]>
Commit | Line | Data |
---|---|---|
8818c391 TR |
1 | /* Target-dependent code for Atmel AVR, for GDB. |
2 | Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | /* Contributed by Theodore A. Roth, [email protected] */ | |
23 | ||
24 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
25 | by Denis Chertykov, [email protected] */ | |
26 | ||
27 | #include "defs.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "gdbcore.h" | |
30 | #include "inferior.h" | |
31 | #include "symfile.h" | |
32 | #include "arch-utils.h" | |
33 | #include "regcache.h" | |
5f8a3188 | 34 | #include "gdb_string.h" |
8818c391 TR |
35 | |
36 | /* AVR Background: | |
37 | ||
38 | (AVR micros are pure Harvard Architecture processors.) | |
39 | ||
40 | The AVR family of microcontrollers have three distinctly different memory | |
41 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for | |
42 | the most part to store program instructions. The sram is 8 bits wide and is | |
43 | used for the stack and the heap. Some devices lack sram and some can have | |
44 | an additional external sram added on as a peripheral. | |
45 | ||
46 | The eeprom is 8 bits wide and is used to store data when the device is | |
47 | powered down. Eeprom is not directly accessible, it can only be accessed | |
48 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
49 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is | |
50 | not included at this time. | |
51 | ||
52 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
53 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
54 | work, the remote target must be able to handle eeprom accesses and perform | |
55 | the address translation.] | |
56 | ||
57 | All three memory spaces have physical addresses beginning at 0x0. In | |
58 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit | |
59 | bytes instead of the 16 bit wide words used by the real device for the | |
60 | Program Counter. | |
61 | ||
62 | In order for remote targets to work correctly, extra bits must be added to | |
63 | addresses before they are send to the target or received from the target | |
64 | via the remote serial protocol. The extra bits are the MSBs and are used to | |
65 | decode which memory space the address is referring to. */ | |
66 | ||
67 | #undef XMALLOC | |
68 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
69 | ||
70 | #undef EXTRACT_INSN | |
71 | #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2) | |
72 | ||
73 | /* Constants: prefixed with AVR_ to avoid name space clashes */ | |
74 | ||
75 | enum | |
2e5ff58c TR |
76 | { |
77 | AVR_REG_W = 24, | |
78 | AVR_REG_X = 26, | |
79 | AVR_REG_Y = 28, | |
80 | AVR_FP_REGNUM = 28, | |
81 | AVR_REG_Z = 30, | |
82 | ||
83 | AVR_SREG_REGNUM = 32, | |
84 | AVR_SP_REGNUM = 33, | |
85 | AVR_PC_REGNUM = 34, | |
86 | ||
87 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
88 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
89 | ||
90 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ | |
91 | ||
92 | AVR_MAX_PROLOGUE_SIZE = 56, /* bytes */ | |
93 | ||
94 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ | |
95 | AVR_MAX_PUSHES = 18, | |
96 | ||
97 | /* Number of the last pushed register. r17 for current avr-gcc */ | |
98 | AVR_LAST_PUSHED_REGNUM = 17, | |
99 | ||
100 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 | |
101 | bits? Do these have to match the bfd vma values?. It sure would make | |
102 | things easier in the future if they didn't need to match. | |
103 | ||
104 | Note: I chose these values so as to be consistent with bfd vma | |
105 | addresses. | |
106 | ||
107 | TRoth/2002-04-08: There is already a conflict with very large programs | |
108 | in the mega128. The mega128 has 128K instruction bytes (64K words), | |
109 | thus the Most Significant Bit is 0x10000 which gets masked off my | |
110 | AVR_MEM_MASK. | |
111 | ||
112 | The problem manifests itself when trying to set a breakpoint in a | |
113 | function which resides in the upper half of the instruction space and | |
114 | thus requires a 17-bit address. | |
115 | ||
116 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
117 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, | |
118 | but could be for some remote targets by just adding the correct offset | |
119 | to the address and letting the remote target handle the low-level | |
120 | details of actually accessing the eeprom. */ | |
121 | ||
122 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
123 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 124 | #if 1 |
2e5ff58c TR |
125 | /* No eeprom mask defined */ |
126 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 127 | #else |
2e5ff58c TR |
128 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
129 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 130 | #endif |
2e5ff58c | 131 | }; |
8818c391 TR |
132 | |
133 | /* Any function with a frame looks like this | |
134 | ....... <-SP POINTS HERE | |
135 | LOCALS1 <-FP POINTS HERE | |
136 | LOCALS0 | |
137 | SAVED FP | |
138 | SAVED R3 | |
139 | SAVED R2 | |
140 | RET PC | |
141 | FIRST ARG | |
142 | SECOND ARG */ | |
143 | ||
144 | struct frame_extra_info | |
2e5ff58c TR |
145 | { |
146 | CORE_ADDR return_pc; | |
147 | CORE_ADDR args_pointer; | |
148 | int locals_size; | |
149 | int framereg; | |
150 | int framesize; | |
151 | int is_main; | |
152 | }; | |
8818c391 TR |
153 | |
154 | struct gdbarch_tdep | |
2e5ff58c TR |
155 | { |
156 | /* FIXME: TRoth: is there anything to put here? */ | |
157 | int foo; | |
158 | }; | |
8818c391 TR |
159 | |
160 | /* Lookup the name of a register given it's number. */ | |
161 | ||
fa88f677 | 162 | static const char * |
8818c391 TR |
163 | avr_register_name (int regnum) |
164 | { | |
2e5ff58c TR |
165 | static char *register_names[] = { |
166 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
167 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
168 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
169 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
170 | "SREG", "SP", "PC" | |
171 | }; | |
172 | if (regnum < 0) | |
173 | return NULL; | |
174 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
175 | return NULL; | |
176 | return register_names[regnum]; | |
177 | } | |
178 | ||
179 | /* Index within `registers' of the first byte of the space for | |
180 | register REGNUM. */ | |
181 | ||
182 | static int | |
183 | avr_register_byte (int regnum) | |
184 | { | |
185 | if (regnum < AVR_PC_REGNUM) | |
186 | return regnum; | |
187 | else | |
188 | return AVR_PC_REG_INDEX; | |
189 | } | |
190 | ||
191 | /* Number of bytes of storage in the actual machine representation for | |
192 | register REGNUM. */ | |
193 | ||
194 | static int | |
195 | avr_register_raw_size (int regnum) | |
196 | { | |
197 | switch (regnum) | |
198 | { | |
199 | case AVR_PC_REGNUM: | |
200 | return 4; | |
201 | case AVR_SP_REGNUM: | |
202 | case AVR_FP_REGNUM: | |
203 | return 2; | |
204 | default: | |
205 | return 1; | |
206 | } | |
207 | } | |
208 | ||
209 | /* Number of bytes of storage in the program's representation | |
210 | for register N. */ | |
211 | ||
212 | static int | |
213 | avr_register_virtual_size (int regnum) | |
214 | { | |
215 | return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum)); | |
216 | } | |
217 | ||
218 | /* Return the GDB type object for the "standard" data type | |
219 | of data in register N. */ | |
220 | ||
221 | static struct type * | |
222 | avr_register_virtual_type (int regnum) | |
223 | { | |
224 | switch (regnum) | |
225 | { | |
226 | case AVR_PC_REGNUM: | |
227 | return builtin_type_unsigned_long; | |
228 | case AVR_SP_REGNUM: | |
229 | return builtin_type_unsigned_short; | |
230 | default: | |
231 | return builtin_type_unsigned_char; | |
232 | } | |
233 | } | |
234 | ||
235 | /* Instruction address checks and convertions. */ | |
236 | ||
237 | static CORE_ADDR | |
238 | avr_make_iaddr (CORE_ADDR x) | |
239 | { | |
240 | return ((x) | AVR_IMEM_START); | |
241 | } | |
242 | ||
243 | static int | |
244 | avr_iaddr_p (CORE_ADDR x) | |
245 | { | |
246 | return (((x) & AVR_MEM_MASK) == AVR_IMEM_START); | |
247 | } | |
248 | ||
249 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some | |
250 | devices are already up to 128KBytes of flash space. | |
251 | ||
252 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ | |
253 | ||
254 | static CORE_ADDR | |
255 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
256 | { | |
257 | return ((x) & 0xffffffff); | |
258 | } | |
259 | ||
260 | /* SRAM address checks and convertions. */ | |
261 | ||
262 | static CORE_ADDR | |
263 | avr_make_saddr (CORE_ADDR x) | |
264 | { | |
265 | return ((x) | AVR_SMEM_START); | |
266 | } | |
267 | ||
268 | static int | |
269 | avr_saddr_p (CORE_ADDR x) | |
270 | { | |
271 | return (((x) & AVR_MEM_MASK) == AVR_SMEM_START); | |
272 | } | |
273 | ||
274 | static CORE_ADDR | |
275 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
276 | { | |
277 | return ((x) & 0xffffffff); | |
278 | } | |
279 | ||
280 | /* EEPROM address checks and convertions. I don't know if these will ever | |
281 | actually be used, but I've added them just the same. TRoth */ | |
282 | ||
283 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
284 | programs in the mega128. */ | |
285 | ||
286 | /* static CORE_ADDR */ | |
287 | /* avr_make_eaddr (CORE_ADDR x) */ | |
288 | /* { */ | |
289 | /* return ((x) | AVR_EMEM_START); */ | |
290 | /* } */ | |
291 | ||
292 | /* static int */ | |
293 | /* avr_eaddr_p (CORE_ADDR x) */ | |
294 | /* { */ | |
295 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
296 | /* } */ | |
297 | ||
298 | /* static CORE_ADDR */ | |
299 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
300 | /* { */ | |
301 | /* return ((x) & 0xffffffff); */ | |
302 | /* } */ | |
303 | ||
304 | /* Convert from address to pointer and vice-versa. */ | |
305 | ||
306 | static void | |
307 | avr_address_to_pointer (struct type *type, void *buf, CORE_ADDR addr) | |
308 | { | |
309 | /* Is it a code address? */ | |
310 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
311 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
312 | { | |
2e5ff58c TR |
313 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
314 | avr_convert_iaddr_to_raw (addr)); | |
8818c391 TR |
315 | } |
316 | else | |
317 | { | |
318 | /* Strip off any upper segment bits. */ | |
2e5ff58c TR |
319 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
320 | avr_convert_saddr_to_raw (addr)); | |
8818c391 TR |
321 | } |
322 | } | |
323 | ||
324 | static CORE_ADDR | |
325 | avr_pointer_to_address (struct type *type, void *buf) | |
326 | { | |
327 | CORE_ADDR addr = extract_address (buf, TYPE_LENGTH (type)); | |
328 | ||
2e5ff58c | 329 | if (TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
8818c391 | 330 | { |
2e5ff58c TR |
331 | fprintf_unfiltered (gdb_stderr, "CODE_SPACE ---->> ptr->addr: 0x%lx\n", |
332 | addr); | |
333 | fprintf_unfiltered (gdb_stderr, | |
334 | "+++ If you see this, please send me an email <[email protected]>\n"); | |
8818c391 TR |
335 | } |
336 | ||
337 | /* Is it a code address? */ | |
338 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
339 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
2e5ff58c | 340 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
8818c391 TR |
341 | return avr_make_iaddr (addr); |
342 | else | |
343 | return avr_make_saddr (addr); | |
344 | } | |
345 | ||
346 | static CORE_ADDR | |
347 | avr_read_pc (ptid_t ptid) | |
348 | { | |
349 | ptid_t save_ptid; | |
350 | CORE_ADDR pc; | |
351 | CORE_ADDR retval; | |
352 | ||
353 | save_ptid = inferior_ptid; | |
354 | inferior_ptid = ptid; | |
355 | pc = (int) read_register (AVR_PC_REGNUM); | |
356 | inferior_ptid = save_ptid; | |
357 | retval = avr_make_iaddr (pc); | |
358 | return retval; | |
359 | } | |
360 | ||
361 | static void | |
362 | avr_write_pc (CORE_ADDR val, ptid_t ptid) | |
363 | { | |
364 | ptid_t save_ptid; | |
365 | ||
366 | save_ptid = inferior_ptid; | |
367 | inferior_ptid = ptid; | |
368 | write_register (AVR_PC_REGNUM, avr_convert_iaddr_to_raw (val)); | |
369 | inferior_ptid = save_ptid; | |
370 | } | |
371 | ||
372 | static CORE_ADDR | |
373 | avr_read_sp (void) | |
374 | { | |
375 | return (avr_make_saddr (read_register (AVR_SP_REGNUM))); | |
376 | } | |
377 | ||
378 | static void | |
379 | avr_write_sp (CORE_ADDR val) | |
380 | { | |
381 | write_register (AVR_SP_REGNUM, avr_convert_saddr_to_raw (val)); | |
382 | } | |
383 | ||
384 | static CORE_ADDR | |
385 | avr_read_fp (void) | |
386 | { | |
387 | return (avr_make_saddr (read_register (AVR_FP_REGNUM))); | |
388 | } | |
389 | ||
390 | /* Translate a GDB virtual ADDR/LEN into a format the remote target | |
391 | understands. Returns number of bytes that can be transfered | |
392 | starting at TARG_ADDR. Return ZERO if no bytes can be transfered | |
393 | (segmentation fault). | |
394 | ||
395 | TRoth/2002-04-08: Could this be used to check for dereferencing an invalid | |
396 | pointer? */ | |
397 | ||
398 | static void | |
399 | avr_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes, | |
2e5ff58c | 400 | CORE_ADDR *targ_addr, int *targ_len) |
8818c391 TR |
401 | { |
402 | long out_addr; | |
403 | long out_len; | |
404 | ||
405 | /* FIXME: TRoth: Do nothing for now. Will need to examine memaddr at this | |
406 | point and see if the high bit are set with the masks that we want. */ | |
407 | ||
408 | *targ_addr = memaddr; | |
409 | *targ_len = nr_bytes; | |
410 | } | |
411 | ||
412 | /* Function pointers obtained from the target are half of what gdb expects so | |
413 | multiply by 2. */ | |
414 | ||
415 | static CORE_ADDR | |
416 | avr_convert_from_func_ptr_addr (CORE_ADDR addr) | |
417 | { | |
418 | return addr * 2; | |
419 | } | |
420 | ||
421 | /* avr_scan_prologue is also used as the frame_init_saved_regs(). | |
422 | ||
423 | Put here the code to store, into fi->saved_regs, the addresses of | |
424 | the saved registers of frame described by FRAME_INFO. This | |
425 | includes special registers such as pc and fp saved in special ways | |
426 | in the stack frame. sp is even more special: the address we return | |
427 | for it IS the sp for the next frame. */ | |
428 | ||
429 | /* Function: avr_scan_prologue (helper function for avr_init_extra_frame_info) | |
430 | This function decodes a AVR function prologue to determine: | |
431 | 1) the size of the stack frame | |
432 | 2) which registers are saved on it | |
433 | 3) the offsets of saved regs | |
434 | This information is stored in the "extra_info" field of the frame_info. | |
435 | ||
436 | A typical AVR function prologue might look like this: | |
437 | push rXX | |
438 | push r28 | |
439 | push r29 | |
440 | in r28,__SP_L__ | |
441 | in r29,__SP_H__ | |
442 | sbiw r28,<LOCALS_SIZE> | |
443 | in __tmp_reg__,__SREG__ | |
444 | cli | |
445 | out __SP_L__,r28 | |
446 | out __SREG__,__tmp_reg__ | |
447 | out __SP_H__,r29 | |
448 | ||
449 | A `-mcall-prologues' prologue look like this: | |
450 | ldi r26,<LOCALS_SIZE> | |
451 | ldi r27,<LOCALS_SIZE>/265 | |
452 | ldi r30,pm_lo8(.L_foo_body) | |
453 | ldi r31,pm_hi8(.L_foo_body) | |
454 | rjmp __prologue_saves__+RRR | |
455 | .L_foo_body: */ | |
456 | ||
457 | static void | |
458 | avr_scan_prologue (struct frame_info *fi) | |
459 | { | |
460 | CORE_ADDR prologue_start; | |
461 | CORE_ADDR prologue_end; | |
2e5ff58c TR |
462 | int i; |
463 | unsigned short insn; | |
464 | int regno; | |
465 | int scan_stage = 0; | |
466 | char *name; | |
8818c391 | 467 | struct minimal_symbol *msymbol; |
2e5ff58c | 468 | int prologue_len; |
8818c391 TR |
469 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
470 | int vpc = 0; | |
471 | ||
472 | fi->extra_info->framereg = AVR_SP_REGNUM; | |
2e5ff58c TR |
473 | |
474 | if (find_pc_partial_function | |
475 | (fi->pc, &name, &prologue_start, &prologue_end)) | |
8818c391 TR |
476 | { |
477 | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | |
478 | ||
2e5ff58c TR |
479 | if (sal.line == 0) /* no line info, use current PC */ |
480 | prologue_end = fi->pc; | |
481 | else if (sal.end < prologue_end) /* next line begins after fn end */ | |
482 | prologue_end = sal.end; /* (probably means no prologue) */ | |
8818c391 TR |
483 | } |
484 | else | |
485 | /* We're in the boondocks: allow for */ | |
486 | /* 19 pushes, an add, and "mv fp,sp" */ | |
2e5ff58c | 487 | prologue_end = prologue_start + AVR_MAX_PROLOGUE_SIZE; |
8818c391 TR |
488 | |
489 | prologue_end = min (prologue_end, fi->pc); | |
490 | ||
491 | /* Search the prologue looking for instructions that set up the | |
492 | frame pointer, adjust the stack pointer, and save registers. */ | |
493 | ||
494 | fi->extra_info->framesize = 0; | |
495 | prologue_len = prologue_end - prologue_start; | |
496 | read_memory (prologue_start, prologue, prologue_len); | |
497 | ||
498 | /* Scanning main()'s prologue | |
499 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
500 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
501 | out __SP_H__,r29 | |
502 | out __SP_L__,r28 */ | |
503 | ||
504 | if (name && strcmp ("main", name) == 0 && prologue_len == 8) | |
505 | { | |
506 | CORE_ADDR locals; | |
2e5ff58c TR |
507 | unsigned char img[] = { |
508 | 0xde, 0xbf, /* out __SP_H__,r29 */ | |
509 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
510 | }; |
511 | ||
512 | fi->extra_info->framereg = AVR_FP_REGNUM; | |
513 | insn = EXTRACT_INSN (&prologue[vpc]); | |
514 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
2e5ff58c TR |
515 | if ((insn & 0xf0f0) == 0xe0c0) |
516 | { | |
517 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
518 | insn = EXTRACT_INSN (&prologue[vpc + 2]); | |
519 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
520 | if ((insn & 0xf0f0) == 0xe0d0) | |
521 | { | |
522 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
523 | if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
524 | { | |
525 | fi->frame = locals; | |
526 | ||
527 | /* TRoth: Does -1 mean we're in main? */ | |
528 | fi->extra_info->is_main = 1; | |
529 | return; | |
530 | } | |
531 | } | |
532 | } | |
8818c391 | 533 | } |
2e5ff58c | 534 | |
8818c391 TR |
535 | /* Scanning `-mcall-prologues' prologue |
536 | FIXME: mega prologue have a 12 bytes long */ | |
537 | ||
2e5ff58c | 538 | while (prologue_len <= 12) /* I'm use while to avoit many goto's */ |
8818c391 TR |
539 | { |
540 | int loc_size; | |
541 | int body_addr; | |
542 | unsigned num_pushes; | |
2e5ff58c | 543 | |
8818c391 TR |
544 | insn = EXTRACT_INSN (&prologue[vpc]); |
545 | /* ldi r26,<LOCALS_SIZE> */ | |
2e5ff58c TR |
546 | if ((insn & 0xf0f0) != 0xe0a0) |
547 | break; | |
8818c391 | 548 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
2e5ff58c | 549 | |
8818c391 TR |
550 | insn = EXTRACT_INSN (&prologue[vpc + 2]); |
551 | /* ldi r27,<LOCALS_SIZE> / 256 */ | |
552 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 553 | break; |
8818c391 | 554 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
2e5ff58c | 555 | |
8818c391 TR |
556 | insn = EXTRACT_INSN (&prologue[vpc + 4]); |
557 | /* ldi r30,pm_lo8(.L_foo_body) */ | |
558 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 559 | break; |
8818c391 TR |
560 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
561 | ||
562 | insn = EXTRACT_INSN (&prologue[vpc + 6]); | |
563 | /* ldi r31,pm_hi8(.L_foo_body) */ | |
564 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 565 | break; |
8818c391 TR |
566 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
567 | ||
568 | if (body_addr != (prologue_start + 10) / 2) | |
2e5ff58c | 569 | break; |
8818c391 TR |
570 | |
571 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); | |
572 | if (!msymbol) | |
2e5ff58c | 573 | break; |
8818c391 TR |
574 | |
575 | /* FIXME: prologue for mega have a JMP instead of RJMP */ | |
576 | insn = EXTRACT_INSN (&prologue[vpc + 8]); | |
577 | /* rjmp __prologue_saves__+RRR */ | |
578 | if ((insn & 0xf000) != 0xc000) | |
2e5ff58c TR |
579 | break; |
580 | ||
8818c391 TR |
581 | /* Extract PC relative offset from RJMP */ |
582 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
583 | /* Convert offset to byte addressable mode */ | |
584 | i *= 2; | |
585 | /* Destination address */ | |
586 | i += vpc + prologue_start + 10; | |
587 | /* Resovle offset (in words) from __prologue_saves__ symbol. | |
588 | Which is a pushes count in `-mcall-prologues' mode */ | |
589 | num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2; | |
590 | ||
591 | if (num_pushes > AVR_MAX_PUSHES) | |
2e5ff58c TR |
592 | num_pushes = 0; |
593 | ||
8818c391 | 594 | if (num_pushes) |
2e5ff58c TR |
595 | { |
596 | int from; | |
597 | fi->saved_regs[AVR_FP_REGNUM + 1] = num_pushes; | |
598 | if (num_pushes >= 2) | |
599 | fi->saved_regs[AVR_FP_REGNUM] = num_pushes - 1; | |
600 | i = 0; | |
601 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
602 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
603 | fi->saved_regs[from] = ++i; | |
604 | } | |
8818c391 TR |
605 | fi->extra_info->locals_size = loc_size; |
606 | fi->extra_info->framesize = loc_size + num_pushes; | |
607 | fi->extra_info->framereg = AVR_FP_REGNUM; | |
608 | return; | |
609 | } | |
610 | ||
611 | /* Scan interrupt or signal function */ | |
612 | ||
613 | if (prologue_len >= 12) | |
614 | { | |
2e5ff58c TR |
615 | unsigned char img[] = { |
616 | 0x78, 0x94, /* sei */ | |
617 | 0x1f, 0x92, /* push r1 */ | |
618 | 0x0f, 0x92, /* push r0 */ | |
619 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
620 | 0x0f, 0x92, /* push r0 */ | |
621 | 0x11, 0x24 /* clr r1 */ | |
8818c391 TR |
622 | }; |
623 | if (memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c TR |
624 | { |
625 | vpc += sizeof (img); | |
626 | fi->saved_regs[0] = 2; | |
627 | fi->saved_regs[1] = 1; | |
628 | fi->extra_info->framesize += 3; | |
629 | } | |
8818c391 | 630 | else if (memcmp (img + 1, prologue, sizeof (img) - 1) == 0) |
2e5ff58c TR |
631 | { |
632 | vpc += sizeof (img) - 1; | |
633 | fi->saved_regs[0] = 2; | |
634 | fi->saved_regs[1] = 1; | |
635 | fi->extra_info->framesize += 3; | |
636 | } | |
8818c391 TR |
637 | } |
638 | ||
639 | /* First stage of the prologue scanning. | |
640 | Scan pushes */ | |
641 | ||
642 | for (; vpc <= prologue_len; vpc += 2) | |
643 | { | |
644 | insn = EXTRACT_INSN (&prologue[vpc]); | |
2e5ff58c TR |
645 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
646 | { | |
647 | /* Bits 4-9 contain a mask for registers R0-R32. */ | |
648 | regno = (insn & 0x1f0) >> 4; | |
649 | ++fi->extra_info->framesize; | |
650 | fi->saved_regs[regno] = fi->extra_info->framesize; | |
651 | scan_stage = 1; | |
652 | } | |
8818c391 | 653 | else |
2e5ff58c | 654 | break; |
8818c391 TR |
655 | } |
656 | ||
657 | /* Second stage of the prologue scanning. | |
658 | Scan: | |
659 | in r28,__SP_L__ | |
660 | in r29,__SP_H__ */ | |
661 | ||
662 | if (scan_stage == 1 && vpc + 4 <= prologue_len) | |
663 | { | |
2e5ff58c TR |
664 | unsigned char img[] = { |
665 | 0xcd, 0xb7, /* in r28,__SP_L__ */ | |
666 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 TR |
667 | }; |
668 | unsigned short insn1; | |
2e5ff58c | 669 | |
8818c391 | 670 | if (memcmp (prologue + vpc, img, sizeof (img)) == 0) |
2e5ff58c TR |
671 | { |
672 | vpc += 4; | |
673 | fi->extra_info->framereg = AVR_FP_REGNUM; | |
674 | scan_stage = 2; | |
675 | } | |
8818c391 TR |
676 | } |
677 | ||
678 | /* Third stage of the prologue scanning. (Really two stages) | |
679 | Scan for: | |
680 | sbiw r28,XX or subi r28,lo8(XX) | |
681 | sbci r29,hi8(XX) | |
682 | in __tmp_reg__,__SREG__ | |
683 | cli | |
684 | out __SP_L__,r28 | |
685 | out __SREG__,__tmp_reg__ | |
686 | out __SP_H__,r29 */ | |
687 | ||
688 | if (scan_stage == 2 && vpc + 12 <= prologue_len) | |
689 | { | |
690 | int locals_size = 0; | |
2e5ff58c TR |
691 | unsigned char img[] = { |
692 | 0x0f, 0xb6, /* in r0,0x3f */ | |
693 | 0xf8, 0x94, /* cli */ | |
694 | 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */ | |
695 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ | |
696 | 0xde, 0xbf /* out 0x3e,r29 ; SPH */ | |
8818c391 | 697 | }; |
2e5ff58c TR |
698 | unsigned char img_sig[] = { |
699 | 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */ | |
700 | 0xde, 0xbf /* out 0x3e,r29 ; SPH */ | |
8818c391 | 701 | }; |
2e5ff58c TR |
702 | unsigned char img_int[] = { |
703 | 0xf8, 0x94, /* cli */ | |
704 | 0xcd, 0xbf, /* out 0x3d,r28 ; SPL */ | |
705 | 0x78, 0x94, /* sei */ | |
706 | 0xde, 0xbf /* out 0x3e,r29 ; SPH */ | |
8818c391 | 707 | }; |
2e5ff58c | 708 | |
8818c391 TR |
709 | insn = EXTRACT_INSN (&prologue[vpc]); |
710 | vpc += 2; | |
2e5ff58c TR |
711 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
712 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
713 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ | |
714 | { | |
715 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
716 | insn = EXTRACT_INSN (&prologue[vpc]); | |
717 | vpc += 2; | |
718 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8); | |
719 | } | |
8818c391 | 720 | else |
2e5ff58c | 721 | return; |
8818c391 TR |
722 | fi->extra_info->locals_size = locals_size; |
723 | fi->extra_info->framesize += locals_size; | |
724 | } | |
725 | } | |
726 | ||
727 | /* This function actually figures out the frame address for a given pc and | |
728 | sp. This is tricky because we sometimes don't use an explicit | |
729 | frame pointer, and the previous stack pointer isn't necessarily recorded | |
730 | on the stack. The only reliable way to get this info is to | |
731 | examine the prologue. */ | |
732 | ||
733 | static void | |
734 | avr_init_extra_frame_info (int fromleaf, struct frame_info *fi) | |
735 | { | |
736 | int reg; | |
737 | ||
738 | if (fi->next) | |
739 | fi->pc = FRAME_SAVED_PC (fi->next); | |
740 | ||
741 | fi->extra_info = (struct frame_extra_info *) | |
742 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
743 | frame_saved_regs_zalloc (fi); | |
744 | ||
745 | fi->extra_info->return_pc = 0; | |
746 | fi->extra_info->args_pointer = 0; | |
747 | fi->extra_info->locals_size = 0; | |
748 | fi->extra_info->framereg = 0; | |
749 | fi->extra_info->framesize = 0; | |
750 | fi->extra_info->is_main = 0; | |
2e5ff58c | 751 | |
8818c391 TR |
752 | avr_scan_prologue (fi); |
753 | ||
754 | if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) | |
755 | { | |
756 | /* We need to setup fi->frame here because run_stack_dummy gets it wrong | |
757 | by assuming it's always FP. */ | |
2e5ff58c | 758 | fi->frame = generic_read_register_dummy (fi->pc, fi->frame, fi->frame); |
8818c391 | 759 | } |
2e5ff58c | 760 | else if (!fi->next) /* this is the innermost frame? */ |
8818c391 | 761 | fi->frame = read_register (fi->extra_info->framereg); |
2e5ff58c | 762 | else if (fi->extra_info->is_main != 1) /* not the innermost frame, not `main' */ |
8818c391 TR |
763 | /* If we have an next frame, the callee saved it. */ |
764 | { | |
2e5ff58c | 765 | struct frame_info *next_fi = fi->next; |
8818c391 | 766 | if (fi->extra_info->framereg == AVR_SP_REGNUM) |
2e5ff58c TR |
767 | fi->frame = |
768 | next_fi->frame + 2 /* ret addr */ + next_fi->extra_info->framesize; | |
8818c391 TR |
769 | /* FIXME: I don't analyse va_args functions */ |
770 | else | |
2e5ff58c TR |
771 | { |
772 | CORE_ADDR fp = 0; | |
773 | CORE_ADDR fp1 = 0; | |
774 | unsigned int fp_low, fp_high; | |
775 | ||
776 | /* Scan all frames */ | |
777 | for (; next_fi; next_fi = next_fi->next) | |
778 | { | |
779 | /* look for saved AVR_FP_REGNUM */ | |
780 | if (next_fi->saved_regs[AVR_FP_REGNUM] && !fp) | |
781 | fp = next_fi->saved_regs[AVR_FP_REGNUM]; | |
782 | /* look for saved AVR_FP_REGNUM + 1 */ | |
783 | if (next_fi->saved_regs[AVR_FP_REGNUM + 1] && !fp1) | |
784 | fp1 = next_fi->saved_regs[AVR_FP_REGNUM + 1]; | |
785 | } | |
786 | fp_low = (fp ? read_memory_unsigned_integer (avr_make_saddr (fp), 1) | |
787 | : read_register (AVR_FP_REGNUM)) & 0xff; | |
788 | fp_high = | |
789 | (fp1 ? read_memory_unsigned_integer (avr_make_saddr (fp1), 1) : | |
790 | read_register (AVR_FP_REGNUM + 1)) & 0xff; | |
791 | fi->frame = fp_low | (fp_high << 8); | |
792 | } | |
8818c391 TR |
793 | } |
794 | ||
795 | /* TRoth: Do we want to do this if we are in main? I don't think we should | |
796 | since return_pc makes no sense when we are in main. */ | |
797 | ||
2e5ff58c | 798 | if ((fi->pc) && (fi->extra_info->is_main == 0)) /* We are not in CALL_DUMMY */ |
8818c391 TR |
799 | { |
800 | CORE_ADDR addr; | |
801 | int i; | |
2e5ff58c | 802 | |
8818c391 | 803 | addr = fi->frame + fi->extra_info->framesize + 1; |
2e5ff58c | 804 | |
8818c391 TR |
805 | /* Return address in stack in different endianness */ |
806 | ||
807 | fi->extra_info->return_pc = | |
2e5ff58c | 808 | read_memory_unsigned_integer (avr_make_saddr (addr), 1) << 8; |
8818c391 | 809 | fi->extra_info->return_pc |= |
2e5ff58c TR |
810 | read_memory_unsigned_integer (avr_make_saddr (addr + 1), 1); |
811 | ||
8818c391 TR |
812 | /* This return address in words, |
813 | must be converted to the bytes address */ | |
814 | fi->extra_info->return_pc *= 2; | |
815 | ||
816 | /* Resolve a pushed registers addresses */ | |
817 | for (i = 0; i < NUM_REGS; i++) | |
2e5ff58c TR |
818 | { |
819 | if (fi->saved_regs[i]) | |
820 | fi->saved_regs[i] = addr - fi->saved_regs[i]; | |
821 | } | |
8818c391 TR |
822 | } |
823 | } | |
824 | ||
825 | /* Restore the machine to the state it had before the current frame was | |
826 | created. Usually used either by the "RETURN" command, or by | |
827 | call_function_by_hand after the dummy_frame is finished. */ | |
828 | ||
829 | static void | |
830 | avr_pop_frame (void) | |
831 | { | |
832 | unsigned regnum; | |
833 | CORE_ADDR saddr; | |
834 | struct frame_info *frame = get_current_frame (); | |
835 | ||
2e5ff58c | 836 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
8818c391 | 837 | { |
2e5ff58c | 838 | generic_pop_dummy_frame (); |
8818c391 TR |
839 | } |
840 | else | |
841 | { | |
842 | /* TRoth: Why only loop over 8 registers? */ | |
843 | ||
844 | for (regnum = 0; regnum < 8; regnum++) | |
2e5ff58c TR |
845 | { |
846 | /* Don't forget AVR_SP_REGNUM in a frame_saved_regs struct is the | |
847 | actual value we want, not the address of the value we want. */ | |
848 | if (frame->saved_regs[regnum] && regnum != AVR_SP_REGNUM) | |
849 | { | |
850 | saddr = avr_make_saddr (frame->saved_regs[regnum]); | |
851 | write_register (regnum, | |
852 | read_memory_unsigned_integer (saddr, 1)); | |
853 | } | |
854 | else if (frame->saved_regs[regnum] && regnum == AVR_SP_REGNUM) | |
855 | write_register (regnum, frame->frame + 2); | |
856 | } | |
8818c391 TR |
857 | |
858 | /* Don't forget the update the PC too! */ | |
859 | write_pc (frame->extra_info->return_pc); | |
860 | } | |
861 | flush_cached_frames (); | |
862 | } | |
863 | ||
864 | /* Return the saved PC from this frame. */ | |
865 | ||
866 | static CORE_ADDR | |
867 | avr_frame_saved_pc (struct frame_info *frame) | |
868 | { | |
2e5ff58c TR |
869 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
870 | return generic_read_register_dummy (frame->pc, frame->frame, | |
871 | AVR_PC_REGNUM); | |
8818c391 TR |
872 | else |
873 | return frame->extra_info->return_pc; | |
874 | } | |
875 | ||
876 | static CORE_ADDR | |
877 | avr_saved_pc_after_call (struct frame_info *frame) | |
878 | { | |
879 | unsigned char m1, m2; | |
880 | unsigned int sp = read_register (AVR_SP_REGNUM); | |
881 | m1 = read_memory_unsigned_integer (avr_make_saddr (sp + 1), 1); | |
882 | m2 = read_memory_unsigned_integer (avr_make_saddr (sp + 2), 1); | |
883 | return (m2 | (m1 << 8)) * 2; | |
884 | } | |
885 | ||
886 | /* Figure out where in REGBUF the called function has left its return value. | |
887 | Copy that into VALBUF. */ | |
888 | ||
889 | static void | |
890 | avr_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
891 | { | |
892 | int wordsize, len; | |
893 | ||
894 | wordsize = 2; | |
895 | ||
2e5ff58c TR |
896 | len = TYPE_LENGTH (type); |
897 | ||
898 | switch (len) | |
899 | { | |
900 | case 1: /* (char) */ | |
901 | case 2: /* (short), (int) */ | |
902 | memcpy (valbuf, regbuf + REGISTER_BYTE (24), 2); | |
903 | break; | |
904 | case 4: /* (long), (float) */ | |
905 | memcpy (valbuf, regbuf + REGISTER_BYTE (22), 4); | |
906 | break; | |
907 | case 8: /* (double) (doesn't seem to happen, which is good, | |
908 | because this almost certainly isn't right. */ | |
909 | error ("I don't know how a double is returned."); | |
910 | break; | |
911 | } | |
8818c391 TR |
912 | } |
913 | ||
914 | /* Returns the return address for a dummy. */ | |
915 | ||
916 | static CORE_ADDR | |
917 | avr_call_dummy_address (void) | |
918 | { | |
919 | return entry_point_address (); | |
920 | } | |
921 | ||
922 | /* Place the appropriate value in the appropriate registers. | |
923 | Primarily used by the RETURN command. */ | |
924 | ||
925 | static void | |
926 | avr_store_return_value (struct type *type, char *valbuf) | |
927 | { | |
928 | int wordsize, len, regval; | |
2e5ff58c | 929 | |
8818c391 TR |
930 | wordsize = 2; |
931 | ||
2e5ff58c TR |
932 | len = TYPE_LENGTH (type); |
933 | switch (len) | |
934 | { | |
935 | case 1: /* char */ | |
936 | case 2: /* short, int */ | |
937 | regval = extract_address (valbuf, len); | |
938 | write_register (0, regval); | |
939 | break; | |
940 | case 4: /* long, float */ | |
941 | regval = extract_address (valbuf, len); | |
942 | write_register (0, regval >> 16); | |
943 | write_register (1, regval & 0xffff); | |
944 | break; | |
945 | case 8: /* presumeably double, but doesn't seem to happen */ | |
946 | error ("I don't know how to return a double."); | |
947 | break; | |
948 | } | |
8818c391 TR |
949 | } |
950 | ||
951 | /* Setup the return address for a dummy frame, as called by | |
952 | call_function_by_hand. Only necessary when you are using an empty | |
953 | CALL_DUMMY. */ | |
954 | ||
955 | static CORE_ADDR | |
956 | avr_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
957 | { | |
958 | unsigned char buf[2]; | |
959 | int wordsize = 2; | |
960 | struct minimal_symbol *msymbol; | |
961 | CORE_ADDR mon_brk; | |
962 | ||
963 | fprintf_unfiltered (gdb_stderr, "avr_push_return_address() was called\n"); | |
964 | ||
965 | buf[0] = 0; | |
966 | buf[1] = 0; | |
967 | sp -= wordsize; | |
968 | write_memory (sp + 1, buf, 2); | |
969 | ||
970 | #if 0 | |
971 | /* FIXME: TRoth/2002-02-18: This should probably be removed since it's a | |
972 | left-over from Denis' original patch which used avr-mon for the target | |
973 | instead of the generic remote target. */ | |
974 | if ((strcmp (target_shortname, "avr-mon") == 0) | |
975 | && (msymbol = lookup_minimal_symbol ("gdb_break", NULL, NULL))) | |
976 | { | |
977 | mon_brk = SYMBOL_VALUE_ADDRESS (msymbol); | |
978 | store_unsigned_integer (buf, wordsize, mon_brk / 2); | |
979 | sp -= wordsize; | |
980 | write_memory (sp + 1, buf + 1, 1); | |
981 | write_memory (sp + 2, buf, 1); | |
982 | } | |
983 | #endif | |
984 | return sp; | |
985 | } | |
986 | ||
987 | static CORE_ADDR | |
988 | avr_skip_prologue (CORE_ADDR pc) | |
989 | { | |
990 | CORE_ADDR func_addr, func_end; | |
991 | struct symtab_and_line sal; | |
992 | ||
993 | /* See what the symbol table says */ | |
994 | ||
995 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
996 | { | |
997 | sal = find_pc_line (func_addr, 0); | |
998 | ||
ced15480 TR |
999 | /* troth/2002-08-05: For some very simple functions, gcc doesn't |
1000 | generate a prologue and the sal.end ends up being the 2-byte ``ret'' | |
1001 | instruction at the end of the function, but func_end ends up being | |
1002 | the address of the first instruction of the _next_ function. By | |
1003 | adjusting func_end by 2 bytes, we can catch these functions and not | |
1004 | return sal.end if it is the ``ret'' instruction. */ | |
1005 | ||
1006 | if (sal.line != 0 && sal.end < (func_end-2)) | |
2e5ff58c | 1007 | return sal.end; |
8818c391 TR |
1008 | } |
1009 | ||
1010 | /* Either we didn't find the start of this function (nothing we can do), | |
1011 | or there's no line info, or the line after the prologue is after | |
1012 | the end of the function (there probably isn't a prologue). */ | |
1013 | ||
1014 | return pc; | |
1015 | } | |
1016 | ||
1017 | static CORE_ADDR | |
1018 | avr_frame_address (struct frame_info *fi) | |
1019 | { | |
1020 | return avr_make_saddr (fi->frame); | |
1021 | } | |
1022 | ||
1023 | /* Given a GDB frame, determine the address of the calling function's frame. | |
1024 | This will be used to create a new GDB frame struct, and then | |
1025 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
1026 | ||
1027 | For us, the frame address is its stack pointer value, so we look up | |
1028 | the function prologue to determine the caller's sp value, and return it. */ | |
1029 | ||
1030 | static CORE_ADDR | |
1031 | avr_frame_chain (struct frame_info *frame) | |
1032 | { | |
1033 | if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
1034 | { | |
1035 | /* initialize the return_pc now */ | |
1036 | frame->extra_info->return_pc = generic_read_register_dummy (frame->pc, | |
2e5ff58c TR |
1037 | frame-> |
1038 | frame, | |
1039 | AVR_PC_REGNUM); | |
8818c391 TR |
1040 | return frame->frame; |
1041 | } | |
1042 | return (frame->extra_info->is_main ? 0 | |
2e5ff58c | 1043 | : frame->frame + frame->extra_info->framesize + 2 /* ret addr */ ); |
8818c391 TR |
1044 | } |
1045 | ||
1046 | /* Store the address of the place in which to copy the structure the | |
1047 | subroutine will return. This is called from call_function. | |
1048 | ||
1049 | We store structs through a pointer passed in the first Argument | |
1050 | register. */ | |
1051 | ||
1052 | static void | |
1053 | avr_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1054 | { | |
1055 | write_register (0, addr); | |
1056 | } | |
1057 | ||
1058 | /* Extract from an array REGBUF containing the (raw) register state | |
1059 | the address in which a function should return its structure value, | |
1060 | as a CORE_ADDR (or an expression that can be used as one). */ | |
1061 | ||
1062 | static CORE_ADDR | |
1063 | avr_extract_struct_value_address (char *regbuf) | |
1064 | { | |
1065 | return (extract_address ((regbuf) + REGISTER_BYTE (0), | |
2e5ff58c | 1066 | REGISTER_RAW_SIZE (0)) | AVR_SMEM_START); |
8818c391 TR |
1067 | } |
1068 | ||
1069 | /* Setup the function arguments for calling a function in the inferior. | |
1070 | ||
1071 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1072 | dedicated for passing function arguments. Up to the first 18 arguments | |
1073 | (depending on size) may go into these registers. The rest go on the stack. | |
1074 | ||
1075 | Arguments that are larger than WORDSIZE bytes will be split between two or | |
1076 | more registers as available, but will NOT be split between a register and | |
1077 | the stack. | |
1078 | ||
1079 | An exceptional case exists for struct arguments (and possibly other | |
1080 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1081 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1082 | between the registers and the stack, but instead is copied in its entirety | |
1083 | onto the stack, AND also copied into as many registers as there is room | |
1084 | for. In other words, space in registers permitting, two copies of the same | |
1085 | argument are passed in. As far as I can tell, only the one on the stack is | |
1086 | used, although that may be a function of the level of compiler | |
1087 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1088 | sizes are left-justified within the word (as opposed to arguments smaller | |
1089 | than WORDSIZE bytes, which are right-justified). | |
1090 | ||
1091 | If the function is to return an aggregate type such as a struct, the caller | |
1092 | must allocate space into which the callee will copy the return value. In | |
1093 | this case, a pointer to the return value location is passed into the callee | |
1094 | in register R0, which displaces one of the other arguments passed in via | |
1095 | registers R0 to R2. */ | |
1096 | ||
1097 | static CORE_ADDR | |
1098 | avr_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
2e5ff58c | 1099 | int struct_return, CORE_ADDR struct_addr) |
8818c391 TR |
1100 | { |
1101 | int stack_alloc, stack_offset; | |
1102 | int wordsize; | |
1103 | int argreg; | |
1104 | int argnum; | |
1105 | struct type *type; | |
1106 | CORE_ADDR regval; | |
1107 | char *val; | |
1108 | char valbuf[4]; | |
1109 | int len; | |
1110 | ||
2e5ff58c | 1111 | wordsize = 1; |
8818c391 TR |
1112 | #if 0 |
1113 | /* Now make sure there's space on the stack */ | |
2e5ff58c TR |
1114 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) |
1115 | stack_alloc += TYPE_LENGTH (VALUE_TYPE (args[argnum])); | |
1116 | sp -= stack_alloc; /* make room on stack for args */ | |
8818c391 TR |
1117 | /* we may over-allocate a little here, but that won't hurt anything */ |
1118 | #endif | |
1119 | argreg = 25; | |
2e5ff58c | 1120 | if (struct_return) /* "struct return" pointer takes up one argreg */ |
8818c391 TR |
1121 | { |
1122 | write_register (--argreg, struct_addr); | |
1123 | } | |
1124 | ||
1125 | /* Now load as many as possible of the first arguments into registers, and | |
1126 | push the rest onto the stack. There are 3N bytes in three registers | |
1127 | available. Loop thru args from first to last. */ | |
1128 | ||
1129 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
1130 | { | |
1131 | type = VALUE_TYPE (args[argnum]); | |
1132 | len = TYPE_LENGTH (type); | |
1133 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
1134 | ||
1135 | /* NOTE WELL!!!!! This is not an "else if" clause!!! That's because | |
1136 | some *&^%$ things get passed on the stack AND in the registers! */ | |
1137 | while (len > 0) | |
2e5ff58c TR |
1138 | { /* there's room in registers */ |
1139 | len -= wordsize; | |
1140 | regval = extract_address (val + len, wordsize); | |
1141 | write_register (argreg--, regval); | |
1142 | } | |
8818c391 TR |
1143 | } |
1144 | return sp; | |
1145 | } | |
1146 | ||
1147 | /* Initialize the gdbarch structure for the AVR's. */ | |
1148 | ||
1149 | static struct gdbarch * | |
2e5ff58c TR |
1150 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1151 | { | |
8818c391 TR |
1152 | /* FIXME: TRoth/2002-02-18: I have no idea if avr_call_dummy_words[] should |
1153 | be bigger or not. Initial testing seems to show that `call my_func()` | |
1154 | works and backtrace from a breakpoint within the call looks correct. | |
1155 | Admittedly, I haven't tested with more than a very simple program. */ | |
2e5ff58c | 1156 | static LONGEST avr_call_dummy_words[] = { 0 }; |
8818c391 | 1157 | |
2e5ff58c TR |
1158 | struct gdbarch *gdbarch; |
1159 | struct gdbarch_tdep *tdep; | |
8818c391 TR |
1160 | |
1161 | /* Find a candidate among the list of pre-declared architectures. */ | |
1162 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1163 | if (arches != NULL) | |
1164 | return arches->gdbarch; | |
1165 | ||
1166 | /* None found, create a new architecture from the information provided. */ | |
1167 | tdep = XMALLOC (struct gdbarch_tdep); | |
1168 | gdbarch = gdbarch_alloc (&info, tdep); | |
1169 | ||
1170 | /* If we ever need to differentiate the device types, do it here. */ | |
1171 | switch (info.bfd_arch_info->mach) | |
1172 | { | |
1173 | case bfd_mach_avr1: | |
1174 | case bfd_mach_avr2: | |
1175 | case bfd_mach_avr3: | |
1176 | case bfd_mach_avr4: | |
1177 | case bfd_mach_avr5: | |
1178 | break; | |
1179 | } | |
1180 | ||
1181 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1182 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1183 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1184 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1185 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1186 | set_gdbarch_addr_bit (gdbarch, 32); | |
2e5ff58c | 1187 | set_gdbarch_bfd_vma_bit (gdbarch, 32); /* FIXME: TRoth/2002-02-18: Is this needed? */ |
8818c391 TR |
1188 | |
1189 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1190 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1191 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1192 | ||
1193 | set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little); | |
1194 | set_gdbarch_double_format (gdbarch, &floatformat_ieee_single_little); | |
1195 | set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_single_little); | |
1196 | ||
1197 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1198 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
1199 | set_gdbarch_read_fp (gdbarch, avr_read_fp); | |
1200 | set_gdbarch_read_sp (gdbarch, avr_read_sp); | |
1201 | set_gdbarch_write_sp (gdbarch, avr_write_sp); | |
1202 | ||
1203 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1204 | ||
1205 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
1206 | set_gdbarch_fp_regnum (gdbarch, AVR_FP_REGNUM); | |
1207 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); | |
1208 | ||
1209 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
1210 | set_gdbarch_register_size (gdbarch, 1); | |
1211 | set_gdbarch_register_bytes (gdbarch, AVR_NUM_REG_BYTES); | |
1212 | set_gdbarch_register_byte (gdbarch, avr_register_byte); | |
1213 | set_gdbarch_register_raw_size (gdbarch, avr_register_raw_size); | |
1214 | set_gdbarch_max_register_raw_size (gdbarch, 4); | |
1215 | set_gdbarch_register_virtual_size (gdbarch, avr_register_virtual_size); | |
1216 | set_gdbarch_max_register_virtual_size (gdbarch, 4); | |
1217 | set_gdbarch_register_virtual_type (gdbarch, avr_register_virtual_type); | |
1218 | ||
1219 | /* We might need to define our own here or define FRAME_INIT_SAVED_REGS */ | |
1220 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
1221 | ||
1222 | set_gdbarch_print_insn (gdbarch, print_insn_avr); | |
1223 | ||
1224 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
1225 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
1226 | set_gdbarch_call_dummy_address (gdbarch, avr_call_dummy_address); | |
1227 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
1228 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
1229 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
1230 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
1231 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); | |
1232 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
1233 | set_gdbarch_call_dummy_words (gdbarch, avr_call_dummy_words); | |
1234 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
1235 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
1236 | ||
1237 | /* set_gdbarch_believe_pcc_promotion (gdbarch, 1); // TRoth: should this be set? */ | |
1238 | ||
1239 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); | |
1240 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
26e9b323 | 1241 | set_gdbarch_deprecated_extract_return_value (gdbarch, avr_extract_return_value); |
8818c391 TR |
1242 | set_gdbarch_push_arguments (gdbarch, avr_push_arguments); |
1243 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
1244 | /* set_gdbarch_push_return_address (gdbarch, avr_push_return_address); */ | |
1245 | set_gdbarch_pop_frame (gdbarch, avr_pop_frame); | |
1246 | ||
ebba8386 | 1247 | set_gdbarch_deprecated_store_return_value (gdbarch, avr_store_return_value); |
8818c391 TR |
1248 | |
1249 | set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention); | |
1250 | set_gdbarch_store_struct_return (gdbarch, avr_store_struct_return); | |
26e9b323 AC |
1251 | set_gdbarch_deprecated_extract_struct_value_address |
1252 | (gdbarch, avr_extract_struct_value_address); | |
8818c391 TR |
1253 | |
1254 | set_gdbarch_frame_init_saved_regs (gdbarch, avr_scan_prologue); | |
1255 | set_gdbarch_init_extra_frame_info (gdbarch, avr_init_extra_frame_info); | |
1256 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); | |
1257 | /* set_gdbarch_prologue_frameless_p (gdbarch, avr_prologue_frameless_p); */ | |
1258 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1259 | ||
1260 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
1261 | ||
1262 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2e5ff58c TR |
1263 | set_gdbarch_remote_translate_xfer_address (gdbarch, |
1264 | avr_remote_translate_xfer_address); | |
8818c391 | 1265 | set_gdbarch_frame_args_skip (gdbarch, 0); |
2e5ff58c | 1266 | set_gdbarch_frameless_function_invocation (gdbarch, frameless_look_for_prologue); /* ??? */ |
8818c391 TR |
1267 | set_gdbarch_frame_chain (gdbarch, avr_frame_chain); |
1268 | set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid); | |
1269 | set_gdbarch_frame_saved_pc (gdbarch, avr_frame_saved_pc); | |
1270 | set_gdbarch_frame_args_address (gdbarch, avr_frame_address); | |
1271 | set_gdbarch_frame_locals_address (gdbarch, avr_frame_address); | |
1272 | set_gdbarch_saved_pc_after_call (gdbarch, avr_saved_pc_after_call); | |
1273 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
1274 | ||
2e5ff58c TR |
1275 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, |
1276 | avr_convert_from_func_ptr_addr); | |
8818c391 TR |
1277 | |
1278 | return gdbarch; | |
1279 | } | |
1280 | ||
1281 | /* Send a query request to the avr remote target asking for values of the io | |
1282 | registers. If args parameter is not NULL, then the user has requested info | |
1283 | on a specific io register [This still needs implemented and is ignored for | |
1284 | now]. The query string should be one of these forms: | |
1285 | ||
1286 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1287 | ||
1288 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
1289 | registers to be read. The reply should be "<NAME>,VV;" for each io register | |
1290 | where, <NAME> is a string, and VV is the hex value of the register. | |
1291 | ||
1292 | All io registers are 8-bit. */ | |
1293 | ||
1294 | static void | |
1295 | avr_io_reg_read_command (char *args, int from_tty) | |
1296 | { | |
2e5ff58c TR |
1297 | int bufsiz = 0; |
1298 | char buf[400]; | |
1299 | char query[400]; | |
1300 | char *p; | |
1301 | unsigned int nreg = 0; | |
1302 | unsigned int val; | |
1303 | int i, j, k, step; | |
8818c391 TR |
1304 | |
1305 | /* fprintf_unfiltered (gdb_stderr, "DEBUG: avr_io_reg_read_command (\"%s\", %d)\n", */ | |
1306 | /* args, from_tty); */ | |
1307 | ||
2e5ff58c | 1308 | if (!current_target.to_query) |
8818c391 | 1309 | { |
2e5ff58c TR |
1310 | fprintf_unfiltered (gdb_stderr, |
1311 | "ERR: info io_registers NOT supported by current target\n"); | |
8818c391 TR |
1312 | return; |
1313 | } | |
1314 | ||
1315 | /* Just get the maximum buffer size. */ | |
1316 | target_query ((int) 'R', 0, 0, &bufsiz); | |
2e5ff58c TR |
1317 | if (bufsiz > sizeof (buf)) |
1318 | bufsiz = sizeof (buf); | |
8818c391 TR |
1319 | |
1320 | /* Find out how many io registers the target has. */ | |
1321 | strcpy (query, "avr.io_reg"); | |
2e5ff58c | 1322 | target_query ((int) 'R', query, buf, &bufsiz); |
8818c391 TR |
1323 | |
1324 | if (strncmp (buf, "", bufsiz) == 0) | |
1325 | { | |
2e5ff58c TR |
1326 | fprintf_unfiltered (gdb_stderr, |
1327 | "info io_registers NOT supported by target\n"); | |
8818c391 TR |
1328 | return; |
1329 | } | |
1330 | ||
2e5ff58c | 1331 | if (sscanf (buf, "%x", &nreg) != 1) |
8818c391 | 1332 | { |
2e5ff58c TR |
1333 | fprintf_unfiltered (gdb_stderr, |
1334 | "Error fetching number of io registers\n"); | |
8818c391 TR |
1335 | return; |
1336 | } | |
1337 | ||
2e5ff58c | 1338 | reinitialize_more_filter (); |
8818c391 TR |
1339 | |
1340 | printf_unfiltered ("Target has %u io registers:\n\n", nreg); | |
1341 | ||
1342 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
1343 | step = 8; | |
1344 | ||
2e5ff58c | 1345 | for (i = 0; i < nreg; i += step) |
8818c391 | 1346 | { |
2e5ff58c | 1347 | j = step - (nreg % step); /* how many registers this round? */ |
8818c391 | 1348 | |
2e5ff58c | 1349 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
8818c391 TR |
1350 | target_query ((int) 'R', query, buf, &bufsiz); |
1351 | ||
1352 | p = buf; | |
2e5ff58c TR |
1353 | for (k = i; k < (i + j); k++) |
1354 | { | |
1355 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1356 | { | |
1357 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1358 | while ((*p != ';') && (*p != '\0')) | |
1359 | p++; | |
1360 | p++; /* skip over ';' */ | |
1361 | if (*p == '\0') | |
1362 | break; | |
1363 | } | |
1364 | } | |
8818c391 TR |
1365 | } |
1366 | } | |
1367 | ||
1368 | void | |
1369 | _initialize_avr_tdep (void) | |
1370 | { | |
1371 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1372 | ||
1373 | /* Add a new command to allow the user to query the avr remote target for | |
1374 | the values of the io space registers in a saner way than just using | |
1375 | `x/NNNb ADDR`. */ | |
1376 | ||
1377 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
1378 | io_registers' to signify it is not available on other platforms. */ | |
1379 | ||
1380 | add_cmd ("io_registers", class_info, avr_io_reg_read_command, | |
2e5ff58c | 1381 | "query remote avr target for io space register values", &infolist); |
8818c391 | 1382 | } |