]>
Commit | Line | Data |
---|---|---|
8818c391 | 1 | /* Target-dependent code for Atmel AVR, for GDB. |
0fd88904 | 2 | |
6aba47ca | 3 | Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, |
0fb0cc75 | 4 | 2006, 2007, 2008, 2009 Free Software Foundation, Inc. |
8818c391 TR |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
8818c391 TR |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8818c391 | 20 | |
de18ac1f | 21 | /* Contributed by Theodore A. Roth, [email protected] */ |
8818c391 TR |
22 | |
23 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
24 | by Denis Chertykov, [email protected] */ | |
25 | ||
26 | #include "defs.h" | |
4add8633 TR |
27 | #include "frame.h" |
28 | #include "frame-unwind.h" | |
29 | #include "frame-base.h" | |
30 | #include "trad-frame.h" | |
8818c391 TR |
31 | #include "gdbcmd.h" |
32 | #include "gdbcore.h" | |
e6bb342a | 33 | #include "gdbtypes.h" |
8818c391 TR |
34 | #include "inferior.h" |
35 | #include "symfile.h" | |
36 | #include "arch-utils.h" | |
37 | #include "regcache.h" | |
5f8a3188 | 38 | #include "gdb_string.h" |
a89aa300 | 39 | #include "dis-asm.h" |
8818c391 TR |
40 | |
41 | /* AVR Background: | |
42 | ||
43 | (AVR micros are pure Harvard Architecture processors.) | |
44 | ||
45 | The AVR family of microcontrollers have three distinctly different memory | |
46 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for | |
47 | the most part to store program instructions. The sram is 8 bits wide and is | |
48 | used for the stack and the heap. Some devices lack sram and some can have | |
49 | an additional external sram added on as a peripheral. | |
50 | ||
51 | The eeprom is 8 bits wide and is used to store data when the device is | |
52 | powered down. Eeprom is not directly accessible, it can only be accessed | |
53 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
54 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is | |
55 | not included at this time. | |
56 | ||
57 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
58 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
59 | work, the remote target must be able to handle eeprom accesses and perform | |
60 | the address translation.] | |
61 | ||
62 | All three memory spaces have physical addresses beginning at 0x0. In | |
63 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit | |
64 | bytes instead of the 16 bit wide words used by the real device for the | |
65 | Program Counter. | |
66 | ||
67 | In order for remote targets to work correctly, extra bits must be added to | |
68 | addresses before they are send to the target or received from the target | |
69 | via the remote serial protocol. The extra bits are the MSBs and are used to | |
70 | decode which memory space the address is referring to. */ | |
71 | ||
72 | #undef XMALLOC | |
73 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
74 | ||
75 | #undef EXTRACT_INSN | |
76 | #define EXTRACT_INSN(addr) extract_unsigned_integer(addr,2) | |
77 | ||
78 | /* Constants: prefixed with AVR_ to avoid name space clashes */ | |
79 | ||
80 | enum | |
2e5ff58c TR |
81 | { |
82 | AVR_REG_W = 24, | |
83 | AVR_REG_X = 26, | |
84 | AVR_REG_Y = 28, | |
85 | AVR_FP_REGNUM = 28, | |
86 | AVR_REG_Z = 30, | |
87 | ||
88 | AVR_SREG_REGNUM = 32, | |
89 | AVR_SP_REGNUM = 33, | |
90 | AVR_PC_REGNUM = 34, | |
91 | ||
92 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
93 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
94 | ||
95 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ | |
96 | ||
4add8633 | 97 | AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ |
2e5ff58c TR |
98 | |
99 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ | |
100 | AVR_MAX_PUSHES = 18, | |
101 | ||
102 | /* Number of the last pushed register. r17 for current avr-gcc */ | |
103 | AVR_LAST_PUSHED_REGNUM = 17, | |
104 | ||
4add8633 TR |
105 | AVR_ARG1_REGNUM = 24, /* Single byte argument */ |
106 | AVR_ARGN_REGNUM = 25, /* Multi byte argments */ | |
107 | ||
108 | AVR_RET1_REGNUM = 24, /* Single byte return value */ | |
109 | AVR_RETN_REGNUM = 25, /* Multi byte return value */ | |
110 | ||
2e5ff58c TR |
111 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 |
112 | bits? Do these have to match the bfd vma values?. It sure would make | |
113 | things easier in the future if they didn't need to match. | |
114 | ||
115 | Note: I chose these values so as to be consistent with bfd vma | |
116 | addresses. | |
117 | ||
118 | TRoth/2002-04-08: There is already a conflict with very large programs | |
119 | in the mega128. The mega128 has 128K instruction bytes (64K words), | |
120 | thus the Most Significant Bit is 0x10000 which gets masked off my | |
121 | AVR_MEM_MASK. | |
122 | ||
123 | The problem manifests itself when trying to set a breakpoint in a | |
124 | function which resides in the upper half of the instruction space and | |
125 | thus requires a 17-bit address. | |
126 | ||
127 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
128 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, | |
129 | but could be for some remote targets by just adding the correct offset | |
130 | to the address and letting the remote target handle the low-level | |
131 | details of actually accessing the eeprom. */ | |
132 | ||
133 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
134 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 135 | #if 1 |
2e5ff58c TR |
136 | /* No eeprom mask defined */ |
137 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 138 | #else |
2e5ff58c TR |
139 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
140 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 141 | #endif |
2e5ff58c | 142 | }; |
8818c391 | 143 | |
4add8633 TR |
144 | /* Prologue types: |
145 | ||
146 | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | |
147 | causes the generation of the CALL type prologues). */ | |
148 | ||
149 | enum { | |
150 | AVR_PROLOGUE_NONE, /* No prologue */ | |
151 | AVR_PROLOGUE_NORMAL, | |
152 | AVR_PROLOGUE_CALL, /* -mcall-prologues */ | |
153 | AVR_PROLOGUE_MAIN, | |
154 | AVR_PROLOGUE_INTR, /* interrupt handler */ | |
155 | AVR_PROLOGUE_SIG, /* signal handler */ | |
156 | }; | |
157 | ||
8818c391 TR |
158 | /* Any function with a frame looks like this |
159 | ....... <-SP POINTS HERE | |
160 | LOCALS1 <-FP POINTS HERE | |
161 | LOCALS0 | |
162 | SAVED FP | |
163 | SAVED R3 | |
164 | SAVED R2 | |
165 | RET PC | |
166 | FIRST ARG | |
167 | SECOND ARG */ | |
168 | ||
4add8633 | 169 | struct avr_unwind_cache |
2e5ff58c | 170 | { |
4add8633 TR |
171 | /* The previous frame's inner most stack address. Used as this |
172 | frame ID's stack_addr. */ | |
173 | CORE_ADDR prev_sp; | |
174 | /* The frame's base, optionally used by the high-level debug info. */ | |
175 | CORE_ADDR base; | |
176 | int size; | |
177 | int prologue_type; | |
178 | /* Table indicating the location of each and every register. */ | |
179 | struct trad_frame_saved_reg *saved_regs; | |
2e5ff58c | 180 | }; |
8818c391 TR |
181 | |
182 | struct gdbarch_tdep | |
2e5ff58c TR |
183 | { |
184 | /* FIXME: TRoth: is there anything to put here? */ | |
185 | int foo; | |
186 | }; | |
8818c391 TR |
187 | |
188 | /* Lookup the name of a register given it's number. */ | |
189 | ||
fa88f677 | 190 | static const char * |
d93859e2 | 191 | avr_register_name (struct gdbarch *gdbarch, int regnum) |
8818c391 | 192 | { |
2e5ff58c TR |
193 | static char *register_names[] = { |
194 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
195 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
196 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
197 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
198 | "SREG", "SP", "PC" | |
199 | }; | |
200 | if (regnum < 0) | |
201 | return NULL; | |
202 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
203 | return NULL; | |
204 | return register_names[regnum]; | |
205 | } | |
206 | ||
8818c391 TR |
207 | /* Return the GDB type object for the "standard" data type |
208 | of data in register N. */ | |
209 | ||
210 | static struct type * | |
866b76ea | 211 | avr_register_type (struct gdbarch *gdbarch, int reg_nr) |
8818c391 | 212 | { |
866b76ea TR |
213 | if (reg_nr == AVR_PC_REGNUM) |
214 | return builtin_type_uint32; | |
866b76ea | 215 | if (reg_nr == AVR_SP_REGNUM) |
0dfff4cb | 216 | return builtin_type (gdbarch)->builtin_data_ptr; |
866b76ea TR |
217 | else |
218 | return builtin_type_uint8; | |
8818c391 TR |
219 | } |
220 | ||
221 | /* Instruction address checks and convertions. */ | |
222 | ||
223 | static CORE_ADDR | |
224 | avr_make_iaddr (CORE_ADDR x) | |
225 | { | |
226 | return ((x) | AVR_IMEM_START); | |
227 | } | |
228 | ||
8818c391 TR |
229 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some |
230 | devices are already up to 128KBytes of flash space. | |
231 | ||
232 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ | |
233 | ||
234 | static CORE_ADDR | |
235 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
236 | { | |
237 | return ((x) & 0xffffffff); | |
238 | } | |
239 | ||
240 | /* SRAM address checks and convertions. */ | |
241 | ||
242 | static CORE_ADDR | |
243 | avr_make_saddr (CORE_ADDR x) | |
244 | { | |
245 | return ((x) | AVR_SMEM_START); | |
246 | } | |
247 | ||
8818c391 TR |
248 | static CORE_ADDR |
249 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
250 | { | |
251 | return ((x) & 0xffffffff); | |
252 | } | |
253 | ||
254 | /* EEPROM address checks and convertions. I don't know if these will ever | |
255 | actually be used, but I've added them just the same. TRoth */ | |
256 | ||
257 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
258 | programs in the mega128. */ | |
259 | ||
260 | /* static CORE_ADDR */ | |
261 | /* avr_make_eaddr (CORE_ADDR x) */ | |
262 | /* { */ | |
263 | /* return ((x) | AVR_EMEM_START); */ | |
264 | /* } */ | |
265 | ||
266 | /* static int */ | |
267 | /* avr_eaddr_p (CORE_ADDR x) */ | |
268 | /* { */ | |
269 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
270 | /* } */ | |
271 | ||
272 | /* static CORE_ADDR */ | |
273 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
274 | /* { */ | |
275 | /* return ((x) & 0xffffffff); */ | |
276 | /* } */ | |
277 | ||
278 | /* Convert from address to pointer and vice-versa. */ | |
279 | ||
280 | static void | |
1f3a99d5 | 281 | avr_address_to_pointer (struct type *type, gdb_byte *buf, CORE_ADDR addr) |
8818c391 TR |
282 | { |
283 | /* Is it a code address? */ | |
284 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
285 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
286 | { | |
2e5ff58c | 287 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
4ea2465e | 288 | avr_convert_iaddr_to_raw (addr >> 1)); |
8818c391 TR |
289 | } |
290 | else | |
291 | { | |
292 | /* Strip off any upper segment bits. */ | |
2e5ff58c TR |
293 | store_unsigned_integer (buf, TYPE_LENGTH (type), |
294 | avr_convert_saddr_to_raw (addr)); | |
8818c391 TR |
295 | } |
296 | } | |
297 | ||
298 | static CORE_ADDR | |
1f3a99d5 | 299 | avr_pointer_to_address (struct type *type, const gdb_byte *buf) |
8818c391 | 300 | { |
7c0b4a20 | 301 | CORE_ADDR addr = extract_unsigned_integer (buf, TYPE_LENGTH (type)); |
8818c391 | 302 | |
8818c391 TR |
303 | /* Is it a code address? */ |
304 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
305 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
2e5ff58c | 306 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
4ea2465e | 307 | return avr_make_iaddr (addr << 1); |
8818c391 TR |
308 | else |
309 | return avr_make_saddr (addr); | |
310 | } | |
311 | ||
312 | static CORE_ADDR | |
61a1198a | 313 | avr_read_pc (struct regcache *regcache) |
8818c391 | 314 | { |
8619218d | 315 | ULONGEST pc; |
61a1198a UW |
316 | regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); |
317 | return avr_make_iaddr (pc); | |
8818c391 TR |
318 | } |
319 | ||
320 | static void | |
61a1198a | 321 | avr_write_pc (struct regcache *regcache, CORE_ADDR val) |
8818c391 | 322 | { |
61a1198a UW |
323 | regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, |
324 | avr_convert_iaddr_to_raw (val)); | |
8818c391 TR |
325 | } |
326 | ||
4add8633 TR |
327 | static int |
328 | avr_scan_arg_moves (int vpc, unsigned char *prologue) | |
8818c391 | 329 | { |
4add8633 | 330 | unsigned short insn; |
866b76ea | 331 | |
4add8633 TR |
332 | for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2) |
333 | { | |
334 | insn = EXTRACT_INSN (&prologue[vpc]); | |
335 | if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ | |
336 | continue; | |
337 | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | |
338 | continue; | |
339 | else | |
340 | break; | |
341 | } | |
342 | ||
343 | return vpc; | |
8818c391 TR |
344 | } |
345 | ||
4add8633 | 346 | /* Function: avr_scan_prologue |
8818c391 | 347 | |
4add8633 | 348 | This function decodes an AVR function prologue to determine: |
8818c391 TR |
349 | 1) the size of the stack frame |
350 | 2) which registers are saved on it | |
351 | 3) the offsets of saved regs | |
4add8633 | 352 | This information is stored in the avr_unwind_cache structure. |
8818c391 | 353 | |
e3d8b004 TR |
354 | Some devices lack the sbiw instruction, so on those replace this: |
355 | sbiw r28, XX | |
356 | with this: | |
357 | subi r28,lo8(XX) | |
358 | sbci r29,hi8(XX) | |
359 | ||
360 | A typical AVR function prologue with a frame pointer might look like this: | |
361 | push rXX ; saved regs | |
362 | ... | |
363 | push r28 | |
364 | push r29 | |
365 | in r28,__SP_L__ | |
366 | in r29,__SP_H__ | |
367 | sbiw r28,<LOCALS_SIZE> | |
368 | in __tmp_reg__,__SREG__ | |
8818c391 | 369 | cli |
e3d8b004 | 370 | out __SP_H__,r29 |
72fab697 TR |
371 | out __SREG__,__tmp_reg__ |
372 | out __SP_L__,r28 | |
e3d8b004 TR |
373 | |
374 | A typical AVR function prologue without a frame pointer might look like | |
375 | this: | |
376 | push rXX ; saved regs | |
377 | ... | |
378 | ||
379 | A main function prologue looks like this: | |
380 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
381 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
382 | out __SP_H__,r29 | |
383 | out __SP_L__,r28 | |
384 | ||
385 | A signal handler prologue looks like this: | |
386 | push __zero_reg__ | |
387 | push __tmp_reg__ | |
388 | in __tmp_reg__, __SREG__ | |
389 | push __tmp_reg__ | |
390 | clr __zero_reg__ | |
391 | push rXX ; save registers r18:r27, r30:r31 | |
392 | ... | |
393 | push r28 ; save frame pointer | |
394 | push r29 | |
395 | in r28, __SP_L__ | |
396 | in r29, __SP_H__ | |
397 | sbiw r28, <LOCALS_SIZE> | |
398 | out __SP_H__, r29 | |
399 | out __SP_L__, r28 | |
400 | ||
401 | A interrupt handler prologue looks like this: | |
402 | sei | |
403 | push __zero_reg__ | |
404 | push __tmp_reg__ | |
405 | in __tmp_reg__, __SREG__ | |
406 | push __tmp_reg__ | |
407 | clr __zero_reg__ | |
408 | push rXX ; save registers r18:r27, r30:r31 | |
409 | ... | |
410 | push r28 ; save frame pointer | |
411 | push r29 | |
412 | in r28, __SP_L__ | |
413 | in r29, __SP_H__ | |
414 | sbiw r28, <LOCALS_SIZE> | |
415 | cli | |
416 | out __SP_H__, r29 | |
417 | sei | |
418 | out __SP_L__, r28 | |
419 | ||
420 | A `-mcall-prologues' prologue looks like this (Note that the megas use a | |
421 | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | |
422 | 32 bit insn and rjmp is a 16 bit insn): | |
423 | ldi r26,lo8(<LOCALS_SIZE>) | |
424 | ldi r27,hi8(<LOCALS_SIZE>) | |
425 | ldi r30,pm_lo8(.L_foo_body) | |
426 | ldi r31,pm_hi8(.L_foo_body) | |
427 | rjmp __prologue_saves__+RRR | |
428 | .L_foo_body: */ | |
8818c391 | 429 | |
4add8633 TR |
430 | /* Not really part of a prologue, but still need to scan for it, is when a |
431 | function prologue moves values passed via registers as arguments to new | |
432 | registers. In this case, all local variables live in registers, so there | |
433 | may be some register saves. This is what it looks like: | |
434 | movw rMM, rNN | |
435 | ... | |
436 | ||
437 | There could be multiple movw's. If the target doesn't have a movw insn, it | |
438 | will use two mov insns. This could be done after any of the above prologue | |
439 | types. */ | |
440 | ||
441 | static CORE_ADDR | |
442 | avr_scan_prologue (CORE_ADDR pc, struct avr_unwind_cache *info) | |
8818c391 | 443 | { |
2e5ff58c TR |
444 | int i; |
445 | unsigned short insn; | |
2e5ff58c | 446 | int scan_stage = 0; |
8818c391 | 447 | struct minimal_symbol *msymbol; |
8818c391 TR |
448 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
449 | int vpc = 0; | |
450 | ||
4add8633 TR |
451 | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only |
452 | reading in the bytes of the prologue. The problem is that the figuring | |
453 | out where the end of the prologue is is a bit difficult. The old code | |
454 | tried to do that, but failed quite often. */ | |
455 | read_memory (pc, prologue, AVR_MAX_PROLOGUE_SIZE); | |
8818c391 TR |
456 | |
457 | /* Scanning main()'s prologue | |
458 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
459 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
460 | out __SP_H__,r29 | |
461 | out __SP_L__,r28 */ | |
462 | ||
4add8633 | 463 | if (1) |
8818c391 TR |
464 | { |
465 | CORE_ADDR locals; | |
2e5ff58c TR |
466 | unsigned char img[] = { |
467 | 0xde, 0xbf, /* out __SP_H__,r29 */ | |
468 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
469 | }; |
470 | ||
8818c391 TR |
471 | insn = EXTRACT_INSN (&prologue[vpc]); |
472 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
2e5ff58c TR |
473 | if ((insn & 0xf0f0) == 0xe0c0) |
474 | { | |
475 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
476 | insn = EXTRACT_INSN (&prologue[vpc + 2]); | |
477 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ | |
478 | if ((insn & 0xf0f0) == 0xe0d0) | |
479 | { | |
480 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
481 | if (memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
482 | { | |
4add8633 TR |
483 | info->prologue_type = AVR_PROLOGUE_MAIN; |
484 | info->base = locals; | |
485 | return pc + 4; | |
2e5ff58c TR |
486 | } |
487 | } | |
488 | } | |
8818c391 | 489 | } |
2e5ff58c | 490 | |
4add8633 TR |
491 | /* Scanning `-mcall-prologues' prologue |
492 | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | |
8818c391 | 493 | |
e3d8b004 | 494 | while (1) /* Using a while to avoid many goto's */ |
8818c391 TR |
495 | { |
496 | int loc_size; | |
497 | int body_addr; | |
498 | unsigned num_pushes; | |
4add8633 | 499 | int pc_offset = 0; |
2e5ff58c | 500 | |
8818c391 TR |
501 | insn = EXTRACT_INSN (&prologue[vpc]); |
502 | /* ldi r26,<LOCALS_SIZE> */ | |
2e5ff58c TR |
503 | if ((insn & 0xf0f0) != 0xe0a0) |
504 | break; | |
8818c391 | 505 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 506 | pc_offset += 2; |
2e5ff58c | 507 | |
8818c391 TR |
508 | insn = EXTRACT_INSN (&prologue[vpc + 2]); |
509 | /* ldi r27,<LOCALS_SIZE> / 256 */ | |
510 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 511 | break; |
8818c391 | 512 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 513 | pc_offset += 2; |
2e5ff58c | 514 | |
8818c391 TR |
515 | insn = EXTRACT_INSN (&prologue[vpc + 4]); |
516 | /* ldi r30,pm_lo8(.L_foo_body) */ | |
517 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 518 | break; |
8818c391 | 519 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 520 | pc_offset += 2; |
8818c391 TR |
521 | |
522 | insn = EXTRACT_INSN (&prologue[vpc + 6]); | |
523 | /* ldi r31,pm_hi8(.L_foo_body) */ | |
524 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 525 | break; |
8818c391 | 526 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 527 | pc_offset += 2; |
8818c391 | 528 | |
8818c391 TR |
529 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); |
530 | if (!msymbol) | |
2e5ff58c | 531 | break; |
8818c391 | 532 | |
8818c391 TR |
533 | insn = EXTRACT_INSN (&prologue[vpc + 8]); |
534 | /* rjmp __prologue_saves__+RRR */ | |
e3d8b004 TR |
535 | if ((insn & 0xf000) == 0xc000) |
536 | { | |
537 | /* Extract PC relative offset from RJMP */ | |
538 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
539 | /* Convert offset to byte addressable mode */ | |
540 | i *= 2; | |
541 | /* Destination address */ | |
4add8633 | 542 | i += pc + 10; |
e3d8b004 | 543 | |
4add8633 | 544 | if (body_addr != (pc + 10)/2) |
e3d8b004 | 545 | break; |
4add8633 TR |
546 | |
547 | pc_offset += 2; | |
e3d8b004 | 548 | } |
e3d8b004 TR |
549 | else if ((insn & 0xfe0e) == 0x940c) |
550 | { | |
551 | /* Extract absolute PC address from JMP */ | |
552 | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | |
553 | | (EXTRACT_INSN (&prologue[vpc + 10]) & 0xffff)); | |
554 | /* Convert address to byte addressable mode */ | |
555 | i *= 2; | |
556 | ||
4add8633 | 557 | if (body_addr != (pc + 12)/2) |
e3d8b004 | 558 | break; |
4add8633 TR |
559 | |
560 | pc_offset += 4; | |
e3d8b004 TR |
561 | } |
562 | else | |
563 | break; | |
2e5ff58c | 564 | |
4add8633 | 565 | /* Resolve offset (in words) from __prologue_saves__ symbol. |
8818c391 TR |
566 | Which is a pushes count in `-mcall-prologues' mode */ |
567 | num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2; | |
568 | ||
569 | if (num_pushes > AVR_MAX_PUSHES) | |
4add8633 | 570 | { |
edefbb7c | 571 | fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), |
4add8633 TR |
572 | num_pushes); |
573 | num_pushes = 0; | |
574 | } | |
2e5ff58c | 575 | |
8818c391 | 576 | if (num_pushes) |
2e5ff58c TR |
577 | { |
578 | int from; | |
4add8633 TR |
579 | |
580 | info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; | |
2e5ff58c | 581 | if (num_pushes >= 2) |
4add8633 TR |
582 | info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; |
583 | ||
2e5ff58c TR |
584 | i = 0; |
585 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
586 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
4add8633 | 587 | info->saved_regs [from].addr = ++i; |
2e5ff58c | 588 | } |
4add8633 TR |
589 | info->size = loc_size + num_pushes; |
590 | info->prologue_type = AVR_PROLOGUE_CALL; | |
591 | ||
592 | return pc + pc_offset; | |
8818c391 TR |
593 | } |
594 | ||
4add8633 TR |
595 | /* Scan for the beginning of the prologue for an interrupt or signal |
596 | function. Note that we have to set the prologue type here since the | |
597 | third stage of the prologue may not be present (e.g. no saved registered | |
598 | or changing of the SP register). */ | |
8818c391 | 599 | |
4add8633 | 600 | if (1) |
8818c391 | 601 | { |
2e5ff58c TR |
602 | unsigned char img[] = { |
603 | 0x78, 0x94, /* sei */ | |
604 | 0x1f, 0x92, /* push r1 */ | |
605 | 0x0f, 0x92, /* push r0 */ | |
606 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
607 | 0x0f, 0x92, /* push r0 */ | |
608 | 0x11, 0x24 /* clr r1 */ | |
8818c391 TR |
609 | }; |
610 | if (memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c | 611 | { |
4add8633 | 612 | info->prologue_type = AVR_PROLOGUE_INTR; |
2e5ff58c | 613 | vpc += sizeof (img); |
4add8633 TR |
614 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; |
615 | info->saved_regs[0].addr = 2; | |
616 | info->saved_regs[1].addr = 1; | |
617 | info->size += 3; | |
2e5ff58c | 618 | } |
4add8633 | 619 | else if (memcmp (img + 2, prologue, sizeof (img) - 2) == 0) |
2e5ff58c | 620 | { |
4add8633 TR |
621 | info->prologue_type = AVR_PROLOGUE_SIG; |
622 | vpc += sizeof (img) - 2; | |
623 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; | |
624 | info->saved_regs[0].addr = 2; | |
625 | info->saved_regs[1].addr = 1; | |
626 | info->size += 3; | |
2e5ff58c | 627 | } |
8818c391 TR |
628 | } |
629 | ||
630 | /* First stage of the prologue scanning. | |
4add8633 | 631 | Scan pushes (saved registers) */ |
8818c391 | 632 | |
4add8633 | 633 | for (; vpc < AVR_MAX_PROLOGUE_SIZE; vpc += 2) |
8818c391 TR |
634 | { |
635 | insn = EXTRACT_INSN (&prologue[vpc]); | |
2e5ff58c TR |
636 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
637 | { | |
638 | /* Bits 4-9 contain a mask for registers R0-R32. */ | |
4add8633 TR |
639 | int regno = (insn & 0x1f0) >> 4; |
640 | info->size++; | |
641 | info->saved_regs[regno].addr = info->size; | |
2e5ff58c TR |
642 | scan_stage = 1; |
643 | } | |
8818c391 | 644 | else |
2e5ff58c | 645 | break; |
8818c391 TR |
646 | } |
647 | ||
4add8633 TR |
648 | if (vpc >= AVR_MAX_PROLOGUE_SIZE) |
649 | fprintf_unfiltered (gdb_stderr, | |
edefbb7c | 650 | _("Hit end of prologue while scanning pushes\n")); |
4add8633 | 651 | |
8818c391 TR |
652 | /* Second stage of the prologue scanning. |
653 | Scan: | |
654 | in r28,__SP_L__ | |
655 | in r29,__SP_H__ */ | |
656 | ||
4add8633 | 657 | if (scan_stage == 1 && vpc < AVR_MAX_PROLOGUE_SIZE) |
8818c391 | 658 | { |
2e5ff58c TR |
659 | unsigned char img[] = { |
660 | 0xcd, 0xb7, /* in r28,__SP_L__ */ | |
661 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 TR |
662 | }; |
663 | unsigned short insn1; | |
2e5ff58c | 664 | |
8818c391 | 665 | if (memcmp (prologue + vpc, img, sizeof (img)) == 0) |
2e5ff58c TR |
666 | { |
667 | vpc += 4; | |
2e5ff58c TR |
668 | scan_stage = 2; |
669 | } | |
8818c391 TR |
670 | } |
671 | ||
672 | /* Third stage of the prologue scanning. (Really two stages) | |
673 | Scan for: | |
674 | sbiw r28,XX or subi r28,lo8(XX) | |
72fab697 | 675 | sbci r29,hi8(XX) |
8818c391 TR |
676 | in __tmp_reg__,__SREG__ |
677 | cli | |
e3d8b004 | 678 | out __SP_H__,r29 |
8818c391 | 679 | out __SREG__,__tmp_reg__ |
e3d8b004 | 680 | out __SP_L__,r28 */ |
8818c391 | 681 | |
4add8633 | 682 | if (scan_stage == 2 && vpc < AVR_MAX_PROLOGUE_SIZE) |
8818c391 TR |
683 | { |
684 | int locals_size = 0; | |
2e5ff58c TR |
685 | unsigned char img[] = { |
686 | 0x0f, 0xb6, /* in r0,0x3f */ | |
687 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 688 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 689 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ |
e3d8b004 | 690 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 691 | }; |
2e5ff58c | 692 | unsigned char img_sig[] = { |
e3d8b004 TR |
693 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
694 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ | |
8818c391 | 695 | }; |
2e5ff58c TR |
696 | unsigned char img_int[] = { |
697 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 698 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 699 | 0x78, 0x94, /* sei */ |
e3d8b004 | 700 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 701 | }; |
2e5ff58c | 702 | |
8818c391 TR |
703 | insn = EXTRACT_INSN (&prologue[vpc]); |
704 | vpc += 2; | |
2e5ff58c TR |
705 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
706 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
707 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ | |
708 | { | |
709 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
710 | insn = EXTRACT_INSN (&prologue[vpc]); | |
711 | vpc += 2; | |
712 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4) << 8); | |
713 | } | |
8818c391 | 714 | else |
4add8633 TR |
715 | return pc + vpc; |
716 | ||
717 | /* Scan the last part of the prologue. May not be present for interrupt | |
718 | or signal handler functions, which is why we set the prologue type | |
719 | when we saw the beginning of the prologue previously. */ | |
720 | ||
721 | if (memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | |
722 | { | |
723 | vpc += sizeof (img_sig); | |
724 | } | |
725 | else if (memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | |
726 | { | |
727 | vpc += sizeof (img_int); | |
728 | } | |
729 | if (memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
730 | { | |
731 | info->prologue_type = AVR_PROLOGUE_NORMAL; | |
732 | vpc += sizeof (img); | |
733 | } | |
734 | ||
735 | info->size += locals_size; | |
736 | ||
737 | return pc + avr_scan_arg_moves (vpc, prologue); | |
8818c391 | 738 | } |
4add8633 TR |
739 | |
740 | /* If we got this far, we could not scan the prologue, so just return the pc | |
741 | of the frame plus an adjustment for argument move insns. */ | |
742 | ||
743 | return pc + avr_scan_arg_moves (vpc, prologue);; | |
8818c391 TR |
744 | } |
745 | ||
4add8633 | 746 | static CORE_ADDR |
6093d2eb | 747 | avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
4add8633 TR |
748 | { |
749 | CORE_ADDR func_addr, func_end; | |
750 | CORE_ADDR prologue_end = pc; | |
8818c391 | 751 | |
4add8633 | 752 | /* See what the symbol table says */ |
8818c391 | 753 | |
4add8633 TR |
754 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
755 | { | |
756 | struct symtab_and_line sal; | |
757 | struct avr_unwind_cache info = {0}; | |
758 | struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | |
2e5ff58c | 759 | |
4add8633 | 760 | info.saved_regs = saved_regs; |
8818c391 | 761 | |
4add8633 TR |
762 | /* Need to run the prologue scanner to figure out if the function has a |
763 | prologue and possibly skip over moving arguments passed via registers | |
764 | to other registers. */ | |
2e5ff58c | 765 | |
4add8633 | 766 | prologue_end = avr_scan_prologue (pc, &info); |
8818c391 | 767 | |
3b85b0f1 TR |
768 | if (info.prologue_type == AVR_PROLOGUE_NONE) |
769 | return pc; | |
770 | else | |
4add8633 TR |
771 | { |
772 | sal = find_pc_line (func_addr, 0); | |
8818c391 | 773 | |
4add8633 TR |
774 | if (sal.line != 0 && sal.end < func_end) |
775 | return sal.end; | |
776 | } | |
777 | } | |
2e5ff58c | 778 | |
4add8633 TR |
779 | /* Either we didn't find the start of this function (nothing we can do), |
780 | or there's no line info, or the line after the prologue is after | |
781 | the end of the function (there probably isn't a prologue). */ | |
2e5ff58c | 782 | |
4add8633 TR |
783 | return prologue_end; |
784 | } | |
8818c391 | 785 | |
4add8633 TR |
786 | /* Not all avr devices support the BREAK insn. Those that don't should treat |
787 | it as a NOP. Thus, it should be ok. Since the avr is currently a remote | |
788 | only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ | |
8818c391 | 789 | |
4add8633 | 790 | static const unsigned char * |
67d57894 | 791 | avr_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr) |
4add8633 TR |
792 | { |
793 | static unsigned char avr_break_insn [] = { 0x98, 0x95 }; | |
794 | *lenptr = sizeof (avr_break_insn); | |
795 | return avr_break_insn; | |
8818c391 TR |
796 | } |
797 | ||
4add8633 TR |
798 | /* Given a return value in `regbuf' with a type `valtype', |
799 | extract and copy its value into `valbuf'. | |
800 | ||
801 | Return values are always passed via registers r25:r24:... */ | |
8818c391 TR |
802 | |
803 | static void | |
4add8633 | 804 | avr_extract_return_value (struct type *type, struct regcache *regcache, |
1f3a99d5 | 805 | gdb_byte *valbuf) |
8818c391 | 806 | { |
4add8633 TR |
807 | ULONGEST r24, r25; |
808 | ULONGEST c; | |
809 | int len; | |
810 | if (TYPE_LENGTH (type) == 1) | |
8818c391 | 811 | { |
4add8633 TR |
812 | regcache_cooked_read_unsigned (regcache, 24, &c); |
813 | store_unsigned_integer (valbuf, 1, c); | |
8818c391 TR |
814 | } |
815 | else | |
816 | { | |
4add8633 TR |
817 | int i; |
818 | /* The MSB of the return value is always in r25, calculate which | |
819 | register holds the LSB. */ | |
820 | int lsb_reg = 25 - TYPE_LENGTH (type) + 1; | |
8818c391 | 821 | |
4add8633 TR |
822 | for (i=0; i< TYPE_LENGTH (type); i++) |
823 | { | |
824 | regcache_cooked_read (regcache, lsb_reg + i, | |
825 | (bfd_byte *) valbuf + i); | |
4add8633 TR |
826 | } |
827 | } | |
828 | } | |
8818c391 | 829 | |
4c8b6ae0 UW |
830 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
831 | should be returned. If it is supposed to be returned in registers, | |
832 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
833 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
834 | from WRITEBUF into REGCACHE. */ | |
835 | ||
63807e1d | 836 | static enum return_value_convention |
c055b101 CV |
837 | avr_return_value (struct gdbarch *gdbarch, struct type *func_type, |
838 | struct type *valtype, struct regcache *regcache, | |
839 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 UW |
840 | { |
841 | int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
842 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
843 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
844 | && !(TYPE_LENGTH (valtype) == 1 | |
845 | || TYPE_LENGTH (valtype) == 2 | |
846 | || TYPE_LENGTH (valtype) == 4 | |
847 | || TYPE_LENGTH (valtype) == 8)); | |
848 | ||
849 | if (writebuf != NULL) | |
850 | { | |
851 | gdb_assert (!struct_return); | |
852 | error (_("Cannot store return value.")); | |
853 | } | |
854 | ||
855 | if (readbuf != NULL) | |
856 | { | |
857 | gdb_assert (!struct_return); | |
858 | avr_extract_return_value (valtype, regcache, readbuf); | |
859 | } | |
860 | ||
861 | if (struct_return) | |
862 | return RETURN_VALUE_STRUCT_CONVENTION; | |
863 | else | |
864 | return RETURN_VALUE_REGISTER_CONVENTION; | |
865 | } | |
866 | ||
867 | ||
4add8633 TR |
868 | /* Put here the code to store, into fi->saved_regs, the addresses of |
869 | the saved registers of frame described by FRAME_INFO. This | |
870 | includes special registers such as pc and fp saved in special ways | |
871 | in the stack frame. sp is even more special: the address we return | |
872 | for it IS the sp for the next frame. */ | |
8818c391 | 873 | |
63807e1d | 874 | static struct avr_unwind_cache * |
94afd7a6 | 875 | avr_frame_unwind_cache (struct frame_info *this_frame, |
4add8633 | 876 | void **this_prologue_cache) |
8818c391 | 877 | { |
4add8633 TR |
878 | CORE_ADDR pc; |
879 | ULONGEST prev_sp; | |
880 | ULONGEST this_base; | |
881 | struct avr_unwind_cache *info; | |
882 | int i; | |
883 | ||
884 | if ((*this_prologue_cache)) | |
885 | return (*this_prologue_cache); | |
886 | ||
887 | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | |
888 | (*this_prologue_cache) = info; | |
94afd7a6 | 889 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
4add8633 TR |
890 | |
891 | info->size = 0; | |
892 | info->prologue_type = AVR_PROLOGUE_NONE; | |
893 | ||
94afd7a6 | 894 | pc = get_frame_func (this_frame); |
4add8633 | 895 | |
94afd7a6 | 896 | if ((pc > 0) && (pc < get_frame_pc (this_frame))) |
4add8633 TR |
897 | avr_scan_prologue (pc, info); |
898 | ||
3b85b0f1 TR |
899 | if ((info->prologue_type != AVR_PROLOGUE_NONE) |
900 | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | |
4add8633 TR |
901 | { |
902 | ULONGEST high_base; /* High byte of FP */ | |
903 | ||
904 | /* The SP was moved to the FP. This indicates that a new frame | |
905 | was created. Get THIS frame's FP value by unwinding it from | |
906 | the next frame. */ | |
94afd7a6 UW |
907 | this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); |
908 | high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM+1); | |
4add8633 TR |
909 | this_base += (high_base << 8); |
910 | ||
911 | /* The FP points at the last saved register. Adjust the FP back | |
912 | to before the first saved register giving the SP. */ | |
913 | prev_sp = this_base + info->size; | |
914 | } | |
8818c391 | 915 | else |
4add8633 TR |
916 | { |
917 | /* Assume that the FP is this frame's SP but with that pushed | |
918 | stack space added back. */ | |
94afd7a6 | 919 | this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
4add8633 TR |
920 | prev_sp = this_base + info->size; |
921 | } | |
922 | ||
923 | /* Add 1 here to adjust for the post-decrement nature of the push | |
924 | instruction.*/ | |
925 | info->prev_sp = avr_make_saddr (prev_sp+1); | |
926 | ||
927 | info->base = avr_make_saddr (this_base); | |
928 | ||
929 | /* Adjust all the saved registers so that they contain addresses and not | |
3b85b0f1 | 930 | offsets. */ |
94afd7a6 | 931 | for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) |
4add8633 TR |
932 | if (info->saved_regs[i].addr) |
933 | { | |
934 | info->saved_regs[i].addr = (info->prev_sp - info->saved_regs[i].addr); | |
935 | } | |
936 | ||
937 | /* Except for the main and startup code, the return PC is always saved on | |
938 | the stack and is at the base of the frame. */ | |
939 | ||
940 | if (info->prologue_type != AVR_PROLOGUE_MAIN) | |
941 | { | |
942 | info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; | |
943 | } | |
944 | ||
3b85b0f1 TR |
945 | /* The previous frame's SP needed to be computed. Save the computed |
946 | value. */ | |
947 | trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, info->prev_sp+1); | |
948 | ||
4add8633 | 949 | return info; |
8818c391 TR |
950 | } |
951 | ||
952 | static CORE_ADDR | |
4add8633 | 953 | avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
8818c391 | 954 | { |
4add8633 TR |
955 | ULONGEST pc; |
956 | ||
11411de3 | 957 | pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); |
4add8633 TR |
958 | |
959 | return avr_make_iaddr (pc); | |
8818c391 TR |
960 | } |
961 | ||
30244cd8 UW |
962 | static CORE_ADDR |
963 | avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
964 | { | |
965 | ULONGEST sp; | |
966 | ||
11411de3 | 967 | sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); |
30244cd8 UW |
968 | |
969 | return avr_make_saddr (sp); | |
970 | } | |
971 | ||
4add8633 TR |
972 | /* Given a GDB frame, determine the address of the calling function's |
973 | frame. This will be used to create a new GDB frame struct. */ | |
8818c391 | 974 | |
4add8633 | 975 | static void |
94afd7a6 | 976 | avr_frame_this_id (struct frame_info *this_frame, |
4add8633 TR |
977 | void **this_prologue_cache, |
978 | struct frame_id *this_id) | |
8818c391 | 979 | { |
4add8633 | 980 | struct avr_unwind_cache *info |
94afd7a6 | 981 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
4add8633 TR |
982 | CORE_ADDR base; |
983 | CORE_ADDR func; | |
984 | struct frame_id id; | |
985 | ||
986 | /* The FUNC is easy. */ | |
94afd7a6 | 987 | func = get_frame_func (this_frame); |
4add8633 | 988 | |
4add8633 TR |
989 | /* Hopefully the prologue analysis either correctly determined the |
990 | frame's base (which is the SP from the previous frame), or set | |
991 | that base to "NULL". */ | |
992 | base = info->prev_sp; | |
993 | if (base == 0) | |
994 | return; | |
995 | ||
996 | id = frame_id_build (base, func); | |
4add8633 | 997 | (*this_id) = id; |
8818c391 TR |
998 | } |
999 | ||
94afd7a6 UW |
1000 | static struct value * |
1001 | avr_frame_prev_register (struct frame_info *this_frame, | |
1002 | void **this_prologue_cache, int regnum) | |
8818c391 | 1003 | { |
4add8633 | 1004 | struct avr_unwind_cache *info |
94afd7a6 | 1005 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
8818c391 | 1006 | |
3b85b0f1 TR |
1007 | if (regnum == AVR_PC_REGNUM) |
1008 | { | |
1009 | if (trad_frame_addr_p (info->saved_regs, regnum)) | |
1010 | { | |
94afd7a6 UW |
1011 | /* Reading the return PC from the PC register is slightly |
1012 | abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, | |
1013 | but in reality, only two bytes (3 in upcoming mega256) are | |
1014 | stored on the stack. | |
1015 | ||
1016 | Also, note that the value on the stack is an addr to a word | |
1017 | not a byte, so we will need to multiply it by two at some | |
1018 | point. | |
1019 | ||
1020 | And to confuse matters even more, the return address stored | |
1021 | on the stack is in big endian byte order, even though most | |
1022 | everything else about the avr is little endian. Ick! */ | |
1023 | ||
1024 | /* FIXME: number of bytes read here will need updated for the | |
1025 | mega256 when it is available. */ | |
1026 | ||
1027 | ULONGEST pc; | |
1028 | unsigned char tmp; | |
1029 | unsigned char buf[2]; | |
1030 | ||
1031 | read_memory (info->saved_regs[regnum].addr, buf, 2); | |
1032 | ||
1033 | /* Convert the PC read from memory as a big-endian to | |
1034 | little-endian order. */ | |
1035 | tmp = buf[0]; | |
1036 | buf[0] = buf[1]; | |
1037 | buf[1] = tmp; | |
1038 | ||
1039 | pc = (extract_unsigned_integer (buf, 2) * 2); | |
1040 | ||
1041 | return frame_unwind_got_constant (this_frame, regnum, pc); | |
3b85b0f1 | 1042 | } |
94afd7a6 UW |
1043 | |
1044 | return frame_unwind_got_optimized (this_frame, regnum); | |
3b85b0f1 | 1045 | } |
94afd7a6 UW |
1046 | |
1047 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
4add8633 | 1048 | } |
8818c391 | 1049 | |
4add8633 TR |
1050 | static const struct frame_unwind avr_frame_unwind = { |
1051 | NORMAL_FRAME, | |
1052 | avr_frame_this_id, | |
94afd7a6 UW |
1053 | avr_frame_prev_register, |
1054 | NULL, | |
1055 | default_frame_sniffer | |
4add8633 TR |
1056 | }; |
1057 | ||
8818c391 | 1058 | static CORE_ADDR |
94afd7a6 | 1059 | avr_frame_base_address (struct frame_info *this_frame, void **this_cache) |
8818c391 | 1060 | { |
4add8633 | 1061 | struct avr_unwind_cache *info |
94afd7a6 | 1062 | = avr_frame_unwind_cache (this_frame, this_cache); |
8818c391 | 1063 | |
4add8633 TR |
1064 | return info->base; |
1065 | } | |
8818c391 | 1066 | |
4add8633 TR |
1067 | static const struct frame_base avr_frame_base = { |
1068 | &avr_frame_unwind, | |
1069 | avr_frame_base_address, | |
1070 | avr_frame_base_address, | |
1071 | avr_frame_base_address | |
1072 | }; | |
ced15480 | 1073 | |
94afd7a6 UW |
1074 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1075 | frame. The frame ID's base needs to match the TOS value saved by | |
1076 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
8818c391 | 1077 | |
4add8633 | 1078 | static struct frame_id |
94afd7a6 | 1079 | avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
4add8633 TR |
1080 | { |
1081 | ULONGEST base; | |
8818c391 | 1082 | |
94afd7a6 UW |
1083 | base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
1084 | return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); | |
8818c391 TR |
1085 | } |
1086 | ||
4add8633 TR |
1087 | /* When arguments must be pushed onto the stack, they go on in reverse |
1088 | order. The below implements a FILO (stack) to do this. */ | |
8818c391 | 1089 | |
4add8633 TR |
1090 | struct stack_item |
1091 | { | |
1092 | int len; | |
1093 | struct stack_item *prev; | |
1094 | void *data; | |
1095 | }; | |
8818c391 | 1096 | |
4add8633 | 1097 | static struct stack_item * |
0fd88904 | 1098 | push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) |
8818c391 | 1099 | { |
4add8633 TR |
1100 | struct stack_item *si; |
1101 | si = xmalloc (sizeof (struct stack_item)); | |
1102 | si->data = xmalloc (len); | |
1103 | si->len = len; | |
1104 | si->prev = prev; | |
1105 | memcpy (si->data, contents, len); | |
1106 | return si; | |
8818c391 TR |
1107 | } |
1108 | ||
4add8633 TR |
1109 | static struct stack_item *pop_stack_item (struct stack_item *si); |
1110 | static struct stack_item * | |
1111 | pop_stack_item (struct stack_item *si) | |
8818c391 | 1112 | { |
4add8633 TR |
1113 | struct stack_item *dead = si; |
1114 | si = si->prev; | |
1115 | xfree (dead->data); | |
1116 | xfree (dead); | |
1117 | return si; | |
8818c391 TR |
1118 | } |
1119 | ||
8818c391 TR |
1120 | /* Setup the function arguments for calling a function in the inferior. |
1121 | ||
1122 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1123 | dedicated for passing function arguments. Up to the first 18 arguments | |
1124 | (depending on size) may go into these registers. The rest go on the stack. | |
1125 | ||
4add8633 TR |
1126 | All arguments are aligned to start in even-numbered registers (odd-sized |
1127 | arguments, including char, have one free register above them). For example, | |
1128 | an int in arg1 and a char in arg2 would be passed as such: | |
1129 | ||
1130 | arg1 -> r25:r24 | |
1131 | arg2 -> r22 | |
1132 | ||
1133 | Arguments that are larger than 2 bytes will be split between two or more | |
1134 | registers as available, but will NOT be split between a register and the | |
1135 | stack. Arguments that go onto the stack are pushed last arg first (this is | |
1136 | similar to the d10v). */ | |
1137 | ||
1138 | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | |
1139 | inaccurate. | |
8818c391 TR |
1140 | |
1141 | An exceptional case exists for struct arguments (and possibly other | |
1142 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1143 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1144 | between the registers and the stack, but instead is copied in its entirety | |
1145 | onto the stack, AND also copied into as many registers as there is room | |
1146 | for. In other words, space in registers permitting, two copies of the same | |
1147 | argument are passed in. As far as I can tell, only the one on the stack is | |
1148 | used, although that may be a function of the level of compiler | |
1149 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1150 | sizes are left-justified within the word (as opposed to arguments smaller | |
1151 | than WORDSIZE bytes, which are right-justified). | |
1152 | ||
1153 | If the function is to return an aggregate type such as a struct, the caller | |
1154 | must allocate space into which the callee will copy the return value. In | |
1155 | this case, a pointer to the return value location is passed into the callee | |
1156 | in register R0, which displaces one of the other arguments passed in via | |
1157 | registers R0 to R2. */ | |
1158 | ||
1159 | static CORE_ADDR | |
7d9b040b | 1160 | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
4add8633 TR |
1161 | struct regcache *regcache, CORE_ADDR bp_addr, |
1162 | int nargs, struct value **args, CORE_ADDR sp, | |
1163 | int struct_return, CORE_ADDR struct_addr) | |
8818c391 | 1164 | { |
4add8633 TR |
1165 | int i; |
1166 | unsigned char buf[2]; | |
1167 | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); | |
1168 | int regnum = AVR_ARGN_REGNUM; | |
1169 | struct stack_item *si = NULL; | |
8818c391 | 1170 | |
8818c391 | 1171 | #if 0 |
4add8633 TR |
1172 | /* FIXME: TRoth/2003-06-18: Not sure what to do when returning a struct. */ |
1173 | if (struct_return) | |
8818c391 | 1174 | { |
4add8633 | 1175 | fprintf_unfiltered (gdb_stderr, "struct_return: 0x%lx\n", struct_addr); |
9c9acae0 UW |
1176 | regcache_cooked_write_unsigned (regcache, argreg--, struct_addr & 0xff); |
1177 | regcache_cooked_write_unsigned (regcache, argreg--, (struct_addr >>8) & 0xff); | |
8818c391 | 1178 | } |
4add8633 | 1179 | #endif |
8818c391 | 1180 | |
4add8633 | 1181 | for (i = 0; i < nargs; i++) |
8818c391 | 1182 | { |
4add8633 TR |
1183 | int last_regnum; |
1184 | int j; | |
1185 | struct value *arg = args[i]; | |
4991999e | 1186 | struct type *type = check_typedef (value_type (arg)); |
0fd88904 | 1187 | const bfd_byte *contents = value_contents (arg); |
4add8633 TR |
1188 | int len = TYPE_LENGTH (type); |
1189 | ||
1190 | /* Calculate the potential last register needed. */ | |
1191 | last_regnum = regnum - (len + (len & 1)); | |
1192 | ||
1193 | /* If there are registers available, use them. Once we start putting | |
1194 | stuff on the stack, all subsequent args go on stack. */ | |
1195 | if ((si == NULL) && (last_regnum >= 8)) | |
1196 | { | |
1197 | ULONGEST val; | |
1198 | ||
1199 | /* Skip a register for odd length args. */ | |
1200 | if (len & 1) | |
1201 | regnum--; | |
1202 | ||
1203 | val = extract_unsigned_integer (contents, len); | |
1204 | for (j=0; j<len; j++) | |
1205 | { | |
1206 | regcache_cooked_write_unsigned (regcache, regnum--, | |
1207 | val >> (8*(len-j-1))); | |
1208 | } | |
1209 | } | |
1210 | /* No registers available, push the args onto the stack. */ | |
1211 | else | |
1212 | { | |
1213 | /* From here on, we don't care about regnum. */ | |
1214 | si = push_stack_item (si, contents, len); | |
1215 | } | |
8818c391 | 1216 | } |
909cd28e | 1217 | |
4add8633 TR |
1218 | /* Push args onto the stack. */ |
1219 | while (si) | |
1220 | { | |
1221 | sp -= si->len; | |
1222 | /* Add 1 to sp here to account for post decr nature of pushes. */ | |
1223 | write_memory (sp+1, si->data, si->len); | |
1224 | si = pop_stack_item (si); | |
1225 | } | |
3605c34a | 1226 | |
4add8633 TR |
1227 | /* Set the return address. For the avr, the return address is the BP_ADDR. |
1228 | Need to push the return address onto the stack noting that it needs to be | |
1229 | in big-endian order on the stack. */ | |
1230 | buf[0] = (return_pc >> 8) & 0xff; | |
1231 | buf[1] = return_pc & 0xff; | |
3605c34a | 1232 | |
4add8633 TR |
1233 | sp -= 2; |
1234 | write_memory (sp+1, buf, 2); /* Add one since pushes are post decr ops. */ | |
3605c34a | 1235 | |
4add8633 TR |
1236 | /* Finally, update the SP register. */ |
1237 | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, | |
1238 | avr_convert_saddr_to_raw (sp)); | |
3605c34a | 1239 | |
4add8633 | 1240 | return sp; |
3605c34a TR |
1241 | } |
1242 | ||
8818c391 TR |
1243 | /* Initialize the gdbarch structure for the AVR's. */ |
1244 | ||
1245 | static struct gdbarch * | |
2e5ff58c TR |
1246 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1247 | { | |
2e5ff58c TR |
1248 | struct gdbarch *gdbarch; |
1249 | struct gdbarch_tdep *tdep; | |
8818c391 TR |
1250 | |
1251 | /* Find a candidate among the list of pre-declared architectures. */ | |
1252 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1253 | if (arches != NULL) | |
1254 | return arches->gdbarch; | |
1255 | ||
1256 | /* None found, create a new architecture from the information provided. */ | |
1257 | tdep = XMALLOC (struct gdbarch_tdep); | |
1258 | gdbarch = gdbarch_alloc (&info, tdep); | |
1259 | ||
1260 | /* If we ever need to differentiate the device types, do it here. */ | |
1261 | switch (info.bfd_arch_info->mach) | |
1262 | { | |
1263 | case bfd_mach_avr1: | |
1264 | case bfd_mach_avr2: | |
1265 | case bfd_mach_avr3: | |
1266 | case bfd_mach_avr4: | |
1267 | case bfd_mach_avr5: | |
1268 | break; | |
1269 | } | |
1270 | ||
1271 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1272 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1273 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1274 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1275 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1276 | set_gdbarch_addr_bit (gdbarch, 32); | |
8818c391 TR |
1277 | |
1278 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1279 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1280 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1281 | ||
8da61cc4 DJ |
1282 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1283 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1284 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
8818c391 TR |
1285 | |
1286 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1287 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
8818c391 TR |
1288 | |
1289 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1290 | ||
1291 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
8818c391 TR |
1292 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); |
1293 | ||
1294 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
866b76ea | 1295 | set_gdbarch_register_type (gdbarch, avr_register_type); |
8818c391 | 1296 | |
4c8b6ae0 | 1297 | set_gdbarch_return_value (gdbarch, avr_return_value); |
8818c391 TR |
1298 | set_gdbarch_print_insn (gdbarch, print_insn_avr); |
1299 | ||
4add8633 | 1300 | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); |
8818c391 TR |
1301 | |
1302 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); | |
1303 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
8818c391 | 1304 | |
8818c391 | 1305 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); |
8818c391 TR |
1306 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
1307 | ||
909cd28e | 1308 | set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); |
8818c391 | 1309 | |
94afd7a6 | 1310 | frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); |
4add8633 TR |
1311 | frame_base_set_default (gdbarch, &avr_frame_base); |
1312 | ||
94afd7a6 | 1313 | set_gdbarch_dummy_id (gdbarch, avr_dummy_id); |
4add8633 TR |
1314 | |
1315 | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | |
30244cd8 | 1316 | set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); |
8818c391 | 1317 | |
8818c391 TR |
1318 | return gdbarch; |
1319 | } | |
1320 | ||
1321 | /* Send a query request to the avr remote target asking for values of the io | |
1322 | registers. If args parameter is not NULL, then the user has requested info | |
1323 | on a specific io register [This still needs implemented and is ignored for | |
1324 | now]. The query string should be one of these forms: | |
1325 | ||
1326 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1327 | ||
1328 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
1329 | registers to be read. The reply should be "<NAME>,VV;" for each io register | |
1330 | where, <NAME> is a string, and VV is the hex value of the register. | |
1331 | ||
1332 | All io registers are 8-bit. */ | |
1333 | ||
1334 | static void | |
1335 | avr_io_reg_read_command (char *args, int from_tty) | |
1336 | { | |
1e3ff5ad | 1337 | LONGEST bufsiz = 0; |
13547ab6 | 1338 | gdb_byte *buf; |
2e5ff58c TR |
1339 | char query[400]; |
1340 | char *p; | |
1341 | unsigned int nreg = 0; | |
1342 | unsigned int val; | |
1343 | int i, j, k, step; | |
8818c391 | 1344 | |
8818c391 | 1345 | /* Find out how many io registers the target has. */ |
13547ab6 DJ |
1346 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1347 | "avr.io_reg", &buf); | |
8818c391 | 1348 | |
13547ab6 | 1349 | if (bufsiz <= 0) |
8818c391 | 1350 | { |
2e5ff58c | 1351 | fprintf_unfiltered (gdb_stderr, |
13547ab6 DJ |
1352 | _("ERR: info io_registers NOT supported " |
1353 | "by current target\n")); | |
8818c391 TR |
1354 | return; |
1355 | } | |
1356 | ||
2e5ff58c | 1357 | if (sscanf (buf, "%x", &nreg) != 1) |
8818c391 | 1358 | { |
2e5ff58c | 1359 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1360 | _("Error fetching number of io registers\n")); |
13547ab6 | 1361 | xfree (buf); |
8818c391 TR |
1362 | return; |
1363 | } | |
1364 | ||
13547ab6 DJ |
1365 | xfree (buf); |
1366 | ||
2e5ff58c | 1367 | reinitialize_more_filter (); |
8818c391 | 1368 | |
edefbb7c | 1369 | printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); |
8818c391 TR |
1370 | |
1371 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
1372 | step = 8; | |
1373 | ||
2e5ff58c | 1374 | for (i = 0; i < nreg; i += step) |
8818c391 | 1375 | { |
91ccbfc1 TR |
1376 | /* how many registers this round? */ |
1377 | j = step; | |
1378 | if ((i+j) >= nreg) | |
1379 | j = nreg - i; /* last block is less than 8 registers */ | |
8818c391 | 1380 | |
2e5ff58c | 1381 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
13547ab6 DJ |
1382 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1383 | query, &buf); | |
8818c391 TR |
1384 | |
1385 | p = buf; | |
2e5ff58c TR |
1386 | for (k = i; k < (i + j); k++) |
1387 | { | |
1388 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1389 | { | |
1390 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1391 | while ((*p != ';') && (*p != '\0')) | |
1392 | p++; | |
1393 | p++; /* skip over ';' */ | |
1394 | if (*p == '\0') | |
1395 | break; | |
1396 | } | |
1397 | } | |
13547ab6 DJ |
1398 | |
1399 | xfree (buf); | |
8818c391 TR |
1400 | } |
1401 | } | |
1402 | ||
a78f21af AC |
1403 | extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ |
1404 | ||
8818c391 TR |
1405 | void |
1406 | _initialize_avr_tdep (void) | |
1407 | { | |
1408 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1409 | ||
1410 | /* Add a new command to allow the user to query the avr remote target for | |
1411 | the values of the io space registers in a saner way than just using | |
1412 | `x/NNNb ADDR`. */ | |
1413 | ||
1414 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
1415 | io_registers' to signify it is not available on other platforms. */ | |
1416 | ||
1417 | add_cmd ("io_registers", class_info, avr_io_reg_read_command, | |
1a966eab AC |
1418 | _("query remote avr target for io space register values"), |
1419 | &infolist); | |
8818c391 | 1420 | } |