c | 107 | |
adf40b2e JM |
108 | /* Our own version of the offsetof macro, since we can't assume ANSI C. */ |
109 | #define HPPAH_OFFSETOF(type, member) ((int) (&((type *) 0)->member)) | |
110 | ||
111 | /* Fetch a register's value from the process's U area. */ | |
c906108c SS |
112 | static void |
113 | fetch_register (regno) | |
114 | int regno; | |
115 | { | |
c906108c | 116 | char buf[MAX_REGISTER_RAW_SIZE]; |
adf40b2e JM |
117 | unsigned int addr, len, offset; |
118 | int i; | |
c906108c | 119 | |
adf40b2e JM |
120 | offset = 0; |
121 | len = REGISTER_RAW_SIZE (regno); | |
122 | ||
123 | /* Requests for register zero actually want the save_state's | |
124 | ss_flags member. As RM says: "Oh, what a hack!" */ | |
125 | if (regno == 0) | |
126 | { | |
127 | save_state_t ss; | |
128 | addr = HPPAH_OFFSETOF (save_state_t, ss_flags); | |
129 | len = sizeof (ss.ss_flags); | |
130 | ||
131 | /* Note that ss_flags is always an int, no matter what | |
132 | REGISTER_RAW_SIZE(0) says. Assuming all HP-UX PA machines | |
133 | are big-endian, put it at the least significant end of the | |
134 | value, and zap the rest of the buffer. */ | |
135 | offset = REGISTER_RAW_SIZE (0) - len; | |
136 | memset (buf, 0, sizeof (buf)); | |
137 | } | |
c906108c | 138 | |
adf40b2e JM |
139 | /* Floating-point registers come from the ss_fpblock area. */ |
140 | else if (regno >= FP0_REGNUM) | |
141 | addr = (HPPAH_OFFSETOF (save_state_t, ss_fpblock) | |
142 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (FP0_REGNUM))); | |
143 | ||
144 | /* Wide registers come from the ss_wide area. | |
145 | I think it's more PC to test (ss_flags & SS_WIDEREGS) to select | |
146 | between ss_wide and ss_narrow than to use the raw register size. | |
147 | But checking ss_flags would require an extra ptrace call for | |
148 | every register reference. Bleah. */ | |
149 | else if (len == 8) | |
150 | addr = (HPPAH_OFFSETOF (save_state_t, ss_wide) | |
151 | + REGISTER_BYTE (regno)); | |
152 | ||
153 | /* Narrow registers come from the ss_narrow area. Note that | |
154 | ss_narrow starts with gr1, not gr0. */ | |
155 | else if (len == 4) | |
156 | addr = (HPPAH_OFFSETOF (save_state_t, ss_narrow) | |
157 | + (REGISTER_BYTE (regno) - REGISTER_BYTE (1))); | |
c906108c | 158 | |
adf40b2e | 159 | else |
96baa820 | 160 | internal_error ("hppa-nat.c (fetch_register): unexpected register size"); |
adf40b2e JM |
161 | |
162 | for (i = 0; i < len; i += sizeof (int)) | |
c906108c SS |
163 | { |
164 | errno = 0; | |
adf40b2e JM |
165 | /* Copy an int from the U area to buf. Fill the least |
166 | significant end if len != raw_size. */ | |
167 | * (int *) &buf[offset + i] = | |
168 | call_ptrace (PT_RUREGS, inferior_pid, | |
169 | (PTRACE_ARG3_TYPE) addr + i, 0); | |
c906108c SS |
170 | if (errno != 0) |
171 | { | |
adf40b2e JM |
172 | /* Warning, not error, in case we are attached; sometimes |
173 | the kernel doesn't let us at the registers. */ | |
c906108c SS |
174 | char *err = safe_strerror (errno); |
175 | char *msg = alloca (strlen (err) + 128); | |
adf40b2e JM |
176 | sprintf (msg, "reading `%s' register: %s", |
177 | REGISTER_NAME (regno), err); | |
c906108c | 178 | warning (msg); |
adf40b2e | 179 | return; |
c906108c SS |
180 | } |
181 | } | |
adf40b2e JM |
182 | |
183 | /* If we're reading an address from the instruction address queue, | |
184 | mask out the bottom two bits --- they contain the privilege | |
185 | level. */ | |
c906108c | 186 | if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM) |
adf40b2e JM |
187 | buf[len - 1] &= ~0x3; |
188 | ||
c906108c | 189 | supply_register (regno, buf); |
c906108c SS |
190 | } |
191 | ||
adf40b2e | 192 | |
c906108c SS |
193 | /* Copy LEN bytes to or from inferior's memory starting at MEMADDR |
194 | to debugger memory starting at MYADDR. Copy to inferior if | |
195 | WRITE is nonzero. | |
c5aa993b | 196 | |
c906108c SS |
197 | Returns the length copied, which is either the LEN argument or zero. |
198 | This xfer function does not do partial moves, since child_ops | |
199 | doesn't allow memory operations to cross below us in the target stack | |
200 | anyway. */ | |
201 | ||
202 | int | |
203 | child_xfer_memory (memaddr, myaddr, len, write, target) | |
204 | CORE_ADDR memaddr; | |
205 | char *myaddr; | |
206 | int len; | |
207 | int write; | |
c5aa993b | 208 | struct target_ops *target; /* ignored */ |
c906108c SS |
209 | { |
210 | register int i; | |
211 | /* Round starting address down to longword boundary. */ | |
a0b3c4fd | 212 | register CORE_ADDR addr = memaddr & - (CORE_ADDR)(sizeof (int)); |
c906108c SS |
213 | /* Round ending address up; get number of longwords that makes. */ |
214 | register int count | |
c5aa993b | 215 | = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int); |
c906108c | 216 | |
b83266a0 SS |
217 | /* Allocate buffer of that many longwords. |
218 | Note -- do not use alloca to allocate this buffer since there is no | |
219 | guarantee of when the buffer will actually be deallocated. | |
220 | ||
221 | This routine can be called over and over with the same call chain; | |
222 | this (in effect) would pile up all those alloca requests until a call | |
223 | to alloca was made from a point higher than this routine in the | |
224 | call chain. */ | |
c906108c SS |
225 | register int *buffer = (int *) xmalloc (count * sizeof (int)); |
226 | ||
227 | if (write) | |
228 | { | |
229 | /* Fill start and end extra bytes of buffer with existing memory data. */ | |
c5aa993b | 230 | if (addr != memaddr || len < (int) sizeof (int)) |
b83266a0 SS |
231 | { |
232 | /* Need part of initial word -- fetch it. */ | |
c5aa993b | 233 | buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
b83266a0 SS |
234 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
235 | } | |
c906108c SS |
236 | |
237 | if (count > 1) /* FIXME, avoid if even boundary */ | |
238 | { | |
239 | buffer[count - 1] | |
b83266a0 SS |
240 | = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
241 | inferior_pid, | |
242 | (PTRACE_ARG3_TYPE) (addr | |
243 | + (count - 1) * sizeof (int)), | |
244 | 0); | |
c906108c SS |
245 | } |
246 | ||
247 | /* Copy data to be written over corresponding part of buffer */ | |
c906108c SS |
248 | memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len); |
249 | ||
250 | /* Write the entire buffer. */ | |
c906108c SS |
251 | for (i = 0; i < count; i++, addr += sizeof (int)) |
252 | { | |
b83266a0 SS |
253 | int pt_status; |
254 | int pt_request; | |
255 | /* The HP-UX kernel crashes if you use PT_WDUSER to write into the | |
256 | text segment. FIXME -- does it work to write into the data | |
257 | segment using WIUSER, or do these idiots really expect us to | |
258 | figure out which segment the address is in, so we can use a | |
259 | separate system call for it??! */ | |
c906108c | 260 | errno = 0; |
b83266a0 | 261 | pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER; |
c906108c | 262 | pt_status = call_ptrace (pt_request, |
c5aa993b | 263 | inferior_pid, |
b83266a0 SS |
264 | (PTRACE_ARG3_TYPE) addr, |
265 | buffer[i]); | |
266 | ||
267 | /* Did we fail? Might we've guessed wrong about which | |
268 | segment this address resides in? Try the other request, | |
269 | and see if that works... */ | |
270 | if ((pt_status == -1) && errno) | |
271 | { | |
272 | errno = 0; | |
273 | pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER; | |
274 | pt_status = call_ptrace (pt_request, | |
c5aa993b | 275 | inferior_pid, |
b83266a0 SS |
276 | (PTRACE_ARG3_TYPE) addr, |
277 | buffer[i]); | |
278 | ||
279 | /* No, we still fail. Okay, time to punt. */ | |
280 | if ((pt_status == -1) && errno) | |
281 | { | |
c5aa993b | 282 | free (buffer); |
b83266a0 SS |
283 | return 0; |
284 | } | |
285 | } | |
c906108c SS |
286 | } |
287 | } | |
288 | else | |
289 | { | |
290 | /* Read all the longwords */ | |
291 | for (i = 0; i < count; i++, addr += sizeof (int)) | |
292 | { | |
293 | errno = 0; | |
c5aa993b | 294 | buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, |
b83266a0 SS |
295 | inferior_pid, (PTRACE_ARG3_TYPE) addr, 0); |
296 | if (errno) | |
297 | { | |
c5aa993b | 298 | free (buffer); |
b83266a0 SS |
299 | return 0; |
300 | } | |
c906108c SS |
301 | QUIT; |
302 | } | |
303 | ||
304 | /* Copy appropriate bytes out of the buffer. */ | |
305 | memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len); | |
306 | } | |
c5aa993b | 307 | free (buffer); |
c906108c SS |
308 | return len; |
309 | } | |
310 | ||
311 | ||
312 | void | |
313 | child_post_follow_inferior_by_clone () | |
314 | { | |
b83266a0 | 315 | int status; |
c906108c SS |
316 | |
317 | /* This function is used when following both the parent and child | |
318 | of a fork. In this case, the debugger clones itself. The original | |
319 | debugger follows the parent, the clone follows the child. The | |
320 | original detaches from the child, delivering a SIGSTOP to it to | |
321 | keep it from running away until the clone can attach itself. | |
322 | ||
323 | At this point, the clone has attached to the child. Because of | |
324 | the SIGSTOP, we must now deliver a SIGCONT to the child, or it | |
325 | won't behave properly. */ | |
326 | status = kill (inferior_pid, SIGCONT); | |
327 | } | |
328 | ||
329 | ||
330 | void | |
331 | child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child) | |
b83266a0 SS |
332 | int parent_pid; |
333 | int followed_parent; | |
334 | int child_pid; | |
335 | int followed_child; | |
c906108c | 336 | { |
c906108c SS |
337 | /* Are we a debugger that followed the parent of a vfork? If so, |
338 | then recall that the child's vfork event was delivered to us | |
339 | first. And, that the parent was suspended by the OS until the | |
340 | child's exec or exit events were received. | |
341 | ||
342 | Upon receiving that child vfork, then, we were forced to remove | |
343 | all breakpoints in the child and continue it so that it could | |
344 | reach the exec or exit point. | |
345 | ||
346 | But also recall that the parent and child of a vfork share the | |
347 | same address space. Thus, removing bp's in the child also | |
348 | removed them from the parent. | |
349 | ||
350 | Now that the child has safely exec'd or exited, we must restore | |
351 | the parent's breakpoints before we continue it. Else, we may | |
352 | cause it run past expected stopping points. */ | |
353 | if (followed_parent) | |
354 | { | |
355 | reattach_breakpoints (parent_pid); | |
356 | } | |
357 | ||
358 | /* Are we a debugger that followed the child of a vfork? If so, | |
359 | then recall that we don't actually acquire control of the child | |
b83266a0 | 360 | until after it has exec'd or exited. */ |
c906108c SS |
361 | if (followed_child) |
362 | { | |
363 | /* If the child has exited, then there's nothing for us to do. | |
c5aa993b JM |
364 | In the case of an exec event, we'll let that be handled by |
365 | the normal mechanism that notices and handles exec events, in | |
366 | resume(). */ | |
c906108c SS |
367 | } |
368 | } | |
369 | ||
b83266a0 SS |
370 | /* Format a process id, given PID. Be sure to terminate |
371 | this with a null--it's going to be printed via a "%s". */ | |
c906108c | 372 | char * |
b83266a0 | 373 | hppa_pid_to_str (pid) |
c5aa993b | 374 | pid_t pid; |
c906108c | 375 | { |
c5aa993b JM |
376 | /* Static because address returned */ |
377 | static char buf[30]; | |
c906108c | 378 | |
c5aa993b JM |
379 | /* Extra NULLs for paranoia's sake */ |
380 | sprintf (buf, "process %d\0\0\0\0", pid); | |
381 | ||
382 | return buf; | |
c906108c SS |
383 | } |
384 | ||
b83266a0 SS |
385 | /* Format a thread id, given TID. Be sure to terminate |
386 | this with a null--it's going to be printed via a "%s". | |
387 | ||
388 | Note: This is a core-gdb tid, not the actual system tid. | |
c5aa993b | 389 | See infttrace.c for details. */ |
c906108c | 390 | char * |
b83266a0 | 391 | hppa_tid_to_str (tid) |
c5aa993b | 392 | pid_t tid; |
c906108c | 393 | { |
c5aa993b JM |
394 | /* Static because address returned */ |
395 | static char buf[30]; | |
396 | ||
397 | /* Extra NULLs for paranoia's sake */ | |
398 | sprintf (buf, "system thread %d\0\0\0\0", tid); | |
c906108c | 399 | |
c5aa993b | 400 | return buf; |
c906108c SS |
401 | } |
402 | ||
403 | #if !defined (GDB_NATIVE_HPUX_11) | |
404 | ||
405 | /* The following code is a substitute for the infttrace.c versions used | |
406 | with ttrace() in HPUX 11. */ | |
407 | ||
408 | /* This value is an arbitrary integer. */ | |
409 | #define PT_VERSION 123456 | |
410 | ||
411 | /* This semaphore is used to coordinate the child and parent processes | |
412 | after a fork(), and before an exec() by the child. See | |
413 | parent_attach_all for details. */ | |
414 | ||
c5aa993b JM |
415 | typedef struct |
416 | { | |
417 | int parent_channel[2]; /* Parent "talks" to [1], child "listens" to [0] */ | |
418 | int child_channel[2]; /* Child "talks" to [1], parent "listens" to [0] */ | |
419 | } | |
420 | startup_semaphore_t; | |
c906108c SS |
421 | |
422 | #define SEM_TALK (1) | |
423 | #define SEM_LISTEN (0) | |
424 | ||
c5aa993b | 425 | static startup_semaphore_t startup_semaphore; |
c906108c SS |
426 | |
427 | extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int)); | |
428 | ||
429 | #ifdef PT_SETTRC | |
430 | /* This function causes the caller's process to be traced by its | |
431 | parent. This is intended to be called after GDB forks itself, | |
432 | and before the child execs the target. | |
433 | ||
434 | Note that HP-UX ptrace is rather funky in how this is done. | |
435 | If the parent wants to get the initial exec event of a child, | |
436 | it must set the ptrace event mask of the child to include execs. | |
437 | (The child cannot do this itself.) This must be done after the | |
438 | child is forked, but before it execs. | |
439 | ||
440 | To coordinate the parent and child, we implement a semaphore using | |
441 | pipes. After SETTRC'ing itself, the child tells the parent that | |
442 | it is now traceable by the parent, and waits for the parent's | |
443 | acknowledgement. The parent can then set the child's event mask, | |
444 | and notify the child that it can now exec. | |
445 | ||
446 | (The acknowledgement by parent happens as a result of a call to | |
447 | child_acknowledge_created_inferior.) */ | |
448 | ||
449 | int | |
450 | parent_attach_all (pid, addr, data) | |
451 | int pid; | |
452 | PTRACE_ARG3_TYPE addr; | |
453 | int data; | |
454 | { | |
455 | int pt_status = 0; | |
456 | ||
457 | /* We need a memory home for a constant. */ | |
458 | int tc_magic_child = PT_VERSION; | |
459 | int tc_magic_parent = 0; | |
460 | ||
461 | /* The remainder of this function is only useful for HPUX 10.0 and | |
462 | later, as it depends upon the ability to request notification | |
463 | of specific kinds of events by the kernel. */ | |
464 | #if defined(PT_SET_EVENT_MASK) | |
465 | ||
466 | /* Notify the parent that we're potentially ready to exec(). */ | |
467 | write (startup_semaphore.child_channel[SEM_TALK], | |
b83266a0 SS |
468 | &tc_magic_child, |
469 | sizeof (tc_magic_child)); | |
c906108c SS |
470 | |
471 | /* Wait for acknowledgement from the parent. */ | |
472 | read (startup_semaphore.parent_channel[SEM_LISTEN], | |
b83266a0 SS |
473 | &tc_magic_parent, |
474 | sizeof (tc_magic_parent)); | |
c906108c | 475 | if (tc_magic_child != tc_magic_parent) |
c5aa993b | 476 | warning ("mismatched semaphore magic"); |
c906108c SS |
477 | |
478 | /* Discard our copy of the semaphore. */ | |
479 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
480 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
481 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
482 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
483 | #endif | |
c5aa993b | 484 | |
c906108c SS |
485 | return 0; |
486 | } | |
487 | #endif | |
488 | ||
489 | int | |
490 | hppa_require_attach (pid) | |
491 | int pid; | |
492 | { | |
493 | int pt_status; | |
b83266a0 SS |
494 | CORE_ADDR pc; |
495 | CORE_ADDR pc_addr; | |
c906108c SS |
496 | unsigned int regs_offset; |
497 | ||
498 | /* Are we already attached? There appears to be no explicit way to | |
499 | answer this via ptrace, so we try something which should be | |
500 | innocuous if we are attached. If that fails, then we assume | |
501 | we're not attached, and so attempt to make it so. */ | |
502 | ||
503 | errno = 0; | |
504 | regs_offset = U_REGS_OFFSET; | |
505 | pc_addr = register_addr (PC_REGNUM, regs_offset); | |
506 | pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0); | |
507 | ||
508 | if (errno) | |
509 | { | |
510 | errno = 0; | |
511 | pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0); | |
512 | ||
513 | if (errno) | |
b83266a0 | 514 | return -1; |
c906108c SS |
515 | |
516 | /* Now we really are attached. */ | |
517 | errno = 0; | |
518 | } | |
519 | attach_flag = 1; | |
520 | return pid; | |
521 | } | |
522 | ||
523 | int | |
524 | hppa_require_detach (pid, signal) | |
c5aa993b JM |
525 | int pid; |
526 | int signal; | |
c906108c SS |
527 | { |
528 | errno = 0; | |
529 | call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal); | |
c5aa993b | 530 | errno = 0; /* Ignore any errors. */ |
c906108c SS |
531 | return pid; |
532 | } | |
533 | ||
534 | /* Since ptrace doesn't support memory page-protection events, which | |
535 | are used to implement "hardware" watchpoints on HP-UX, these are | |
536 | dummy versions, which perform no useful work. */ | |
537 | ||
538 | void | |
539 | hppa_enable_page_protection_events (pid) | |
540 | int pid; | |
541 | { | |
542 | } | |
543 | ||
544 | void | |
545 | hppa_disable_page_protection_events (pid) | |
546 | int pid; | |
547 | { | |
548 | } | |
549 | ||
550 | int | |
551 | hppa_insert_hw_watchpoint (pid, start, len, type) | |
552 | int pid; | |
553 | CORE_ADDR start; | |
554 | LONGEST len; | |
555 | int type; | |
556 | { | |
557 | error ("Hardware watchpoints not implemented on this platform."); | |
558 | } | |
559 | ||
560 | int | |
561 | hppa_remove_hw_watchpoint (pid, start, len, type) | |
562 | int pid; | |
563 | CORE_ADDR start; | |
564 | LONGEST len; | |
565 | enum bptype type; | |
566 | { | |
567 | error ("Hardware watchpoints not implemented on this platform."); | |
568 | } | |
569 | ||
570 | int | |
571 | hppa_can_use_hw_watchpoint (type, cnt, ot) | |
572 | enum bptype type; | |
573 | int cnt; | |
574 | enum bptype ot; | |
575 | { | |
576 | return 0; | |
577 | } | |
578 | ||
579 | int | |
580 | hppa_range_profitable_for_hw_watchpoint (pid, start, len) | |
581 | int pid; | |
582 | CORE_ADDR start; | |
583 | LONGEST len; | |
584 | { | |
585 | error ("Hardware watchpoints not implemented on this platform."); | |
586 | } | |
587 | ||
588 | char * | |
589 | hppa_pid_or_tid_to_str (id) | |
590 | pid_t id; | |
591 | { | |
592 | /* In the ptrace world, there are only processes. */ | |
593 | return hppa_pid_to_str (id); | |
594 | } | |
595 | ||
596 | /* This function has no meaning in a non-threaded world. Thus, we | |
597 | return 0 (FALSE). See the use of "hppa_prepare_to_proceed" in | |
598 | hppa-tdep.c. */ | |
599 | ||
600 | pid_t | |
601 | hppa_switched_threads (pid) | |
602 | pid_t pid; | |
603 | { | |
604 | return (pid_t) 0; | |
605 | } | |
606 | ||
607 | void | |
608 | hppa_ensure_vforking_parent_remains_stopped (pid) | |
609 | int pid; | |
610 | { | |
611 | /* This assumes that the vforked parent is presently stopped, and | |
612 | that the vforked child has just delivered its first exec event. | |
613 | Calling kill() this way will cause the SIGTRAP to be delivered as | |
614 | soon as the parent is resumed, which happens as soon as the | |
615 | vforked child is resumed. See wait_for_inferior for the use of | |
616 | this function. */ | |
617 | kill (pid, SIGTRAP); | |
618 | } | |
619 | ||
620 | int | |
621 | hppa_resume_execd_vforking_child_to_get_parent_vfork () | |
622 | { | |
c5aa993b | 623 | return 1; /* Yes, the child must be resumed. */ |
c906108c SS |
624 | } |
625 | ||
626 | void | |
627 | require_notification_of_events (pid) | |
b83266a0 | 628 | int pid; |
c906108c SS |
629 | { |
630 | #if defined(PT_SET_EVENT_MASK) | |
631 | int pt_status; | |
632 | ptrace_event_t ptrace_events; | |
633 | ||
634 | /* Instruct the kernel as to the set of events we wish to be | |
635 | informed of. (This support does not exist before HPUX 10.0. | |
636 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
b83266a0 | 637 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
c906108c SS |
638 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
639 | ||
640 | /* Note: By default, all signals are visible to us. If we wish | |
641 | the kernel to keep certain signals hidden from us, we do it | |
642 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
b83266a0 | 643 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
c906108c SS |
644 | sigemptyset (&ptrace_events.pe_signals); |
645 | ||
646 | ptrace_events.pe_set_event = 0; | |
647 | ||
648 | ptrace_events.pe_set_event |= PTRACE_SIGNAL; | |
649 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
650 | ptrace_events.pe_set_event |= PTRACE_FORK; | |
651 | ptrace_events.pe_set_event |= PTRACE_VFORK; | |
652 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
c5aa993b JM |
653 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
654 | */ | |
c906108c SS |
655 | |
656 | errno = 0; | |
657 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
c5aa993b JM |
658 | pid, |
659 | (PTRACE_ARG3_TYPE) & ptrace_events, | |
660 | sizeof (ptrace_events)); | |
c906108c SS |
661 | if (errno) |
662 | perror_with_name ("ptrace"); | |
663 | if (pt_status < 0) | |
664 | return; | |
665 | #endif | |
666 | } | |
667 | ||
668 | void | |
669 | require_notification_of_exec_events (pid) | |
b83266a0 | 670 | int pid; |
c906108c SS |
671 | { |
672 | #if defined(PT_SET_EVENT_MASK) | |
673 | int pt_status; | |
674 | ptrace_event_t ptrace_events; | |
675 | ||
676 | /* Instruct the kernel as to the set of events we wish to be | |
677 | informed of. (This support does not exist before HPUX 10.0. | |
678 | We'll assume if PT_SET_EVENT_MASK has not been defined by | |
b83266a0 | 679 | <sys/ptrace.h>, then we're being built on pre-10.0.) */ |
c906108c SS |
680 | memset (&ptrace_events, 0, sizeof (ptrace_events)); |
681 | ||
682 | /* Note: By default, all signals are visible to us. If we wish | |
683 | the kernel to keep certain signals hidden from us, we do it | |
684 | by calling sigdelset (ptrace_events.pe_signals, signal) for | |
b83266a0 | 685 | each such signal here, before doing PT_SET_EVENT_MASK. */ |
c906108c SS |
686 | sigemptyset (&ptrace_events.pe_signals); |
687 | ||
688 | ptrace_events.pe_set_event = 0; | |
689 | ||
690 | ptrace_events.pe_set_event |= PTRACE_EXEC; | |
691 | /* ??rehrauer: Add this one when we're prepared to catch it... | |
c5aa993b JM |
692 | ptrace_events.pe_set_event |= PTRACE_EXIT; |
693 | */ | |
c906108c SS |
694 | |
695 | errno = 0; | |
696 | pt_status = call_ptrace (PT_SET_EVENT_MASK, | |
c5aa993b JM |
697 | pid, |
698 | (PTRACE_ARG3_TYPE) & ptrace_events, | |
699 | sizeof (ptrace_events)); | |
c906108c SS |
700 | if (errno) |
701 | perror_with_name ("ptrace"); | |
702 | if (pt_status < 0) | |
703 | return; | |
704 | #endif | |
705 | } | |
706 | ||
707 | /* This function is called by the parent process, with pid being the | |
708 | ID of the child process, after the debugger has forked. */ | |
709 | ||
710 | void | |
711 | child_acknowledge_created_inferior (pid) | |
b83266a0 | 712 | int pid; |
c906108c SS |
713 | { |
714 | /* We need a memory home for a constant. */ | |
715 | int tc_magic_parent = PT_VERSION; | |
716 | int tc_magic_child = 0; | |
717 | ||
b83266a0 SS |
718 | /* The remainder of this function is only useful for HPUX 10.0 and |
719 | later, as it depends upon the ability to request notification | |
720 | of specific kinds of events by the kernel. */ | |
721 | #if defined(PT_SET_EVENT_MASK) | |
c906108c SS |
722 | /* Wait for the child to tell us that it has forked. */ |
723 | read (startup_semaphore.child_channel[SEM_LISTEN], | |
b83266a0 | 724 | &tc_magic_child, |
c5aa993b | 725 | sizeof (tc_magic_child)); |
c906108c SS |
726 | |
727 | /* Notify the child that it can exec. | |
728 | ||
729 | In the infttrace.c variant of this function, we set the child's | |
730 | event mask after the fork but before the exec. In the ptrace | |
731 | world, it seems we can't set the event mask until after the exec. */ | |
c906108c | 732 | write (startup_semaphore.parent_channel[SEM_TALK], |
b83266a0 SS |
733 | &tc_magic_parent, |
734 | sizeof (tc_magic_parent)); | |
c906108c SS |
735 | |
736 | /* We'd better pause a bit before trying to set the event mask, | |
737 | though, to ensure that the exec has happened. We don't want to | |
738 | wait() on the child, because that'll screw up the upper layers | |
739 | of gdb's execution control that expect to see the exec event. | |
740 | ||
741 | After an exec, the child is no longer executing gdb code. Hence, | |
742 | we can't have yet another synchronization via the pipes. We'll | |
743 | just sleep for a second, and hope that's enough delay... */ | |
c906108c SS |
744 | sleep (1); |
745 | ||
746 | /* Instruct the kernel as to the set of events we wish to be | |
747 | informed of. */ | |
c906108c SS |
748 | require_notification_of_exec_events (pid); |
749 | ||
750 | /* Discard our copy of the semaphore. */ | |
751 | (void) close (startup_semaphore.parent_channel[SEM_LISTEN]); | |
752 | (void) close (startup_semaphore.parent_channel[SEM_TALK]); | |
753 | (void) close (startup_semaphore.child_channel[SEM_LISTEN]); | |
754 | (void) close (startup_semaphore.child_channel[SEM_TALK]); | |
b83266a0 | 755 | #endif |
c906108c SS |
756 | } |
757 | ||
758 | void | |
759 | child_post_startup_inferior (pid) | |
b83266a0 | 760 | int pid; |
c906108c SS |
761 | { |
762 | require_notification_of_events (pid); | |
763 | } | |
764 | ||
765 | void | |
766 | child_post_attach (pid) | |
b83266a0 | 767 | int pid; |
c906108c SS |
768 | { |
769 | require_notification_of_events (pid); | |
770 | } | |
771 | ||
772 | int | |
773 | child_insert_fork_catchpoint (pid) | |
b83266a0 | 774 | int pid; |
c906108c SS |
775 | { |
776 | /* This request is only available on HPUX 10.0 and later. */ | |
777 | #if !defined(PT_SET_EVENT_MASK) | |
778 | error ("Unable to catch forks prior to HPUX 10.0"); | |
779 | #else | |
780 | /* Enable reporting of fork events from the kernel. */ | |
781 | /* ??rehrauer: For the moment, we're always enabling these events, | |
b83266a0 | 782 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
783 | return 0; |
784 | #endif | |
785 | } | |
786 | ||
787 | int | |
788 | child_remove_fork_catchpoint (pid) | |
b83266a0 | 789 | int pid; |
c906108c SS |
790 | { |
791 | /* This request is only available on HPUX 10.0 and later. */ | |
792 | #if !defined(PT_SET_EVENT_MASK) | |
793 | error ("Unable to catch forks prior to HPUX 10.0"); | |
794 | #else | |
795 | /* Disable reporting of fork events from the kernel. */ | |
796 | /* ??rehrauer: For the moment, we're always enabling these events, | |
797 | and just ignoring them if there's no catchpoint to catch them. */ | |
798 | return 0; | |
799 | #endif | |
800 | } | |
801 | ||
802 | int | |
803 | child_insert_vfork_catchpoint (pid) | |
b83266a0 | 804 | int pid; |
c906108c SS |
805 | { |
806 | /* This request is only available on HPUX 10.0 and later. */ | |
807 | #if !defined(PT_SET_EVENT_MASK) | |
808 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
809 | #else | |
810 | /* Enable reporting of vfork events from the kernel. */ | |
811 | /* ??rehrauer: For the moment, we're always enabling these events, | |
812 | and just ignoring them if there's no catchpoint to catch them. */ | |
813 | return 0; | |
814 | #endif | |
815 | } | |
816 | ||
817 | int | |
818 | child_remove_vfork_catchpoint (pid) | |
b83266a0 | 819 | int pid; |
c906108c SS |
820 | { |
821 | /* This request is only available on HPUX 10.0 and later. */ | |
822 | #if !defined(PT_SET_EVENT_MASK) | |
823 | error ("Unable to catch vforks prior to HPUX 10.0"); | |
824 | #else | |
825 | /* Disable reporting of vfork events from the kernel. */ | |
826 | /* ??rehrauer: For the moment, we're always enabling these events, | |
827 | and just ignoring them if there's no catchpoint to catch them. */ | |
828 | return 0; | |
829 | #endif | |
830 | } | |
831 | ||
832 | int | |
833 | child_has_forked (pid, childpid) | |
b83266a0 SS |
834 | int pid; |
835 | int *childpid; | |
c906108c SS |
836 | { |
837 | /* This request is only available on HPUX 10.0 and later. */ | |
838 | #if !defined(PT_GET_PROCESS_STATE) | |
839 | *childpid = 0; | |
840 | return 0; | |
841 | #else | |
842 | int pt_status; | |
c5aa993b | 843 | ptrace_state_t ptrace_state; |
c906108c SS |
844 | |
845 | errno = 0; | |
846 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 847 | pid, |
c5aa993b | 848 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 849 | sizeof (ptrace_state)); |
c906108c SS |
850 | if (errno) |
851 | perror_with_name ("ptrace"); | |
852 | if (pt_status < 0) | |
853 | return 0; | |
854 | ||
855 | if (ptrace_state.pe_report_event & PTRACE_FORK) | |
856 | { | |
857 | *childpid = ptrace_state.pe_other_pid; | |
858 | return 1; | |
859 | } | |
860 | ||
861 | return 0; | |
862 | #endif | |
863 | } | |
864 | ||
865 | int | |
866 | child_has_vforked (pid, childpid) | |
b83266a0 SS |
867 | int pid; |
868 | int *childpid; | |
c906108c SS |
869 | { |
870 | /* This request is only available on HPUX 10.0 and later. */ | |
871 | #if !defined(PT_GET_PROCESS_STATE) | |
872 | *childpid = 0; | |
873 | return 0; | |
874 | ||
875 | #else | |
876 | int pt_status; | |
c5aa993b | 877 | ptrace_state_t ptrace_state; |
c906108c SS |
878 | |
879 | errno = 0; | |
880 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 881 | pid, |
c5aa993b | 882 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 883 | sizeof (ptrace_state)); |
c906108c SS |
884 | if (errno) |
885 | perror_with_name ("ptrace"); | |
886 | if (pt_status < 0) | |
887 | return 0; | |
888 | ||
889 | if (ptrace_state.pe_report_event & PTRACE_VFORK) | |
890 | { | |
891 | *childpid = ptrace_state.pe_other_pid; | |
892 | return 1; | |
893 | } | |
894 | ||
895 | return 0; | |
896 | #endif | |
897 | } | |
898 | ||
899 | int | |
900 | child_can_follow_vfork_prior_to_exec () | |
901 | { | |
902 | /* ptrace doesn't allow this. */ | |
903 | return 0; | |
904 | } | |
905 | ||
906 | int | |
907 | child_insert_exec_catchpoint (pid) | |
b83266a0 | 908 | int pid; |
c906108c | 909 | { |
b83266a0 | 910 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
911 | #if !defined(PT_SET_EVENT_MASK) |
912 | error ("Unable to catch execs prior to HPUX 10.0"); | |
913 | ||
914 | #else | |
b83266a0 | 915 | /* Enable reporting of exec events from the kernel. */ |
c906108c | 916 | /* ??rehrauer: For the moment, we're always enabling these events, |
b83266a0 | 917 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
918 | return 0; |
919 | #endif | |
920 | } | |
921 | ||
922 | int | |
923 | child_remove_exec_catchpoint (pid) | |
b83266a0 | 924 | int pid; |
c906108c | 925 | { |
b83266a0 | 926 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
927 | #if !defined(PT_SET_EVENT_MASK) |
928 | error ("Unable to catch execs prior to HPUX 10.0"); | |
929 | ||
930 | #else | |
931 | /* Disable reporting of exec events from the kernel. */ | |
932 | /* ??rehrauer: For the moment, we're always enabling these events, | |
b83266a0 | 933 | and just ignoring them if there's no catchpoint to catch them. */ |
c906108c SS |
934 | return 0; |
935 | #endif | |
936 | } | |
937 | ||
938 | int | |
939 | child_has_execd (pid, execd_pathname) | |
b83266a0 SS |
940 | int pid; |
941 | char **execd_pathname; | |
c906108c | 942 | { |
b83266a0 | 943 | /* This request is only available on HPUX 10.0 and later. */ |
c906108c SS |
944 | #if !defined(PT_GET_PROCESS_STATE) |
945 | *execd_pathname = NULL; | |
946 | return 0; | |
947 | ||
948 | #else | |
949 | int pt_status; | |
c5aa993b | 950 | ptrace_state_t ptrace_state; |
c906108c SS |
951 | |
952 | errno = 0; | |
953 | pt_status = call_ptrace (PT_GET_PROCESS_STATE, | |
b83266a0 | 954 | pid, |
c5aa993b | 955 | (PTRACE_ARG3_TYPE) & ptrace_state, |
b83266a0 | 956 | sizeof (ptrace_state)); |
c906108c SS |
957 | if (errno) |
958 | perror_with_name ("ptrace"); | |
959 | if (pt_status < 0) | |
960 | return 0; | |
961 | ||
962 | if (ptrace_state.pe_report_event & PTRACE_EXEC) | |
963 | { | |
c5aa993b | 964 | char *exec_file = target_pid_to_exec_file (pid); |
c906108c SS |
965 | *execd_pathname = savestring (exec_file, strlen (exec_file)); |
966 | return 1; | |
967 | } | |
968 | ||
969 | return 0; | |
970 | #endif | |
971 | } | |
972 | ||
973 | int | |
974 | child_reported_exec_events_per_exec_call () | |
975 | { | |
c5aa993b | 976 | return 2; /* ptrace reports the event twice per call. */ |
c906108c SS |
977 | } |
978 | ||
979 | int | |
980 | child_has_syscall_event (pid, kind, syscall_id) | |
981 | int pid; | |
982 | enum target_waitkind *kind; | |
983 | int *syscall_id; | |
984 | { | |
985 | /* This request is only available on HPUX 10.30 and later, via | |
986 | the ttrace interface. */ | |
987 | ||
988 | *kind = TARGET_WAITKIND_SPURIOUS; | |
989 | *syscall_id = -1; | |
990 | return 0; | |
991 | } | |
992 | ||
993 | char * | |
994 | child_pid_to_exec_file (pid) | |
b83266a0 | 995 | int pid; |
c906108c | 996 | { |
b83266a0 | 997 | static char exec_file_buffer[1024]; |
c906108c | 998 | int pt_status; |
b83266a0 SS |
999 | CORE_ADDR top_of_stack; |
1000 | char four_chars[4]; | |
c906108c SS |
1001 | int name_index; |
1002 | int i; | |
1003 | int saved_inferior_pid; | |
b83266a0 | 1004 | boolean done; |
c5aa993b | 1005 | |
c906108c SS |
1006 | #ifdef PT_GET_PROCESS_PATHNAME |
1007 | /* As of 10.x HP-UX, there's an explicit request to get the pathname. */ | |
1008 | pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME, | |
b83266a0 SS |
1009 | pid, |
1010 | (PTRACE_ARG3_TYPE) exec_file_buffer, | |
1011 | sizeof (exec_file_buffer) - 1); | |
c906108c SS |
1012 | if (pt_status == 0) |
1013 | return exec_file_buffer; | |
1014 | #endif | |
1015 | ||
1016 | /* It appears that this request is broken prior to 10.30. | |
1017 | If it fails, try a really, truly amazingly gross hack | |
1018 | that DDE uses, of pawing through the process' data | |
1019 | segment to find the pathname. */ | |
1020 | ||
1021 | top_of_stack = 0x7b03a000; | |
1022 | name_index = 0; | |
1023 | done = 0; | |
1024 | ||
1025 | /* On the chance that pid != inferior_pid, set inferior_pid | |
1026 | to pid, so that (grrrr!) implicit uses of inferior_pid get | |
1027 | the right id. */ | |
1028 | ||
1029 | saved_inferior_pid = inferior_pid; | |
1030 | inferior_pid = pid; | |
1031 | ||
1032 | /* Try to grab a null-terminated string. */ | |
c5aa993b | 1033 | while (!done) |
c906108c SS |
1034 | { |
1035 | if (target_read_memory (top_of_stack, four_chars, 4) != 0) | |
1036 | { | |
1037 | inferior_pid = saved_inferior_pid; | |
1038 | return NULL; | |
1039 | } | |
1040 | for (i = 0; i < 4; i++) | |
1041 | { | |
1042 | exec_file_buffer[name_index++] = four_chars[i]; | |
1043 | done = (four_chars[i] == '\0'); | |
1044 | if (done) | |
1045 | break; | |
1046 | } | |
1047 | top_of_stack += 4; | |
1048 | } | |
1049 | ||
1050 | if (exec_file_buffer[0] == '\0') | |
1051 | { | |
1052 | inferior_pid = saved_inferior_pid; | |
1053 | return NULL; | |
1054 | } | |
1055 | ||
1056 | inferior_pid = saved_inferior_pid; | |
1057 | return exec_file_buffer; | |
1058 | } | |
1059 | ||
1060 | void | |
1061 | pre_fork_inferior () | |
1062 | { | |
1063 | int status; | |
1064 | ||
1065 | status = pipe (startup_semaphore.parent_channel); | |
1066 | if (status < 0) | |
1067 | { | |
1068 | warning ("error getting parent pipe for startup semaphore"); | |
1069 | return; | |
1070 | } | |
1071 | ||
1072 | status = pipe (startup_semaphore.child_channel); | |
1073 | if (status < 0) | |
1074 | { | |
1075 | warning ("error getting child pipe for startup semaphore"); | |
1076 | return; | |
1077 | } | |
1078 | } | |
c906108c | 1079 | \f |
c5aa993b | 1080 | |
c906108c SS |
1081 | /* Check to see if the given thread is alive. |
1082 | ||
1083 | This is a no-op, as ptrace doesn't support threads, so we just | |
1084 | return "TRUE". */ | |
1085 | ||
1086 | int | |
1087 | child_thread_alive (pid) | |
1088 | int pid; | |
1089 | { | |
c5aa993b | 1090 | return 1; |
c906108c SS |
1091 | } |
1092 | ||
1093 | #endif /* ! GDB_NATIVE_HPUX_11 */ |