]>
Commit | Line | Data |
---|---|---|
4a657b0d DK |
1 | // arm.cc -- arm target support for gold. |
2 | ||
b10d2873 | 3 | // Copyright 2009, 2010 Free Software Foundation, Inc. |
4a657b0d DK |
4 | // Written by Doug Kwan <[email protected]> based on the i386 code |
5 | // by Ian Lance Taylor <[email protected]>. | |
b569affa DK |
6 | // This file also contains borrowed and adapted code from |
7 | // bfd/elf32-arm.c. | |
4a657b0d DK |
8 | |
9 | // This file is part of gold. | |
10 | ||
11 | // This program is free software; you can redistribute it and/or modify | |
12 | // it under the terms of the GNU General Public License as published by | |
13 | // the Free Software Foundation; either version 3 of the License, or | |
14 | // (at your option) any later version. | |
15 | ||
16 | // This program is distributed in the hope that it will be useful, | |
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | // GNU General Public License for more details. | |
20 | ||
21 | // You should have received a copy of the GNU General Public License | |
22 | // along with this program; if not, write to the Free Software | |
23 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | |
24 | // MA 02110-1301, USA. | |
25 | ||
26 | #include "gold.h" | |
27 | ||
28 | #include <cstring> | |
29 | #include <limits> | |
30 | #include <cstdio> | |
31 | #include <string> | |
56ee5e00 | 32 | #include <algorithm> |
41263c05 DK |
33 | #include <map> |
34 | #include <utility> | |
2b328d4e | 35 | #include <set> |
4a657b0d DK |
36 | |
37 | #include "elfcpp.h" | |
38 | #include "parameters.h" | |
39 | #include "reloc.h" | |
40 | #include "arm.h" | |
41 | #include "object.h" | |
42 | #include "symtab.h" | |
43 | #include "layout.h" | |
44 | #include "output.h" | |
45 | #include "copy-relocs.h" | |
46 | #include "target.h" | |
47 | #include "target-reloc.h" | |
48 | #include "target-select.h" | |
49 | #include "tls.h" | |
50 | #include "defstd.h" | |
f345227a | 51 | #include "gc.h" |
a0351a69 | 52 | #include "attributes.h" |
0d31c79d | 53 | #include "arm-reloc-property.h" |
4a657b0d DK |
54 | |
55 | namespace | |
56 | { | |
57 | ||
58 | using namespace gold; | |
59 | ||
94cdfcff DK |
60 | template<bool big_endian> |
61 | class Output_data_plt_arm; | |
62 | ||
56ee5e00 DK |
63 | template<bool big_endian> |
64 | class Stub_table; | |
65 | ||
66 | template<bool big_endian> | |
67 | class Arm_input_section; | |
68 | ||
af2cdeae DK |
69 | class Arm_exidx_cantunwind; |
70 | ||
71 | class Arm_exidx_merged_section; | |
72 | ||
80d0d023 DK |
73 | class Arm_exidx_fixup; |
74 | ||
07f508a2 DK |
75 | template<bool big_endian> |
76 | class Arm_output_section; | |
77 | ||
993d07c1 DK |
78 | class Arm_exidx_input_section; |
79 | ||
07f508a2 DK |
80 | template<bool big_endian> |
81 | class Arm_relobj; | |
82 | ||
f96accdf DK |
83 | template<bool big_endian> |
84 | class Arm_relocate_functions; | |
85 | ||
4a54abbb DK |
86 | template<bool big_endian> |
87 | class Arm_output_data_got; | |
88 | ||
b569affa DK |
89 | template<bool big_endian> |
90 | class Target_arm; | |
91 | ||
92 | // For convenience. | |
93 | typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address; | |
94 | ||
95 | // Maximum branch offsets for ARM, THUMB and THUMB2. | |
96 | const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8); | |
97 | const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8); | |
98 | const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4); | |
99 | const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4); | |
100 | const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4); | |
101 | const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4); | |
102 | ||
4a54abbb DK |
103 | // Thread Control Block size. |
104 | const size_t ARM_TCB_SIZE = 8; | |
105 | ||
4a657b0d DK |
106 | // The arm target class. |
107 | // | |
108 | // This is a very simple port of gold for ARM-EABI. It is intended for | |
b10d2873 | 109 | // supporting Android only for the time being. |
4a657b0d | 110 | // |
4a657b0d | 111 | // TODOs: |
0d31c79d | 112 | // - Implement all static relocation types documented in arm-reloc.def. |
94cdfcff DK |
113 | // - Make PLTs more flexible for different architecture features like |
114 | // Thumb-2 and BE8. | |
11af873f | 115 | // There are probably a lot more. |
4a657b0d | 116 | |
0d31c79d DK |
117 | // Ideally we would like to avoid using global variables but this is used |
118 | // very in many places and sometimes in loops. If we use a function | |
119 | // returning a static instance of Arm_reloc_property_table, it will very | |
120 | // slow in an threaded environment since the static instance needs to be | |
121 | // locked. The pointer is below initialized in the | |
122 | // Target::do_select_as_default_target() hook so that we do not spend time | |
123 | // building the table if we are not linking ARM objects. | |
124 | // | |
125 | // An alternative is to to process the information in arm-reloc.def in | |
126 | // compilation time and generate a representation of it in PODs only. That | |
127 | // way we can avoid initialization when the linker starts. | |
128 | ||
ca09d69a | 129 | Arm_reloc_property_table* arm_reloc_property_table = NULL; |
0d31c79d | 130 | |
b569affa DK |
131 | // Instruction template class. This class is similar to the insn_sequence |
132 | // struct in bfd/elf32-arm.c. | |
133 | ||
134 | class Insn_template | |
135 | { | |
136 | public: | |
137 | // Types of instruction templates. | |
138 | enum Type | |
139 | { | |
140 | THUMB16_TYPE = 1, | |
bb0d3eb0 DK |
141 | // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction |
142 | // templates with class-specific semantics. Currently this is used | |
143 | // only by the Cortex_a8_stub class for handling condition codes in | |
144 | // conditional branches. | |
145 | THUMB16_SPECIAL_TYPE, | |
b569affa DK |
146 | THUMB32_TYPE, |
147 | ARM_TYPE, | |
148 | DATA_TYPE | |
149 | }; | |
150 | ||
bb0d3eb0 | 151 | // Factory methods to create instruction templates in different formats. |
b569affa DK |
152 | |
153 | static const Insn_template | |
154 | thumb16_insn(uint32_t data) | |
155 | { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } | |
156 | ||
bb0d3eb0 DK |
157 | // A Thumb conditional branch, in which the proper condition is inserted |
158 | // when we build the stub. | |
b569affa DK |
159 | static const Insn_template |
160 | thumb16_bcond_insn(uint32_t data) | |
bb0d3eb0 | 161 | { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } |
b569affa DK |
162 | |
163 | static const Insn_template | |
164 | thumb32_insn(uint32_t data) | |
165 | { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } | |
166 | ||
167 | static const Insn_template | |
168 | thumb32_b_insn(uint32_t data, int reloc_addend) | |
169 | { | |
170 | return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24, | |
171 | reloc_addend); | |
172 | } | |
173 | ||
174 | static const Insn_template | |
175 | arm_insn(uint32_t data) | |
176 | { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); } | |
177 | ||
178 | static const Insn_template | |
179 | arm_rel_insn(unsigned data, int reloc_addend) | |
180 | { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); } | |
181 | ||
182 | static const Insn_template | |
183 | data_word(unsigned data, unsigned int r_type, int reloc_addend) | |
184 | { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } | |
185 | ||
186 | // Accessors. This class is used for read-only objects so no modifiers | |
187 | // are provided. | |
188 | ||
189 | uint32_t | |
190 | data() const | |
191 | { return this->data_; } | |
192 | ||
193 | // Return the instruction sequence type of this. | |
194 | Type | |
195 | type() const | |
196 | { return this->type_; } | |
197 | ||
198 | // Return the ARM relocation type of this. | |
199 | unsigned int | |
200 | r_type() const | |
201 | { return this->r_type_; } | |
202 | ||
203 | int32_t | |
204 | reloc_addend() const | |
205 | { return this->reloc_addend_; } | |
206 | ||
bb0d3eb0 | 207 | // Return size of instruction template in bytes. |
b569affa DK |
208 | size_t |
209 | size() const; | |
210 | ||
bb0d3eb0 | 211 | // Return byte-alignment of instruction template. |
b569affa DK |
212 | unsigned |
213 | alignment() const; | |
214 | ||
215 | private: | |
216 | // We make the constructor private to ensure that only the factory | |
217 | // methods are used. | |
218 | inline | |
2ea97941 ILT |
219 | Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend) |
220 | : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend) | |
b569affa DK |
221 | { } |
222 | ||
223 | // Instruction specific data. This is used to store information like | |
224 | // some of the instruction bits. | |
225 | uint32_t data_; | |
226 | // Instruction template type. | |
227 | Type type_; | |
228 | // Relocation type if there is a relocation or R_ARM_NONE otherwise. | |
229 | unsigned int r_type_; | |
230 | // Relocation addend. | |
231 | int32_t reloc_addend_; | |
232 | }; | |
233 | ||
234 | // Macro for generating code to stub types. One entry per long/short | |
235 | // branch stub | |
236 | ||
237 | #define DEF_STUBS \ | |
238 | DEF_STUB(long_branch_any_any) \ | |
239 | DEF_STUB(long_branch_v4t_arm_thumb) \ | |
240 | DEF_STUB(long_branch_thumb_only) \ | |
241 | DEF_STUB(long_branch_v4t_thumb_thumb) \ | |
242 | DEF_STUB(long_branch_v4t_thumb_arm) \ | |
243 | DEF_STUB(short_branch_v4t_thumb_arm) \ | |
244 | DEF_STUB(long_branch_any_arm_pic) \ | |
245 | DEF_STUB(long_branch_any_thumb_pic) \ | |
246 | DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ | |
247 | DEF_STUB(long_branch_v4t_arm_thumb_pic) \ | |
248 | DEF_STUB(long_branch_v4t_thumb_arm_pic) \ | |
249 | DEF_STUB(long_branch_thumb_only_pic) \ | |
250 | DEF_STUB(a8_veneer_b_cond) \ | |
251 | DEF_STUB(a8_veneer_b) \ | |
252 | DEF_STUB(a8_veneer_bl) \ | |
a2162063 ILT |
253 | DEF_STUB(a8_veneer_blx) \ |
254 | DEF_STUB(v4_veneer_bx) | |
b569affa DK |
255 | |
256 | // Stub types. | |
257 | ||
258 | #define DEF_STUB(x) arm_stub_##x, | |
259 | typedef enum | |
260 | { | |
261 | arm_stub_none, | |
262 | DEF_STUBS | |
263 | ||
264 | // First reloc stub type. | |
265 | arm_stub_reloc_first = arm_stub_long_branch_any_any, | |
266 | // Last reloc stub type. | |
267 | arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic, | |
268 | ||
269 | // First Cortex-A8 stub type. | |
270 | arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond, | |
271 | // Last Cortex-A8 stub type. | |
272 | arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx, | |
273 | ||
274 | // Last stub type. | |
a2162063 | 275 | arm_stub_type_last = arm_stub_v4_veneer_bx |
b569affa DK |
276 | } Stub_type; |
277 | #undef DEF_STUB | |
278 | ||
279 | // Stub template class. Templates are meant to be read-only objects. | |
280 | // A stub template for a stub type contains all read-only attributes | |
281 | // common to all stubs of the same type. | |
282 | ||
283 | class Stub_template | |
284 | { | |
285 | public: | |
286 | Stub_template(Stub_type, const Insn_template*, size_t); | |
287 | ||
288 | ~Stub_template() | |
289 | { } | |
290 | ||
291 | // Return stub type. | |
292 | Stub_type | |
293 | type() const | |
294 | { return this->type_; } | |
295 | ||
296 | // Return an array of instruction templates. | |
297 | const Insn_template* | |
298 | insns() const | |
299 | { return this->insns_; } | |
300 | ||
301 | // Return size of template in number of instructions. | |
302 | size_t | |
303 | insn_count() const | |
304 | { return this->insn_count_; } | |
305 | ||
306 | // Return size of template in bytes. | |
307 | size_t | |
308 | size() const | |
309 | { return this->size_; } | |
310 | ||
311 | // Return alignment of the stub template. | |
312 | unsigned | |
313 | alignment() const | |
314 | { return this->alignment_; } | |
315 | ||
316 | // Return whether entry point is in thumb mode. | |
317 | bool | |
318 | entry_in_thumb_mode() const | |
319 | { return this->entry_in_thumb_mode_; } | |
320 | ||
321 | // Return number of relocations in this template. | |
322 | size_t | |
323 | reloc_count() const | |
324 | { return this->relocs_.size(); } | |
325 | ||
326 | // Return index of the I-th instruction with relocation. | |
327 | size_t | |
328 | reloc_insn_index(size_t i) const | |
329 | { | |
330 | gold_assert(i < this->relocs_.size()); | |
331 | return this->relocs_[i].first; | |
332 | } | |
333 | ||
334 | // Return the offset of the I-th instruction with relocation from the | |
335 | // beginning of the stub. | |
336 | section_size_type | |
337 | reloc_offset(size_t i) const | |
338 | { | |
339 | gold_assert(i < this->relocs_.size()); | |
340 | return this->relocs_[i].second; | |
341 | } | |
342 | ||
343 | private: | |
344 | // This contains information about an instruction template with a relocation | |
345 | // and its offset from start of stub. | |
346 | typedef std::pair<size_t, section_size_type> Reloc; | |
347 | ||
348 | // A Stub_template may not be copied. We want to share templates as much | |
349 | // as possible. | |
350 | Stub_template(const Stub_template&); | |
351 | Stub_template& operator=(const Stub_template&); | |
352 | ||
353 | // Stub type. | |
354 | Stub_type type_; | |
355 | // Points to an array of Insn_templates. | |
356 | const Insn_template* insns_; | |
357 | // Number of Insn_templates in insns_[]. | |
358 | size_t insn_count_; | |
359 | // Size of templated instructions in bytes. | |
360 | size_t size_; | |
361 | // Alignment of templated instructions. | |
362 | unsigned alignment_; | |
363 | // Flag to indicate if entry is in thumb mode. | |
364 | bool entry_in_thumb_mode_; | |
365 | // A table of reloc instruction indices and offsets. We can find these by | |
366 | // looking at the instruction templates but we pre-compute and then stash | |
367 | // them here for speed. | |
368 | std::vector<Reloc> relocs_; | |
369 | }; | |
370 | ||
371 | // | |
372 | // A class for code stubs. This is a base class for different type of | |
373 | // stubs used in the ARM target. | |
374 | // | |
375 | ||
376 | class Stub | |
377 | { | |
378 | private: | |
379 | static const section_offset_type invalid_offset = | |
380 | static_cast<section_offset_type>(-1); | |
381 | ||
382 | public: | |
2ea97941 ILT |
383 | Stub(const Stub_template* stub_template) |
384 | : stub_template_(stub_template), offset_(invalid_offset) | |
b569affa DK |
385 | { } |
386 | ||
387 | virtual | |
388 | ~Stub() | |
389 | { } | |
390 | ||
391 | // Return the stub template. | |
392 | const Stub_template* | |
393 | stub_template() const | |
394 | { return this->stub_template_; } | |
395 | ||
396 | // Return offset of code stub from beginning of its containing stub table. | |
397 | section_offset_type | |
398 | offset() const | |
399 | { | |
400 | gold_assert(this->offset_ != invalid_offset); | |
401 | return this->offset_; | |
402 | } | |
403 | ||
404 | // Set offset of code stub from beginning of its containing stub table. | |
405 | void | |
2ea97941 ILT |
406 | set_offset(section_offset_type offset) |
407 | { this->offset_ = offset; } | |
b569affa DK |
408 | |
409 | // Return the relocation target address of the i-th relocation in the | |
410 | // stub. This must be defined in a child class. | |
411 | Arm_address | |
412 | reloc_target(size_t i) | |
413 | { return this->do_reloc_target(i); } | |
414 | ||
415 | // Write a stub at output VIEW. BIG_ENDIAN select how a stub is written. | |
416 | void | |
417 | write(unsigned char* view, section_size_type view_size, bool big_endian) | |
418 | { this->do_write(view, view_size, big_endian); } | |
419 | ||
bb0d3eb0 DK |
420 | // Return the instruction for THUMB16_SPECIAL_TYPE instruction template |
421 | // for the i-th instruction. | |
422 | uint16_t | |
423 | thumb16_special(size_t i) | |
424 | { return this->do_thumb16_special(i); } | |
425 | ||
b569affa DK |
426 | protected: |
427 | // This must be defined in the child class. | |
428 | virtual Arm_address | |
429 | do_reloc_target(size_t) = 0; | |
430 | ||
bb0d3eb0 | 431 | // This may be overridden in the child class. |
b569affa | 432 | virtual void |
bb0d3eb0 DK |
433 | do_write(unsigned char* view, section_size_type view_size, bool big_endian) |
434 | { | |
435 | if (big_endian) | |
436 | this->do_fixed_endian_write<true>(view, view_size); | |
437 | else | |
438 | this->do_fixed_endian_write<false>(view, view_size); | |
439 | } | |
b569affa | 440 | |
bb0d3eb0 DK |
441 | // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE |
442 | // instruction template. | |
443 | virtual uint16_t | |
444 | do_thumb16_special(size_t) | |
445 | { gold_unreachable(); } | |
446 | ||
b569affa | 447 | private: |
bb0d3eb0 DK |
448 | // A template to implement do_write. |
449 | template<bool big_endian> | |
450 | void inline | |
451 | do_fixed_endian_write(unsigned char*, section_size_type); | |
452 | ||
b569affa DK |
453 | // Its template. |
454 | const Stub_template* stub_template_; | |
455 | // Offset within the section of containing this stub. | |
456 | section_offset_type offset_; | |
457 | }; | |
458 | ||
459 | // Reloc stub class. These are stubs we use to fix up relocation because | |
460 | // of limited branch ranges. | |
461 | ||
462 | class Reloc_stub : public Stub | |
463 | { | |
464 | public: | |
465 | static const unsigned int invalid_index = static_cast<unsigned int>(-1); | |
466 | // We assume we never jump to this address. | |
467 | static const Arm_address invalid_address = static_cast<Arm_address>(-1); | |
468 | ||
469 | // Return destination address. | |
470 | Arm_address | |
471 | destination_address() const | |
472 | { | |
473 | gold_assert(this->destination_address_ != this->invalid_address); | |
474 | return this->destination_address_; | |
475 | } | |
476 | ||
477 | // Set destination address. | |
478 | void | |
479 | set_destination_address(Arm_address address) | |
480 | { | |
481 | gold_assert(address != this->invalid_address); | |
482 | this->destination_address_ = address; | |
483 | } | |
484 | ||
485 | // Reset destination address. | |
486 | void | |
487 | reset_destination_address() | |
488 | { this->destination_address_ = this->invalid_address; } | |
489 | ||
490 | // Determine stub type for a branch of a relocation of R_TYPE going | |
491 | // from BRANCH_ADDRESS to BRANCH_TARGET. If TARGET_IS_THUMB is set, | |
492 | // the branch target is a thumb instruction. TARGET is used for look | |
493 | // up ARM-specific linker settings. | |
494 | static Stub_type | |
495 | stub_type_for_reloc(unsigned int r_type, Arm_address branch_address, | |
496 | Arm_address branch_target, bool target_is_thumb); | |
497 | ||
498 | // Reloc_stub key. A key is logically a triplet of a stub type, a symbol | |
499 | // and an addend. Since we treat global and local symbol differently, we | |
500 | // use a Symbol object for a global symbol and a object-index pair for | |
501 | // a local symbol. | |
502 | class Key | |
503 | { | |
504 | public: | |
505 | // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and | |
506 | // R_SYM. Otherwise, this is a local symbol and RELOBJ must non-NULL | |
507 | // and R_SYM must not be invalid_index. | |
2ea97941 ILT |
508 | Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj, |
509 | unsigned int r_sym, int32_t addend) | |
510 | : stub_type_(stub_type), addend_(addend) | |
b569affa | 511 | { |
2ea97941 | 512 | if (symbol != NULL) |
b569affa DK |
513 | { |
514 | this->r_sym_ = Reloc_stub::invalid_index; | |
2ea97941 | 515 | this->u_.symbol = symbol; |
b569affa DK |
516 | } |
517 | else | |
518 | { | |
2ea97941 ILT |
519 | gold_assert(relobj != NULL && r_sym != invalid_index); |
520 | this->r_sym_ = r_sym; | |
521 | this->u_.relobj = relobj; | |
b569affa DK |
522 | } |
523 | } | |
524 | ||
525 | ~Key() | |
526 | { } | |
527 | ||
528 | // Accessors: Keys are meant to be read-only object so no modifiers are | |
529 | // provided. | |
530 | ||
531 | // Return stub type. | |
532 | Stub_type | |
533 | stub_type() const | |
534 | { return this->stub_type_; } | |
535 | ||
536 | // Return the local symbol index or invalid_index. | |
537 | unsigned int | |
538 | r_sym() const | |
539 | { return this->r_sym_; } | |
540 | ||
541 | // Return the symbol if there is one. | |
542 | const Symbol* | |
543 | symbol() const | |
544 | { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; } | |
545 | ||
546 | // Return the relobj if there is one. | |
547 | const Relobj* | |
548 | relobj() const | |
549 | { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; } | |
550 | ||
551 | // Whether this equals to another key k. | |
552 | bool | |
553 | eq(const Key& k) const | |
554 | { | |
555 | return ((this->stub_type_ == k.stub_type_) | |
556 | && (this->r_sym_ == k.r_sym_) | |
557 | && ((this->r_sym_ != Reloc_stub::invalid_index) | |
558 | ? (this->u_.relobj == k.u_.relobj) | |
559 | : (this->u_.symbol == k.u_.symbol)) | |
560 | && (this->addend_ == k.addend_)); | |
561 | } | |
562 | ||
563 | // Return a hash value. | |
564 | size_t | |
565 | hash_value() const | |
566 | { | |
567 | return (this->stub_type_ | |
568 | ^ this->r_sym_ | |
569 | ^ gold::string_hash<char>( | |
570 | (this->r_sym_ != Reloc_stub::invalid_index) | |
571 | ? this->u_.relobj->name().c_str() | |
572 | : this->u_.symbol->name()) | |
573 | ^ this->addend_); | |
574 | } | |
575 | ||
576 | // Functors for STL associative containers. | |
577 | struct hash | |
578 | { | |
579 | size_t | |
580 | operator()(const Key& k) const | |
581 | { return k.hash_value(); } | |
582 | }; | |
583 | ||
584 | struct equal_to | |
585 | { | |
586 | bool | |
587 | operator()(const Key& k1, const Key& k2) const | |
588 | { return k1.eq(k2); } | |
589 | }; | |
590 | ||
591 | // Name of key. This is mainly for debugging. | |
592 | std::string | |
593 | name() const; | |
594 | ||
595 | private: | |
596 | // Stub type. | |
597 | Stub_type stub_type_; | |
598 | // If this is a local symbol, this is the index in the defining object. | |
599 | // Otherwise, it is invalid_index for a global symbol. | |
600 | unsigned int r_sym_; | |
601 | // If r_sym_ is invalid index. This points to a global symbol. | |
602 | // Otherwise, this points a relobj. We used the unsized and target | |
eb44217c | 603 | // independent Symbol and Relobj classes instead of Sized_symbol<32> and |
b569affa | 604 | // Arm_relobj. This is done to avoid making the stub class a template |
7296d933 | 605 | // as most of the stub machinery is endianness-neutral. However, it |
b569affa DK |
606 | // may require a bit of casting done by users of this class. |
607 | union | |
608 | { | |
609 | const Symbol* symbol; | |
610 | const Relobj* relobj; | |
611 | } u_; | |
612 | // Addend associated with a reloc. | |
613 | int32_t addend_; | |
614 | }; | |
615 | ||
616 | protected: | |
617 | // Reloc_stubs are created via a stub factory. So these are protected. | |
2ea97941 ILT |
618 | Reloc_stub(const Stub_template* stub_template) |
619 | : Stub(stub_template), destination_address_(invalid_address) | |
b569affa DK |
620 | { } |
621 | ||
622 | ~Reloc_stub() | |
623 | { } | |
624 | ||
625 | friend class Stub_factory; | |
626 | ||
b569affa DK |
627 | // Return the relocation target address of the i-th relocation in the |
628 | // stub. | |
629 | Arm_address | |
630 | do_reloc_target(size_t i) | |
631 | { | |
632 | // All reloc stub have only one relocation. | |
633 | gold_assert(i == 0); | |
634 | return this->destination_address_; | |
635 | } | |
636 | ||
bb0d3eb0 DK |
637 | private: |
638 | // Address of destination. | |
639 | Arm_address destination_address_; | |
640 | }; | |
b569affa | 641 | |
bb0d3eb0 DK |
642 | // Cortex-A8 stub class. We need a Cortex-A8 stub to redirect any 32-bit |
643 | // THUMB branch that meets the following conditions: | |
644 | // | |
645 | // 1. The branch straddles across a page boundary. i.e. lower 12-bit of | |
646 | // branch address is 0xffe. | |
647 | // 2. The branch target address is in the same page as the first word of the | |
648 | // branch. | |
649 | // 3. The branch follows a 32-bit instruction which is not a branch. | |
650 | // | |
651 | // To do the fix up, we need to store the address of the branch instruction | |
652 | // and its target at least. We also need to store the original branch | |
653 | // instruction bits for the condition code in a conditional branch. The | |
654 | // condition code is used in a special instruction template. We also want | |
655 | // to identify input sections needing Cortex-A8 workaround quickly. We store | |
656 | // extra information about object and section index of the code section | |
657 | // containing a branch being fixed up. The information is used to mark | |
658 | // the code section when we finalize the Cortex-A8 stubs. | |
659 | // | |
b569affa | 660 | |
bb0d3eb0 DK |
661 | class Cortex_a8_stub : public Stub |
662 | { | |
663 | public: | |
664 | ~Cortex_a8_stub() | |
665 | { } | |
666 | ||
667 | // Return the object of the code section containing the branch being fixed | |
668 | // up. | |
669 | Relobj* | |
670 | relobj() const | |
671 | { return this->relobj_; } | |
672 | ||
673 | // Return the section index of the code section containing the branch being | |
674 | // fixed up. | |
675 | unsigned int | |
676 | shndx() const | |
677 | { return this->shndx_; } | |
678 | ||
679 | // Return the source address of stub. This is the address of the original | |
680 | // branch instruction. LSB is 1 always set to indicate that it is a THUMB | |
681 | // instruction. | |
682 | Arm_address | |
683 | source_address() const | |
684 | { return this->source_address_; } | |
685 | ||
686 | // Return the destination address of the stub. This is the branch taken | |
687 | // address of the original branch instruction. LSB is 1 if it is a THUMB | |
688 | // instruction address. | |
689 | Arm_address | |
690 | destination_address() const | |
691 | { return this->destination_address_; } | |
692 | ||
693 | // Return the instruction being fixed up. | |
694 | uint32_t | |
695 | original_insn() const | |
696 | { return this->original_insn_; } | |
697 | ||
698 | protected: | |
699 | // Cortex_a8_stubs are created via a stub factory. So these are protected. | |
700 | Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj, | |
701 | unsigned int shndx, Arm_address source_address, | |
702 | Arm_address destination_address, uint32_t original_insn) | |
703 | : Stub(stub_template), relobj_(relobj), shndx_(shndx), | |
704 | source_address_(source_address | 1U), | |
705 | destination_address_(destination_address), | |
706 | original_insn_(original_insn) | |
707 | { } | |
708 | ||
709 | friend class Stub_factory; | |
710 | ||
711 | // Return the relocation target address of the i-th relocation in the | |
712 | // stub. | |
713 | Arm_address | |
714 | do_reloc_target(size_t i) | |
715 | { | |
716 | if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond) | |
717 | { | |
718 | // The conditional branch veneer has two relocations. | |
719 | gold_assert(i < 2); | |
720 | return i == 0 ? this->source_address_ + 4 : this->destination_address_; | |
721 | } | |
722 | else | |
723 | { | |
724 | // All other Cortex-A8 stubs have only one relocation. | |
725 | gold_assert(i == 0); | |
726 | return this->destination_address_; | |
727 | } | |
728 | } | |
729 | ||
730 | // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template. | |
731 | uint16_t | |
732 | do_thumb16_special(size_t); | |
733 | ||
734 | private: | |
735 | // Object of the code section containing the branch being fixed up. | |
736 | Relobj* relobj_; | |
737 | // Section index of the code section containing the branch begin fixed up. | |
738 | unsigned int shndx_; | |
739 | // Source address of original branch. | |
740 | Arm_address source_address_; | |
741 | // Destination address of the original branch. | |
b569affa | 742 | Arm_address destination_address_; |
bb0d3eb0 DK |
743 | // Original branch instruction. This is needed for copying the condition |
744 | // code from a condition branch to its stub. | |
745 | uint32_t original_insn_; | |
b569affa DK |
746 | }; |
747 | ||
a2162063 ILT |
748 | // ARMv4 BX Rx branch relocation stub class. |
749 | class Arm_v4bx_stub : public Stub | |
750 | { | |
751 | public: | |
752 | ~Arm_v4bx_stub() | |
753 | { } | |
754 | ||
755 | // Return the associated register. | |
756 | uint32_t | |
757 | reg() const | |
758 | { return this->reg_; } | |
759 | ||
760 | protected: | |
761 | // Arm V4BX stubs are created via a stub factory. So these are protected. | |
762 | Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg) | |
763 | : Stub(stub_template), reg_(reg) | |
764 | { } | |
765 | ||
766 | friend class Stub_factory; | |
767 | ||
768 | // Return the relocation target address of the i-th relocation in the | |
769 | // stub. | |
770 | Arm_address | |
771 | do_reloc_target(size_t) | |
772 | { gold_unreachable(); } | |
773 | ||
774 | // This may be overridden in the child class. | |
775 | virtual void | |
776 | do_write(unsigned char* view, section_size_type view_size, bool big_endian) | |
777 | { | |
778 | if (big_endian) | |
779 | this->do_fixed_endian_v4bx_write<true>(view, view_size); | |
780 | else | |
781 | this->do_fixed_endian_v4bx_write<false>(view, view_size); | |
782 | } | |
783 | ||
784 | private: | |
785 | // A template to implement do_write. | |
786 | template<bool big_endian> | |
787 | void inline | |
788 | do_fixed_endian_v4bx_write(unsigned char* view, section_size_type) | |
789 | { | |
790 | const Insn_template* insns = this->stub_template()->insns(); | |
791 | elfcpp::Swap<32, big_endian>::writeval(view, | |
792 | (insns[0].data() | |
793 | + (this->reg_ << 16))); | |
794 | view += insns[0].size(); | |
795 | elfcpp::Swap<32, big_endian>::writeval(view, | |
796 | (insns[1].data() + this->reg_)); | |
797 | view += insns[1].size(); | |
798 | elfcpp::Swap<32, big_endian>::writeval(view, | |
799 | (insns[2].data() + this->reg_)); | |
800 | } | |
801 | ||
802 | // A register index (r0-r14), which is associated with the stub. | |
803 | uint32_t reg_; | |
804 | }; | |
805 | ||
b569affa DK |
806 | // Stub factory class. |
807 | ||
808 | class Stub_factory | |
809 | { | |
810 | public: | |
811 | // Return the unique instance of this class. | |
812 | static const Stub_factory& | |
813 | get_instance() | |
814 | { | |
815 | static Stub_factory singleton; | |
816 | return singleton; | |
817 | } | |
818 | ||
819 | // Make a relocation stub. | |
820 | Reloc_stub* | |
821 | make_reloc_stub(Stub_type stub_type) const | |
822 | { | |
823 | gold_assert(stub_type >= arm_stub_reloc_first | |
824 | && stub_type <= arm_stub_reloc_last); | |
825 | return new Reloc_stub(this->stub_templates_[stub_type]); | |
826 | } | |
827 | ||
bb0d3eb0 DK |
828 | // Make a Cortex-A8 stub. |
829 | Cortex_a8_stub* | |
830 | make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx, | |
831 | Arm_address source, Arm_address destination, | |
832 | uint32_t original_insn) const | |
833 | { | |
834 | gold_assert(stub_type >= arm_stub_cortex_a8_first | |
835 | && stub_type <= arm_stub_cortex_a8_last); | |
836 | return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx, | |
837 | source, destination, original_insn); | |
838 | } | |
839 | ||
a2162063 ILT |
840 | // Make an ARM V4BX relocation stub. |
841 | // This method creates a stub from the arm_stub_v4_veneer_bx template only. | |
842 | Arm_v4bx_stub* | |
843 | make_arm_v4bx_stub(uint32_t reg) const | |
844 | { | |
845 | gold_assert(reg < 0xf); | |
846 | return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx], | |
847 | reg); | |
848 | } | |
849 | ||
b569affa DK |
850 | private: |
851 | // Constructor and destructor are protected since we only return a single | |
852 | // instance created in Stub_factory::get_instance(). | |
853 | ||
854 | Stub_factory(); | |
855 | ||
856 | // A Stub_factory may not be copied since it is a singleton. | |
857 | Stub_factory(const Stub_factory&); | |
858 | Stub_factory& operator=(Stub_factory&); | |
859 | ||
860 | // Stub templates. These are initialized in the constructor. | |
861 | const Stub_template* stub_templates_[arm_stub_type_last+1]; | |
862 | }; | |
863 | ||
56ee5e00 DK |
864 | // A class to hold stubs for the ARM target. |
865 | ||
866 | template<bool big_endian> | |
867 | class Stub_table : public Output_data | |
868 | { | |
869 | public: | |
2ea97941 | 870 | Stub_table(Arm_input_section<big_endian>* owner) |
d099120c DK |
871 | : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0), |
872 | reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf), | |
873 | prev_data_size_(0), prev_addralign_(1) | |
56ee5e00 DK |
874 | { } |
875 | ||
876 | ~Stub_table() | |
877 | { } | |
878 | ||
879 | // Owner of this stub table. | |
880 | Arm_input_section<big_endian>* | |
881 | owner() const | |
882 | { return this->owner_; } | |
883 | ||
884 | // Whether this stub table is empty. | |
885 | bool | |
886 | empty() const | |
a2162063 ILT |
887 | { |
888 | return (this->reloc_stubs_.empty() | |
889 | && this->cortex_a8_stubs_.empty() | |
890 | && this->arm_v4bx_stubs_.empty()); | |
891 | } | |
56ee5e00 DK |
892 | |
893 | // Return the current data size. | |
894 | off_t | |
895 | current_data_size() const | |
896 | { return this->current_data_size_for_child(); } | |
897 | ||
898 | // Add a STUB with using KEY. Caller is reponsible for avoid adding | |
899 | // if already a STUB with the same key has been added. | |
900 | void | |
2fb7225c DK |
901 | add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key) |
902 | { | |
903 | const Stub_template* stub_template = stub->stub_template(); | |
904 | gold_assert(stub_template->type() == key.stub_type()); | |
905 | this->reloc_stubs_[key] = stub; | |
d099120c DK |
906 | |
907 | // Assign stub offset early. We can do this because we never remove | |
908 | // reloc stubs and they are in the beginning of the stub table. | |
909 | uint64_t align = stub_template->alignment(); | |
910 | this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align); | |
911 | stub->set_offset(this->reloc_stubs_size_); | |
912 | this->reloc_stubs_size_ += stub_template->size(); | |
913 | this->reloc_stubs_addralign_ = | |
914 | std::max(this->reloc_stubs_addralign_, align); | |
2fb7225c DK |
915 | } |
916 | ||
917 | // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS. | |
918 | // Caller is reponsible for avoid adding if already a STUB with the same | |
919 | // address has been added. | |
920 | void | |
921 | add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub) | |
922 | { | |
923 | std::pair<Arm_address, Cortex_a8_stub*> value(address, stub); | |
924 | this->cortex_a8_stubs_.insert(value); | |
925 | } | |
926 | ||
a2162063 ILT |
927 | // Add an ARM V4BX relocation stub. A register index will be retrieved |
928 | // from the stub. | |
929 | void | |
930 | add_arm_v4bx_stub(Arm_v4bx_stub* stub) | |
931 | { | |
932 | gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL); | |
933 | this->arm_v4bx_stubs_[stub->reg()] = stub; | |
934 | } | |
935 | ||
2fb7225c DK |
936 | // Remove all Cortex-A8 stubs. |
937 | void | |
938 | remove_all_cortex_a8_stubs(); | |
56ee5e00 DK |
939 | |
940 | // Look up a relocation stub using KEY. Return NULL if there is none. | |
941 | Reloc_stub* | |
942 | find_reloc_stub(const Reloc_stub::Key& key) const | |
943 | { | |
944 | typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key); | |
945 | return (p != this->reloc_stubs_.end()) ? p->second : NULL; | |
946 | } | |
947 | ||
a2162063 ILT |
948 | // Look up an arm v4bx relocation stub using the register index. |
949 | // Return NULL if there is none. | |
950 | Arm_v4bx_stub* | |
951 | find_arm_v4bx_stub(const uint32_t reg) const | |
952 | { | |
953 | gold_assert(reg < 0xf); | |
954 | return this->arm_v4bx_stubs_[reg]; | |
955 | } | |
956 | ||
56ee5e00 DK |
957 | // Relocate stubs in this stub table. |
958 | void | |
959 | relocate_stubs(const Relocate_info<32, big_endian>*, | |
960 | Target_arm<big_endian>*, Output_section*, | |
961 | unsigned char*, Arm_address, section_size_type); | |
962 | ||
2fb7225c DK |
963 | // Update data size and alignment at the end of a relaxation pass. Return |
964 | // true if either data size or alignment is different from that of the | |
965 | // previous relaxation pass. | |
966 | bool | |
967 | update_data_size_and_addralign(); | |
968 | ||
969 | // Finalize stubs. Set the offsets of all stubs and mark input sections | |
970 | // needing the Cortex-A8 workaround. | |
971 | void | |
972 | finalize_stubs(); | |
973 | ||
974 | // Apply Cortex-A8 workaround to an address range. | |
975 | void | |
976 | apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*, | |
977 | unsigned char*, Arm_address, | |
978 | section_size_type); | |
979 | ||
56ee5e00 DK |
980 | protected: |
981 | // Write out section contents. | |
982 | void | |
983 | do_write(Output_file*); | |
984 | ||
985 | // Return the required alignment. | |
986 | uint64_t | |
987 | do_addralign() const | |
2fb7225c | 988 | { return this->prev_addralign_; } |
56ee5e00 DK |
989 | |
990 | // Reset address and file offset. | |
991 | void | |
2fb7225c DK |
992 | do_reset_address_and_file_offset() |
993 | { this->set_current_data_size_for_child(this->prev_data_size_); } | |
56ee5e00 | 994 | |
2fb7225c DK |
995 | // Set final data size. |
996 | void | |
997 | set_final_data_size() | |
998 | { this->set_data_size(this->current_data_size()); } | |
999 | ||
56ee5e00 | 1000 | private: |
2fb7225c DK |
1001 | // Relocate one stub. |
1002 | void | |
1003 | relocate_stub(Stub*, const Relocate_info<32, big_endian>*, | |
1004 | Target_arm<big_endian>*, Output_section*, | |
1005 | unsigned char*, Arm_address, section_size_type); | |
1006 | ||
1007 | // Unordered map of relocation stubs. | |
56ee5e00 DK |
1008 | typedef |
1009 | Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash, | |
1010 | Reloc_stub::Key::equal_to> | |
1011 | Reloc_stub_map; | |
1012 | ||
2fb7225c DK |
1013 | // List of Cortex-A8 stubs ordered by addresses of branches being |
1014 | // fixed up in output. | |
1015 | typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list; | |
a2162063 ILT |
1016 | // List of Arm V4BX relocation stubs ordered by associated registers. |
1017 | typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list; | |
2fb7225c | 1018 | |
56ee5e00 DK |
1019 | // Owner of this stub table. |
1020 | Arm_input_section<big_endian>* owner_; | |
56ee5e00 DK |
1021 | // The relocation stubs. |
1022 | Reloc_stub_map reloc_stubs_; | |
d099120c DK |
1023 | // Size of reloc stubs. |
1024 | off_t reloc_stubs_size_; | |
1025 | // Maximum address alignment of reloc stubs. | |
1026 | uint64_t reloc_stubs_addralign_; | |
2fb7225c DK |
1027 | // The cortex_a8_stubs. |
1028 | Cortex_a8_stub_list cortex_a8_stubs_; | |
a2162063 ILT |
1029 | // The Arm V4BX relocation stubs. |
1030 | Arm_v4bx_stub_list arm_v4bx_stubs_; | |
2fb7225c DK |
1031 | // data size of this in the previous pass. |
1032 | off_t prev_data_size_; | |
1033 | // address alignment of this in the previous pass. | |
1034 | uint64_t prev_addralign_; | |
56ee5e00 DK |
1035 | }; |
1036 | ||
af2cdeae DK |
1037 | // Arm_exidx_cantunwind class. This represents an EXIDX_CANTUNWIND entry |
1038 | // we add to the end of an EXIDX input section that goes into the output. | |
1039 | ||
1040 | class Arm_exidx_cantunwind : public Output_section_data | |
1041 | { | |
1042 | public: | |
1043 | Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx) | |
1044 | : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx) | |
1045 | { } | |
1046 | ||
1047 | // Return the object containing the section pointed by this. | |
1048 | Relobj* | |
1049 | relobj() const | |
1050 | { return this->relobj_; } | |
1051 | ||
1052 | // Return the section index of the section pointed by this. | |
1053 | unsigned int | |
1054 | shndx() const | |
1055 | { return this->shndx_; } | |
1056 | ||
1057 | protected: | |
1058 | void | |
1059 | do_write(Output_file* of) | |
1060 | { | |
1061 | if (parameters->target().is_big_endian()) | |
1062 | this->do_fixed_endian_write<true>(of); | |
1063 | else | |
1064 | this->do_fixed_endian_write<false>(of); | |
1065 | } | |
1066 | ||
aa98ff75 DK |
1067 | // Write to a map file. |
1068 | void | |
1069 | do_print_to_mapfile(Mapfile* mapfile) const | |
1070 | { mapfile->print_output_data(this, _("** ARM cantunwind")); } | |
1071 | ||
af2cdeae | 1072 | private: |
7296d933 | 1073 | // Implement do_write for a given endianness. |
af2cdeae DK |
1074 | template<bool big_endian> |
1075 | void inline | |
1076 | do_fixed_endian_write(Output_file*); | |
1077 | ||
1078 | // The object containing the section pointed by this. | |
1079 | Relobj* relobj_; | |
1080 | // The section index of the section pointed by this. | |
1081 | unsigned int shndx_; | |
1082 | }; | |
1083 | ||
1084 | // During EXIDX coverage fix-up, we compact an EXIDX section. The | |
1085 | // Offset map is used to map input section offset within the EXIDX section | |
1086 | // to the output offset from the start of this EXIDX section. | |
1087 | ||
1088 | typedef std::map<section_offset_type, section_offset_type> | |
1089 | Arm_exidx_section_offset_map; | |
1090 | ||
1091 | // Arm_exidx_merged_section class. This represents an EXIDX input section | |
1092 | // with some of its entries merged. | |
1093 | ||
1094 | class Arm_exidx_merged_section : public Output_relaxed_input_section | |
1095 | { | |
1096 | public: | |
1097 | // Constructor for Arm_exidx_merged_section. | |
1098 | // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. | |
1099 | // SECTION_OFFSET_MAP points to a section offset map describing how | |
1100 | // parts of the input section are mapped to output. DELETED_BYTES is | |
1101 | // the number of bytes deleted from the EXIDX input section. | |
1102 | Arm_exidx_merged_section( | |
1103 | const Arm_exidx_input_section& exidx_input_section, | |
1104 | const Arm_exidx_section_offset_map& section_offset_map, | |
1105 | uint32_t deleted_bytes); | |
1106 | ||
1107 | // Return the original EXIDX input section. | |
1108 | const Arm_exidx_input_section& | |
1109 | exidx_input_section() const | |
1110 | { return this->exidx_input_section_; } | |
1111 | ||
1112 | // Return the section offset map. | |
1113 | const Arm_exidx_section_offset_map& | |
1114 | section_offset_map() const | |
1115 | { return this->section_offset_map_; } | |
1116 | ||
1117 | protected: | |
1118 | // Write merged section into file OF. | |
1119 | void | |
1120 | do_write(Output_file* of); | |
1121 | ||
1122 | bool | |
1123 | do_output_offset(const Relobj*, unsigned int, section_offset_type, | |
1124 | section_offset_type*) const; | |
1125 | ||
1126 | private: | |
1127 | // Original EXIDX input section. | |
1128 | const Arm_exidx_input_section& exidx_input_section_; | |
1129 | // Section offset map. | |
1130 | const Arm_exidx_section_offset_map& section_offset_map_; | |
1131 | }; | |
1132 | ||
10ad9fe5 DK |
1133 | // A class to wrap an ordinary input section containing executable code. |
1134 | ||
1135 | template<bool big_endian> | |
1136 | class Arm_input_section : public Output_relaxed_input_section | |
1137 | { | |
1138 | public: | |
2ea97941 ILT |
1139 | Arm_input_section(Relobj* relobj, unsigned int shndx) |
1140 | : Output_relaxed_input_section(relobj, shndx, 1), | |
10ad9fe5 DK |
1141 | original_addralign_(1), original_size_(0), stub_table_(NULL) |
1142 | { } | |
1143 | ||
1144 | ~Arm_input_section() | |
1145 | { } | |
1146 | ||
1147 | // Initialize. | |
1148 | void | |
1149 | init(); | |
1150 | ||
1151 | // Whether this is a stub table owner. | |
1152 | bool | |
1153 | is_stub_table_owner() const | |
1154 | { return this->stub_table_ != NULL && this->stub_table_->owner() == this; } | |
1155 | ||
1156 | // Return the stub table. | |
1157 | Stub_table<big_endian>* | |
1158 | stub_table() const | |
1159 | { return this->stub_table_; } | |
1160 | ||
1161 | // Set the stub_table. | |
1162 | void | |
2ea97941 ILT |
1163 | set_stub_table(Stub_table<big_endian>* stub_table) |
1164 | { this->stub_table_ = stub_table; } | |
10ad9fe5 | 1165 | |
07f508a2 DK |
1166 | // Downcast a base pointer to an Arm_input_section pointer. This is |
1167 | // not type-safe but we only use Arm_input_section not the base class. | |
1168 | static Arm_input_section<big_endian>* | |
1169 | as_arm_input_section(Output_relaxed_input_section* poris) | |
1170 | { return static_cast<Arm_input_section<big_endian>*>(poris); } | |
1171 | ||
6625d24e DK |
1172 | // Return the original size of the section. |
1173 | uint32_t | |
1174 | original_size() const | |
1175 | { return this->original_size_; } | |
1176 | ||
10ad9fe5 DK |
1177 | protected: |
1178 | // Write data to output file. | |
1179 | void | |
1180 | do_write(Output_file*); | |
1181 | ||
1182 | // Return required alignment of this. | |
1183 | uint64_t | |
1184 | do_addralign() const | |
1185 | { | |
1186 | if (this->is_stub_table_owner()) | |
1187 | return std::max(this->stub_table_->addralign(), | |
6625d24e | 1188 | static_cast<uint64_t>(this->original_addralign_)); |
10ad9fe5 DK |
1189 | else |
1190 | return this->original_addralign_; | |
1191 | } | |
1192 | ||
1193 | // Finalize data size. | |
1194 | void | |
1195 | set_final_data_size(); | |
1196 | ||
1197 | // Reset address and file offset. | |
1198 | void | |
1199 | do_reset_address_and_file_offset(); | |
1200 | ||
1201 | // Output offset. | |
1202 | bool | |
2ea97941 ILT |
1203 | do_output_offset(const Relobj* object, unsigned int shndx, |
1204 | section_offset_type offset, | |
10ad9fe5 DK |
1205 | section_offset_type* poutput) const |
1206 | { | |
1207 | if ((object == this->relobj()) | |
2ea97941 ILT |
1208 | && (shndx == this->shndx()) |
1209 | && (offset >= 0) | |
0439c796 DK |
1210 | && (offset <= |
1211 | convert_types<section_offset_type, uint32_t>(this->original_size_))) | |
10ad9fe5 | 1212 | { |
2ea97941 | 1213 | *poutput = offset; |
10ad9fe5 DK |
1214 | return true; |
1215 | } | |
1216 | else | |
1217 | return false; | |
1218 | } | |
1219 | ||
1220 | private: | |
1221 | // Copying is not allowed. | |
1222 | Arm_input_section(const Arm_input_section&); | |
1223 | Arm_input_section& operator=(const Arm_input_section&); | |
1224 | ||
1225 | // Address alignment of the original input section. | |
6625d24e | 1226 | uint32_t original_addralign_; |
10ad9fe5 | 1227 | // Section size of the original input section. |
6625d24e | 1228 | uint32_t original_size_; |
10ad9fe5 DK |
1229 | // Stub table. |
1230 | Stub_table<big_endian>* stub_table_; | |
1231 | }; | |
1232 | ||
80d0d023 DK |
1233 | // Arm_exidx_fixup class. This is used to define a number of methods |
1234 | // and keep states for fixing up EXIDX coverage. | |
1235 | ||
1236 | class Arm_exidx_fixup | |
1237 | { | |
1238 | public: | |
85fdf906 AH |
1239 | Arm_exidx_fixup(Output_section* exidx_output_section, |
1240 | bool merge_exidx_entries = true) | |
80d0d023 DK |
1241 | : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE), |
1242 | last_inlined_entry_(0), last_input_section_(NULL), | |
85fdf906 AH |
1243 | section_offset_map_(NULL), first_output_text_section_(NULL), |
1244 | merge_exidx_entries_(merge_exidx_entries) | |
80d0d023 DK |
1245 | { } |
1246 | ||
1247 | ~Arm_exidx_fixup() | |
1248 | { delete this->section_offset_map_; } | |
1249 | ||
1250 | // Process an EXIDX section for entry merging. Return number of bytes to | |
1251 | // be deleted in output. If parts of the input EXIDX section are merged | |
1252 | // a heap allocated Arm_exidx_section_offset_map is store in the located | |
1253 | // PSECTION_OFFSET_MAP. The caller owns the map and is reponsible for | |
1254 | // releasing it. | |
1255 | template<bool big_endian> | |
1256 | uint32_t | |
1257 | process_exidx_section(const Arm_exidx_input_section* exidx_input_section, | |
1258 | Arm_exidx_section_offset_map** psection_offset_map); | |
1259 | ||
1260 | // Append an EXIDX_CANTUNWIND entry pointing at the end of the last | |
1261 | // input section, if there is not one already. | |
1262 | void | |
1263 | add_exidx_cantunwind_as_needed(); | |
1264 | ||
546c7457 DK |
1265 | // Return the output section for the text section which is linked to the |
1266 | // first exidx input in output. | |
1267 | Output_section* | |
1268 | first_output_text_section() const | |
1269 | { return this->first_output_text_section_; } | |
1270 | ||
80d0d023 DK |
1271 | private: |
1272 | // Copying is not allowed. | |
1273 | Arm_exidx_fixup(const Arm_exidx_fixup&); | |
1274 | Arm_exidx_fixup& operator=(const Arm_exidx_fixup&); | |
1275 | ||
1276 | // Type of EXIDX unwind entry. | |
1277 | enum Unwind_type | |
1278 | { | |
1279 | // No type. | |
1280 | UT_NONE, | |
1281 | // EXIDX_CANTUNWIND. | |
1282 | UT_EXIDX_CANTUNWIND, | |
1283 | // Inlined entry. | |
1284 | UT_INLINED_ENTRY, | |
1285 | // Normal entry. | |
1286 | UT_NORMAL_ENTRY, | |
1287 | }; | |
1288 | ||
1289 | // Process an EXIDX entry. We only care about the second word of the | |
1290 | // entry. Return true if the entry can be deleted. | |
1291 | bool | |
1292 | process_exidx_entry(uint32_t second_word); | |
1293 | ||
1294 | // Update the current section offset map during EXIDX section fix-up. | |
1295 | // If there is no map, create one. INPUT_OFFSET is the offset of a | |
1296 | // reference point, DELETED_BYTES is the number of deleted by in the | |
1297 | // section so far. If DELETE_ENTRY is true, the reference point and | |
1298 | // all offsets after the previous reference point are discarded. | |
1299 | void | |
1300 | update_offset_map(section_offset_type input_offset, | |
1301 | section_size_type deleted_bytes, bool delete_entry); | |
1302 | ||
1303 | // EXIDX output section. | |
1304 | Output_section* exidx_output_section_; | |
1305 | // Unwind type of the last EXIDX entry processed. | |
1306 | Unwind_type last_unwind_type_; | |
1307 | // Last seen inlined EXIDX entry. | |
1308 | uint32_t last_inlined_entry_; | |
1309 | // Last processed EXIDX input section. | |
2b328d4e | 1310 | const Arm_exidx_input_section* last_input_section_; |
80d0d023 DK |
1311 | // Section offset map created in process_exidx_section. |
1312 | Arm_exidx_section_offset_map* section_offset_map_; | |
546c7457 DK |
1313 | // Output section for the text section which is linked to the first exidx |
1314 | // input in output. | |
1315 | Output_section* first_output_text_section_; | |
85fdf906 AH |
1316 | |
1317 | bool merge_exidx_entries_; | |
80d0d023 DK |
1318 | }; |
1319 | ||
07f508a2 DK |
1320 | // Arm output section class. This is defined mainly to add a number of |
1321 | // stub generation methods. | |
1322 | ||
1323 | template<bool big_endian> | |
1324 | class Arm_output_section : public Output_section | |
1325 | { | |
1326 | public: | |
2b328d4e DK |
1327 | typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list; |
1328 | ||
2ea97941 ILT |
1329 | Arm_output_section(const char* name, elfcpp::Elf_Word type, |
1330 | elfcpp::Elf_Xword flags) | |
1331 | : Output_section(name, type, flags) | |
131687b4 DK |
1332 | { |
1333 | if (type == elfcpp::SHT_ARM_EXIDX) | |
1334 | this->set_always_keeps_input_sections(); | |
1335 | } | |
07f508a2 DK |
1336 | |
1337 | ~Arm_output_section() | |
1338 | { } | |
1339 | ||
1340 | // Group input sections for stub generation. | |
1341 | void | |
1342 | group_sections(section_size_type, bool, Target_arm<big_endian>*); | |
1343 | ||
1344 | // Downcast a base pointer to an Arm_output_section pointer. This is | |
1345 | // not type-safe but we only use Arm_output_section not the base class. | |
1346 | static Arm_output_section<big_endian>* | |
1347 | as_arm_output_section(Output_section* os) | |
1348 | { return static_cast<Arm_output_section<big_endian>*>(os); } | |
1349 | ||
2b328d4e DK |
1350 | // Append all input text sections in this into LIST. |
1351 | void | |
1352 | append_text_sections_to_list(Text_section_list* list); | |
1353 | ||
1354 | // Fix EXIDX coverage of this EXIDX output section. SORTED_TEXT_SECTION | |
1355 | // is a list of text input sections sorted in ascending order of their | |
1356 | // output addresses. | |
1357 | void | |
4a54abbb DK |
1358 | fix_exidx_coverage(Layout* layout, |
1359 | const Text_section_list& sorted_text_section, | |
85fdf906 AH |
1360 | Symbol_table* symtab, |
1361 | bool merge_exidx_entries); | |
2b328d4e | 1362 | |
131687b4 DK |
1363 | // Link an EXIDX section into its corresponding text section. |
1364 | void | |
1365 | set_exidx_section_link(); | |
1366 | ||
07f508a2 DK |
1367 | private: |
1368 | // For convenience. | |
1369 | typedef Output_section::Input_section Input_section; | |
1370 | typedef Output_section::Input_section_list Input_section_list; | |
1371 | ||
1372 | // Create a stub group. | |
1373 | void create_stub_group(Input_section_list::const_iterator, | |
1374 | Input_section_list::const_iterator, | |
1375 | Input_section_list::const_iterator, | |
1376 | Target_arm<big_endian>*, | |
1377 | std::vector<Output_relaxed_input_section*>*); | |
1378 | }; | |
1379 | ||
993d07c1 DK |
1380 | // Arm_exidx_input_section class. This represents an EXIDX input section. |
1381 | ||
1382 | class Arm_exidx_input_section | |
1383 | { | |
1384 | public: | |
1385 | static const section_offset_type invalid_offset = | |
1386 | static_cast<section_offset_type>(-1); | |
1387 | ||
1388 | Arm_exidx_input_section(Relobj* relobj, unsigned int shndx, | |
1389 | unsigned int link, uint32_t size, uint32_t addralign) | |
1390 | : relobj_(relobj), shndx_(shndx), link_(link), size_(size), | |
131687b4 | 1391 | addralign_(addralign), has_errors_(false) |
993d07c1 DK |
1392 | { } |
1393 | ||
1394 | ~Arm_exidx_input_section() | |
1395 | { } | |
1396 | ||
1397 | // Accessors: This is a read-only class. | |
1398 | ||
1399 | // Return the object containing this EXIDX input section. | |
1400 | Relobj* | |
1401 | relobj() const | |
1402 | { return this->relobj_; } | |
1403 | ||
1404 | // Return the section index of this EXIDX input section. | |
1405 | unsigned int | |
1406 | shndx() const | |
1407 | { return this->shndx_; } | |
1408 | ||
1409 | // Return the section index of linked text section in the same object. | |
1410 | unsigned int | |
1411 | link() const | |
1412 | { return this->link_; } | |
1413 | ||
1414 | // Return size of the EXIDX input section. | |
1415 | uint32_t | |
1416 | size() const | |
1417 | { return this->size_; } | |
1418 | ||
1419 | // Reutnr address alignment of EXIDX input section. | |
1420 | uint32_t | |
1421 | addralign() const | |
1422 | { return this->addralign_; } | |
1423 | ||
131687b4 DK |
1424 | // Whether there are any errors in the EXIDX input section. |
1425 | bool | |
1426 | has_errors() const | |
1427 | { return this->has_errors_; } | |
1428 | ||
1429 | // Set has-errors flag. | |
1430 | void | |
1431 | set_has_errors() | |
1432 | { this->has_errors_ = true; } | |
1433 | ||
993d07c1 DK |
1434 | private: |
1435 | // Object containing this. | |
1436 | Relobj* relobj_; | |
1437 | // Section index of this. | |
1438 | unsigned int shndx_; | |
1439 | // text section linked to this in the same object. | |
1440 | unsigned int link_; | |
1441 | // Size of this. For ARM 32-bit is sufficient. | |
1442 | uint32_t size_; | |
1443 | // Address alignment of this. For ARM 32-bit is sufficient. | |
1444 | uint32_t addralign_; | |
131687b4 DK |
1445 | // Whether this has any errors. |
1446 | bool has_errors_; | |
993d07c1 DK |
1447 | }; |
1448 | ||
8ffa3667 DK |
1449 | // Arm_relobj class. |
1450 | ||
1451 | template<bool big_endian> | |
1452 | class Arm_relobj : public Sized_relobj<32, big_endian> | |
1453 | { | |
1454 | public: | |
1455 | static const Arm_address invalid_address = static_cast<Arm_address>(-1); | |
1456 | ||
2ea97941 | 1457 | Arm_relobj(const std::string& name, Input_file* input_file, off_t offset, |
8ffa3667 | 1458 | const typename elfcpp::Ehdr<32, big_endian>& ehdr) |
2ea97941 | 1459 | : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr), |
a0351a69 | 1460 | stub_tables_(), local_symbol_is_thumb_function_(), |
20138696 | 1461 | attributes_section_data_(NULL), mapping_symbols_info_(), |
e7eca48c | 1462 | section_has_cortex_a8_workaround_(NULL), exidx_section_map_(), |
7296d933 DK |
1463 | output_local_symbol_count_needs_update_(false), |
1464 | merge_flags_and_attributes_(true) | |
8ffa3667 DK |
1465 | { } |
1466 | ||
1467 | ~Arm_relobj() | |
a0351a69 | 1468 | { delete this->attributes_section_data_; } |
8ffa3667 DK |
1469 | |
1470 | // Return the stub table of the SHNDX-th section if there is one. | |
1471 | Stub_table<big_endian>* | |
2ea97941 | 1472 | stub_table(unsigned int shndx) const |
8ffa3667 | 1473 | { |
2ea97941 ILT |
1474 | gold_assert(shndx < this->stub_tables_.size()); |
1475 | return this->stub_tables_[shndx]; | |
8ffa3667 DK |
1476 | } |
1477 | ||
1478 | // Set STUB_TABLE to be the stub_table of the SHNDX-th section. | |
1479 | void | |
2ea97941 | 1480 | set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table) |
8ffa3667 | 1481 | { |
2ea97941 ILT |
1482 | gold_assert(shndx < this->stub_tables_.size()); |
1483 | this->stub_tables_[shndx] = stub_table; | |
8ffa3667 DK |
1484 | } |
1485 | ||
1486 | // Whether a local symbol is a THUMB function. R_SYM is the symbol table | |
1487 | // index. This is only valid after do_count_local_symbol is called. | |
1488 | bool | |
1489 | local_symbol_is_thumb_function(unsigned int r_sym) const | |
1490 | { | |
1491 | gold_assert(r_sym < this->local_symbol_is_thumb_function_.size()); | |
1492 | return this->local_symbol_is_thumb_function_[r_sym]; | |
1493 | } | |
1494 | ||
1495 | // Scan all relocation sections for stub generation. | |
1496 | void | |
1497 | scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*, | |
1498 | const Layout*); | |
1499 | ||
1500 | // Convert regular input section with index SHNDX to a relaxed section. | |
1501 | void | |
2ea97941 | 1502 | convert_input_section_to_relaxed_section(unsigned shndx) |
8ffa3667 DK |
1503 | { |
1504 | // The stubs have relocations and we need to process them after writing | |
1505 | // out the stubs. So relocation now must follow section write. | |
2b328d4e | 1506 | this->set_section_offset(shndx, -1ULL); |
8ffa3667 DK |
1507 | this->set_relocs_must_follow_section_writes(); |
1508 | } | |
1509 | ||
1510 | // Downcast a base pointer to an Arm_relobj pointer. This is | |
1511 | // not type-safe but we only use Arm_relobj not the base class. | |
1512 | static Arm_relobj<big_endian>* | |
2ea97941 ILT |
1513 | as_arm_relobj(Relobj* relobj) |
1514 | { return static_cast<Arm_relobj<big_endian>*>(relobj); } | |
8ffa3667 | 1515 | |
d5b40221 DK |
1516 | // Processor-specific flags in ELF file header. This is valid only after |
1517 | // reading symbols. | |
1518 | elfcpp::Elf_Word | |
1519 | processor_specific_flags() const | |
1520 | { return this->processor_specific_flags_; } | |
1521 | ||
a0351a69 DK |
1522 | // Attribute section data This is the contents of the .ARM.attribute section |
1523 | // if there is one. | |
1524 | const Attributes_section_data* | |
1525 | attributes_section_data() const | |
1526 | { return this->attributes_section_data_; } | |
1527 | ||
20138696 DK |
1528 | // Mapping symbol location. |
1529 | typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position; | |
1530 | ||
1531 | // Functor for STL container. | |
1532 | struct Mapping_symbol_position_less | |
1533 | { | |
1534 | bool | |
1535 | operator()(const Mapping_symbol_position& p1, | |
1536 | const Mapping_symbol_position& p2) const | |
1537 | { | |
1538 | return (p1.first < p2.first | |
1539 | || (p1.first == p2.first && p1.second < p2.second)); | |
1540 | } | |
1541 | }; | |
1542 | ||
1543 | // We only care about the first character of a mapping symbol, so | |
1544 | // we only store that instead of the whole symbol name. | |
1545 | typedef std::map<Mapping_symbol_position, char, | |
1546 | Mapping_symbol_position_less> Mapping_symbols_info; | |
1547 | ||
2fb7225c DK |
1548 | // Whether a section contains any Cortex-A8 workaround. |
1549 | bool | |
1550 | section_has_cortex_a8_workaround(unsigned int shndx) const | |
1551 | { | |
1552 | return (this->section_has_cortex_a8_workaround_ != NULL | |
1553 | && (*this->section_has_cortex_a8_workaround_)[shndx]); | |
1554 | } | |
1555 | ||
1556 | // Mark a section that has Cortex-A8 workaround. | |
1557 | void | |
1558 | mark_section_for_cortex_a8_workaround(unsigned int shndx) | |
1559 | { | |
1560 | if (this->section_has_cortex_a8_workaround_ == NULL) | |
1561 | this->section_has_cortex_a8_workaround_ = | |
1562 | new std::vector<bool>(this->shnum(), false); | |
1563 | (*this->section_has_cortex_a8_workaround_)[shndx] = true; | |
1564 | } | |
1565 | ||
993d07c1 DK |
1566 | // Return the EXIDX section of an text section with index SHNDX or NULL |
1567 | // if the text section has no associated EXIDX section. | |
1568 | const Arm_exidx_input_section* | |
1569 | exidx_input_section_by_link(unsigned int shndx) const | |
1570 | { | |
1571 | Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); | |
1572 | return ((p != this->exidx_section_map_.end() | |
1573 | && p->second->link() == shndx) | |
1574 | ? p->second | |
1575 | : NULL); | |
1576 | } | |
1577 | ||
1578 | // Return the EXIDX section with index SHNDX or NULL if there is none. | |
1579 | const Arm_exidx_input_section* | |
1580 | exidx_input_section_by_shndx(unsigned shndx) const | |
1581 | { | |
1582 | Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); | |
1583 | return ((p != this->exidx_section_map_.end() | |
1584 | && p->second->shndx() == shndx) | |
1585 | ? p->second | |
1586 | : NULL); | |
1587 | } | |
1588 | ||
e7eca48c DK |
1589 | // Whether output local symbol count needs updating. |
1590 | bool | |
1591 | output_local_symbol_count_needs_update() const | |
1592 | { return this->output_local_symbol_count_needs_update_; } | |
1593 | ||
1594 | // Set output_local_symbol_count_needs_update flag to be true. | |
1595 | void | |
1596 | set_output_local_symbol_count_needs_update() | |
1597 | { this->output_local_symbol_count_needs_update_ = true; } | |
1598 | ||
1599 | // Update output local symbol count at the end of relaxation. | |
1600 | void | |
1601 | update_output_local_symbol_count(); | |
1602 | ||
7296d933 DK |
1603 | // Whether we want to merge processor-specific flags and attributes. |
1604 | bool | |
1605 | merge_flags_and_attributes() const | |
1606 | { return this->merge_flags_and_attributes_; } | |
1607 | ||
131687b4 DK |
1608 | // Export list of EXIDX section indices. |
1609 | void | |
1610 | get_exidx_shndx_list(std::vector<unsigned int>* list) const | |
1611 | { | |
1612 | list->clear(); | |
1613 | for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin(); | |
1614 | p != this->exidx_section_map_.end(); | |
1615 | ++p) | |
1616 | { | |
1617 | if (p->second->shndx() == p->first) | |
1618 | list->push_back(p->first); | |
1619 | } | |
1620 | // Sort list to make result independent of implementation of map. | |
1621 | std::sort(list->begin(), list->end()); | |
1622 | } | |
1623 | ||
8ffa3667 DK |
1624 | protected: |
1625 | // Post constructor setup. | |
1626 | void | |
1627 | do_setup() | |
1628 | { | |
1629 | // Call parent's setup method. | |
1630 | Sized_relobj<32, big_endian>::do_setup(); | |
1631 | ||
1632 | // Initialize look-up tables. | |
1633 | Stub_table_list empty_stub_table_list(this->shnum(), NULL); | |
1634 | this->stub_tables_.swap(empty_stub_table_list); | |
1635 | } | |
1636 | ||
1637 | // Count the local symbols. | |
1638 | void | |
1639 | do_count_local_symbols(Stringpool_template<char>*, | |
1640 | Stringpool_template<char>*); | |
1641 | ||
1642 | void | |
43d12afe | 1643 | do_relocate_sections(const Symbol_table* symtab, const Layout* layout, |
aa98ff75 | 1644 | const unsigned char* pshdrs, Output_file* of, |
8ffa3667 DK |
1645 | typename Sized_relobj<32, big_endian>::Views* pivews); |
1646 | ||
d5b40221 DK |
1647 | // Read the symbol information. |
1648 | void | |
1649 | do_read_symbols(Read_symbols_data* sd); | |
1650 | ||
99e5bff2 DK |
1651 | // Process relocs for garbage collection. |
1652 | void | |
1653 | do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*); | |
1654 | ||
8ffa3667 | 1655 | private: |
44272192 DK |
1656 | |
1657 | // Whether a section needs to be scanned for relocation stubs. | |
1658 | bool | |
1659 | section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&, | |
1660 | const Relobj::Output_sections&, | |
ca09d69a | 1661 | const Symbol_table*, const unsigned char*); |
44272192 | 1662 | |
cf846138 DK |
1663 | // Whether a section is a scannable text section. |
1664 | bool | |
1665 | section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int, | |
ca09d69a | 1666 | const Output_section*, const Symbol_table*); |
cf846138 | 1667 | |
44272192 DK |
1668 | // Whether a section needs to be scanned for the Cortex-A8 erratum. |
1669 | bool | |
1670 | section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&, | |
1671 | unsigned int, Output_section*, | |
ca09d69a | 1672 | const Symbol_table*); |
44272192 DK |
1673 | |
1674 | // Scan a section for the Cortex-A8 erratum. | |
1675 | void | |
1676 | scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&, | |
1677 | unsigned int, Output_section*, | |
1678 | Target_arm<big_endian>*); | |
1679 | ||
c8761b9a DK |
1680 | // Find the linked text section of an EXIDX section by looking at the |
1681 | // first reloction of the EXIDX section. PSHDR points to the section | |
1682 | // headers of a relocation section and PSYMS points to the local symbols. | |
1683 | // PSHNDX points to a location storing the text section index if found. | |
1684 | // Return whether we can find the linked section. | |
1685 | bool | |
1686 | find_linked_text_section(const unsigned char* pshdr, | |
1687 | const unsigned char* psyms, unsigned int* pshndx); | |
1688 | ||
1689 | // | |
993d07c1 | 1690 | // Make a new Arm_exidx_input_section object for EXIDX section with |
c8761b9a DK |
1691 | // index SHNDX and section header SHDR. TEXT_SHNDX is the section |
1692 | // index of the linked text section. | |
993d07c1 DK |
1693 | void |
1694 | make_exidx_input_section(unsigned int shndx, | |
c8761b9a | 1695 | const elfcpp::Shdr<32, big_endian>& shdr, |
131687b4 DK |
1696 | unsigned int text_shndx, |
1697 | const elfcpp::Shdr<32, big_endian>& text_shdr); | |
993d07c1 | 1698 | |
cb1be87e DK |
1699 | // Return the output address of either a plain input section or a |
1700 | // relaxed input section. SHNDX is the section index. | |
1701 | Arm_address | |
1702 | simple_input_section_output_address(unsigned int, Output_section*); | |
1703 | ||
8ffa3667 | 1704 | typedef std::vector<Stub_table<big_endian>*> Stub_table_list; |
993d07c1 DK |
1705 | typedef Unordered_map<unsigned int, const Arm_exidx_input_section*> |
1706 | Exidx_section_map; | |
1707 | ||
1708 | // List of stub tables. | |
8ffa3667 DK |
1709 | Stub_table_list stub_tables_; |
1710 | // Bit vector to tell if a local symbol is a thumb function or not. | |
1711 | // This is only valid after do_count_local_symbol is called. | |
1712 | std::vector<bool> local_symbol_is_thumb_function_; | |
d5b40221 DK |
1713 | // processor-specific flags in ELF file header. |
1714 | elfcpp::Elf_Word processor_specific_flags_; | |
a0351a69 DK |
1715 | // Object attributes if there is an .ARM.attributes section or NULL. |
1716 | Attributes_section_data* attributes_section_data_; | |
20138696 DK |
1717 | // Mapping symbols information. |
1718 | Mapping_symbols_info mapping_symbols_info_; | |
2fb7225c DK |
1719 | // Bitmap to indicate sections with Cortex-A8 workaround or NULL. |
1720 | std::vector<bool>* section_has_cortex_a8_workaround_; | |
993d07c1 DK |
1721 | // Map a text section to its associated .ARM.exidx section, if there is one. |
1722 | Exidx_section_map exidx_section_map_; | |
e7eca48c DK |
1723 | // Whether output local symbol count needs updating. |
1724 | bool output_local_symbol_count_needs_update_; | |
7296d933 DK |
1725 | // Whether we merge processor flags and attributes of this object to |
1726 | // output. | |
1727 | bool merge_flags_and_attributes_; | |
d5b40221 DK |
1728 | }; |
1729 | ||
1730 | // Arm_dynobj class. | |
1731 | ||
1732 | template<bool big_endian> | |
1733 | class Arm_dynobj : public Sized_dynobj<32, big_endian> | |
1734 | { | |
1735 | public: | |
2ea97941 | 1736 | Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset, |
d5b40221 | 1737 | const elfcpp::Ehdr<32, big_endian>& ehdr) |
2ea97941 ILT |
1738 | : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr), |
1739 | processor_specific_flags_(0), attributes_section_data_(NULL) | |
d5b40221 DK |
1740 | { } |
1741 | ||
1742 | ~Arm_dynobj() | |
a0351a69 | 1743 | { delete this->attributes_section_data_; } |
d5b40221 DK |
1744 | |
1745 | // Downcast a base pointer to an Arm_relobj pointer. This is | |
1746 | // not type-safe but we only use Arm_relobj not the base class. | |
1747 | static Arm_dynobj<big_endian>* | |
1748 | as_arm_dynobj(Dynobj* dynobj) | |
1749 | { return static_cast<Arm_dynobj<big_endian>*>(dynobj); } | |
1750 | ||
1751 | // Processor-specific flags in ELF file header. This is valid only after | |
1752 | // reading symbols. | |
1753 | elfcpp::Elf_Word | |
1754 | processor_specific_flags() const | |
1755 | { return this->processor_specific_flags_; } | |
1756 | ||
a0351a69 DK |
1757 | // Attributes section data. |
1758 | const Attributes_section_data* | |
1759 | attributes_section_data() const | |
1760 | { return this->attributes_section_data_; } | |
1761 | ||
d5b40221 DK |
1762 | protected: |
1763 | // Read the symbol information. | |
1764 | void | |
1765 | do_read_symbols(Read_symbols_data* sd); | |
1766 | ||
1767 | private: | |
1768 | // processor-specific flags in ELF file header. | |
1769 | elfcpp::Elf_Word processor_specific_flags_; | |
a0351a69 DK |
1770 | // Object attributes if there is an .ARM.attributes section or NULL. |
1771 | Attributes_section_data* attributes_section_data_; | |
8ffa3667 DK |
1772 | }; |
1773 | ||
e9bbb538 DK |
1774 | // Functor to read reloc addends during stub generation. |
1775 | ||
1776 | template<int sh_type, bool big_endian> | |
1777 | struct Stub_addend_reader | |
1778 | { | |
1779 | // Return the addend for a relocation of a particular type. Depending | |
1780 | // on whether this is a REL or RELA relocation, read the addend from a | |
1781 | // view or from a Reloc object. | |
1782 | elfcpp::Elf_types<32>::Elf_Swxword | |
1783 | operator()( | |
1784 | unsigned int /* r_type */, | |
1785 | const unsigned char* /* view */, | |
1786 | const typename Reloc_types<sh_type, | |
ebd95253 | 1787 | 32, big_endian>::Reloc& /* reloc */) const; |
e9bbb538 DK |
1788 | }; |
1789 | ||
1790 | // Specialized Stub_addend_reader for SHT_REL type relocation sections. | |
1791 | ||
1792 | template<bool big_endian> | |
1793 | struct Stub_addend_reader<elfcpp::SHT_REL, big_endian> | |
1794 | { | |
1795 | elfcpp::Elf_types<32>::Elf_Swxword | |
1796 | operator()( | |
1797 | unsigned int, | |
1798 | const unsigned char*, | |
1799 | const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const; | |
1800 | }; | |
1801 | ||
1802 | // Specialized Stub_addend_reader for RELA type relocation sections. | |
1803 | // We currently do not handle RELA type relocation sections but it is trivial | |
1804 | // to implement the addend reader. This is provided for completeness and to | |
1805 | // make it easier to add support for RELA relocation sections in the future. | |
1806 | ||
1807 | template<bool big_endian> | |
1808 | struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian> | |
1809 | { | |
1810 | elfcpp::Elf_types<32>::Elf_Swxword | |
1811 | operator()( | |
1812 | unsigned int, | |
1813 | const unsigned char*, | |
1814 | const typename Reloc_types<elfcpp::SHT_RELA, 32, | |
ebd95253 DK |
1815 | big_endian>::Reloc& reloc) const |
1816 | { return reloc.get_r_addend(); } | |
e9bbb538 DK |
1817 | }; |
1818 | ||
a120bc7f DK |
1819 | // Cortex_a8_reloc class. We keep record of relocation that may need |
1820 | // the Cortex-A8 erratum workaround. | |
1821 | ||
1822 | class Cortex_a8_reloc | |
1823 | { | |
1824 | public: | |
1825 | Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type, | |
1826 | Arm_address destination) | |
1827 | : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination) | |
1828 | { } | |
1829 | ||
1830 | ~Cortex_a8_reloc() | |
1831 | { } | |
1832 | ||
1833 | // Accessors: This is a read-only class. | |
1834 | ||
1835 | // Return the relocation stub associated with this relocation if there is | |
1836 | // one. | |
1837 | const Reloc_stub* | |
1838 | reloc_stub() const | |
1839 | { return this->reloc_stub_; } | |
1840 | ||
1841 | // Return the relocation type. | |
1842 | unsigned int | |
1843 | r_type() const | |
1844 | { return this->r_type_; } | |
1845 | ||
1846 | // Return the destination address of the relocation. LSB stores the THUMB | |
1847 | // bit. | |
1848 | Arm_address | |
1849 | destination() const | |
1850 | { return this->destination_; } | |
1851 | ||
1852 | private: | |
1853 | // Associated relocation stub if there is one, or NULL. | |
1854 | const Reloc_stub* reloc_stub_; | |
1855 | // Relocation type. | |
1856 | unsigned int r_type_; | |
1857 | // Destination address of this relocation. LSB is used to distinguish | |
1858 | // ARM/THUMB mode. | |
1859 | Arm_address destination_; | |
1860 | }; | |
1861 | ||
4a54abbb DK |
1862 | // Arm_output_data_got class. We derive this from Output_data_got to add |
1863 | // extra methods to handle TLS relocations in a static link. | |
1864 | ||
1865 | template<bool big_endian> | |
1866 | class Arm_output_data_got : public Output_data_got<32, big_endian> | |
1867 | { | |
1868 | public: | |
1869 | Arm_output_data_got(Symbol_table* symtab, Layout* layout) | |
1870 | : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout) | |
1871 | { } | |
1872 | ||
1873 | // Add a static entry for the GOT entry at OFFSET. GSYM is a global | |
1874 | // symbol and R_TYPE is the code of a dynamic relocation that needs to be | |
1875 | // applied in a static link. | |
1876 | void | |
1877 | add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) | |
1878 | { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } | |
1879 | ||
1880 | // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object | |
1881 | // defining a local symbol with INDEX. R_TYPE is the code of a dynamic | |
1882 | // relocation that needs to be applied in a static link. | |
1883 | void | |
1884 | add_static_reloc(unsigned int got_offset, unsigned int r_type, | |
1885 | Sized_relobj<32, big_endian>* relobj, unsigned int index) | |
1886 | { | |
1887 | this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, | |
1888 | index)); | |
1889 | } | |
1890 | ||
1891 | // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. | |
1892 | // The first one is initialized to be 1, which is the module index for | |
1893 | // the main executable and the second one 0. A reloc of the type | |
1894 | // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will | |
1895 | // be applied by gold. GSYM is a global symbol. | |
1896 | void | |
1897 | add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym); | |
1898 | ||
1899 | // Same as the above but for a local symbol in OBJECT with INDEX. | |
1900 | void | |
1901 | add_tls_gd32_with_static_reloc(unsigned int got_type, | |
1902 | Sized_relobj<32, big_endian>* object, | |
1903 | unsigned int index); | |
1904 | ||
1905 | protected: | |
1906 | // Write out the GOT table. | |
1907 | void | |
1908 | do_write(Output_file*); | |
1909 | ||
1910 | private: | |
1911 | // This class represent dynamic relocations that need to be applied by | |
1912 | // gold because we are using TLS relocations in a static link. | |
1913 | class Static_reloc | |
1914 | { | |
1915 | public: | |
1916 | Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) | |
1917 | : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) | |
1918 | { this->u_.global.symbol = gsym; } | |
1919 | ||
1920 | Static_reloc(unsigned int got_offset, unsigned int r_type, | |
1921 | Sized_relobj<32, big_endian>* relobj, unsigned int index) | |
1922 | : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) | |
1923 | { | |
1924 | this->u_.local.relobj = relobj; | |
1925 | this->u_.local.index = index; | |
1926 | } | |
1927 | ||
1928 | // Return the GOT offset. | |
1929 | unsigned int | |
1930 | got_offset() const | |
1931 | { return this->got_offset_; } | |
1932 | ||
1933 | // Relocation type. | |
1934 | unsigned int | |
1935 | r_type() const | |
1936 | { return this->r_type_; } | |
1937 | ||
1938 | // Whether the symbol is global or not. | |
1939 | bool | |
1940 | symbol_is_global() const | |
1941 | { return this->symbol_is_global_; } | |
1942 | ||
1943 | // For a relocation against a global symbol, the global symbol. | |
1944 | Symbol* | |
1945 | symbol() const | |
1946 | { | |
1947 | gold_assert(this->symbol_is_global_); | |
1948 | return this->u_.global.symbol; | |
1949 | } | |
1950 | ||
1951 | // For a relocation against a local symbol, the defining object. | |
1952 | Sized_relobj<32, big_endian>* | |
1953 | relobj() const | |
1954 | { | |
1955 | gold_assert(!this->symbol_is_global_); | |
1956 | return this->u_.local.relobj; | |
1957 | } | |
1958 | ||
1959 | // For a relocation against a local symbol, the local symbol index. | |
1960 | unsigned int | |
1961 | index() const | |
1962 | { | |
1963 | gold_assert(!this->symbol_is_global_); | |
1964 | return this->u_.local.index; | |
1965 | } | |
1966 | ||
1967 | private: | |
1968 | // GOT offset of the entry to which this relocation is applied. | |
1969 | unsigned int got_offset_; | |
1970 | // Type of relocation. | |
1971 | unsigned int r_type_; | |
1972 | // Whether this relocation is against a global symbol. | |
1973 | bool symbol_is_global_; | |
1974 | // A global or local symbol. | |
1975 | union | |
1976 | { | |
1977 | struct | |
1978 | { | |
1979 | // For a global symbol, the symbol itself. | |
1980 | Symbol* symbol; | |
1981 | } global; | |
1982 | struct | |
1983 | { | |
1984 | // For a local symbol, the object defining object. | |
1985 | Sized_relobj<32, big_endian>* relobj; | |
1986 | // For a local symbol, the symbol index. | |
1987 | unsigned int index; | |
1988 | } local; | |
1989 | } u_; | |
1990 | }; | |
1991 | ||
1992 | // Symbol table of the output object. | |
1993 | Symbol_table* symbol_table_; | |
1994 | // Layout of the output object. | |
1995 | Layout* layout_; | |
1996 | // Static relocs to be applied to the GOT. | |
1997 | std::vector<Static_reloc> static_relocs_; | |
1998 | }; | |
1999 | ||
5c388529 DK |
2000 | // The ARM target has many relocation types with odd-sizes or incontigious |
2001 | // bits. The default handling of relocatable relocation cannot process these | |
2002 | // relocations. So we have to extend the default code. | |
2003 | ||
2004 | template<bool big_endian, int sh_type, typename Classify_reloc> | |
2005 | class Arm_scan_relocatable_relocs : | |
2006 | public Default_scan_relocatable_relocs<sh_type, Classify_reloc> | |
2007 | { | |
2008 | public: | |
2009 | // Return the strategy to use for a local symbol which is a section | |
2010 | // symbol, given the relocation type. | |
2011 | inline Relocatable_relocs::Reloc_strategy | |
2012 | local_section_strategy(unsigned int r_type, Relobj*) | |
2013 | { | |
2014 | if (sh_type == elfcpp::SHT_RELA) | |
2015 | return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; | |
2016 | else | |
2017 | { | |
2018 | if (r_type == elfcpp::R_ARM_TARGET1 | |
2019 | || r_type == elfcpp::R_ARM_TARGET2) | |
2020 | { | |
2021 | const Target_arm<big_endian>* arm_target = | |
2022 | Target_arm<big_endian>::default_target(); | |
2023 | r_type = arm_target->get_real_reloc_type(r_type); | |
2024 | } | |
2025 | ||
2026 | switch(r_type) | |
2027 | { | |
2028 | // Relocations that write nothing. These exclude R_ARM_TARGET1 | |
2029 | // and R_ARM_TARGET2. | |
2030 | case elfcpp::R_ARM_NONE: | |
2031 | case elfcpp::R_ARM_V4BX: | |
2032 | case elfcpp::R_ARM_TLS_GOTDESC: | |
2033 | case elfcpp::R_ARM_TLS_CALL: | |
2034 | case elfcpp::R_ARM_TLS_DESCSEQ: | |
2035 | case elfcpp::R_ARM_THM_TLS_CALL: | |
2036 | case elfcpp::R_ARM_GOTRELAX: | |
2037 | case elfcpp::R_ARM_GNU_VTENTRY: | |
2038 | case elfcpp::R_ARM_GNU_VTINHERIT: | |
2039 | case elfcpp::R_ARM_THM_TLS_DESCSEQ16: | |
2040 | case elfcpp::R_ARM_THM_TLS_DESCSEQ32: | |
2041 | return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0; | |
2042 | // These should have been converted to something else above. | |
2043 | case elfcpp::R_ARM_TARGET1: | |
2044 | case elfcpp::R_ARM_TARGET2: | |
2045 | gold_unreachable(); | |
2046 | // Relocations that write full 32 bits. | |
2047 | case elfcpp::R_ARM_ABS32: | |
2048 | case elfcpp::R_ARM_REL32: | |
2049 | case elfcpp::R_ARM_SBREL32: | |
2050 | case elfcpp::R_ARM_GOTOFF32: | |
2051 | case elfcpp::R_ARM_BASE_PREL: | |
2052 | case elfcpp::R_ARM_GOT_BREL: | |
2053 | case elfcpp::R_ARM_BASE_ABS: | |
2054 | case elfcpp::R_ARM_ABS32_NOI: | |
2055 | case elfcpp::R_ARM_REL32_NOI: | |
2056 | case elfcpp::R_ARM_PLT32_ABS: | |
2057 | case elfcpp::R_ARM_GOT_ABS: | |
2058 | case elfcpp::R_ARM_GOT_PREL: | |
2059 | case elfcpp::R_ARM_TLS_GD32: | |
2060 | case elfcpp::R_ARM_TLS_LDM32: | |
2061 | case elfcpp::R_ARM_TLS_LDO32: | |
2062 | case elfcpp::R_ARM_TLS_IE32: | |
2063 | case elfcpp::R_ARM_TLS_LE32: | |
2064 | return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4; | |
2065 | default: | |
2066 | // For all other static relocations, return RELOC_SPECIAL. | |
2067 | return Relocatable_relocs::RELOC_SPECIAL; | |
2068 | } | |
2069 | } | |
2070 | } | |
2071 | }; | |
2072 | ||
c121c671 DK |
2073 | // Utilities for manipulating integers of up to 32-bits |
2074 | ||
2075 | namespace utils | |
2076 | { | |
2077 | // Sign extend an n-bit unsigned integer stored in an uint32_t into | |
2078 | // an int32_t. NO_BITS must be between 1 to 32. | |
2079 | template<int no_bits> | |
2080 | static inline int32_t | |
2081 | sign_extend(uint32_t bits) | |
2082 | { | |
96d49306 | 2083 | gold_assert(no_bits >= 0 && no_bits <= 32); |
c121c671 DK |
2084 | if (no_bits == 32) |
2085 | return static_cast<int32_t>(bits); | |
2086 | uint32_t mask = (~((uint32_t) 0)) >> (32 - no_bits); | |
2087 | bits &= mask; | |
2088 | uint32_t top_bit = 1U << (no_bits - 1); | |
2089 | int32_t as_signed = static_cast<int32_t>(bits); | |
2090 | return (bits & top_bit) ? as_signed + (-top_bit * 2) : as_signed; | |
2091 | } | |
2092 | ||
2093 | // Detects overflow of an NO_BITS integer stored in a uint32_t. | |
2094 | template<int no_bits> | |
2095 | static inline bool | |
2096 | has_overflow(uint32_t bits) | |
2097 | { | |
96d49306 | 2098 | gold_assert(no_bits >= 0 && no_bits <= 32); |
c121c671 DK |
2099 | if (no_bits == 32) |
2100 | return false; | |
2101 | int32_t max = (1 << (no_bits - 1)) - 1; | |
2102 | int32_t min = -(1 << (no_bits - 1)); | |
2103 | int32_t as_signed = static_cast<int32_t>(bits); | |
2104 | return as_signed > max || as_signed < min; | |
2105 | } | |
2106 | ||
5e445df6 ILT |
2107 | // Detects overflow of an NO_BITS integer stored in a uint32_t when it |
2108 | // fits in the given number of bits as either a signed or unsigned value. | |
2109 | // For example, has_signed_unsigned_overflow<8> would check | |
2110 | // -128 <= bits <= 255 | |
2111 | template<int no_bits> | |
2112 | static inline bool | |
2113 | has_signed_unsigned_overflow(uint32_t bits) | |
2114 | { | |
2115 | gold_assert(no_bits >= 2 && no_bits <= 32); | |
2116 | if (no_bits == 32) | |
2117 | return false; | |
2118 | int32_t max = static_cast<int32_t>((1U << no_bits) - 1); | |
2119 | int32_t min = -(1 << (no_bits - 1)); | |
2120 | int32_t as_signed = static_cast<int32_t>(bits); | |
2121 | return as_signed > max || as_signed < min; | |
2122 | } | |
2123 | ||
c121c671 DK |
2124 | // Select bits from A and B using bits in MASK. For each n in [0..31], |
2125 | // the n-th bit in the result is chosen from the n-th bits of A and B. | |
2126 | // A zero selects A and a one selects B. | |
2127 | static inline uint32_t | |
2128 | bit_select(uint32_t a, uint32_t b, uint32_t mask) | |
2129 | { return (a & ~mask) | (b & mask); } | |
2130 | }; | |
2131 | ||
4a657b0d DK |
2132 | template<bool big_endian> |
2133 | class Target_arm : public Sized_target<32, big_endian> | |
2134 | { | |
2135 | public: | |
2136 | typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> | |
2137 | Reloc_section; | |
2138 | ||
2daedcd6 DK |
2139 | // When were are relocating a stub, we pass this as the relocation number. |
2140 | static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1); | |
2141 | ||
a6d1ef57 DK |
2142 | Target_arm() |
2143 | : Sized_target<32, big_endian>(&arm_info), | |
2144 | got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL), | |
f96accdf DK |
2145 | copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), |
2146 | got_mod_index_offset_(-1U), tls_base_symbol_defined_(false), | |
2147 | stub_tables_(), stub_factory_(Stub_factory::get_instance()), | |
2148 | may_use_blx_(false), should_force_pic_veneer_(false), | |
2149 | arm_input_section_map_(), attributes_section_data_(NULL), | |
2150 | fix_cortex_a8_(false), cortex_a8_relocs_info_() | |
a6d1ef57 | 2151 | { } |
4a657b0d | 2152 | |
8a75a161 DK |
2153 | // Virtual function which is set to return true by a target if |
2154 | // it can use relocation types to determine if a function's | |
2155 | // pointer is taken. | |
2156 | virtual bool | |
2157 | can_check_for_function_pointers() const | |
2158 | { return true; } | |
2159 | ||
2160 | // Whether a section called SECTION_NAME may have function pointers to | |
2161 | // sections not eligible for safe ICF folding. | |
2162 | virtual bool | |
2163 | section_may_have_icf_unsafe_pointers(const char* section_name) const | |
2164 | { | |
2165 | return (!is_prefix_of(".ARM.exidx", section_name) | |
2166 | && !is_prefix_of(".ARM.extab", section_name) | |
2167 | && Target::section_may_have_icf_unsafe_pointers(section_name)); | |
2168 | } | |
2169 | ||
b569affa DK |
2170 | // Whether we can use BLX. |
2171 | bool | |
2172 | may_use_blx() const | |
2173 | { return this->may_use_blx_; } | |
2174 | ||
2175 | // Set use-BLX flag. | |
2176 | void | |
2177 | set_may_use_blx(bool value) | |
2178 | { this->may_use_blx_ = value; } | |
2179 | ||
2180 | // Whether we force PCI branch veneers. | |
2181 | bool | |
2182 | should_force_pic_veneer() const | |
2183 | { return this->should_force_pic_veneer_; } | |
2184 | ||
2185 | // Set PIC veneer flag. | |
2186 | void | |
2187 | set_should_force_pic_veneer(bool value) | |
2188 | { this->should_force_pic_veneer_ = value; } | |
2189 | ||
2190 | // Whether we use THUMB-2 instructions. | |
2191 | bool | |
2192 | using_thumb2() const | |
2193 | { | |
a0351a69 DK |
2194 | Object_attribute* attr = |
2195 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | |
2196 | int arch = attr->int_value(); | |
2197 | return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7; | |
b569affa DK |
2198 | } |
2199 | ||
2200 | // Whether we use THUMB/THUMB-2 instructions only. | |
2201 | bool | |
2202 | using_thumb_only() const | |
2203 | { | |
a0351a69 DK |
2204 | Object_attribute* attr = |
2205 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | |
323c532f DK |
2206 | |
2207 | if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M | |
2208 | || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M) | |
2209 | return true; | |
a0351a69 DK |
2210 | if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7 |
2211 | && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M) | |
2212 | return false; | |
2213 | attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); | |
2214 | return attr->int_value() == 'M'; | |
b569affa DK |
2215 | } |
2216 | ||
d204b6e9 DK |
2217 | // Whether we have an NOP instruction. If not, use mov r0, r0 instead. |
2218 | bool | |
2219 | may_use_arm_nop() const | |
2220 | { | |
a0351a69 DK |
2221 | Object_attribute* attr = |
2222 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | |
2223 | int arch = attr->int_value(); | |
2224 | return (arch == elfcpp::TAG_CPU_ARCH_V6T2 | |
2225 | || arch == elfcpp::TAG_CPU_ARCH_V6K | |
2226 | || arch == elfcpp::TAG_CPU_ARCH_V7 | |
2227 | || arch == elfcpp::TAG_CPU_ARCH_V7E_M); | |
d204b6e9 DK |
2228 | } |
2229 | ||
51938283 DK |
2230 | // Whether we have THUMB-2 NOP.W instruction. |
2231 | bool | |
2232 | may_use_thumb2_nop() const | |
2233 | { | |
a0351a69 DK |
2234 | Object_attribute* attr = |
2235 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | |
2236 | int arch = attr->int_value(); | |
2237 | return (arch == elfcpp::TAG_CPU_ARCH_V6T2 | |
2238 | || arch == elfcpp::TAG_CPU_ARCH_V7 | |
2239 | || arch == elfcpp::TAG_CPU_ARCH_V7E_M); | |
51938283 DK |
2240 | } |
2241 | ||
4a657b0d DK |
2242 | // Process the relocations to determine unreferenced sections for |
2243 | // garbage collection. | |
2244 | void | |
ad0f2072 | 2245 | gc_process_relocs(Symbol_table* symtab, |
4a657b0d DK |
2246 | Layout* layout, |
2247 | Sized_relobj<32, big_endian>* object, | |
2248 | unsigned int data_shndx, | |
2249 | unsigned int sh_type, | |
2250 | const unsigned char* prelocs, | |
2251 | size_t reloc_count, | |
2252 | Output_section* output_section, | |
2253 | bool needs_special_offset_handling, | |
2254 | size_t local_symbol_count, | |
2255 | const unsigned char* plocal_symbols); | |
2256 | ||
2257 | // Scan the relocations to look for symbol adjustments. | |
2258 | void | |
ad0f2072 | 2259 | scan_relocs(Symbol_table* symtab, |
4a657b0d DK |
2260 | Layout* layout, |
2261 | Sized_relobj<32, big_endian>* object, | |
2262 | unsigned int data_shndx, | |
2263 | unsigned int sh_type, | |
2264 | const unsigned char* prelocs, | |
2265 | size_t reloc_count, | |
2266 | Output_section* output_section, | |
2267 | bool needs_special_offset_handling, | |
2268 | size_t local_symbol_count, | |
2269 | const unsigned char* plocal_symbols); | |
2270 | ||
2271 | // Finalize the sections. | |
2272 | void | |
f59f41f3 | 2273 | do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); |
4a657b0d | 2274 | |
94cdfcff | 2275 | // Return the value to use for a dynamic symbol which requires special |
4a657b0d DK |
2276 | // treatment. |
2277 | uint64_t | |
2278 | do_dynsym_value(const Symbol*) const; | |
2279 | ||
2280 | // Relocate a section. | |
2281 | void | |
2282 | relocate_section(const Relocate_info<32, big_endian>*, | |
2283 | unsigned int sh_type, | |
2284 | const unsigned char* prelocs, | |
2285 | size_t reloc_count, | |
2286 | Output_section* output_section, | |
2287 | bool needs_special_offset_handling, | |
2288 | unsigned char* view, | |
ebabffbd | 2289 | Arm_address view_address, |
364c7fa5 ILT |
2290 | section_size_type view_size, |
2291 | const Reloc_symbol_changes*); | |
4a657b0d DK |
2292 | |
2293 | // Scan the relocs during a relocatable link. | |
2294 | void | |
ad0f2072 | 2295 | scan_relocatable_relocs(Symbol_table* symtab, |
4a657b0d DK |
2296 | Layout* layout, |
2297 | Sized_relobj<32, big_endian>* object, | |
2298 | unsigned int data_shndx, | |
2299 | unsigned int sh_type, | |
2300 | const unsigned char* prelocs, | |
2301 | size_t reloc_count, | |
2302 | Output_section* output_section, | |
2303 | bool needs_special_offset_handling, | |
2304 | size_t local_symbol_count, | |
2305 | const unsigned char* plocal_symbols, | |
2306 | Relocatable_relocs*); | |
2307 | ||
2308 | // Relocate a section during a relocatable link. | |
2309 | void | |
2310 | relocate_for_relocatable(const Relocate_info<32, big_endian>*, | |
2311 | unsigned int sh_type, | |
2312 | const unsigned char* prelocs, | |
2313 | size_t reloc_count, | |
2314 | Output_section* output_section, | |
2315 | off_t offset_in_output_section, | |
2316 | const Relocatable_relocs*, | |
2317 | unsigned char* view, | |
ebabffbd | 2318 | Arm_address view_address, |
4a657b0d DK |
2319 | section_size_type view_size, |
2320 | unsigned char* reloc_view, | |
2321 | section_size_type reloc_view_size); | |
2322 | ||
5c388529 DK |
2323 | // Perform target-specific processing in a relocatable link. This is |
2324 | // only used if we use the relocation strategy RELOC_SPECIAL. | |
2325 | void | |
2326 | relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo, | |
2327 | unsigned int sh_type, | |
2328 | const unsigned char* preloc_in, | |
2329 | size_t relnum, | |
2330 | Output_section* output_section, | |
2331 | off_t offset_in_output_section, | |
2332 | unsigned char* view, | |
2333 | typename elfcpp::Elf_types<32>::Elf_Addr | |
2334 | view_address, | |
2335 | section_size_type view_size, | |
2336 | unsigned char* preloc_out); | |
2337 | ||
4a657b0d DK |
2338 | // Return whether SYM is defined by the ABI. |
2339 | bool | |
2340 | do_is_defined_by_abi(Symbol* sym) const | |
2341 | { return strcmp(sym->name(), "__tls_get_addr") == 0; } | |
2342 | ||
c8761b9a DK |
2343 | // Return whether there is a GOT section. |
2344 | bool | |
2345 | has_got_section() const | |
2346 | { return this->got_ != NULL; } | |
2347 | ||
94cdfcff DK |
2348 | // Return the size of the GOT section. |
2349 | section_size_type | |
0e70b911 | 2350 | got_size() const |
94cdfcff DK |
2351 | { |
2352 | gold_assert(this->got_ != NULL); | |
2353 | return this->got_->data_size(); | |
2354 | } | |
2355 | ||
0e70b911 CC |
2356 | // Return the number of entries in the GOT. |
2357 | unsigned int | |
2358 | got_entry_count() const | |
2359 | { | |
2360 | if (!this->has_got_section()) | |
2361 | return 0; | |
2362 | return this->got_size() / 4; | |
2363 | } | |
2364 | ||
2365 | // Return the number of entries in the PLT. | |
2366 | unsigned int | |
2367 | plt_entry_count() const; | |
2368 | ||
2369 | // Return the offset of the first non-reserved PLT entry. | |
2370 | unsigned int | |
2371 | first_plt_entry_offset() const; | |
2372 | ||
2373 | // Return the size of each PLT entry. | |
2374 | unsigned int | |
2375 | plt_entry_size() const; | |
2376 | ||
4a657b0d | 2377 | // Map platform-specific reloc types |
a6d1ef57 | 2378 | static unsigned int |
ca09d69a | 2379 | get_real_reloc_type(unsigned int r_type); |
4a657b0d | 2380 | |
55da9579 DK |
2381 | // |
2382 | // Methods to support stub-generations. | |
2383 | // | |
2384 | ||
2385 | // Return the stub factory | |
2386 | const Stub_factory& | |
2387 | stub_factory() const | |
2388 | { return this->stub_factory_; } | |
2389 | ||
2390 | // Make a new Arm_input_section object. | |
2391 | Arm_input_section<big_endian>* | |
2392 | new_arm_input_section(Relobj*, unsigned int); | |
2393 | ||
2394 | // Find the Arm_input_section object corresponding to the SHNDX-th input | |
2395 | // section of RELOBJ. | |
2396 | Arm_input_section<big_endian>* | |
2ea97941 | 2397 | find_arm_input_section(Relobj* relobj, unsigned int shndx) const; |
55da9579 DK |
2398 | |
2399 | // Make a new Stub_table | |
2400 | Stub_table<big_endian>* | |
2401 | new_stub_table(Arm_input_section<big_endian>*); | |
2402 | ||
eb44217c DK |
2403 | // Scan a section for stub generation. |
2404 | void | |
2405 | scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int, | |
2406 | const unsigned char*, size_t, Output_section*, | |
2407 | bool, const unsigned char*, Arm_address, | |
2408 | section_size_type); | |
2409 | ||
43d12afe DK |
2410 | // Relocate a stub. |
2411 | void | |
2fb7225c | 2412 | relocate_stub(Stub*, const Relocate_info<32, big_endian>*, |
43d12afe DK |
2413 | Output_section*, unsigned char*, Arm_address, |
2414 | section_size_type); | |
2415 | ||
b569affa | 2416 | // Get the default ARM target. |
43d12afe | 2417 | static Target_arm<big_endian>* |
b569affa DK |
2418 | default_target() |
2419 | { | |
2420 | gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM | |
2421 | && parameters->target().is_big_endian() == big_endian); | |
43d12afe DK |
2422 | return static_cast<Target_arm<big_endian>*>( |
2423 | parameters->sized_target<32, big_endian>()); | |
b569affa DK |
2424 | } |
2425 | ||
20138696 DK |
2426 | // Whether NAME belongs to a mapping symbol. |
2427 | static bool | |
2428 | is_mapping_symbol_name(const char* name) | |
2429 | { | |
2430 | return (name | |
2431 | && name[0] == '$' | |
2432 | && (name[1] == 'a' || name[1] == 't' || name[1] == 'd') | |
2433 | && (name[2] == '\0' || name[2] == '.')); | |
2434 | } | |
2435 | ||
a120bc7f DK |
2436 | // Whether we work around the Cortex-A8 erratum. |
2437 | bool | |
2438 | fix_cortex_a8() const | |
2439 | { return this->fix_cortex_a8_; } | |
2440 | ||
85fdf906 AH |
2441 | // Whether we merge exidx entries in debuginfo. |
2442 | bool | |
2443 | merge_exidx_entries() const | |
2444 | { return parameters->options().merge_exidx_entries(); } | |
2445 | ||
a2162063 ILT |
2446 | // Whether we fix R_ARM_V4BX relocation. |
2447 | // 0 - do not fix | |
2448 | // 1 - replace with MOV instruction (armv4 target) | |
2449 | // 2 - make interworking veneer (>= armv4t targets only) | |
9b2fd367 | 2450 | General_options::Fix_v4bx |
a2162063 | 2451 | fix_v4bx() const |
9b2fd367 | 2452 | { return parameters->options().fix_v4bx(); } |
a2162063 | 2453 | |
44272192 DK |
2454 | // Scan a span of THUMB code section for Cortex-A8 erratum. |
2455 | void | |
2456 | scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int, | |
2457 | section_size_type, section_size_type, | |
2458 | const unsigned char*, Arm_address); | |
2459 | ||
41263c05 DK |
2460 | // Apply Cortex-A8 workaround to a branch. |
2461 | void | |
2462 | apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address, | |
2463 | unsigned char*, Arm_address); | |
2464 | ||
d5b40221 | 2465 | protected: |
eb44217c DK |
2466 | // Make an ELF object. |
2467 | Object* | |
2468 | do_make_elf_object(const std::string&, Input_file*, off_t, | |
2469 | const elfcpp::Ehdr<32, big_endian>& ehdr); | |
2470 | ||
2471 | Object* | |
2472 | do_make_elf_object(const std::string&, Input_file*, off_t, | |
2473 | const elfcpp::Ehdr<32, !big_endian>&) | |
2474 | { gold_unreachable(); } | |
2475 | ||
2476 | Object* | |
2477 | do_make_elf_object(const std::string&, Input_file*, off_t, | |
2478 | const elfcpp::Ehdr<64, false>&) | |
2479 | { gold_unreachable(); } | |
2480 | ||
2481 | Object* | |
2482 | do_make_elf_object(const std::string&, Input_file*, off_t, | |
2483 | const elfcpp::Ehdr<64, true>&) | |
2484 | { gold_unreachable(); } | |
2485 | ||
2486 | // Make an output section. | |
2487 | Output_section* | |
2488 | do_make_output_section(const char* name, elfcpp::Elf_Word type, | |
2489 | elfcpp::Elf_Xword flags) | |
2490 | { return new Arm_output_section<big_endian>(name, type, flags); } | |
2491 | ||
d5b40221 DK |
2492 | void |
2493 | do_adjust_elf_header(unsigned char* view, int len) const; | |
2494 | ||
eb44217c DK |
2495 | // We only need to generate stubs, and hence perform relaxation if we are |
2496 | // not doing relocatable linking. | |
2497 | bool | |
2498 | do_may_relax() const | |
2499 | { return !parameters->options().relocatable(); } | |
2500 | ||
2501 | bool | |
2502 | do_relax(int, const Input_objects*, Symbol_table*, Layout*); | |
2503 | ||
a0351a69 DK |
2504 | // Determine whether an object attribute tag takes an integer, a |
2505 | // string or both. | |
2506 | int | |
2507 | do_attribute_arg_type(int tag) const; | |
2508 | ||
2509 | // Reorder tags during output. | |
2510 | int | |
2511 | do_attributes_order(int num) const; | |
2512 | ||
0d31c79d DK |
2513 | // This is called when the target is selected as the default. |
2514 | void | |
2515 | do_select_as_default_target() | |
2516 | { | |
2517 | // No locking is required since there should only be one default target. | |
2518 | // We cannot have both the big-endian and little-endian ARM targets | |
2519 | // as the default. | |
2520 | gold_assert(arm_reloc_property_table == NULL); | |
2521 | arm_reloc_property_table = new Arm_reloc_property_table(); | |
2522 | } | |
2523 | ||
4a657b0d DK |
2524 | private: |
2525 | // The class which scans relocations. | |
2526 | class Scan | |
2527 | { | |
2528 | public: | |
2529 | Scan() | |
bec53400 | 2530 | : issued_non_pic_error_(false) |
4a657b0d DK |
2531 | { } |
2532 | ||
2533 | inline void | |
ad0f2072 | 2534 | local(Symbol_table* symtab, Layout* layout, Target_arm* target, |
4a657b0d DK |
2535 | Sized_relobj<32, big_endian>* object, |
2536 | unsigned int data_shndx, | |
2537 | Output_section* output_section, | |
2538 | const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, | |
2539 | const elfcpp::Sym<32, big_endian>& lsym); | |
2540 | ||
2541 | inline void | |
ad0f2072 | 2542 | global(Symbol_table* symtab, Layout* layout, Target_arm* target, |
4a657b0d DK |
2543 | Sized_relobj<32, big_endian>* object, |
2544 | unsigned int data_shndx, | |
2545 | Output_section* output_section, | |
2546 | const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, | |
2547 | Symbol* gsym); | |
2548 | ||
21bb3914 ST |
2549 | inline bool |
2550 | local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , | |
2551 | Sized_relobj<32, big_endian>* , | |
2552 | unsigned int , | |
2553 | Output_section* , | |
2554 | const elfcpp::Rel<32, big_endian>& , | |
2555 | unsigned int , | |
8a75a161 | 2556 | const elfcpp::Sym<32, big_endian>&); |
21bb3914 ST |
2557 | |
2558 | inline bool | |
2559 | global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , | |
2560 | Sized_relobj<32, big_endian>* , | |
2561 | unsigned int , | |
2562 | Output_section* , | |
2563 | const elfcpp::Rel<32, big_endian>& , | |
8a75a161 | 2564 | unsigned int , Symbol*); |
21bb3914 | 2565 | |
4a657b0d DK |
2566 | private: |
2567 | static void | |
2568 | unsupported_reloc_local(Sized_relobj<32, big_endian>*, | |
2569 | unsigned int r_type); | |
2570 | ||
2571 | static void | |
2572 | unsupported_reloc_global(Sized_relobj<32, big_endian>*, | |
2573 | unsigned int r_type, Symbol*); | |
bec53400 DK |
2574 | |
2575 | void | |
2576 | check_non_pic(Relobj*, unsigned int r_type); | |
2577 | ||
2578 | // Almost identical to Symbol::needs_plt_entry except that it also | |
2579 | // handles STT_ARM_TFUNC. | |
2580 | static bool | |
2581 | symbol_needs_plt_entry(const Symbol* sym) | |
2582 | { | |
2583 | // An undefined symbol from an executable does not need a PLT entry. | |
2584 | if (sym->is_undefined() && !parameters->options().shared()) | |
2585 | return false; | |
2586 | ||
2587 | return (!parameters->doing_static_link() | |
2588 | && (sym->type() == elfcpp::STT_FUNC | |
2589 | || sym->type() == elfcpp::STT_ARM_TFUNC) | |
2590 | && (sym->is_from_dynobj() | |
2591 | || sym->is_undefined() | |
2592 | || sym->is_preemptible())); | |
2593 | } | |
2594 | ||
8a75a161 DK |
2595 | inline bool |
2596 | possible_function_pointer_reloc(unsigned int r_type); | |
2597 | ||
bec53400 DK |
2598 | // Whether we have issued an error about a non-PIC compilation. |
2599 | bool issued_non_pic_error_; | |
4a657b0d DK |
2600 | }; |
2601 | ||
2602 | // The class which implements relocation. | |
2603 | class Relocate | |
2604 | { | |
2605 | public: | |
2606 | Relocate() | |
2607 | { } | |
2608 | ||
2609 | ~Relocate() | |
2610 | { } | |
2611 | ||
bec53400 DK |
2612 | // Return whether the static relocation needs to be applied. |
2613 | inline bool | |
2614 | should_apply_static_reloc(const Sized_symbol<32>* gsym, | |
2615 | int ref_flags, | |
2616 | bool is_32bit, | |
2617 | Output_section* output_section); | |
2618 | ||
4a657b0d DK |
2619 | // Do a relocation. Return false if the caller should not issue |
2620 | // any warnings about this relocation. | |
2621 | inline bool | |
2622 | relocate(const Relocate_info<32, big_endian>*, Target_arm*, | |
2623 | Output_section*, size_t relnum, | |
2624 | const elfcpp::Rel<32, big_endian>&, | |
2625 | unsigned int r_type, const Sized_symbol<32>*, | |
2626 | const Symbol_value<32>*, | |
ebabffbd | 2627 | unsigned char*, Arm_address, |
4a657b0d | 2628 | section_size_type); |
c121c671 DK |
2629 | |
2630 | // Return whether we want to pass flag NON_PIC_REF for this | |
f4e5969c DK |
2631 | // reloc. This means the relocation type accesses a symbol not via |
2632 | // GOT or PLT. | |
c121c671 | 2633 | static inline bool |
ca09d69a | 2634 | reloc_is_non_pic(unsigned int r_type) |
c121c671 DK |
2635 | { |
2636 | switch (r_type) | |
2637 | { | |
f4e5969c DK |
2638 | // These relocation types reference GOT or PLT entries explicitly. |
2639 | case elfcpp::R_ARM_GOT_BREL: | |
2640 | case elfcpp::R_ARM_GOT_ABS: | |
2641 | case elfcpp::R_ARM_GOT_PREL: | |
2642 | case elfcpp::R_ARM_GOT_BREL12: | |
2643 | case elfcpp::R_ARM_PLT32_ABS: | |
2644 | case elfcpp::R_ARM_TLS_GD32: | |
2645 | case elfcpp::R_ARM_TLS_LDM32: | |
2646 | case elfcpp::R_ARM_TLS_IE32: | |
2647 | case elfcpp::R_ARM_TLS_IE12GP: | |
2648 | ||
2649 | // These relocate types may use PLT entries. | |
c121c671 | 2650 | case elfcpp::R_ARM_CALL: |
f4e5969c | 2651 | case elfcpp::R_ARM_THM_CALL: |
c121c671 | 2652 | case elfcpp::R_ARM_JUMP24: |
f4e5969c DK |
2653 | case elfcpp::R_ARM_THM_JUMP24: |
2654 | case elfcpp::R_ARM_THM_JUMP19: | |
2655 | case elfcpp::R_ARM_PLT32: | |
2656 | case elfcpp::R_ARM_THM_XPC22: | |
c3e4ae29 DK |
2657 | case elfcpp::R_ARM_PREL31: |
2658 | case elfcpp::R_ARM_SBREL31: | |
c121c671 | 2659 | return false; |
f4e5969c DK |
2660 | |
2661 | default: | |
2662 | return true; | |
c121c671 DK |
2663 | } |
2664 | } | |
f96accdf DK |
2665 | |
2666 | private: | |
2667 | // Do a TLS relocation. | |
2668 | inline typename Arm_relocate_functions<big_endian>::Status | |
2669 | relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*, | |
2670 | size_t, const elfcpp::Rel<32, big_endian>&, unsigned int, | |
2671 | const Sized_symbol<32>*, const Symbol_value<32>*, | |
2672 | unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, | |
2673 | section_size_type); | |
2674 | ||
4a657b0d DK |
2675 | }; |
2676 | ||
2677 | // A class which returns the size required for a relocation type, | |
2678 | // used while scanning relocs during a relocatable link. | |
2679 | class Relocatable_size_for_reloc | |
2680 | { | |
2681 | public: | |
2682 | unsigned int | |
2683 | get_size_for_reloc(unsigned int, Relobj*); | |
2684 | }; | |
2685 | ||
f96accdf DK |
2686 | // Adjust TLS relocation type based on the options and whether this |
2687 | // is a local symbol. | |
2688 | static tls::Tls_optimization | |
2689 | optimize_tls_reloc(bool is_final, int r_type); | |
2690 | ||
94cdfcff | 2691 | // Get the GOT section, creating it if necessary. |
4a54abbb | 2692 | Arm_output_data_got<big_endian>* |
94cdfcff DK |
2693 | got_section(Symbol_table*, Layout*); |
2694 | ||
2695 | // Get the GOT PLT section. | |
2696 | Output_data_space* | |
2697 | got_plt_section() const | |
2698 | { | |
2699 | gold_assert(this->got_plt_ != NULL); | |
2700 | return this->got_plt_; | |
2701 | } | |
2702 | ||
2703 | // Create a PLT entry for a global symbol. | |
2704 | void | |
2705 | make_plt_entry(Symbol_table*, Layout*, Symbol*); | |
2706 | ||
f96accdf DK |
2707 | // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. |
2708 | void | |
2709 | define_tls_base_symbol(Symbol_table*, Layout*); | |
2710 | ||
2711 | // Create a GOT entry for the TLS module index. | |
2712 | unsigned int | |
2713 | got_mod_index_entry(Symbol_table* symtab, Layout* layout, | |
2714 | Sized_relobj<32, big_endian>* object); | |
2715 | ||
94cdfcff DK |
2716 | // Get the PLT section. |
2717 | const Output_data_plt_arm<big_endian>* | |
2718 | plt_section() const | |
2719 | { | |
2720 | gold_assert(this->plt_ != NULL); | |
2721 | return this->plt_; | |
2722 | } | |
2723 | ||
2724 | // Get the dynamic reloc section, creating it if necessary. | |
2725 | Reloc_section* | |
2726 | rel_dyn_section(Layout*); | |
2727 | ||
f96accdf DK |
2728 | // Get the section to use for TLS_DESC relocations. |
2729 | Reloc_section* | |
2730 | rel_tls_desc_section(Layout*) const; | |
2731 | ||
94cdfcff DK |
2732 | // Return true if the symbol may need a COPY relocation. |
2733 | // References from an executable object to non-function symbols | |
2734 | // defined in a dynamic object may need a COPY relocation. | |
2735 | bool | |
2736 | may_need_copy_reloc(Symbol* gsym) | |
2737 | { | |
966d4097 DK |
2738 | return (gsym->type() != elfcpp::STT_ARM_TFUNC |
2739 | && gsym->may_need_copy_reloc()); | |
94cdfcff DK |
2740 | } |
2741 | ||
2742 | // Add a potential copy relocation. | |
2743 | void | |
2744 | copy_reloc(Symbol_table* symtab, Layout* layout, | |
2745 | Sized_relobj<32, big_endian>* object, | |
2ea97941 | 2746 | unsigned int shndx, Output_section* output_section, |
94cdfcff DK |
2747 | Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc) |
2748 | { | |
2749 | this->copy_relocs_.copy_reloc(symtab, layout, | |
2750 | symtab->get_sized_symbol<32>(sym), | |
2ea97941 | 2751 | object, shndx, output_section, reloc, |
94cdfcff DK |
2752 | this->rel_dyn_section(layout)); |
2753 | } | |
2754 | ||
d5b40221 DK |
2755 | // Whether two EABI versions are compatible. |
2756 | static bool | |
2757 | are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2); | |
2758 | ||
2759 | // Merge processor-specific flags from input object and those in the ELF | |
2760 | // header of the output. | |
2761 | void | |
2762 | merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word); | |
2763 | ||
a0351a69 DK |
2764 | // Get the secondary compatible architecture. |
2765 | static int | |
2766 | get_secondary_compatible_arch(const Attributes_section_data*); | |
2767 | ||
2768 | // Set the secondary compatible architecture. | |
2769 | static void | |
2770 | set_secondary_compatible_arch(Attributes_section_data*, int); | |
2771 | ||
2772 | static int | |
2773 | tag_cpu_arch_combine(const char*, int, int*, int, int); | |
2774 | ||
2775 | // Helper to print AEABI enum tag value. | |
2776 | static std::string | |
2777 | aeabi_enum_name(unsigned int); | |
2778 | ||
2779 | // Return string value for TAG_CPU_name. | |
2780 | static std::string | |
2781 | tag_cpu_name_value(unsigned int); | |
2782 | ||
2783 | // Merge object attributes from input object and those in the output. | |
2784 | void | |
2785 | merge_object_attributes(const char*, const Attributes_section_data*); | |
2786 | ||
2787 | // Helper to get an AEABI object attribute | |
2788 | Object_attribute* | |
2789 | get_aeabi_object_attribute(int tag) const | |
2790 | { | |
2791 | Attributes_section_data* pasd = this->attributes_section_data_; | |
2792 | gold_assert(pasd != NULL); | |
2793 | Object_attribute* attr = | |
2794 | pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag); | |
2795 | gold_assert(attr != NULL); | |
2796 | return attr; | |
2797 | } | |
2798 | ||
eb44217c DK |
2799 | // |
2800 | // Methods to support stub-generations. | |
2801 | // | |
d5b40221 | 2802 | |
eb44217c DK |
2803 | // Group input sections for stub generation. |
2804 | void | |
2805 | group_sections(Layout*, section_size_type, bool); | |
d5b40221 | 2806 | |
eb44217c DK |
2807 | // Scan a relocation for stub generation. |
2808 | void | |
2809 | scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int, | |
2810 | const Sized_symbol<32>*, unsigned int, | |
2811 | const Symbol_value<32>*, | |
2812 | elfcpp::Elf_types<32>::Elf_Swxword, Arm_address); | |
d5b40221 | 2813 | |
eb44217c DK |
2814 | // Scan a relocation section for stub. |
2815 | template<int sh_type> | |
2816 | void | |
2817 | scan_reloc_section_for_stubs( | |
2818 | const Relocate_info<32, big_endian>* relinfo, | |
2819 | const unsigned char* prelocs, | |
2820 | size_t reloc_count, | |
2821 | Output_section* output_section, | |
2822 | bool needs_special_offset_handling, | |
2823 | const unsigned char* view, | |
2824 | elfcpp::Elf_types<32>::Elf_Addr view_address, | |
2825 | section_size_type); | |
d5b40221 | 2826 | |
2b328d4e DK |
2827 | // Fix .ARM.exidx section coverage. |
2828 | void | |
131687b4 DK |
2829 | fix_exidx_coverage(Layout*, const Input_objects*, |
2830 | Arm_output_section<big_endian>*, Symbol_table*); | |
2b328d4e DK |
2831 | |
2832 | // Functors for STL set. | |
2833 | struct output_section_address_less_than | |
2834 | { | |
2835 | bool | |
2836 | operator()(const Output_section* s1, const Output_section* s2) const | |
2837 | { return s1->address() < s2->address(); } | |
2838 | }; | |
2839 | ||
4a657b0d DK |
2840 | // Information about this specific target which we pass to the |
2841 | // general Target structure. | |
2842 | static const Target::Target_info arm_info; | |
94cdfcff DK |
2843 | |
2844 | // The types of GOT entries needed for this platform. | |
0e70b911 CC |
2845 | // These values are exposed to the ABI in an incremental link. |
2846 | // Do not renumber existing values without changing the version | |
2847 | // number of the .gnu_incremental_inputs section. | |
94cdfcff DK |
2848 | enum Got_type |
2849 | { | |
f96accdf DK |
2850 | GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol |
2851 | GOT_TYPE_TLS_NOFFSET = 1, // GOT entry for negative TLS offset | |
2852 | GOT_TYPE_TLS_OFFSET = 2, // GOT entry for positive TLS offset | |
2853 | GOT_TYPE_TLS_PAIR = 3, // GOT entry for TLS module/offset pair | |
2854 | GOT_TYPE_TLS_DESC = 4 // GOT entry for TLS_DESC pair | |
94cdfcff DK |
2855 | }; |
2856 | ||
55da9579 DK |
2857 | typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list; |
2858 | ||
2859 | // Map input section to Arm_input_section. | |
5ac169d4 | 2860 | typedef Unordered_map<Section_id, |
55da9579 | 2861 | Arm_input_section<big_endian>*, |
5ac169d4 | 2862 | Section_id_hash> |
55da9579 DK |
2863 | Arm_input_section_map; |
2864 | ||
a120bc7f DK |
2865 | // Map output addresses to relocs for Cortex-A8 erratum. |
2866 | typedef Unordered_map<Arm_address, const Cortex_a8_reloc*> | |
2867 | Cortex_a8_relocs_info; | |
2868 | ||
94cdfcff | 2869 | // The GOT section. |
4a54abbb | 2870 | Arm_output_data_got<big_endian>* got_; |
94cdfcff DK |
2871 | // The PLT section. |
2872 | Output_data_plt_arm<big_endian>* plt_; | |
2873 | // The GOT PLT section. | |
2874 | Output_data_space* got_plt_; | |
2875 | // The dynamic reloc section. | |
2876 | Reloc_section* rel_dyn_; | |
2877 | // Relocs saved to avoid a COPY reloc. | |
2878 | Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_; | |
2879 | // Space for variables copied with a COPY reloc. | |
2880 | Output_data_space* dynbss_; | |
f96accdf DK |
2881 | // Offset of the GOT entry for the TLS module index. |
2882 | unsigned int got_mod_index_offset_; | |
2883 | // True if the _TLS_MODULE_BASE_ symbol has been defined. | |
2884 | bool tls_base_symbol_defined_; | |
55da9579 DK |
2885 | // Vector of Stub_tables created. |
2886 | Stub_table_list stub_tables_; | |
2887 | // Stub factory. | |
2888 | const Stub_factory &stub_factory_; | |
b569affa DK |
2889 | // Whether we can use BLX. |
2890 | bool may_use_blx_; | |
2891 | // Whether we force PIC branch veneers. | |
2892 | bool should_force_pic_veneer_; | |
eb44217c DK |
2893 | // Map for locating Arm_input_sections. |
2894 | Arm_input_section_map arm_input_section_map_; | |
a0351a69 DK |
2895 | // Attributes section data in output. |
2896 | Attributes_section_data* attributes_section_data_; | |
a120bc7f DK |
2897 | // Whether we want to fix code for Cortex-A8 erratum. |
2898 | bool fix_cortex_a8_; | |
2899 | // Map addresses to relocs for Cortex-A8 erratum. | |
2900 | Cortex_a8_relocs_info cortex_a8_relocs_info_; | |
4a657b0d DK |
2901 | }; |
2902 | ||
2903 | template<bool big_endian> | |
2904 | const Target::Target_info Target_arm<big_endian>::arm_info = | |
2905 | { | |
2906 | 32, // size | |
2907 | big_endian, // is_big_endian | |
2908 | elfcpp::EM_ARM, // machine_code | |
2909 | false, // has_make_symbol | |
2910 | false, // has_resolve | |
2911 | false, // has_code_fill | |
2912 | true, // is_default_stack_executable | |
2913 | '\0', // wrap_char | |
2914 | "/usr/lib/libc.so.1", // dynamic_linker | |
2915 | 0x8000, // default_text_segment_address | |
2916 | 0x1000, // abi_pagesize (overridable by -z max-page-size) | |
8a5e3e08 ILT |
2917 | 0x1000, // common_pagesize (overridable by -z common-page-size) |
2918 | elfcpp::SHN_UNDEF, // small_common_shndx | |
2919 | elfcpp::SHN_UNDEF, // large_common_shndx | |
2920 | 0, // small_common_section_flags | |
05a352e6 DK |
2921 | 0, // large_common_section_flags |
2922 | ".ARM.attributes", // attributes_section | |
2923 | "aeabi" // attributes_vendor | |
4a657b0d DK |
2924 | }; |
2925 | ||
c121c671 DK |
2926 | // Arm relocate functions class |
2927 | // | |
2928 | ||
2929 | template<bool big_endian> | |
2930 | class Arm_relocate_functions : public Relocate_functions<32, big_endian> | |
2931 | { | |
2932 | public: | |
2933 | typedef enum | |
2934 | { | |
2935 | STATUS_OKAY, // No error during relocation. | |
2936 | STATUS_OVERFLOW, // Relocation oveflow. | |
2937 | STATUS_BAD_RELOC // Relocation cannot be applied. | |
2938 | } Status; | |
2939 | ||
2940 | private: | |
2941 | typedef Relocate_functions<32, big_endian> Base; | |
2942 | typedef Arm_relocate_functions<big_endian> This; | |
2943 | ||
fd3c5f0b ILT |
2944 | // Encoding of imm16 argument for movt and movw ARM instructions |
2945 | // from ARM ARM: | |
2946 | // | |
2947 | // imm16 := imm4 | imm12 | |
2948 | // | |
2949 | // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 | |
2950 | // +-------+---------------+-------+-------+-----------------------+ | |
2951 | // | | |imm4 | |imm12 | | |
2952 | // +-------+---------------+-------+-------+-----------------------+ | |
2953 | ||
2954 | // Extract the relocation addend from VAL based on the ARM | |
2955 | // instruction encoding described above. | |
2956 | static inline typename elfcpp::Swap<32, big_endian>::Valtype | |
2957 | extract_arm_movw_movt_addend( | |
2958 | typename elfcpp::Swap<32, big_endian>::Valtype val) | |
2959 | { | |
2960 | // According to the Elf ABI for ARM Architecture the immediate | |
2961 | // field is sign-extended to form the addend. | |
2962 | return utils::sign_extend<16>(((val >> 4) & 0xf000) | (val & 0xfff)); | |
2963 | } | |
2964 | ||
2965 | // Insert X into VAL based on the ARM instruction encoding described | |
2966 | // above. | |
2967 | static inline typename elfcpp::Swap<32, big_endian>::Valtype | |
2968 | insert_val_arm_movw_movt( | |
2969 | typename elfcpp::Swap<32, big_endian>::Valtype val, | |
2970 | typename elfcpp::Swap<32, big_endian>::Valtype x) | |
2971 | { | |
2972 | val &= 0xfff0f000; | |
2973 | val |= x & 0x0fff; | |
2974 | val |= (x & 0xf000) << 4; | |
2975 | return val; | |
2976 | } | |
2977 | ||
2978 | // Encoding of imm16 argument for movt and movw Thumb2 instructions | |
2979 | // from ARM ARM: | |
2980 | // | |
2981 | // imm16 := imm4 | i | imm3 | imm8 | |
2982 | // | |
2983 | // f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 | |
2984 | // +---------+-+-----------+-------++-+-----+-------+---------------+ | |
2985 | // | |i| |imm4 || |imm3 | |imm8 | | |
2986 | // +---------+-+-----------+-------++-+-----+-------+---------------+ | |
2987 | ||
2988 | // Extract the relocation addend from VAL based on the Thumb2 | |
2989 | // instruction encoding described above. | |
2990 | static inline typename elfcpp::Swap<32, big_endian>::Valtype | |
2991 | extract_thumb_movw_movt_addend( | |
2992 | typename elfcpp::Swap<32, big_endian>::Valtype val) | |
2993 | { | |
2994 | // According to the Elf ABI for ARM Architecture the immediate | |
2995 | // field is sign-extended to form the addend. | |
2996 | return utils::sign_extend<16>(((val >> 4) & 0xf000) | |
2997 | | ((val >> 15) & 0x0800) | |
2998 | | ((val >> 4) & 0x0700) | |
2999 | | (val & 0x00ff)); | |
3000 | } | |
3001 | ||
3002 | // Insert X into VAL based on the Thumb2 instruction encoding | |
3003 | // described above. | |
3004 | static inline typename elfcpp::Swap<32, big_endian>::Valtype | |
3005 | insert_val_thumb_movw_movt( | |
3006 | typename elfcpp::Swap<32, big_endian>::Valtype val, | |
3007 | typename elfcpp::Swap<32, big_endian>::Valtype x) | |
3008 | { | |
3009 | val &= 0xfbf08f00; | |
3010 | val |= (x & 0xf000) << 4; | |
3011 | val |= (x & 0x0800) << 15; | |
3012 | val |= (x & 0x0700) << 4; | |
3013 | val |= (x & 0x00ff); | |
3014 | return val; | |
3015 | } | |
3016 | ||
b10d2873 ILT |
3017 | // Calculate the smallest constant Kn for the specified residual. |
3018 | // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | |
3019 | static uint32_t | |
3020 | calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual) | |
3021 | { | |
3022 | int32_t msb; | |
3023 | ||
3024 | if (residual == 0) | |
3025 | return 0; | |
3026 | // Determine the most significant bit in the residual and | |
3027 | // align the resulting value to a 2-bit boundary. | |
3028 | for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2) | |
3029 | ; | |
3030 | // The desired shift is now (msb - 6), or zero, whichever | |
3031 | // is the greater. | |
3032 | return (((msb - 6) < 0) ? 0 : (msb - 6)); | |
3033 | } | |
3034 | ||
3035 | // Calculate the final residual for the specified group index. | |
3036 | // If the passed group index is less than zero, the method will return | |
3037 | // the value of the specified residual without any change. | |
3038 | // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | |
3039 | static typename elfcpp::Swap<32, big_endian>::Valtype | |
3040 | calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual, | |
3041 | const int group) | |
3042 | { | |
3043 | for (int n = 0; n <= group; n++) | |
3044 | { | |
3045 | // Calculate which part of the value to mask. | |
3046 | uint32_t shift = calc_grp_kn(residual); | |
3047 | // Calculate the residual for the next time around. | |
3048 | residual &= ~(residual & (0xff << shift)); | |
3049 | } | |
3050 | ||
3051 | return residual; | |
3052 | } | |
3053 | ||
3054 | // Calculate the value of Gn for the specified group index. | |
3055 | // We return it in the form of an encoded constant-and-rotation. | |
3056 | // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | |
3057 | static typename elfcpp::Swap<32, big_endian>::Valtype | |
3058 | calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual, | |
3059 | const int group) | |
3060 | { | |
3061 | typename elfcpp::Swap<32, big_endian>::Valtype gn = 0; | |
3062 | uint32_t shift = 0; | |
3063 | ||
3064 | for (int n = 0; n <= group; n++) | |
3065 | { | |
3066 | // Calculate which part of the value to mask. | |
3067 | shift = calc_grp_kn(residual); | |
3068 | // Calculate Gn in 32-bit as well as encoded constant-and-rotation form. | |
3069 | gn = residual & (0xff << shift); | |
3070 | // Calculate the residual for the next time around. | |
3071 | residual &= ~gn; | |
3072 | } | |
3073 | // Return Gn in the form of an encoded constant-and-rotation. | |
3074 | return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8)); | |
3075 | } | |
3076 | ||
1521477a | 3077 | public: |
d204b6e9 DK |
3078 | // Handle ARM long branches. |
3079 | static typename This::Status | |
3080 | arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*, | |
ca09d69a | 3081 | unsigned char*, const Sized_symbol<32>*, |
d204b6e9 DK |
3082 | const Arm_relobj<big_endian>*, unsigned int, |
3083 | const Symbol_value<32>*, Arm_address, Arm_address, bool); | |
c121c671 | 3084 | |
51938283 DK |
3085 | // Handle THUMB long branches. |
3086 | static typename This::Status | |
3087 | thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*, | |
ca09d69a | 3088 | unsigned char*, const Sized_symbol<32>*, |
51938283 DK |
3089 | const Arm_relobj<big_endian>*, unsigned int, |
3090 | const Symbol_value<32>*, Arm_address, Arm_address, bool); | |
3091 | ||
5e445df6 | 3092 | |
089d69dc DK |
3093 | // Return the branch offset of a 32-bit THUMB branch. |
3094 | static inline int32_t | |
3095 | thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn) | |
3096 | { | |
3097 | // We use the Thumb-2 encoding (backwards compatible with Thumb-1) | |
3098 | // involving the J1 and J2 bits. | |
3099 | uint32_t s = (upper_insn & (1U << 10)) >> 10; | |
3100 | uint32_t upper = upper_insn & 0x3ffU; | |
3101 | uint32_t lower = lower_insn & 0x7ffU; | |
3102 | uint32_t j1 = (lower_insn & (1U << 13)) >> 13; | |
3103 | uint32_t j2 = (lower_insn & (1U << 11)) >> 11; | |
3104 | uint32_t i1 = j1 ^ s ? 0 : 1; | |
3105 | uint32_t i2 = j2 ^ s ? 0 : 1; | |
3106 | ||
3107 | return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22) | |
3108 | | (upper << 12) | (lower << 1)); | |
3109 | } | |
3110 | ||
3111 | // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction. | |
3112 | // UPPER_INSN is the original upper instruction of the branch. Caller is | |
3113 | // responsible for overflow checking and BLX offset adjustment. | |
3114 | static inline uint16_t | |
3115 | thumb32_branch_upper(uint16_t upper_insn, int32_t offset) | |
3116 | { | |
3117 | uint32_t s = offset < 0 ? 1 : 0; | |
3118 | uint32_t bits = static_cast<uint32_t>(offset); | |
3119 | return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10); | |
3120 | } | |
3121 | ||
3122 | // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction. | |
3123 | // LOWER_INSN is the original lower instruction of the branch. Caller is | |
3124 | // responsible for overflow checking and BLX offset adjustment. | |
3125 | static inline uint16_t | |
3126 | thumb32_branch_lower(uint16_t lower_insn, int32_t offset) | |
3127 | { | |
3128 | uint32_t s = offset < 0 ? 1 : 0; | |
3129 | uint32_t bits = static_cast<uint32_t>(offset); | |
3130 | return ((lower_insn & ~0x2fffU) | |
3131 | | ((((bits >> 23) & 1) ^ !s) << 13) | |
3132 | | ((((bits >> 22) & 1) ^ !s) << 11) | |
3133 | | ((bits >> 1) & 0x7ffU)); | |
3134 | } | |
3135 | ||
3136 | // Return the branch offset of a 32-bit THUMB conditional branch. | |
3137 | static inline int32_t | |
3138 | thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn) | |
3139 | { | |
3140 | uint32_t s = (upper_insn & 0x0400U) >> 10; | |
3141 | uint32_t j1 = (lower_insn & 0x2000U) >> 13; | |
3142 | uint32_t j2 = (lower_insn & 0x0800U) >> 11; | |
3143 | uint32_t lower = (lower_insn & 0x07ffU); | |
3144 | uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU); | |
3145 | ||
3146 | return utils::sign_extend<21>((upper << 12) | (lower << 1)); | |
3147 | } | |
3148 | ||
3149 | // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper | |
3150 | // instruction. UPPER_INSN is the original upper instruction of the branch. | |
3151 | // Caller is responsible for overflow checking. | |
3152 | static inline uint16_t | |
3153 | thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset) | |
3154 | { | |
3155 | uint32_t s = offset < 0 ? 1 : 0; | |
3156 | uint32_t bits = static_cast<uint32_t>(offset); | |
3157 | return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12); | |
3158 | } | |
3159 | ||
3160 | // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower | |
3161 | // instruction. LOWER_INSN is the original lower instruction of the branch. | |
3162 | // Caller is reponsible for overflow checking. | |
3163 | static inline uint16_t | |
3164 | thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset) | |
3165 | { | |
3166 | uint32_t bits = static_cast<uint32_t>(offset); | |
3167 | uint32_t j2 = (bits & 0x00080000U) >> 19; | |
3168 | uint32_t j1 = (bits & 0x00040000U) >> 18; | |
3169 | uint32_t lo = (bits & 0x00000ffeU) >> 1; | |
3170 | ||
3171 | return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo; | |
3172 | } | |
3173 | ||
5e445df6 ILT |
3174 | // R_ARM_ABS8: S + A |
3175 | static inline typename This::Status | |
ca09d69a | 3176 | abs8(unsigned char* view, |
5e445df6 | 3177 | const Sized_relobj<32, big_endian>* object, |
be8fcb75 | 3178 | const Symbol_value<32>* psymval) |
5e445df6 ILT |
3179 | { |
3180 | typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype; | |
3181 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3182 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3183 | Valtype val = elfcpp::Swap<8, big_endian>::readval(wv); | |
3184 | Reltype addend = utils::sign_extend<8>(val); | |
2daedcd6 | 3185 | Reltype x = psymval->value(object, addend); |
5e445df6 ILT |
3186 | val = utils::bit_select(val, x, 0xffU); |
3187 | elfcpp::Swap<8, big_endian>::writeval(wv, val); | |
a2c7281b DK |
3188 | |
3189 | // R_ARM_ABS8 permits signed or unsigned results. | |
3190 | int signed_x = static_cast<int32_t>(x); | |
3191 | return ((signed_x < -128 || signed_x > 255) | |
5e445df6 ILT |
3192 | ? This::STATUS_OVERFLOW |
3193 | : This::STATUS_OKAY); | |
3194 | } | |
3195 | ||
be8fcb75 ILT |
3196 | // R_ARM_THM_ABS5: S + A |
3197 | static inline typename This::Status | |
ca09d69a | 3198 | thm_abs5(unsigned char* view, |
be8fcb75 ILT |
3199 | const Sized_relobj<32, big_endian>* object, |
3200 | const Symbol_value<32>* psymval) | |
3201 | { | |
3202 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3203 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3204 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3205 | Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | |
3206 | Reltype addend = (val & 0x7e0U) >> 6; | |
2daedcd6 | 3207 | Reltype x = psymval->value(object, addend); |
be8fcb75 ILT |
3208 | val = utils::bit_select(val, x << 6, 0x7e0U); |
3209 | elfcpp::Swap<16, big_endian>::writeval(wv, val); | |
a2c7281b DK |
3210 | |
3211 | // R_ARM_ABS16 permits signed or unsigned results. | |
3212 | int signed_x = static_cast<int32_t>(x); | |
3213 | return ((signed_x < -32768 || signed_x > 65535) | |
be8fcb75 ILT |
3214 | ? This::STATUS_OVERFLOW |
3215 | : This::STATUS_OKAY); | |
3216 | } | |
3217 | ||
3218 | // R_ARM_ABS12: S + A | |
3219 | static inline typename This::Status | |
ca09d69a | 3220 | abs12(unsigned char* view, |
51938283 DK |
3221 | const Sized_relobj<32, big_endian>* object, |
3222 | const Symbol_value<32>* psymval) | |
be8fcb75 ILT |
3223 | { |
3224 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3225 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3226 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3227 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3228 | Reltype addend = val & 0x0fffU; | |
2daedcd6 | 3229 | Reltype x = psymval->value(object, addend); |
be8fcb75 ILT |
3230 | val = utils::bit_select(val, x, 0x0fffU); |
3231 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
3232 | return (utils::has_overflow<12>(x) | |
3233 | ? This::STATUS_OVERFLOW | |
3234 | : This::STATUS_OKAY); | |
3235 | } | |
3236 | ||
3237 | // R_ARM_ABS16: S + A | |
3238 | static inline typename This::Status | |
ca09d69a | 3239 | abs16(unsigned char* view, |
51938283 DK |
3240 | const Sized_relobj<32, big_endian>* object, |
3241 | const Symbol_value<32>* psymval) | |
be8fcb75 ILT |
3242 | { |
3243 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3244 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3245 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3246 | Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | |
3247 | Reltype addend = utils::sign_extend<16>(val); | |
2daedcd6 | 3248 | Reltype x = psymval->value(object, addend); |
be8fcb75 ILT |
3249 | val = utils::bit_select(val, x, 0xffffU); |
3250 | elfcpp::Swap<16, big_endian>::writeval(wv, val); | |
3251 | return (utils::has_signed_unsigned_overflow<16>(x) | |
3252 | ? This::STATUS_OVERFLOW | |
3253 | : This::STATUS_OKAY); | |
3254 | } | |
3255 | ||
c121c671 DK |
3256 | // R_ARM_ABS32: (S + A) | T |
3257 | static inline typename This::Status | |
ca09d69a | 3258 | abs32(unsigned char* view, |
c121c671 DK |
3259 | const Sized_relobj<32, big_endian>* object, |
3260 | const Symbol_value<32>* psymval, | |
2daedcd6 | 3261 | Arm_address thumb_bit) |
c121c671 DK |
3262 | { |
3263 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3264 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3265 | Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv); | |
2daedcd6 | 3266 | Valtype x = psymval->value(object, addend) | thumb_bit; |
c121c671 DK |
3267 | elfcpp::Swap<32, big_endian>::writeval(wv, x); |
3268 | return This::STATUS_OKAY; | |
3269 | } | |
3270 | ||
3271 | // R_ARM_REL32: (S + A) | T - P | |
3272 | static inline typename This::Status | |
ca09d69a | 3273 | rel32(unsigned char* view, |
c121c671 DK |
3274 | const Sized_relobj<32, big_endian>* object, |
3275 | const Symbol_value<32>* psymval, | |
ebabffbd | 3276 | Arm_address address, |
2daedcd6 | 3277 | Arm_address thumb_bit) |
c121c671 DK |
3278 | { |
3279 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3280 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3281 | Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv); | |
2daedcd6 | 3282 | Valtype x = (psymval->value(object, addend) | thumb_bit) - address; |
c121c671 DK |
3283 | elfcpp::Swap<32, big_endian>::writeval(wv, x); |
3284 | return This::STATUS_OKAY; | |
3285 | } | |
3286 | ||
089d69dc DK |
3287 | // R_ARM_THM_JUMP24: (S + A) | T - P |
3288 | static typename This::Status | |
ca09d69a | 3289 | thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object, |
089d69dc DK |
3290 | const Symbol_value<32>* psymval, Arm_address address, |
3291 | Arm_address thumb_bit); | |
3292 | ||
800d0f56 ILT |
3293 | // R_ARM_THM_JUMP6: S + A – P |
3294 | static inline typename This::Status | |
ca09d69a | 3295 | thm_jump6(unsigned char* view, |
800d0f56 ILT |
3296 | const Sized_relobj<32, big_endian>* object, |
3297 | const Symbol_value<32>* psymval, | |
3298 | Arm_address address) | |
3299 | { | |
3300 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3301 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | |
3302 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3303 | Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | |
3304 | // bit[9]:bit[7:3]:’0’ (mask: 0x02f8) | |
3305 | Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2)); | |
3306 | Reltype x = (psymval->value(object, addend) - address); | |
3307 | val = (val & 0xfd07) | ((x & 0x0040) << 3) | ((val & 0x003e) << 2); | |
3308 | elfcpp::Swap<16, big_endian>::writeval(wv, val); | |
3309 | // CZB does only forward jumps. | |
3310 | return ((x > 0x007e) | |
3311 | ? This::STATUS_OVERFLOW | |
3312 | : This::STATUS_OKAY); | |
3313 | } | |
3314 | ||
3315 | // R_ARM_THM_JUMP8: S + A – P | |
3316 | static inline typename This::Status | |
ca09d69a | 3317 | thm_jump8(unsigned char* view, |
800d0f56 ILT |
3318 | const Sized_relobj<32, big_endian>* object, |
3319 | const Symbol_value<32>* psymval, | |
3320 | Arm_address address) | |
3321 | { | |
3322 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3323 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | |
3324 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3325 | Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | |
3326 | Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1); | |
3327 | Reltype x = (psymval->value(object, addend) - address); | |
3328 | elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1)); | |
3329 | return (utils::has_overflow<8>(x) | |
3330 | ? This::STATUS_OVERFLOW | |
3331 | : This::STATUS_OKAY); | |
3332 | } | |
3333 | ||
3334 | // R_ARM_THM_JUMP11: S + A – P | |
3335 | static inline typename This::Status | |
ca09d69a | 3336 | thm_jump11(unsigned char* view, |
800d0f56 ILT |
3337 | const Sized_relobj<32, big_endian>* object, |
3338 | const Symbol_value<32>* psymval, | |
3339 | Arm_address address) | |
3340 | { | |
3341 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3342 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | |
3343 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3344 | Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | |
3345 | Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1); | |
3346 | Reltype x = (psymval->value(object, addend) - address); | |
3347 | elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1)); | |
3348 | return (utils::has_overflow<11>(x) | |
3349 | ? This::STATUS_OVERFLOW | |
3350 | : This::STATUS_OKAY); | |
3351 | } | |
3352 | ||
c121c671 DK |
3353 | // R_ARM_BASE_PREL: B(S) + A - P |
3354 | static inline typename This::Status | |
3355 | base_prel(unsigned char* view, | |
ebabffbd DK |
3356 | Arm_address origin, |
3357 | Arm_address address) | |
c121c671 DK |
3358 | { |
3359 | Base::rel32(view, origin - address); | |
3360 | return STATUS_OKAY; | |
3361 | } | |
3362 | ||
be8fcb75 ILT |
3363 | // R_ARM_BASE_ABS: B(S) + A |
3364 | static inline typename This::Status | |
3365 | base_abs(unsigned char* view, | |
f4e5969c | 3366 | Arm_address origin) |
be8fcb75 ILT |
3367 | { |
3368 | Base::rel32(view, origin); | |
3369 | return STATUS_OKAY; | |
3370 | } | |
3371 | ||
c121c671 DK |
3372 | // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG |
3373 | static inline typename This::Status | |
3374 | got_brel(unsigned char* view, | |
3375 | typename elfcpp::Swap<32, big_endian>::Valtype got_offset) | |
3376 | { | |
3377 | Base::rel32(view, got_offset); | |
3378 | return This::STATUS_OKAY; | |
3379 | } | |
3380 | ||
f4e5969c | 3381 | // R_ARM_GOT_PREL: GOT(S) + A - P |
7f5309a5 | 3382 | static inline typename This::Status |
ca09d69a | 3383 | got_prel(unsigned char* view, |
f4e5969c | 3384 | Arm_address got_entry, |
ebabffbd | 3385 | Arm_address address) |
7f5309a5 | 3386 | { |
f4e5969c | 3387 | Base::rel32(view, got_entry - address); |
7f5309a5 ILT |
3388 | return This::STATUS_OKAY; |
3389 | } | |
3390 | ||
c121c671 DK |
3391 | // R_ARM_PREL: (S + A) | T - P |
3392 | static inline typename This::Status | |
ca09d69a | 3393 | prel31(unsigned char* view, |
c121c671 DK |
3394 | const Sized_relobj<32, big_endian>* object, |
3395 | const Symbol_value<32>* psymval, | |
ebabffbd | 3396 | Arm_address address, |
2daedcd6 | 3397 | Arm_address thumb_bit) |
c121c671 DK |
3398 | { |
3399 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3400 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3401 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3402 | Valtype addend = utils::sign_extend<31>(val); | |
2daedcd6 | 3403 | Valtype x = (psymval->value(object, addend) | thumb_bit) - address; |
c121c671 DK |
3404 | val = utils::bit_select(val, x, 0x7fffffffU); |
3405 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
3406 | return (utils::has_overflow<31>(x) ? | |
3407 | This::STATUS_OVERFLOW : This::STATUS_OKAY); | |
3408 | } | |
fd3c5f0b | 3409 | |
5c57f1be | 3410 | // R_ARM_MOVW_ABS_NC: (S + A) | T (relative address base is ) |
c2a122b6 | 3411 | // R_ARM_MOVW_PREL_NC: (S + A) | T - P |
5c57f1be DK |
3412 | // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S) |
3413 | // R_ARM_MOVW_BREL: ((S + A) | T) - B(S) | |
02961d7e | 3414 | static inline typename This::Status |
5c57f1be DK |
3415 | movw(unsigned char* view, |
3416 | const Sized_relobj<32, big_endian>* object, | |
3417 | const Symbol_value<32>* psymval, | |
3418 | Arm_address relative_address_base, | |
3419 | Arm_address thumb_bit, | |
3420 | bool check_overflow) | |
02961d7e ILT |
3421 | { |
3422 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3423 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3424 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3425 | Valtype addend = This::extract_arm_movw_movt_addend(val); | |
5c57f1be DK |
3426 | Valtype x = ((psymval->value(object, addend) | thumb_bit) |
3427 | - relative_address_base); | |
02961d7e ILT |
3428 | val = This::insert_val_arm_movw_movt(val, x); |
3429 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
5c57f1be DK |
3430 | return ((check_overflow && utils::has_overflow<16>(x)) |
3431 | ? This::STATUS_OVERFLOW | |
3432 | : This::STATUS_OKAY); | |
02961d7e ILT |
3433 | } |
3434 | ||
5c57f1be | 3435 | // R_ARM_MOVT_ABS: S + A (relative address base is 0) |
c2a122b6 | 3436 | // R_ARM_MOVT_PREL: S + A - P |
5c57f1be | 3437 | // R_ARM_MOVT_BREL: S + A - B(S) |
c2a122b6 | 3438 | static inline typename This::Status |
5c57f1be DK |
3439 | movt(unsigned char* view, |
3440 | const Sized_relobj<32, big_endian>* object, | |
3441 | const Symbol_value<32>* psymval, | |
3442 | Arm_address relative_address_base) | |
c2a122b6 ILT |
3443 | { |
3444 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3445 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3446 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3447 | Valtype addend = This::extract_arm_movw_movt_addend(val); | |
5c57f1be | 3448 | Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16; |
c2a122b6 ILT |
3449 | val = This::insert_val_arm_movw_movt(val, x); |
3450 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
5c57f1be | 3451 | // FIXME: IHI0044D says that we should check for overflow. |
c2a122b6 ILT |
3452 | return This::STATUS_OKAY; |
3453 | } | |
3454 | ||
5c57f1be | 3455 | // R_ARM_THM_MOVW_ABS_NC: S + A | T (relative_address_base is 0) |
c2a122b6 | 3456 | // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P |
5c57f1be DK |
3457 | // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S) |
3458 | // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S) | |
02961d7e | 3459 | static inline typename This::Status |
ca09d69a | 3460 | thm_movw(unsigned char* view, |
5c57f1be DK |
3461 | const Sized_relobj<32, big_endian>* object, |
3462 | const Symbol_value<32>* psymval, | |
3463 | Arm_address relative_address_base, | |
3464 | Arm_address thumb_bit, | |
3465 | bool check_overflow) | |
02961d7e ILT |
3466 | { |
3467 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3468 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3469 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3470 | Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | |
3471 | | elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
3472 | Reltype addend = This::extract_thumb_movw_movt_addend(val); | |
5c57f1be DK |
3473 | Reltype x = |
3474 | (psymval->value(object, addend) | thumb_bit) - relative_address_base; | |
02961d7e ILT |
3475 | val = This::insert_val_thumb_movw_movt(val, x); |
3476 | elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); | |
3477 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); | |
5c57f1be DK |
3478 | return ((check_overflow && utils::has_overflow<16>(x)) |
3479 | ? This::STATUS_OVERFLOW | |
3480 | : This::STATUS_OKAY); | |
02961d7e ILT |
3481 | } |
3482 | ||
5c57f1be | 3483 | // R_ARM_THM_MOVT_ABS: S + A (relative address base is 0) |
c2a122b6 | 3484 | // R_ARM_THM_MOVT_PREL: S + A - P |
5c57f1be | 3485 | // R_ARM_THM_MOVT_BREL: S + A - B(S) |
c2a122b6 | 3486 | static inline typename This::Status |
5c57f1be DK |
3487 | thm_movt(unsigned char* view, |
3488 | const Sized_relobj<32, big_endian>* object, | |
3489 | const Symbol_value<32>* psymval, | |
3490 | Arm_address relative_address_base) | |
c2a122b6 ILT |
3491 | { |
3492 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3493 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3494 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3495 | Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | |
3496 | | elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
3497 | Reltype addend = This::extract_thumb_movw_movt_addend(val); | |
5c57f1be | 3498 | Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16; |
c2a122b6 ILT |
3499 | val = This::insert_val_thumb_movw_movt(val, x); |
3500 | elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); | |
3501 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); | |
3502 | return This::STATUS_OKAY; | |
3503 | } | |
a2162063 | 3504 | |
11b861d5 DK |
3505 | // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32) |
3506 | static inline typename This::Status | |
3507 | thm_alu11(unsigned char* view, | |
3508 | const Sized_relobj<32, big_endian>* object, | |
3509 | const Symbol_value<32>* psymval, | |
3510 | Arm_address address, | |
3511 | Arm_address thumb_bit) | |
3512 | { | |
3513 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3514 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3515 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3516 | Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | |
3517 | | elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
3518 | ||
3519 | // f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0 | |
3520 | // ----------------------------------------------------------------------- | |
3521 | // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd |imm8 | |
3522 | // ADDW 1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd |imm8 | |
3523 | // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd |imm8 | |
3524 | // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd |imm8 | |
3525 | // SUBW 1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd |imm8 | |
3526 | // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd |imm8 | |
3527 | ||
3528 | // Determine a sign for the addend. | |
3529 | const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000 | |
3530 | || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1; | |
3531 | // Thumb2 addend encoding: | |
3532 | // imm12 := i | imm3 | imm8 | |
3533 | int32_t addend = (insn & 0xff) | |
3534 | | ((insn & 0x00007000) >> 4) | |
3535 | | ((insn & 0x04000000) >> 15); | |
3536 | // Apply a sign to the added. | |
3537 | addend *= sign; | |
3538 | ||
3539 | int32_t x = (psymval->value(object, addend) | thumb_bit) | |
3540 | - (address & 0xfffffffc); | |
3541 | Reltype val = abs(x); | |
3542 | // Mask out the value and a distinct part of the ADD/SUB opcode | |
3543 | // (bits 7:5 of opword). | |
3544 | insn = (insn & 0xfb0f8f00) | |
3545 | | (val & 0xff) | |
3546 | | ((val & 0x700) << 4) | |
3547 | | ((val & 0x800) << 15); | |
3548 | // Set the opcode according to whether the value to go in the | |
3549 | // place is negative. | |
3550 | if (x < 0) | |
3551 | insn |= 0x00a00000; | |
3552 | ||
3553 | elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); | |
3554 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); | |
3555 | return ((val > 0xfff) ? | |
3556 | This::STATUS_OVERFLOW : This::STATUS_OKAY); | |
3557 | } | |
3558 | ||
3559 | // R_ARM_THM_PC8: S + A - Pa (Thumb) | |
3560 | static inline typename This::Status | |
3561 | thm_pc8(unsigned char* view, | |
3562 | const Sized_relobj<32, big_endian>* object, | |
3563 | const Symbol_value<32>* psymval, | |
3564 | Arm_address address) | |
3565 | { | |
3566 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3567 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | |
3568 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3569 | Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
3570 | Reltype addend = ((insn & 0x00ff) << 2); | |
3571 | int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); | |
3572 | Reltype val = abs(x); | |
3573 | insn = (insn & 0xff00) | ((val & 0x03fc) >> 2); | |
3574 | ||
3575 | elfcpp::Swap<16, big_endian>::writeval(wv, insn); | |
3576 | return ((val > 0x03fc) | |
3577 | ? This::STATUS_OVERFLOW | |
3578 | : This::STATUS_OKAY); | |
3579 | } | |
3580 | ||
3581 | // R_ARM_THM_PC12: S + A - Pa (Thumb32) | |
3582 | static inline typename This::Status | |
3583 | thm_pc12(unsigned char* view, | |
3584 | const Sized_relobj<32, big_endian>* object, | |
3585 | const Symbol_value<32>* psymval, | |
3586 | Arm_address address) | |
3587 | { | |
3588 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3589 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | |
3590 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3591 | Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | |
3592 | | elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
3593 | // Determine a sign for the addend (positive if the U bit is 1). | |
3594 | const int sign = (insn & 0x00800000) ? 1 : -1; | |
3595 | int32_t addend = (insn & 0xfff); | |
3596 | // Apply a sign to the added. | |
3597 | addend *= sign; | |
3598 | ||
3599 | int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); | |
3600 | Reltype val = abs(x); | |
3601 | // Mask out and apply the value and the U bit. | |
3602 | insn = (insn & 0xff7ff000) | (val & 0xfff); | |
3603 | // Set the U bit according to whether the value to go in the | |
3604 | // place is positive. | |
3605 | if (x >= 0) | |
3606 | insn |= 0x00800000; | |
3607 | ||
3608 | elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); | |
3609 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); | |
3610 | return ((val > 0xfff) ? | |
3611 | This::STATUS_OVERFLOW : This::STATUS_OKAY); | |
3612 | } | |
3613 | ||
a2162063 ILT |
3614 | // R_ARM_V4BX |
3615 | static inline typename This::Status | |
3616 | v4bx(const Relocate_info<32, big_endian>* relinfo, | |
ca09d69a | 3617 | unsigned char* view, |
a2162063 ILT |
3618 | const Arm_relobj<big_endian>* object, |
3619 | const Arm_address address, | |
3620 | const bool is_interworking) | |
3621 | { | |
3622 | ||
3623 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3624 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3625 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3626 | ||
3627 | // Ensure that we have a BX instruction. | |
3628 | gold_assert((val & 0x0ffffff0) == 0x012fff10); | |
3629 | const uint32_t reg = (val & 0xf); | |
3630 | if (is_interworking && reg != 0xf) | |
3631 | { | |
3632 | Stub_table<big_endian>* stub_table = | |
3633 | object->stub_table(relinfo->data_shndx); | |
3634 | gold_assert(stub_table != NULL); | |
3635 | ||
3636 | Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg); | |
3637 | gold_assert(stub != NULL); | |
3638 | ||
3639 | int32_t veneer_address = | |
3640 | stub_table->address() + stub->offset() - 8 - address; | |
3641 | gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET) | |
3642 | && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET)); | |
3643 | // Replace with a branch to veneer (B <addr>) | |
3644 | val = (val & 0xf0000000) | 0x0a000000 | |
3645 | | ((veneer_address >> 2) & 0x00ffffff); | |
3646 | } | |
3647 | else | |
3648 | { | |
3649 | // Preserve Rm (lowest four bits) and the condition code | |
3650 | // (highest four bits). Other bits encode MOV PC,Rm. | |
3651 | val = (val & 0xf000000f) | 0x01a0f000; | |
3652 | } | |
3653 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
3654 | return This::STATUS_OKAY; | |
3655 | } | |
b10d2873 ILT |
3656 | |
3657 | // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P | |
3658 | // R_ARM_ALU_PC_G0: ((S + A) | T) - P | |
3659 | // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P | |
3660 | // R_ARM_ALU_PC_G1: ((S + A) | T) - P | |
3661 | // R_ARM_ALU_PC_G2: ((S + A) | T) - P | |
3662 | // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S) | |
3663 | // R_ARM_ALU_SB_G0: ((S + A) | T) - B(S) | |
3664 | // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S) | |
3665 | // R_ARM_ALU_SB_G1: ((S + A) | T) - B(S) | |
3666 | // R_ARM_ALU_SB_G2: ((S + A) | T) - B(S) | |
3667 | static inline typename This::Status | |
3668 | arm_grp_alu(unsigned char* view, | |
3669 | const Sized_relobj<32, big_endian>* object, | |
3670 | const Symbol_value<32>* psymval, | |
3671 | const int group, | |
3672 | Arm_address address, | |
3673 | Arm_address thumb_bit, | |
3674 | bool check_overflow) | |
3675 | { | |
5c57f1be | 3676 | gold_assert(group >= 0 && group < 3); |
b10d2873 ILT |
3677 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; |
3678 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3679 | Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | |
3680 | ||
3681 | // ALU group relocations are allowed only for the ADD/SUB instructions. | |
3682 | // (0x00800000 - ADD, 0x00400000 - SUB) | |
3683 | const Valtype opcode = insn & 0x01e00000; | |
3684 | if (opcode != 0x00800000 && opcode != 0x00400000) | |
3685 | return This::STATUS_BAD_RELOC; | |
3686 | ||
3687 | // Determine a sign for the addend. | |
3688 | const int sign = (opcode == 0x00800000) ? 1 : -1; | |
3689 | // shifter = rotate_imm * 2 | |
3690 | const uint32_t shifter = (insn & 0xf00) >> 7; | |
3691 | // Initial addend value. | |
3692 | int32_t addend = insn & 0xff; | |
3693 | // Rotate addend right by shifter. | |
3694 | addend = (addend >> shifter) | (addend << (32 - shifter)); | |
3695 | // Apply a sign to the added. | |
3696 | addend *= sign; | |
3697 | ||
3698 | int32_t x = ((psymval->value(object, addend) | thumb_bit) - address); | |
3699 | Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group); | |
3700 | // Check for overflow if required | |
3701 | if (check_overflow | |
3702 | && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0)) | |
3703 | return This::STATUS_OVERFLOW; | |
3704 | ||
3705 | // Mask out the value and the ADD/SUB part of the opcode; take care | |
3706 | // not to destroy the S bit. | |
3707 | insn &= 0xff1ff000; | |
3708 | // Set the opcode according to whether the value to go in the | |
3709 | // place is negative. | |
3710 | insn |= ((x < 0) ? 0x00400000 : 0x00800000); | |
3711 | // Encode the offset (encoded Gn). | |
3712 | insn |= gn; | |
3713 | ||
3714 | elfcpp::Swap<32, big_endian>::writeval(wv, insn); | |
3715 | return This::STATUS_OKAY; | |
3716 | } | |
3717 | ||
3718 | // R_ARM_LDR_PC_G0: S + A - P | |
3719 | // R_ARM_LDR_PC_G1: S + A - P | |
3720 | // R_ARM_LDR_PC_G2: S + A - P | |
3721 | // R_ARM_LDR_SB_G0: S + A - B(S) | |
3722 | // R_ARM_LDR_SB_G1: S + A - B(S) | |
3723 | // R_ARM_LDR_SB_G2: S + A - B(S) | |
3724 | static inline typename This::Status | |
3725 | arm_grp_ldr(unsigned char* view, | |
3726 | const Sized_relobj<32, big_endian>* object, | |
3727 | const Symbol_value<32>* psymval, | |
3728 | const int group, | |
3729 | Arm_address address) | |
3730 | { | |
5c57f1be | 3731 | gold_assert(group >= 0 && group < 3); |
b10d2873 ILT |
3732 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; |
3733 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3734 | Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | |
3735 | ||
3736 | const int sign = (insn & 0x00800000) ? 1 : -1; | |
3737 | int32_t addend = (insn & 0xfff) * sign; | |
3738 | int32_t x = (psymval->value(object, addend) - address); | |
3739 | // Calculate the relevant G(n-1) value to obtain this stage residual. | |
3740 | Valtype residual = | |
3741 | Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | |
3742 | if (residual >= 0x1000) | |
3743 | return This::STATUS_OVERFLOW; | |
3744 | ||
3745 | // Mask out the value and U bit. | |
3746 | insn &= 0xff7ff000; | |
3747 | // Set the U bit for non-negative values. | |
3748 | if (x >= 0) | |
3749 | insn |= 0x00800000; | |
3750 | insn |= residual; | |
3751 | ||
3752 | elfcpp::Swap<32, big_endian>::writeval(wv, insn); | |
3753 | return This::STATUS_OKAY; | |
3754 | } | |
3755 | ||
3756 | // R_ARM_LDRS_PC_G0: S + A - P | |
3757 | // R_ARM_LDRS_PC_G1: S + A - P | |
3758 | // R_ARM_LDRS_PC_G2: S + A - P | |
3759 | // R_ARM_LDRS_SB_G0: S + A - B(S) | |
3760 | // R_ARM_LDRS_SB_G1: S + A - B(S) | |
3761 | // R_ARM_LDRS_SB_G2: S + A - B(S) | |
3762 | static inline typename This::Status | |
3763 | arm_grp_ldrs(unsigned char* view, | |
3764 | const Sized_relobj<32, big_endian>* object, | |
3765 | const Symbol_value<32>* psymval, | |
3766 | const int group, | |
3767 | Arm_address address) | |
3768 | { | |
5c57f1be | 3769 | gold_assert(group >= 0 && group < 3); |
b10d2873 ILT |
3770 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; |
3771 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3772 | Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | |
3773 | ||
3774 | const int sign = (insn & 0x00800000) ? 1 : -1; | |
3775 | int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign; | |
3776 | int32_t x = (psymval->value(object, addend) - address); | |
3777 | // Calculate the relevant G(n-1) value to obtain this stage residual. | |
3778 | Valtype residual = | |
3779 | Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | |
3780 | if (residual >= 0x100) | |
3781 | return This::STATUS_OVERFLOW; | |
3782 | ||
3783 | // Mask out the value and U bit. | |
3784 | insn &= 0xff7ff0f0; | |
3785 | // Set the U bit for non-negative values. | |
3786 | if (x >= 0) | |
3787 | insn |= 0x00800000; | |
3788 | insn |= ((residual & 0xf0) << 4) | (residual & 0xf); | |
3789 | ||
3790 | elfcpp::Swap<32, big_endian>::writeval(wv, insn); | |
3791 | return This::STATUS_OKAY; | |
3792 | } | |
3793 | ||
3794 | // R_ARM_LDC_PC_G0: S + A - P | |
3795 | // R_ARM_LDC_PC_G1: S + A - P | |
3796 | // R_ARM_LDC_PC_G2: S + A - P | |
3797 | // R_ARM_LDC_SB_G0: S + A - B(S) | |
3798 | // R_ARM_LDC_SB_G1: S + A - B(S) | |
3799 | // R_ARM_LDC_SB_G2: S + A - B(S) | |
3800 | static inline typename This::Status | |
3801 | arm_grp_ldc(unsigned char* view, | |
3802 | const Sized_relobj<32, big_endian>* object, | |
3803 | const Symbol_value<32>* psymval, | |
3804 | const int group, | |
3805 | Arm_address address) | |
3806 | { | |
5c57f1be | 3807 | gold_assert(group >= 0 && group < 3); |
b10d2873 ILT |
3808 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; |
3809 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3810 | Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | |
3811 | ||
3812 | const int sign = (insn & 0x00800000) ? 1 : -1; | |
3813 | int32_t addend = ((insn & 0xff) << 2) * sign; | |
3814 | int32_t x = (psymval->value(object, addend) - address); | |
3815 | // Calculate the relevant G(n-1) value to obtain this stage residual. | |
3816 | Valtype residual = | |
3817 | Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | |
3818 | if ((residual & 0x3) != 0 || residual >= 0x400) | |
3819 | return This::STATUS_OVERFLOW; | |
3820 | ||
3821 | // Mask out the value and U bit. | |
3822 | insn &= 0xff7fff00; | |
3823 | // Set the U bit for non-negative values. | |
3824 | if (x >= 0) | |
3825 | insn |= 0x00800000; | |
3826 | insn |= (residual >> 2); | |
3827 | ||
3828 | elfcpp::Swap<32, big_endian>::writeval(wv, insn); | |
3829 | return This::STATUS_OKAY; | |
3830 | } | |
c121c671 DK |
3831 | }; |
3832 | ||
d204b6e9 DK |
3833 | // Relocate ARM long branches. This handles relocation types |
3834 | // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25. | |
3835 | // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly | |
3836 | // undefined and we do not use PLT in this relocation. In such a case, | |
3837 | // the branch is converted into an NOP. | |
3838 | ||
3839 | template<bool big_endian> | |
3840 | typename Arm_relocate_functions<big_endian>::Status | |
3841 | Arm_relocate_functions<big_endian>::arm_branch_common( | |
3842 | unsigned int r_type, | |
3843 | const Relocate_info<32, big_endian>* relinfo, | |
ca09d69a | 3844 | unsigned char* view, |
d204b6e9 DK |
3845 | const Sized_symbol<32>* gsym, |
3846 | const Arm_relobj<big_endian>* object, | |
3847 | unsigned int r_sym, | |
3848 | const Symbol_value<32>* psymval, | |
3849 | Arm_address address, | |
3850 | Arm_address thumb_bit, | |
3851 | bool is_weakly_undefined_without_plt) | |
3852 | { | |
3853 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
3854 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3855 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
3856 | ||
3857 | bool insn_is_b = (((val >> 28) & 0xf) <= 0xe) | |
3858 | && ((val & 0x0f000000UL) == 0x0a000000UL); | |
3859 | bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL; | |
3860 | bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe) | |
3861 | && ((val & 0x0f000000UL) == 0x0b000000UL); | |
3862 | bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL; | |
3863 | bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL; | |
3864 | ||
3865 | // Check that the instruction is valid. | |
3866 | if (r_type == elfcpp::R_ARM_CALL) | |
3867 | { | |
3868 | if (!insn_is_uncond_bl && !insn_is_blx) | |
3869 | return This::STATUS_BAD_RELOC; | |
3870 | } | |
3871 | else if (r_type == elfcpp::R_ARM_JUMP24) | |
3872 | { | |
3873 | if (!insn_is_b && !insn_is_cond_bl) | |
3874 | return This::STATUS_BAD_RELOC; | |
3875 | } | |
3876 | else if (r_type == elfcpp::R_ARM_PLT32) | |
3877 | { | |
3878 | if (!insn_is_any_branch) | |
3879 | return This::STATUS_BAD_RELOC; | |
3880 | } | |
3881 | else if (r_type == elfcpp::R_ARM_XPC25) | |
3882 | { | |
3883 | // FIXME: AAELF document IH0044C does not say much about it other | |
3884 | // than it being obsolete. | |
3885 | if (!insn_is_any_branch) | |
3886 | return This::STATUS_BAD_RELOC; | |
3887 | } | |
3888 | else | |
3889 | gold_unreachable(); | |
3890 | ||
3891 | // A branch to an undefined weak symbol is turned into a jump to | |
3892 | // the next instruction unless a PLT entry will be created. | |
3893 | // Do the same for local undefined symbols. | |
3894 | // The jump to the next instruction is optimized as a NOP depending | |
3895 | // on the architecture. | |
3896 | const Target_arm<big_endian>* arm_target = | |
3897 | Target_arm<big_endian>::default_target(); | |
3898 | if (is_weakly_undefined_without_plt) | |
3899 | { | |
5c388529 | 3900 | gold_assert(!parameters->options().relocatable()); |
d204b6e9 DK |
3901 | Valtype cond = val & 0xf0000000U; |
3902 | if (arm_target->may_use_arm_nop()) | |
3903 | val = cond | 0x0320f000; | |
3904 | else | |
3905 | val = cond | 0x01a00000; // Using pre-UAL nop: mov r0, r0. | |
3906 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
3907 | return This::STATUS_OKAY; | |
3908 | } | |
3909 | ||
3910 | Valtype addend = utils::sign_extend<26>(val << 2); | |
3911 | Valtype branch_target = psymval->value(object, addend); | |
3912 | int32_t branch_offset = branch_target - address; | |
3913 | ||
3914 | // We need a stub if the branch offset is too large or if we need | |
3915 | // to switch mode. | |
3916 | bool may_use_blx = arm_target->may_use_blx(); | |
3917 | Reloc_stub* stub = NULL; | |
5c388529 DK |
3918 | |
3919 | if (!parameters->options().relocatable() | |
3920 | && (utils::has_overflow<26>(branch_offset) | |
3921 | || ((thumb_bit != 0) | |
3922 | && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))) | |
d204b6e9 | 3923 | { |
2a2b6d42 DK |
3924 | Valtype unadjusted_branch_target = psymval->value(object, 0); |
3925 | ||
d204b6e9 | 3926 | Stub_type stub_type = |
2a2b6d42 DK |
3927 | Reloc_stub::stub_type_for_reloc(r_type, address, |
3928 | unadjusted_branch_target, | |
d204b6e9 DK |
3929 | (thumb_bit != 0)); |
3930 | if (stub_type != arm_stub_none) | |
3931 | { | |
2ea97941 | 3932 | Stub_table<big_endian>* stub_table = |
d204b6e9 | 3933 | object->stub_table(relinfo->data_shndx); |
2ea97941 | 3934 | gold_assert(stub_table != NULL); |
d204b6e9 DK |
3935 | |
3936 | Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); | |
2ea97941 | 3937 | stub = stub_table->find_reloc_stub(stub_key); |
d204b6e9 DK |
3938 | gold_assert(stub != NULL); |
3939 | thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; | |
2ea97941 | 3940 | branch_target = stub_table->address() + stub->offset() + addend; |
d204b6e9 | 3941 | branch_offset = branch_target - address; |
2a2b6d42 | 3942 | gold_assert(!utils::has_overflow<26>(branch_offset)); |
d204b6e9 DK |
3943 | } |
3944 | } | |
3945 | ||
3946 | // At this point, if we still need to switch mode, the instruction | |
3947 | // must either be a BLX or a BL that can be converted to a BLX. | |
3948 | if (thumb_bit != 0) | |
3949 | { | |
3950 | // Turn BL to BLX. | |
3951 | gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL); | |
3952 | val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23); | |
3953 | } | |
3954 | ||
3955 | val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL); | |
3956 | elfcpp::Swap<32, big_endian>::writeval(wv, val); | |
3957 | return (utils::has_overflow<26>(branch_offset) | |
3958 | ? This::STATUS_OVERFLOW : This::STATUS_OKAY); | |
3959 | } | |
3960 | ||
51938283 DK |
3961 | // Relocate THUMB long branches. This handles relocation types |
3962 | // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22. | |
3963 | // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly | |
3964 | // undefined and we do not use PLT in this relocation. In such a case, | |
3965 | // the branch is converted into an NOP. | |
3966 | ||
3967 | template<bool big_endian> | |
3968 | typename Arm_relocate_functions<big_endian>::Status | |
3969 | Arm_relocate_functions<big_endian>::thumb_branch_common( | |
3970 | unsigned int r_type, | |
3971 | const Relocate_info<32, big_endian>* relinfo, | |
ca09d69a | 3972 | unsigned char* view, |
51938283 DK |
3973 | const Sized_symbol<32>* gsym, |
3974 | const Arm_relobj<big_endian>* object, | |
3975 | unsigned int r_sym, | |
3976 | const Symbol_value<32>* psymval, | |
3977 | Arm_address address, | |
3978 | Arm_address thumb_bit, | |
3979 | bool is_weakly_undefined_without_plt) | |
3980 | { | |
3981 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
3982 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
3983 | uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
3984 | uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
3985 | ||
3986 | // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference | |
3987 | // into account. | |
3988 | bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U; | |
3989 | bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U; | |
3990 | ||
3991 | // Check that the instruction is valid. | |
3992 | if (r_type == elfcpp::R_ARM_THM_CALL) | |
3993 | { | |
3994 | if (!is_bl_insn && !is_blx_insn) | |
3995 | return This::STATUS_BAD_RELOC; | |
3996 | } | |
3997 | else if (r_type == elfcpp::R_ARM_THM_JUMP24) | |
3998 | { | |
3999 | // This cannot be a BLX. | |
4000 | if (!is_bl_insn) | |
4001 | return This::STATUS_BAD_RELOC; | |
4002 | } | |
4003 | else if (r_type == elfcpp::R_ARM_THM_XPC22) | |
4004 | { | |
4005 | // Check for Thumb to Thumb call. | |
4006 | if (!is_blx_insn) | |
4007 | return This::STATUS_BAD_RELOC; | |
4008 | if (thumb_bit != 0) | |
4009 | { | |
4010 | gold_warning(_("%s: Thumb BLX instruction targets " | |
4011 | "thumb function '%s'."), | |
4012 | object->name().c_str(), | |
4013 | (gsym ? gsym->name() : "(local)")); | |
4014 | // Convert BLX to BL. | |
4015 | lower_insn |= 0x1000U; | |
4016 | } | |
4017 | } | |
4018 | else | |
4019 | gold_unreachable(); | |
4020 | ||
4021 | // A branch to an undefined weak symbol is turned into a jump to | |
4022 | // the next instruction unless a PLT entry will be created. | |
4023 | // The jump to the next instruction is optimized as a NOP.W for | |
4024 | // Thumb-2 enabled architectures. | |
4025 | const Target_arm<big_endian>* arm_target = | |
4026 | Target_arm<big_endian>::default_target(); | |
4027 | if (is_weakly_undefined_without_plt) | |
4028 | { | |
5c388529 | 4029 | gold_assert(!parameters->options().relocatable()); |
51938283 DK |
4030 | if (arm_target->may_use_thumb2_nop()) |
4031 | { | |
4032 | elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af); | |
4033 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000); | |
4034 | } | |
4035 | else | |
4036 | { | |
4037 | elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000); | |
4038 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00); | |
4039 | } | |
4040 | return This::STATUS_OKAY; | |
4041 | } | |
4042 | ||
089d69dc | 4043 | int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn); |
51938283 | 4044 | Arm_address branch_target = psymval->value(object, addend); |
a2c7281b DK |
4045 | |
4046 | // For BLX, bit 1 of target address comes from bit 1 of base address. | |
4047 | bool may_use_blx = arm_target->may_use_blx(); | |
4048 | if (thumb_bit == 0 && may_use_blx) | |
4049 | branch_target = utils::bit_select(branch_target, address, 0x2); | |
4050 | ||
51938283 DK |
4051 | int32_t branch_offset = branch_target - address; |
4052 | ||
4053 | // We need a stub if the branch offset is too large or if we need | |
4054 | // to switch mode. | |
51938283 | 4055 | bool thumb2 = arm_target->using_thumb2(); |
5c388529 DK |
4056 | if (!parameters->options().relocatable() |
4057 | && ((!thumb2 && utils::has_overflow<23>(branch_offset)) | |
4058 | || (thumb2 && utils::has_overflow<25>(branch_offset)) | |
4059 | || ((thumb_bit == 0) | |
4060 | && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) | |
4061 | || r_type == elfcpp::R_ARM_THM_JUMP24)))) | |
51938283 | 4062 | { |
2a2b6d42 DK |
4063 | Arm_address unadjusted_branch_target = psymval->value(object, 0); |
4064 | ||
51938283 | 4065 | Stub_type stub_type = |
2a2b6d42 DK |
4066 | Reloc_stub::stub_type_for_reloc(r_type, address, |
4067 | unadjusted_branch_target, | |
51938283 | 4068 | (thumb_bit != 0)); |
2a2b6d42 | 4069 | |
51938283 DK |
4070 | if (stub_type != arm_stub_none) |
4071 | { | |
2ea97941 | 4072 | Stub_table<big_endian>* stub_table = |
51938283 | 4073 | object->stub_table(relinfo->data_shndx); |
2ea97941 | 4074 | gold_assert(stub_table != NULL); |
51938283 DK |
4075 | |
4076 | Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); | |
2ea97941 | 4077 | Reloc_stub* stub = stub_table->find_reloc_stub(stub_key); |
51938283 DK |
4078 | gold_assert(stub != NULL); |
4079 | thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; | |
2ea97941 | 4080 | branch_target = stub_table->address() + stub->offset() + addend; |
a2c7281b DK |
4081 | if (thumb_bit == 0 && may_use_blx) |
4082 | branch_target = utils::bit_select(branch_target, address, 0x2); | |
51938283 DK |
4083 | branch_offset = branch_target - address; |
4084 | } | |
4085 | } | |
4086 | ||
4087 | // At this point, if we still need to switch mode, the instruction | |
4088 | // must either be a BLX or a BL that can be converted to a BLX. | |
4089 | if (thumb_bit == 0) | |
4090 | { | |
4091 | gold_assert(may_use_blx | |
4092 | && (r_type == elfcpp::R_ARM_THM_CALL | |
4093 | || r_type == elfcpp::R_ARM_THM_XPC22)); | |
4094 | // Make sure this is a BLX. | |
4095 | lower_insn &= ~0x1000U; | |
4096 | } | |
4097 | else | |
4098 | { | |
4099 | // Make sure this is a BL. | |
4100 | lower_insn |= 0x1000U; | |
4101 | } | |
4102 | ||
a2c7281b DK |
4103 | // For a BLX instruction, make sure that the relocation is rounded up |
4104 | // to a word boundary. This follows the semantics of the instruction | |
4105 | // which specifies that bit 1 of the target address will come from bit | |
4106 | // 1 of the base address. | |
51938283 | 4107 | if ((lower_insn & 0x5000U) == 0x4000U) |
a2c7281b | 4108 | gold_assert((branch_offset & 3) == 0); |
51938283 DK |
4109 | |
4110 | // Put BRANCH_OFFSET back into the insn. Assumes two's complement. | |
4111 | // We use the Thumb-2 encoding, which is safe even if dealing with | |
4112 | // a Thumb-1 instruction by virtue of our overflow check above. */ | |
089d69dc DK |
4113 | upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset); |
4114 | lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset); | |
51938283 DK |
4115 | |
4116 | elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | |
4117 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | |
4118 | ||
a2c7281b DK |
4119 | gold_assert(!utils::has_overflow<25>(branch_offset)); |
4120 | ||
51938283 | 4121 | return ((thumb2 |
089d69dc DK |
4122 | ? utils::has_overflow<25>(branch_offset) |
4123 | : utils::has_overflow<23>(branch_offset)) | |
4124 | ? This::STATUS_OVERFLOW | |
4125 | : This::STATUS_OKAY); | |
4126 | } | |
4127 | ||
4128 | // Relocate THUMB-2 long conditional branches. | |
4129 | // If IS_WEAK_UNDEFINED_WITH_PLT is true. The target symbol is weakly | |
4130 | // undefined and we do not use PLT in this relocation. In such a case, | |
4131 | // the branch is converted into an NOP. | |
4132 | ||
4133 | template<bool big_endian> | |
4134 | typename Arm_relocate_functions<big_endian>::Status | |
4135 | Arm_relocate_functions<big_endian>::thm_jump19( | |
ca09d69a | 4136 | unsigned char* view, |
089d69dc DK |
4137 | const Arm_relobj<big_endian>* object, |
4138 | const Symbol_value<32>* psymval, | |
4139 | Arm_address address, | |
4140 | Arm_address thumb_bit) | |
4141 | { | |
4142 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
4143 | Valtype* wv = reinterpret_cast<Valtype*>(view); | |
4144 | uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
4145 | uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
4146 | int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn); | |
4147 | ||
4148 | Arm_address branch_target = psymval->value(object, addend); | |
4149 | int32_t branch_offset = branch_target - address; | |
4150 | ||
4151 | // ??? Should handle interworking? GCC might someday try to | |
4152 | // use this for tail calls. | |
4153 | // FIXME: We do support thumb entry to PLT yet. | |
4154 | if (thumb_bit == 0) | |
4155 | { | |
4156 | gold_error(_("conditional branch to PLT in THUMB-2 not supported yet.")); | |
4157 | return This::STATUS_BAD_RELOC; | |
4158 | } | |
4159 | ||
4160 | // Put RELOCATION back into the insn. | |
4161 | upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset); | |
4162 | lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset); | |
4163 | ||
4164 | // Put the relocated value back in the object file: | |
4165 | elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | |
4166 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | |
4167 | ||
4168 | return (utils::has_overflow<21>(branch_offset) | |
51938283 DK |
4169 | ? This::STATUS_OVERFLOW |
4170 | : This::STATUS_OKAY); | |
4171 | } | |
4172 | ||
94cdfcff DK |
4173 | // Get the GOT section, creating it if necessary. |
4174 | ||
4175 | template<bool big_endian> | |
4a54abbb | 4176 | Arm_output_data_got<big_endian>* |
94cdfcff DK |
4177 | Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout) |
4178 | { | |
4179 | if (this->got_ == NULL) | |
4180 | { | |
4181 | gold_assert(symtab != NULL && layout != NULL); | |
4182 | ||
4a54abbb | 4183 | this->got_ = new Arm_output_data_got<big_endian>(symtab, layout); |
94cdfcff | 4184 | |
82742395 ILT |
4185 | layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, |
4186 | (elfcpp::SHF_ALLOC | |
4187 | | elfcpp::SHF_WRITE), | |
22f0da72 ILT |
4188 | this->got_, ORDER_RELRO, true); |
4189 | ||
94cdfcff DK |
4190 | // The old GNU linker creates a .got.plt section. We just |
4191 | // create another set of data in the .got section. Note that we | |
4192 | // always create a PLT if we create a GOT, although the PLT | |
4193 | // might be empty. | |
4194 | this->got_plt_ = new Output_data_space(4, "** GOT PLT"); | |
82742395 ILT |
4195 | layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, |
4196 | (elfcpp::SHF_ALLOC | |
4197 | | elfcpp::SHF_WRITE), | |
22f0da72 | 4198 | this->got_plt_, ORDER_DATA, false); |
94cdfcff DK |
4199 | |
4200 | // The first three entries are reserved. | |
4201 | this->got_plt_->set_current_data_size(3 * 4); | |
4202 | ||
4203 | // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. | |
4204 | symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, | |
99fff23b | 4205 | Symbol_table::PREDEFINED, |
94cdfcff DK |
4206 | this->got_plt_, |
4207 | 0, 0, elfcpp::STT_OBJECT, | |
4208 | elfcpp::STB_LOCAL, | |
4209 | elfcpp::STV_HIDDEN, 0, | |
4210 | false, false); | |
4211 | } | |
4212 | return this->got_; | |
4213 | } | |
4214 | ||
4215 | // Get the dynamic reloc section, creating it if necessary. | |
4216 | ||
4217 | template<bool big_endian> | |
4218 | typename Target_arm<big_endian>::Reloc_section* | |
4219 | Target_arm<big_endian>::rel_dyn_section(Layout* layout) | |
4220 | { | |
4221 | if (this->rel_dyn_ == NULL) | |
4222 | { | |
4223 | gold_assert(layout != NULL); | |
4224 | this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); | |
4225 | layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, | |
22f0da72 ILT |
4226 | elfcpp::SHF_ALLOC, this->rel_dyn_, |
4227 | ORDER_DYNAMIC_RELOCS, false); | |
94cdfcff DK |
4228 | } |
4229 | return this->rel_dyn_; | |
4230 | } | |
4231 | ||
b569affa DK |
4232 | // Insn_template methods. |
4233 | ||
4234 | // Return byte size of an instruction template. | |
4235 | ||
4236 | size_t | |
4237 | Insn_template::size() const | |
4238 | { | |
4239 | switch (this->type()) | |
4240 | { | |
4241 | case THUMB16_TYPE: | |
2fb7225c | 4242 | case THUMB16_SPECIAL_TYPE: |
b569affa DK |
4243 | return 2; |
4244 | case ARM_TYPE: | |
4245 | case THUMB32_TYPE: | |
4246 | case DATA_TYPE: | |
4247 | return 4; | |
4248 | default: | |
4249 | gold_unreachable(); | |
4250 | } | |
4251 | } | |
4252 | ||
4253 | // Return alignment of an instruction template. | |
4254 | ||
4255 | unsigned | |
4256 | Insn_template::alignment() const | |
4257 | { | |
4258 | switch (this->type()) | |
4259 | { | |
4260 | case THUMB16_TYPE: | |
2fb7225c | 4261 | case THUMB16_SPECIAL_TYPE: |
b569affa DK |
4262 | case THUMB32_TYPE: |
4263 | return 2; | |
4264 | case ARM_TYPE: | |
4265 | case DATA_TYPE: | |
4266 | return 4; | |
4267 | default: | |
4268 | gold_unreachable(); | |
4269 | } | |
4270 | } | |
4271 | ||
4272 | // Stub_template methods. | |
4273 | ||
4274 | Stub_template::Stub_template( | |
2ea97941 ILT |
4275 | Stub_type type, const Insn_template* insns, |
4276 | size_t insn_count) | |
4277 | : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1), | |
b569affa DK |
4278 | entry_in_thumb_mode_(false), relocs_() |
4279 | { | |
2ea97941 | 4280 | off_t offset = 0; |
b569affa DK |
4281 | |
4282 | // Compute byte size and alignment of stub template. | |
2ea97941 | 4283 | for (size_t i = 0; i < insn_count; i++) |
b569affa | 4284 | { |
2ea97941 ILT |
4285 | unsigned insn_alignment = insns[i].alignment(); |
4286 | size_t insn_size = insns[i].size(); | |
4287 | gold_assert((offset & (insn_alignment - 1)) == 0); | |
b569affa | 4288 | this->alignment_ = std::max(this->alignment_, insn_alignment); |
2ea97941 | 4289 | switch (insns[i].type()) |
b569affa DK |
4290 | { |
4291 | case Insn_template::THUMB16_TYPE: | |
089d69dc | 4292 | case Insn_template::THUMB16_SPECIAL_TYPE: |
b569affa DK |
4293 | if (i == 0) |
4294 | this->entry_in_thumb_mode_ = true; | |
4295 | break; | |
4296 | ||
4297 | case Insn_template::THUMB32_TYPE: | |
2ea97941 ILT |
4298 | if (insns[i].r_type() != elfcpp::R_ARM_NONE) |
4299 | this->relocs_.push_back(Reloc(i, offset)); | |
b569affa DK |
4300 | if (i == 0) |
4301 | this->entry_in_thumb_mode_ = true; | |
4302 | break; | |
4303 | ||
4304 | case Insn_template::ARM_TYPE: | |
4305 | // Handle cases where the target is encoded within the | |
4306 | // instruction. | |
2ea97941 ILT |
4307 | if (insns[i].r_type() == elfcpp::R_ARM_JUMP24) |
4308 | this->relocs_.push_back(Reloc(i, offset)); | |
b569affa DK |
4309 | break; |
4310 | ||
4311 | case Insn_template::DATA_TYPE: | |
4312 | // Entry point cannot be data. | |
4313 | gold_assert(i != 0); | |
2ea97941 | 4314 | this->relocs_.push_back(Reloc(i, offset)); |
b569affa DK |
4315 | break; |
4316 | ||
4317 | default: | |
4318 | gold_unreachable(); | |
4319 | } | |
2ea97941 | 4320 | offset += insn_size; |
b569affa | 4321 | } |
2ea97941 | 4322 | this->size_ = offset; |
b569affa DK |
4323 | } |
4324 | ||
bb0d3eb0 DK |
4325 | // Stub methods. |
4326 | ||
7296d933 | 4327 | // Template to implement do_write for a specific target endianness. |
bb0d3eb0 DK |
4328 | |
4329 | template<bool big_endian> | |
4330 | void inline | |
4331 | Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size) | |
4332 | { | |
4333 | const Stub_template* stub_template = this->stub_template(); | |
4334 | const Insn_template* insns = stub_template->insns(); | |
4335 | ||
4336 | // FIXME: We do not handle BE8 encoding yet. | |
4337 | unsigned char* pov = view; | |
4338 | for (size_t i = 0; i < stub_template->insn_count(); i++) | |
4339 | { | |
4340 | switch (insns[i].type()) | |
4341 | { | |
4342 | case Insn_template::THUMB16_TYPE: | |
4343 | elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff); | |
4344 | break; | |
4345 | case Insn_template::THUMB16_SPECIAL_TYPE: | |
4346 | elfcpp::Swap<16, big_endian>::writeval( | |
4347 | pov, | |
4348 | this->thumb16_special(i)); | |
4349 | break; | |
4350 | case Insn_template::THUMB32_TYPE: | |
4351 | { | |
4352 | uint32_t hi = (insns[i].data() >> 16) & 0xffff; | |
4353 | uint32_t lo = insns[i].data() & 0xffff; | |
4354 | elfcpp::Swap<16, big_endian>::writeval(pov, hi); | |
4355 | elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo); | |
4356 | } | |
4357 | break; | |
4358 | case Insn_template::ARM_TYPE: | |
4359 | case Insn_template::DATA_TYPE: | |
4360 | elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); | |
4361 | break; | |
4362 | default: | |
4363 | gold_unreachable(); | |
4364 | } | |
4365 | pov += insns[i].size(); | |
4366 | } | |
4367 | gold_assert(static_cast<section_size_type>(pov - view) == view_size); | |
4368 | } | |
4369 | ||
b569affa DK |
4370 | // Reloc_stub::Key methods. |
4371 | ||
4372 | // Dump a Key as a string for debugging. | |
4373 | ||
4374 | std::string | |
4375 | Reloc_stub::Key::name() const | |
4376 | { | |
4377 | if (this->r_sym_ == invalid_index) | |
4378 | { | |
4379 | // Global symbol key name | |
4380 | // <stub-type>:<symbol name>:<addend>. | |
4381 | const std::string sym_name = this->u_.symbol->name(); | |
4382 | // We need to print two hex number and two colons. So just add 100 bytes | |
4383 | // to the symbol name size. | |
4384 | size_t len = sym_name.size() + 100; | |
4385 | char* buffer = new char[len]; | |
4386 | int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_, | |
4387 | sym_name.c_str(), this->addend_); | |
4388 | gold_assert(c > 0 && c < static_cast<int>(len)); | |
4389 | delete[] buffer; | |
4390 | return std::string(buffer); | |
4391 | } | |
4392 | else | |
4393 | { | |
4394 | // local symbol key name | |
4395 | // <stub-type>:<object>:<r_sym>:<addend>. | |
4396 | const size_t len = 200; | |
4397 | char buffer[len]; | |
4398 | int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_, | |
4399 | this->u_.relobj, this->r_sym_, this->addend_); | |
4400 | gold_assert(c > 0 && c < static_cast<int>(len)); | |
4401 | return std::string(buffer); | |
4402 | } | |
4403 | } | |
4404 | ||
4405 | // Reloc_stub methods. | |
4406 | ||
4407 | // Determine the type of stub needed, if any, for a relocation of R_TYPE at | |
4408 | // LOCATION to DESTINATION. | |
4409 | // This code is based on the arm_type_of_stub function in | |
4410 | // bfd/elf32-arm.c. We have changed the interface a liitle to keep the Stub | |
4411 | // class simple. | |
4412 | ||
4413 | Stub_type | |
4414 | Reloc_stub::stub_type_for_reloc( | |
4415 | unsigned int r_type, | |
4416 | Arm_address location, | |
4417 | Arm_address destination, | |
4418 | bool target_is_thumb) | |
4419 | { | |
4420 | Stub_type stub_type = arm_stub_none; | |
4421 | ||
4422 | // This is a bit ugly but we want to avoid using a templated class for | |
4423 | // big and little endianities. | |
4424 | bool may_use_blx; | |
4425 | bool should_force_pic_veneer; | |
4426 | bool thumb2; | |
4427 | bool thumb_only; | |
4428 | if (parameters->target().is_big_endian()) | |
4429 | { | |
43d12afe | 4430 | const Target_arm<true>* big_endian_target = |
b569affa | 4431 | Target_arm<true>::default_target(); |
43d12afe DK |
4432 | may_use_blx = big_endian_target->may_use_blx(); |
4433 | should_force_pic_veneer = big_endian_target->should_force_pic_veneer(); | |
4434 | thumb2 = big_endian_target->using_thumb2(); | |
4435 | thumb_only = big_endian_target->using_thumb_only(); | |
b569affa DK |
4436 | } |
4437 | else | |
4438 | { | |
43d12afe | 4439 | const Target_arm<false>* little_endian_target = |
b569affa | 4440 | Target_arm<false>::default_target(); |
43d12afe DK |
4441 | may_use_blx = little_endian_target->may_use_blx(); |
4442 | should_force_pic_veneer = little_endian_target->should_force_pic_veneer(); | |
4443 | thumb2 = little_endian_target->using_thumb2(); | |
4444 | thumb_only = little_endian_target->using_thumb_only(); | |
b569affa DK |
4445 | } |
4446 | ||
a2c7281b | 4447 | int64_t branch_offset; |
b569affa DK |
4448 | if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24) |
4449 | { | |
a2c7281b DK |
4450 | // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the |
4451 | // base address (instruction address + 4). | |
4452 | if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb) | |
4453 | destination = utils::bit_select(destination, location, 0x2); | |
4454 | branch_offset = static_cast<int64_t>(destination) - location; | |
4455 | ||
b569affa DK |
4456 | // Handle cases where: |
4457 | // - this call goes too far (different Thumb/Thumb2 max | |
4458 | // distance) | |
4459 | // - it's a Thumb->Arm call and blx is not available, or it's a | |
4460 | // Thumb->Arm branch (not bl). A stub is needed in this case. | |
4461 | if ((!thumb2 | |
4462 | && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET | |
4463 | || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) | |
4464 | || (thumb2 | |
4465 | && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET | |
4466 | || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) | |
4467 | || ((!target_is_thumb) | |
4468 | && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) | |
4469 | || (r_type == elfcpp::R_ARM_THM_JUMP24)))) | |
4470 | { | |
4471 | if (target_is_thumb) | |
4472 | { | |
4473 | // Thumb to thumb. | |
4474 | if (!thumb_only) | |
4475 | { | |
51938283 DK |
4476 | stub_type = (parameters->options().shared() |
4477 | || should_force_pic_veneer) | |
b569affa DK |
4478 | // PIC stubs. |
4479 | ? ((may_use_blx | |
4480 | && (r_type == elfcpp::R_ARM_THM_CALL)) | |
4481 | // V5T and above. Stub starts with ARM code, so | |
4482 | // we must be able to switch mode before | |
4483 | // reaching it, which is only possible for 'bl' | |
4484 | // (ie R_ARM_THM_CALL relocation). | |
4485 | ? arm_stub_long_branch_any_thumb_pic | |
4486 | // On V4T, use Thumb code only. | |
4487 | : arm_stub_long_branch_v4t_thumb_thumb_pic) | |
4488 | ||
4489 | // non-PIC stubs. | |
4490 | : ((may_use_blx | |
4491 | && (r_type == elfcpp::R_ARM_THM_CALL)) | |
4492 | ? arm_stub_long_branch_any_any // V5T and above. | |
4493 | : arm_stub_long_branch_v4t_thumb_thumb); // V4T. | |
4494 | } | |
4495 | else | |
4496 | { | |
51938283 DK |
4497 | stub_type = (parameters->options().shared() |
4498 | || should_force_pic_veneer) | |
b569affa DK |
4499 | ? arm_stub_long_branch_thumb_only_pic // PIC stub. |
4500 | : arm_stub_long_branch_thumb_only; // non-PIC stub. | |
4501 | } | |
4502 | } | |
4503 | else | |
4504 | { | |
4505 | // Thumb to arm. | |
4506 | ||
4507 | // FIXME: We should check that the input section is from an | |
4508 | // object that has interwork enabled. | |
4509 | ||
4510 | stub_type = (parameters->options().shared() | |
4511 | || should_force_pic_veneer) | |
4512 | // PIC stubs. | |
4513 | ? ((may_use_blx | |
4514 | && (r_type == elfcpp::R_ARM_THM_CALL)) | |
4515 | ? arm_stub_long_branch_any_arm_pic // V5T and above. | |
4516 | : arm_stub_long_branch_v4t_thumb_arm_pic) // V4T. | |
4517 | ||
4518 | // non-PIC stubs. | |
4519 | : ((may_use_blx | |
4520 | && (r_type == elfcpp::R_ARM_THM_CALL)) | |
4521 | ? arm_stub_long_branch_any_any // V5T and above. | |
4522 | : arm_stub_long_branch_v4t_thumb_arm); // V4T. | |
4523 | ||
4524 | // Handle v4t short branches. | |
4525 | if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) | |
4526 | && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) | |
4527 | && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) | |
4528 | stub_type = arm_stub_short_branch_v4t_thumb_arm; | |
4529 | } | |
4530 | } | |
4531 | } | |
4532 | else if (r_type == elfcpp::R_ARM_CALL | |
4533 | || r_type == elfcpp::R_ARM_JUMP24 | |
4534 | || r_type == elfcpp::R_ARM_PLT32) | |
4535 | { | |
a2c7281b | 4536 | branch_offset = static_cast<int64_t>(destination) - location; |
b569affa DK |
4537 | if (target_is_thumb) |
4538 | { | |
4539 | // Arm to thumb. | |
4540 | ||
4541 | // FIXME: We should check that the input section is from an | |
4542 | // object that has interwork enabled. | |
4543 | ||
4544 | // We have an extra 2-bytes reach because of | |
4545 | // the mode change (bit 24 (H) of BLX encoding). | |
4546 | if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) | |
4547 | || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) | |
4548 | || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx) | |
4549 | || (r_type == elfcpp::R_ARM_JUMP24) | |
4550 | || (r_type == elfcpp::R_ARM_PLT32)) | |
4551 | { | |
4552 | stub_type = (parameters->options().shared() | |
4553 | || should_force_pic_veneer) | |
4554 | // PIC stubs. | |
4555 | ? (may_use_blx | |
4556 | ? arm_stub_long_branch_any_thumb_pic// V5T and above. | |
4557 | : arm_stub_long_branch_v4t_arm_thumb_pic) // V4T stub. | |
4558 | ||
4559 | // non-PIC stubs. | |
4560 | : (may_use_blx | |
4561 | ? arm_stub_long_branch_any_any // V5T and above. | |
4562 | : arm_stub_long_branch_v4t_arm_thumb); // V4T. | |
4563 | } | |
4564 | } | |
4565 | else | |
4566 | { | |
4567 | // Arm to arm. | |
4568 | if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET | |
4569 | || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) | |
4570 | { | |
4571 | stub_type = (parameters->options().shared() | |
4572 | || should_force_pic_veneer) | |
4573 | ? arm_stub_long_branch_any_arm_pic // PIC stubs. | |
4574 | : arm_stub_long_branch_any_any; /// non-PIC. | |
4575 | } | |
4576 | } | |
4577 | } | |
4578 | ||
4579 | return stub_type; | |
4580 | } | |
4581 | ||
bb0d3eb0 | 4582 | // Cortex_a8_stub methods. |
b569affa | 4583 | |
bb0d3eb0 DK |
4584 | // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template. |
4585 | // I is the position of the instruction template in the stub template. | |
b569affa | 4586 | |
bb0d3eb0 DK |
4587 | uint16_t |
4588 | Cortex_a8_stub::do_thumb16_special(size_t i) | |
b569affa | 4589 | { |
bb0d3eb0 DK |
4590 | // The only use of this is to copy condition code from a conditional |
4591 | // branch being worked around to the corresponding conditional branch in | |
4592 | // to the stub. | |
4593 | gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond | |
4594 | && i == 0); | |
4595 | uint16_t data = this->stub_template()->insns()[i].data(); | |
4596 | gold_assert((data & 0xff00U) == 0xd000U); | |
4597 | data |= ((this->original_insn_ >> 22) & 0xf) << 8; | |
4598 | return data; | |
b569affa DK |
4599 | } |
4600 | ||
4601 | // Stub_factory methods. | |
4602 | ||
4603 | Stub_factory::Stub_factory() | |
4604 | { | |
4605 | // The instruction template sequences are declared as static | |
4606 | // objects and initialized first time the constructor runs. | |
4607 | ||
4608 | // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx | |
4609 | // to reach the stub if necessary. | |
4610 | static const Insn_template elf32_arm_stub_long_branch_any_any[] = | |
4611 | { | |
4612 | Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] | |
4613 | Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | |
4614 | // dcd R_ARM_ABS32(X) | |
4615 | }; | |
4616 | ||
4617 | // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not | |
4618 | // available. | |
4619 | static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] = | |
4620 | { | |
4621 | Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] | |
4622 | Insn_template::arm_insn(0xe12fff1c), // bx ip | |
4623 | Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | |
4624 | // dcd R_ARM_ABS32(X) | |
4625 | }; | |
4626 | ||
4627 | // Thumb -> Thumb long branch stub. Used on M-profile architectures. | |
4628 | static const Insn_template elf32_arm_stub_long_branch_thumb_only[] = | |
4629 | { | |
4630 | Insn_template::thumb16_insn(0xb401), // push {r0} | |
4631 | Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8] | |
4632 | Insn_template::thumb16_insn(0x4684), // mov ip, r0 | |
4633 | Insn_template::thumb16_insn(0xbc01), // pop {r0} | |
4634 | Insn_template::thumb16_insn(0x4760), // bx ip | |
4635 | Insn_template::thumb16_insn(0xbf00), // nop | |
4636 | Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | |
4637 | // dcd R_ARM_ABS32(X) | |
4638 | }; | |
4639 | ||
4640 | // V4T Thumb -> Thumb long branch stub. Using the stack is not | |
4641 | // allowed. | |
4642 | static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] = | |
4643 | { | |
4644 | Insn_template::thumb16_insn(0x4778), // bx pc | |
4645 | Insn_template::thumb16_insn(0x46c0), // nop | |
4646 | Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] | |
4647 | Insn_template::arm_insn(0xe12fff1c), // bx ip | |
4648 | Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | |
4649 | // dcd R_ARM_ABS32(X) | |
4650 | }; | |
4651 | ||
4652 | // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not | |
4653 | // available. | |
4654 | static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] = | |
4655 | { | |
4656 | Insn_template::thumb16_insn(0x4778), // bx pc | |
4657 | Insn_template::thumb16_insn(0x46c0), // nop | |
4658 | Insn_template::arm_insn(0xe51ff004), // ldr pc, [pc, #-4] | |
4659 | Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | |
4660 | // dcd R_ARM_ABS32(X) | |
4661 | }; | |
4662 | ||
4663 | // V4T Thumb -> ARM short branch stub. Shorter variant of the above | |
4664 | // one, when the destination is close enough. | |
4665 | static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] = | |
4666 | { | |
4667 | Insn_template::thumb16_insn(0x4778), // bx pc | |
4668 | Insn_template::thumb16_insn(0x46c0), // nop | |
4669 | Insn_template::arm_rel_insn(0xea000000, -8), // b (X-8) | |
4670 | }; | |
4671 | ||
4672 | // ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use | |
4673 | // blx to reach the stub if necessary. | |
4674 | static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] = | |
4675 | { | |
4676 | Insn_template::arm_insn(0xe59fc000), // ldr r12, [pc] | |
4677 | Insn_template::arm_insn(0xe08ff00c), // add pc, pc, ip | |
4678 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), | |
4679 | // dcd R_ARM_REL32(X-4) | |
4680 | }; | |
4681 | ||
4682 | // ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use | |
4683 | // blx to reach the stub if necessary. We can not add into pc; | |
4684 | // it is not guaranteed to mode switch (different in ARMv6 and | |
4685 | // ARMv7). | |
4686 | static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] = | |
4687 | { | |
4688 | Insn_template::arm_insn(0xe59fc004), // ldr r12, [pc, #4] | |
4689 | Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip | |
4690 | Insn_template::arm_insn(0xe12fff1c), // bx ip | |
4691 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | |
4692 | // dcd R_ARM_REL32(X) | |
4693 | }; | |
4694 | ||
4695 | // V4T ARM -> ARM long branch stub, PIC. | |
4696 | static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = | |
4697 | { | |
4698 | Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4] | |
4699 | Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip | |
4700 | Insn_template::arm_insn(0xe12fff1c), // bx ip | |
4701 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | |
4702 | // dcd R_ARM_REL32(X) | |
4703 | }; | |
4704 | ||
4705 | // V4T Thumb -> ARM long branch stub, PIC. | |
4706 | static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = | |
4707 | { | |
4708 | Insn_template::thumb16_insn(0x4778), // bx pc | |
4709 | Insn_template::thumb16_insn(0x46c0), // nop | |
4710 | Insn_template::arm_insn(0xe59fc000), // ldr ip, [pc, #0] | |
4711 | Insn_template::arm_insn(0xe08cf00f), // add pc, ip, pc | |
4712 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), | |
4713 | // dcd R_ARM_REL32(X) | |
4714 | }; | |
4715 | ||
4716 | // Thumb -> Thumb long branch stub, PIC. Used on M-profile | |
4717 | // architectures. | |
4718 | static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] = | |
4719 | { | |
4720 | Insn_template::thumb16_insn(0xb401), // push {r0} | |
4721 | Insn_template::thumb16_insn(0x4802), // ldr r0, [pc, #8] | |
4722 | Insn_template::thumb16_insn(0x46fc), // mov ip, pc | |
4723 | Insn_template::thumb16_insn(0x4484), // add ip, r0 | |
4724 | Insn_template::thumb16_insn(0xbc01), // pop {r0} | |
4725 | Insn_template::thumb16_insn(0x4760), // bx ip | |
4726 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4), | |
4727 | // dcd R_ARM_REL32(X) | |
4728 | }; | |
4729 | ||
4730 | // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not | |
4731 | // allowed. | |
4732 | static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = | |
4733 | { | |
4734 | Insn_template::thumb16_insn(0x4778), // bx pc | |
4735 | Insn_template::thumb16_insn(0x46c0), // nop | |
4736 | Insn_template::arm_insn(0xe59fc004), // ldr ip, [pc, #4] | |
4737 | Insn_template::arm_insn(0xe08fc00c), // add ip, pc, ip | |
4738 | Insn_template::arm_insn(0xe12fff1c), // bx ip | |
4739 | Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | |
4740 | // dcd R_ARM_REL32(X) | |
4741 | }; | |
4742 | ||
4743 | // Cortex-A8 erratum-workaround stubs. | |
4744 | ||
4745 | // Stub used for conditional branches (which may be beyond +/-1MB away, | |
4746 | // so we can't use a conditional branch to reach this stub). | |
4747 | ||
4748 | // original code: | |
4749 | // | |
4750 | // b<cond> X | |
4751 | // after: | |
4752 | // | |
4753 | static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] = | |
4754 | { | |
4755 | Insn_template::thumb16_bcond_insn(0xd001), // b<cond>.n true | |
4756 | Insn_template::thumb32_b_insn(0xf000b800, -4), // b.w after | |
4757 | Insn_template::thumb32_b_insn(0xf000b800, -4) // true: | |
4758 | // b.w X | |
4759 | }; | |
4760 | ||
4761 | // Stub used for b.w and bl.w instructions. | |
4762 | ||
4763 | static const Insn_template elf32_arm_stub_a8_veneer_b[] = | |
4764 | { | |
4765 | Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest | |
4766 | }; | |
4767 | ||
4768 | static const Insn_template elf32_arm_stub_a8_veneer_bl[] = | |
4769 | { | |
4770 | Insn_template::thumb32_b_insn(0xf000b800, -4) // b.w dest | |
4771 | }; | |
4772 | ||
4773 | // Stub used for Thumb-2 blx.w instructions. We modified the original blx.w | |
4774 | // instruction (which switches to ARM mode) to point to this stub. Jump to | |
4775 | // the real destination using an ARM-mode branch. | |
bb0d3eb0 | 4776 | static const Insn_template elf32_arm_stub_a8_veneer_blx[] = |
b569affa DK |
4777 | { |
4778 | Insn_template::arm_rel_insn(0xea000000, -8) // b dest | |
4779 | }; | |
4780 | ||
a2162063 ILT |
4781 | // Stub used to provide an interworking for R_ARM_V4BX relocation |
4782 | // (bx r[n] instruction). | |
4783 | static const Insn_template elf32_arm_stub_v4_veneer_bx[] = | |
4784 | { | |
4785 | Insn_template::arm_insn(0xe3100001), // tst r<n>, #1 | |
4786 | Insn_template::arm_insn(0x01a0f000), // moveq pc, r<n> | |
4787 | Insn_template::arm_insn(0xe12fff10) // bx r<n> | |
4788 | }; | |
4789 | ||
b569affa DK |
4790 | // Fill in the stub template look-up table. Stub templates are constructed |
4791 | // per instance of Stub_factory for fast look-up without locking | |
4792 | // in a thread-enabled environment. | |
4793 | ||
4794 | this->stub_templates_[arm_stub_none] = | |
4795 | new Stub_template(arm_stub_none, NULL, 0); | |
4796 | ||
4797 | #define DEF_STUB(x) \ | |
4798 | do \ | |
4799 | { \ | |
4800 | size_t array_size \ | |
4801 | = sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \ | |
4802 | Stub_type type = arm_stub_##x; \ | |
4803 | this->stub_templates_[type] = \ | |
4804 | new Stub_template(type, elf32_arm_stub_##x, array_size); \ | |
4805 | } \ | |
4806 | while (0); | |
4807 | ||
4808 | DEF_STUBS | |
4809 | #undef DEF_STUB | |
4810 | } | |
4811 | ||
56ee5e00 DK |
4812 | // Stub_table methods. |
4813 | ||
2fb7225c | 4814 | // Removel all Cortex-A8 stub. |
56ee5e00 DK |
4815 | |
4816 | template<bool big_endian> | |
4817 | void | |
2fb7225c DK |
4818 | Stub_table<big_endian>::remove_all_cortex_a8_stubs() |
4819 | { | |
4820 | for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); | |
4821 | p != this->cortex_a8_stubs_.end(); | |
4822 | ++p) | |
4823 | delete p->second; | |
4824 | this->cortex_a8_stubs_.clear(); | |
4825 | } | |
4826 | ||
4827 | // Relocate one stub. This is a helper for Stub_table::relocate_stubs(). | |
4828 | ||
4829 | template<bool big_endian> | |
4830 | void | |
4831 | Stub_table<big_endian>::relocate_stub( | |
4832 | Stub* stub, | |
4833 | const Relocate_info<32, big_endian>* relinfo, | |
4834 | Target_arm<big_endian>* arm_target, | |
4835 | Output_section* output_section, | |
4836 | unsigned char* view, | |
4837 | Arm_address address, | |
4838 | section_size_type view_size) | |
56ee5e00 | 4839 | { |
2ea97941 | 4840 | const Stub_template* stub_template = stub->stub_template(); |
2fb7225c DK |
4841 | if (stub_template->reloc_count() != 0) |
4842 | { | |
4843 | // Adjust view to cover the stub only. | |
4844 | section_size_type offset = stub->offset(); | |
4845 | section_size_type stub_size = stub_template->size(); | |
4846 | gold_assert(offset + stub_size <= view_size); | |
4847 | ||
4848 | arm_target->relocate_stub(stub, relinfo, output_section, view + offset, | |
4849 | address + offset, stub_size); | |
4850 | } | |
56ee5e00 DK |
4851 | } |
4852 | ||
2fb7225c DK |
4853 | // Relocate all stubs in this stub table. |
4854 | ||
56ee5e00 DK |
4855 | template<bool big_endian> |
4856 | void | |
4857 | Stub_table<big_endian>::relocate_stubs( | |
4858 | const Relocate_info<32, big_endian>* relinfo, | |
4859 | Target_arm<big_endian>* arm_target, | |
2ea97941 | 4860 | Output_section* output_section, |
56ee5e00 | 4861 | unsigned char* view, |
2ea97941 | 4862 | Arm_address address, |
56ee5e00 DK |
4863 | section_size_type view_size) |
4864 | { | |
4865 | // If we are passed a view bigger than the stub table's. we need to | |
4866 | // adjust the view. | |
2ea97941 | 4867 | gold_assert(address == this->address() |
56ee5e00 DK |
4868 | && (view_size |
4869 | == static_cast<section_size_type>(this->data_size()))); | |
4870 | ||
2fb7225c DK |
4871 | // Relocate all relocation stubs. |
4872 | for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); | |
4873 | p != this->reloc_stubs_.end(); | |
4874 | ++p) | |
4875 | this->relocate_stub(p->second, relinfo, arm_target, output_section, view, | |
4876 | address, view_size); | |
4877 | ||
4878 | // Relocate all Cortex-A8 stubs. | |
4879 | for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); | |
4880 | p != this->cortex_a8_stubs_.end(); | |
4881 | ++p) | |
4882 | this->relocate_stub(p->second, relinfo, arm_target, output_section, view, | |
4883 | address, view_size); | |
a2162063 ILT |
4884 | |
4885 | // Relocate all ARM V4BX stubs. | |
4886 | for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin(); | |
4887 | p != this->arm_v4bx_stubs_.end(); | |
4888 | ++p) | |
4889 | { | |
4890 | if (*p != NULL) | |
4891 | this->relocate_stub(*p, relinfo, arm_target, output_section, view, | |
4892 | address, view_size); | |
4893 | } | |
2fb7225c DK |
4894 | } |
4895 | ||
4896 | // Write out the stubs to file. | |
4897 | ||
4898 | template<bool big_endian> | |
4899 | void | |
4900 | Stub_table<big_endian>::do_write(Output_file* of) | |
4901 | { | |
4902 | off_t offset = this->offset(); | |
4903 | const section_size_type oview_size = | |
4904 | convert_to_section_size_type(this->data_size()); | |
4905 | unsigned char* const oview = of->get_output_view(offset, oview_size); | |
4906 | ||
4907 | // Write relocation stubs. | |
56ee5e00 DK |
4908 | for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); |
4909 | p != this->reloc_stubs_.end(); | |
4910 | ++p) | |
4911 | { | |
4912 | Reloc_stub* stub = p->second; | |
2fb7225c DK |
4913 | Arm_address address = this->address() + stub->offset(); |
4914 | gold_assert(address | |
4915 | == align_address(address, | |
4916 | stub->stub_template()->alignment())); | |
4917 | stub->write(oview + stub->offset(), stub->stub_template()->size(), | |
4918 | big_endian); | |
56ee5e00 | 4919 | } |
2fb7225c DK |
4920 | |
4921 | // Write Cortex-A8 stubs. | |
4922 | for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); | |
4923 | p != this->cortex_a8_stubs_.end(); | |
4924 | ++p) | |
4925 | { | |
4926 | Cortex_a8_stub* stub = p->second; | |
4927 | Arm_address address = this->address() + stub->offset(); | |
4928 | gold_assert(address | |
4929 | == align_address(address, | |
4930 | stub->stub_template()->alignment())); | |
4931 | stub->write(oview + stub->offset(), stub->stub_template()->size(), | |
4932 | big_endian); | |
4933 | } | |
4934 | ||
a2162063 ILT |
4935 | // Write ARM V4BX relocation stubs. |
4936 | for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); | |
4937 | p != this->arm_v4bx_stubs_.end(); | |
4938 | ++p) | |
4939 | { | |
4940 | if (*p == NULL) | |
4941 | continue; | |
4942 | ||
4943 | Arm_address address = this->address() + (*p)->offset(); | |
4944 | gold_assert(address | |
4945 | == align_address(address, | |
4946 | (*p)->stub_template()->alignment())); | |
4947 | (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(), | |
4948 | big_endian); | |
4949 | } | |
4950 | ||
2fb7225c | 4951 | of->write_output_view(this->offset(), oview_size, oview); |
56ee5e00 DK |
4952 | } |
4953 | ||
2fb7225c DK |
4954 | // Update the data size and address alignment of the stub table at the end |
4955 | // of a relaxation pass. Return true if either the data size or the | |
4956 | // alignment changed in this relaxation pass. | |
4957 | ||
4958 | template<bool big_endian> | |
4959 | bool | |
4960 | Stub_table<big_endian>::update_data_size_and_addralign() | |
4961 | { | |
2fb7225c | 4962 | // Go over all stubs in table to compute data size and address alignment. |
d099120c DK |
4963 | off_t size = this->reloc_stubs_size_; |
4964 | unsigned addralign = this->reloc_stubs_addralign_; | |
2fb7225c DK |
4965 | |
4966 | for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); | |
4967 | p != this->cortex_a8_stubs_.end(); | |
4968 | ++p) | |
4969 | { | |
4970 | const Stub_template* stub_template = p->second->stub_template(); | |
4971 | addralign = std::max(addralign, stub_template->alignment()); | |
4972 | size = (align_address(size, stub_template->alignment()) | |
4973 | + stub_template->size()); | |
4974 | } | |
4975 | ||
a2162063 ILT |
4976 | for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); |
4977 | p != this->arm_v4bx_stubs_.end(); | |
4978 | ++p) | |
4979 | { | |
4980 | if (*p == NULL) | |
4981 | continue; | |
4982 | ||
4983 | const Stub_template* stub_template = (*p)->stub_template(); | |
4984 | addralign = std::max(addralign, stub_template->alignment()); | |
4985 | size = (align_address(size, stub_template->alignment()) | |
4986 | + stub_template->size()); | |
4987 | } | |
4988 | ||
2fb7225c DK |
4989 | // Check if either data size or alignment changed in this pass. |
4990 | // Update prev_data_size_ and prev_addralign_. These will be used | |
4991 | // as the current data size and address alignment for the next pass. | |
4992 | bool changed = size != this->prev_data_size_; | |
4993 | this->prev_data_size_ = size; | |
4994 | ||
4995 | if (addralign != this->prev_addralign_) | |
4996 | changed = true; | |
4997 | this->prev_addralign_ = addralign; | |
4998 | ||
4999 | return changed; | |
5000 | } | |
5001 | ||
5002 | // Finalize the stubs. This sets the offsets of the stubs within the stub | |
5003 | // table. It also marks all input sections needing Cortex-A8 workaround. | |
56ee5e00 DK |
5004 | |
5005 | template<bool big_endian> | |
5006 | void | |
2fb7225c | 5007 | Stub_table<big_endian>::finalize_stubs() |
56ee5e00 | 5008 | { |
d099120c | 5009 | off_t off = this->reloc_stubs_size_; |
2fb7225c DK |
5010 | for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); |
5011 | p != this->cortex_a8_stubs_.end(); | |
5012 | ++p) | |
5013 | { | |
5014 | Cortex_a8_stub* stub = p->second; | |
5015 | const Stub_template* stub_template = stub->stub_template(); | |
5016 | uint64_t stub_addralign = stub_template->alignment(); | |
5017 | off = align_address(off, stub_addralign); | |
5018 | stub->set_offset(off); | |
5019 | off += stub_template->size(); | |
5020 | ||
5021 | // Mark input section so that we can determine later if a code section | |
5022 | // needs the Cortex-A8 workaround quickly. | |
5023 | Arm_relobj<big_endian>* arm_relobj = | |
5024 | Arm_relobj<big_endian>::as_arm_relobj(stub->relobj()); | |
5025 | arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx()); | |
5026 | } | |
5027 | ||
a2162063 ILT |
5028 | for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); |
5029 | p != this->arm_v4bx_stubs_.end(); | |
5030 | ++p) | |
5031 | { | |
5032 | if (*p == NULL) | |
5033 | continue; | |
5034 | ||
5035 | const Stub_template* stub_template = (*p)->stub_template(); | |
5036 | uint64_t stub_addralign = stub_template->alignment(); | |
5037 | off = align_address(off, stub_addralign); | |
5038 | (*p)->set_offset(off); | |
5039 | off += stub_template->size(); | |
5040 | } | |
5041 | ||
2fb7225c | 5042 | gold_assert(off <= this->prev_data_size_); |
56ee5e00 DK |
5043 | } |
5044 | ||
2fb7225c DK |
5045 | // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS |
5046 | // and VIEW_ADDRESS + VIEW_SIZE - 1. VIEW points to the mapped address | |
5047 | // of the address range seen by the linker. | |
56ee5e00 DK |
5048 | |
5049 | template<bool big_endian> | |
5050 | void | |
2fb7225c DK |
5051 | Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range( |
5052 | Target_arm<big_endian>* arm_target, | |
5053 | unsigned char* view, | |
5054 | Arm_address view_address, | |
5055 | section_size_type view_size) | |
56ee5e00 | 5056 | { |
2fb7225c DK |
5057 | // Cortex-A8 stubs are sorted by addresses of branches being fixed up. |
5058 | for (Cortex_a8_stub_list::const_iterator p = | |
5059 | this->cortex_a8_stubs_.lower_bound(view_address); | |
5060 | ((p != this->cortex_a8_stubs_.end()) | |
5061 | && (p->first < (view_address + view_size))); | |
5062 | ++p) | |
56ee5e00 | 5063 | { |
2fb7225c DK |
5064 | // We do not store the THUMB bit in the LSB of either the branch address |
5065 | // or the stub offset. There is no need to strip the LSB. | |
5066 | Arm_address branch_address = p->first; | |
5067 | const Cortex_a8_stub* stub = p->second; | |
5068 | Arm_address stub_address = this->address() + stub->offset(); | |
5069 | ||
5070 | // Offset of the branch instruction relative to this view. | |
5071 | section_size_type offset = | |
5072 | convert_to_section_size_type(branch_address - view_address); | |
5073 | gold_assert((offset + 4) <= view_size); | |
5074 | ||
5075 | arm_target->apply_cortex_a8_workaround(stub, stub_address, | |
5076 | view + offset, branch_address); | |
5077 | } | |
56ee5e00 DK |
5078 | } |
5079 | ||
10ad9fe5 DK |
5080 | // Arm_input_section methods. |
5081 | ||
5082 | // Initialize an Arm_input_section. | |
5083 | ||
5084 | template<bool big_endian> | |
5085 | void | |
5086 | Arm_input_section<big_endian>::init() | |
5087 | { | |
2ea97941 ILT |
5088 | Relobj* relobj = this->relobj(); |
5089 | unsigned int shndx = this->shndx(); | |
10ad9fe5 DK |
5090 | |
5091 | // Cache these to speed up size and alignment queries. It is too slow | |
5092 | // to call section_addraglin and section_size every time. | |
6625d24e DK |
5093 | this->original_addralign_ = |
5094 | convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx)); | |
5095 | this->original_size_ = | |
5096 | convert_types<uint32_t, uint64_t>(relobj->section_size(shndx)); | |
10ad9fe5 DK |
5097 | |
5098 | // We want to make this look like the original input section after | |
5099 | // output sections are finalized. | |
2ea97941 ILT |
5100 | Output_section* os = relobj->output_section(shndx); |
5101 | off_t offset = relobj->output_section_offset(shndx); | |
5102 | gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx)); | |
5103 | this->set_address(os->address() + offset); | |
5104 | this->set_file_offset(os->offset() + offset); | |
10ad9fe5 DK |
5105 | |
5106 | this->set_current_data_size(this->original_size_); | |
5107 | this->finalize_data_size(); | |
5108 | } | |
5109 | ||
5110 | template<bool big_endian> | |
5111 | void | |
5112 | Arm_input_section<big_endian>::do_write(Output_file* of) | |
5113 | { | |
5114 | // We have to write out the original section content. | |
5115 | section_size_type section_size; | |
5116 | const unsigned char* section_contents = | |
5117 | this->relobj()->section_contents(this->shndx(), §ion_size, false); | |
5118 | of->write(this->offset(), section_contents, section_size); | |
5119 | ||
5120 | // If this owns a stub table and it is not empty, write it. | |
5121 | if (this->is_stub_table_owner() && !this->stub_table_->empty()) | |
5122 | this->stub_table_->write(of); | |
5123 | } | |
5124 | ||
5125 | // Finalize data size. | |
5126 | ||
5127 | template<bool big_endian> | |
5128 | void | |
5129 | Arm_input_section<big_endian>::set_final_data_size() | |
5130 | { | |
153e7da4 DK |
5131 | off_t off = convert_types<off_t, uint64_t>(this->original_size_); |
5132 | ||
10ad9fe5 DK |
5133 | if (this->is_stub_table_owner()) |
5134 | { | |
6625d24e | 5135 | this->stub_table_->finalize_data_size(); |
153e7da4 | 5136 | off = align_address(off, this->stub_table_->addralign()); |
153e7da4 | 5137 | off += this->stub_table_->data_size(); |
10ad9fe5 | 5138 | } |
153e7da4 | 5139 | this->set_data_size(off); |
10ad9fe5 DK |
5140 | } |
5141 | ||
5142 | // Reset address and file offset. | |
5143 | ||
5144 | template<bool big_endian> | |
5145 | void | |
5146 | Arm_input_section<big_endian>::do_reset_address_and_file_offset() | |
5147 | { | |
5148 | // Size of the original input section contents. | |
5149 | off_t off = convert_types<off_t, uint64_t>(this->original_size_); | |
5150 | ||
5151 | // If this is a stub table owner, account for the stub table size. | |
5152 | if (this->is_stub_table_owner()) | |
5153 | { | |
2ea97941 | 5154 | Stub_table<big_endian>* stub_table = this->stub_table_; |
10ad9fe5 DK |
5155 | |
5156 | // Reset the stub table's address and file offset. The | |
5157 | // current data size for child will be updated after that. | |
5158 | stub_table_->reset_address_and_file_offset(); | |
5159 | off = align_address(off, stub_table_->addralign()); | |
2ea97941 | 5160 | off += stub_table->current_data_size(); |
10ad9fe5 DK |
5161 | } |
5162 | ||
5163 | this->set_current_data_size(off); | |
5164 | } | |
5165 | ||
af2cdeae DK |
5166 | // Arm_exidx_cantunwind methods. |
5167 | ||
7296d933 | 5168 | // Write this to Output file OF for a fixed endianness. |
af2cdeae DK |
5169 | |
5170 | template<bool big_endian> | |
5171 | void | |
5172 | Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of) | |
5173 | { | |
5174 | off_t offset = this->offset(); | |
5175 | const section_size_type oview_size = 8; | |
5176 | unsigned char* const oview = of->get_output_view(offset, oview_size); | |
5177 | ||
5178 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
5179 | Valtype* wv = reinterpret_cast<Valtype*>(oview); | |
5180 | ||
5181 | Output_section* os = this->relobj_->output_section(this->shndx_); | |
5182 | gold_assert(os != NULL); | |
5183 | ||
5184 | Arm_relobj<big_endian>* arm_relobj = | |
5185 | Arm_relobj<big_endian>::as_arm_relobj(this->relobj_); | |
5186 | Arm_address output_offset = | |
5187 | arm_relobj->get_output_section_offset(this->shndx_); | |
5188 | Arm_address section_start; | |
7296d933 | 5189 | if (output_offset != Arm_relobj<big_endian>::invalid_address) |
af2cdeae DK |
5190 | section_start = os->address() + output_offset; |
5191 | else | |
5192 | { | |
5193 | // Currently this only happens for a relaxed section. | |
5194 | const Output_relaxed_input_section* poris = | |
5195 | os->find_relaxed_input_section(this->relobj_, this->shndx_); | |
5196 | gold_assert(poris != NULL); | |
5197 | section_start = poris->address(); | |
5198 | } | |
5199 | ||
5200 | // We always append this to the end of an EXIDX section. | |
5201 | Arm_address output_address = | |
5202 | section_start + this->relobj_->section_size(this->shndx_); | |
5203 | ||
5204 | // Write out the entry. The first word either points to the beginning | |
5205 | // or after the end of a text section. The second word is the special | |
5206 | // EXIDX_CANTUNWIND value. | |
e7eca48c DK |
5207 | uint32_t prel31_offset = output_address - this->address(); |
5208 | if (utils::has_overflow<31>(offset)) | |
5209 | gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry")); | |
5210 | elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU); | |
af2cdeae DK |
5211 | elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND); |
5212 | ||
5213 | of->write_output_view(this->offset(), oview_size, oview); | |
5214 | } | |
5215 | ||
5216 | // Arm_exidx_merged_section methods. | |
5217 | ||
5218 | // Constructor for Arm_exidx_merged_section. | |
5219 | // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. | |
5220 | // SECTION_OFFSET_MAP points to a section offset map describing how | |
5221 | // parts of the input section are mapped to output. DELETED_BYTES is | |
5222 | // the number of bytes deleted from the EXIDX input section. | |
5223 | ||
5224 | Arm_exidx_merged_section::Arm_exidx_merged_section( | |
5225 | const Arm_exidx_input_section& exidx_input_section, | |
5226 | const Arm_exidx_section_offset_map& section_offset_map, | |
5227 | uint32_t deleted_bytes) | |
5228 | : Output_relaxed_input_section(exidx_input_section.relobj(), | |
5229 | exidx_input_section.shndx(), | |
5230 | exidx_input_section.addralign()), | |
5231 | exidx_input_section_(exidx_input_section), | |
5232 | section_offset_map_(section_offset_map) | |
5233 | { | |
5234 | // Fix size here so that we do not need to implement set_final_data_size. | |
5235 | this->set_data_size(exidx_input_section.size() - deleted_bytes); | |
5236 | this->fix_data_size(); | |
5237 | } | |
5238 | ||
5239 | // Given an input OBJECT, an input section index SHNDX within that | |
5240 | // object, and an OFFSET relative to the start of that input | |
5241 | // section, return whether or not the corresponding offset within | |
5242 | // the output section is known. If this function returns true, it | |
5243 | // sets *POUTPUT to the output offset. The value -1 indicates that | |
5244 | // this input offset is being discarded. | |
5245 | ||
5246 | bool | |
5247 | Arm_exidx_merged_section::do_output_offset( | |
5248 | const Relobj* relobj, | |
5249 | unsigned int shndx, | |
5250 | section_offset_type offset, | |
5251 | section_offset_type* poutput) const | |
5252 | { | |
5253 | // We only handle offsets for the original EXIDX input section. | |
5254 | if (relobj != this->exidx_input_section_.relobj() | |
5255 | || shndx != this->exidx_input_section_.shndx()) | |
5256 | return false; | |
5257 | ||
c7f3c371 DK |
5258 | section_offset_type section_size = |
5259 | convert_types<section_offset_type>(this->exidx_input_section_.size()); | |
5260 | if (offset < 0 || offset >= section_size) | |
af2cdeae DK |
5261 | // Input offset is out of valid range. |
5262 | *poutput = -1; | |
5263 | else | |
5264 | { | |
5265 | // We need to look up the section offset map to determine the output | |
5266 | // offset. Find the reference point in map that is first offset | |
5267 | // bigger than or equal to this offset. | |
5268 | Arm_exidx_section_offset_map::const_iterator p = | |
5269 | this->section_offset_map_.lower_bound(offset); | |
5270 | ||
5271 | // The section offset maps are build such that this should not happen if | |
5272 | // input offset is in the valid range. | |
5273 | gold_assert(p != this->section_offset_map_.end()); | |
5274 | ||
5275 | // We need to check if this is dropped. | |
5276 | section_offset_type ref = p->first; | |
5277 | section_offset_type mapped_ref = p->second; | |
5278 | ||
5279 | if (mapped_ref != Arm_exidx_input_section::invalid_offset) | |
5280 | // Offset is present in output. | |
5281 | *poutput = mapped_ref + (offset - ref); | |
5282 | else | |
5283 | // Offset is discarded owing to EXIDX entry merging. | |
5284 | *poutput = -1; | |
5285 | } | |
5286 | ||
5287 | return true; | |
5288 | } | |
5289 | ||
5290 | // Write this to output file OF. | |
5291 | ||
5292 | void | |
5293 | Arm_exidx_merged_section::do_write(Output_file* of) | |
5294 | { | |
5295 | // If we retain or discard the whole EXIDX input section, we would | |
5296 | // not be here. | |
5297 | gold_assert(this->data_size() != this->exidx_input_section_.size() | |
5298 | && this->data_size() != 0); | |
5299 | ||
5300 | off_t offset = this->offset(); | |
5301 | const section_size_type oview_size = this->data_size(); | |
5302 | unsigned char* const oview = of->get_output_view(offset, oview_size); | |
5303 | ||
5304 | Output_section* os = this->relobj()->output_section(this->shndx()); | |
5305 | gold_assert(os != NULL); | |
5306 | ||
5307 | // Get contents of EXIDX input section. | |
5308 | section_size_type section_size; | |
5309 | const unsigned char* section_contents = | |
5310 | this->relobj()->section_contents(this->shndx(), §ion_size, false); | |
5311 | gold_assert(section_size == this->exidx_input_section_.size()); | |
5312 | ||
5313 | // Go over spans of input offsets and write only those that are not | |
5314 | // discarded. | |
5315 | section_offset_type in_start = 0; | |
5316 | section_offset_type out_start = 0; | |
5317 | for(Arm_exidx_section_offset_map::const_iterator p = | |
5318 | this->section_offset_map_.begin(); | |
5319 | p != this->section_offset_map_.end(); | |
5320 | ++p) | |
5321 | { | |
5322 | section_offset_type in_end = p->first; | |
5323 | gold_assert(in_end >= in_start); | |
5324 | section_offset_type out_end = p->second; | |
5325 | size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1); | |
5326 | if (out_end != -1) | |
5327 | { | |
5328 | size_t out_chunk_size = | |
5329 | convert_types<size_t>(out_end - out_start + 1); | |
5330 | gold_assert(out_chunk_size == in_chunk_size); | |
5331 | memcpy(oview + out_start, section_contents + in_start, | |
5332 | out_chunk_size); | |
5333 | out_start += out_chunk_size; | |
5334 | } | |
5335 | in_start += in_chunk_size; | |
5336 | } | |
5337 | ||
5338 | gold_assert(convert_to_section_size_type(out_start) == oview_size); | |
5339 | of->write_output_view(this->offset(), oview_size, oview); | |
5340 | } | |
5341 | ||
80d0d023 DK |
5342 | // Arm_exidx_fixup methods. |
5343 | ||
5344 | // Append an EXIDX_CANTUNWIND in the current output section if the last entry | |
5345 | // is not an EXIDX_CANTUNWIND entry already. The new EXIDX_CANTUNWIND entry | |
5346 | // points to the end of the last seen EXIDX section. | |
5347 | ||
5348 | void | |
5349 | Arm_exidx_fixup::add_exidx_cantunwind_as_needed() | |
5350 | { | |
5351 | if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND | |
5352 | && this->last_input_section_ != NULL) | |
5353 | { | |
5354 | Relobj* relobj = this->last_input_section_->relobj(); | |
2b328d4e | 5355 | unsigned int text_shndx = this->last_input_section_->link(); |
80d0d023 | 5356 | Arm_exidx_cantunwind* cantunwind = |
2b328d4e | 5357 | new Arm_exidx_cantunwind(relobj, text_shndx); |
80d0d023 DK |
5358 | this->exidx_output_section_->add_output_section_data(cantunwind); |
5359 | this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; | |
5360 | } | |
5361 | } | |
5362 | ||
5363 | // Process an EXIDX section entry in input. Return whether this entry | |
5364 | // can be deleted in the output. SECOND_WORD in the second word of the | |
5365 | // EXIDX entry. | |
5366 | ||
5367 | bool | |
5368 | Arm_exidx_fixup::process_exidx_entry(uint32_t second_word) | |
5369 | { | |
5370 | bool delete_entry; | |
5371 | if (second_word == elfcpp::EXIDX_CANTUNWIND) | |
5372 | { | |
5373 | // Merge if previous entry is also an EXIDX_CANTUNWIND. | |
5374 | delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND; | |
5375 | this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; | |
5376 | } | |
5377 | else if ((second_word & 0x80000000) != 0) | |
5378 | { | |
5379 | // Inlined unwinding data. Merge if equal to previous. | |
85fdf906 AH |
5380 | delete_entry = (merge_exidx_entries_ |
5381 | && this->last_unwind_type_ == UT_INLINED_ENTRY | |
80d0d023 DK |
5382 | && this->last_inlined_entry_ == second_word); |
5383 | this->last_unwind_type_ = UT_INLINED_ENTRY; | |
5384 | this->last_inlined_entry_ = second_word; | |
5385 | } | |
5386 | else | |
5387 | { | |
5388 | // Normal table entry. In theory we could merge these too, | |
5389 | // but duplicate entries are likely to be much less common. | |
5390 | delete_entry = false; | |
5391 | this->last_unwind_type_ = UT_NORMAL_ENTRY; | |
5392 | } | |
5393 | return delete_entry; | |
5394 | } | |
5395 | ||
5396 | // Update the current section offset map during EXIDX section fix-up. | |
5397 | // If there is no map, create one. INPUT_OFFSET is the offset of a | |
5398 | // reference point, DELETED_BYTES is the number of deleted by in the | |
5399 | // section so far. If DELETE_ENTRY is true, the reference point and | |
5400 | // all offsets after the previous reference point are discarded. | |
5401 | ||
5402 | void | |
5403 | Arm_exidx_fixup::update_offset_map( | |
5404 | section_offset_type input_offset, | |
5405 | section_size_type deleted_bytes, | |
5406 | bool delete_entry) | |
5407 | { | |
5408 | if (this->section_offset_map_ == NULL) | |
5409 | this->section_offset_map_ = new Arm_exidx_section_offset_map(); | |
4fcd97eb DK |
5410 | section_offset_type output_offset; |
5411 | if (delete_entry) | |
5412 | output_offset = Arm_exidx_input_section::invalid_offset; | |
5413 | else | |
5414 | output_offset = input_offset - deleted_bytes; | |
80d0d023 DK |
5415 | (*this->section_offset_map_)[input_offset] = output_offset; |
5416 | } | |
5417 | ||
5418 | // Process EXIDX_INPUT_SECTION for EXIDX entry merging. Return the number of | |
5419 | // bytes deleted. If some entries are merged, also store a pointer to a newly | |
5420 | // created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP. The | |
5421 | // caller owns the map and is responsible for releasing it after use. | |
5422 | ||
5423 | template<bool big_endian> | |
5424 | uint32_t | |
5425 | Arm_exidx_fixup::process_exidx_section( | |
5426 | const Arm_exidx_input_section* exidx_input_section, | |
5427 | Arm_exidx_section_offset_map** psection_offset_map) | |
5428 | { | |
5429 | Relobj* relobj = exidx_input_section->relobj(); | |
5430 | unsigned shndx = exidx_input_section->shndx(); | |
5431 | section_size_type section_size; | |
5432 | const unsigned char* section_contents = | |
5433 | relobj->section_contents(shndx, §ion_size, false); | |
5434 | ||
5435 | if ((section_size % 8) != 0) | |
5436 | { | |
5437 | // Something is wrong with this section. Better not touch it. | |
5438 | gold_error(_("uneven .ARM.exidx section size in %s section %u"), | |
5439 | relobj->name().c_str(), shndx); | |
5440 | this->last_input_section_ = exidx_input_section; | |
5441 | this->last_unwind_type_ = UT_NONE; | |
5442 | return 0; | |
5443 | } | |
5444 | ||
5445 | uint32_t deleted_bytes = 0; | |
5446 | bool prev_delete_entry = false; | |
5447 | gold_assert(this->section_offset_map_ == NULL); | |
5448 | ||
5449 | for (section_size_type i = 0; i < section_size; i += 8) | |
5450 | { | |
5451 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
5452 | const Valtype* wv = | |
5453 | reinterpret_cast<const Valtype*>(section_contents + i + 4); | |
5454 | uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv); | |
5455 | ||
5456 | bool delete_entry = this->process_exidx_entry(second_word); | |
5457 | ||
5458 | // Entry deletion causes changes in output offsets. We use a std::map | |
5459 | // to record these. And entry (x, y) means input offset x | |
5460 | // is mapped to output offset y. If y is invalid_offset, then x is | |
5461 | // dropped in the output. Because of the way std::map::lower_bound | |
5462 | // works, we record the last offset in a region w.r.t to keeping or | |
5463 | // dropping. If there is no entry (x0, y0) for an input offset x0, | |
5464 | // the output offset y0 of it is determined by the output offset y1 of | |
5465 | // the smallest input offset x1 > x0 that there is an (x1, y1) entry | |
5466 | // in the map. If y1 is not -1, then y0 = y1 + x0 - x1. Othewise, y1 | |
5467 | // y0 is also -1. | |
5468 | if (delete_entry != prev_delete_entry && i != 0) | |
5469 | this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry); | |
5470 | ||
5471 | // Update total deleted bytes for this entry. | |
5472 | if (delete_entry) | |
5473 | deleted_bytes += 8; | |
5474 | ||
5475 | prev_delete_entry = delete_entry; | |
5476 | } | |
5477 | ||
5478 | // If section offset map is not NULL, make an entry for the end of | |
5479 | // section. | |
5480 | if (this->section_offset_map_ != NULL) | |
5481 | update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry); | |
5482 | ||
5483 | *psection_offset_map = this->section_offset_map_; | |
5484 | this->section_offset_map_ = NULL; | |
5485 | this->last_input_section_ = exidx_input_section; | |
5486 | ||
546c7457 DK |
5487 | // Set the first output text section so that we can link the EXIDX output |
5488 | // section to it. Ignore any EXIDX input section that is completely merged. | |
5489 | if (this->first_output_text_section_ == NULL | |
5490 | && deleted_bytes != section_size) | |
5491 | { | |
5492 | unsigned int link = exidx_input_section->link(); | |
5493 | Output_section* os = relobj->output_section(link); | |
5494 | gold_assert(os != NULL); | |
5495 | this->first_output_text_section_ = os; | |
5496 | } | |
5497 | ||
80d0d023 DK |
5498 | return deleted_bytes; |
5499 | } | |
5500 | ||
07f508a2 DK |
5501 | // Arm_output_section methods. |
5502 | ||
5503 | // Create a stub group for input sections from BEGIN to END. OWNER | |
5504 | // points to the input section to be the owner a new stub table. | |
5505 | ||
5506 | template<bool big_endian> | |
5507 | void | |
5508 | Arm_output_section<big_endian>::create_stub_group( | |
5509 | Input_section_list::const_iterator begin, | |
5510 | Input_section_list::const_iterator end, | |
5511 | Input_section_list::const_iterator owner, | |
5512 | Target_arm<big_endian>* target, | |
5513 | std::vector<Output_relaxed_input_section*>* new_relaxed_sections) | |
5514 | { | |
2b328d4e DK |
5515 | // We use a different kind of relaxed section in an EXIDX section. |
5516 | // The static casting from Output_relaxed_input_section to | |
5517 | // Arm_input_section is invalid in an EXIDX section. We are okay | |
5518 | // because we should not be calling this for an EXIDX section. | |
5519 | gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX); | |
5520 | ||
07f508a2 DK |
5521 | // Currently we convert ordinary input sections into relaxed sections only |
5522 | // at this point but we may want to support creating relaxed input section | |
5523 | // very early. So we check here to see if owner is already a relaxed | |
5524 | // section. | |
5525 | ||
5526 | Arm_input_section<big_endian>* arm_input_section; | |
5527 | if (owner->is_relaxed_input_section()) | |
5528 | { | |
5529 | arm_input_section = | |
5530 | Arm_input_section<big_endian>::as_arm_input_section( | |
5531 | owner->relaxed_input_section()); | |
5532 | } | |
5533 | else | |
5534 | { | |
5535 | gold_assert(owner->is_input_section()); | |
5536 | // Create a new relaxed input section. | |
5537 | arm_input_section = | |
5538 | target->new_arm_input_section(owner->relobj(), owner->shndx()); | |
5539 | new_relaxed_sections->push_back(arm_input_section); | |
5540 | } | |
5541 | ||
5542 | // Create a stub table. | |
2ea97941 | 5543 | Stub_table<big_endian>* stub_table = |
07f508a2 DK |
5544 | target->new_stub_table(arm_input_section); |
5545 | ||
2ea97941 | 5546 | arm_input_section->set_stub_table(stub_table); |
07f508a2 DK |
5547 | |
5548 | Input_section_list::const_iterator p = begin; | |
5549 | Input_section_list::const_iterator prev_p; | |
5550 | ||
5551 | // Look for input sections or relaxed input sections in [begin ... end]. | |
5552 | do | |
5553 | { | |
5554 | if (p->is_input_section() || p->is_relaxed_input_section()) | |
5555 | { | |
5556 | // The stub table information for input sections live | |
5557 | // in their objects. | |
5558 | Arm_relobj<big_endian>* arm_relobj = | |
5559 | Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | |
2ea97941 | 5560 | arm_relobj->set_stub_table(p->shndx(), stub_table); |
07f508a2 DK |
5561 | } |
5562 | prev_p = p++; | |
5563 | } | |
5564 | while (prev_p != end); | |
5565 | } | |
5566 | ||
5567 | // Group input sections for stub generation. GROUP_SIZE is roughly the limit | |
5568 | // of stub groups. We grow a stub group by adding input section until the | |
5569 | // size is just below GROUP_SIZE. The last input section will be converted | |
5570 | // into a stub table. If STUB_ALWAYS_AFTER_BRANCH is false, we also add | |
5571 | // input section after the stub table, effectively double the group size. | |
5572 | // | |
5573 | // This is similar to the group_sections() function in elf32-arm.c but is | |
5574 | // implemented differently. | |
5575 | ||
5576 | template<bool big_endian> | |
5577 | void | |
5578 | Arm_output_section<big_endian>::group_sections( | |
5579 | section_size_type group_size, | |
5580 | bool stubs_always_after_branch, | |
5581 | Target_arm<big_endian>* target) | |
5582 | { | |
5583 | // We only care about sections containing code. | |
5584 | if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0) | |
5585 | return; | |
5586 | ||
5587 | // States for grouping. | |
5588 | typedef enum | |
5589 | { | |
5590 | // No group is being built. | |
5591 | NO_GROUP, | |
5592 | // A group is being built but the stub table is not found yet. | |
5593 | // We keep group a stub group until the size is just under GROUP_SIZE. | |
5594 | // The last input section in the group will be used as the stub table. | |
5595 | FINDING_STUB_SECTION, | |
5596 | // A group is being built and we have already found a stub table. | |
5597 | // We enter this state to grow a stub group by adding input section | |
5598 | // after the stub table. This effectively doubles the group size. | |
5599 | HAS_STUB_SECTION | |
5600 | } State; | |
5601 | ||
5602 | // Any newly created relaxed sections are stored here. | |
5603 | std::vector<Output_relaxed_input_section*> new_relaxed_sections; | |
5604 | ||
5605 | State state = NO_GROUP; | |
5606 | section_size_type off = 0; | |
5607 | section_size_type group_begin_offset = 0; | |
5608 | section_size_type group_end_offset = 0; | |
5609 | section_size_type stub_table_end_offset = 0; | |
5610 | Input_section_list::const_iterator group_begin = | |
5611 | this->input_sections().end(); | |
2ea97941 | 5612 | Input_section_list::const_iterator stub_table = |
07f508a2 DK |
5613 | this->input_sections().end(); |
5614 | Input_section_list::const_iterator group_end = this->input_sections().end(); | |
5615 | for (Input_section_list::const_iterator p = this->input_sections().begin(); | |
5616 | p != this->input_sections().end(); | |
5617 | ++p) | |
5618 | { | |
5619 | section_size_type section_begin_offset = | |
5620 | align_address(off, p->addralign()); | |
5621 | section_size_type section_end_offset = | |
5622 | section_begin_offset + p->data_size(); | |
5623 | ||
5624 | // Check to see if we should group the previously seens sections. | |
e9bbb538 | 5625 | switch (state) |
07f508a2 DK |
5626 | { |
5627 | case NO_GROUP: | |
5628 | break; | |
5629 | ||
5630 | case FINDING_STUB_SECTION: | |
5631 | // Adding this section makes the group larger than GROUP_SIZE. | |
5632 | if (section_end_offset - group_begin_offset >= group_size) | |
5633 | { | |
5634 | if (stubs_always_after_branch) | |
5635 | { | |
5636 | gold_assert(group_end != this->input_sections().end()); | |
5637 | this->create_stub_group(group_begin, group_end, group_end, | |
5638 | target, &new_relaxed_sections); | |
5639 | state = NO_GROUP; | |
5640 | } | |
5641 | else | |
5642 | { | |
5643 | // But wait, there's more! Input sections up to | |
5644 | // stub_group_size bytes after the stub table can be | |
5645 | // handled by it too. | |
5646 | state = HAS_STUB_SECTION; | |
2ea97941 | 5647 | stub_table = group_end; |
07f508a2 DK |
5648 | stub_table_end_offset = group_end_offset; |
5649 | } | |
5650 | } | |
5651 | break; | |
5652 | ||
5653 | case HAS_STUB_SECTION: | |
5654 | // Adding this section makes the post stub-section group larger | |
5655 | // than GROUP_SIZE. | |
5656 | if (section_end_offset - stub_table_end_offset >= group_size) | |
5657 | { | |
5658 | gold_assert(group_end != this->input_sections().end()); | |
2ea97941 | 5659 | this->create_stub_group(group_begin, group_end, stub_table, |
07f508a2 DK |
5660 | target, &new_relaxed_sections); |
5661 | state = NO_GROUP; | |
5662 | } | |
5663 | break; | |
5664 | ||
5665 | default: | |
5666 | gold_unreachable(); | |
5667 | } | |
5668 | ||
5669 | // If we see an input section and currently there is no group, start | |
5670 | // a new one. Skip any empty sections. | |
5671 | if ((p->is_input_section() || p->is_relaxed_input_section()) | |
5672 | && (p->relobj()->section_size(p->shndx()) != 0)) | |
5673 | { | |
5674 | if (state == NO_GROUP) | |
5675 | { | |
5676 | state = FINDING_STUB_SECTION; | |
5677 | group_begin = p; | |
5678 | group_begin_offset = section_begin_offset; | |
5679 | } | |
5680 | ||
5681 | // Keep track of the last input section seen. | |
5682 | group_end = p; | |
5683 | group_end_offset = section_end_offset; | |
5684 | } | |
5685 | ||
5686 | off = section_end_offset; | |
5687 | } | |
5688 | ||
5689 | // Create a stub group for any ungrouped sections. | |
5690 | if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION) | |
5691 | { | |
5692 | gold_assert(group_end != this->input_sections().end()); | |
5693 | this->create_stub_group(group_begin, group_end, | |
5694 | (state == FINDING_STUB_SECTION | |
5695 | ? group_end | |
2ea97941 | 5696 | : stub_table), |
07f508a2 DK |
5697 | target, &new_relaxed_sections); |
5698 | } | |
5699 | ||
5700 | // Convert input section into relaxed input section in a batch. | |
5701 | if (!new_relaxed_sections.empty()) | |
5702 | this->convert_input_sections_to_relaxed_sections(new_relaxed_sections); | |
5703 | ||
5704 | // Update the section offsets | |
5705 | for (size_t i = 0; i < new_relaxed_sections.size(); ++i) | |
5706 | { | |
5707 | Arm_relobj<big_endian>* arm_relobj = | |
5708 | Arm_relobj<big_endian>::as_arm_relobj( | |
5709 | new_relaxed_sections[i]->relobj()); | |
2ea97941 | 5710 | unsigned int shndx = new_relaxed_sections[i]->shndx(); |
07f508a2 | 5711 | // Tell Arm_relobj that this input section is converted. |
2ea97941 | 5712 | arm_relobj->convert_input_section_to_relaxed_section(shndx); |
07f508a2 DK |
5713 | } |
5714 | } | |
5715 | ||
2b328d4e DK |
5716 | // Append non empty text sections in this to LIST in ascending |
5717 | // order of their position in this. | |
5718 | ||
5719 | template<bool big_endian> | |
5720 | void | |
5721 | Arm_output_section<big_endian>::append_text_sections_to_list( | |
5722 | Text_section_list* list) | |
5723 | { | |
2b328d4e DK |
5724 | gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0); |
5725 | ||
5726 | for (Input_section_list::const_iterator p = this->input_sections().begin(); | |
5727 | p != this->input_sections().end(); | |
5728 | ++p) | |
5729 | { | |
5730 | // We only care about plain or relaxed input sections. We also | |
5731 | // ignore any merged sections. | |
5732 | if ((p->is_input_section() || p->is_relaxed_input_section()) | |
5733 | && p->data_size() != 0) | |
5734 | list->push_back(Text_section_list::value_type(p->relobj(), | |
5735 | p->shndx())); | |
5736 | } | |
5737 | } | |
5738 | ||
5739 | template<bool big_endian> | |
5740 | void | |
5741 | Arm_output_section<big_endian>::fix_exidx_coverage( | |
4a54abbb | 5742 | Layout* layout, |
2b328d4e | 5743 | const Text_section_list& sorted_text_sections, |
85fdf906 AH |
5744 | Symbol_table* symtab, |
5745 | bool merge_exidx_entries) | |
2b328d4e DK |
5746 | { |
5747 | // We should only do this for the EXIDX output section. | |
5748 | gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); | |
5749 | ||
5750 | // We don't want the relaxation loop to undo these changes, so we discard | |
5751 | // the current saved states and take another one after the fix-up. | |
5752 | this->discard_states(); | |
5753 | ||
5754 | // Remove all input sections. | |
5755 | uint64_t address = this->address(); | |
6625d24e DK |
5756 | typedef std::list<Output_section::Input_section> Input_section_list; |
5757 | Input_section_list input_sections; | |
2b328d4e DK |
5758 | this->reset_address_and_file_offset(); |
5759 | this->get_input_sections(address, std::string(""), &input_sections); | |
5760 | ||
5761 | if (!this->input_sections().empty()) | |
5762 | gold_error(_("Found non-EXIDX input sections in EXIDX output section")); | |
5763 | ||
5764 | // Go through all the known input sections and record them. | |
5765 | typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; | |
6625d24e DK |
5766 | typedef Unordered_map<Section_id, const Output_section::Input_section*, |
5767 | Section_id_hash> Text_to_exidx_map; | |
5768 | Text_to_exidx_map text_to_exidx_map; | |
5769 | for (Input_section_list::const_iterator p = input_sections.begin(); | |
2b328d4e DK |
5770 | p != input_sections.end(); |
5771 | ++p) | |
5772 | { | |
5773 | // This should never happen. At this point, we should only see | |
5774 | // plain EXIDX input sections. | |
5775 | gold_assert(!p->is_relaxed_input_section()); | |
6625d24e | 5776 | text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p); |
2b328d4e DK |
5777 | } |
5778 | ||
85fdf906 | 5779 | Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries); |
2b328d4e DK |
5780 | |
5781 | // Go over the sorted text sections. | |
6625d24e | 5782 | typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; |
2b328d4e DK |
5783 | Section_id_set processed_input_sections; |
5784 | for (Text_section_list::const_iterator p = sorted_text_sections.begin(); | |
5785 | p != sorted_text_sections.end(); | |
5786 | ++p) | |
5787 | { | |
5788 | Relobj* relobj = p->first; | |
5789 | unsigned int shndx = p->second; | |
5790 | ||
5791 | Arm_relobj<big_endian>* arm_relobj = | |
5792 | Arm_relobj<big_endian>::as_arm_relobj(relobj); | |
5793 | const Arm_exidx_input_section* exidx_input_section = | |
5794 | arm_relobj->exidx_input_section_by_link(shndx); | |
5795 | ||
131687b4 DK |
5796 | // If this text section has no EXIDX section or if the EXIDX section |
5797 | // has errors, force an EXIDX_CANTUNWIND entry pointing to the end | |
5798 | // of the last seen EXIDX section. | |
5799 | if (exidx_input_section == NULL || exidx_input_section->has_errors()) | |
2b328d4e DK |
5800 | { |
5801 | exidx_fixup.add_exidx_cantunwind_as_needed(); | |
5802 | continue; | |
5803 | } | |
5804 | ||
5805 | Relobj* exidx_relobj = exidx_input_section->relobj(); | |
5806 | unsigned int exidx_shndx = exidx_input_section->shndx(); | |
5807 | Section_id sid(exidx_relobj, exidx_shndx); | |
6625d24e DK |
5808 | Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid); |
5809 | if (iter == text_to_exidx_map.end()) | |
2b328d4e DK |
5810 | { |
5811 | // This is odd. We have not seen this EXIDX input section before. | |
4a54abbb DK |
5812 | // We cannot do fix-up. If we saw a SECTIONS clause in a script, |
5813 | // issue a warning instead. We assume the user knows what he | |
5814 | // or she is doing. Otherwise, this is an error. | |
5815 | if (layout->script_options()->saw_sections_clause()) | |
5816 | gold_warning(_("unwinding may not work because EXIDX input section" | |
5817 | " %u of %s is not in EXIDX output section"), | |
5818 | exidx_shndx, exidx_relobj->name().c_str()); | |
5819 | else | |
5820 | gold_error(_("unwinding may not work because EXIDX input section" | |
5821 | " %u of %s is not in EXIDX output section"), | |
5822 | exidx_shndx, exidx_relobj->name().c_str()); | |
5823 | ||
2b328d4e DK |
5824 | exidx_fixup.add_exidx_cantunwind_as_needed(); |
5825 | continue; | |
5826 | } | |
5827 | ||
5828 | // Fix up coverage and append input section to output data list. | |
5829 | Arm_exidx_section_offset_map* section_offset_map = NULL; | |
5830 | uint32_t deleted_bytes = | |
5831 | exidx_fixup.process_exidx_section<big_endian>(exidx_input_section, | |
5832 | §ion_offset_map); | |
5833 | ||
5834 | if (deleted_bytes == exidx_input_section->size()) | |
5835 | { | |
5836 | // The whole EXIDX section got merged. Remove it from output. | |
5837 | gold_assert(section_offset_map == NULL); | |
5838 | exidx_relobj->set_output_section(exidx_shndx, NULL); | |
e7eca48c DK |
5839 | |
5840 | // All local symbols defined in this input section will be dropped. | |
5841 | // We need to adjust output local symbol count. | |
5842 | arm_relobj->set_output_local_symbol_count_needs_update(); | |
2b328d4e DK |
5843 | } |
5844 | else if (deleted_bytes > 0) | |
5845 | { | |
5846 | // Some entries are merged. We need to convert this EXIDX input | |
5847 | // section into a relaxed section. | |
5848 | gold_assert(section_offset_map != NULL); | |
5849 | Arm_exidx_merged_section* merged_section = | |
5850 | new Arm_exidx_merged_section(*exidx_input_section, | |
5851 | *section_offset_map, deleted_bytes); | |
5852 | this->add_relaxed_input_section(merged_section); | |
5853 | arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx); | |
e7eca48c DK |
5854 | |
5855 | // All local symbols defined in discarded portions of this input | |
5856 | // section will be dropped. We need to adjust output local symbol | |
5857 | // count. | |
5858 | arm_relobj->set_output_local_symbol_count_needs_update(); | |
2b328d4e DK |
5859 | } |
5860 | else | |
5861 | { | |
5862 | // Just add back the EXIDX input section. | |
5863 | gold_assert(section_offset_map == NULL); | |
6625d24e DK |
5864 | const Output_section::Input_section* pis = iter->second; |
5865 | gold_assert(pis->is_input_section()); | |
5866 | this->add_script_input_section(*pis); | |
2b328d4e DK |
5867 | } |
5868 | ||
5869 | processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); | |
5870 | } | |
5871 | ||
5872 | // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary. | |
5873 | exidx_fixup.add_exidx_cantunwind_as_needed(); | |
5874 | ||
5875 | // Remove any known EXIDX input sections that are not processed. | |
6625d24e | 5876 | for (Input_section_list::const_iterator p = input_sections.begin(); |
2b328d4e DK |
5877 | p != input_sections.end(); |
5878 | ++p) | |
5879 | { | |
5880 | if (processed_input_sections.find(Section_id(p->relobj(), p->shndx())) | |
5881 | == processed_input_sections.end()) | |
5882 | { | |
131687b4 DK |
5883 | // We discard a known EXIDX section because its linked |
5884 | // text section has been folded by ICF. We also discard an | |
5885 | // EXIDX section with error, the output does not matter in this | |
5886 | // case. We do this to avoid triggering asserts. | |
2b328d4e DK |
5887 | Arm_relobj<big_endian>* arm_relobj = |
5888 | Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | |
5889 | const Arm_exidx_input_section* exidx_input_section = | |
5890 | arm_relobj->exidx_input_section_by_shndx(p->shndx()); | |
5891 | gold_assert(exidx_input_section != NULL); | |
131687b4 DK |
5892 | if (!exidx_input_section->has_errors()) |
5893 | { | |
5894 | unsigned int text_shndx = exidx_input_section->link(); | |
5895 | gold_assert(symtab->is_section_folded(p->relobj(), text_shndx)); | |
5896 | } | |
2b328d4e | 5897 | |
04ceb17c DK |
5898 | // Remove this from link. We also need to recount the |
5899 | // local symbols. | |
2b328d4e | 5900 | p->relobj()->set_output_section(p->shndx(), NULL); |
04ceb17c | 5901 | arm_relobj->set_output_local_symbol_count_needs_update(); |
2b328d4e DK |
5902 | } |
5903 | } | |
5904 | ||
546c7457 DK |
5905 | // Link exidx output section to the first seen output section and |
5906 | // set correct entry size. | |
5907 | this->set_link_section(exidx_fixup.first_output_text_section()); | |
5908 | this->set_entsize(8); | |
5909 | ||
2b328d4e DK |
5910 | // Make changes permanent. |
5911 | this->save_states(); | |
5912 | this->set_section_offsets_need_adjustment(); | |
5913 | } | |
5914 | ||
131687b4 DK |
5915 | // Link EXIDX output sections to text output sections. |
5916 | ||
5917 | template<bool big_endian> | |
5918 | void | |
5919 | Arm_output_section<big_endian>::set_exidx_section_link() | |
5920 | { | |
5921 | gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); | |
5922 | if (!this->input_sections().empty()) | |
5923 | { | |
5924 | Input_section_list::const_iterator p = this->input_sections().begin(); | |
5925 | Arm_relobj<big_endian>* arm_relobj = | |
5926 | Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | |
5927 | unsigned exidx_shndx = p->shndx(); | |
5928 | const Arm_exidx_input_section* exidx_input_section = | |
5929 | arm_relobj->exidx_input_section_by_shndx(exidx_shndx); | |
5930 | gold_assert(exidx_input_section != NULL); | |
5931 | unsigned int text_shndx = exidx_input_section->link(); | |
5932 | Output_section* os = arm_relobj->output_section(text_shndx); | |
5933 | this->set_link_section(os); | |
5934 | } | |
5935 | } | |
5936 | ||
8ffa3667 DK |
5937 | // Arm_relobj methods. |
5938 | ||
cf846138 DK |
5939 | // Determine if an input section is scannable for stub processing. SHDR is |
5940 | // the header of the section and SHNDX is the section index. OS is the output | |
5941 | // section for the input section and SYMTAB is the global symbol table used to | |
5942 | // look up ICF information. | |
5943 | ||
5944 | template<bool big_endian> | |
5945 | bool | |
5946 | Arm_relobj<big_endian>::section_is_scannable( | |
5947 | const elfcpp::Shdr<32, big_endian>& shdr, | |
5948 | unsigned int shndx, | |
5949 | const Output_section* os, | |
ca09d69a | 5950 | const Symbol_table* symtab) |
cf846138 DK |
5951 | { |
5952 | // Skip any empty sections, unallocated sections or sections whose | |
5953 | // type are not SHT_PROGBITS. | |
5954 | if (shdr.get_sh_size() == 0 | |
5955 | || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 | |
5956 | || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) | |
5957 | return false; | |
5958 | ||
5959 | // Skip any discarded or ICF'ed sections. | |
5960 | if (os == NULL || symtab->is_section_folded(this, shndx)) | |
5961 | return false; | |
5962 | ||
5963 | // If this requires special offset handling, check to see if it is | |
5964 | // a relaxed section. If this is not, then it is a merged section that | |
5965 | // we cannot handle. | |
5966 | if (this->is_output_section_offset_invalid(shndx)) | |
5967 | { | |
5968 | const Output_relaxed_input_section* poris = | |
5969 | os->find_relaxed_input_section(this, shndx); | |
5970 | if (poris == NULL) | |
5971 | return false; | |
5972 | } | |
5973 | ||
5974 | return true; | |
5975 | } | |
5976 | ||
44272192 DK |
5977 | // Determine if we want to scan the SHNDX-th section for relocation stubs. |
5978 | // This is a helper for Arm_relobj::scan_sections_for_stubs() below. | |
5979 | ||
5980 | template<bool big_endian> | |
5981 | bool | |
5982 | Arm_relobj<big_endian>::section_needs_reloc_stub_scanning( | |
5983 | const elfcpp::Shdr<32, big_endian>& shdr, | |
5984 | const Relobj::Output_sections& out_sections, | |
ca09d69a | 5985 | const Symbol_table* symtab, |
2b328d4e | 5986 | const unsigned char* pshdrs) |
44272192 DK |
5987 | { |
5988 | unsigned int sh_type = shdr.get_sh_type(); | |
5989 | if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) | |
5990 | return false; | |
5991 | ||
5992 | // Ignore empty section. | |
5993 | off_t sh_size = shdr.get_sh_size(); | |
5994 | if (sh_size == 0) | |
5995 | return false; | |
5996 | ||
44272192 DK |
5997 | // Ignore reloc section with unexpected symbol table. The |
5998 | // error will be reported in the final link. | |
5999 | if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) | |
6000 | return false; | |
6001 | ||
b521dfe4 DK |
6002 | unsigned int reloc_size; |
6003 | if (sh_type == elfcpp::SHT_REL) | |
6004 | reloc_size = elfcpp::Elf_sizes<32>::rel_size; | |
6005 | else | |
6006 | reloc_size = elfcpp::Elf_sizes<32>::rela_size; | |
44272192 DK |
6007 | |
6008 | // Ignore reloc section with unexpected entsize or uneven size. | |
6009 | // The error will be reported in the final link. | |
6010 | if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) | |
6011 | return false; | |
6012 | ||
cf846138 DK |
6013 | // Ignore reloc section with bad info. This error will be |
6014 | // reported in the final link. | |
6015 | unsigned int index = this->adjust_shndx(shdr.get_sh_info()); | |
6016 | if (index >= this->shnum()) | |
6017 | return false; | |
6018 | ||
6019 | const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | |
6020 | const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size); | |
6021 | return this->section_is_scannable(text_shdr, index, | |
6022 | out_sections[index], symtab); | |
44272192 DK |
6023 | } |
6024 | ||
cb1be87e DK |
6025 | // Return the output address of either a plain input section or a relaxed |
6026 | // input section. SHNDX is the section index. We define and use this | |
6027 | // instead of calling Output_section::output_address because that is slow | |
6028 | // for large output. | |
6029 | ||
6030 | template<bool big_endian> | |
6031 | Arm_address | |
6032 | Arm_relobj<big_endian>::simple_input_section_output_address( | |
6033 | unsigned int shndx, | |
6034 | Output_section* os) | |
6035 | { | |
6036 | if (this->is_output_section_offset_invalid(shndx)) | |
6037 | { | |
6038 | const Output_relaxed_input_section* poris = | |
6039 | os->find_relaxed_input_section(this, shndx); | |
6040 | // We do not handle merged sections here. | |
6041 | gold_assert(poris != NULL); | |
6042 | return poris->address(); | |
6043 | } | |
6044 | else | |
6045 | return os->address() + this->get_output_section_offset(shndx); | |
6046 | } | |
6047 | ||
44272192 DK |
6048 | // Determine if we want to scan the SHNDX-th section for non-relocation stubs. |
6049 | // This is a helper for Arm_relobj::scan_sections_for_stubs() below. | |
6050 | ||
6051 | template<bool big_endian> | |
6052 | bool | |
6053 | Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning( | |
6054 | const elfcpp::Shdr<32, big_endian>& shdr, | |
6055 | unsigned int shndx, | |
6056 | Output_section* os, | |
6057 | const Symbol_table* symtab) | |
6058 | { | |
cf846138 | 6059 | if (!this->section_is_scannable(shdr, shndx, os, symtab)) |
44272192 DK |
6060 | return false; |
6061 | ||
44272192 DK |
6062 | // If the section does not cross any 4K-boundaries, it does not need to |
6063 | // be scanned. | |
cb1be87e | 6064 | Arm_address address = this->simple_input_section_output_address(shndx, os); |
44272192 DK |
6065 | if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU)) |
6066 | return false; | |
6067 | ||
6068 | return true; | |
6069 | } | |
6070 | ||
6071 | // Scan a section for Cortex-A8 workaround. | |
6072 | ||
6073 | template<bool big_endian> | |
6074 | void | |
6075 | Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum( | |
6076 | const elfcpp::Shdr<32, big_endian>& shdr, | |
6077 | unsigned int shndx, | |
6078 | Output_section* os, | |
6079 | Target_arm<big_endian>* arm_target) | |
6080 | { | |
c8761b9a DK |
6081 | // Look for the first mapping symbol in this section. It should be |
6082 | // at (shndx, 0). | |
6083 | Mapping_symbol_position section_start(shndx, 0); | |
6084 | typename Mapping_symbols_info::const_iterator p = | |
6085 | this->mapping_symbols_info_.lower_bound(section_start); | |
6086 | ||
6087 | // There are no mapping symbols for this section. Treat it as a data-only | |
24af6f92 DK |
6088 | // section. Issue a warning if section is marked as containing |
6089 | // instructions. | |
c8761b9a | 6090 | if (p == this->mapping_symbols_info_.end() || p->first.first != shndx) |
24af6f92 DK |
6091 | { |
6092 | if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0) | |
6093 | gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 " | |
6094 | "erratum because it has no mapping symbols."), | |
6095 | shndx, this->name().c_str()); | |
6096 | return; | |
6097 | } | |
c8761b9a | 6098 | |
cb1be87e DK |
6099 | Arm_address output_address = |
6100 | this->simple_input_section_output_address(shndx, os); | |
44272192 DK |
6101 | |
6102 | // Get the section contents. | |
6103 | section_size_type input_view_size = 0; | |
6104 | const unsigned char* input_view = | |
6105 | this->section_contents(shndx, &input_view_size, false); | |
6106 | ||
6107 | // We need to go through the mapping symbols to determine what to | |
6108 | // scan. There are two reasons. First, we should look at THUMB code and | |
6109 | // THUMB code only. Second, we only want to look at the 4K-page boundary | |
6110 | // to speed up the scanning. | |
6111 | ||
44272192 DK |
6112 | while (p != this->mapping_symbols_info_.end() |
6113 | && p->first.first == shndx) | |
6114 | { | |
6115 | typename Mapping_symbols_info::const_iterator next = | |
6116 | this->mapping_symbols_info_.upper_bound(p->first); | |
6117 | ||
6118 | // Only scan part of a section with THUMB code. | |
6119 | if (p->second == 't') | |
6120 | { | |
6121 | // Determine the end of this range. | |
6122 | section_size_type span_start = | |
6123 | convert_to_section_size_type(p->first.second); | |
6124 | section_size_type span_end; | |
6125 | if (next != this->mapping_symbols_info_.end() | |
6126 | && next->first.first == shndx) | |
6127 | span_end = convert_to_section_size_type(next->first.second); | |
6128 | else | |
6129 | span_end = convert_to_section_size_type(shdr.get_sh_size()); | |
6130 | ||
6131 | if (((span_start + output_address) & ~0xfffUL) | |
6132 | != ((span_end + output_address - 1) & ~0xfffUL)) | |
6133 | { | |
6134 | arm_target->scan_span_for_cortex_a8_erratum(this, shndx, | |
6135 | span_start, span_end, | |
6136 | input_view, | |
6137 | output_address); | |
6138 | } | |
6139 | } | |
6140 | ||
6141 | p = next; | |
6142 | } | |
6143 | } | |
6144 | ||
8ffa3667 DK |
6145 | // Scan relocations for stub generation. |
6146 | ||
6147 | template<bool big_endian> | |
6148 | void | |
6149 | Arm_relobj<big_endian>::scan_sections_for_stubs( | |
6150 | Target_arm<big_endian>* arm_target, | |
6151 | const Symbol_table* symtab, | |
2ea97941 | 6152 | const Layout* layout) |
8ffa3667 | 6153 | { |
2ea97941 ILT |
6154 | unsigned int shnum = this->shnum(); |
6155 | const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | |
8ffa3667 DK |
6156 | |
6157 | // Read the section headers. | |
6158 | const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), | |
2ea97941 | 6159 | shnum * shdr_size, |
8ffa3667 DK |
6160 | true, true); |
6161 | ||
6162 | // To speed up processing, we set up hash tables for fast lookup of | |
6163 | // input offsets to output addresses. | |
6164 | this->initialize_input_to_output_maps(); | |
6165 | ||
6166 | const Relobj::Output_sections& out_sections(this->output_sections()); | |
6167 | ||
6168 | Relocate_info<32, big_endian> relinfo; | |
8ffa3667 | 6169 | relinfo.symtab = symtab; |
2ea97941 | 6170 | relinfo.layout = layout; |
8ffa3667 DK |
6171 | relinfo.object = this; |
6172 | ||
44272192 | 6173 | // Do relocation stubs scanning. |
2ea97941 ILT |
6174 | const unsigned char* p = pshdrs + shdr_size; |
6175 | for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) | |
8ffa3667 | 6176 | { |
44272192 | 6177 | const elfcpp::Shdr<32, big_endian> shdr(p); |
2b328d4e DK |
6178 | if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, |
6179 | pshdrs)) | |
8ffa3667 | 6180 | { |
44272192 DK |
6181 | unsigned int index = this->adjust_shndx(shdr.get_sh_info()); |
6182 | Arm_address output_offset = this->get_output_section_offset(index); | |
6183 | Arm_address output_address; | |
7296d933 | 6184 | if (output_offset != invalid_address) |
44272192 DK |
6185 | output_address = out_sections[index]->address() + output_offset; |
6186 | else | |
6187 | { | |
6188 | // Currently this only happens for a relaxed section. | |
6189 | const Output_relaxed_input_section* poris = | |
6190 | out_sections[index]->find_relaxed_input_section(this, index); | |
6191 | gold_assert(poris != NULL); | |
6192 | output_address = poris->address(); | |
6193 | } | |
8ffa3667 | 6194 | |
44272192 DK |
6195 | // Get the relocations. |
6196 | const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), | |
6197 | shdr.get_sh_size(), | |
6198 | true, false); | |
6199 | ||
6200 | // Get the section contents. This does work for the case in which | |
6201 | // we modify the contents of an input section. We need to pass the | |
6202 | // output view under such circumstances. | |
6203 | section_size_type input_view_size = 0; | |
6204 | const unsigned char* input_view = | |
6205 | this->section_contents(index, &input_view_size, false); | |
6206 | ||
6207 | relinfo.reloc_shndx = i; | |
6208 | relinfo.data_shndx = index; | |
6209 | unsigned int sh_type = shdr.get_sh_type(); | |
b521dfe4 DK |
6210 | unsigned int reloc_size; |
6211 | if (sh_type == elfcpp::SHT_REL) | |
6212 | reloc_size = elfcpp::Elf_sizes<32>::rel_size; | |
6213 | else | |
6214 | reloc_size = elfcpp::Elf_sizes<32>::rela_size; | |
44272192 DK |
6215 | |
6216 | Output_section* os = out_sections[index]; | |
6217 | arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs, | |
6218 | shdr.get_sh_size() / reloc_size, | |
6219 | os, | |
6220 | output_offset == invalid_address, | |
6221 | input_view, output_address, | |
6222 | input_view_size); | |
8ffa3667 | 6223 | } |
44272192 | 6224 | } |
8ffa3667 | 6225 | |
44272192 DK |
6226 | // Do Cortex-A8 erratum stubs scanning. This has to be done for a section |
6227 | // after its relocation section, if there is one, is processed for | |
6228 | // relocation stubs. Merging this loop with the one above would have been | |
6229 | // complicated since we would have had to make sure that relocation stub | |
6230 | // scanning is done first. | |
6231 | if (arm_target->fix_cortex_a8()) | |
6232 | { | |
6233 | const unsigned char* p = pshdrs + shdr_size; | |
6234 | for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) | |
8ffa3667 | 6235 | { |
44272192 DK |
6236 | const elfcpp::Shdr<32, big_endian> shdr(p); |
6237 | if (this->section_needs_cortex_a8_stub_scanning(shdr, i, | |
6238 | out_sections[i], | |
6239 | symtab)) | |
6240 | this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i], | |
6241 | arm_target); | |
8ffa3667 | 6242 | } |
8ffa3667 DK |
6243 | } |
6244 | ||
6245 | // After we've done the relocations, we release the hash tables, | |
6246 | // since we no longer need them. | |
6247 | this->free_input_to_output_maps(); | |
6248 | } | |
6249 | ||
6250 | // Count the local symbols. The ARM backend needs to know if a symbol | |
6251 | // is a THUMB function or not. For global symbols, it is easy because | |
6252 | // the Symbol object keeps the ELF symbol type. For local symbol it is | |
6253 | // harder because we cannot access this information. So we override the | |
6254 | // do_count_local_symbol in parent and scan local symbols to mark | |
6255 | // THUMB functions. This is not the most efficient way but I do not want to | |
6256 | // slow down other ports by calling a per symbol targer hook inside | |
6257 | // Sized_relobj<size, big_endian>::do_count_local_symbols. | |
6258 | ||
6259 | template<bool big_endian> | |
6260 | void | |
6261 | Arm_relobj<big_endian>::do_count_local_symbols( | |
6262 | Stringpool_template<char>* pool, | |
6263 | Stringpool_template<char>* dynpool) | |
6264 | { | |
6265 | // We need to fix-up the values of any local symbols whose type are | |
6266 | // STT_ARM_TFUNC. | |
6267 | ||
6268 | // Ask parent to count the local symbols. | |
6269 | Sized_relobj<32, big_endian>::do_count_local_symbols(pool, dynpool); | |
6270 | const unsigned int loccount = this->local_symbol_count(); | |
6271 | if (loccount == 0) | |
6272 | return; | |
6273 | ||
6274 | // Intialize the thumb function bit-vector. | |
6275 | std::vector<bool> empty_vector(loccount, false); | |
6276 | this->local_symbol_is_thumb_function_.swap(empty_vector); | |
6277 | ||
6278 | // Read the symbol table section header. | |
2ea97941 | 6279 | const unsigned int symtab_shndx = this->symtab_shndx(); |
8ffa3667 | 6280 | elfcpp::Shdr<32, big_endian> |
2ea97941 | 6281 | symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); |
8ffa3667 DK |
6282 | gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); |
6283 | ||
6284 | // Read the local symbols. | |
2ea97941 | 6285 | const int sym_size =elfcpp::Elf_sizes<32>::sym_size; |
8ffa3667 | 6286 | gold_assert(loccount == symtabshdr.get_sh_info()); |
2ea97941 | 6287 | off_t locsize = loccount * sym_size; |
8ffa3667 DK |
6288 | const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), |
6289 | locsize, true, true); | |
6290 | ||
20138696 DK |
6291 | // For mapping symbol processing, we need to read the symbol names. |
6292 | unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); | |
6293 | if (strtab_shndx >= this->shnum()) | |
6294 | { | |
6295 | this->error(_("invalid symbol table name index: %u"), strtab_shndx); | |
6296 | return; | |
6297 | } | |
6298 | ||
6299 | elfcpp::Shdr<32, big_endian> | |
6300 | strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); | |
6301 | if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) | |
6302 | { | |
6303 | this->error(_("symbol table name section has wrong type: %u"), | |
6304 | static_cast<unsigned int>(strtabshdr.get_sh_type())); | |
6305 | return; | |
6306 | } | |
6307 | const char* pnames = | |
6308 | reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(), | |
6309 | strtabshdr.get_sh_size(), | |
6310 | false, false)); | |
6311 | ||
8ffa3667 DK |
6312 | // Loop over the local symbols and mark any local symbols pointing |
6313 | // to THUMB functions. | |
6314 | ||
6315 | // Skip the first dummy symbol. | |
2ea97941 | 6316 | psyms += sym_size; |
8ffa3667 DK |
6317 | typename Sized_relobj<32, big_endian>::Local_values* plocal_values = |
6318 | this->local_values(); | |
2ea97941 | 6319 | for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) |
8ffa3667 DK |
6320 | { |
6321 | elfcpp::Sym<32, big_endian> sym(psyms); | |
6322 | elfcpp::STT st_type = sym.get_st_type(); | |
6323 | Symbol_value<32>& lv((*plocal_values)[i]); | |
6324 | Arm_address input_value = lv.input_value(); | |
6325 | ||
20138696 DK |
6326 | // Check to see if this is a mapping symbol. |
6327 | const char* sym_name = pnames + sym.get_st_name(); | |
6328 | if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name)) | |
6329 | { | |
24af6f92 DK |
6330 | bool is_ordinary; |
6331 | unsigned int input_shndx = | |
6332 | this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); | |
6333 | gold_assert(is_ordinary); | |
20138696 DK |
6334 | |
6335 | // Strip of LSB in case this is a THUMB symbol. | |
6336 | Mapping_symbol_position msp(input_shndx, input_value & ~1U); | |
6337 | this->mapping_symbols_info_[msp] = sym_name[1]; | |
6338 | } | |
6339 | ||
8ffa3667 DK |
6340 | if (st_type == elfcpp::STT_ARM_TFUNC |
6341 | || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0))) | |
6342 | { | |
6343 | // This is a THUMB function. Mark this and canonicalize the | |
6344 | // symbol value by setting LSB. | |
6345 | this->local_symbol_is_thumb_function_[i] = true; | |
6346 | if ((input_value & 1) == 0) | |
6347 | lv.set_input_value(input_value | 1); | |
6348 | } | |
6349 | } | |
6350 | } | |
6351 | ||
6352 | // Relocate sections. | |
6353 | template<bool big_endian> | |
6354 | void | |
6355 | Arm_relobj<big_endian>::do_relocate_sections( | |
8ffa3667 | 6356 | const Symbol_table* symtab, |
2ea97941 | 6357 | const Layout* layout, |
8ffa3667 | 6358 | const unsigned char* pshdrs, |
aa98ff75 | 6359 | Output_file* of, |
8ffa3667 DK |
6360 | typename Sized_relobj<32, big_endian>::Views* pviews) |
6361 | { | |
6362 | // Call parent to relocate sections. | |
2ea97941 | 6363 | Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs, |
aa98ff75 | 6364 | of, pviews); |
8ffa3667 DK |
6365 | |
6366 | // We do not generate stubs if doing a relocatable link. | |
6367 | if (parameters->options().relocatable()) | |
6368 | return; | |
6369 | ||
6370 | // Relocate stub tables. | |
2ea97941 | 6371 | unsigned int shnum = this->shnum(); |
8ffa3667 DK |
6372 | |
6373 | Target_arm<big_endian>* arm_target = | |
6374 | Target_arm<big_endian>::default_target(); | |
6375 | ||
6376 | Relocate_info<32, big_endian> relinfo; | |
8ffa3667 | 6377 | relinfo.symtab = symtab; |
2ea97941 | 6378 | relinfo.layout = layout; |
8ffa3667 DK |
6379 | relinfo.object = this; |
6380 | ||
2ea97941 | 6381 | for (unsigned int i = 1; i < shnum; ++i) |
8ffa3667 DK |
6382 | { |
6383 | Arm_input_section<big_endian>* arm_input_section = | |
6384 | arm_target->find_arm_input_section(this, i); | |
6385 | ||
41263c05 DK |
6386 | if (arm_input_section != NULL |
6387 | && arm_input_section->is_stub_table_owner() | |
6388 | && !arm_input_section->stub_table()->empty()) | |
6389 | { | |
6390 | // We cannot discard a section if it owns a stub table. | |
6391 | Output_section* os = this->output_section(i); | |
6392 | gold_assert(os != NULL); | |
6393 | ||
6394 | relinfo.reloc_shndx = elfcpp::SHN_UNDEF; | |
6395 | relinfo.reloc_shdr = NULL; | |
6396 | relinfo.data_shndx = i; | |
6397 | relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size; | |
6398 | ||
6399 | gold_assert((*pviews)[i].view != NULL); | |
6400 | ||
6401 | // We are passed the output section view. Adjust it to cover the | |
6402 | // stub table only. | |
6403 | Stub_table<big_endian>* stub_table = arm_input_section->stub_table(); | |
6404 | gold_assert((stub_table->address() >= (*pviews)[i].address) | |
6405 | && ((stub_table->address() + stub_table->data_size()) | |
6406 | <= (*pviews)[i].address + (*pviews)[i].view_size)); | |
6407 | ||
6408 | off_t offset = stub_table->address() - (*pviews)[i].address; | |
6409 | unsigned char* view = (*pviews)[i].view + offset; | |
6410 | Arm_address address = stub_table->address(); | |
6411 | section_size_type view_size = stub_table->data_size(); | |
8ffa3667 | 6412 | |
41263c05 DK |
6413 | stub_table->relocate_stubs(&relinfo, arm_target, os, view, address, |
6414 | view_size); | |
6415 | } | |
6416 | ||
6417 | // Apply Cortex A8 workaround if applicable. | |
6418 | if (this->section_has_cortex_a8_workaround(i)) | |
6419 | { | |
6420 | unsigned char* view = (*pviews)[i].view; | |
6421 | Arm_address view_address = (*pviews)[i].address; | |
6422 | section_size_type view_size = (*pviews)[i].view_size; | |
6423 | Stub_table<big_endian>* stub_table = this->stub_tables_[i]; | |
6424 | ||
6425 | // Adjust view to cover section. | |
6426 | Output_section* os = this->output_section(i); | |
6427 | gold_assert(os != NULL); | |
cb1be87e DK |
6428 | Arm_address section_address = |
6429 | this->simple_input_section_output_address(i, os); | |
41263c05 DK |
6430 | uint64_t section_size = this->section_size(i); |
6431 | ||
6432 | gold_assert(section_address >= view_address | |
6433 | && ((section_address + section_size) | |
6434 | <= (view_address + view_size))); | |
6435 | ||
6436 | unsigned char* section_view = view + (section_address - view_address); | |
6437 | ||
6438 | // Apply the Cortex-A8 workaround to the output address range | |
6439 | // corresponding to this input section. | |
6440 | stub_table->apply_cortex_a8_workaround_to_address_range( | |
6441 | arm_target, | |
6442 | section_view, | |
6443 | section_address, | |
6444 | section_size); | |
6445 | } | |
8ffa3667 DK |
6446 | } |
6447 | } | |
6448 | ||
c8761b9a DK |
6449 | // Find the linked text section of an EXIDX section by looking the the first |
6450 | // relocation. 4.4.1 of the EHABI specifications says that an EXIDX section | |
6451 | // must be linked to to its associated code section via the sh_link field of | |
6452 | // its section header. However, some tools are broken and the link is not | |
6453 | // always set. LD just drops such an EXIDX section silently, causing the | |
6454 | // associated code not unwindabled. Here we try a little bit harder to | |
6455 | // discover the linked code section. | |
6456 | // | |
6457 | // PSHDR points to the section header of a relocation section of an EXIDX | |
6458 | // section. If we can find a linked text section, return true and | |
6459 | // store the text section index in the location PSHNDX. Otherwise | |
6460 | // return false. | |
a0351a69 DK |
6461 | |
6462 | template<bool big_endian> | |
c8761b9a DK |
6463 | bool |
6464 | Arm_relobj<big_endian>::find_linked_text_section( | |
6465 | const unsigned char* pshdr, | |
6466 | const unsigned char* psyms, | |
6467 | unsigned int* pshndx) | |
a0351a69 | 6468 | { |
c8761b9a DK |
6469 | elfcpp::Shdr<32, big_endian> shdr(pshdr); |
6470 | ||
6471 | // If there is no relocation, we cannot find the linked text section. | |
6472 | size_t reloc_size; | |
6473 | if (shdr.get_sh_type() == elfcpp::SHT_REL) | |
6474 | reloc_size = elfcpp::Elf_sizes<32>::rel_size; | |
6475 | else | |
6476 | reloc_size = elfcpp::Elf_sizes<32>::rela_size; | |
6477 | size_t reloc_count = shdr.get_sh_size() / reloc_size; | |
6478 | ||
6479 | // Get the relocations. | |
6480 | const unsigned char* prelocs = | |
6481 | this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); | |
993d07c1 | 6482 | |
c8761b9a DK |
6483 | // Find the REL31 relocation for the first word of the first EXIDX entry. |
6484 | for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) | |
a0351a69 | 6485 | { |
c8761b9a DK |
6486 | Arm_address r_offset; |
6487 | typename elfcpp::Elf_types<32>::Elf_WXword r_info; | |
6488 | if (shdr.get_sh_type() == elfcpp::SHT_REL) | |
6489 | { | |
6490 | typename elfcpp::Rel<32, big_endian> reloc(prelocs); | |
6491 | r_info = reloc.get_r_info(); | |
6492 | r_offset = reloc.get_r_offset(); | |
6493 | } | |
6494 | else | |
6495 | { | |
6496 | typename elfcpp::Rela<32, big_endian> reloc(prelocs); | |
6497 | r_info = reloc.get_r_info(); | |
6498 | r_offset = reloc.get_r_offset(); | |
6499 | } | |
6500 | ||
6501 | unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | |
6502 | if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31) | |
6503 | continue; | |
6504 | ||
6505 | unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | |
6506 | if (r_sym == 0 | |
6507 | || r_sym >= this->local_symbol_count() | |
6508 | || r_offset != 0) | |
6509 | continue; | |
6510 | ||
6511 | // This is the relocation for the first word of the first EXIDX entry. | |
6512 | // We expect to see a local section symbol. | |
6513 | const int sym_size = elfcpp::Elf_sizes<32>::sym_size; | |
6514 | elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size); | |
6515 | if (sym.get_st_type() == elfcpp::STT_SECTION) | |
6516 | { | |
24af6f92 DK |
6517 | bool is_ordinary; |
6518 | *pshndx = | |
6519 | this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary); | |
6520 | gold_assert(is_ordinary); | |
c8761b9a DK |
6521 | return true; |
6522 | } | |
6523 | else | |
6524 | return false; | |
993d07c1 | 6525 | } |
c8761b9a DK |
6526 | |
6527 | return false; | |
6528 | } | |
6529 | ||
6530 | // Make an EXIDX input section object for an EXIDX section whose index is | |
6531 | // SHNDX. SHDR is the section header of the EXIDX section and TEXT_SHNDX | |
6532 | // is the section index of the linked text section. | |
6533 | ||
6534 | template<bool big_endian> | |
6535 | void | |
6536 | Arm_relobj<big_endian>::make_exidx_input_section( | |
6537 | unsigned int shndx, | |
6538 | const elfcpp::Shdr<32, big_endian>& shdr, | |
131687b4 DK |
6539 | unsigned int text_shndx, |
6540 | const elfcpp::Shdr<32, big_endian>& text_shdr) | |
c8761b9a | 6541 | { |
993d07c1 DK |
6542 | // Create an Arm_exidx_input_section object for this EXIDX section. |
6543 | Arm_exidx_input_section* exidx_input_section = | |
6544 | new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(), | |
6545 | shdr.get_sh_addralign()); | |
993d07c1 | 6546 | |
993d07c1 DK |
6547 | gold_assert(this->exidx_section_map_[shndx] == NULL); |
6548 | this->exidx_section_map_[shndx] = exidx_input_section; | |
131687b4 DK |
6549 | |
6550 | if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum()) | |
6551 | { | |
6552 | gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"), | |
6553 | this->section_name(shndx).c_str(), shndx, text_shndx, | |
6554 | this->name().c_str()); | |
6555 | exidx_input_section->set_has_errors(); | |
6556 | } | |
6557 | else if (this->exidx_section_map_[text_shndx] != NULL) | |
6558 | { | |
6559 | unsigned other_exidx_shndx = | |
6560 | this->exidx_section_map_[text_shndx]->shndx(); | |
6561 | gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section" | |
6562 | "%s(%u) in %s"), | |
6563 | this->section_name(shndx).c_str(), shndx, | |
6564 | this->section_name(other_exidx_shndx).c_str(), | |
6565 | other_exidx_shndx, this->section_name(text_shndx).c_str(), | |
6566 | text_shndx, this->name().c_str()); | |
6567 | exidx_input_section->set_has_errors(); | |
6568 | } | |
6569 | else | |
6570 | this->exidx_section_map_[text_shndx] = exidx_input_section; | |
6571 | ||
6572 | // Check section flags of text section. | |
6573 | if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) | |
6574 | { | |
6575 | gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) " | |
6576 | " in %s"), | |
6577 | this->section_name(shndx).c_str(), shndx, | |
6578 | this->section_name(text_shndx).c_str(), text_shndx, | |
6579 | this->name().c_str()); | |
6580 | exidx_input_section->set_has_errors(); | |
6581 | } | |
6582 | else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0) | |
6583 | // I would like to make this an error but currenlty ld just ignores | |
6584 | // this. | |
6585 | gold_warning(_("EXIDX section %s(%u) links to non-executable section " | |
6586 | "%s(%u) in %s"), | |
6587 | this->section_name(shndx).c_str(), shndx, | |
6588 | this->section_name(text_shndx).c_str(), text_shndx, | |
6589 | this->name().c_str()); | |
a0351a69 DK |
6590 | } |
6591 | ||
d5b40221 DK |
6592 | // Read the symbol information. |
6593 | ||
6594 | template<bool big_endian> | |
6595 | void | |
6596 | Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd) | |
6597 | { | |
6598 | // Call parent class to read symbol information. | |
6599 | Sized_relobj<32, big_endian>::do_read_symbols(sd); | |
6600 | ||
7296d933 DK |
6601 | // If this input file is a binary file, it has no processor |
6602 | // specific flags and attributes section. | |
6603 | Input_file::Format format = this->input_file()->format(); | |
6604 | if (format != Input_file::FORMAT_ELF) | |
6605 | { | |
6606 | gold_assert(format == Input_file::FORMAT_BINARY); | |
6607 | this->merge_flags_and_attributes_ = false; | |
6608 | return; | |
6609 | } | |
6610 | ||
d5b40221 DK |
6611 | // Read processor-specific flags in ELF file header. |
6612 | const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, | |
6613 | elfcpp::Elf_sizes<32>::ehdr_size, | |
6614 | true, false); | |
6615 | elfcpp::Ehdr<32, big_endian> ehdr(pehdr); | |
6616 | this->processor_specific_flags_ = ehdr.get_e_flags(); | |
993d07c1 DK |
6617 | |
6618 | // Go over the section headers and look for .ARM.attributes and .ARM.exidx | |
6619 | // sections. | |
c8761b9a | 6620 | std::vector<unsigned int> deferred_exidx_sections; |
993d07c1 | 6621 | const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; |
c8761b9a | 6622 | const unsigned char* pshdrs = sd->section_headers->data(); |
ca09d69a | 6623 | const unsigned char* ps = pshdrs + shdr_size; |
7296d933 | 6624 | bool must_merge_flags_and_attributes = false; |
993d07c1 DK |
6625 | for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) |
6626 | { | |
6627 | elfcpp::Shdr<32, big_endian> shdr(ps); | |
7296d933 DK |
6628 | |
6629 | // Sometimes an object has no contents except the section name string | |
6630 | // table and an empty symbol table with the undefined symbol. We | |
6631 | // don't want to merge processor-specific flags from such an object. | |
6632 | if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) | |
6633 | { | |
6634 | // Symbol table is not empty. | |
6635 | const elfcpp::Elf_types<32>::Elf_WXword sym_size = | |
6636 | elfcpp::Elf_sizes<32>::sym_size; | |
6637 | if (shdr.get_sh_size() > sym_size) | |
6638 | must_merge_flags_and_attributes = true; | |
6639 | } | |
6640 | else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB) | |
6641 | // If this is neither an empty symbol table nor a string table, | |
6642 | // be conservative. | |
6643 | must_merge_flags_and_attributes = true; | |
6644 | ||
993d07c1 DK |
6645 | if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) |
6646 | { | |
6647 | gold_assert(this->attributes_section_data_ == NULL); | |
6648 | section_offset_type section_offset = shdr.get_sh_offset(); | |
6649 | section_size_type section_size = | |
6650 | convert_to_section_size_type(shdr.get_sh_size()); | |
6651 | File_view* view = this->get_lasting_view(section_offset, | |
6652 | section_size, true, false); | |
6653 | this->attributes_section_data_ = | |
6654 | new Attributes_section_data(view->data(), section_size); | |
6655 | } | |
6656 | else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) | |
c8761b9a DK |
6657 | { |
6658 | unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); | |
131687b4 | 6659 | if (text_shndx == elfcpp::SHN_UNDEF) |
c8761b9a DK |
6660 | deferred_exidx_sections.push_back(i); |
6661 | else | |
131687b4 DK |
6662 | { |
6663 | elfcpp::Shdr<32, big_endian> text_shdr(pshdrs | |
6664 | + text_shndx * shdr_size); | |
6665 | this->make_exidx_input_section(i, shdr, text_shndx, text_shdr); | |
6666 | } | |
c8761b9a DK |
6667 | } |
6668 | } | |
6669 | ||
7296d933 DK |
6670 | // This is rare. |
6671 | if (!must_merge_flags_and_attributes) | |
6672 | { | |
131687b4 | 6673 | gold_assert(deferred_exidx_sections.empty()); |
7296d933 DK |
6674 | this->merge_flags_and_attributes_ = false; |
6675 | return; | |
6676 | } | |
6677 | ||
c8761b9a DK |
6678 | // Some tools are broken and they do not set the link of EXIDX sections. |
6679 | // We look at the first relocation to figure out the linked sections. | |
6680 | if (!deferred_exidx_sections.empty()) | |
6681 | { | |
6682 | // We need to go over the section headers again to find the mapping | |
6683 | // from sections being relocated to their relocation sections. This is | |
6684 | // a bit inefficient as we could do that in the loop above. However, | |
6685 | // we do not expect any deferred EXIDX sections normally. So we do not | |
6686 | // want to slow down the most common path. | |
6687 | typedef Unordered_map<unsigned int, unsigned int> Reloc_map; | |
6688 | Reloc_map reloc_map; | |
6689 | ps = pshdrs + shdr_size; | |
6690 | for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) | |
6691 | { | |
6692 | elfcpp::Shdr<32, big_endian> shdr(ps); | |
6693 | elfcpp::Elf_Word sh_type = shdr.get_sh_type(); | |
6694 | if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) | |
6695 | { | |
6696 | unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info()); | |
6697 | if (info_shndx >= this->shnum()) | |
6698 | gold_error(_("relocation section %u has invalid info %u"), | |
6699 | i, info_shndx); | |
6700 | Reloc_map::value_type value(info_shndx, i); | |
6701 | std::pair<Reloc_map::iterator, bool> result = | |
6702 | reloc_map.insert(value); | |
6703 | if (!result.second) | |
6704 | gold_error(_("section %u has multiple relocation sections " | |
6705 | "%u and %u"), | |
6706 | info_shndx, i, reloc_map[info_shndx]); | |
6707 | } | |
6708 | } | |
6709 | ||
6710 | // Read the symbol table section header. | |
6711 | const unsigned int symtab_shndx = this->symtab_shndx(); | |
6712 | elfcpp::Shdr<32, big_endian> | |
6713 | symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); | |
6714 | gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | |
6715 | ||
6716 | // Read the local symbols. | |
6717 | const int sym_size =elfcpp::Elf_sizes<32>::sym_size; | |
6718 | const unsigned int loccount = this->local_symbol_count(); | |
6719 | gold_assert(loccount == symtabshdr.get_sh_info()); | |
6720 | off_t locsize = loccount * sym_size; | |
6721 | const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | |
6722 | locsize, true, true); | |
6723 | ||
6724 | // Process the deferred EXIDX sections. | |
6725 | for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i) | |
6726 | { | |
6727 | unsigned int shndx = deferred_exidx_sections[i]; | |
6728 | elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size); | |
131687b4 | 6729 | unsigned int text_shndx = elfcpp::SHN_UNDEF; |
c8761b9a | 6730 | Reloc_map::const_iterator it = reloc_map.find(shndx); |
131687b4 DK |
6731 | if (it != reloc_map.end()) |
6732 | find_linked_text_section(pshdrs + it->second * shdr_size, | |
6733 | psyms, &text_shndx); | |
6734 | elfcpp::Shdr<32, big_endian> text_shdr(pshdrs | |
6735 | + text_shndx * shdr_size); | |
6736 | this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr); | |
c8761b9a | 6737 | } |
993d07c1 | 6738 | } |
d5b40221 DK |
6739 | } |
6740 | ||
99e5bff2 DK |
6741 | // Process relocations for garbage collection. The ARM target uses .ARM.exidx |
6742 | // sections for unwinding. These sections are referenced implicitly by | |
6743 | // text sections linked in the section headers. If we ignore these implict | |
6744 | // references, the .ARM.exidx sections and any .ARM.extab sections they use | |
6745 | // will be garbage-collected incorrectly. Hence we override the same function | |
6746 | // in the base class to handle these implicit references. | |
6747 | ||
6748 | template<bool big_endian> | |
6749 | void | |
6750 | Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab, | |
6751 | Layout* layout, | |
6752 | Read_relocs_data* rd) | |
6753 | { | |
6754 | // First, call base class method to process relocations in this object. | |
6755 | Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd); | |
6756 | ||
4a54abbb DK |
6757 | // If --gc-sections is not specified, there is nothing more to do. |
6758 | // This happens when --icf is used but --gc-sections is not. | |
6759 | if (!parameters->options().gc_sections()) | |
6760 | return; | |
6761 | ||
99e5bff2 DK |
6762 | unsigned int shnum = this->shnum(); |
6763 | const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | |
6764 | const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), | |
6765 | shnum * shdr_size, | |
6766 | true, true); | |
6767 | ||
6768 | // Scan section headers for sections of type SHT_ARM_EXIDX. Add references | |
6769 | // to these from the linked text sections. | |
6770 | const unsigned char* ps = pshdrs + shdr_size; | |
6771 | for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size) | |
6772 | { | |
6773 | elfcpp::Shdr<32, big_endian> shdr(ps); | |
6774 | if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) | |
6775 | { | |
6776 | // Found an .ARM.exidx section, add it to the set of reachable | |
6777 | // sections from its linked text section. | |
6778 | unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); | |
6779 | symtab->gc()->add_reference(this, text_shndx, this, i); | |
6780 | } | |
6781 | } | |
6782 | } | |
6783 | ||
e7eca48c DK |
6784 | // Update output local symbol count. Owing to EXIDX entry merging, some local |
6785 | // symbols will be removed in output. Adjust output local symbol count | |
6786 | // accordingly. We can only changed the static output local symbol count. It | |
6787 | // is too late to change the dynamic symbols. | |
6788 | ||
6789 | template<bool big_endian> | |
6790 | void | |
6791 | Arm_relobj<big_endian>::update_output_local_symbol_count() | |
6792 | { | |
6793 | // Caller should check that this needs updating. We want caller checking | |
6794 | // because output_local_symbol_count_needs_update() is most likely inlined. | |
6795 | gold_assert(this->output_local_symbol_count_needs_update_); | |
6796 | ||
6797 | gold_assert(this->symtab_shndx() != -1U); | |
6798 | if (this->symtab_shndx() == 0) | |
6799 | { | |
6800 | // This object has no symbols. Weird but legal. | |
6801 | return; | |
6802 | } | |
6803 | ||
6804 | // Read the symbol table section header. | |
6805 | const unsigned int symtab_shndx = this->symtab_shndx(); | |
6806 | elfcpp::Shdr<32, big_endian> | |
6807 | symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); | |
6808 | gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | |
6809 | ||
6810 | // Read the local symbols. | |
6811 | const int sym_size = elfcpp::Elf_sizes<32>::sym_size; | |
6812 | const unsigned int loccount = this->local_symbol_count(); | |
6813 | gold_assert(loccount == symtabshdr.get_sh_info()); | |
6814 | off_t locsize = loccount * sym_size; | |
6815 | const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | |
6816 | locsize, true, true); | |
6817 | ||
6818 | // Loop over the local symbols. | |
6819 | ||
6820 | typedef typename Sized_relobj<32, big_endian>::Output_sections | |
6821 | Output_sections; | |
6822 | const Output_sections& out_sections(this->output_sections()); | |
6823 | unsigned int shnum = this->shnum(); | |
6824 | unsigned int count = 0; | |
6825 | // Skip the first, dummy, symbol. | |
6826 | psyms += sym_size; | |
6827 | for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) | |
6828 | { | |
6829 | elfcpp::Sym<32, big_endian> sym(psyms); | |
6830 | ||
6831 | Symbol_value<32>& lv((*this->local_values())[i]); | |
6832 | ||
6833 | // This local symbol was already discarded by do_count_local_symbols. | |
9177756d | 6834 | if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry()) |
e7eca48c DK |
6835 | continue; |
6836 | ||
6837 | bool is_ordinary; | |
6838 | unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), | |
6839 | &is_ordinary); | |
6840 | ||
6841 | if (shndx < shnum) | |
6842 | { | |
6843 | Output_section* os = out_sections[shndx]; | |
6844 | ||
6845 | // This local symbol no longer has an output section. Discard it. | |
6846 | if (os == NULL) | |
6847 | { | |
6848 | lv.set_no_output_symtab_entry(); | |
6849 | continue; | |
6850 | } | |
6851 | ||
6852 | // Currently we only discard parts of EXIDX input sections. | |
6853 | // We explicitly check for a merged EXIDX input section to avoid | |
6854 | // calling Output_section_data::output_offset unless necessary. | |
6855 | if ((this->get_output_section_offset(shndx) == invalid_address) | |
6856 | && (this->exidx_input_section_by_shndx(shndx) != NULL)) | |
6857 | { | |
6858 | section_offset_type output_offset = | |
6859 | os->output_offset(this, shndx, lv.input_value()); | |
6860 | if (output_offset == -1) | |
6861 | { | |
6862 | // This symbol is defined in a part of an EXIDX input section | |
6863 | // that is discarded due to entry merging. | |
6864 | lv.set_no_output_symtab_entry(); | |
6865 | continue; | |
6866 | } | |
6867 | } | |
6868 | } | |
6869 | ||
6870 | ++count; | |
6871 | } | |
6872 | ||
6873 | this->set_output_local_symbol_count(count); | |
6874 | this->output_local_symbol_count_needs_update_ = false; | |
6875 | } | |
6876 | ||
d5b40221 DK |
6877 | // Arm_dynobj methods. |
6878 | ||
6879 | // Read the symbol information. | |
6880 | ||
6881 | template<bool big_endian> | |
6882 | void | |
6883 | Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd) | |
6884 | { | |
6885 | // Call parent class to read symbol information. | |
6886 | Sized_dynobj<32, big_endian>::do_read_symbols(sd); | |
6887 | ||
6888 | // Read processor-specific flags in ELF file header. | |
6889 | const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, | |
6890 | elfcpp::Elf_sizes<32>::ehdr_size, | |
6891 | true, false); | |
6892 | elfcpp::Ehdr<32, big_endian> ehdr(pehdr); | |
6893 | this->processor_specific_flags_ = ehdr.get_e_flags(); | |
993d07c1 DK |
6894 | |
6895 | // Read the attributes section if there is one. | |
6896 | // We read from the end because gas seems to put it near the end of | |
6897 | // the section headers. | |
6898 | const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | |
ca09d69a | 6899 | const unsigned char* ps = |
993d07c1 DK |
6900 | sd->section_headers->data() + shdr_size * (this->shnum() - 1); |
6901 | for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size) | |
6902 | { | |
6903 | elfcpp::Shdr<32, big_endian> shdr(ps); | |
6904 | if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) | |
6905 | { | |
6906 | section_offset_type section_offset = shdr.get_sh_offset(); | |
6907 | section_size_type section_size = | |
6908 | convert_to_section_size_type(shdr.get_sh_size()); | |
6909 | File_view* view = this->get_lasting_view(section_offset, | |
6910 | section_size, true, false); | |
6911 | this->attributes_section_data_ = | |
6912 | new Attributes_section_data(view->data(), section_size); | |
6913 | break; | |
6914 | } | |
6915 | } | |
d5b40221 DK |
6916 | } |
6917 | ||
e9bbb538 DK |
6918 | // Stub_addend_reader methods. |
6919 | ||
6920 | // Read the addend of a REL relocation of type R_TYPE at VIEW. | |
6921 | ||
6922 | template<bool big_endian> | |
6923 | elfcpp::Elf_types<32>::Elf_Swxword | |
6924 | Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()( | |
6925 | unsigned int r_type, | |
6926 | const unsigned char* view, | |
6927 | const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const | |
6928 | { | |
089d69dc DK |
6929 | typedef struct Arm_relocate_functions<big_endian> RelocFuncs; |
6930 | ||
e9bbb538 DK |
6931 | switch (r_type) |
6932 | { | |
6933 | case elfcpp::R_ARM_CALL: | |
6934 | case elfcpp::R_ARM_JUMP24: | |
6935 | case elfcpp::R_ARM_PLT32: | |
6936 | { | |
6937 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
6938 | const Valtype* wv = reinterpret_cast<const Valtype*>(view); | |
6939 | Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | |
6940 | return utils::sign_extend<26>(val << 2); | |
6941 | } | |
6942 | ||
6943 | case elfcpp::R_ARM_THM_CALL: | |
6944 | case elfcpp::R_ARM_THM_JUMP24: | |
6945 | case elfcpp::R_ARM_THM_XPC22: | |
6946 | { | |
e9bbb538 DK |
6947 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; |
6948 | const Valtype* wv = reinterpret_cast<const Valtype*>(view); | |
6949 | Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
6950 | Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
089d69dc | 6951 | return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn); |
e9bbb538 DK |
6952 | } |
6953 | ||
6954 | case elfcpp::R_ARM_THM_JUMP19: | |
6955 | { | |
6956 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
6957 | const Valtype* wv = reinterpret_cast<const Valtype*>(view); | |
6958 | Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
6959 | Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
089d69dc | 6960 | return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn); |
e9bbb538 DK |
6961 | } |
6962 | ||
6963 | default: | |
6964 | gold_unreachable(); | |
6965 | } | |
6966 | } | |
6967 | ||
4a54abbb DK |
6968 | // Arm_output_data_got methods. |
6969 | ||
6970 | // Add a GOT pair for R_ARM_TLS_GD32. The creates a pair of GOT entries. | |
6971 | // The first one is initialized to be 1, which is the module index for | |
6972 | // the main executable and the second one 0. A reloc of the type | |
6973 | // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will | |
6974 | // be applied by gold. GSYM is a global symbol. | |
6975 | // | |
6976 | template<bool big_endian> | |
6977 | void | |
6978 | Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( | |
6979 | unsigned int got_type, | |
6980 | Symbol* gsym) | |
6981 | { | |
6982 | if (gsym->has_got_offset(got_type)) | |
6983 | return; | |
6984 | ||
6985 | // We are doing a static link. Just mark it as belong to module 1, | |
6986 | // the executable. | |
6987 | unsigned int got_offset = this->add_constant(1); | |
6988 | gsym->set_got_offset(got_type, got_offset); | |
6989 | got_offset = this->add_constant(0); | |
6990 | this->static_relocs_.push_back(Static_reloc(got_offset, | |
6991 | elfcpp::R_ARM_TLS_DTPOFF32, | |
6992 | gsym)); | |
6993 | } | |
6994 | ||
6995 | // Same as the above but for a local symbol. | |
6996 | ||
6997 | template<bool big_endian> | |
6998 | void | |
6999 | Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( | |
7000 | unsigned int got_type, | |
7001 | Sized_relobj<32, big_endian>* object, | |
7002 | unsigned int index) | |
7003 | { | |
7004 | if (object->local_has_got_offset(index, got_type)) | |
7005 | return; | |
7006 | ||
7007 | // We are doing a static link. Just mark it as belong to module 1, | |
7008 | // the executable. | |
7009 | unsigned int got_offset = this->add_constant(1); | |
7010 | object->set_local_got_offset(index, got_type, got_offset); | |
7011 | got_offset = this->add_constant(0); | |
7012 | this->static_relocs_.push_back(Static_reloc(got_offset, | |
7013 | elfcpp::R_ARM_TLS_DTPOFF32, | |
7014 | object, index)); | |
7015 | } | |
7016 | ||
7017 | template<bool big_endian> | |
7018 | void | |
7019 | Arm_output_data_got<big_endian>::do_write(Output_file* of) | |
7020 | { | |
7021 | // Call parent to write out GOT. | |
7022 | Output_data_got<32, big_endian>::do_write(of); | |
7023 | ||
7024 | // We are done if there is no fix up. | |
7025 | if (this->static_relocs_.empty()) | |
7026 | return; | |
7027 | ||
7028 | gold_assert(parameters->doing_static_link()); | |
7029 | ||
7030 | const off_t offset = this->offset(); | |
7031 | const section_size_type oview_size = | |
7032 | convert_to_section_size_type(this->data_size()); | |
7033 | unsigned char* const oview = of->get_output_view(offset, oview_size); | |
7034 | ||
7035 | Output_segment* tls_segment = this->layout_->tls_segment(); | |
7036 | gold_assert(tls_segment != NULL); | |
7037 | ||
7038 | // The thread pointer $tp points to the TCB, which is followed by the | |
7039 | // TLS. So we need to adjust $tp relative addressing by this amount. | |
7040 | Arm_address aligned_tcb_size = | |
7041 | align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); | |
7042 | ||
7043 | for (size_t i = 0; i < this->static_relocs_.size(); ++i) | |
7044 | { | |
7045 | Static_reloc& reloc(this->static_relocs_[i]); | |
7046 | ||
7047 | Arm_address value; | |
7048 | if (!reloc.symbol_is_global()) | |
7049 | { | |
7050 | Sized_relobj<32, big_endian>* object = reloc.relobj(); | |
7051 | const Symbol_value<32>* psymval = | |
7052 | reloc.relobj()->local_symbol(reloc.index()); | |
7053 | ||
7054 | // We are doing static linking. Issue an error and skip this | |
7055 | // relocation if the symbol is undefined or in a discarded_section. | |
7056 | bool is_ordinary; | |
7057 | unsigned int shndx = psymval->input_shndx(&is_ordinary); | |
7058 | if ((shndx == elfcpp::SHN_UNDEF) | |
7059 | || (is_ordinary | |
7060 | && shndx != elfcpp::SHN_UNDEF | |
7061 | && !object->is_section_included(shndx) | |
7062 | && !this->symbol_table_->is_section_folded(object, shndx))) | |
7063 | { | |
7064 | gold_error(_("undefined or discarded local symbol %u from " | |
7065 | " object %s in GOT"), | |
7066 | reloc.index(), reloc.relobj()->name().c_str()); | |
7067 | continue; | |
7068 | } | |
7069 | ||
7070 | value = psymval->value(object, 0); | |
7071 | } | |
7072 | else | |
7073 | { | |
7074 | const Symbol* gsym = reloc.symbol(); | |
7075 | gold_assert(gsym != NULL); | |
7076 | if (gsym->is_forwarder()) | |
7077 | gsym = this->symbol_table_->resolve_forwards(gsym); | |
7078 | ||
7079 | // We are doing static linking. Issue an error and skip this | |
7080 | // relocation if the symbol is undefined or in a discarded_section | |
7081 | // unless it is a weakly_undefined symbol. | |
7082 | if ((gsym->is_defined_in_discarded_section() | |
7083 | || gsym->is_undefined()) | |
7084 | && !gsym->is_weak_undefined()) | |
7085 | { | |
7086 | gold_error(_("undefined or discarded symbol %s in GOT"), | |
7087 | gsym->name()); | |
7088 | continue; | |
7089 | } | |
7090 | ||
7091 | if (!gsym->is_weak_undefined()) | |
7092 | { | |
7093 | const Sized_symbol<32>* sym = | |
7094 | static_cast<const Sized_symbol<32>*>(gsym); | |
7095 | value = sym->value(); | |
7096 | } | |
7097 | else | |
7098 | value = 0; | |
7099 | } | |
7100 | ||
7101 | unsigned got_offset = reloc.got_offset(); | |
7102 | gold_assert(got_offset < oview_size); | |
7103 | ||
7104 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
7105 | Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset); | |
7106 | Valtype x; | |
7107 | switch (reloc.r_type()) | |
7108 | { | |
7109 | case elfcpp::R_ARM_TLS_DTPOFF32: | |
7110 | x = value; | |
7111 | break; | |
7112 | case elfcpp::R_ARM_TLS_TPOFF32: | |
7113 | x = value + aligned_tcb_size; | |
7114 | break; | |
7115 | default: | |
7116 | gold_unreachable(); | |
7117 | } | |
7118 | elfcpp::Swap<32, big_endian>::writeval(wv, x); | |
7119 | } | |
7120 | ||
7121 | of->write_output_view(offset, oview_size, oview); | |
7122 | } | |
7123 | ||
94cdfcff DK |
7124 | // A class to handle the PLT data. |
7125 | ||
7126 | template<bool big_endian> | |
7127 | class Output_data_plt_arm : public Output_section_data | |
7128 | { | |
7129 | public: | |
7130 | typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> | |
7131 | Reloc_section; | |
7132 | ||
7133 | Output_data_plt_arm(Layout*, Output_data_space*); | |
7134 | ||
7135 | // Add an entry to the PLT. | |
7136 | void | |
7137 | add_entry(Symbol* gsym); | |
7138 | ||
7139 | // Return the .rel.plt section data. | |
7140 | const Reloc_section* | |
7141 | rel_plt() const | |
7142 | { return this->rel_; } | |
7143 | ||
0e70b911 CC |
7144 | // Return the number of PLT entries. |
7145 | unsigned int | |
7146 | entry_count() const | |
7147 | { return this->count_; } | |
7148 | ||
7149 | // Return the offset of the first non-reserved PLT entry. | |
7150 | static unsigned int | |
7151 | first_plt_entry_offset() | |
7152 | { return sizeof(first_plt_entry); } | |
7153 | ||
7154 | // Return the size of a PLT entry. | |
7155 | static unsigned int | |
7156 | get_plt_entry_size() | |
7157 | { return sizeof(plt_entry); } | |
7158 | ||
94cdfcff DK |
7159 | protected: |
7160 | void | |
7161 | do_adjust_output_section(Output_section* os); | |
7162 | ||
7163 | // Write to a map file. | |
7164 | void | |
7165 | do_print_to_mapfile(Mapfile* mapfile) const | |
7166 | { mapfile->print_output_data(this, _("** PLT")); } | |
7167 | ||
7168 | private: | |
7169 | // Template for the first PLT entry. | |
7170 | static const uint32_t first_plt_entry[5]; | |
7171 | ||
7172 | // Template for subsequent PLT entries. | |
7173 | static const uint32_t plt_entry[3]; | |
7174 | ||
7175 | // Set the final size. | |
7176 | void | |
7177 | set_final_data_size() | |
7178 | { | |
7179 | this->set_data_size(sizeof(first_plt_entry) | |
7180 | + this->count_ * sizeof(plt_entry)); | |
7181 | } | |
7182 | ||
7183 | // Write out the PLT data. | |
7184 | void | |
7185 | do_write(Output_file*); | |
7186 | ||
7187 | // The reloc section. | |
7188 | Reloc_section* rel_; | |
7189 | // The .got.plt section. | |
7190 | Output_data_space* got_plt_; | |
7191 | // The number of PLT entries. | |
7192 | unsigned int count_; | |
7193 | }; | |
7194 | ||
7195 | // Create the PLT section. The ordinary .got section is an argument, | |
7196 | // since we need to refer to the start. We also create our own .got | |
7197 | // section just for PLT entries. | |
7198 | ||
7199 | template<bool big_endian> | |
2ea97941 | 7200 | Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout, |
94cdfcff DK |
7201 | Output_data_space* got_plt) |
7202 | : Output_section_data(4), got_plt_(got_plt), count_(0) | |
7203 | { | |
7204 | this->rel_ = new Reloc_section(false); | |
2ea97941 | 7205 | layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, |
22f0da72 ILT |
7206 | elfcpp::SHF_ALLOC, this->rel_, |
7207 | ORDER_DYNAMIC_PLT_RELOCS, false); | |
94cdfcff DK |
7208 | } |
7209 | ||
7210 | template<bool big_endian> | |
7211 | void | |
7212 | Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os) | |
7213 | { | |
7214 | os->set_entsize(0); | |
7215 | } | |
7216 | ||
7217 | // Add an entry to the PLT. | |
7218 | ||
7219 | template<bool big_endian> | |
7220 | void | |
7221 | Output_data_plt_arm<big_endian>::add_entry(Symbol* gsym) | |
7222 | { | |
7223 | gold_assert(!gsym->has_plt_offset()); | |
7224 | ||
7225 | // Note that when setting the PLT offset we skip the initial | |
7226 | // reserved PLT entry. | |
7227 | gsym->set_plt_offset((this->count_) * sizeof(plt_entry) | |
7228 | + sizeof(first_plt_entry)); | |
7229 | ||
7230 | ++this->count_; | |
7231 | ||
7232 | section_offset_type got_offset = this->got_plt_->current_data_size(); | |
7233 | ||
7234 | // Every PLT entry needs a GOT entry which points back to the PLT | |
7235 | // entry (this will be changed by the dynamic linker, normally | |
7236 | // lazily when the function is called). | |
7237 | this->got_plt_->set_current_data_size(got_offset + 4); | |
7238 | ||
7239 | // Every PLT entry needs a reloc. | |
7240 | gsym->set_needs_dynsym_entry(); | |
7241 | this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_, | |
7242 | got_offset); | |
7243 | ||
7244 | // Note that we don't need to save the symbol. The contents of the | |
7245 | // PLT are independent of which symbols are used. The symbols only | |
7246 | // appear in the relocations. | |
7247 | } | |
7248 | ||
7249 | // ARM PLTs. | |
7250 | // FIXME: This is not very flexible. Right now this has only been tested | |
7251 | // on armv5te. If we are to support additional architecture features like | |
7252 | // Thumb-2 or BE8, we need to make this more flexible like GNU ld. | |
7253 | ||
7254 | // The first entry in the PLT. | |
7255 | template<bool big_endian> | |
7256 | const uint32_t Output_data_plt_arm<big_endian>::first_plt_entry[5] = | |
7257 | { | |
7258 | 0xe52de004, // str lr, [sp, #-4]! | |
7259 | 0xe59fe004, // ldr lr, [pc, #4] | |
7260 | 0xe08fe00e, // add lr, pc, lr | |
7261 | 0xe5bef008, // ldr pc, [lr, #8]! | |
7262 | 0x00000000, // &GOT[0] - . | |
7263 | }; | |
7264 | ||
7265 | // Subsequent entries in the PLT. | |
7266 | ||
7267 | template<bool big_endian> | |
7268 | const uint32_t Output_data_plt_arm<big_endian>::plt_entry[3] = | |
7269 | { | |
7270 | 0xe28fc600, // add ip, pc, #0xNN00000 | |
7271 | 0xe28cca00, // add ip, ip, #0xNN000 | |
7272 | 0xe5bcf000, // ldr pc, [ip, #0xNNN]! | |
7273 | }; | |
7274 | ||
7275 | // Write out the PLT. This uses the hand-coded instructions above, | |
7276 | // and adjusts them as needed. This is all specified by the arm ELF | |
7277 | // Processor Supplement. | |
7278 | ||
7279 | template<bool big_endian> | |
7280 | void | |
7281 | Output_data_plt_arm<big_endian>::do_write(Output_file* of) | |
7282 | { | |
2ea97941 | 7283 | const off_t offset = this->offset(); |
94cdfcff DK |
7284 | const section_size_type oview_size = |
7285 | convert_to_section_size_type(this->data_size()); | |
2ea97941 | 7286 | unsigned char* const oview = of->get_output_view(offset, oview_size); |
94cdfcff DK |
7287 | |
7288 | const off_t got_file_offset = this->got_plt_->offset(); | |
7289 | const section_size_type got_size = | |
7290 | convert_to_section_size_type(this->got_plt_->data_size()); | |
7291 | unsigned char* const got_view = of->get_output_view(got_file_offset, | |
7292 | got_size); | |
7293 | unsigned char* pov = oview; | |
7294 | ||
ebabffbd DK |
7295 | Arm_address plt_address = this->address(); |
7296 | Arm_address got_address = this->got_plt_->address(); | |
94cdfcff DK |
7297 | |
7298 | // Write first PLT entry. All but the last word are constants. | |
7299 | const size_t num_first_plt_words = (sizeof(first_plt_entry) | |
7300 | / sizeof(plt_entry[0])); | |
7301 | for (size_t i = 0; i < num_first_plt_words - 1; i++) | |
7302 | elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]); | |
7303 | // Last word in first PLT entry is &GOT[0] - . | |
7304 | elfcpp::Swap<32, big_endian>::writeval(pov + 16, | |
7305 | got_address - (plt_address + 16)); | |
7306 | pov += sizeof(first_plt_entry); | |
7307 | ||
7308 | unsigned char* got_pov = got_view; | |
7309 | ||
7310 | memset(got_pov, 0, 12); | |
7311 | got_pov += 12; | |
7312 | ||
7313 | const int rel_size = elfcpp::Elf_sizes<32>::rel_size; | |
7314 | unsigned int plt_offset = sizeof(first_plt_entry); | |
7315 | unsigned int plt_rel_offset = 0; | |
7316 | unsigned int got_offset = 12; | |
7317 | const unsigned int count = this->count_; | |
7318 | for (unsigned int i = 0; | |
7319 | i < count; | |
7320 | ++i, | |
7321 | pov += sizeof(plt_entry), | |
7322 | got_pov += 4, | |
7323 | plt_offset += sizeof(plt_entry), | |
7324 | plt_rel_offset += rel_size, | |
7325 | got_offset += 4) | |
7326 | { | |
7327 | // Set and adjust the PLT entry itself. | |
2ea97941 ILT |
7328 | int32_t offset = ((got_address + got_offset) |
7329 | - (plt_address + plt_offset + 8)); | |
94cdfcff | 7330 | |
2ea97941 ILT |
7331 | gold_assert(offset >= 0 && offset < 0x0fffffff); |
7332 | uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff); | |
94cdfcff | 7333 | elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); |
2ea97941 | 7334 | uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff); |
94cdfcff | 7335 | elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); |
2ea97941 | 7336 | uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff); |
94cdfcff DK |
7337 | elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); |
7338 | ||
7339 | // Set the entry in the GOT. | |
7340 | elfcpp::Swap<32, big_endian>::writeval(got_pov, plt_address); | |
7341 | } | |
7342 | ||
7343 | gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); | |
7344 | gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size); | |
7345 | ||
2ea97941 | 7346 | of->write_output_view(offset, oview_size, oview); |
94cdfcff DK |
7347 | of->write_output_view(got_file_offset, got_size, got_view); |
7348 | } | |
7349 | ||
7350 | // Create a PLT entry for a global symbol. | |
7351 | ||
7352 | template<bool big_endian> | |
7353 | void | |
2ea97941 | 7354 | Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout, |
94cdfcff DK |
7355 | Symbol* gsym) |
7356 | { | |
7357 | if (gsym->has_plt_offset()) | |
7358 | return; | |
7359 | ||
7360 | if (this->plt_ == NULL) | |
7361 | { | |
7362 | // Create the GOT sections first. | |
2ea97941 | 7363 | this->got_section(symtab, layout); |
94cdfcff | 7364 | |
2ea97941 ILT |
7365 | this->plt_ = new Output_data_plt_arm<big_endian>(layout, this->got_plt_); |
7366 | layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, | |
7367 | (elfcpp::SHF_ALLOC | |
7368 | | elfcpp::SHF_EXECINSTR), | |
22f0da72 | 7369 | this->plt_, ORDER_PLT, false); |
94cdfcff DK |
7370 | } |
7371 | this->plt_->add_entry(gsym); | |
7372 | } | |
7373 | ||
0e70b911 CC |
7374 | // Return the number of entries in the PLT. |
7375 | ||
7376 | template<bool big_endian> | |
7377 | unsigned int | |
7378 | Target_arm<big_endian>::plt_entry_count() const | |
7379 | { | |
7380 | if (this->plt_ == NULL) | |
7381 | return 0; | |
7382 | return this->plt_->entry_count(); | |
7383 | } | |
7384 | ||
7385 | // Return the offset of the first non-reserved PLT entry. | |
7386 | ||
7387 | template<bool big_endian> | |
7388 | unsigned int | |
7389 | Target_arm<big_endian>::first_plt_entry_offset() const | |
7390 | { | |
7391 | return Output_data_plt_arm<big_endian>::first_plt_entry_offset(); | |
7392 | } | |
7393 | ||
7394 | // Return the size of each PLT entry. | |
7395 | ||
7396 | template<bool big_endian> | |
7397 | unsigned int | |
7398 | Target_arm<big_endian>::plt_entry_size() const | |
7399 | { | |
7400 | return Output_data_plt_arm<big_endian>::get_plt_entry_size(); | |
7401 | } | |
7402 | ||
f96accdf DK |
7403 | // Get the section to use for TLS_DESC relocations. |
7404 | ||
7405 | template<bool big_endian> | |
7406 | typename Target_arm<big_endian>::Reloc_section* | |
7407 | Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const | |
7408 | { | |
7409 | return this->plt_section()->rel_tls_desc(layout); | |
7410 | } | |
7411 | ||
7412 | // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. | |
7413 | ||
7414 | template<bool big_endian> | |
7415 | void | |
7416 | Target_arm<big_endian>::define_tls_base_symbol( | |
7417 | Symbol_table* symtab, | |
7418 | Layout* layout) | |
7419 | { | |
7420 | if (this->tls_base_symbol_defined_) | |
7421 | return; | |
7422 | ||
7423 | Output_segment* tls_segment = layout->tls_segment(); | |
7424 | if (tls_segment != NULL) | |
7425 | { | |
7426 | bool is_exec = parameters->options().output_is_executable(); | |
7427 | symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL, | |
7428 | Symbol_table::PREDEFINED, | |
7429 | tls_segment, 0, 0, | |
7430 | elfcpp::STT_TLS, | |
7431 | elfcpp::STB_LOCAL, | |
7432 | elfcpp::STV_HIDDEN, 0, | |
7433 | (is_exec | |
7434 | ? Symbol::SEGMENT_END | |
7435 | : Symbol::SEGMENT_START), | |
7436 | true); | |
7437 | } | |
7438 | this->tls_base_symbol_defined_ = true; | |
7439 | } | |
7440 | ||
7441 | // Create a GOT entry for the TLS module index. | |
7442 | ||
7443 | template<bool big_endian> | |
7444 | unsigned int | |
7445 | Target_arm<big_endian>::got_mod_index_entry( | |
7446 | Symbol_table* symtab, | |
7447 | Layout* layout, | |
7448 | Sized_relobj<32, big_endian>* object) | |
7449 | { | |
7450 | if (this->got_mod_index_offset_ == -1U) | |
7451 | { | |
7452 | gold_assert(symtab != NULL && layout != NULL && object != NULL); | |
4a54abbb DK |
7453 | Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout); |
7454 | unsigned int got_offset; | |
7455 | if (!parameters->doing_static_link()) | |
7456 | { | |
7457 | got_offset = got->add_constant(0); | |
7458 | Reloc_section* rel_dyn = this->rel_dyn_section(layout); | |
7459 | rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got, | |
7460 | got_offset); | |
7461 | } | |
7462 | else | |
7463 | { | |
7464 | // We are doing a static link. Just mark it as belong to module 1, | |
7465 | // the executable. | |
7466 | got_offset = got->add_constant(1); | |
7467 | } | |
7468 | ||
f96accdf DK |
7469 | got->add_constant(0); |
7470 | this->got_mod_index_offset_ = got_offset; | |
7471 | } | |
7472 | return this->got_mod_index_offset_; | |
7473 | } | |
7474 | ||
7475 | // Optimize the TLS relocation type based on what we know about the | |
7476 | // symbol. IS_FINAL is true if the final address of this symbol is | |
7477 | // known at link time. | |
7478 | ||
7479 | template<bool big_endian> | |
7480 | tls::Tls_optimization | |
7481 | Target_arm<big_endian>::optimize_tls_reloc(bool, int) | |
7482 | { | |
7483 | // FIXME: Currently we do not do any TLS optimization. | |
7484 | return tls::TLSOPT_NONE; | |
7485 | } | |
7486 | ||
4a657b0d DK |
7487 | // Report an unsupported relocation against a local symbol. |
7488 | ||
7489 | template<bool big_endian> | |
7490 | void | |
7491 | Target_arm<big_endian>::Scan::unsupported_reloc_local( | |
7492 | Sized_relobj<32, big_endian>* object, | |
7493 | unsigned int r_type) | |
7494 | { | |
7495 | gold_error(_("%s: unsupported reloc %u against local symbol"), | |
7496 | object->name().c_str(), r_type); | |
7497 | } | |
7498 | ||
bec53400 DK |
7499 | // We are about to emit a dynamic relocation of type R_TYPE. If the |
7500 | // dynamic linker does not support it, issue an error. The GNU linker | |
7501 | // only issues a non-PIC error for an allocated read-only section. | |
7502 | // Here we know the section is allocated, but we don't know that it is | |
7503 | // read-only. But we check for all the relocation types which the | |
7504 | // glibc dynamic linker supports, so it seems appropriate to issue an | |
7505 | // error even if the section is not read-only. | |
7506 | ||
7507 | template<bool big_endian> | |
7508 | void | |
7509 | Target_arm<big_endian>::Scan::check_non_pic(Relobj* object, | |
7510 | unsigned int r_type) | |
7511 | { | |
7512 | switch (r_type) | |
7513 | { | |
7514 | // These are the relocation types supported by glibc for ARM. | |
7515 | case elfcpp::R_ARM_RELATIVE: | |
7516 | case elfcpp::R_ARM_COPY: | |
7517 | case elfcpp::R_ARM_GLOB_DAT: | |
7518 | case elfcpp::R_ARM_JUMP_SLOT: | |
7519 | case elfcpp::R_ARM_ABS32: | |
be8fcb75 | 7520 | case elfcpp::R_ARM_ABS32_NOI: |
bec53400 DK |
7521 | case elfcpp::R_ARM_PC24: |
7522 | // FIXME: The following 3 types are not supported by Android's dynamic | |
7523 | // linker. | |
7524 | case elfcpp::R_ARM_TLS_DTPMOD32: | |
7525 | case elfcpp::R_ARM_TLS_DTPOFF32: | |
7526 | case elfcpp::R_ARM_TLS_TPOFF32: | |
7527 | return; | |
7528 | ||
7529 | default: | |
c8761b9a DK |
7530 | { |
7531 | // This prevents us from issuing more than one error per reloc | |
7532 | // section. But we can still wind up issuing more than one | |
7533 | // error per object file. | |
7534 | if (this->issued_non_pic_error_) | |
7535 | return; | |
7536 | const Arm_reloc_property* reloc_property = | |
7537 | arm_reloc_property_table->get_reloc_property(r_type); | |
7538 | gold_assert(reloc_property != NULL); | |
7539 | object->error(_("requires unsupported dynamic reloc %s; " | |
7540 | "recompile with -fPIC"), | |
7541 | reloc_property->name().c_str()); | |
7542 | this->issued_non_pic_error_ = true; | |
bec53400 | 7543 | return; |
c8761b9a | 7544 | } |
bec53400 DK |
7545 | |
7546 | case elfcpp::R_ARM_NONE: | |
7547 | gold_unreachable(); | |
7548 | } | |
7549 | } | |
7550 | ||
4a657b0d | 7551 | // Scan a relocation for a local symbol. |
bec53400 DK |
7552 | // FIXME: This only handles a subset of relocation types used by Android |
7553 | // on ARM v5te devices. | |
4a657b0d DK |
7554 | |
7555 | template<bool big_endian> | |
7556 | inline void | |
ad0f2072 | 7557 | Target_arm<big_endian>::Scan::local(Symbol_table* symtab, |
2ea97941 | 7558 | Layout* layout, |
bec53400 | 7559 | Target_arm* target, |
4a657b0d | 7560 | Sized_relobj<32, big_endian>* object, |
bec53400 DK |
7561 | unsigned int data_shndx, |
7562 | Output_section* output_section, | |
7563 | const elfcpp::Rel<32, big_endian>& reloc, | |
4a657b0d | 7564 | unsigned int r_type, |
e4782e83 | 7565 | const elfcpp::Sym<32, big_endian>& lsym) |
4a657b0d | 7566 | { |
a6d1ef57 | 7567 | r_type = get_real_reloc_type(r_type); |
4a657b0d DK |
7568 | switch (r_type) |
7569 | { | |
7570 | case elfcpp::R_ARM_NONE: | |
e4782e83 DK |
7571 | case elfcpp::R_ARM_V4BX: |
7572 | case elfcpp::R_ARM_GNU_VTENTRY: | |
7573 | case elfcpp::R_ARM_GNU_VTINHERIT: | |
4a657b0d DK |
7574 | break; |
7575 | ||
bec53400 | 7576 | case elfcpp::R_ARM_ABS32: |
be8fcb75 | 7577 | case elfcpp::R_ARM_ABS32_NOI: |
bec53400 DK |
7578 | // If building a shared library (or a position-independent |
7579 | // executable), we need to create a dynamic relocation for | |
7580 | // this location. The relocation applied at link time will | |
7581 | // apply the link-time value, so we flag the location with | |
7582 | // an R_ARM_RELATIVE relocation so the dynamic loader can | |
7583 | // relocate it easily. | |
7584 | if (parameters->options().output_is_position_independent()) | |
7585 | { | |
2ea97941 | 7586 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); |
bec53400 DK |
7587 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); |
7588 | // If we are to add more other reloc types than R_ARM_ABS32, | |
7589 | // we need to add check_non_pic(object, r_type) here. | |
7590 | rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE, | |
7591 | output_section, data_shndx, | |
7592 | reloc.get_r_offset()); | |
7593 | } | |
7594 | break; | |
7595 | ||
e4782e83 DK |
7596 | case elfcpp::R_ARM_ABS16: |
7597 | case elfcpp::R_ARM_ABS12: | |
be8fcb75 ILT |
7598 | case elfcpp::R_ARM_THM_ABS5: |
7599 | case elfcpp::R_ARM_ABS8: | |
be8fcb75 | 7600 | case elfcpp::R_ARM_BASE_ABS: |
fd3c5f0b ILT |
7601 | case elfcpp::R_ARM_MOVW_ABS_NC: |
7602 | case elfcpp::R_ARM_MOVT_ABS: | |
7603 | case elfcpp::R_ARM_THM_MOVW_ABS_NC: | |
7604 | case elfcpp::R_ARM_THM_MOVT_ABS: | |
e4782e83 DK |
7605 | // If building a shared library (or a position-independent |
7606 | // executable), we need to create a dynamic relocation for | |
7607 | // this location. Because the addend needs to remain in the | |
7608 | // data section, we need to be careful not to apply this | |
7609 | // relocation statically. | |
7610 | if (parameters->options().output_is_position_independent()) | |
7611 | { | |
7612 | check_non_pic(object, r_type); | |
7613 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); | |
7614 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | |
7615 | if (lsym.get_st_type() != elfcpp::STT_SECTION) | |
7616 | rel_dyn->add_local(object, r_sym, r_type, output_section, | |
7617 | data_shndx, reloc.get_r_offset()); | |
7618 | else | |
7619 | { | |
7620 | gold_assert(lsym.get_st_value() == 0); | |
7621 | unsigned int shndx = lsym.get_st_shndx(); | |
7622 | bool is_ordinary; | |
7623 | shndx = object->adjust_sym_shndx(r_sym, shndx, | |
7624 | &is_ordinary); | |
7625 | if (!is_ordinary) | |
7626 | object->error(_("section symbol %u has bad shndx %u"), | |
7627 | r_sym, shndx); | |
7628 | else | |
7629 | rel_dyn->add_local_section(object, shndx, | |
7630 | r_type, output_section, | |
7631 | data_shndx, reloc.get_r_offset()); | |
7632 | } | |
7633 | } | |
7634 | break; | |
7635 | ||
7636 | case elfcpp::R_ARM_PC24: | |
7637 | case elfcpp::R_ARM_REL32: | |
7638 | case elfcpp::R_ARM_LDR_PC_G0: | |
7639 | case elfcpp::R_ARM_SBREL32: | |
7640 | case elfcpp::R_ARM_THM_CALL: | |
7641 | case elfcpp::R_ARM_THM_PC8: | |
7642 | case elfcpp::R_ARM_BASE_PREL: | |
7643 | case elfcpp::R_ARM_PLT32: | |
7644 | case elfcpp::R_ARM_CALL: | |
7645 | case elfcpp::R_ARM_JUMP24: | |
7646 | case elfcpp::R_ARM_THM_JUMP24: | |
7647 | case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | |
7648 | case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | |
7649 | case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | |
7650 | case elfcpp::R_ARM_SBREL31: | |
7651 | case elfcpp::R_ARM_PREL31: | |
c2a122b6 ILT |
7652 | case elfcpp::R_ARM_MOVW_PREL_NC: |
7653 | case elfcpp::R_ARM_MOVT_PREL: | |
7654 | case elfcpp::R_ARM_THM_MOVW_PREL_NC: | |
7655 | case elfcpp::R_ARM_THM_MOVT_PREL: | |
e4782e83 | 7656 | case elfcpp::R_ARM_THM_JUMP19: |
800d0f56 | 7657 | case elfcpp::R_ARM_THM_JUMP6: |
11b861d5 | 7658 | case elfcpp::R_ARM_THM_ALU_PREL_11_0: |
e4782e83 DK |
7659 | case elfcpp::R_ARM_THM_PC12: |
7660 | case elfcpp::R_ARM_REL32_NOI: | |
b10d2873 ILT |
7661 | case elfcpp::R_ARM_ALU_PC_G0_NC: |
7662 | case elfcpp::R_ARM_ALU_PC_G0: | |
7663 | case elfcpp::R_ARM_ALU_PC_G1_NC: | |
7664 | case elfcpp::R_ARM_ALU_PC_G1: | |
7665 | case elfcpp::R_ARM_ALU_PC_G2: | |
e4782e83 DK |
7666 | case elfcpp::R_ARM_LDR_PC_G1: |
7667 | case elfcpp::R_ARM_LDR_PC_G2: | |
7668 | case elfcpp::R_ARM_LDRS_PC_G0: | |
7669 | case elfcpp::R_ARM_LDRS_PC_G1: | |
7670 | case elfcpp::R_ARM_LDRS_PC_G2: | |
7671 | case elfcpp::R_ARM_LDC_PC_G0: | |
7672 | case elfcpp::R_ARM_LDC_PC_G1: | |
7673 | case elfcpp::R_ARM_LDC_PC_G2: | |
b10d2873 ILT |
7674 | case elfcpp::R_ARM_ALU_SB_G0_NC: |
7675 | case elfcpp::R_ARM_ALU_SB_G0: | |
7676 | case elfcpp::R_ARM_ALU_SB_G1_NC: | |
7677 | case elfcpp::R_ARM_ALU_SB_G1: | |
7678 | case elfcpp::R_ARM_ALU_SB_G2: | |
b10d2873 ILT |
7679 | case elfcpp::R_ARM_LDR_SB_G0: |
7680 | case elfcpp::R_ARM_LDR_SB_G1: | |
7681 | case elfcpp::R_ARM_LDR_SB_G2: | |
b10d2873 ILT |
7682 | case elfcpp::R_ARM_LDRS_SB_G0: |
7683 | case elfcpp::R_ARM_LDRS_SB_G1: | |
7684 | case elfcpp::R_ARM_LDRS_SB_G2: | |
b10d2873 ILT |
7685 | case elfcpp::R_ARM_LDC_SB_G0: |
7686 | case elfcpp::R_ARM_LDC_SB_G1: | |
7687 | case elfcpp::R_ARM_LDC_SB_G2: | |
e4782e83 DK |
7688 | case elfcpp::R_ARM_MOVW_BREL_NC: |
7689 | case elfcpp::R_ARM_MOVT_BREL: | |
7690 | case elfcpp::R_ARM_MOVW_BREL: | |
7691 | case elfcpp::R_ARM_THM_MOVW_BREL_NC: | |
7692 | case elfcpp::R_ARM_THM_MOVT_BREL: | |
7693 | case elfcpp::R_ARM_THM_MOVW_BREL: | |
7694 | case elfcpp::R_ARM_THM_JUMP11: | |
7695 | case elfcpp::R_ARM_THM_JUMP8: | |
7696 | // We don't need to do anything for a relative addressing relocation | |
7697 | // against a local symbol if it does not reference the GOT. | |
bec53400 DK |
7698 | break; |
7699 | ||
7700 | case elfcpp::R_ARM_GOTOFF32: | |
e4782e83 | 7701 | case elfcpp::R_ARM_GOTOFF12: |
bec53400 | 7702 | // We need a GOT section: |
2ea97941 | 7703 | target->got_section(symtab, layout); |
bec53400 DK |
7704 | break; |
7705 | ||
bec53400 | 7706 | case elfcpp::R_ARM_GOT_BREL: |
7f5309a5 | 7707 | case elfcpp::R_ARM_GOT_PREL: |
bec53400 DK |
7708 | { |
7709 | // The symbol requires a GOT entry. | |
4a54abbb | 7710 | Arm_output_data_got<big_endian>* got = |
2ea97941 | 7711 | target->got_section(symtab, layout); |
bec53400 DK |
7712 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); |
7713 | if (got->add_local(object, r_sym, GOT_TYPE_STANDARD)) | |
7714 | { | |
7715 | // If we are generating a shared object, we need to add a | |
7716 | // dynamic RELATIVE relocation for this symbol's GOT entry. | |
7717 | if (parameters->options().output_is_position_independent()) | |
7718 | { | |
2ea97941 ILT |
7719 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); |
7720 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | |
bec53400 | 7721 | rel_dyn->add_local_relative( |
2ea97941 ILT |
7722 | object, r_sym, elfcpp::R_ARM_RELATIVE, got, |
7723 | object->local_got_offset(r_sym, GOT_TYPE_STANDARD)); | |
bec53400 DK |
7724 | } |
7725 | } | |
7726 | } | |
7727 | break; | |
7728 | ||
7729 | case elfcpp::R_ARM_TARGET1: | |
e4782e83 | 7730 | case elfcpp::R_ARM_TARGET2: |
bec53400 DK |
7731 | // This should have been mapped to another type already. |
7732 | // Fall through. | |
7733 | case elfcpp::R_ARM_COPY: | |
7734 | case elfcpp::R_ARM_GLOB_DAT: | |
7735 | case elfcpp::R_ARM_JUMP_SLOT: | |
7736 | case elfcpp::R_ARM_RELATIVE: | |
7737 | // These are relocations which should only be seen by the | |
7738 | // dynamic linker, and should never be seen here. | |
7739 | gold_error(_("%s: unexpected reloc %u in object file"), | |
7740 | object->name().c_str(), r_type); | |
7741 | break; | |
7742 | ||
f96accdf DK |
7743 | |
7744 | // These are initial TLS relocs, which are expected when | |
7745 | // linking. | |
7746 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
7747 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
7748 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
7749 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
7750 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
7751 | { | |
7752 | bool output_is_shared = parameters->options().shared(); | |
7753 | const tls::Tls_optimization optimized_type | |
7754 | = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared, | |
7755 | r_type); | |
7756 | switch (r_type) | |
7757 | { | |
7758 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
7759 | if (optimized_type == tls::TLSOPT_NONE) | |
7760 | { | |
7761 | // Create a pair of GOT entries for the module index and | |
7762 | // dtv-relative offset. | |
4a54abbb | 7763 | Arm_output_data_got<big_endian>* got |
f96accdf DK |
7764 | = target->got_section(symtab, layout); |
7765 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | |
7766 | unsigned int shndx = lsym.get_st_shndx(); | |
7767 | bool is_ordinary; | |
7768 | shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); | |
7769 | if (!is_ordinary) | |
4a54abbb DK |
7770 | { |
7771 | object->error(_("local symbol %u has bad shndx %u"), | |
7772 | r_sym, shndx); | |
7773 | break; | |
7774 | } | |
7775 | ||
7776 | if (!parameters->doing_static_link()) | |
f96accdf DK |
7777 | got->add_local_pair_with_rel(object, r_sym, shndx, |
7778 | GOT_TYPE_TLS_PAIR, | |
7779 | target->rel_dyn_section(layout), | |
7780 | elfcpp::R_ARM_TLS_DTPMOD32, 0); | |
4a54abbb DK |
7781 | else |
7782 | got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, | |
7783 | object, r_sym); | |
f96accdf DK |
7784 | } |
7785 | else | |
7786 | // FIXME: TLS optimization not supported yet. | |
7787 | gold_unreachable(); | |
7788 | break; | |
7789 | ||
7790 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
7791 | if (optimized_type == tls::TLSOPT_NONE) | |
7792 | { | |
7793 | // Create a GOT entry for the module index. | |
7794 | target->got_mod_index_entry(symtab, layout, object); | |
7795 | } | |
7796 | else | |
7797 | // FIXME: TLS optimization not supported yet. | |
7798 | gold_unreachable(); | |
7799 | break; | |
7800 | ||
7801 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
7802 | break; | |
7803 | ||
7804 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
7805 | layout->set_has_static_tls(); | |
7806 | if (optimized_type == tls::TLSOPT_NONE) | |
7807 | { | |
4a54abbb DK |
7808 | // Create a GOT entry for the tp-relative offset. |
7809 | Arm_output_data_got<big_endian>* got | |
7810 | = target->got_section(symtab, layout); | |
7811 | unsigned int r_sym = | |
7812 | elfcpp::elf_r_sym<32>(reloc.get_r_info()); | |
7813 | if (!parameters->doing_static_link()) | |
7814 | got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, | |
7815 | target->rel_dyn_section(layout), | |
7816 | elfcpp::R_ARM_TLS_TPOFF32); | |
7817 | else if (!object->local_has_got_offset(r_sym, | |
7818 | GOT_TYPE_TLS_OFFSET)) | |
7819 | { | |
7820 | got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET); | |
7821 | unsigned int got_offset = | |
7822 | object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); | |
7823 | got->add_static_reloc(got_offset, | |
7824 | elfcpp::R_ARM_TLS_TPOFF32, object, | |
7825 | r_sym); | |
7826 | } | |
f96accdf DK |
7827 | } |
7828 | else | |
7829 | // FIXME: TLS optimization not supported yet. | |
7830 | gold_unreachable(); | |
7831 | break; | |
7832 | ||
7833 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
7834 | layout->set_has_static_tls(); | |
7835 | if (output_is_shared) | |
7836 | { | |
7837 | // We need to create a dynamic relocation. | |
7838 | gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); | |
7839 | unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | |
7840 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); | |
7841 | rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32, | |
7842 | output_section, data_shndx, | |
7843 | reloc.get_r_offset()); | |
7844 | } | |
7845 | break; | |
7846 | ||
7847 | default: | |
7848 | gold_unreachable(); | |
7849 | } | |
7850 | } | |
7851 | break; | |
7852 | ||
4a657b0d DK |
7853 | default: |
7854 | unsupported_reloc_local(object, r_type); | |
7855 | break; | |
7856 | } | |
7857 | } | |
7858 | ||
7859 | // Report an unsupported relocation against a global symbol. | |
7860 | ||
7861 | template<bool big_endian> | |
7862 | void | |
7863 | Target_arm<big_endian>::Scan::unsupported_reloc_global( | |
7864 | Sized_relobj<32, big_endian>* object, | |
7865 | unsigned int r_type, | |
7866 | Symbol* gsym) | |
7867 | { | |
7868 | gold_error(_("%s: unsupported reloc %u against global symbol %s"), | |
7869 | object->name().c_str(), r_type, gsym->demangled_name().c_str()); | |
7870 | } | |
7871 | ||
8a75a161 DK |
7872 | template<bool big_endian> |
7873 | inline bool | |
7874 | Target_arm<big_endian>::Scan::possible_function_pointer_reloc( | |
7875 | unsigned int r_type) | |
7876 | { | |
7877 | switch (r_type) | |
7878 | { | |
7879 | case elfcpp::R_ARM_PC24: | |
7880 | case elfcpp::R_ARM_THM_CALL: | |
7881 | case elfcpp::R_ARM_PLT32: | |
7882 | case elfcpp::R_ARM_CALL: | |
7883 | case elfcpp::R_ARM_JUMP24: | |
7884 | case elfcpp::R_ARM_THM_JUMP24: | |
7885 | case elfcpp::R_ARM_SBREL31: | |
7886 | case elfcpp::R_ARM_PREL31: | |
7887 | case elfcpp::R_ARM_THM_JUMP19: | |
7888 | case elfcpp::R_ARM_THM_JUMP6: | |
7889 | case elfcpp::R_ARM_THM_JUMP11: | |
7890 | case elfcpp::R_ARM_THM_JUMP8: | |
7891 | // All the relocations above are branches except SBREL31 and PREL31. | |
7892 | return false; | |
7893 | ||
7894 | default: | |
7895 | // Be conservative and assume this is a function pointer. | |
7896 | return true; | |
7897 | } | |
7898 | } | |
7899 | ||
7900 | template<bool big_endian> | |
7901 | inline bool | |
7902 | Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer( | |
7903 | Symbol_table*, | |
7904 | Layout*, | |
7905 | Target_arm<big_endian>* target, | |
7906 | Sized_relobj<32, big_endian>*, | |
7907 | unsigned int, | |
7908 | Output_section*, | |
7909 | const elfcpp::Rel<32, big_endian>&, | |
7910 | unsigned int r_type, | |
7911 | const elfcpp::Sym<32, big_endian>&) | |
7912 | { | |
7913 | r_type = target->get_real_reloc_type(r_type); | |
7914 | return possible_function_pointer_reloc(r_type); | |
7915 | } | |
7916 | ||
7917 | template<bool big_endian> | |
7918 | inline bool | |
7919 | Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer( | |
7920 | Symbol_table*, | |
7921 | Layout*, | |
7922 | Target_arm<big_endian>* target, | |
7923 | Sized_relobj<32, big_endian>*, | |
7924 | unsigned int, | |
7925 | Output_section*, | |
7926 | const elfcpp::Rel<32, big_endian>&, | |
7927 | unsigned int r_type, | |
7928 | Symbol* gsym) | |
7929 | { | |
7930 | // GOT is not a function. | |
7931 | if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) | |
7932 | return false; | |
7933 | ||
7934 | r_type = target->get_real_reloc_type(r_type); | |
7935 | return possible_function_pointer_reloc(r_type); | |
7936 | } | |
7937 | ||
4a657b0d DK |
7938 | // Scan a relocation for a global symbol. |
7939 | ||
7940 | template<bool big_endian> | |
7941 | inline void | |
ad0f2072 | 7942 | Target_arm<big_endian>::Scan::global(Symbol_table* symtab, |
2ea97941 | 7943 | Layout* layout, |
bec53400 | 7944 | Target_arm* target, |
4a657b0d | 7945 | Sized_relobj<32, big_endian>* object, |
bec53400 DK |
7946 | unsigned int data_shndx, |
7947 | Output_section* output_section, | |
7948 | const elfcpp::Rel<32, big_endian>& reloc, | |
4a657b0d DK |
7949 | unsigned int r_type, |
7950 | Symbol* gsym) | |
7951 | { | |
c8761b9a DK |
7952 | // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got |
7953 | // section. We check here to avoid creating a dynamic reloc against | |
7954 | // _GLOBAL_OFFSET_TABLE_. | |
7955 | if (!target->has_got_section() | |
7956 | && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) | |
7957 | target->got_section(symtab, layout); | |
7958 | ||
a6d1ef57 | 7959 | r_type = get_real_reloc_type(r_type); |
4a657b0d DK |
7960 | switch (r_type) |
7961 | { | |
7962 | case elfcpp::R_ARM_NONE: | |
e4782e83 DK |
7963 | case elfcpp::R_ARM_V4BX: |
7964 | case elfcpp::R_ARM_GNU_VTENTRY: | |
7965 | case elfcpp::R_ARM_GNU_VTINHERIT: | |
4a657b0d DK |
7966 | break; |
7967 | ||
bec53400 | 7968 | case elfcpp::R_ARM_ABS32: |
e4782e83 DK |
7969 | case elfcpp::R_ARM_ABS16: |
7970 | case elfcpp::R_ARM_ABS12: | |
7971 | case elfcpp::R_ARM_THM_ABS5: | |
7972 | case elfcpp::R_ARM_ABS8: | |
7973 | case elfcpp::R_ARM_BASE_ABS: | |
7974 | case elfcpp::R_ARM_MOVW_ABS_NC: | |
7975 | case elfcpp::R_ARM_MOVT_ABS: | |
7976 | case elfcpp::R_ARM_THM_MOVW_ABS_NC: | |
7977 | case elfcpp::R_ARM_THM_MOVT_ABS: | |
be8fcb75 | 7978 | case elfcpp::R_ARM_ABS32_NOI: |
e4782e83 | 7979 | // Absolute addressing relocations. |
bec53400 | 7980 | { |
e4782e83 DK |
7981 | // Make a PLT entry if necessary. |
7982 | if (this->symbol_needs_plt_entry(gsym)) | |
7983 | { | |
7984 | target->make_plt_entry(symtab, layout, gsym); | |
7985 | // Since this is not a PC-relative relocation, we may be | |
7986 | // taking the address of a function. In that case we need to | |
7987 | // set the entry in the dynamic symbol table to the address of | |
7988 | // the PLT entry. | |
7989 | if (gsym->is_from_dynobj() && !parameters->options().shared()) | |
7990 | gsym->set_needs_dynsym_value(); | |
7991 | } | |
7992 | // Make a dynamic relocation if necessary. | |
7993 | if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF)) | |
7994 | { | |
7995 | if (gsym->may_need_copy_reloc()) | |
7996 | { | |
7997 | target->copy_reloc(symtab, layout, object, | |
7998 | data_shndx, output_section, gsym, reloc); | |
7999 | } | |
8000 | else if ((r_type == elfcpp::R_ARM_ABS32 | |
8001 | || r_type == elfcpp::R_ARM_ABS32_NOI) | |
8002 | && gsym->can_use_relative_reloc(false)) | |
8003 | { | |
8004 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); | |
8005 | rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE, | |
8006 | output_section, object, | |
8007 | data_shndx, reloc.get_r_offset()); | |
8008 | } | |
8009 | else | |
8010 | { | |
8011 | check_non_pic(object, r_type); | |
8012 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); | |
8013 | rel_dyn->add_global(gsym, r_type, output_section, object, | |
8014 | data_shndx, reloc.get_r_offset()); | |
8015 | } | |
8016 | } | |
bec53400 DK |
8017 | } |
8018 | break; | |
8019 | ||
e4782e83 DK |
8020 | case elfcpp::R_ARM_GOTOFF32: |
8021 | case elfcpp::R_ARM_GOTOFF12: | |
8022 | // We need a GOT section. | |
8023 | target->got_section(symtab, layout); | |
8024 | break; | |
8025 | ||
8026 | case elfcpp::R_ARM_REL32: | |
8027 | case elfcpp::R_ARM_LDR_PC_G0: | |
8028 | case elfcpp::R_ARM_SBREL32: | |
8029 | case elfcpp::R_ARM_THM_PC8: | |
8030 | case elfcpp::R_ARM_BASE_PREL: | |
8031 | case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | |
8032 | case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | |
8033 | case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | |
c2a122b6 ILT |
8034 | case elfcpp::R_ARM_MOVW_PREL_NC: |
8035 | case elfcpp::R_ARM_MOVT_PREL: | |
8036 | case elfcpp::R_ARM_THM_MOVW_PREL_NC: | |
8037 | case elfcpp::R_ARM_THM_MOVT_PREL: | |
11b861d5 | 8038 | case elfcpp::R_ARM_THM_ALU_PREL_11_0: |
e4782e83 DK |
8039 | case elfcpp::R_ARM_THM_PC12: |
8040 | case elfcpp::R_ARM_REL32_NOI: | |
b10d2873 ILT |
8041 | case elfcpp::R_ARM_ALU_PC_G0_NC: |
8042 | case elfcpp::R_ARM_ALU_PC_G0: | |
8043 | case elfcpp::R_ARM_ALU_PC_G1_NC: | |
8044 | case elfcpp::R_ARM_ALU_PC_G1: | |
8045 | case elfcpp::R_ARM_ALU_PC_G2: | |
e4782e83 DK |
8046 | case elfcpp::R_ARM_LDR_PC_G1: |
8047 | case elfcpp::R_ARM_LDR_PC_G2: | |
8048 | case elfcpp::R_ARM_LDRS_PC_G0: | |
8049 | case elfcpp::R_ARM_LDRS_PC_G1: | |
8050 | case elfcpp::R_ARM_LDRS_PC_G2: | |
8051 | case elfcpp::R_ARM_LDC_PC_G0: | |
8052 | case elfcpp::R_ARM_LDC_PC_G1: | |
8053 | case elfcpp::R_ARM_LDC_PC_G2: | |
b10d2873 ILT |
8054 | case elfcpp::R_ARM_ALU_SB_G0_NC: |
8055 | case elfcpp::R_ARM_ALU_SB_G0: | |
8056 | case elfcpp::R_ARM_ALU_SB_G1_NC: | |
8057 | case elfcpp::R_ARM_ALU_SB_G1: | |
8058 | case elfcpp::R_ARM_ALU_SB_G2: | |
b10d2873 ILT |
8059 | case elfcpp::R_ARM_LDR_SB_G0: |
8060 | case elfcpp::R_ARM_LDR_SB_G1: | |
8061 | case elfcpp::R_ARM_LDR_SB_G2: | |
b10d2873 ILT |
8062 | case elfcpp::R_ARM_LDRS_SB_G0: |
8063 | case elfcpp::R_ARM_LDRS_SB_G1: | |
8064 | case elfcpp::R_ARM_LDRS_SB_G2: | |
b10d2873 ILT |
8065 | case elfcpp::R_ARM_LDC_SB_G0: |
8066 | case elfcpp::R_ARM_LDC_SB_G1: | |
8067 | case elfcpp::R_ARM_LDC_SB_G2: | |
e4782e83 DK |
8068 | case elfcpp::R_ARM_MOVW_BREL_NC: |
8069 | case elfcpp::R_ARM_MOVT_BREL: | |
8070 | case elfcpp::R_ARM_MOVW_BREL: | |
8071 | case elfcpp::R_ARM_THM_MOVW_BREL_NC: | |
8072 | case elfcpp::R_ARM_THM_MOVT_BREL: | |
8073 | case elfcpp::R_ARM_THM_MOVW_BREL: | |
8074 | // Relative addressing relocations. | |
bec53400 DK |
8075 | { |
8076 | // Make a dynamic relocation if necessary. | |
8077 | int flags = Symbol::NON_PIC_REF; | |
8078 | if (gsym->needs_dynamic_reloc(flags)) | |
8079 | { | |
8080 | if (target->may_need_copy_reloc(gsym)) | |
8081 | { | |
2ea97941 | 8082 | target->copy_reloc(symtab, layout, object, |
bec53400 DK |
8083 | data_shndx, output_section, gsym, reloc); |
8084 | } | |
8085 | else | |
8086 | { | |
8087 | check_non_pic(object, r_type); | |
2ea97941 | 8088 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); |
bec53400 DK |
8089 | rel_dyn->add_global(gsym, r_type, output_section, object, |
8090 | data_shndx, reloc.get_r_offset()); | |
8091 | } | |
8092 | } | |
8093 | } | |
8094 | break; | |
8095 | ||
e4782e83 | 8096 | case elfcpp::R_ARM_PC24: |
f4e5969c | 8097 | case elfcpp::R_ARM_THM_CALL: |
bec53400 | 8098 | case elfcpp::R_ARM_PLT32: |
e4782e83 DK |
8099 | case elfcpp::R_ARM_CALL: |
8100 | case elfcpp::R_ARM_JUMP24: | |
8101 | case elfcpp::R_ARM_THM_JUMP24: | |
8102 | case elfcpp::R_ARM_SBREL31: | |
c9a2c125 | 8103 | case elfcpp::R_ARM_PREL31: |
e4782e83 DK |
8104 | case elfcpp::R_ARM_THM_JUMP19: |
8105 | case elfcpp::R_ARM_THM_JUMP6: | |
8106 | case elfcpp::R_ARM_THM_JUMP11: | |
8107 | case elfcpp::R_ARM_THM_JUMP8: | |
8108 | // All the relocation above are branches except for the PREL31 ones. | |
8109 | // A PREL31 relocation can point to a personality function in a shared | |
8110 | // library. In that case we want to use a PLT because we want to | |
8111 | // call the personality routine and the dyanmic linkers we care about | |
8112 | // do not support dynamic PREL31 relocations. An REL31 relocation may | |
8113 | // point to a function whose unwinding behaviour is being described but | |
8114 | // we will not mistakenly generate a PLT for that because we should use | |
8115 | // a local section symbol. | |
8116 | ||
bec53400 DK |
8117 | // If the symbol is fully resolved, this is just a relative |
8118 | // local reloc. Otherwise we need a PLT entry. | |
8119 | if (gsym->final_value_is_known()) | |
8120 | break; | |
8121 | // If building a shared library, we can also skip the PLT entry | |
8122 | // if the symbol is defined in the output file and is protected | |
8123 | // or hidden. | |
8124 | if (gsym->is_defined() | |
8125 | && !gsym->is_from_dynobj() | |
8126 | && !gsym->is_preemptible()) | |
8127 | break; | |
2ea97941 | 8128 | target->make_plt_entry(symtab, layout, gsym); |
bec53400 DK |
8129 | break; |
8130 | ||
bec53400 | 8131 | case elfcpp::R_ARM_GOT_BREL: |
e4782e83 | 8132 | case elfcpp::R_ARM_GOT_ABS: |
7f5309a5 | 8133 | case elfcpp::R_ARM_GOT_PREL: |
bec53400 DK |
8134 | { |
8135 | // The symbol requires a GOT entry. | |
4a54abbb | 8136 | Arm_output_data_got<big_endian>* got = |
2ea97941 | 8137 | target->got_section(symtab, layout); |
bec53400 DK |
8138 | if (gsym->final_value_is_known()) |
8139 | got->add_global(gsym, GOT_TYPE_STANDARD); | |
8140 | else | |
8141 | { | |
8142 | // If this symbol is not fully resolved, we need to add a | |
8143 | // GOT entry with a dynamic relocation. | |
2ea97941 | 8144 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); |
bec53400 DK |
8145 | if (gsym->is_from_dynobj() |
8146 | || gsym->is_undefined() | |
8147 | || gsym->is_preemptible()) | |
8148 | got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, | |
8149 | rel_dyn, elfcpp::R_ARM_GLOB_DAT); | |
8150 | else | |
8151 | { | |
8152 | if (got->add_global(gsym, GOT_TYPE_STANDARD)) | |
8153 | rel_dyn->add_global_relative( | |
8154 | gsym, elfcpp::R_ARM_RELATIVE, got, | |
8155 | gsym->got_offset(GOT_TYPE_STANDARD)); | |
8156 | } | |
8157 | } | |
8158 | } | |
8159 | break; | |
8160 | ||
8161 | case elfcpp::R_ARM_TARGET1: | |
e4782e83 DK |
8162 | case elfcpp::R_ARM_TARGET2: |
8163 | // These should have been mapped to other types already. | |
bec53400 DK |
8164 | // Fall through. |
8165 | case elfcpp::R_ARM_COPY: | |
8166 | case elfcpp::R_ARM_GLOB_DAT: | |
8167 | case elfcpp::R_ARM_JUMP_SLOT: | |
8168 | case elfcpp::R_ARM_RELATIVE: | |
8169 | // These are relocations which should only be seen by the | |
8170 | // dynamic linker, and should never be seen here. | |
8171 | gold_error(_("%s: unexpected reloc %u in object file"), | |
8172 | object->name().c_str(), r_type); | |
8173 | break; | |
8174 | ||
f96accdf DK |
8175 | // These are initial tls relocs, which are expected when |
8176 | // linking. | |
8177 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
8178 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
8179 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
8180 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
8181 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
8182 | { | |
8183 | const bool is_final = gsym->final_value_is_known(); | |
8184 | const tls::Tls_optimization optimized_type | |
8185 | = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); | |
8186 | switch (r_type) | |
8187 | { | |
8188 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
8189 | if (optimized_type == tls::TLSOPT_NONE) | |
8190 | { | |
8191 | // Create a pair of GOT entries for the module index and | |
8192 | // dtv-relative offset. | |
4a54abbb | 8193 | Arm_output_data_got<big_endian>* got |
f96accdf | 8194 | = target->got_section(symtab, layout); |
4a54abbb DK |
8195 | if (!parameters->doing_static_link()) |
8196 | got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, | |
8197 | target->rel_dyn_section(layout), | |
8198 | elfcpp::R_ARM_TLS_DTPMOD32, | |
8199 | elfcpp::R_ARM_TLS_DTPOFF32); | |
8200 | else | |
8201 | got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym); | |
f96accdf DK |
8202 | } |
8203 | else | |
8204 | // FIXME: TLS optimization not supported yet. | |
8205 | gold_unreachable(); | |
8206 | break; | |
8207 | ||
8208 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
8209 | if (optimized_type == tls::TLSOPT_NONE) | |
8210 | { | |
8211 | // Create a GOT entry for the module index. | |
8212 | target->got_mod_index_entry(symtab, layout, object); | |
8213 | } | |
8214 | else | |
8215 | // FIXME: TLS optimization not supported yet. | |
8216 | gold_unreachable(); | |
8217 | break; | |
8218 | ||
8219 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
8220 | break; | |
8221 | ||
8222 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
8223 | layout->set_has_static_tls(); | |
8224 | if (optimized_type == tls::TLSOPT_NONE) | |
8225 | { | |
4a54abbb DK |
8226 | // Create a GOT entry for the tp-relative offset. |
8227 | Arm_output_data_got<big_endian>* got | |
8228 | = target->got_section(symtab, layout); | |
8229 | if (!parameters->doing_static_link()) | |
8230 | got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, | |
8231 | target->rel_dyn_section(layout), | |
8232 | elfcpp::R_ARM_TLS_TPOFF32); | |
8233 | else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)) | |
8234 | { | |
8235 | got->add_global(gsym, GOT_TYPE_TLS_OFFSET); | |
8236 | unsigned int got_offset = | |
8237 | gsym->got_offset(GOT_TYPE_TLS_OFFSET); | |
8238 | got->add_static_reloc(got_offset, | |
8239 | elfcpp::R_ARM_TLS_TPOFF32, gsym); | |
8240 | } | |
f96accdf DK |
8241 | } |
8242 | else | |
8243 | // FIXME: TLS optimization not supported yet. | |
8244 | gold_unreachable(); | |
8245 | break; | |
8246 | ||
8247 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
8248 | layout->set_has_static_tls(); | |
8249 | if (parameters->options().shared()) | |
8250 | { | |
8251 | // We need to create a dynamic relocation. | |
8252 | Reloc_section* rel_dyn = target->rel_dyn_section(layout); | |
8253 | rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32, | |
8254 | output_section, object, | |
8255 | data_shndx, reloc.get_r_offset()); | |
8256 | } | |
8257 | break; | |
8258 | ||
8259 | default: | |
8260 | gold_unreachable(); | |
8261 | } | |
8262 | } | |
8263 | break; | |
8264 | ||
4a657b0d DK |
8265 | default: |
8266 | unsupported_reloc_global(object, r_type, gsym); | |
8267 | break; | |
8268 | } | |
8269 | } | |
8270 | ||
8271 | // Process relocations for gc. | |
8272 | ||
8273 | template<bool big_endian> | |
8274 | void | |
ad0f2072 | 8275 | Target_arm<big_endian>::gc_process_relocs(Symbol_table* symtab, |
2ea97941 | 8276 | Layout* layout, |
4a657b0d DK |
8277 | Sized_relobj<32, big_endian>* object, |
8278 | unsigned int data_shndx, | |
8279 | unsigned int, | |
8280 | const unsigned char* prelocs, | |
8281 | size_t reloc_count, | |
8282 | Output_section* output_section, | |
8283 | bool needs_special_offset_handling, | |
8284 | size_t local_symbol_count, | |
8285 | const unsigned char* plocal_symbols) | |
8286 | { | |
8287 | typedef Target_arm<big_endian> Arm; | |
2ea97941 | 8288 | typedef typename Target_arm<big_endian>::Scan Scan; |
4a657b0d | 8289 | |
41cbeecc | 8290 | gold::gc_process_relocs<32, big_endian, Arm, elfcpp::SHT_REL, Scan, |
3ff2ccb0 | 8291 | typename Target_arm::Relocatable_size_for_reloc>( |
4a657b0d | 8292 | symtab, |
2ea97941 | 8293 | layout, |
4a657b0d DK |
8294 | this, |
8295 | object, | |
8296 | data_shndx, | |
8297 | prelocs, | |
8298 | reloc_count, | |
8299 | output_section, | |
8300 | needs_special_offset_handling, | |
8301 | local_symbol_count, | |
8302 | plocal_symbols); | |
8303 | } | |
8304 | ||
8305 | // Scan relocations for a section. | |
8306 | ||
8307 | template<bool big_endian> | |
8308 | void | |
ad0f2072 | 8309 | Target_arm<big_endian>::scan_relocs(Symbol_table* symtab, |
2ea97941 | 8310 | Layout* layout, |
4a657b0d DK |
8311 | Sized_relobj<32, big_endian>* object, |
8312 | unsigned int data_shndx, | |
8313 | unsigned int sh_type, | |
8314 | const unsigned char* prelocs, | |
8315 | size_t reloc_count, | |
8316 | Output_section* output_section, | |
8317 | bool needs_special_offset_handling, | |
8318 | size_t local_symbol_count, | |
8319 | const unsigned char* plocal_symbols) | |
8320 | { | |
2ea97941 | 8321 | typedef typename Target_arm<big_endian>::Scan Scan; |
4a657b0d DK |
8322 | if (sh_type == elfcpp::SHT_RELA) |
8323 | { | |
8324 | gold_error(_("%s: unsupported RELA reloc section"), | |
8325 | object->name().c_str()); | |
8326 | return; | |
8327 | } | |
8328 | ||
2ea97941 | 8329 | gold::scan_relocs<32, big_endian, Target_arm, elfcpp::SHT_REL, Scan>( |
4a657b0d | 8330 | symtab, |
2ea97941 | 8331 | layout, |
4a657b0d DK |
8332 | this, |
8333 | object, | |
8334 | data_shndx, | |
8335 | prelocs, | |
8336 | reloc_count, | |
8337 | output_section, | |
8338 | needs_special_offset_handling, | |
8339 | local_symbol_count, | |
8340 | plocal_symbols); | |
8341 | } | |
8342 | ||
8343 | // Finalize the sections. | |
8344 | ||
8345 | template<bool big_endian> | |
8346 | void | |
d5b40221 | 8347 | Target_arm<big_endian>::do_finalize_sections( |
2ea97941 | 8348 | Layout* layout, |
f59f41f3 DK |
8349 | const Input_objects* input_objects, |
8350 | Symbol_table* symtab) | |
4a657b0d | 8351 | { |
3e235302 | 8352 | bool merged_any_attributes = false; |
d5b40221 DK |
8353 | // Merge processor-specific flags. |
8354 | for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | |
8355 | p != input_objects->relobj_end(); | |
8356 | ++p) | |
8357 | { | |
8358 | Arm_relobj<big_endian>* arm_relobj = | |
8359 | Arm_relobj<big_endian>::as_arm_relobj(*p); | |
7296d933 DK |
8360 | if (arm_relobj->merge_flags_and_attributes()) |
8361 | { | |
8362 | this->merge_processor_specific_flags( | |
8363 | arm_relobj->name(), | |
8364 | arm_relobj->processor_specific_flags()); | |
8365 | this->merge_object_attributes(arm_relobj->name().c_str(), | |
8366 | arm_relobj->attributes_section_data()); | |
3e235302 | 8367 | merged_any_attributes = true; |
7296d933 | 8368 | } |
d5b40221 DK |
8369 | } |
8370 | ||
8371 | for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); | |
8372 | p != input_objects->dynobj_end(); | |
8373 | ++p) | |
8374 | { | |
8375 | Arm_dynobj<big_endian>* arm_dynobj = | |
8376 | Arm_dynobj<big_endian>::as_arm_dynobj(*p); | |
8377 | this->merge_processor_specific_flags( | |
8378 | arm_dynobj->name(), | |
8379 | arm_dynobj->processor_specific_flags()); | |
a0351a69 DK |
8380 | this->merge_object_attributes(arm_dynobj->name().c_str(), |
8381 | arm_dynobj->attributes_section_data()); | |
3e235302 | 8382 | merged_any_attributes = true; |
d5b40221 DK |
8383 | } |
8384 | ||
da59ad79 DK |
8385 | // Create an empty uninitialized attribute section if we still don't have it |
8386 | // at this moment. This happens if there is no attributes sections in all | |
8387 | // inputs. | |
8388 | if (this->attributes_section_data_ == NULL) | |
8389 | this->attributes_section_data_ = new Attributes_section_data(NULL, 0); | |
8390 | ||
a0351a69 | 8391 | // Check BLX use. |
41263c05 | 8392 | const Object_attribute* cpu_arch_attr = |
a0351a69 | 8393 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); |
41263c05 | 8394 | if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4) |
a0351a69 DK |
8395 | this->set_may_use_blx(true); |
8396 | ||
41263c05 DK |
8397 | // Check if we need to use Cortex-A8 workaround. |
8398 | if (parameters->options().user_set_fix_cortex_a8()) | |
8399 | this->fix_cortex_a8_ = parameters->options().fix_cortex_a8(); | |
8400 | else | |
8401 | { | |
8402 | // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on | |
8403 | // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown | |
8404 | // profile. | |
8405 | const Object_attribute* cpu_arch_profile_attr = | |
8406 | this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); | |
8407 | this->fix_cortex_a8_ = | |
8408 | (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7 | |
8409 | && (cpu_arch_profile_attr->int_value() == 'A' | |
8410 | || cpu_arch_profile_attr->int_value() == 0)); | |
8411 | } | |
8412 | ||
a2162063 ILT |
8413 | // Check if we can use V4BX interworking. |
8414 | // The V4BX interworking stub contains BX instruction, | |
8415 | // which is not specified for some profiles. | |
9b2fd367 DK |
8416 | if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING |
8417 | && !this->may_use_blx()) | |
a2162063 ILT |
8418 | gold_error(_("unable to provide V4BX reloc interworking fix up; " |
8419 | "the target profile does not support BX instruction")); | |
8420 | ||
94cdfcff | 8421 | // Fill in some more dynamic tags. |
ea715a34 ILT |
8422 | const Reloc_section* rel_plt = (this->plt_ == NULL |
8423 | ? NULL | |
8424 | : this->plt_->rel_plt()); | |
8425 | layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt, | |
612a8d3d | 8426 | this->rel_dyn_, true, false); |
94cdfcff DK |
8427 | |
8428 | // Emit any relocs we saved in an attempt to avoid generating COPY | |
8429 | // relocs. | |
8430 | if (this->copy_relocs_.any_saved_relocs()) | |
2ea97941 | 8431 | this->copy_relocs_.emit(this->rel_dyn_section(layout)); |
11af873f | 8432 | |
f59f41f3 | 8433 | // Handle the .ARM.exidx section. |
2ea97941 | 8434 | Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); |
11af873f | 8435 | |
731ca54a RÁE |
8436 | if (!parameters->options().relocatable()) |
8437 | { | |
8438 | if (exidx_section != NULL | |
8439 | && exidx_section->type() == elfcpp::SHT_ARM_EXIDX) | |
8440 | { | |
8441 | // Create __exidx_start and __exdix_end symbols. | |
8442 | symtab->define_in_output_data("__exidx_start", NULL, | |
8443 | Symbol_table::PREDEFINED, | |
8444 | exidx_section, 0, 0, elfcpp::STT_OBJECT, | |
8445 | elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, | |
8446 | 0, false, true); | |
8447 | symtab->define_in_output_data("__exidx_end", NULL, | |
8448 | Symbol_table::PREDEFINED, | |
8449 | exidx_section, 0, 0, elfcpp::STT_OBJECT, | |
8450 | elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, | |
8451 | 0, true, true); | |
8452 | ||
8453 | // For the ARM target, we need to add a PT_ARM_EXIDX segment for | |
8454 | // the .ARM.exidx section. | |
8455 | if (!layout->script_options()->saw_phdrs_clause()) | |
8456 | { | |
8457 | gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, | |
8458 | 0) | |
8459 | == NULL); | |
8460 | Output_segment* exidx_segment = | |
8461 | layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R); | |
8462 | exidx_segment->add_output_section_to_nonload(exidx_section, | |
8463 | elfcpp::PF_R); | |
8464 | } | |
8465 | } | |
8466 | else | |
8467 | { | |
8468 | symtab->define_as_constant("__exidx_start", NULL, | |
8469 | Symbol_table::PREDEFINED, | |
8470 | 0, 0, elfcpp::STT_OBJECT, | |
8471 | elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, | |
8472 | true, false); | |
8473 | symtab->define_as_constant("__exidx_end", NULL, | |
8474 | Symbol_table::PREDEFINED, | |
8475 | 0, 0, elfcpp::STT_OBJECT, | |
8476 | elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, | |
8477 | true, false); | |
8478 | } | |
11af873f | 8479 | } |
a0351a69 | 8480 | |
3e235302 DK |
8481 | // Create an .ARM.attributes section if we have merged any attributes |
8482 | // from inputs. | |
8483 | if (merged_any_attributes) | |
7296d933 DK |
8484 | { |
8485 | Output_attributes_section_data* attributes_section = | |
8486 | new Output_attributes_section_data(*this->attributes_section_data_); | |
8487 | layout->add_output_section_data(".ARM.attributes", | |
8488 | elfcpp::SHT_ARM_ATTRIBUTES, 0, | |
22f0da72 | 8489 | attributes_section, ORDER_INVALID, |
7296d933 DK |
8490 | false); |
8491 | } | |
131687b4 DK |
8492 | |
8493 | // Fix up links in section EXIDX headers. | |
8494 | for (Layout::Section_list::const_iterator p = layout->section_list().begin(); | |
8495 | p != layout->section_list().end(); | |
8496 | ++p) | |
8497 | if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) | |
8498 | { | |
8499 | Arm_output_section<big_endian>* os = | |
8500 | Arm_output_section<big_endian>::as_arm_output_section(*p); | |
8501 | os->set_exidx_section_link(); | |
8502 | } | |
4a657b0d DK |
8503 | } |
8504 | ||
bec53400 DK |
8505 | // Return whether a direct absolute static relocation needs to be applied. |
8506 | // In cases where Scan::local() or Scan::global() has created | |
8507 | // a dynamic relocation other than R_ARM_RELATIVE, the addend | |
8508 | // of the relocation is carried in the data, and we must not | |
8509 | // apply the static relocation. | |
8510 | ||
8511 | template<bool big_endian> | |
8512 | inline bool | |
8513 | Target_arm<big_endian>::Relocate::should_apply_static_reloc( | |
8514 | const Sized_symbol<32>* gsym, | |
8515 | int ref_flags, | |
8516 | bool is_32bit, | |
8517 | Output_section* output_section) | |
8518 | { | |
8519 | // If the output section is not allocated, then we didn't call | |
8520 | // scan_relocs, we didn't create a dynamic reloc, and we must apply | |
8521 | // the reloc here. | |
8522 | if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) | |
8523 | return true; | |
8524 | ||
8525 | // For local symbols, we will have created a non-RELATIVE dynamic | |
8526 | // relocation only if (a) the output is position independent, | |
8527 | // (b) the relocation is absolute (not pc- or segment-relative), and | |
8528 | // (c) the relocation is not 32 bits wide. | |
8529 | if (gsym == NULL) | |
8530 | return !(parameters->options().output_is_position_independent() | |
8531 | && (ref_flags & Symbol::ABSOLUTE_REF) | |
8532 | && !is_32bit); | |
8533 | ||
8534 | // For global symbols, we use the same helper routines used in the | |
8535 | // scan pass. If we did not create a dynamic relocation, or if we | |
8536 | // created a RELATIVE dynamic relocation, we should apply the static | |
8537 | // relocation. | |
8538 | bool has_dyn = gsym->needs_dynamic_reloc(ref_flags); | |
8539 | bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF) | |
8540 | && gsym->can_use_relative_reloc(ref_flags | |
8541 | & Symbol::FUNCTION_CALL); | |
8542 | return !has_dyn || is_rel; | |
8543 | } | |
8544 | ||
4a657b0d DK |
8545 | // Perform a relocation. |
8546 | ||
8547 | template<bool big_endian> | |
8548 | inline bool | |
8549 | Target_arm<big_endian>::Relocate::relocate( | |
c121c671 DK |
8550 | const Relocate_info<32, big_endian>* relinfo, |
8551 | Target_arm* target, | |
ca09d69a | 8552 | Output_section* output_section, |
c121c671 DK |
8553 | size_t relnum, |
8554 | const elfcpp::Rel<32, big_endian>& rel, | |
4a657b0d | 8555 | unsigned int r_type, |
c121c671 DK |
8556 | const Sized_symbol<32>* gsym, |
8557 | const Symbol_value<32>* psymval, | |
8558 | unsigned char* view, | |
ebabffbd | 8559 | Arm_address address, |
f96accdf | 8560 | section_size_type view_size) |
4a657b0d | 8561 | { |
c121c671 DK |
8562 | typedef Arm_relocate_functions<big_endian> Arm_relocate_functions; |
8563 | ||
a6d1ef57 | 8564 | r_type = get_real_reloc_type(r_type); |
5c57f1be DK |
8565 | const Arm_reloc_property* reloc_property = |
8566 | arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | |
8567 | if (reloc_property == NULL) | |
8568 | { | |
8569 | std::string reloc_name = | |
8570 | arm_reloc_property_table->reloc_name_in_error_message(r_type); | |
8571 | gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | |
8572 | _("cannot relocate %s in object file"), | |
8573 | reloc_name.c_str()); | |
8574 | return true; | |
8575 | } | |
c121c671 | 8576 | |
2daedcd6 DK |
8577 | const Arm_relobj<big_endian>* object = |
8578 | Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | |
c121c671 | 8579 | |
2daedcd6 DK |
8580 | // If the final branch target of a relocation is THUMB instruction, this |
8581 | // is 1. Otherwise it is 0. | |
8582 | Arm_address thumb_bit = 0; | |
c121c671 | 8583 | Symbol_value<32> symval; |
d204b6e9 | 8584 | bool is_weakly_undefined_without_plt = false; |
2daedcd6 | 8585 | if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs) |
c121c671 | 8586 | { |
2daedcd6 DK |
8587 | if (gsym != NULL) |
8588 | { | |
8589 | // This is a global symbol. Determine if we use PLT and if the | |
8590 | // final target is THUMB. | |
8591 | if (gsym->use_plt_offset(reloc_is_non_pic(r_type))) | |
8592 | { | |
8593 | // This uses a PLT, change the symbol value. | |
8594 | symval.set_output_value(target->plt_section()->address() | |
8595 | + gsym->plt_offset()); | |
8596 | psymval = &symval; | |
8597 | } | |
d204b6e9 DK |
8598 | else if (gsym->is_weak_undefined()) |
8599 | { | |
8600 | // This is a weakly undefined symbol and we do not use PLT | |
8601 | // for this relocation. A branch targeting this symbol will | |
8602 | // be converted into an NOP. | |
8603 | is_weakly_undefined_without_plt = true; | |
8604 | } | |
b2286c10 DK |
8605 | else if (gsym->is_undefined() && reloc_property->uses_symbol()) |
8606 | { | |
8607 | // This relocation uses the symbol value but the symbol is | |
8608 | // undefined. Exit early and have the caller reporting an | |
8609 | // error. | |
8610 | return true; | |
8611 | } | |
2daedcd6 DK |
8612 | else |
8613 | { | |
8614 | // Set thumb bit if symbol: | |
8615 | // -Has type STT_ARM_TFUNC or | |
8616 | // -Has type STT_FUNC, is defined and with LSB in value set. | |
8617 | thumb_bit = | |
8618 | (((gsym->type() == elfcpp::STT_ARM_TFUNC) | |
8619 | || (gsym->type() == elfcpp::STT_FUNC | |
8620 | && !gsym->is_undefined() | |
8621 | && ((psymval->value(object, 0) & 1) != 0))) | |
8622 | ? 1 | |
8623 | : 0); | |
8624 | } | |
8625 | } | |
8626 | else | |
8627 | { | |
8628 | // This is a local symbol. Determine if the final target is THUMB. | |
8629 | // We saved this information when all the local symbols were read. | |
8630 | elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info(); | |
8631 | unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | |
8632 | thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; | |
8633 | } | |
8634 | } | |
8635 | else | |
8636 | { | |
8637 | // This is a fake relocation synthesized for a stub. It does not have | |
8638 | // a real symbol. We just look at the LSB of the symbol value to | |
8639 | // determine if the target is THUMB or not. | |
8640 | thumb_bit = ((psymval->value(object, 0) & 1) != 0); | |
c121c671 DK |
8641 | } |
8642 | ||
2daedcd6 DK |
8643 | // Strip LSB if this points to a THUMB target. |
8644 | if (thumb_bit != 0 | |
5c57f1be | 8645 | && reloc_property->uses_thumb_bit() |
2daedcd6 DK |
8646 | && ((psymval->value(object, 0) & 1) != 0)) |
8647 | { | |
8648 | Arm_address stripped_value = | |
8649 | psymval->value(object, 0) & ~static_cast<Arm_address>(1); | |
8650 | symval.set_output_value(stripped_value); | |
8651 | psymval = &symval; | |
8652 | } | |
8653 | ||
c121c671 DK |
8654 | // Get the GOT offset if needed. |
8655 | // The GOT pointer points to the end of the GOT section. | |
8656 | // We need to subtract the size of the GOT section to get | |
8657 | // the actual offset to use in the relocation. | |
8658 | bool have_got_offset = false; | |
8659 | unsigned int got_offset = 0; | |
8660 | switch (r_type) | |
8661 | { | |
8662 | case elfcpp::R_ARM_GOT_BREL: | |
7f5309a5 | 8663 | case elfcpp::R_ARM_GOT_PREL: |
c121c671 DK |
8664 | if (gsym != NULL) |
8665 | { | |
8666 | gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); | |
8667 | got_offset = (gsym->got_offset(GOT_TYPE_STANDARD) | |
8668 | - target->got_size()); | |
8669 | } | |
8670 | else | |
8671 | { | |
8672 | unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | |
8673 | gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD)); | |
8674 | got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD) | |
8675 | - target->got_size()); | |
8676 | } | |
8677 | have_got_offset = true; | |
8678 | break; | |
8679 | ||
8680 | default: | |
8681 | break; | |
8682 | } | |
8683 | ||
d204b6e9 DK |
8684 | // To look up relocation stubs, we need to pass the symbol table index of |
8685 | // a local symbol. | |
8686 | unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | |
8687 | ||
b10d2873 ILT |
8688 | // Get the addressing origin of the output segment defining the |
8689 | // symbol gsym if needed (AAELF 4.6.1.2 Relocation types). | |
8690 | Arm_address sym_origin = 0; | |
5c57f1be | 8691 | if (reloc_property->uses_symbol_base()) |
b10d2873 ILT |
8692 | { |
8693 | if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL) | |
8694 | // R_ARM_BASE_ABS with the NULL symbol will give the | |
8695 | // absolute address of the GOT origin (GOT_ORG) (see ARM IHI | |
8696 | // 0044C (AAELF): 4.6.1.8 Proxy generating relocations). | |
8697 | sym_origin = target->got_plt_section()->address(); | |
8698 | else if (gsym == NULL) | |
8699 | sym_origin = 0; | |
8700 | else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) | |
8701 | sym_origin = gsym->output_segment()->vaddr(); | |
8702 | else if (gsym->source() == Symbol::IN_OUTPUT_DATA) | |
8703 | sym_origin = gsym->output_data()->address(); | |
8704 | ||
8705 | // TODO: Assumes the segment base to be zero for the global symbols | |
8706 | // till the proper support for the segment-base-relative addressing | |
8707 | // will be implemented. This is consistent with GNU ld. | |
8708 | } | |
8709 | ||
5c57f1be DK |
8710 | // For relative addressing relocation, find out the relative address base. |
8711 | Arm_address relative_address_base = 0; | |
8712 | switch(reloc_property->relative_address_base()) | |
8713 | { | |
8714 | case Arm_reloc_property::RAB_NONE: | |
f96accdf DK |
8715 | // Relocations with relative address bases RAB_TLS and RAB_tp are |
8716 | // handled by relocate_tls. So we do not need to do anything here. | |
8717 | case Arm_reloc_property::RAB_TLS: | |
8718 | case Arm_reloc_property::RAB_tp: | |
5c57f1be DK |
8719 | break; |
8720 | case Arm_reloc_property::RAB_B_S: | |
8721 | relative_address_base = sym_origin; | |
8722 | break; | |
8723 | case Arm_reloc_property::RAB_GOT_ORG: | |
8724 | relative_address_base = target->got_plt_section()->address(); | |
8725 | break; | |
8726 | case Arm_reloc_property::RAB_P: | |
8727 | relative_address_base = address; | |
8728 | break; | |
8729 | case Arm_reloc_property::RAB_Pa: | |
8730 | relative_address_base = address & 0xfffffffcU; | |
8731 | break; | |
8732 | default: | |
8733 | gold_unreachable(); | |
8734 | } | |
8735 | ||
c121c671 DK |
8736 | typename Arm_relocate_functions::Status reloc_status = |
8737 | Arm_relocate_functions::STATUS_OKAY; | |
5c57f1be | 8738 | bool check_overflow = reloc_property->checks_overflow(); |
4a657b0d DK |
8739 | switch (r_type) |
8740 | { | |
8741 | case elfcpp::R_ARM_NONE: | |
8742 | break; | |
8743 | ||
5e445df6 ILT |
8744 | case elfcpp::R_ARM_ABS8: |
8745 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, | |
8746 | output_section)) | |
be8fcb75 ILT |
8747 | reloc_status = Arm_relocate_functions::abs8(view, object, psymval); |
8748 | break; | |
8749 | ||
8750 | case elfcpp::R_ARM_ABS12: | |
8751 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, | |
8752 | output_section)) | |
8753 | reloc_status = Arm_relocate_functions::abs12(view, object, psymval); | |
8754 | break; | |
8755 | ||
8756 | case elfcpp::R_ARM_ABS16: | |
8757 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, | |
8758 | output_section)) | |
8759 | reloc_status = Arm_relocate_functions::abs16(view, object, psymval); | |
5e445df6 ILT |
8760 | break; |
8761 | ||
c121c671 DK |
8762 | case elfcpp::R_ARM_ABS32: |
8763 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, | |
8764 | output_section)) | |
8765 | reloc_status = Arm_relocate_functions::abs32(view, object, psymval, | |
2daedcd6 | 8766 | thumb_bit); |
c121c671 DK |
8767 | break; |
8768 | ||
be8fcb75 ILT |
8769 | case elfcpp::R_ARM_ABS32_NOI: |
8770 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true, | |
8771 | output_section)) | |
8772 | // No thumb bit for this relocation: (S + A) | |
8773 | reloc_status = Arm_relocate_functions::abs32(view, object, psymval, | |
f4e5969c | 8774 | 0); |
be8fcb75 ILT |
8775 | break; |
8776 | ||
fd3c5f0b | 8777 | case elfcpp::R_ARM_MOVW_ABS_NC: |
e4782e83 | 8778 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, |
fd3c5f0b | 8779 | output_section)) |
5c57f1be DK |
8780 | reloc_status = Arm_relocate_functions::movw(view, object, psymval, |
8781 | 0, thumb_bit, | |
8782 | check_overflow); | |
fd3c5f0b ILT |
8783 | break; |
8784 | ||
8785 | case elfcpp::R_ARM_MOVT_ABS: | |
e4782e83 | 8786 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, |
fd3c5f0b | 8787 | output_section)) |
5c57f1be | 8788 | reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0); |
fd3c5f0b ILT |
8789 | break; |
8790 | ||
8791 | case elfcpp::R_ARM_THM_MOVW_ABS_NC: | |
e4782e83 | 8792 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, |
fd3c5f0b | 8793 | output_section)) |
5c57f1be DK |
8794 | reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval, |
8795 | 0, thumb_bit, false); | |
fd3c5f0b ILT |
8796 | break; |
8797 | ||
8798 | case elfcpp::R_ARM_THM_MOVT_ABS: | |
e4782e83 | 8799 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, |
fd3c5f0b | 8800 | output_section)) |
5c57f1be DK |
8801 | reloc_status = Arm_relocate_functions::thm_movt(view, object, |
8802 | psymval, 0); | |
fd3c5f0b ILT |
8803 | break; |
8804 | ||
c2a122b6 | 8805 | case elfcpp::R_ARM_MOVW_PREL_NC: |
02961d7e | 8806 | case elfcpp::R_ARM_MOVW_BREL_NC: |
02961d7e | 8807 | case elfcpp::R_ARM_MOVW_BREL: |
5c57f1be DK |
8808 | reloc_status = |
8809 | Arm_relocate_functions::movw(view, object, psymval, | |
8810 | relative_address_base, thumb_bit, | |
8811 | check_overflow); | |
c2a122b6 ILT |
8812 | break; |
8813 | ||
8814 | case elfcpp::R_ARM_MOVT_PREL: | |
02961d7e | 8815 | case elfcpp::R_ARM_MOVT_BREL: |
5c57f1be DK |
8816 | reloc_status = |
8817 | Arm_relocate_functions::movt(view, object, psymval, | |
8818 | relative_address_base); | |
c2a122b6 ILT |
8819 | break; |
8820 | ||
8821 | case elfcpp::R_ARM_THM_MOVW_PREL_NC: | |
02961d7e | 8822 | case elfcpp::R_ARM_THM_MOVW_BREL_NC: |
02961d7e | 8823 | case elfcpp::R_ARM_THM_MOVW_BREL: |
5c57f1be DK |
8824 | reloc_status = |
8825 | Arm_relocate_functions::thm_movw(view, object, psymval, | |
8826 | relative_address_base, | |
8827 | thumb_bit, check_overflow); | |
c2a122b6 ILT |
8828 | break; |
8829 | ||
8830 | case elfcpp::R_ARM_THM_MOVT_PREL: | |
02961d7e | 8831 | case elfcpp::R_ARM_THM_MOVT_BREL: |
5c57f1be DK |
8832 | reloc_status = |
8833 | Arm_relocate_functions::thm_movt(view, object, psymval, | |
8834 | relative_address_base); | |
02961d7e | 8835 | break; |
5c57f1be | 8836 | |
c121c671 DK |
8837 | case elfcpp::R_ARM_REL32: |
8838 | reloc_status = Arm_relocate_functions::rel32(view, object, psymval, | |
2daedcd6 | 8839 | address, thumb_bit); |
c121c671 DK |
8840 | break; |
8841 | ||
be8fcb75 ILT |
8842 | case elfcpp::R_ARM_THM_ABS5: |
8843 | if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, | |
8844 | output_section)) | |
8845 | reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval); | |
8846 | break; | |
8847 | ||
1521477a | 8848 | // Thumb long branches. |
c121c671 | 8849 | case elfcpp::R_ARM_THM_CALL: |
51938283 | 8850 | case elfcpp::R_ARM_THM_XPC22: |
1521477a | 8851 | case elfcpp::R_ARM_THM_JUMP24: |
51938283 | 8852 | reloc_status = |
1521477a DK |
8853 | Arm_relocate_functions::thumb_branch_common( |
8854 | r_type, relinfo, view, gsym, object, r_sym, psymval, address, | |
8855 | thumb_bit, is_weakly_undefined_without_plt); | |
51938283 DK |
8856 | break; |
8857 | ||
c121c671 DK |
8858 | case elfcpp::R_ARM_GOTOFF32: |
8859 | { | |
ebabffbd | 8860 | Arm_address got_origin; |
c121c671 DK |
8861 | got_origin = target->got_plt_section()->address(); |
8862 | reloc_status = Arm_relocate_functions::rel32(view, object, psymval, | |
2daedcd6 | 8863 | got_origin, thumb_bit); |
c121c671 DK |
8864 | } |
8865 | break; | |
8866 | ||
8867 | case elfcpp::R_ARM_BASE_PREL: | |
b10d2873 ILT |
8868 | gold_assert(gsym != NULL); |
8869 | reloc_status = | |
8870 | Arm_relocate_functions::base_prel(view, sym_origin, address); | |
c121c671 DK |
8871 | break; |
8872 | ||
be8fcb75 ILT |
8873 | case elfcpp::R_ARM_BASE_ABS: |
8874 | { | |
e4782e83 | 8875 | if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false, |
be8fcb75 ILT |
8876 | output_section)) |
8877 | break; | |
8878 | ||
b10d2873 | 8879 | reloc_status = Arm_relocate_functions::base_abs(view, sym_origin); |
be8fcb75 ILT |
8880 | } |
8881 | break; | |
8882 | ||
c121c671 DK |
8883 | case elfcpp::R_ARM_GOT_BREL: |
8884 | gold_assert(have_got_offset); | |
8885 | reloc_status = Arm_relocate_functions::got_brel(view, got_offset); | |
8886 | break; | |
8887 | ||
7f5309a5 ILT |
8888 | case elfcpp::R_ARM_GOT_PREL: |
8889 | gold_assert(have_got_offset); | |
8890 | // Get the address origin for GOT PLT, which is allocated right | |
8891 | // after the GOT section, to calculate an absolute address of | |
8892 | // the symbol GOT entry (got_origin + got_offset). | |
ebabffbd | 8893 | Arm_address got_origin; |
7f5309a5 ILT |
8894 | got_origin = target->got_plt_section()->address(); |
8895 | reloc_status = Arm_relocate_functions::got_prel(view, | |
8896 | got_origin + got_offset, | |
8897 | address); | |
8898 | break; | |
8899 | ||
c121c671 | 8900 | case elfcpp::R_ARM_PLT32: |
1521477a DK |
8901 | case elfcpp::R_ARM_CALL: |
8902 | case elfcpp::R_ARM_JUMP24: | |
8903 | case elfcpp::R_ARM_XPC25: | |
c121c671 DK |
8904 | gold_assert(gsym == NULL |
8905 | || gsym->has_plt_offset() | |
8906 | || gsym->final_value_is_known() | |
8907 | || (gsym->is_defined() | |
8908 | && !gsym->is_from_dynobj() | |
8909 | && !gsym->is_preemptible())); | |
d204b6e9 | 8910 | reloc_status = |
1521477a DK |
8911 | Arm_relocate_functions::arm_branch_common( |
8912 | r_type, relinfo, view, gsym, object, r_sym, psymval, address, | |
8913 | thumb_bit, is_weakly_undefined_without_plt); | |
51938283 DK |
8914 | break; |
8915 | ||
41263c05 DK |
8916 | case elfcpp::R_ARM_THM_JUMP19: |
8917 | reloc_status = | |
8918 | Arm_relocate_functions::thm_jump19(view, object, psymval, address, | |
8919 | thumb_bit); | |
8920 | break; | |
8921 | ||
800d0f56 ILT |
8922 | case elfcpp::R_ARM_THM_JUMP6: |
8923 | reloc_status = | |
8924 | Arm_relocate_functions::thm_jump6(view, object, psymval, address); | |
8925 | break; | |
8926 | ||
8927 | case elfcpp::R_ARM_THM_JUMP8: | |
8928 | reloc_status = | |
8929 | Arm_relocate_functions::thm_jump8(view, object, psymval, address); | |
8930 | break; | |
8931 | ||
8932 | case elfcpp::R_ARM_THM_JUMP11: | |
8933 | reloc_status = | |
8934 | Arm_relocate_functions::thm_jump11(view, object, psymval, address); | |
8935 | break; | |
8936 | ||
c121c671 DK |
8937 | case elfcpp::R_ARM_PREL31: |
8938 | reloc_status = Arm_relocate_functions::prel31(view, object, psymval, | |
2daedcd6 | 8939 | address, thumb_bit); |
c121c671 DK |
8940 | break; |
8941 | ||
a2162063 | 8942 | case elfcpp::R_ARM_V4BX: |
9b2fd367 DK |
8943 | if (target->fix_v4bx() > General_options::FIX_V4BX_NONE) |
8944 | { | |
8945 | const bool is_v4bx_interworking = | |
8946 | (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING); | |
8947 | reloc_status = | |
8948 | Arm_relocate_functions::v4bx(relinfo, view, object, address, | |
8949 | is_v4bx_interworking); | |
8950 | } | |
a2162063 ILT |
8951 | break; |
8952 | ||
11b861d5 DK |
8953 | case elfcpp::R_ARM_THM_PC8: |
8954 | reloc_status = | |
8955 | Arm_relocate_functions::thm_pc8(view, object, psymval, address); | |
8956 | break; | |
8957 | ||
8958 | case elfcpp::R_ARM_THM_PC12: | |
8959 | reloc_status = | |
8960 | Arm_relocate_functions::thm_pc12(view, object, psymval, address); | |
8961 | break; | |
8962 | ||
8963 | case elfcpp::R_ARM_THM_ALU_PREL_11_0: | |
8964 | reloc_status = | |
8965 | Arm_relocate_functions::thm_alu11(view, object, psymval, address, | |
8966 | thumb_bit); | |
8967 | break; | |
8968 | ||
b10d2873 | 8969 | case elfcpp::R_ARM_ALU_PC_G0_NC: |
b10d2873 | 8970 | case elfcpp::R_ARM_ALU_PC_G0: |
b10d2873 | 8971 | case elfcpp::R_ARM_ALU_PC_G1_NC: |
b10d2873 | 8972 | case elfcpp::R_ARM_ALU_PC_G1: |
b10d2873 | 8973 | case elfcpp::R_ARM_ALU_PC_G2: |
b10d2873 | 8974 | case elfcpp::R_ARM_ALU_SB_G0_NC: |
b10d2873 | 8975 | case elfcpp::R_ARM_ALU_SB_G0: |
b10d2873 | 8976 | case elfcpp::R_ARM_ALU_SB_G1_NC: |
b10d2873 | 8977 | case elfcpp::R_ARM_ALU_SB_G1: |
b10d2873 ILT |
8978 | case elfcpp::R_ARM_ALU_SB_G2: |
8979 | reloc_status = | |
5c57f1be DK |
8980 | Arm_relocate_functions::arm_grp_alu(view, object, psymval, |
8981 | reloc_property->group_index(), | |
8982 | relative_address_base, | |
8983 | thumb_bit, check_overflow); | |
b10d2873 ILT |
8984 | break; |
8985 | ||
8986 | case elfcpp::R_ARM_LDR_PC_G0: | |
b10d2873 | 8987 | case elfcpp::R_ARM_LDR_PC_G1: |
b10d2873 | 8988 | case elfcpp::R_ARM_LDR_PC_G2: |
b10d2873 | 8989 | case elfcpp::R_ARM_LDR_SB_G0: |
b10d2873 | 8990 | case elfcpp::R_ARM_LDR_SB_G1: |
b10d2873 ILT |
8991 | case elfcpp::R_ARM_LDR_SB_G2: |
8992 | reloc_status = | |
5c57f1be DK |
8993 | Arm_relocate_functions::arm_grp_ldr(view, object, psymval, |
8994 | reloc_property->group_index(), | |
8995 | relative_address_base); | |
b10d2873 ILT |
8996 | break; |
8997 | ||
8998 | case elfcpp::R_ARM_LDRS_PC_G0: | |
b10d2873 | 8999 | case elfcpp::R_ARM_LDRS_PC_G1: |
b10d2873 | 9000 | case elfcpp::R_ARM_LDRS_PC_G2: |
b10d2873 | 9001 | case elfcpp::R_ARM_LDRS_SB_G0: |
b10d2873 | 9002 | case elfcpp::R_ARM_LDRS_SB_G1: |
b10d2873 ILT |
9003 | case elfcpp::R_ARM_LDRS_SB_G2: |
9004 | reloc_status = | |
5c57f1be DK |
9005 | Arm_relocate_functions::arm_grp_ldrs(view, object, psymval, |
9006 | reloc_property->group_index(), | |
9007 | relative_address_base); | |
b10d2873 ILT |
9008 | break; |
9009 | ||
9010 | case elfcpp::R_ARM_LDC_PC_G0: | |
b10d2873 | 9011 | case elfcpp::R_ARM_LDC_PC_G1: |
b10d2873 | 9012 | case elfcpp::R_ARM_LDC_PC_G2: |
b10d2873 | 9013 | case elfcpp::R_ARM_LDC_SB_G0: |
b10d2873 | 9014 | case elfcpp::R_ARM_LDC_SB_G1: |
b10d2873 ILT |
9015 | case elfcpp::R_ARM_LDC_SB_G2: |
9016 | reloc_status = | |
5c57f1be DK |
9017 | Arm_relocate_functions::arm_grp_ldc(view, object, psymval, |
9018 | reloc_property->group_index(), | |
9019 | relative_address_base); | |
c121c671 DK |
9020 | break; |
9021 | ||
f96accdf DK |
9022 | // These are initial tls relocs, which are expected when |
9023 | // linking. | |
9024 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
9025 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
9026 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
9027 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
9028 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
9029 | reloc_status = | |
9030 | this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval, | |
9031 | view, address, view_size); | |
9032 | break; | |
9033 | ||
c121c671 | 9034 | default: |
5c57f1be | 9035 | gold_unreachable(); |
c121c671 DK |
9036 | } |
9037 | ||
9038 | // Report any errors. | |
9039 | switch (reloc_status) | |
9040 | { | |
9041 | case Arm_relocate_functions::STATUS_OKAY: | |
9042 | break; | |
9043 | case Arm_relocate_functions::STATUS_OVERFLOW: | |
9044 | gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | |
a2c7281b DK |
9045 | _("relocation overflow in %s"), |
9046 | reloc_property->name().c_str()); | |
c121c671 DK |
9047 | break; |
9048 | case Arm_relocate_functions::STATUS_BAD_RELOC: | |
9049 | gold_error_at_location( | |
9050 | relinfo, | |
9051 | relnum, | |
9052 | rel.get_r_offset(), | |
a2c7281b DK |
9053 | _("unexpected opcode while processing relocation %s"), |
9054 | reloc_property->name().c_str()); | |
c121c671 | 9055 | break; |
4a657b0d DK |
9056 | default: |
9057 | gold_unreachable(); | |
9058 | } | |
9059 | ||
9060 | return true; | |
9061 | } | |
9062 | ||
f96accdf DK |
9063 | // Perform a TLS relocation. |
9064 | ||
9065 | template<bool big_endian> | |
9066 | inline typename Arm_relocate_functions<big_endian>::Status | |
9067 | Target_arm<big_endian>::Relocate::relocate_tls( | |
9068 | const Relocate_info<32, big_endian>* relinfo, | |
9069 | Target_arm<big_endian>* target, | |
9070 | size_t relnum, | |
9071 | const elfcpp::Rel<32, big_endian>& rel, | |
9072 | unsigned int r_type, | |
9073 | const Sized_symbol<32>* gsym, | |
9074 | const Symbol_value<32>* psymval, | |
9075 | unsigned char* view, | |
4a54abbb | 9076 | elfcpp::Elf_types<32>::Elf_Addr address, |
f96accdf DK |
9077 | section_size_type /*view_size*/ ) |
9078 | { | |
9079 | typedef Arm_relocate_functions<big_endian> ArmRelocFuncs; | |
4a54abbb | 9080 | typedef Relocate_functions<32, big_endian> RelocFuncs; |
f96accdf DK |
9081 | Output_segment* tls_segment = relinfo->layout->tls_segment(); |
9082 | ||
9083 | const Sized_relobj<32, big_endian>* object = relinfo->object; | |
9084 | ||
9085 | elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0); | |
9086 | ||
9087 | const bool is_final = (gsym == NULL | |
9088 | ? !parameters->options().shared() | |
9089 | : gsym->final_value_is_known()); | |
9090 | const tls::Tls_optimization optimized_type | |
9091 | = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); | |
9092 | switch (r_type) | |
9093 | { | |
9094 | case elfcpp::R_ARM_TLS_GD32: // Global-dynamic | |
9095 | { | |
9096 | unsigned int got_type = GOT_TYPE_TLS_PAIR; | |
9097 | unsigned int got_offset; | |
9098 | if (gsym != NULL) | |
9099 | { | |
9100 | gold_assert(gsym->has_got_offset(got_type)); | |
9101 | got_offset = gsym->got_offset(got_type) - target->got_size(); | |
9102 | } | |
9103 | else | |
9104 | { | |
9105 | unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | |
9106 | gold_assert(object->local_has_got_offset(r_sym, got_type)); | |
9107 | got_offset = (object->local_got_offset(r_sym, got_type) | |
9108 | - target->got_size()); | |
9109 | } | |
9110 | if (optimized_type == tls::TLSOPT_NONE) | |
9111 | { | |
4a54abbb DK |
9112 | Arm_address got_entry = |
9113 | target->got_plt_section()->address() + got_offset; | |
9114 | ||
9115 | // Relocate the field with the PC relative offset of the pair of | |
9116 | // GOT entries. | |
9117 | RelocFuncs::pcrel32(view, got_entry, address); | |
f96accdf DK |
9118 | return ArmRelocFuncs::STATUS_OKAY; |
9119 | } | |
9120 | } | |
9121 | break; | |
9122 | ||
9123 | case elfcpp::R_ARM_TLS_LDM32: // Local-dynamic | |
9124 | if (optimized_type == tls::TLSOPT_NONE) | |
9125 | { | |
9126 | // Relocate the field with the offset of the GOT entry for | |
9127 | // the module index. | |
9128 | unsigned int got_offset; | |
9129 | got_offset = (target->got_mod_index_entry(NULL, NULL, NULL) | |
9130 | - target->got_size()); | |
4a54abbb DK |
9131 | Arm_address got_entry = |
9132 | target->got_plt_section()->address() + got_offset; | |
9133 | ||
9134 | // Relocate the field with the PC relative offset of the pair of | |
9135 | // GOT entries. | |
9136 | RelocFuncs::pcrel32(view, got_entry, address); | |
f96accdf DK |
9137 | return ArmRelocFuncs::STATUS_OKAY; |
9138 | } | |
9139 | break; | |
9140 | ||
9141 | case elfcpp::R_ARM_TLS_LDO32: // Alternate local-dynamic | |
4a54abbb | 9142 | RelocFuncs::rel32(view, value); |
f96accdf DK |
9143 | return ArmRelocFuncs::STATUS_OKAY; |
9144 | ||
9145 | case elfcpp::R_ARM_TLS_IE32: // Initial-exec | |
9146 | if (optimized_type == tls::TLSOPT_NONE) | |
9147 | { | |
9148 | // Relocate the field with the offset of the GOT entry for | |
9149 | // the tp-relative offset of the symbol. | |
9150 | unsigned int got_type = GOT_TYPE_TLS_OFFSET; | |
9151 | unsigned int got_offset; | |
9152 | if (gsym != NULL) | |
9153 | { | |
9154 | gold_assert(gsym->has_got_offset(got_type)); | |
9155 | got_offset = gsym->got_offset(got_type); | |
9156 | } | |
9157 | else | |
9158 | { | |
9159 | unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | |
9160 | gold_assert(object->local_has_got_offset(r_sym, got_type)); | |
9161 | got_offset = object->local_got_offset(r_sym, got_type); | |
9162 | } | |
4a54abbb | 9163 | |
f96accdf DK |
9164 | // All GOT offsets are relative to the end of the GOT. |
9165 | got_offset -= target->got_size(); | |
4a54abbb DK |
9166 | |
9167 | Arm_address got_entry = | |
9168 | target->got_plt_section()->address() + got_offset; | |
9169 | ||
9170 | // Relocate the field with the PC relative offset of the GOT entry. | |
9171 | RelocFuncs::pcrel32(view, got_entry, address); | |
f96accdf DK |
9172 | return ArmRelocFuncs::STATUS_OKAY; |
9173 | } | |
9174 | break; | |
9175 | ||
9176 | case elfcpp::R_ARM_TLS_LE32: // Local-exec | |
9177 | // If we're creating a shared library, a dynamic relocation will | |
9178 | // have been created for this location, so do not apply it now. | |
9179 | if (!parameters->options().shared()) | |
9180 | { | |
9181 | gold_assert(tls_segment != NULL); | |
4a54abbb DK |
9182 | |
9183 | // $tp points to the TCB, which is followed by the TLS, so we | |
9184 | // need to add TCB size to the offset. | |
9185 | Arm_address aligned_tcb_size = | |
9186 | align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); | |
9187 | RelocFuncs::rel32(view, value + aligned_tcb_size); | |
9188 | ||
f96accdf DK |
9189 | } |
9190 | return ArmRelocFuncs::STATUS_OKAY; | |
9191 | ||
9192 | default: | |
9193 | gold_unreachable(); | |
9194 | } | |
9195 | ||
9196 | gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | |
9197 | _("unsupported reloc %u"), | |
9198 | r_type); | |
9199 | return ArmRelocFuncs::STATUS_BAD_RELOC; | |
9200 | } | |
9201 | ||
4a657b0d DK |
9202 | // Relocate section data. |
9203 | ||
9204 | template<bool big_endian> | |
9205 | void | |
9206 | Target_arm<big_endian>::relocate_section( | |
9207 | const Relocate_info<32, big_endian>* relinfo, | |
9208 | unsigned int sh_type, | |
9209 | const unsigned char* prelocs, | |
9210 | size_t reloc_count, | |
9211 | Output_section* output_section, | |
9212 | bool needs_special_offset_handling, | |
9213 | unsigned char* view, | |
ebabffbd | 9214 | Arm_address address, |
364c7fa5 ILT |
9215 | section_size_type view_size, |
9216 | const Reloc_symbol_changes* reloc_symbol_changes) | |
4a657b0d DK |
9217 | { |
9218 | typedef typename Target_arm<big_endian>::Relocate Arm_relocate; | |
9219 | gold_assert(sh_type == elfcpp::SHT_REL); | |
9220 | ||
218c5831 DK |
9221 | // See if we are relocating a relaxed input section. If so, the view |
9222 | // covers the whole output section and we need to adjust accordingly. | |
9223 | if (needs_special_offset_handling) | |
43d12afe | 9224 | { |
218c5831 DK |
9225 | const Output_relaxed_input_section* poris = |
9226 | output_section->find_relaxed_input_section(relinfo->object, | |
9227 | relinfo->data_shndx); | |
9228 | if (poris != NULL) | |
9229 | { | |
9230 | Arm_address section_address = poris->address(); | |
9231 | section_size_type section_size = poris->data_size(); | |
9232 | ||
9233 | gold_assert((section_address >= address) | |
9234 | && ((section_address + section_size) | |
9235 | <= (address + view_size))); | |
9236 | ||
9237 | off_t offset = section_address - address; | |
9238 | view += offset; | |
9239 | address += offset; | |
9240 | view_size = section_size; | |
9241 | } | |
43d12afe DK |
9242 | } |
9243 | ||
4a657b0d DK |
9244 | gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL, |
9245 | Arm_relocate>( | |
9246 | relinfo, | |
9247 | this, | |
9248 | prelocs, | |
9249 | reloc_count, | |
9250 | output_section, | |
9251 | needs_special_offset_handling, | |
9252 | view, | |
9253 | address, | |
364c7fa5 ILT |
9254 | view_size, |
9255 | reloc_symbol_changes); | |
4a657b0d DK |
9256 | } |
9257 | ||
9258 | // Return the size of a relocation while scanning during a relocatable | |
9259 | // link. | |
9260 | ||
9261 | template<bool big_endian> | |
9262 | unsigned int | |
9263 | Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc( | |
9264 | unsigned int r_type, | |
9265 | Relobj* object) | |
9266 | { | |
a6d1ef57 | 9267 | r_type = get_real_reloc_type(r_type); |
5c57f1be DK |
9268 | const Arm_reloc_property* arp = |
9269 | arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | |
9270 | if (arp != NULL) | |
9271 | return arp->size(); | |
9272 | else | |
4a657b0d | 9273 | { |
5c57f1be DK |
9274 | std::string reloc_name = |
9275 | arm_reloc_property_table->reloc_name_in_error_message(r_type); | |
9276 | gold_error(_("%s: unexpected %s in object file"), | |
9277 | object->name().c_str(), reloc_name.c_str()); | |
4a657b0d DK |
9278 | return 0; |
9279 | } | |
9280 | } | |
9281 | ||
9282 | // Scan the relocs during a relocatable link. | |
9283 | ||
9284 | template<bool big_endian> | |
9285 | void | |
9286 | Target_arm<big_endian>::scan_relocatable_relocs( | |
4a657b0d | 9287 | Symbol_table* symtab, |
2ea97941 | 9288 | Layout* layout, |
4a657b0d DK |
9289 | Sized_relobj<32, big_endian>* object, |
9290 | unsigned int data_shndx, | |
9291 | unsigned int sh_type, | |
9292 | const unsigned char* prelocs, | |
9293 | size_t reloc_count, | |
9294 | Output_section* output_section, | |
9295 | bool needs_special_offset_handling, | |
9296 | size_t local_symbol_count, | |
9297 | const unsigned char* plocal_symbols, | |
9298 | Relocatable_relocs* rr) | |
9299 | { | |
9300 | gold_assert(sh_type == elfcpp::SHT_REL); | |
9301 | ||
5c388529 | 9302 | typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL, |
4a657b0d DK |
9303 | Relocatable_size_for_reloc> Scan_relocatable_relocs; |
9304 | ||
9305 | gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL, | |
9306 | Scan_relocatable_relocs>( | |
4a657b0d | 9307 | symtab, |
2ea97941 | 9308 | layout, |
4a657b0d DK |
9309 | object, |
9310 | data_shndx, | |
9311 | prelocs, | |
9312 | reloc_count, | |
9313 | output_section, | |
9314 | needs_special_offset_handling, | |
9315 | local_symbol_count, | |
9316 | plocal_symbols, | |
9317 | rr); | |
9318 | } | |
9319 | ||
9320 | // Relocate a section during a relocatable link. | |
9321 | ||
9322 | template<bool big_endian> | |
9323 | void | |
9324 | Target_arm<big_endian>::relocate_for_relocatable( | |
9325 | const Relocate_info<32, big_endian>* relinfo, | |
9326 | unsigned int sh_type, | |
9327 | const unsigned char* prelocs, | |
9328 | size_t reloc_count, | |
9329 | Output_section* output_section, | |
9330 | off_t offset_in_output_section, | |
9331 | const Relocatable_relocs* rr, | |
9332 | unsigned char* view, | |
ebabffbd | 9333 | Arm_address view_address, |
4a657b0d DK |
9334 | section_size_type view_size, |
9335 | unsigned char* reloc_view, | |
9336 | section_size_type reloc_view_size) | |
9337 | { | |
9338 | gold_assert(sh_type == elfcpp::SHT_REL); | |
9339 | ||
9340 | gold::relocate_for_relocatable<32, big_endian, elfcpp::SHT_REL>( | |
9341 | relinfo, | |
9342 | prelocs, | |
9343 | reloc_count, | |
9344 | output_section, | |
9345 | offset_in_output_section, | |
9346 | rr, | |
9347 | view, | |
9348 | view_address, | |
9349 | view_size, | |
9350 | reloc_view, | |
9351 | reloc_view_size); | |
9352 | } | |
9353 | ||
5c388529 DK |
9354 | // Perform target-specific processing in a relocatable link. This is |
9355 | // only used if we use the relocation strategy RELOC_SPECIAL. | |
9356 | ||
9357 | template<bool big_endian> | |
9358 | void | |
9359 | Target_arm<big_endian>::relocate_special_relocatable( | |
9360 | const Relocate_info<32, big_endian>* relinfo, | |
9361 | unsigned int sh_type, | |
9362 | const unsigned char* preloc_in, | |
9363 | size_t relnum, | |
9364 | Output_section* output_section, | |
9365 | off_t offset_in_output_section, | |
9366 | unsigned char* view, | |
9367 | elfcpp::Elf_types<32>::Elf_Addr view_address, | |
9368 | section_size_type, | |
9369 | unsigned char* preloc_out) | |
9370 | { | |
9371 | // We can only handle REL type relocation sections. | |
9372 | gold_assert(sh_type == elfcpp::SHT_REL); | |
9373 | ||
9374 | typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype; | |
9375 | typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write | |
9376 | Reltype_write; | |
9377 | const Arm_address invalid_address = static_cast<Arm_address>(0) - 1; | |
9378 | ||
9379 | const Arm_relobj<big_endian>* object = | |
9380 | Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | |
9381 | const unsigned int local_count = object->local_symbol_count(); | |
9382 | ||
9383 | Reltype reloc(preloc_in); | |
9384 | Reltype_write reloc_write(preloc_out); | |
9385 | ||
9386 | elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); | |
9387 | const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | |
9388 | const unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | |
9389 | ||
9390 | const Arm_reloc_property* arp = | |
9391 | arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | |
9392 | gold_assert(arp != NULL); | |
9393 | ||
9394 | // Get the new symbol index. | |
9395 | // We only use RELOC_SPECIAL strategy in local relocations. | |
9396 | gold_assert(r_sym < local_count); | |
9397 | ||
9398 | // We are adjusting a section symbol. We need to find | |
9399 | // the symbol table index of the section symbol for | |
9400 | // the output section corresponding to input section | |
9401 | // in which this symbol is defined. | |
9402 | bool is_ordinary; | |
9403 | unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); | |
9404 | gold_assert(is_ordinary); | |
9405 | Output_section* os = object->output_section(shndx); | |
9406 | gold_assert(os != NULL); | |
9407 | gold_assert(os->needs_symtab_index()); | |
9408 | unsigned int new_symndx = os->symtab_index(); | |
9409 | ||
9410 | // Get the new offset--the location in the output section where | |
9411 | // this relocation should be applied. | |
9412 | ||
9413 | Arm_address offset = reloc.get_r_offset(); | |
9414 | Arm_address new_offset; | |
9415 | if (offset_in_output_section != invalid_address) | |
9416 | new_offset = offset + offset_in_output_section; | |
9417 | else | |
9418 | { | |
9419 | section_offset_type sot_offset = | |
9420 | convert_types<section_offset_type, Arm_address>(offset); | |
9421 | section_offset_type new_sot_offset = | |
9422 | output_section->output_offset(object, relinfo->data_shndx, | |
9423 | sot_offset); | |
9424 | gold_assert(new_sot_offset != -1); | |
9425 | new_offset = new_sot_offset; | |
9426 | } | |
9427 | ||
9428 | // In an object file, r_offset is an offset within the section. | |
9429 | // In an executable or dynamic object, generated by | |
9430 | // --emit-relocs, r_offset is an absolute address. | |
9431 | if (!parameters->options().relocatable()) | |
9432 | { | |
9433 | new_offset += view_address; | |
9434 | if (offset_in_output_section != invalid_address) | |
9435 | new_offset -= offset_in_output_section; | |
9436 | } | |
9437 | ||
9438 | reloc_write.put_r_offset(new_offset); | |
9439 | reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); | |
9440 | ||
9441 | // Handle the reloc addend. | |
9442 | // The relocation uses a section symbol in the input file. | |
9443 | // We are adjusting it to use a section symbol in the output | |
9444 | // file. The input section symbol refers to some address in | |
9445 | // the input section. We need the relocation in the output | |
9446 | // file to refer to that same address. This adjustment to | |
9447 | // the addend is the same calculation we use for a simple | |
9448 | // absolute relocation for the input section symbol. | |
9449 | ||
9450 | const Symbol_value<32>* psymval = object->local_symbol(r_sym); | |
9451 | ||
9452 | // Handle THUMB bit. | |
9453 | Symbol_value<32> symval; | |
9454 | Arm_address thumb_bit = | |
9455 | object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; | |
9456 | if (thumb_bit != 0 | |
9457 | && arp->uses_thumb_bit() | |
9458 | && ((psymval->value(object, 0) & 1) != 0)) | |
9459 | { | |
9460 | Arm_address stripped_value = | |
9461 | psymval->value(object, 0) & ~static_cast<Arm_address>(1); | |
9462 | symval.set_output_value(stripped_value); | |
9463 | psymval = &symval; | |
9464 | } | |
9465 | ||
9466 | unsigned char* paddend = view + offset; | |
9467 | typename Arm_relocate_functions<big_endian>::Status reloc_status = | |
9468 | Arm_relocate_functions<big_endian>::STATUS_OKAY; | |
9469 | switch (r_type) | |
9470 | { | |
9471 | case elfcpp::R_ARM_ABS8: | |
9472 | reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object, | |
9473 | psymval); | |
9474 | break; | |
9475 | ||
9476 | case elfcpp::R_ARM_ABS12: | |
9477 | reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object, | |
9478 | psymval); | |
9479 | break; | |
9480 | ||
9481 | case elfcpp::R_ARM_ABS16: | |
9482 | reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object, | |
9483 | psymval); | |
9484 | break; | |
9485 | ||
9486 | case elfcpp::R_ARM_THM_ABS5: | |
9487 | reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend, | |
9488 | object, | |
9489 | psymval); | |
9490 | break; | |
9491 | ||
9492 | case elfcpp::R_ARM_MOVW_ABS_NC: | |
9493 | case elfcpp::R_ARM_MOVW_PREL_NC: | |
9494 | case elfcpp::R_ARM_MOVW_BREL_NC: | |
9495 | case elfcpp::R_ARM_MOVW_BREL: | |
9496 | reloc_status = Arm_relocate_functions<big_endian>::movw( | |
9497 | paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); | |
9498 | break; | |
9499 | ||
9500 | case elfcpp::R_ARM_THM_MOVW_ABS_NC: | |
9501 | case elfcpp::R_ARM_THM_MOVW_PREL_NC: | |
9502 | case elfcpp::R_ARM_THM_MOVW_BREL_NC: | |
9503 | case elfcpp::R_ARM_THM_MOVW_BREL: | |
9504 | reloc_status = Arm_relocate_functions<big_endian>::thm_movw( | |
9505 | paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); | |
9506 | break; | |
9507 | ||
9508 | case elfcpp::R_ARM_THM_CALL: | |
9509 | case elfcpp::R_ARM_THM_XPC22: | |
9510 | case elfcpp::R_ARM_THM_JUMP24: | |
9511 | reloc_status = | |
9512 | Arm_relocate_functions<big_endian>::thumb_branch_common( | |
9513 | r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, | |
9514 | false); | |
9515 | break; | |
9516 | ||
9517 | case elfcpp::R_ARM_PLT32: | |
9518 | case elfcpp::R_ARM_CALL: | |
9519 | case elfcpp::R_ARM_JUMP24: | |
9520 | case elfcpp::R_ARM_XPC25: | |
9521 | reloc_status = | |
9522 | Arm_relocate_functions<big_endian>::arm_branch_common( | |
9523 | r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, | |
9524 | false); | |
9525 | break; | |
9526 | ||
9527 | case elfcpp::R_ARM_THM_JUMP19: | |
9528 | reloc_status = | |
9529 | Arm_relocate_functions<big_endian>::thm_jump19(paddend, object, | |
9530 | psymval, 0, thumb_bit); | |
9531 | break; | |
9532 | ||
9533 | case elfcpp::R_ARM_THM_JUMP6: | |
9534 | reloc_status = | |
9535 | Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval, | |
9536 | 0); | |
9537 | break; | |
9538 | ||
9539 | case elfcpp::R_ARM_THM_JUMP8: | |
9540 | reloc_status = | |
9541 | Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval, | |
9542 | 0); | |
9543 | break; | |
9544 | ||
9545 | case elfcpp::R_ARM_THM_JUMP11: | |
9546 | reloc_status = | |
9547 | Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval, | |
9548 | 0); | |
9549 | break; | |
9550 | ||
9551 | case elfcpp::R_ARM_PREL31: | |
9552 | reloc_status = | |
9553 | Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0, | |
9554 | thumb_bit); | |
9555 | break; | |
9556 | ||
9557 | case elfcpp::R_ARM_THM_PC8: | |
9558 | reloc_status = | |
9559 | Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval, | |
9560 | 0); | |
9561 | break; | |
9562 | ||
9563 | case elfcpp::R_ARM_THM_PC12: | |
9564 | reloc_status = | |
9565 | Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval, | |
9566 | 0); | |
9567 | break; | |
9568 | ||
9569 | case elfcpp::R_ARM_THM_ALU_PREL_11_0: | |
9570 | reloc_status = | |
9571 | Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval, | |
9572 | 0, thumb_bit); | |
9573 | break; | |
9574 | ||
9575 | // These relocation truncate relocation results so we cannot handle them | |
9576 | // in a relocatable link. | |
9577 | case elfcpp::R_ARM_MOVT_ABS: | |
9578 | case elfcpp::R_ARM_THM_MOVT_ABS: | |
9579 | case elfcpp::R_ARM_MOVT_PREL: | |
9580 | case elfcpp::R_ARM_MOVT_BREL: | |
9581 | case elfcpp::R_ARM_THM_MOVT_PREL: | |
9582 | case elfcpp::R_ARM_THM_MOVT_BREL: | |
9583 | case elfcpp::R_ARM_ALU_PC_G0_NC: | |
9584 | case elfcpp::R_ARM_ALU_PC_G0: | |
9585 | case elfcpp::R_ARM_ALU_PC_G1_NC: | |
9586 | case elfcpp::R_ARM_ALU_PC_G1: | |
9587 | case elfcpp::R_ARM_ALU_PC_G2: | |
9588 | case elfcpp::R_ARM_ALU_SB_G0_NC: | |
9589 | case elfcpp::R_ARM_ALU_SB_G0: | |
9590 | case elfcpp::R_ARM_ALU_SB_G1_NC: | |
9591 | case elfcpp::R_ARM_ALU_SB_G1: | |
9592 | case elfcpp::R_ARM_ALU_SB_G2: | |
9593 | case elfcpp::R_ARM_LDR_PC_G0: | |
9594 | case elfcpp::R_ARM_LDR_PC_G1: | |
9595 | case elfcpp::R_ARM_LDR_PC_G2: | |
9596 | case elfcpp::R_ARM_LDR_SB_G0: | |
9597 | case elfcpp::R_ARM_LDR_SB_G1: | |
9598 | case elfcpp::R_ARM_LDR_SB_G2: | |
9599 | case elfcpp::R_ARM_LDRS_PC_G0: | |
9600 | case elfcpp::R_ARM_LDRS_PC_G1: | |
9601 | case elfcpp::R_ARM_LDRS_PC_G2: | |
9602 | case elfcpp::R_ARM_LDRS_SB_G0: | |
9603 | case elfcpp::R_ARM_LDRS_SB_G1: | |
9604 | case elfcpp::R_ARM_LDRS_SB_G2: | |
9605 | case elfcpp::R_ARM_LDC_PC_G0: | |
9606 | case elfcpp::R_ARM_LDC_PC_G1: | |
9607 | case elfcpp::R_ARM_LDC_PC_G2: | |
9608 | case elfcpp::R_ARM_LDC_SB_G0: | |
9609 | case elfcpp::R_ARM_LDC_SB_G1: | |
9610 | case elfcpp::R_ARM_LDC_SB_G2: | |
9611 | gold_error(_("cannot handle %s in a relocatable link"), | |
9612 | arp->name().c_str()); | |
9613 | break; | |
9614 | ||
9615 | default: | |
9616 | gold_unreachable(); | |
9617 | } | |
9618 | ||
9619 | // Report any errors. | |
9620 | switch (reloc_status) | |
9621 | { | |
9622 | case Arm_relocate_functions<big_endian>::STATUS_OKAY: | |
9623 | break; | |
9624 | case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW: | |
9625 | gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), | |
9626 | _("relocation overflow in %s"), | |
9627 | arp->name().c_str()); | |
9628 | break; | |
9629 | case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC: | |
9630 | gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), | |
9631 | _("unexpected opcode while processing relocation %s"), | |
9632 | arp->name().c_str()); | |
9633 | break; | |
9634 | default: | |
9635 | gold_unreachable(); | |
9636 | } | |
9637 | } | |
9638 | ||
94cdfcff DK |
9639 | // Return the value to use for a dynamic symbol which requires special |
9640 | // treatment. This is how we support equality comparisons of function | |
9641 | // pointers across shared library boundaries, as described in the | |
9642 | // processor specific ABI supplement. | |
9643 | ||
4a657b0d DK |
9644 | template<bool big_endian> |
9645 | uint64_t | |
94cdfcff | 9646 | Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const |
4a657b0d | 9647 | { |
94cdfcff DK |
9648 | gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); |
9649 | return this->plt_section()->address() + gsym->plt_offset(); | |
4a657b0d DK |
9650 | } |
9651 | ||
9652 | // Map platform-specific relocs to real relocs | |
9653 | // | |
9654 | template<bool big_endian> | |
9655 | unsigned int | |
ca09d69a | 9656 | Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) |
4a657b0d DK |
9657 | { |
9658 | switch (r_type) | |
9659 | { | |
9660 | case elfcpp::R_ARM_TARGET1: | |
a6d1ef57 DK |
9661 | // This is either R_ARM_ABS32 or R_ARM_REL32; |
9662 | return elfcpp::R_ARM_ABS32; | |
4a657b0d DK |
9663 | |
9664 | case elfcpp::R_ARM_TARGET2: | |
a6d1ef57 DK |
9665 | // This can be any reloc type but ususally is R_ARM_GOT_PREL |
9666 | return elfcpp::R_ARM_GOT_PREL; | |
4a657b0d DK |
9667 | |
9668 | default: | |
9669 | return r_type; | |
9670 | } | |
9671 | } | |
9672 | ||
d5b40221 DK |
9673 | // Whether if two EABI versions V1 and V2 are compatible. |
9674 | ||
9675 | template<bool big_endian> | |
9676 | bool | |
9677 | Target_arm<big_endian>::are_eabi_versions_compatible( | |
9678 | elfcpp::Elf_Word v1, | |
9679 | elfcpp::Elf_Word v2) | |
9680 | { | |
9681 | // v4 and v5 are the same spec before and after it was released, | |
9682 | // so allow mixing them. | |
106e8a6c DK |
9683 | if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN) |
9684 | || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5) | |
d5b40221 DK |
9685 | || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4)) |
9686 | return true; | |
9687 | ||
9688 | return v1 == v2; | |
9689 | } | |
9690 | ||
9691 | // Combine FLAGS from an input object called NAME and the processor-specific | |
9692 | // flags in the ELF header of the output. Much of this is adapted from the | |
9693 | // processor-specific flags merging code in elf32_arm_merge_private_bfd_data | |
9694 | // in bfd/elf32-arm.c. | |
9695 | ||
9696 | template<bool big_endian> | |
9697 | void | |
9698 | Target_arm<big_endian>::merge_processor_specific_flags( | |
9699 | const std::string& name, | |
9700 | elfcpp::Elf_Word flags) | |
9701 | { | |
9702 | if (this->are_processor_specific_flags_set()) | |
9703 | { | |
9704 | elfcpp::Elf_Word out_flags = this->processor_specific_flags(); | |
9705 | ||
9706 | // Nothing to merge if flags equal to those in output. | |
9707 | if (flags == out_flags) | |
9708 | return; | |
9709 | ||
9710 | // Complain about various flag mismatches. | |
9711 | elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags); | |
9712 | elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags); | |
7296d933 DK |
9713 | if (!this->are_eabi_versions_compatible(version1, version2) |
9714 | && parameters->options().warn_mismatch()) | |
d5b40221 DK |
9715 | gold_error(_("Source object %s has EABI version %d but output has " |
9716 | "EABI version %d."), | |
9717 | name.c_str(), | |
9718 | (flags & elfcpp::EF_ARM_EABIMASK) >> 24, | |
9719 | (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24); | |
9720 | } | |
9721 | else | |
9722 | { | |
9723 | // If the input is the default architecture and had the default | |
9724 | // flags then do not bother setting the flags for the output | |
9725 | // architecture, instead allow future merges to do this. If no | |
9726 | // future merges ever set these flags then they will retain their | |
9727 | // uninitialised values, which surprise surprise, correspond | |
9728 | // to the default values. | |
9729 | if (flags == 0) | |
9730 | return; | |
9731 | ||
9732 | // This is the first time, just copy the flags. | |
9733 | // We only copy the EABI version for now. | |
9734 | this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK); | |
9735 | } | |
9736 | } | |
9737 | ||
9738 | // Adjust ELF file header. | |
9739 | template<bool big_endian> | |
9740 | void | |
9741 | Target_arm<big_endian>::do_adjust_elf_header( | |
9742 | unsigned char* view, | |
9743 | int len) const | |
9744 | { | |
9745 | gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size); | |
9746 | ||
9747 | elfcpp::Ehdr<32, big_endian> ehdr(view); | |
9748 | unsigned char e_ident[elfcpp::EI_NIDENT]; | |
9749 | memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); | |
9750 | ||
9751 | if (elfcpp::arm_eabi_version(this->processor_specific_flags()) | |
9752 | == elfcpp::EF_ARM_EABI_UNKNOWN) | |
9753 | e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM; | |
9754 | else | |
9755 | e_ident[elfcpp::EI_OSABI] = 0; | |
9756 | e_ident[elfcpp::EI_ABIVERSION] = 0; | |
9757 | ||
9758 | // FIXME: Do EF_ARM_BE8 adjustment. | |
9759 | ||
9760 | elfcpp::Ehdr_write<32, big_endian> oehdr(view); | |
9761 | oehdr.put_e_ident(e_ident); | |
9762 | } | |
9763 | ||
9764 | // do_make_elf_object to override the same function in the base class. | |
9765 | // We need to use a target-specific sub-class of Sized_relobj<32, big_endian> | |
9766 | // to store ARM specific information. Hence we need to have our own | |
9767 | // ELF object creation. | |
9768 | ||
9769 | template<bool big_endian> | |
9770 | Object* | |
9771 | Target_arm<big_endian>::do_make_elf_object( | |
9772 | const std::string& name, | |
9773 | Input_file* input_file, | |
2ea97941 | 9774 | off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr) |
d5b40221 DK |
9775 | { |
9776 | int et = ehdr.get_e_type(); | |
9777 | if (et == elfcpp::ET_REL) | |
9778 | { | |
9779 | Arm_relobj<big_endian>* obj = | |
2ea97941 | 9780 | new Arm_relobj<big_endian>(name, input_file, offset, ehdr); |
d5b40221 DK |
9781 | obj->setup(); |
9782 | return obj; | |
9783 | } | |
9784 | else if (et == elfcpp::ET_DYN) | |
9785 | { | |
9786 | Sized_dynobj<32, big_endian>* obj = | |
2ea97941 | 9787 | new Arm_dynobj<big_endian>(name, input_file, offset, ehdr); |
d5b40221 DK |
9788 | obj->setup(); |
9789 | return obj; | |
9790 | } | |
9791 | else | |
9792 | { | |
9793 | gold_error(_("%s: unsupported ELF file type %d"), | |
9794 | name.c_str(), et); | |
9795 | return NULL; | |
9796 | } | |
9797 | } | |
9798 | ||
a0351a69 DK |
9799 | // Read the architecture from the Tag_also_compatible_with attribute, if any. |
9800 | // Returns -1 if no architecture could be read. | |
9801 | // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c. | |
9802 | ||
9803 | template<bool big_endian> | |
9804 | int | |
9805 | Target_arm<big_endian>::get_secondary_compatible_arch( | |
9806 | const Attributes_section_data* pasd) | |
9807 | { | |
ca09d69a | 9808 | const Object_attribute* known_attributes = |
a0351a69 DK |
9809 | pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); |
9810 | ||
9811 | // Note: the tag and its argument below are uleb128 values, though | |
9812 | // currently-defined values fit in one byte for each. | |
9813 | const std::string& sv = | |
9814 | known_attributes[elfcpp::Tag_also_compatible_with].string_value(); | |
9815 | if (sv.size() == 2 | |
9816 | && sv.data()[0] == elfcpp::Tag_CPU_arch | |
9817 | && (sv.data()[1] & 128) != 128) | |
9818 | return sv.data()[1]; | |
9819 | ||
9820 | // This tag is "safely ignorable", so don't complain if it looks funny. | |
9821 | return -1; | |
9822 | } | |
9823 | ||
9824 | // Set, or unset, the architecture of the Tag_also_compatible_with attribute. | |
9825 | // The tag is removed if ARCH is -1. | |
9826 | // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c. | |
9827 | ||
9828 | template<bool big_endian> | |
9829 | void | |
9830 | Target_arm<big_endian>::set_secondary_compatible_arch( | |
9831 | Attributes_section_data* pasd, | |
9832 | int arch) | |
9833 | { | |
ca09d69a | 9834 | Object_attribute* known_attributes = |
a0351a69 DK |
9835 | pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); |
9836 | ||
9837 | if (arch == -1) | |
9838 | { | |
9839 | known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(""); | |
9840 | return; | |
9841 | } | |
9842 | ||
9843 | // Note: the tag and its argument below are uleb128 values, though | |
9844 | // currently-defined values fit in one byte for each. | |
9845 | char sv[3]; | |
9846 | sv[0] = elfcpp::Tag_CPU_arch; | |
9847 | gold_assert(arch != 0); | |
9848 | sv[1] = arch; | |
9849 | sv[2] = '\0'; | |
9850 | ||
9851 | known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv); | |
9852 | } | |
9853 | ||
9854 | // Combine two values for Tag_CPU_arch, taking secondary compatibility tags | |
9855 | // into account. | |
9856 | // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c. | |
9857 | ||
9858 | template<bool big_endian> | |
9859 | int | |
9860 | Target_arm<big_endian>::tag_cpu_arch_combine( | |
9861 | const char* name, | |
9862 | int oldtag, | |
9863 | int* secondary_compat_out, | |
9864 | int newtag, | |
9865 | int secondary_compat) | |
9866 | { | |
9867 | #define T(X) elfcpp::TAG_CPU_ARCH_##X | |
9868 | static const int v6t2[] = | |
9869 | { | |
9870 | T(V6T2), // PRE_V4. | |
9871 | T(V6T2), // V4. | |
9872 | T(V6T2), // V4T. | |
9873 | T(V6T2), // V5T. | |
9874 | T(V6T2), // V5TE. | |
9875 | T(V6T2), // V5TEJ. | |
9876 | T(V6T2), // V6. | |
9877 | T(V7), // V6KZ. | |
9878 | T(V6T2) // V6T2. | |
9879 | }; | |
9880 | static const int v6k[] = | |
9881 | { | |
9882 | T(V6K), // PRE_V4. | |
9883 | T(V6K), // V4. | |
9884 | T(V6K), // V4T. | |
9885 | T(V6K), // V5T. | |
9886 | T(V6K), // V5TE. | |
9887 | T(V6K), // V5TEJ. | |
9888 | T(V6K), // V6. | |
9889 | T(V6KZ), // V6KZ. | |
9890 | T(V7), // V6T2. | |
9891 | T(V6K) // V6K. | |
9892 | }; | |
9893 | static const int v7[] = | |
9894 | { | |
9895 | T(V7), // PRE_V4. | |
9896 | T(V7), // V4. | |
9897 | T(V7), // V4T. | |
9898 | T(V7), // V5T. | |
9899 | T(V7), // V5TE. | |
9900 | T(V7), // V5TEJ. | |
9901 | T(V7), // V6. | |
9902 | T(V7), // V6KZ. | |
9903 | T(V7), // V6T2. | |
9904 | T(V7), // V6K. | |
9905 | T(V7) // V7. | |
9906 | }; | |
9907 | static const int v6_m[] = | |
9908 | { | |
9909 | -1, // PRE_V4. | |
9910 | -1, // V4. | |
9911 | T(V6K), // V4T. | |
9912 | T(V6K), // V5T. | |
9913 | T(V6K), // V5TE. | |
9914 | T(V6K), // V5TEJ. | |
9915 | T(V6K), // V6. | |
9916 | T(V6KZ), // V6KZ. | |
9917 | T(V7), // V6T2. | |
9918 | T(V6K), // V6K. | |
9919 | T(V7), // V7. | |
9920 | T(V6_M) // V6_M. | |
9921 | }; | |
9922 | static const int v6s_m[] = | |
9923 | { | |
9924 | -1, // PRE_V4. | |
9925 | -1, // V4. | |
9926 | T(V6K), // V4T. | |
9927 | T(V6K), // V5T. | |
9928 | T(V6K), // V5TE. | |
9929 | T(V6K), // V5TEJ. | |
9930 | T(V6K), // V6. | |
9931 | T(V6KZ), // V6KZ. | |
9932 | T(V7), // V6T2. | |
9933 | T(V6K), // V6K. | |
9934 | T(V7), // V7. | |
9935 | T(V6S_M), // V6_M. | |
9936 | T(V6S_M) // V6S_M. | |
9937 | }; | |
9938 | static const int v7e_m[] = | |
9939 | { | |
9940 | -1, // PRE_V4. | |
9941 | -1, // V4. | |
9942 | T(V7E_M), // V4T. | |
9943 | T(V7E_M), // V5T. | |
9944 | T(V7E_M), // V5TE. | |
9945 | T(V7E_M), // V5TEJ. | |
9946 | T(V7E_M), // V6. | |
9947 | T(V7E_M), // V6KZ. | |
9948 | T(V7E_M), // V6T2. | |
9949 | T(V7E_M), // V6K. | |
9950 | T(V7E_M), // V7. | |
9951 | T(V7E_M), // V6_M. | |
9952 | T(V7E_M), // V6S_M. | |
9953 | T(V7E_M) // V7E_M. | |
9954 | }; | |
9955 | static const int v4t_plus_v6_m[] = | |
9956 | { | |
9957 | -1, // PRE_V4. | |
9958 | -1, // V4. | |
9959 | T(V4T), // V4T. | |
9960 | T(V5T), // V5T. | |
9961 | T(V5TE), // V5TE. | |
9962 | T(V5TEJ), // V5TEJ. | |
9963 | T(V6), // V6. | |
9964 | T(V6KZ), // V6KZ. | |
9965 | T(V6T2), // V6T2. | |
9966 | T(V6K), // V6K. | |
9967 | T(V7), // V7. | |
9968 | T(V6_M), // V6_M. | |
9969 | T(V6S_M), // V6S_M. | |
9970 | T(V7E_M), // V7E_M. | |
9971 | T(V4T_PLUS_V6_M) // V4T plus V6_M. | |
9972 | }; | |
ca09d69a | 9973 | static const int* comb[] = |
a0351a69 DK |
9974 | { |
9975 | v6t2, | |
9976 | v6k, | |
9977 | v7, | |
9978 | v6_m, | |
9979 | v6s_m, | |
9980 | v7e_m, | |
9981 | // Pseudo-architecture. | |
9982 | v4t_plus_v6_m | |
9983 | }; | |
9984 | ||
9985 | // Check we've not got a higher architecture than we know about. | |
9986 | ||
9987 | if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH) | |
9988 | { | |
9989 | gold_error(_("%s: unknown CPU architecture"), name); | |
9990 | return -1; | |
9991 | } | |
9992 | ||
9993 | // Override old tag if we have a Tag_also_compatible_with on the output. | |
9994 | ||
9995 | if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) | |
9996 | || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) | |
9997 | oldtag = T(V4T_PLUS_V6_M); | |
9998 | ||
9999 | // And override the new tag if we have a Tag_also_compatible_with on the | |
10000 | // input. | |
10001 | ||
10002 | if ((newtag == T(V6_M) && secondary_compat == T(V4T)) | |
10003 | || (newtag == T(V4T) && secondary_compat == T(V6_M))) | |
10004 | newtag = T(V4T_PLUS_V6_M); | |
10005 | ||
10006 | // Architectures before V6KZ add features monotonically. | |
10007 | int tagh = std::max(oldtag, newtag); | |
10008 | if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ) | |
10009 | return tagh; | |
10010 | ||
10011 | int tagl = std::min(oldtag, newtag); | |
10012 | int result = comb[tagh - T(V6T2)][tagl]; | |
10013 | ||
10014 | // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) | |
10015 | // as the canonical version. | |
10016 | if (result == T(V4T_PLUS_V6_M)) | |
10017 | { | |
10018 | result = T(V4T); | |
10019 | *secondary_compat_out = T(V6_M); | |
10020 | } | |
10021 | else | |
10022 | *secondary_compat_out = -1; | |
10023 | ||
10024 | if (result == -1) | |
10025 | { | |
10026 | gold_error(_("%s: conflicting CPU architectures %d/%d"), | |
10027 | name, oldtag, newtag); | |
10028 | return -1; | |
10029 | } | |
10030 | ||
10031 | return result; | |
10032 | #undef T | |
10033 | } | |
10034 | ||
10035 | // Helper to print AEABI enum tag value. | |
10036 | ||
10037 | template<bool big_endian> | |
10038 | std::string | |
10039 | Target_arm<big_endian>::aeabi_enum_name(unsigned int value) | |
10040 | { | |
ca09d69a | 10041 | static const char* aeabi_enum_names[] = |
a0351a69 DK |
10042 | { "", "variable-size", "32-bit", "" }; |
10043 | const size_t aeabi_enum_names_size = | |
10044 | sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]); | |
10045 | ||
10046 | if (value < aeabi_enum_names_size) | |
10047 | return std::string(aeabi_enum_names[value]); | |
10048 | else | |
10049 | { | |
10050 | char buffer[100]; | |
10051 | sprintf(buffer, "<unknown value %u>", value); | |
10052 | return std::string(buffer); | |
10053 | } | |
10054 | } | |
10055 | ||
10056 | // Return the string value to store in TAG_CPU_name. | |
10057 | ||
10058 | template<bool big_endian> | |
10059 | std::string | |
10060 | Target_arm<big_endian>::tag_cpu_name_value(unsigned int value) | |
10061 | { | |
ca09d69a | 10062 | static const char* name_table[] = { |
a0351a69 DK |
10063 | // These aren't real CPU names, but we can't guess |
10064 | // that from the architecture version alone. | |
10065 | "Pre v4", | |
10066 | "ARM v4", | |
10067 | "ARM v4T", | |
10068 | "ARM v5T", | |
10069 | "ARM v5TE", | |
10070 | "ARM v5TEJ", | |
10071 | "ARM v6", | |
10072 | "ARM v6KZ", | |
10073 | "ARM v6T2", | |
10074 | "ARM v6K", | |
10075 | "ARM v7", | |
10076 | "ARM v6-M", | |
10077 | "ARM v6S-M", | |
10078 | "ARM v7E-M" | |
10079 | }; | |
10080 | const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]); | |
10081 | ||
10082 | if (value < name_table_size) | |
10083 | return std::string(name_table[value]); | |
10084 | else | |
10085 | { | |
10086 | char buffer[100]; | |
10087 | sprintf(buffer, "<unknown CPU value %u>", value); | |
10088 | return std::string(buffer); | |
10089 | } | |
10090 | } | |
10091 | ||
10092 | // Merge object attributes from input file called NAME with those of the | |
10093 | // output. The input object attributes are in the object pointed by PASD. | |
10094 | ||
10095 | template<bool big_endian> | |
10096 | void | |
10097 | Target_arm<big_endian>::merge_object_attributes( | |
10098 | const char* name, | |
10099 | const Attributes_section_data* pasd) | |
10100 | { | |
10101 | // Return if there is no attributes section data. | |
10102 | if (pasd == NULL) | |
10103 | return; | |
10104 | ||
10105 | // If output has no object attributes, just copy. | |
da59ad79 | 10106 | const int vendor = Object_attribute::OBJ_ATTR_PROC; |
a0351a69 DK |
10107 | if (this->attributes_section_data_ == NULL) |
10108 | { | |
10109 | this->attributes_section_data_ = new Attributes_section_data(*pasd); | |
da59ad79 DK |
10110 | Object_attribute* out_attr = |
10111 | this->attributes_section_data_->known_attributes(vendor); | |
10112 | ||
10113 | // We do not output objects with Tag_MPextension_use_legacy - we move | |
10114 | // the attribute's value to Tag_MPextension_use. */ | |
10115 | if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0) | |
10116 | { | |
10117 | if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0 | |
10118 | && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() | |
10119 | != out_attr[elfcpp::Tag_MPextension_use].int_value()) | |
10120 | { | |
10121 | gold_error(_("%s has both the current and legacy " | |
10122 | "Tag_MPextension_use attributes"), | |
10123 | name); | |
10124 | } | |
10125 | ||
10126 | out_attr[elfcpp::Tag_MPextension_use] = | |
10127 | out_attr[elfcpp::Tag_MPextension_use_legacy]; | |
10128 | out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0); | |
10129 | out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0); | |
10130 | } | |
10131 | ||
a0351a69 DK |
10132 | return; |
10133 | } | |
10134 | ||
a0351a69 DK |
10135 | const Object_attribute* in_attr = pasd->known_attributes(vendor); |
10136 | Object_attribute* out_attr = | |
10137 | this->attributes_section_data_->known_attributes(vendor); | |
10138 | ||
10139 | // This needs to happen before Tag_ABI_FP_number_model is merged. */ | |
10140 | if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value() | |
10141 | != out_attr[elfcpp::Tag_ABI_VFP_args].int_value()) | |
10142 | { | |
10143 | // Ignore mismatches if the object doesn't use floating point. */ | |
10144 | if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0) | |
10145 | out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value( | |
10146 | in_attr[elfcpp::Tag_ABI_VFP_args].int_value()); | |
7296d933 DK |
10147 | else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0 |
10148 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10149 | gold_error(_("%s uses VFP register arguments, output does not"), |
10150 | name); | |
10151 | } | |
10152 | ||
10153 | for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i) | |
10154 | { | |
10155 | // Merge this attribute with existing attributes. | |
10156 | switch (i) | |
10157 | { | |
10158 | case elfcpp::Tag_CPU_raw_name: | |
10159 | case elfcpp::Tag_CPU_name: | |
10160 | // These are merged after Tag_CPU_arch. | |
10161 | break; | |
10162 | ||
10163 | case elfcpp::Tag_ABI_optimization_goals: | |
10164 | case elfcpp::Tag_ABI_FP_optimization_goals: | |
10165 | // Use the first value seen. | |
10166 | break; | |
10167 | ||
10168 | case elfcpp::Tag_CPU_arch: | |
10169 | { | |
10170 | unsigned int saved_out_attr = out_attr->int_value(); | |
10171 | // Merge Tag_CPU_arch and Tag_also_compatible_with. | |
10172 | int secondary_compat = | |
10173 | this->get_secondary_compatible_arch(pasd); | |
10174 | int secondary_compat_out = | |
10175 | this->get_secondary_compatible_arch( | |
10176 | this->attributes_section_data_); | |
10177 | out_attr[i].set_int_value( | |
10178 | tag_cpu_arch_combine(name, out_attr[i].int_value(), | |
10179 | &secondary_compat_out, | |
10180 | in_attr[i].int_value(), | |
10181 | secondary_compat)); | |
10182 | this->set_secondary_compatible_arch(this->attributes_section_data_, | |
10183 | secondary_compat_out); | |
10184 | ||
10185 | // Merge Tag_CPU_name and Tag_CPU_raw_name. | |
10186 | if (out_attr[i].int_value() == saved_out_attr) | |
10187 | ; // Leave the names alone. | |
10188 | else if (out_attr[i].int_value() == in_attr[i].int_value()) | |
10189 | { | |
10190 | // The output architecture has been changed to match the | |
10191 | // input architecture. Use the input names. | |
10192 | out_attr[elfcpp::Tag_CPU_name].set_string_value( | |
10193 | in_attr[elfcpp::Tag_CPU_name].string_value()); | |
10194 | out_attr[elfcpp::Tag_CPU_raw_name].set_string_value( | |
10195 | in_attr[elfcpp::Tag_CPU_raw_name].string_value()); | |
10196 | } | |
10197 | else | |
10198 | { | |
10199 | out_attr[elfcpp::Tag_CPU_name].set_string_value(""); | |
10200 | out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(""); | |
10201 | } | |
10202 | ||
10203 | // If we still don't have a value for Tag_CPU_name, | |
10204 | // make one up now. Tag_CPU_raw_name remains blank. | |
10205 | if (out_attr[elfcpp::Tag_CPU_name].string_value() == "") | |
10206 | { | |
10207 | const std::string cpu_name = | |
10208 | this->tag_cpu_name_value(out_attr[i].int_value()); | |
10209 | // FIXME: If we see an unknown CPU, this will be set | |
10210 | // to "<unknown CPU n>", where n is the attribute value. | |
10211 | // This is different from BFD, which leaves the name alone. | |
10212 | out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name); | |
10213 | } | |
10214 | } | |
10215 | break; | |
10216 | ||
10217 | case elfcpp::Tag_ARM_ISA_use: | |
10218 | case elfcpp::Tag_THUMB_ISA_use: | |
10219 | case elfcpp::Tag_WMMX_arch: | |
10220 | case elfcpp::Tag_Advanced_SIMD_arch: | |
10221 | // ??? Do Advanced_SIMD (NEON) and WMMX conflict? | |
10222 | case elfcpp::Tag_ABI_FP_rounding: | |
10223 | case elfcpp::Tag_ABI_FP_exceptions: | |
10224 | case elfcpp::Tag_ABI_FP_user_exceptions: | |
10225 | case elfcpp::Tag_ABI_FP_number_model: | |
10226 | case elfcpp::Tag_VFP_HP_extension: | |
10227 | case elfcpp::Tag_CPU_unaligned_access: | |
10228 | case elfcpp::Tag_T2EE_use: | |
10229 | case elfcpp::Tag_Virtualization_use: | |
10230 | case elfcpp::Tag_MPextension_use: | |
10231 | // Use the largest value specified. | |
10232 | if (in_attr[i].int_value() > out_attr[i].int_value()) | |
10233 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10234 | break; | |
10235 | ||
10236 | case elfcpp::Tag_ABI_align8_preserved: | |
10237 | case elfcpp::Tag_ABI_PCS_RO_data: | |
10238 | // Use the smallest value specified. | |
10239 | if (in_attr[i].int_value() < out_attr[i].int_value()) | |
10240 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10241 | break; | |
10242 | ||
10243 | case elfcpp::Tag_ABI_align8_needed: | |
10244 | if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0) | |
10245 | && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0 | |
10246 | || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value() | |
10247 | == 0))) | |
10248 | { | |
10249 | // This error message should be enabled once all non-conformant | |
10250 | // binaries in the toolchain have had the attributes set | |
10251 | // properly. | |
10252 | // gold_error(_("output 8-byte data alignment conflicts with %s"), | |
10253 | // name); | |
10254 | } | |
10255 | // Fall through. | |
10256 | case elfcpp::Tag_ABI_FP_denormal: | |
10257 | case elfcpp::Tag_ABI_PCS_GOT_use: | |
10258 | { | |
10259 | // These tags have 0 = don't care, 1 = strong requirement, | |
10260 | // 2 = weak requirement. | |
10261 | static const int order_021[3] = {0, 2, 1}; | |
10262 | ||
10263 | // Use the "greatest" from the sequence 0, 2, 1, or the largest | |
10264 | // value if greater than 2 (for future-proofing). | |
10265 | if ((in_attr[i].int_value() > 2 | |
10266 | && in_attr[i].int_value() > out_attr[i].int_value()) | |
10267 | || (in_attr[i].int_value() <= 2 | |
10268 | && out_attr[i].int_value() <= 2 | |
10269 | && (order_021[in_attr[i].int_value()] | |
10270 | > order_021[out_attr[i].int_value()]))) | |
10271 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10272 | } | |
10273 | break; | |
10274 | ||
10275 | case elfcpp::Tag_CPU_arch_profile: | |
10276 | if (out_attr[i].int_value() != in_attr[i].int_value()) | |
10277 | { | |
10278 | // 0 will merge with anything. | |
10279 | // 'A' and 'S' merge to 'A'. | |
10280 | // 'R' and 'S' merge to 'R'. | |
10281 | // 'M' and 'A|R|S' is an error. | |
10282 | if (out_attr[i].int_value() == 0 | |
10283 | || (out_attr[i].int_value() == 'S' | |
10284 | && (in_attr[i].int_value() == 'A' | |
10285 | || in_attr[i].int_value() == 'R'))) | |
10286 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10287 | else if (in_attr[i].int_value() == 0 | |
10288 | || (in_attr[i].int_value() == 'S' | |
10289 | && (out_attr[i].int_value() == 'A' | |
10290 | || out_attr[i].int_value() == 'R'))) | |
10291 | ; // Do nothing. | |
7296d933 | 10292 | else if (parameters->options().warn_mismatch()) |
a0351a69 DK |
10293 | { |
10294 | gold_error | |
10295 | (_("conflicting architecture profiles %c/%c"), | |
10296 | in_attr[i].int_value() ? in_attr[i].int_value() : '0', | |
10297 | out_attr[i].int_value() ? out_attr[i].int_value() : '0'); | |
10298 | } | |
10299 | } | |
10300 | break; | |
10301 | case elfcpp::Tag_VFP_arch: | |
10302 | { | |
10303 | static const struct | |
10304 | { | |
10305 | int ver; | |
10306 | int regs; | |
10307 | } vfp_versions[7] = | |
10308 | { | |
10309 | {0, 0}, | |
10310 | {1, 16}, | |
10311 | {2, 16}, | |
10312 | {3, 32}, | |
10313 | {3, 16}, | |
10314 | {4, 32}, | |
10315 | {4, 16} | |
10316 | }; | |
10317 | ||
10318 | // Values greater than 6 aren't defined, so just pick the | |
10319 | // biggest. | |
10320 | if (in_attr[i].int_value() > 6 | |
10321 | && in_attr[i].int_value() > out_attr[i].int_value()) | |
10322 | { | |
10323 | *out_attr = *in_attr; | |
10324 | break; | |
10325 | } | |
10326 | // The output uses the superset of input features | |
10327 | // (ISA version) and registers. | |
10328 | int ver = std::max(vfp_versions[in_attr[i].int_value()].ver, | |
10329 | vfp_versions[out_attr[i].int_value()].ver); | |
10330 | int regs = std::max(vfp_versions[in_attr[i].int_value()].regs, | |
10331 | vfp_versions[out_attr[i].int_value()].regs); | |
10332 | // This assumes all possible supersets are also a valid | |
10333 | // options. | |
10334 | int newval; | |
10335 | for (newval = 6; newval > 0; newval--) | |
10336 | { | |
10337 | if (regs == vfp_versions[newval].regs | |
10338 | && ver == vfp_versions[newval].ver) | |
10339 | break; | |
10340 | } | |
10341 | out_attr[i].set_int_value(newval); | |
10342 | } | |
10343 | break; | |
10344 | case elfcpp::Tag_PCS_config: | |
10345 | if (out_attr[i].int_value() == 0) | |
10346 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
7296d933 DK |
10347 | else if (in_attr[i].int_value() != 0 |
10348 | && out_attr[i].int_value() != 0 | |
10349 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10350 | { |
10351 | // It's sometimes ok to mix different configs, so this is only | |
10352 | // a warning. | |
10353 | gold_warning(_("%s: conflicting platform configuration"), name); | |
10354 | } | |
10355 | break; | |
10356 | case elfcpp::Tag_ABI_PCS_R9_use: | |
10357 | if (in_attr[i].int_value() != out_attr[i].int_value() | |
10358 | && out_attr[i].int_value() != elfcpp::AEABI_R9_unused | |
7296d933 DK |
10359 | && in_attr[i].int_value() != elfcpp::AEABI_R9_unused |
10360 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10361 | { |
10362 | gold_error(_("%s: conflicting use of R9"), name); | |
10363 | } | |
10364 | if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused) | |
10365 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10366 | break; | |
10367 | case elfcpp::Tag_ABI_PCS_RW_data: | |
10368 | if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel | |
10369 | && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() | |
10370 | != elfcpp::AEABI_R9_SB) | |
10371 | && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() | |
7296d933 DK |
10372 | != elfcpp::AEABI_R9_unused) |
10373 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10374 | { |
10375 | gold_error(_("%s: SB relative addressing conflicts with use " | |
10376 | "of R9"), | |
7296d933 | 10377 | name); |
a0351a69 DK |
10378 | } |
10379 | // Use the smallest value specified. | |
10380 | if (in_attr[i].int_value() < out_attr[i].int_value()) | |
10381 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10382 | break; | |
10383 | case elfcpp::Tag_ABI_PCS_wchar_t: | |
a0351a69 DK |
10384 | if (out_attr[i].int_value() |
10385 | && in_attr[i].int_value() | |
7296d933 | 10386 | && out_attr[i].int_value() != in_attr[i].int_value() |
ce0d1972 DK |
10387 | && parameters->options().warn_mismatch() |
10388 | && parameters->options().wchar_size_warning()) | |
a0351a69 DK |
10389 | { |
10390 | gold_warning(_("%s uses %u-byte wchar_t yet the output is to " | |
10391 | "use %u-byte wchar_t; use of wchar_t values " | |
10392 | "across objects may fail"), | |
10393 | name, in_attr[i].int_value(), | |
10394 | out_attr[i].int_value()); | |
10395 | } | |
10396 | else if (in_attr[i].int_value() && !out_attr[i].int_value()) | |
10397 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10398 | break; | |
10399 | case elfcpp::Tag_ABI_enum_size: | |
10400 | if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused) | |
10401 | { | |
10402 | if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused | |
10403 | || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide) | |
10404 | { | |
10405 | // The existing object is compatible with anything. | |
10406 | // Use whatever requirements the new object has. | |
10407 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10408 | } | |
a0351a69 | 10409 | else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide |
7296d933 | 10410 | && out_attr[i].int_value() != in_attr[i].int_value() |
ce0d1972 DK |
10411 | && parameters->options().warn_mismatch() |
10412 | && parameters->options().enum_size_warning()) | |
a0351a69 DK |
10413 | { |
10414 | unsigned int in_value = in_attr[i].int_value(); | |
10415 | unsigned int out_value = out_attr[i].int_value(); | |
10416 | gold_warning(_("%s uses %s enums yet the output is to use " | |
10417 | "%s enums; use of enum values across objects " | |
10418 | "may fail"), | |
10419 | name, | |
10420 | this->aeabi_enum_name(in_value).c_str(), | |
10421 | this->aeabi_enum_name(out_value).c_str()); | |
10422 | } | |
10423 | } | |
10424 | break; | |
10425 | case elfcpp::Tag_ABI_VFP_args: | |
10426 | // Aready done. | |
10427 | break; | |
10428 | case elfcpp::Tag_ABI_WMMX_args: | |
7296d933 DK |
10429 | if (in_attr[i].int_value() != out_attr[i].int_value() |
10430 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10431 | { |
10432 | gold_error(_("%s uses iWMMXt register arguments, output does " | |
10433 | "not"), | |
10434 | name); | |
10435 | } | |
10436 | break; | |
10437 | case Object_attribute::Tag_compatibility: | |
10438 | // Merged in target-independent code. | |
10439 | break; | |
10440 | case elfcpp::Tag_ABI_HardFP_use: | |
10441 | // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). | |
10442 | if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2) | |
10443 | || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1)) | |
10444 | out_attr[i].set_int_value(3); | |
10445 | else if (in_attr[i].int_value() > out_attr[i].int_value()) | |
10446 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10447 | break; | |
10448 | case elfcpp::Tag_ABI_FP_16bit_format: | |
10449 | if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0) | |
10450 | { | |
7296d933 DK |
10451 | if (in_attr[i].int_value() != out_attr[i].int_value() |
10452 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10453 | gold_error(_("fp16 format mismatch between %s and output"), |
10454 | name); | |
10455 | } | |
10456 | if (in_attr[i].int_value() != 0) | |
10457 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10458 | break; | |
10459 | ||
da59ad79 DK |
10460 | case elfcpp::Tag_DIV_use: |
10461 | // This tag is set to zero if we can use UDIV and SDIV in Thumb | |
10462 | // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or | |
10463 | // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A | |
10464 | // CPU. We will merge as follows: If the input attribute's value | |
10465 | // is one then the output attribute's value remains unchanged. If | |
10466 | // the input attribute's value is zero or two then if the output | |
10467 | // attribute's value is one the output value is set to the input | |
10468 | // value, otherwise the output value must be the same as the | |
10469 | // inputs. */ | |
10470 | if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) | |
10471 | { | |
10472 | if (in_attr[i].int_value() != out_attr[i].int_value()) | |
10473 | { | |
10474 | gold_error(_("DIV usage mismatch between %s and output"), | |
10475 | name); | |
10476 | } | |
10477 | } | |
10478 | ||
10479 | if (in_attr[i].int_value() != 1) | |
10480 | out_attr[i].set_int_value(in_attr[i].int_value()); | |
10481 | ||
10482 | break; | |
10483 | ||
10484 | case elfcpp::Tag_MPextension_use_legacy: | |
10485 | // We don't output objects with Tag_MPextension_use_legacy - we | |
10486 | // move the value to Tag_MPextension_use. | |
10487 | if (in_attr[i].int_value() != 0 | |
10488 | && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0) | |
10489 | { | |
10490 | if (in_attr[elfcpp::Tag_MPextension_use].int_value() | |
10491 | != in_attr[i].int_value()) | |
10492 | { | |
10493 | gold_error(_("%s has has both the current and legacy " | |
10494 | "Tag_MPextension_use attributes"), | |
10495 | name); | |
10496 | } | |
10497 | } | |
10498 | ||
10499 | if (in_attr[i].int_value() | |
10500 | > out_attr[elfcpp::Tag_MPextension_use].int_value()) | |
10501 | out_attr[elfcpp::Tag_MPextension_use] = in_attr[i]; | |
10502 | ||
10503 | break; | |
10504 | ||
a0351a69 DK |
10505 | case elfcpp::Tag_nodefaults: |
10506 | // This tag is set if it exists, but the value is unused (and is | |
10507 | // typically zero). We don't actually need to do anything here - | |
10508 | // the merge happens automatically when the type flags are merged | |
10509 | // below. | |
10510 | break; | |
10511 | case elfcpp::Tag_also_compatible_with: | |
10512 | // Already done in Tag_CPU_arch. | |
10513 | break; | |
10514 | case elfcpp::Tag_conformance: | |
10515 | // Keep the attribute if it matches. Throw it away otherwise. | |
10516 | // No attribute means no claim to conform. | |
10517 | if (in_attr[i].string_value() != out_attr[i].string_value()) | |
10518 | out_attr[i].set_string_value(""); | |
10519 | break; | |
10520 | ||
10521 | default: | |
10522 | { | |
10523 | const char* err_object = NULL; | |
10524 | ||
10525 | // The "known_obj_attributes" table does contain some undefined | |
10526 | // attributes. Ensure that there are unused. | |
10527 | if (out_attr[i].int_value() != 0 | |
10528 | || out_attr[i].string_value() != "") | |
10529 | err_object = "output"; | |
10530 | else if (in_attr[i].int_value() != 0 | |
10531 | || in_attr[i].string_value() != "") | |
10532 | err_object = name; | |
10533 | ||
7296d933 DK |
10534 | if (err_object != NULL |
10535 | && parameters->options().warn_mismatch()) | |
a0351a69 DK |
10536 | { |
10537 | // Attribute numbers >=64 (mod 128) can be safely ignored. | |
10538 | if ((i & 127) < 64) | |
10539 | gold_error(_("%s: unknown mandatory EABI object attribute " | |
10540 | "%d"), | |
10541 | err_object, i); | |
10542 | else | |
10543 | gold_warning(_("%s: unknown EABI object attribute %d"), | |
10544 | err_object, i); | |
10545 | } | |
10546 | ||
10547 | // Only pass on attributes that match in both inputs. | |
10548 | if (!in_attr[i].matches(out_attr[i])) | |
10549 | { | |
10550 | out_attr[i].set_int_value(0); | |
10551 | out_attr[i].set_string_value(""); | |
10552 | } | |
10553 | } | |
10554 | } | |
10555 | ||
10556 | // If out_attr was copied from in_attr then it won't have a type yet. | |
10557 | if (in_attr[i].type() && !out_attr[i].type()) | |
10558 | out_attr[i].set_type(in_attr[i].type()); | |
10559 | } | |
10560 | ||
10561 | // Merge Tag_compatibility attributes and any common GNU ones. | |
10562 | this->attributes_section_data_->merge(name, pasd); | |
10563 | ||
10564 | // Check for any attributes not known on ARM. | |
10565 | typedef Vendor_object_attributes::Other_attributes Other_attributes; | |
10566 | const Other_attributes* in_other_attributes = pasd->other_attributes(vendor); | |
10567 | Other_attributes::const_iterator in_iter = in_other_attributes->begin(); | |
10568 | Other_attributes* out_other_attributes = | |
10569 | this->attributes_section_data_->other_attributes(vendor); | |
10570 | Other_attributes::iterator out_iter = out_other_attributes->begin(); | |
10571 | ||
10572 | while (in_iter != in_other_attributes->end() | |
10573 | || out_iter != out_other_attributes->end()) | |
10574 | { | |
10575 | const char* err_object = NULL; | |
10576 | int err_tag = 0; | |
10577 | ||
10578 | // The tags for each list are in numerical order. | |
10579 | // If the tags are equal, then merge. | |
10580 | if (out_iter != out_other_attributes->end() | |
10581 | && (in_iter == in_other_attributes->end() | |
10582 | || in_iter->first > out_iter->first)) | |
10583 | { | |
10584 | // This attribute only exists in output. We can't merge, and we | |
10585 | // don't know what the tag means, so delete it. | |
10586 | err_object = "output"; | |
10587 | err_tag = out_iter->first; | |
10588 | int saved_tag = out_iter->first; | |
10589 | delete out_iter->second; | |
10590 | out_other_attributes->erase(out_iter); | |
10591 | out_iter = out_other_attributes->upper_bound(saved_tag); | |
10592 | } | |
10593 | else if (in_iter != in_other_attributes->end() | |
10594 | && (out_iter != out_other_attributes->end() | |
10595 | || in_iter->first < out_iter->first)) | |
10596 | { | |
10597 | // This attribute only exists in input. We can't merge, and we | |
10598 | // don't know what the tag means, so ignore it. | |
10599 | err_object = name; | |
10600 | err_tag = in_iter->first; | |
10601 | ++in_iter; | |
10602 | } | |
10603 | else // The tags are equal. | |
10604 | { | |
10605 | // As present, all attributes in the list are unknown, and | |
10606 | // therefore can't be merged meaningfully. | |
10607 | err_object = "output"; | |
10608 | err_tag = out_iter->first; | |
10609 | ||
10610 | // Only pass on attributes that match in both inputs. | |
10611 | if (!in_iter->second->matches(*(out_iter->second))) | |
10612 | { | |
10613 | // No match. Delete the attribute. | |
10614 | int saved_tag = out_iter->first; | |
10615 | delete out_iter->second; | |
10616 | out_other_attributes->erase(out_iter); | |
10617 | out_iter = out_other_attributes->upper_bound(saved_tag); | |
10618 | } | |
10619 | else | |
10620 | { | |
10621 | // Matched. Keep the attribute and move to the next. | |
10622 | ++out_iter; | |
10623 | ++in_iter; | |
10624 | } | |
10625 | } | |
10626 | ||
7296d933 | 10627 | if (err_object && parameters->options().warn_mismatch()) |
a0351a69 DK |
10628 | { |
10629 | // Attribute numbers >=64 (mod 128) can be safely ignored. */ | |
10630 | if ((err_tag & 127) < 64) | |
10631 | { | |
10632 | gold_error(_("%s: unknown mandatory EABI object attribute %d"), | |
10633 | err_object, err_tag); | |
10634 | } | |
10635 | else | |
10636 | { | |
10637 | gold_warning(_("%s: unknown EABI object attribute %d"), | |
10638 | err_object, err_tag); | |
10639 | } | |
10640 | } | |
10641 | } | |
10642 | } | |
10643 | ||
55da9579 DK |
10644 | // Stub-generation methods for Target_arm. |
10645 | ||
10646 | // Make a new Arm_input_section object. | |
10647 | ||
10648 | template<bool big_endian> | |
10649 | Arm_input_section<big_endian>* | |
10650 | Target_arm<big_endian>::new_arm_input_section( | |
2ea97941 ILT |
10651 | Relobj* relobj, |
10652 | unsigned int shndx) | |
55da9579 | 10653 | { |
5ac169d4 | 10654 | Section_id sid(relobj, shndx); |
55da9579 DK |
10655 | |
10656 | Arm_input_section<big_endian>* arm_input_section = | |
2ea97941 | 10657 | new Arm_input_section<big_endian>(relobj, shndx); |
55da9579 DK |
10658 | arm_input_section->init(); |
10659 | ||
10660 | // Register new Arm_input_section in map for look-up. | |
10661 | std::pair<typename Arm_input_section_map::iterator, bool> ins = | |
5ac169d4 | 10662 | this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section)); |
55da9579 DK |
10663 | |
10664 | // Make sure that it we have not created another Arm_input_section | |
10665 | // for this input section already. | |
10666 | gold_assert(ins.second); | |
10667 | ||
10668 | return arm_input_section; | |
10669 | } | |
10670 | ||
10671 | // Find the Arm_input_section object corresponding to the SHNDX-th input | |
10672 | // section of RELOBJ. | |
10673 | ||
10674 | template<bool big_endian> | |
10675 | Arm_input_section<big_endian>* | |
10676 | Target_arm<big_endian>::find_arm_input_section( | |
2ea97941 ILT |
10677 | Relobj* relobj, |
10678 | unsigned int shndx) const | |
55da9579 | 10679 | { |
5ac169d4 | 10680 | Section_id sid(relobj, shndx); |
55da9579 | 10681 | typename Arm_input_section_map::const_iterator p = |
5ac169d4 | 10682 | this->arm_input_section_map_.find(sid); |
55da9579 DK |
10683 | return (p != this->arm_input_section_map_.end()) ? p->second : NULL; |
10684 | } | |
10685 | ||
10686 | // Make a new stub table. | |
10687 | ||
10688 | template<bool big_endian> | |
10689 | Stub_table<big_endian>* | |
10690 | Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner) | |
10691 | { | |
2ea97941 | 10692 | Stub_table<big_endian>* stub_table = |
55da9579 | 10693 | new Stub_table<big_endian>(owner); |
2ea97941 | 10694 | this->stub_tables_.push_back(stub_table); |
55da9579 | 10695 | |
2ea97941 ILT |
10696 | stub_table->set_address(owner->address() + owner->data_size()); |
10697 | stub_table->set_file_offset(owner->offset() + owner->data_size()); | |
10698 | stub_table->finalize_data_size(); | |
55da9579 | 10699 | |
2ea97941 | 10700 | return stub_table; |
55da9579 DK |
10701 | } |
10702 | ||
eb44217c DK |
10703 | // Scan a relocation for stub generation. |
10704 | ||
10705 | template<bool big_endian> | |
10706 | void | |
10707 | Target_arm<big_endian>::scan_reloc_for_stub( | |
10708 | const Relocate_info<32, big_endian>* relinfo, | |
10709 | unsigned int r_type, | |
10710 | const Sized_symbol<32>* gsym, | |
10711 | unsigned int r_sym, | |
10712 | const Symbol_value<32>* psymval, | |
10713 | elfcpp::Elf_types<32>::Elf_Swxword addend, | |
10714 | Arm_address address) | |
10715 | { | |
2ea97941 | 10716 | typedef typename Target_arm<big_endian>::Relocate Relocate; |
eb44217c DK |
10717 | |
10718 | const Arm_relobj<big_endian>* arm_relobj = | |
10719 | Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | |
10720 | ||
10721 | bool target_is_thumb; | |
10722 | Symbol_value<32> symval; | |
10723 | if (gsym != NULL) | |
10724 | { | |
10725 | // This is a global symbol. Determine if we use PLT and if the | |
10726 | // final target is THUMB. | |
2ea97941 | 10727 | if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type))) |
eb44217c DK |
10728 | { |
10729 | // This uses a PLT, change the symbol value. | |
10730 | symval.set_output_value(this->plt_section()->address() | |
10731 | + gsym->plt_offset()); | |
10732 | psymval = &symval; | |
10733 | target_is_thumb = false; | |
10734 | } | |
10735 | else if (gsym->is_undefined()) | |
10736 | // There is no need to generate a stub symbol is undefined. | |
10737 | return; | |
10738 | else | |
10739 | { | |
10740 | target_is_thumb = | |
10741 | ((gsym->type() == elfcpp::STT_ARM_TFUNC) | |
10742 | || (gsym->type() == elfcpp::STT_FUNC | |
10743 | && !gsym->is_undefined() | |
10744 | && ((psymval->value(arm_relobj, 0) & 1) != 0))); | |
10745 | } | |
10746 | } | |
10747 | else | |
10748 | { | |
10749 | // This is a local symbol. Determine if the final target is THUMB. | |
10750 | target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym); | |
10751 | } | |
10752 | ||
10753 | // Strip LSB if this points to a THUMB target. | |
5c57f1be DK |
10754 | const Arm_reloc_property* reloc_property = |
10755 | arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | |
10756 | gold_assert(reloc_property != NULL); | |
eb44217c | 10757 | if (target_is_thumb |
5c57f1be | 10758 | && reloc_property->uses_thumb_bit() |
eb44217c DK |
10759 | && ((psymval->value(arm_relobj, 0) & 1) != 0)) |
10760 | { | |
10761 | Arm_address stripped_value = | |
10762 | psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1); | |
10763 | symval.set_output_value(stripped_value); | |
10764 | psymval = &symval; | |
10765 | } | |
10766 | ||
10767 | // Get the symbol value. | |
10768 | Symbol_value<32>::Value value = psymval->value(arm_relobj, 0); | |
10769 | ||
10770 | // Owing to pipelining, the PC relative branches below actually skip | |
10771 | // two instructions when the branch offset is 0. | |
10772 | Arm_address destination; | |
10773 | switch (r_type) | |
10774 | { | |
10775 | case elfcpp::R_ARM_CALL: | |
10776 | case elfcpp::R_ARM_JUMP24: | |
10777 | case elfcpp::R_ARM_PLT32: | |
10778 | // ARM branches. | |
10779 | destination = value + addend + 8; | |
10780 | break; | |
10781 | case elfcpp::R_ARM_THM_CALL: | |
10782 | case elfcpp::R_ARM_THM_XPC22: | |
10783 | case elfcpp::R_ARM_THM_JUMP24: | |
10784 | case elfcpp::R_ARM_THM_JUMP19: | |
10785 | // THUMB branches. | |
10786 | destination = value + addend + 4; | |
10787 | break; | |
10788 | default: | |
10789 | gold_unreachable(); | |
10790 | } | |
10791 | ||
a120bc7f | 10792 | Reloc_stub* stub = NULL; |
eb44217c DK |
10793 | Stub_type stub_type = |
10794 | Reloc_stub::stub_type_for_reloc(r_type, address, destination, | |
10795 | target_is_thumb); | |
a120bc7f DK |
10796 | if (stub_type != arm_stub_none) |
10797 | { | |
10798 | // Try looking up an existing stub from a stub table. | |
10799 | Stub_table<big_endian>* stub_table = | |
10800 | arm_relobj->stub_table(relinfo->data_shndx); | |
10801 | gold_assert(stub_table != NULL); | |
eb44217c | 10802 | |
a120bc7f DK |
10803 | // Locate stub by destination. |
10804 | Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend); | |
eb44217c | 10805 | |
a120bc7f DK |
10806 | // Create a stub if there is not one already |
10807 | stub = stub_table->find_reloc_stub(stub_key); | |
10808 | if (stub == NULL) | |
10809 | { | |
10810 | // create a new stub and add it to stub table. | |
10811 | stub = this->stub_factory().make_reloc_stub(stub_type); | |
10812 | stub_table->add_reloc_stub(stub, stub_key); | |
10813 | } | |
10814 | ||
10815 | // Record the destination address. | |
10816 | stub->set_destination_address(destination | |
10817 | | (target_is_thumb ? 1 : 0)); | |
eb44217c DK |
10818 | } |
10819 | ||
a120bc7f DK |
10820 | // For Cortex-A8, we need to record a relocation at 4K page boundary. |
10821 | if (this->fix_cortex_a8_ | |
10822 | && (r_type == elfcpp::R_ARM_THM_JUMP24 | |
10823 | || r_type == elfcpp::R_ARM_THM_JUMP19 | |
10824 | || r_type == elfcpp::R_ARM_THM_CALL | |
10825 | || r_type == elfcpp::R_ARM_THM_XPC22) | |
10826 | && (address & 0xfffU) == 0xffeU) | |
10827 | { | |
10828 | // Found a candidate. Note we haven't checked the destination is | |
10829 | // within 4K here: if we do so (and don't create a record) we can't | |
10830 | // tell that a branch should have been relocated when scanning later. | |
10831 | this->cortex_a8_relocs_info_[address] = | |
10832 | new Cortex_a8_reloc(stub, r_type, | |
10833 | destination | (target_is_thumb ? 1 : 0)); | |
10834 | } | |
eb44217c DK |
10835 | } |
10836 | ||
10837 | // This function scans a relocation sections for stub generation. | |
10838 | // The template parameter Relocate must be a class type which provides | |
10839 | // a single function, relocate(), which implements the machine | |
10840 | // specific part of a relocation. | |
10841 | ||
10842 | // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type: | |
10843 | // SHT_REL or SHT_RELA. | |
10844 | ||
10845 | // PRELOCS points to the relocation data. RELOC_COUNT is the number | |
10846 | // of relocs. OUTPUT_SECTION is the output section. | |
10847 | // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be | |
10848 | // mapped to output offsets. | |
10849 | ||
10850 | // VIEW is the section data, VIEW_ADDRESS is its memory address, and | |
10851 | // VIEW_SIZE is the size. These refer to the input section, unless | |
10852 | // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to | |
10853 | // the output section. | |
10854 | ||
10855 | template<bool big_endian> | |
10856 | template<int sh_type> | |
10857 | void inline | |
10858 | Target_arm<big_endian>::scan_reloc_section_for_stubs( | |
10859 | const Relocate_info<32, big_endian>* relinfo, | |
10860 | const unsigned char* prelocs, | |
10861 | size_t reloc_count, | |
10862 | Output_section* output_section, | |
10863 | bool needs_special_offset_handling, | |
10864 | const unsigned char* view, | |
10865 | elfcpp::Elf_types<32>::Elf_Addr view_address, | |
10866 | section_size_type) | |
10867 | { | |
10868 | typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype; | |
10869 | const int reloc_size = | |
10870 | Reloc_types<sh_type, 32, big_endian>::reloc_size; | |
10871 | ||
10872 | Arm_relobj<big_endian>* arm_object = | |
10873 | Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | |
10874 | unsigned int local_count = arm_object->local_symbol_count(); | |
10875 | ||
10876 | Comdat_behavior comdat_behavior = CB_UNDETERMINED; | |
10877 | ||
10878 | for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) | |
10879 | { | |
10880 | Reltype reloc(prelocs); | |
10881 | ||
10882 | typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); | |
10883 | unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | |
10884 | unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | |
10885 | ||
10886 | r_type = this->get_real_reloc_type(r_type); | |
10887 | ||
10888 | // Only a few relocation types need stubs. | |
10889 | if ((r_type != elfcpp::R_ARM_CALL) | |
10890 | && (r_type != elfcpp::R_ARM_JUMP24) | |
10891 | && (r_type != elfcpp::R_ARM_PLT32) | |
10892 | && (r_type != elfcpp::R_ARM_THM_CALL) | |
10893 | && (r_type != elfcpp::R_ARM_THM_XPC22) | |
10894 | && (r_type != elfcpp::R_ARM_THM_JUMP24) | |
a2162063 ILT |
10895 | && (r_type != elfcpp::R_ARM_THM_JUMP19) |
10896 | && (r_type != elfcpp::R_ARM_V4BX)) | |
eb44217c DK |
10897 | continue; |
10898 | ||
2ea97941 | 10899 | section_offset_type offset = |
eb44217c DK |
10900 | convert_to_section_size_type(reloc.get_r_offset()); |
10901 | ||
10902 | if (needs_special_offset_handling) | |
10903 | { | |
2ea97941 ILT |
10904 | offset = output_section->output_offset(relinfo->object, |
10905 | relinfo->data_shndx, | |
10906 | offset); | |
10907 | if (offset == -1) | |
eb44217c DK |
10908 | continue; |
10909 | } | |
10910 | ||
2fd9ae7a | 10911 | // Create a v4bx stub if --fix-v4bx-interworking is used. |
a2162063 ILT |
10912 | if (r_type == elfcpp::R_ARM_V4BX) |
10913 | { | |
2fd9ae7a DK |
10914 | if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING) |
10915 | { | |
10916 | // Get the BX instruction. | |
10917 | typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | |
10918 | const Valtype* wv = | |
10919 | reinterpret_cast<const Valtype*>(view + offset); | |
10920 | elfcpp::Elf_types<32>::Elf_Swxword insn = | |
10921 | elfcpp::Swap<32, big_endian>::readval(wv); | |
10922 | const uint32_t reg = (insn & 0xf); | |
10923 | ||
10924 | if (reg < 0xf) | |
10925 | { | |
10926 | // Try looking up an existing stub from a stub table. | |
10927 | Stub_table<big_endian>* stub_table = | |
10928 | arm_object->stub_table(relinfo->data_shndx); | |
10929 | gold_assert(stub_table != NULL); | |
10930 | ||
10931 | if (stub_table->find_arm_v4bx_stub(reg) == NULL) | |
10932 | { | |
10933 | // create a new stub and add it to stub table. | |
10934 | Arm_v4bx_stub* stub = | |
10935 | this->stub_factory().make_arm_v4bx_stub(reg); | |
10936 | gold_assert(stub != NULL); | |
10937 | stub_table->add_arm_v4bx_stub(stub); | |
10938 | } | |
10939 | } | |
10940 | } | |
a2162063 ILT |
10941 | continue; |
10942 | } | |
10943 | ||
eb44217c DK |
10944 | // Get the addend. |
10945 | Stub_addend_reader<sh_type, big_endian> stub_addend_reader; | |
10946 | elfcpp::Elf_types<32>::Elf_Swxword addend = | |
2ea97941 | 10947 | stub_addend_reader(r_type, view + offset, reloc); |
eb44217c DK |
10948 | |
10949 | const Sized_symbol<32>* sym; | |
10950 | ||
10951 | Symbol_value<32> symval; | |
10952 | const Symbol_value<32> *psymval; | |
aa98ff75 DK |
10953 | bool is_defined_in_discarded_section; |
10954 | unsigned int shndx; | |
eb44217c DK |
10955 | if (r_sym < local_count) |
10956 | { | |
10957 | sym = NULL; | |
10958 | psymval = arm_object->local_symbol(r_sym); | |
10959 | ||
10960 | // If the local symbol belongs to a section we are discarding, | |
10961 | // and that section is a debug section, try to find the | |
10962 | // corresponding kept section and map this symbol to its | |
10963 | // counterpart in the kept section. The symbol must not | |
10964 | // correspond to a section we are folding. | |
10965 | bool is_ordinary; | |
aa98ff75 DK |
10966 | shndx = psymval->input_shndx(&is_ordinary); |
10967 | is_defined_in_discarded_section = | |
10968 | (is_ordinary | |
10969 | && shndx != elfcpp::SHN_UNDEF | |
10970 | && !arm_object->is_section_included(shndx) | |
10971 | && !relinfo->symtab->is_section_folded(arm_object, shndx)); | |
10972 | ||
10973 | // We need to compute the would-be final value of this local | |
10974 | // symbol. | |
10975 | if (!is_defined_in_discarded_section) | |
eb44217c | 10976 | { |
aa98ff75 DK |
10977 | typedef Sized_relobj<32, big_endian> ObjType; |
10978 | typename ObjType::Compute_final_local_value_status status = | |
10979 | arm_object->compute_final_local_value(r_sym, psymval, &symval, | |
10980 | relinfo->symtab); | |
10981 | if (status == ObjType::CFLV_OK) | |
10982 | { | |
10983 | // Currently we cannot handle a branch to a target in | |
10984 | // a merged section. If this is the case, issue an error | |
10985 | // and also free the merge symbol value. | |
10986 | if (!symval.has_output_value()) | |
10987 | { | |
10988 | const std::string& section_name = | |
10989 | arm_object->section_name(shndx); | |
10990 | arm_object->error(_("cannot handle branch to local %u " | |
10991 | "in a merged section %s"), | |
10992 | r_sym, section_name.c_str()); | |
10993 | } | |
10994 | psymval = &symval; | |
10995 | } | |
eb44217c | 10996 | else |
aa98ff75 DK |
10997 | { |
10998 | // We cannot determine the final value. | |
10999 | continue; | |
11000 | } | |
eb44217c DK |
11001 | } |
11002 | } | |
11003 | else | |
11004 | { | |
aa98ff75 DK |
11005 | const Symbol* gsym; |
11006 | gsym = arm_object->global_symbol(r_sym); | |
eb44217c DK |
11007 | gold_assert(gsym != NULL); |
11008 | if (gsym->is_forwarder()) | |
11009 | gsym = relinfo->symtab->resolve_forwards(gsym); | |
11010 | ||
11011 | sym = static_cast<const Sized_symbol<32>*>(gsym); | |
aa98ff75 | 11012 | if (sym->has_symtab_index() && sym->symtab_index() != -1U) |
eb44217c DK |
11013 | symval.set_output_symtab_index(sym->symtab_index()); |
11014 | else | |
11015 | symval.set_no_output_symtab_entry(); | |
11016 | ||
11017 | // We need to compute the would-be final value of this global | |
11018 | // symbol. | |
11019 | const Symbol_table* symtab = relinfo->symtab; | |
11020 | const Sized_symbol<32>* sized_symbol = | |
11021 | symtab->get_sized_symbol<32>(gsym); | |
11022 | Symbol_table::Compute_final_value_status status; | |
11023 | Arm_address value = | |
11024 | symtab->compute_final_value<32>(sized_symbol, &status); | |
11025 | ||
11026 | // Skip this if the symbol has not output section. | |
11027 | if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION) | |
11028 | continue; | |
eb44217c | 11029 | symval.set_output_value(value); |
aa98ff75 DK |
11030 | |
11031 | if (gsym->type() == elfcpp::STT_TLS) | |
11032 | symval.set_is_tls_symbol(); | |
11033 | else if (gsym->type() == elfcpp::STT_GNU_IFUNC) | |
11034 | symval.set_is_ifunc_symbol(); | |
eb44217c | 11035 | psymval = &symval; |
aa98ff75 DK |
11036 | |
11037 | is_defined_in_discarded_section = | |
11038 | (gsym->is_defined_in_discarded_section() | |
11039 | && gsym->is_undefined()); | |
11040 | shndx = 0; | |
11041 | } | |
11042 | ||
11043 | Symbol_value<32> symval2; | |
11044 | if (is_defined_in_discarded_section) | |
11045 | { | |
11046 | if (comdat_behavior == CB_UNDETERMINED) | |
11047 | { | |
11048 | std::string name = arm_object->section_name(relinfo->data_shndx); | |
11049 | comdat_behavior = get_comdat_behavior(name.c_str()); | |
11050 | } | |
11051 | if (comdat_behavior == CB_PRETEND) | |
11052 | { | |
11053 | // FIXME: This case does not work for global symbols. | |
11054 | // We have no place to store the original section index. | |
11055 | // Fortunately this does not matter for comdat sections, | |
11056 | // only for sections explicitly discarded by a linker | |
11057 | // script. | |
11058 | bool found; | |
11059 | typename elfcpp::Elf_types<32>::Elf_Addr value = | |
11060 | arm_object->map_to_kept_section(shndx, &found); | |
11061 | if (found) | |
11062 | symval2.set_output_value(value + psymval->input_value()); | |
11063 | else | |
11064 | symval2.set_output_value(0); | |
11065 | } | |
11066 | else | |
11067 | { | |
11068 | if (comdat_behavior == CB_WARNING) | |
11069 | gold_warning_at_location(relinfo, i, offset, | |
11070 | _("relocation refers to discarded " | |
11071 | "section")); | |
11072 | symval2.set_output_value(0); | |
11073 | } | |
11074 | symval2.set_no_output_symtab_entry(); | |
11075 | psymval = &symval2; | |
eb44217c DK |
11076 | } |
11077 | ||
11078 | // If symbol is a section symbol, we don't know the actual type of | |
11079 | // destination. Give up. | |
11080 | if (psymval->is_section_symbol()) | |
11081 | continue; | |
11082 | ||
11083 | this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval, | |
2ea97941 | 11084 | addend, view_address + offset); |
eb44217c DK |
11085 | } |
11086 | } | |
11087 | ||
11088 | // Scan an input section for stub generation. | |
11089 | ||
11090 | template<bool big_endian> | |
11091 | void | |
11092 | Target_arm<big_endian>::scan_section_for_stubs( | |
11093 | const Relocate_info<32, big_endian>* relinfo, | |
11094 | unsigned int sh_type, | |
11095 | const unsigned char* prelocs, | |
11096 | size_t reloc_count, | |
11097 | Output_section* output_section, | |
11098 | bool needs_special_offset_handling, | |
11099 | const unsigned char* view, | |
11100 | Arm_address view_address, | |
11101 | section_size_type view_size) | |
11102 | { | |
11103 | if (sh_type == elfcpp::SHT_REL) | |
11104 | this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>( | |
11105 | relinfo, | |
11106 | prelocs, | |
11107 | reloc_count, | |
11108 | output_section, | |
11109 | needs_special_offset_handling, | |
11110 | view, | |
11111 | view_address, | |
11112 | view_size); | |
11113 | else if (sh_type == elfcpp::SHT_RELA) | |
11114 | // We do not support RELA type relocations yet. This is provided for | |
11115 | // completeness. | |
11116 | this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>( | |
11117 | relinfo, | |
11118 | prelocs, | |
11119 | reloc_count, | |
11120 | output_section, | |
11121 | needs_special_offset_handling, | |
11122 | view, | |
11123 | view_address, | |
11124 | view_size); | |
11125 | else | |
11126 | gold_unreachable(); | |
11127 | } | |
11128 | ||
11129 | // Group input sections for stub generation. | |
11130 | // | |
11131 | // We goup input sections in an output sections so that the total size, | |
11132 | // including any padding space due to alignment is smaller than GROUP_SIZE | |
11133 | // unless the only input section in group is bigger than GROUP_SIZE already. | |
11134 | // Then an ARM stub table is created to follow the last input section | |
11135 | // in group. For each group an ARM stub table is created an is placed | |
11136 | // after the last group. If STUB_ALWATS_AFTER_BRANCH is false, we further | |
11137 | // extend the group after the stub table. | |
11138 | ||
11139 | template<bool big_endian> | |
11140 | void | |
11141 | Target_arm<big_endian>::group_sections( | |
2ea97941 | 11142 | Layout* layout, |
eb44217c DK |
11143 | section_size_type group_size, |
11144 | bool stubs_always_after_branch) | |
11145 | { | |
11146 | // Group input sections and insert stub table | |
11147 | Layout::Section_list section_list; | |
2ea97941 | 11148 | layout->get_allocated_sections(§ion_list); |
eb44217c DK |
11149 | for (Layout::Section_list::const_iterator p = section_list.begin(); |
11150 | p != section_list.end(); | |
11151 | ++p) | |
11152 | { | |
11153 | Arm_output_section<big_endian>* output_section = | |
11154 | Arm_output_section<big_endian>::as_arm_output_section(*p); | |
11155 | output_section->group_sections(group_size, stubs_always_after_branch, | |
11156 | this); | |
11157 | } | |
11158 | } | |
11159 | ||
11160 | // Relaxation hook. This is where we do stub generation. | |
11161 | ||
11162 | template<bool big_endian> | |
11163 | bool | |
11164 | Target_arm<big_endian>::do_relax( | |
11165 | int pass, | |
11166 | const Input_objects* input_objects, | |
11167 | Symbol_table* symtab, | |
2ea97941 | 11168 | Layout* layout) |
eb44217c DK |
11169 | { |
11170 | // No need to generate stubs if this is a relocatable link. | |
11171 | gold_assert(!parameters->options().relocatable()); | |
11172 | ||
11173 | // If this is the first pass, we need to group input sections into | |
11174 | // stub groups. | |
2b328d4e | 11175 | bool done_exidx_fixup = false; |
6625d24e | 11176 | typedef typename Stub_table_list::iterator Stub_table_iterator; |
eb44217c DK |
11177 | if (pass == 1) |
11178 | { | |
11179 | // Determine the stub group size. The group size is the absolute | |
11180 | // value of the parameter --stub-group-size. If --stub-group-size | |
11181 | // is passed a negative value, we restict stubs to be always after | |
11182 | // the stubbed branches. | |
11183 | int32_t stub_group_size_param = | |
11184 | parameters->options().stub_group_size(); | |
11185 | bool stubs_always_after_branch = stub_group_size_param < 0; | |
11186 | section_size_type stub_group_size = abs(stub_group_size_param); | |
11187 | ||
11188 | if (stub_group_size == 1) | |
11189 | { | |
11190 | // Default value. | |
11191 | // Thumb branch range is +-4MB has to be used as the default | |
11192 | // maximum size (a given section can contain both ARM and Thumb | |
a2c7281b DK |
11193 | // code, so the worst case has to be taken into account). If we are |
11194 | // fixing cortex-a8 errata, the branch range has to be even smaller, | |
11195 | // since wide conditional branch has a range of +-1MB only. | |
eb44217c | 11196 | // |
25bbe950 | 11197 | // This value is 48K less than that, which allows for 4096 |
eb44217c DK |
11198 | // 12-byte stubs. If we exceed that, then we will fail to link. |
11199 | // The user will have to relink with an explicit group size | |
11200 | // option. | |
25bbe950 DK |
11201 | stub_group_size = 4145152; |
11202 | } | |
11203 | ||
11204 | // The Cortex-A8 erratum fix depends on stubs not being in the same 4K | |
11205 | // page as the first half of a 32-bit branch straddling two 4K pages. | |
11206 | // This is a crude way of enforcing that. In addition, long conditional | |
11207 | // branches of THUMB-2 have a range of +-1M. If we are fixing cortex-A8 | |
11208 | // erratum, limit the group size to (1M - 12k) to avoid unreachable | |
11209 | // cortex-A8 stubs from long conditional branches. | |
11210 | if (this->fix_cortex_a8_) | |
11211 | { | |
11212 | stubs_always_after_branch = true; | |
11213 | const section_size_type cortex_a8_group_size = 1024 * (1024 - 12); | |
11214 | stub_group_size = std::max(stub_group_size, cortex_a8_group_size); | |
eb44217c DK |
11215 | } |
11216 | ||
2ea97941 | 11217 | group_sections(layout, stub_group_size, stubs_always_after_branch); |
2b328d4e DK |
11218 | |
11219 | // Also fix .ARM.exidx section coverage. | |
131687b4 DK |
11220 | Arm_output_section<big_endian>* exidx_output_section = NULL; |
11221 | for (Layout::Section_list::const_iterator p = | |
11222 | layout->section_list().begin(); | |
11223 | p != layout->section_list().end(); | |
11224 | ++p) | |
11225 | if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) | |
11226 | { | |
11227 | if (exidx_output_section == NULL) | |
11228 | exidx_output_section = | |
11229 | Arm_output_section<big_endian>::as_arm_output_section(*p); | |
11230 | else | |
11231 | // We cannot handle this now. | |
11232 | gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a " | |
11233 | "non-relocatable link"), | |
11234 | exidx_output_section->name(), | |
11235 | (*p)->name()); | |
11236 | } | |
11237 | ||
11238 | if (exidx_output_section != NULL) | |
2b328d4e | 11239 | { |
131687b4 DK |
11240 | this->fix_exidx_coverage(layout, input_objects, exidx_output_section, |
11241 | symtab); | |
2b328d4e DK |
11242 | done_exidx_fixup = true; |
11243 | } | |
eb44217c | 11244 | } |
6625d24e DK |
11245 | else |
11246 | { | |
11247 | // If this is not the first pass, addresses and file offsets have | |
11248 | // been reset at this point, set them here. | |
11249 | for (Stub_table_iterator sp = this->stub_tables_.begin(); | |
11250 | sp != this->stub_tables_.end(); | |
11251 | ++sp) | |
11252 | { | |
11253 | Arm_input_section<big_endian>* owner = (*sp)->owner(); | |
11254 | off_t off = align_address(owner->original_size(), | |
11255 | (*sp)->addralign()); | |
11256 | (*sp)->set_address_and_file_offset(owner->address() + off, | |
11257 | owner->offset() + off); | |
11258 | } | |
11259 | } | |
eb44217c | 11260 | |
44272192 DK |
11261 | // The Cortex-A8 stubs are sensitive to layout of code sections. At the |
11262 | // beginning of each relaxation pass, just blow away all the stubs. | |
11263 | // Alternatively, we could selectively remove only the stubs and reloc | |
11264 | // information for code sections that have moved since the last pass. | |
11265 | // That would require more book-keeping. | |
a120bc7f DK |
11266 | if (this->fix_cortex_a8_) |
11267 | { | |
11268 | // Clear all Cortex-A8 reloc information. | |
11269 | for (typename Cortex_a8_relocs_info::const_iterator p = | |
11270 | this->cortex_a8_relocs_info_.begin(); | |
11271 | p != this->cortex_a8_relocs_info_.end(); | |
11272 | ++p) | |
11273 | delete p->second; | |
11274 | this->cortex_a8_relocs_info_.clear(); | |
44272192 DK |
11275 | |
11276 | // Remove all Cortex-A8 stubs. | |
11277 | for (Stub_table_iterator sp = this->stub_tables_.begin(); | |
11278 | sp != this->stub_tables_.end(); | |
11279 | ++sp) | |
11280 | (*sp)->remove_all_cortex_a8_stubs(); | |
a120bc7f DK |
11281 | } |
11282 | ||
44272192 | 11283 | // Scan relocs for relocation stubs |
eb44217c DK |
11284 | for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); |
11285 | op != input_objects->relobj_end(); | |
11286 | ++op) | |
11287 | { | |
11288 | Arm_relobj<big_endian>* arm_relobj = | |
11289 | Arm_relobj<big_endian>::as_arm_relobj(*op); | |
2ea97941 | 11290 | arm_relobj->scan_sections_for_stubs(this, symtab, layout); |
eb44217c DK |
11291 | } |
11292 | ||
2fb7225c DK |
11293 | // Check all stub tables to see if any of them have their data sizes |
11294 | // or addresses alignments changed. These are the only things that | |
11295 | // matter. | |
eb44217c | 11296 | bool any_stub_table_changed = false; |
8923b24c | 11297 | Unordered_set<const Output_section*> sections_needing_adjustment; |
eb44217c DK |
11298 | for (Stub_table_iterator sp = this->stub_tables_.begin(); |
11299 | (sp != this->stub_tables_.end()) && !any_stub_table_changed; | |
11300 | ++sp) | |
11301 | { | |
2fb7225c | 11302 | if ((*sp)->update_data_size_and_addralign()) |
8923b24c DK |
11303 | { |
11304 | // Update data size of stub table owner. | |
11305 | Arm_input_section<big_endian>* owner = (*sp)->owner(); | |
11306 | uint64_t address = owner->address(); | |
11307 | off_t offset = owner->offset(); | |
11308 | owner->reset_address_and_file_offset(); | |
11309 | owner->set_address_and_file_offset(address, offset); | |
11310 | ||
11311 | sections_needing_adjustment.insert(owner->output_section()); | |
11312 | any_stub_table_changed = true; | |
11313 | } | |
11314 | } | |
11315 | ||
11316 | // Output_section_data::output_section() returns a const pointer but we | |
11317 | // need to update output sections, so we record all output sections needing | |
11318 | // update above and scan the sections here to find out what sections need | |
11319 | // to be updated. | |
11320 | for(Layout::Section_list::const_iterator p = layout->section_list().begin(); | |
11321 | p != layout->section_list().end(); | |
11322 | ++p) | |
11323 | { | |
11324 | if (sections_needing_adjustment.find(*p) | |
11325 | != sections_needing_adjustment.end()) | |
11326 | (*p)->set_section_offsets_need_adjustment(); | |
eb44217c DK |
11327 | } |
11328 | ||
2b328d4e DK |
11329 | // Stop relaxation if no EXIDX fix-up and no stub table change. |
11330 | bool continue_relaxation = done_exidx_fixup || any_stub_table_changed; | |
11331 | ||
2fb7225c | 11332 | // Finalize the stubs in the last relaxation pass. |
2b328d4e | 11333 | if (!continue_relaxation) |
e7eca48c DK |
11334 | { |
11335 | for (Stub_table_iterator sp = this->stub_tables_.begin(); | |
11336 | (sp != this->stub_tables_.end()) && !any_stub_table_changed; | |
11337 | ++sp) | |
11338 | (*sp)->finalize_stubs(); | |
11339 | ||
11340 | // Update output local symbol counts of objects if necessary. | |
11341 | for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); | |
11342 | op != input_objects->relobj_end(); | |
11343 | ++op) | |
11344 | { | |
11345 | Arm_relobj<big_endian>* arm_relobj = | |
11346 | Arm_relobj<big_endian>::as_arm_relobj(*op); | |
11347 | ||
11348 | // Update output local symbol counts. We need to discard local | |
11349 | // symbols defined in parts of input sections that are discarded by | |
11350 | // relaxation. | |
11351 | if (arm_relobj->output_local_symbol_count_needs_update()) | |
11352 | arm_relobj->update_output_local_symbol_count(); | |
11353 | } | |
11354 | } | |
2fb7225c | 11355 | |
2b328d4e | 11356 | return continue_relaxation; |
eb44217c DK |
11357 | } |
11358 | ||
43d12afe DK |
11359 | // Relocate a stub. |
11360 | ||
11361 | template<bool big_endian> | |
11362 | void | |
11363 | Target_arm<big_endian>::relocate_stub( | |
2fb7225c | 11364 | Stub* stub, |
43d12afe DK |
11365 | const Relocate_info<32, big_endian>* relinfo, |
11366 | Output_section* output_section, | |
11367 | unsigned char* view, | |
11368 | Arm_address address, | |
11369 | section_size_type view_size) | |
11370 | { | |
11371 | Relocate relocate; | |
2ea97941 ILT |
11372 | const Stub_template* stub_template = stub->stub_template(); |
11373 | for (size_t i = 0; i < stub_template->reloc_count(); i++) | |
43d12afe | 11374 | { |
2ea97941 ILT |
11375 | size_t reloc_insn_index = stub_template->reloc_insn_index(i); |
11376 | const Insn_template* insn = &stub_template->insns()[reloc_insn_index]; | |
43d12afe DK |
11377 | |
11378 | unsigned int r_type = insn->r_type(); | |
2ea97941 | 11379 | section_size_type reloc_offset = stub_template->reloc_offset(i); |
43d12afe DK |
11380 | section_size_type reloc_size = insn->size(); |
11381 | gold_assert(reloc_offset + reloc_size <= view_size); | |
11382 | ||
11383 | // This is the address of the stub destination. | |
41263c05 | 11384 | Arm_address target = stub->reloc_target(i) + insn->reloc_addend(); |
43d12afe DK |
11385 | Symbol_value<32> symval; |
11386 | symval.set_output_value(target); | |
11387 | ||
11388 | // Synthesize a fake reloc just in case. We don't have a symbol so | |
11389 | // we use 0. | |
11390 | unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size]; | |
11391 | memset(reloc_buffer, 0, sizeof(reloc_buffer)); | |
11392 | elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer); | |
11393 | reloc_write.put_r_offset(reloc_offset); | |
11394 | reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type)); | |
11395 | elfcpp::Rel<32, big_endian> rel(reloc_buffer); | |
11396 | ||
11397 | relocate.relocate(relinfo, this, output_section, | |
11398 | this->fake_relnum_for_stubs, rel, r_type, | |
11399 | NULL, &symval, view + reloc_offset, | |
11400 | address + reloc_offset, reloc_size); | |
11401 | } | |
11402 | } | |
11403 | ||
a0351a69 DK |
11404 | // Determine whether an object attribute tag takes an integer, a |
11405 | // string or both. | |
11406 | ||
11407 | template<bool big_endian> | |
11408 | int | |
11409 | Target_arm<big_endian>::do_attribute_arg_type(int tag) const | |
11410 | { | |
11411 | if (tag == Object_attribute::Tag_compatibility) | |
11412 | return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL | |
11413 | | Object_attribute::ATTR_TYPE_FLAG_STR_VAL); | |
11414 | else if (tag == elfcpp::Tag_nodefaults) | |
11415 | return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL | |
11416 | | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT); | |
11417 | else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name) | |
11418 | return Object_attribute::ATTR_TYPE_FLAG_STR_VAL; | |
11419 | else if (tag < 32) | |
11420 | return Object_attribute::ATTR_TYPE_FLAG_INT_VAL; | |
11421 | else | |
11422 | return ((tag & 1) != 0 | |
11423 | ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL | |
11424 | : Object_attribute::ATTR_TYPE_FLAG_INT_VAL); | |
11425 | } | |
11426 | ||
11427 | // Reorder attributes. | |
11428 | // | |
11429 | // The ABI defines that Tag_conformance should be emitted first, and that | |
11430 | // Tag_nodefaults should be second (if either is defined). This sets those | |
11431 | // two positions, and bumps up the position of all the remaining tags to | |
11432 | // compensate. | |
11433 | ||
11434 | template<bool big_endian> | |
11435 | int | |
11436 | Target_arm<big_endian>::do_attributes_order(int num) const | |
11437 | { | |
11438 | // Reorder the known object attributes in output. We want to move | |
11439 | // Tag_conformance to position 4 and Tag_conformance to position 5 | |
11440 | // and shift eveything between 4 .. Tag_conformance - 1 to make room. | |
11441 | if (num == 4) | |
11442 | return elfcpp::Tag_conformance; | |
11443 | if (num == 5) | |
11444 | return elfcpp::Tag_nodefaults; | |
11445 | if ((num - 2) < elfcpp::Tag_nodefaults) | |
11446 | return num - 2; | |
11447 | if ((num - 1) < elfcpp::Tag_conformance) | |
11448 | return num - 1; | |
11449 | return num; | |
11450 | } | |
4a657b0d | 11451 | |
44272192 DK |
11452 | // Scan a span of THUMB code for Cortex-A8 erratum. |
11453 | ||
11454 | template<bool big_endian> | |
11455 | void | |
11456 | Target_arm<big_endian>::scan_span_for_cortex_a8_erratum( | |
11457 | Arm_relobj<big_endian>* arm_relobj, | |
11458 | unsigned int shndx, | |
11459 | section_size_type span_start, | |
11460 | section_size_type span_end, | |
11461 | const unsigned char* view, | |
11462 | Arm_address address) | |
11463 | { | |
11464 | // Scan for 32-bit Thumb-2 branches which span two 4K regions, where: | |
11465 | // | |
11466 | // The opcode is BLX.W, BL.W, B.W, Bcc.W | |
11467 | // The branch target is in the same 4KB region as the | |
11468 | // first half of the branch. | |
11469 | // The instruction before the branch is a 32-bit | |
11470 | // length non-branch instruction. | |
11471 | section_size_type i = span_start; | |
11472 | bool last_was_32bit = false; | |
11473 | bool last_was_branch = false; | |
11474 | while (i < span_end) | |
11475 | { | |
11476 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
11477 | const Valtype* wv = reinterpret_cast<const Valtype*>(view + i); | |
11478 | uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
11479 | bool is_blx = false, is_b = false; | |
11480 | bool is_bl = false, is_bcc = false; | |
11481 | ||
11482 | bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000; | |
11483 | if (insn_32bit) | |
11484 | { | |
11485 | // Load the rest of the insn (in manual-friendly order). | |
11486 | insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
11487 | ||
11488 | // Encoding T4: B<c>.W. | |
11489 | is_b = (insn & 0xf800d000U) == 0xf0009000U; | |
11490 | // Encoding T1: BL<c>.W. | |
11491 | is_bl = (insn & 0xf800d000U) == 0xf000d000U; | |
11492 | // Encoding T2: BLX<c>.W. | |
11493 | is_blx = (insn & 0xf800d000U) == 0xf000c000U; | |
11494 | // Encoding T3: B<c>.W (not permitted in IT block). | |
11495 | is_bcc = ((insn & 0xf800d000U) == 0xf0008000U | |
11496 | && (insn & 0x07f00000U) != 0x03800000U); | |
11497 | } | |
11498 | ||
11499 | bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc; | |
11500 | ||
11501 | // If this instruction is a 32-bit THUMB branch that crosses a 4K | |
11502 | // page boundary and it follows 32-bit non-branch instruction, | |
11503 | // we need to work around. | |
11504 | if (is_32bit_branch | |
11505 | && ((address + i) & 0xfffU) == 0xffeU | |
11506 | && last_was_32bit | |
11507 | && !last_was_branch) | |
11508 | { | |
11509 | // Check to see if there is a relocation stub for this branch. | |
11510 | bool force_target_arm = false; | |
11511 | bool force_target_thumb = false; | |
11512 | const Cortex_a8_reloc* cortex_a8_reloc = NULL; | |
11513 | Cortex_a8_relocs_info::const_iterator p = | |
11514 | this->cortex_a8_relocs_info_.find(address + i); | |
11515 | ||
11516 | if (p != this->cortex_a8_relocs_info_.end()) | |
11517 | { | |
11518 | cortex_a8_reloc = p->second; | |
11519 | bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0; | |
11520 | ||
11521 | if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL | |
11522 | && !target_is_thumb) | |
11523 | force_target_arm = true; | |
11524 | else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL | |
11525 | && target_is_thumb) | |
11526 | force_target_thumb = true; | |
11527 | } | |
11528 | ||
11529 | off_t offset; | |
11530 | Stub_type stub_type = arm_stub_none; | |
11531 | ||
11532 | // Check if we have an offending branch instruction. | |
11533 | uint16_t upper_insn = (insn >> 16) & 0xffffU; | |
11534 | uint16_t lower_insn = insn & 0xffffU; | |
11535 | typedef struct Arm_relocate_functions<big_endian> RelocFuncs; | |
11536 | ||
11537 | if (cortex_a8_reloc != NULL | |
11538 | && cortex_a8_reloc->reloc_stub() != NULL) | |
11539 | // We've already made a stub for this instruction, e.g. | |
11540 | // it's a long branch or a Thumb->ARM stub. Assume that | |
11541 | // stub will suffice to work around the A8 erratum (see | |
11542 | // setting of always_after_branch above). | |
11543 | ; | |
11544 | else if (is_bcc) | |
11545 | { | |
11546 | offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn, | |
11547 | lower_insn); | |
11548 | stub_type = arm_stub_a8_veneer_b_cond; | |
11549 | } | |
11550 | else if (is_b || is_bl || is_blx) | |
11551 | { | |
11552 | offset = RelocFuncs::thumb32_branch_offset(upper_insn, | |
11553 | lower_insn); | |
11554 | if (is_blx) | |
11555 | offset &= ~3; | |
11556 | ||
11557 | stub_type = (is_blx | |
11558 | ? arm_stub_a8_veneer_blx | |
11559 | : (is_bl | |
11560 | ? arm_stub_a8_veneer_bl | |
11561 | : arm_stub_a8_veneer_b)); | |
11562 | } | |
11563 | ||
11564 | if (stub_type != arm_stub_none) | |
11565 | { | |
11566 | Arm_address pc_for_insn = address + i + 4; | |
11567 | ||
11568 | // The original instruction is a BL, but the target is | |
11569 | // an ARM instruction. If we were not making a stub, | |
11570 | // the BL would have been converted to a BLX. Use the | |
11571 | // BLX stub instead in that case. | |
11572 | if (this->may_use_blx() && force_target_arm | |
11573 | && stub_type == arm_stub_a8_veneer_bl) | |
11574 | { | |
11575 | stub_type = arm_stub_a8_veneer_blx; | |
11576 | is_blx = true; | |
11577 | is_bl = false; | |
11578 | } | |
11579 | // Conversely, if the original instruction was | |
11580 | // BLX but the target is Thumb mode, use the BL stub. | |
11581 | else if (force_target_thumb | |
11582 | && stub_type == arm_stub_a8_veneer_blx) | |
11583 | { | |
11584 | stub_type = arm_stub_a8_veneer_bl; | |
11585 | is_blx = false; | |
11586 | is_bl = true; | |
11587 | } | |
11588 | ||
11589 | if (is_blx) | |
11590 | pc_for_insn &= ~3; | |
11591 | ||
11592 | // If we found a relocation, use the proper destination, | |
11593 | // not the offset in the (unrelocated) instruction. | |
11594 | // Note this is always done if we switched the stub type above. | |
11595 | if (cortex_a8_reloc != NULL) | |
11596 | offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn); | |
11597 | ||
11598 | Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1); | |
11599 | ||
11600 | // Add a new stub if destination address in in the same page. | |
11601 | if (((address + i) & ~0xfffU) == (target & ~0xfffU)) | |
11602 | { | |
11603 | Cortex_a8_stub* stub = | |
11604 | this->stub_factory_.make_cortex_a8_stub(stub_type, | |
11605 | arm_relobj, shndx, | |
11606 | address + i, | |
11607 | target, insn); | |
11608 | Stub_table<big_endian>* stub_table = | |
11609 | arm_relobj->stub_table(shndx); | |
11610 | gold_assert(stub_table != NULL); | |
11611 | stub_table->add_cortex_a8_stub(address + i, stub); | |
11612 | } | |
11613 | } | |
11614 | } | |
11615 | ||
11616 | i += insn_32bit ? 4 : 2; | |
11617 | last_was_32bit = insn_32bit; | |
11618 | last_was_branch = is_32bit_branch; | |
11619 | } | |
11620 | } | |
11621 | ||
41263c05 DK |
11622 | // Apply the Cortex-A8 workaround. |
11623 | ||
11624 | template<bool big_endian> | |
11625 | void | |
11626 | Target_arm<big_endian>::apply_cortex_a8_workaround( | |
11627 | const Cortex_a8_stub* stub, | |
11628 | Arm_address stub_address, | |
11629 | unsigned char* insn_view, | |
11630 | Arm_address insn_address) | |
11631 | { | |
11632 | typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | |
11633 | Valtype* wv = reinterpret_cast<Valtype*>(insn_view); | |
11634 | Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | |
11635 | Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | |
11636 | off_t branch_offset = stub_address - (insn_address + 4); | |
11637 | ||
11638 | typedef struct Arm_relocate_functions<big_endian> RelocFuncs; | |
11639 | switch (stub->stub_template()->type()) | |
11640 | { | |
11641 | case arm_stub_a8_veneer_b_cond: | |
0439c796 DK |
11642 | // For a conditional branch, we re-write it to be a uncondition |
11643 | // branch to the stub. We use the THUMB-2 encoding here. | |
11644 | upper_insn = 0xf000U; | |
11645 | lower_insn = 0xb800U; | |
11646 | // Fall through | |
41263c05 DK |
11647 | case arm_stub_a8_veneer_b: |
11648 | case arm_stub_a8_veneer_bl: | |
11649 | case arm_stub_a8_veneer_blx: | |
11650 | if ((lower_insn & 0x5000U) == 0x4000U) | |
11651 | // For a BLX instruction, make sure that the relocation is | |
11652 | // rounded up to a word boundary. This follows the semantics of | |
11653 | // the instruction which specifies that bit 1 of the target | |
11654 | // address will come from bit 1 of the base address. | |
11655 | branch_offset = (branch_offset + 2) & ~3; | |
11656 | ||
11657 | // Put BRANCH_OFFSET back into the insn. | |
11658 | gold_assert(!utils::has_overflow<25>(branch_offset)); | |
11659 | upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset); | |
11660 | lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset); | |
11661 | break; | |
11662 | ||
11663 | default: | |
11664 | gold_unreachable(); | |
11665 | } | |
11666 | ||
11667 | // Put the relocated value back in the object file: | |
11668 | elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | |
11669 | elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | |
11670 | } | |
11671 | ||
4a657b0d DK |
11672 | template<bool big_endian> |
11673 | class Target_selector_arm : public Target_selector | |
11674 | { | |
11675 | public: | |
11676 | Target_selector_arm() | |
11677 | : Target_selector(elfcpp::EM_ARM, 32, big_endian, | |
11678 | (big_endian ? "elf32-bigarm" : "elf32-littlearm")) | |
11679 | { } | |
11680 | ||
11681 | Target* | |
11682 | do_instantiate_target() | |
11683 | { return new Target_arm<big_endian>(); } | |
11684 | }; | |
11685 | ||
2b328d4e DK |
11686 | // Fix .ARM.exidx section coverage. |
11687 | ||
11688 | template<bool big_endian> | |
11689 | void | |
11690 | Target_arm<big_endian>::fix_exidx_coverage( | |
11691 | Layout* layout, | |
131687b4 | 11692 | const Input_objects* input_objects, |
2b328d4e DK |
11693 | Arm_output_section<big_endian>* exidx_section, |
11694 | Symbol_table* symtab) | |
11695 | { | |
11696 | // We need to look at all the input sections in output in ascending | |
11697 | // order of of output address. We do that by building a sorted list | |
11698 | // of output sections by addresses. Then we looks at the output sections | |
11699 | // in order. The input sections in an output section are already sorted | |
11700 | // by addresses within the output section. | |
11701 | ||
11702 | typedef std::set<Output_section*, output_section_address_less_than> | |
11703 | Sorted_output_section_list; | |
11704 | Sorted_output_section_list sorted_output_sections; | |
131687b4 DK |
11705 | |
11706 | // Find out all the output sections of input sections pointed by | |
11707 | // EXIDX input sections. | |
11708 | for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | |
11709 | p != input_objects->relobj_end(); | |
2b328d4e DK |
11710 | ++p) |
11711 | { | |
131687b4 DK |
11712 | Arm_relobj<big_endian>* arm_relobj = |
11713 | Arm_relobj<big_endian>::as_arm_relobj(*p); | |
11714 | std::vector<unsigned int> shndx_list; | |
11715 | arm_relobj->get_exidx_shndx_list(&shndx_list); | |
11716 | for (size_t i = 0; i < shndx_list.size(); ++i) | |
11717 | { | |
11718 | const Arm_exidx_input_section* exidx_input_section = | |
11719 | arm_relobj->exidx_input_section_by_shndx(shndx_list[i]); | |
11720 | gold_assert(exidx_input_section != NULL); | |
11721 | if (!exidx_input_section->has_errors()) | |
11722 | { | |
11723 | unsigned int text_shndx = exidx_input_section->link(); | |
ca09d69a | 11724 | Output_section* os = arm_relobj->output_section(text_shndx); |
131687b4 DK |
11725 | if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0) |
11726 | sorted_output_sections.insert(os); | |
11727 | } | |
11728 | } | |
2b328d4e DK |
11729 | } |
11730 | ||
11731 | // Go over the output sections in ascending order of output addresses. | |
11732 | typedef typename Arm_output_section<big_endian>::Text_section_list | |
11733 | Text_section_list; | |
11734 | Text_section_list sorted_text_sections; | |
11735 | for(typename Sorted_output_section_list::iterator p = | |
11736 | sorted_output_sections.begin(); | |
11737 | p != sorted_output_sections.end(); | |
11738 | ++p) | |
11739 | { | |
11740 | Arm_output_section<big_endian>* arm_output_section = | |
11741 | Arm_output_section<big_endian>::as_arm_output_section(*p); | |
11742 | arm_output_section->append_text_sections_to_list(&sorted_text_sections); | |
11743 | } | |
11744 | ||
85fdf906 AH |
11745 | exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab, |
11746 | merge_exidx_entries()); | |
2b328d4e DK |
11747 | } |
11748 | ||
4a657b0d DK |
11749 | Target_selector_arm<false> target_selector_arm; |
11750 | Target_selector_arm<true> target_selector_armbe; | |
11751 | ||
11752 | } // End anonymous namespace. |