]>
Commit | Line | Data |
---|---|---|
41abdfbd | 1 | /* Target-dependent code for GDB, the GNU debugger. |
ecf4059f | 2 | Copyright 1986, 1987, 1989, 1991, 1992 Free Software Foundation, Inc. |
41abdfbd JG |
3 | |
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
41abdfbd | 20 | #include "defs.h" |
41abdfbd JG |
21 | #include "frame.h" |
22 | #include "inferior.h" | |
23 | #include "symtab.h" | |
24 | #include "target.h" | |
030fb5cb | 25 | #include "gdbcore.h" |
41abdfbd | 26 | |
2aefe6e4 JK |
27 | #include "xcoffsolib.h" |
28 | ||
41abdfbd JG |
29 | #include <sys/param.h> |
30 | #include <sys/dir.h> | |
31 | #include <sys/user.h> | |
32 | #include <signal.h> | |
33 | #include <sys/ioctl.h> | |
34 | #include <fcntl.h> | |
35 | ||
41abdfbd JG |
36 | #include <a.out.h> |
37 | #include <sys/file.h> | |
38 | #include <sys/stat.h> | |
39 | #include <sys/core.h> | |
ecf4059f | 40 | #include <sys/ldr.h> |
41abdfbd | 41 | |
d6434f39 JG |
42 | |
43 | extern struct obstack frame_cache_obstack; | |
44 | ||
41abdfbd | 45 | extern int errno; |
41abdfbd JG |
46 | |
47 | /* Nonzero if we just simulated a single step break. */ | |
48 | int one_stepped; | |
49 | ||
41abdfbd JG |
50 | /* Breakpoint shadows for the single step instructions will be kept here. */ |
51 | ||
52 | static struct sstep_breaks { | |
030fb5cb JK |
53 | /* Address, or 0 if this is not in use. */ |
54 | CORE_ADDR address; | |
55 | /* Shadow contents. */ | |
56 | char data[4]; | |
41abdfbd JG |
57 | } stepBreaks[2]; |
58 | ||
ecf4059f JG |
59 | /* Static function prototypes */ |
60 | ||
ecf4059f JG |
61 | static CORE_ADDR |
62 | find_toc_address PARAMS ((CORE_ADDR pc)); | |
63 | ||
64 | static CORE_ADDR | |
65 | branch_dest PARAMS ((int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)); | |
66 | ||
67 | static void | |
68 | frame_get_cache_fsr PARAMS ((struct frame_info *fi, | |
69 | struct aix_framedata *fdatap)); | |
41abdfbd JG |
70 | |
71 | /* | |
72 | * Calculate the destination of a branch/jump. Return -1 if not a branch. | |
73 | */ | |
ecf4059f | 74 | static CORE_ADDR |
41abdfbd | 75 | branch_dest (opcode, instr, pc, safety) |
ecf4059f JG |
76 | int opcode; |
77 | int instr; | |
78 | CORE_ADDR pc; | |
79 | CORE_ADDR safety; | |
41abdfbd JG |
80 | { |
81 | register long offset; | |
ecf4059f | 82 | CORE_ADDR dest; |
41abdfbd JG |
83 | int immediate; |
84 | int absolute; | |
85 | int ext_op; | |
86 | ||
87 | absolute = (int) ((instr >> 1) & 1); | |
88 | ||
89 | switch (opcode) { | |
90 | case 18 : | |
ecf4059f | 91 | immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */ |
41abdfbd JG |
92 | |
93 | case 16 : | |
94 | if (opcode != 18) /* br conditional */ | |
95 | immediate = ((instr & ~3) << 16) >> 16; | |
96 | if (absolute) | |
97 | dest = immediate; | |
98 | else | |
99 | dest = pc + immediate; | |
100 | break; | |
101 | ||
102 | case 19 : | |
103 | ext_op = (instr>>1) & 0x3ff; | |
104 | ||
105 | if (ext_op == 16) /* br conditional register */ | |
106 | dest = read_register (LR_REGNUM) & ~3; | |
107 | ||
108 | else if (ext_op == 528) /* br cond to count reg */ | |
9aa31e91 JK |
109 | { |
110 | dest = read_register (CTR_REGNUM) & ~3; | |
111 | ||
112 | /* If we are about to execute a system call, dest is something | |
113 | like 0x22fc or 0x3b00. Upon completion the system call | |
114 | will return to the address in the link register. */ | |
115 | if (dest < TEXT_SEGMENT_BASE) | |
116 | dest = read_register (LR_REGNUM) & ~3; | |
117 | } | |
41abdfbd JG |
118 | else return -1; |
119 | break; | |
120 | ||
121 | default: return -1; | |
122 | } | |
818de002 | 123 | return (dest < TEXT_SEGMENT_BASE) ? safety : dest; |
41abdfbd JG |
124 | } |
125 | ||
126 | ||
127 | ||
128 | /* AIX does not support PT_STEP. Simulate it. */ | |
129 | ||
997cc2c0 | 130 | void |
41abdfbd | 131 | single_step (signal) |
997cc2c0 | 132 | int signal; |
41abdfbd JG |
133 | { |
134 | #define INSNLEN(OPCODE) 4 | |
135 | ||
136 | static char breakp[] = BREAKPOINT; | |
030fb5cb JK |
137 | int ii, insn; |
138 | CORE_ADDR loc; | |
139 | CORE_ADDR breaks[2]; | |
140 | int opcode; | |
41abdfbd JG |
141 | |
142 | if (!one_stepped) { | |
41abdfbd JG |
143 | loc = read_pc (); |
144 | ||
359a097f | 145 | read_memory (loc, (char *) &insn, 4); |
41abdfbd JG |
146 | |
147 | breaks[0] = loc + INSNLEN(insn); | |
148 | opcode = insn >> 26; | |
149 | breaks[1] = branch_dest (opcode, insn, loc, breaks[0]); | |
150 | ||
818de002 PB |
151 | /* Don't put two breakpoints on the same address. */ |
152 | if (breaks[1] == breaks[0]) | |
153 | breaks[1] = -1; | |
154 | ||
030fb5cb | 155 | stepBreaks[1].address = 0; |
41abdfbd JG |
156 | |
157 | for (ii=0; ii < 2; ++ii) { | |
158 | ||
159 | /* ignore invalid breakpoint. */ | |
160 | if ( breaks[ii] == -1) | |
161 | continue; | |
162 | ||
030fb5cb | 163 | read_memory (breaks[ii], stepBreaks[ii].data, 4); |
41abdfbd | 164 | |
030fb5cb | 165 | write_memory (breaks[ii], breakp, 4); |
41abdfbd JG |
166 | stepBreaks[ii].address = breaks[ii]; |
167 | } | |
168 | ||
169 | one_stepped = 1; | |
997cc2c0 | 170 | } else { |
41abdfbd JG |
171 | |
172 | /* remove step breakpoints. */ | |
173 | for (ii=0; ii < 2; ++ii) | |
030fb5cb | 174 | if (stepBreaks[ii].address != 0) |
41abdfbd | 175 | write_memory |
030fb5cb | 176 | (stepBreaks[ii].address, stepBreaks[ii].data, 4); |
41abdfbd JG |
177 | |
178 | one_stepped = 0; | |
179 | } | |
997cc2c0 | 180 | errno = 0; /* FIXME, don't ignore errors! */ |
030fb5cb | 181 | /* What errors? {read,write}_memory call error(). */ |
41abdfbd | 182 | } |
41abdfbd JG |
183 | |
184 | ||
185 | /* return pc value after skipping a function prologue. */ | |
186 | ||
187 | skip_prologue (pc) | |
ecf4059f | 188 | CORE_ADDR pc; |
41abdfbd | 189 | { |
34df79fc | 190 | char buf[4]; |
41abdfbd | 191 | unsigned int tmp; |
34df79fc | 192 | unsigned long op; |
41abdfbd | 193 | |
34df79fc | 194 | if (target_read_memory (pc, buf, 4)) |
41abdfbd | 195 | return pc; /* Can't access it -- assume no prologue. */ |
34df79fc | 196 | op = extract_unsigned_integer (buf, 4); |
41abdfbd JG |
197 | |
198 | /* Assume that subsequent fetches can fail with low probability. */ | |
199 | ||
200 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
201 | pc += 4; | |
202 | op = read_memory_integer (pc, 4); | |
203 | } | |
41abdfbd JG |
204 | |
205 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
206 | pc += 4; | |
207 | op = read_memory_integer (pc, 4); | |
208 | } | |
209 | ||
210 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
211 | pc += 4; | |
212 | op = read_memory_integer (pc, 4); | |
1eeba686 PB |
213 | |
214 | /* At this point, make sure this is not a trampoline function | |
215 | (a function that simply calls another functions, and nothing else). | |
216 | If the next is not a nop, this branch was part of the function | |
217 | prologue. */ | |
218 | ||
219 | if (op == 0x4def7b82 || /* crorc 15, 15, 15 */ | |
220 | op == 0x0) | |
221 | return pc - 4; /* don't skip over this branch */ | |
41abdfbd JG |
222 | } |
223 | ||
cdb1cc92 ILT |
224 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ |
225 | pc += 4; /* store floating register double */ | |
226 | op = read_memory_integer (pc, 4); | |
227 | } | |
228 | ||
41abdfbd JG |
229 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ |
230 | pc += 4; | |
231 | op = read_memory_integer (pc, 4); | |
232 | } | |
233 | ||
234 | while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */ | |
235 | (tmp == 0x9421) || /* stu r1, NUM(r1) */ | |
cdb1cc92 | 236 | (tmp == 0x93e1)) /* st r31,NUM(r1) */ |
41abdfbd JG |
237 | { |
238 | pc += 4; | |
239 | op = read_memory_integer (pc, 4); | |
240 | } | |
241 | ||
242 | while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */ | |
243 | pc += 4; /* l r30, ... */ | |
244 | op = read_memory_integer (pc, 4); | |
245 | } | |
246 | ||
507e4004 | 247 | /* store parameters into stack */ |
818de002 PB |
248 | while( |
249 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ | |
250 | (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */ | |
251 | (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */ | |
252 | (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */ | |
253 | { | |
254 | pc += 4; /* store fpr double */ | |
255 | op = read_memory_integer (pc, 4); | |
256 | } | |
41abdfbd JG |
257 | |
258 | if (op == 0x603f0000) { /* oril r31, r1, 0x0 */ | |
259 | pc += 4; /* this happens if r31 is used as */ | |
260 | op = read_memory_integer (pc, 4); /* frame ptr. (gcc does that) */ | |
261 | ||
818de002 PB |
262 | tmp = 0; |
263 | while ((op >> 16) == (0x907f + tmp)) { /* st r3, NUM(r31) */ | |
264 | pc += 4; /* st r4, NUM(r31), ... */ | |
41abdfbd | 265 | op = read_memory_integer (pc, 4); |
818de002 | 266 | tmp += 0x20; |
41abdfbd JG |
267 | } |
268 | } | |
507e4004 PB |
269 | #if 0 |
270 | /* I have problems with skipping over __main() that I need to address | |
271 | * sometime. Previously, I used to use misc_function_vector which | |
272 | * didn't work as well as I wanted to be. -MGO */ | |
273 | ||
274 | /* If the first thing after skipping a prolog is a branch to a function, | |
275 | this might be a call to an initializer in main(), introduced by gcc2. | |
276 | We'd like to skip over it as well. Fortunately, xlc does some extra | |
277 | work before calling a function right after a prologue, thus we can | |
278 | single out such gcc2 behaviour. */ | |
279 | ||
280 | ||
281 | if ((op & 0xfc000001) == 0x48000001) { /* bl foo, an initializer function? */ | |
282 | op = read_memory_integer (pc+4, 4); | |
283 | ||
284 | if (op == 0x4def7b82) { /* cror 0xf, 0xf, 0xf (nop) */ | |
285 | ||
286 | /* check and see if we are in main. If so, skip over this initializer | |
287 | function as well. */ | |
288 | ||
289 | tmp = find_pc_misc_function (pc); | |
2e4964ad | 290 | if (tmp >= 0 && STREQ (misc_function_vector [tmp].name, "main")) |
507e4004 PB |
291 | return pc + 8; |
292 | } | |
293 | } | |
294 | #endif /* 0 */ | |
295 | ||
41abdfbd JG |
296 | return pc; |
297 | } | |
298 | ||
818de002 | 299 | |
41abdfbd JG |
300 | /************************************************************************* |
301 | Support for creating pushind a dummy frame into the stack, and popping | |
302 | frames, etc. | |
303 | *************************************************************************/ | |
304 | ||
818de002 PB |
305 | /* The total size of dummy frame is 436, which is; |
306 | ||
307 | 32 gpr's - 128 bytes | |
308 | 32 fpr's - 256 " | |
309 | 7 the rest - 28 " | |
310 | and 24 extra bytes for the callee's link area. The last 24 bytes | |
311 | for the link area might not be necessary, since it will be taken | |
312 | care of by push_arguments(). */ | |
313 | ||
314 | #define DUMMY_FRAME_SIZE 436 | |
315 | ||
41abdfbd JG |
316 | #define DUMMY_FRAME_ADDR_SIZE 10 |
317 | ||
318 | /* Make sure you initialize these in somewhere, in case gdb gives up what it | |
818de002 | 319 | was debugging and starts debugging something else. FIXMEibm */ |
41abdfbd JG |
320 | |
321 | static int dummy_frame_count = 0; | |
322 | static int dummy_frame_size = 0; | |
323 | static CORE_ADDR *dummy_frame_addr = 0; | |
324 | ||
325 | extern int stop_stack_dummy; | |
326 | ||
327 | /* push a dummy frame into stack, save all register. Currently we are saving | |
328 | only gpr's and fpr's, which is not good enough! FIXMEmgo */ | |
329 | ||
ecf4059f | 330 | void |
41abdfbd JG |
331 | push_dummy_frame () |
332 | { | |
359a097f JK |
333 | /* stack pointer. */ |
334 | CORE_ADDR sp; | |
335 | ||
336 | /* link register. */ | |
337 | CORE_ADDR pc; | |
338 | /* Same thing, target byte order. */ | |
339 | char pc_targ[4]; | |
340 | ||
41abdfbd JG |
341 | int ii; |
342 | ||
5f1c39ef | 343 | target_fetch_registers (-1); |
6c6afbb9 | 344 | |
41abdfbd JG |
345 | if (dummy_frame_count >= dummy_frame_size) { |
346 | dummy_frame_size += DUMMY_FRAME_ADDR_SIZE; | |
347 | if (dummy_frame_addr) | |
348 | dummy_frame_addr = (CORE_ADDR*) xrealloc | |
349 | (dummy_frame_addr, sizeof(CORE_ADDR) * (dummy_frame_size)); | |
350 | else | |
351 | dummy_frame_addr = (CORE_ADDR*) | |
352 | xmalloc (sizeof(CORE_ADDR) * (dummy_frame_size)); | |
353 | } | |
354 | ||
355 | sp = read_register(SP_REGNUM); | |
359a097f JK |
356 | pc = read_register(PC_REGNUM); |
357 | memcpy (pc_targ, (char *) &pc, 4); | |
41abdfbd JG |
358 | |
359 | dummy_frame_addr [dummy_frame_count++] = sp; | |
360 | ||
361 | /* Be careful! If the stack pointer is not decremented first, then kernel | |
6c6afbb9 | 362 | thinks he is free to use the space underneath it. And kernel actually |
41abdfbd JG |
363 | uses that area for IPC purposes when executing ptrace(2) calls. So |
364 | before writing register values into the new frame, decrement and update | |
365 | %sp first in order to secure your frame. */ | |
366 | ||
818de002 | 367 | write_register (SP_REGNUM, sp-DUMMY_FRAME_SIZE); |
41abdfbd | 368 | |
41abdfbd JG |
369 | /* gdb relies on the state of current_frame. We'd better update it, |
370 | otherwise things like do_registers_info() wouldn't work properly! */ | |
371 | ||
372 | flush_cached_frames (); | |
818de002 | 373 | set_current_frame (create_new_frame (sp-DUMMY_FRAME_SIZE, pc)); |
41abdfbd JG |
374 | |
375 | /* save program counter in link register's space. */ | |
359a097f | 376 | write_memory (sp+8, pc_targ, 4); |
41abdfbd | 377 | |
6c6afbb9 | 378 | /* save all floating point and general purpose registers here. */ |
41abdfbd JG |
379 | |
380 | /* fpr's, f0..f31 */ | |
381 | for (ii = 0; ii < 32; ++ii) | |
382 | write_memory (sp-8-(ii*8), ®isters[REGISTER_BYTE (31-ii+FP0_REGNUM)], 8); | |
383 | ||
384 | /* gpr's r0..r31 */ | |
385 | for (ii=1; ii <=32; ++ii) | |
386 | write_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
387 | ||
818de002 PB |
388 | /* so far, 32*2 + 32 words = 384 bytes have been written. |
389 | 7 extra registers in our register set: pc, ps, cnd, lr, cnt, xer, mq */ | |
390 | ||
391 | for (ii=1; ii <= (LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) { | |
392 | write_memory (sp-384-(ii*4), | |
393 | ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); | |
394 | } | |
395 | ||
396 | /* Save sp or so called back chain right here. */ | |
397 | write_memory (sp-DUMMY_FRAME_SIZE, &sp, 4); | |
398 | sp -= DUMMY_FRAME_SIZE; | |
41abdfbd JG |
399 | |
400 | /* And finally, this is the back chain. */ | |
359a097f | 401 | write_memory (sp+8, pc_targ, 4); |
41abdfbd JG |
402 | } |
403 | ||
404 | ||
405 | /* Pop a dummy frame. | |
406 | ||
407 | In rs6000 when we push a dummy frame, we save all of the registers. This | |
408 | is usually done before user calls a function explicitly. | |
409 | ||
818de002 PB |
410 | After a dummy frame is pushed, some instructions are copied into stack, |
411 | and stack pointer is decremented even more. Since we don't have a frame | |
412 | pointer to get back to the parent frame of the dummy, we start having | |
413 | trouble poping it. Therefore, we keep a dummy frame stack, keeping | |
414 | addresses of dummy frames as such. When poping happens and when we | |
415 | detect that was a dummy frame, we pop it back to its parent by using | |
416 | dummy frame stack (`dummy_frame_addr' array). | |
ecf4059f JG |
417 | |
418 | FIXME: This whole concept is broken. You should be able to detect | |
419 | a dummy stack frame *on the user's stack itself*. When you do, | |
420 | then you know the format of that stack frame -- including its | |
421 | saved SP register! There should *not* be a separate stack in the | |
d6434f39 | 422 | GDB process that keeps track of these dummy frames! -- [email protected] Aug92 |
41abdfbd JG |
423 | */ |
424 | ||
425 | pop_dummy_frame () | |
426 | { | |
427 | CORE_ADDR sp, pc; | |
428 | int ii; | |
429 | sp = dummy_frame_addr [--dummy_frame_count]; | |
430 | ||
431 | /* restore all fpr's. */ | |
432 | for (ii = 1; ii <= 32; ++ii) | |
433 | read_memory (sp-(ii*8), ®isters[REGISTER_BYTE (32-ii+FP0_REGNUM)], 8); | |
434 | ||
435 | /* restore all gpr's */ | |
436 | for (ii=1; ii <= 32; ++ii) { | |
437 | read_memory (sp-256-(ii*4), ®isters[REGISTER_BYTE (32-ii)], 4); | |
438 | } | |
439 | ||
818de002 PB |
440 | /* restore the rest of the registers. */ |
441 | for (ii=1; ii <=(LAST_SP_REGNUM-FIRST_SP_REGNUM+1); ++ii) | |
442 | read_memory (sp-384-(ii*4), | |
443 | ®isters[REGISTER_BYTE (FPLAST_REGNUM + ii)], 4); | |
444 | ||
445 | read_memory (sp-(DUMMY_FRAME_SIZE-8), | |
446 | ®isters [REGISTER_BYTE(PC_REGNUM)], 4); | |
41abdfbd JG |
447 | |
448 | /* when a dummy frame was being pushed, we had to decrement %sp first, in | |
449 | order to secure astack space. Thus, saved %sp (or %r1) value, is not the | |
450 | one we should restore. Change it with the one we need. */ | |
451 | ||
452 | *(int*)®isters [REGISTER_BYTE(FP_REGNUM)] = sp; | |
453 | ||
454 | /* Now we can restore all registers. */ | |
455 | ||
5f1c39ef | 456 | target_store_registers (-1); |
41abdfbd JG |
457 | pc = read_pc (); |
458 | flush_cached_frames (); | |
459 | set_current_frame (create_new_frame (sp, pc)); | |
460 | } | |
461 | ||
462 | ||
463 | /* pop the innermost frame, go back to the caller. */ | |
464 | ||
ecf4059f | 465 | void |
41abdfbd JG |
466 | pop_frame () |
467 | { | |
359a097f | 468 | CORE_ADDR pc, lr, sp, prev_sp; /* %pc, %lr, %sp */ |
6c6afbb9 | 469 | struct aix_framedata fdata; |
41abdfbd | 470 | FRAME fr = get_current_frame (); |
41abdfbd | 471 | int addr, ii; |
41abdfbd JG |
472 | |
473 | pc = read_pc (); | |
474 | sp = FRAME_FP (fr); | |
475 | ||
476 | if (stop_stack_dummy && dummy_frame_count) { | |
477 | pop_dummy_frame (); | |
478 | return; | |
479 | } | |
480 | ||
481 | /* figure out previous %pc value. If the function is frameless, it is | |
482 | still in the link register, otherwise walk the frames and retrieve the | |
483 | saved %pc value in the previous frame. */ | |
484 | ||
485 | addr = get_pc_function_start (fr->pc) + FUNCTION_START_OFFSET; | |
6c6afbb9 | 486 | function_frame_info (addr, &fdata); |
41abdfbd | 487 | |
359a097f | 488 | prev_sp = read_memory_integer (sp, 4); |
6c6afbb9 | 489 | if (fdata.frameless) |
41abdfbd JG |
490 | lr = read_register (LR_REGNUM); |
491 | else | |
359a097f | 492 | lr = read_memory_integer (prev_sp+8, 4); |
41abdfbd JG |
493 | |
494 | /* reset %pc value. */ | |
495 | write_register (PC_REGNUM, lr); | |
496 | ||
497 | /* reset register values if any was saved earlier. */ | |
6c6afbb9 | 498 | addr = prev_sp - fdata.offset; |
41abdfbd | 499 | |
6c6afbb9 PB |
500 | if (fdata.saved_gpr != -1) |
501 | for (ii=fdata.saved_gpr; ii <= 31; ++ii) { | |
41abdfbd | 502 | read_memory (addr, ®isters [REGISTER_BYTE (ii)], 4); |
cdb1cc92 | 503 | addr += 4; |
41abdfbd JG |
504 | } |
505 | ||
6c6afbb9 PB |
506 | if (fdata.saved_fpr != -1) |
507 | for (ii=fdata.saved_fpr; ii <= 31; ++ii) { | |
41abdfbd JG |
508 | read_memory (addr, ®isters [REGISTER_BYTE (ii+FP0_REGNUM)], 8); |
509 | addr += 8; | |
510 | } | |
511 | ||
512 | write_register (SP_REGNUM, prev_sp); | |
5f1c39ef | 513 | target_store_registers (-1); |
41abdfbd JG |
514 | flush_cached_frames (); |
515 | set_current_frame (create_new_frame (prev_sp, lr)); | |
516 | } | |
517 | ||
518 | ||
519 | /* fixup the call sequence of a dummy function, with the real function address. | |
520 | its argumets will be passed by gdb. */ | |
521 | ||
ecf4059f | 522 | void |
41abdfbd JG |
523 | fix_call_dummy(dummyname, pc, fun, nargs, type) |
524 | char *dummyname; | |
ecf4059f JG |
525 | CORE_ADDR pc; |
526 | CORE_ADDR fun; | |
41abdfbd JG |
527 | int nargs; /* not used */ |
528 | int type; /* not used */ | |
41abdfbd JG |
529 | { |
530 | #define TOC_ADDR_OFFSET 20 | |
531 | #define TARGET_ADDR_OFFSET 28 | |
532 | ||
533 | int ii; | |
ecf4059f JG |
534 | CORE_ADDR target_addr; |
535 | CORE_ADDR tocvalue; | |
41abdfbd JG |
536 | |
537 | target_addr = fun; | |
538 | tocvalue = find_toc_address (target_addr); | |
539 | ||
540 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET); | |
541 | ii = (ii & 0xffff0000) | (tocvalue >> 16); | |
542 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET) = ii; | |
543 | ||
544 | ii = *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4); | |
545 | ii = (ii & 0xffff0000) | (tocvalue & 0x0000ffff); | |
546 | *(int*)((char*)dummyname + TOC_ADDR_OFFSET+4) = ii; | |
547 | ||
548 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET); | |
549 | ii = (ii & 0xffff0000) | (target_addr >> 16); | |
550 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET) = ii; | |
551 | ||
552 | ii = *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4); | |
553 | ii = (ii & 0xffff0000) | (target_addr & 0x0000ffff); | |
554 | *(int*)((char*)dummyname + TARGET_ADDR_OFFSET+4) = ii; | |
555 | } | |
556 | ||
557 | ||
41abdfbd | 558 | /* return information about a function frame. |
6c6afbb9 | 559 | in struct aix_frameinfo fdata: |
cdb1cc92 ILT |
560 | - frameless is TRUE, if function does not have a frame. |
561 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
41abdfbd JG |
562 | - offset is the number of bytes used in the frame to save registers. |
563 | - saved_gpr is the number of the first saved gpr. | |
564 | - saved_fpr is the number of the first saved fpr. | |
6c6afbb9 PB |
565 | - alloca_reg is the number of the register used for alloca() handling. |
566 | Otherwise -1. | |
41abdfbd | 567 | */ |
ecf4059f | 568 | void |
6c6afbb9 | 569 | function_frame_info (pc, fdata) |
d6434f39 | 570 | CORE_ADDR pc; |
6c6afbb9 | 571 | struct aix_framedata *fdata; |
41abdfbd JG |
572 | { |
573 | unsigned int tmp; | |
574 | register unsigned int op; | |
575 | ||
6c6afbb9 PB |
576 | fdata->offset = 0; |
577 | fdata->saved_gpr = fdata->saved_fpr = fdata->alloca_reg = -1; | |
cdb1cc92 | 578 | fdata->frameless = 1; |
41abdfbd | 579 | |
41abdfbd JG |
580 | op = read_memory_integer (pc, 4); |
581 | if (op == 0x7c0802a6) { /* mflr r0 */ | |
582 | pc += 4; | |
583 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 584 | fdata->nosavedpc = 0; |
6c6afbb9 | 585 | fdata->frameless = 0; |
41abdfbd | 586 | } |
cdb1cc92 ILT |
587 | else /* else, pc is not saved */ |
588 | fdata->nosavedpc = 1; | |
41abdfbd JG |
589 | |
590 | if ((op & 0xfc00003e) == 0x7c000026) { /* mfcr Rx */ | |
591 | pc += 4; | |
592 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 593 | fdata->frameless = 0; |
41abdfbd JG |
594 | } |
595 | ||
596 | if ((op & 0xfc000000) == 0x48000000) { /* bl foo, to save fprs??? */ | |
597 | pc += 4; | |
598 | op = read_memory_integer (pc, 4); | |
1eeba686 PB |
599 | /* At this point, make sure this is not a trampoline function |
600 | (a function that simply calls another functions, and nothing else). | |
601 | If the next is not a nop, this branch was part of the function | |
602 | prologue. */ | |
603 | ||
604 | if (op == 0x4def7b82 || /* crorc 15, 15, 15 */ | |
605 | op == 0x0) | |
606 | return; /* prologue is over */ | |
cdb1cc92 | 607 | fdata->frameless = 0; |
41abdfbd JG |
608 | } |
609 | ||
610 | if ((op & 0xfc1f0000) == 0xd8010000) { /* stfd Rx,NUM(r1) */ | |
611 | pc += 4; /* store floating register double */ | |
612 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 613 | fdata->frameless = 0; |
41abdfbd JG |
614 | } |
615 | ||
616 | if ((op & 0xfc1f0000) == 0xbc010000) { /* stm Rx, NUM(r1) */ | |
617 | int tmp2; | |
6c6afbb9 | 618 | fdata->saved_gpr = (op >> 21) & 0x1f; |
41abdfbd JG |
619 | tmp2 = op & 0xffff; |
620 | if (tmp2 > 0x7fff) | |
cdb1cc92 | 621 | tmp2 = (~0 &~ 0xffff) | tmp2; |
41abdfbd JG |
622 | |
623 | if (tmp2 < 0) { | |
624 | tmp2 = tmp2 * -1; | |
6c6afbb9 PB |
625 | fdata->saved_fpr = (tmp2 - ((32 - fdata->saved_gpr) * 4)) / 8; |
626 | if ( fdata->saved_fpr > 0) | |
627 | fdata->saved_fpr = 32 - fdata->saved_fpr; | |
41abdfbd | 628 | else |
6c6afbb9 | 629 | fdata->saved_fpr = -1; |
41abdfbd | 630 | } |
6c6afbb9 PB |
631 | fdata->offset = tmp2; |
632 | pc += 4; | |
633 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 634 | fdata->frameless = 0; |
41abdfbd | 635 | } |
6c6afbb9 PB |
636 | |
637 | while (((tmp = op >> 16) == 0x9001) || /* st r0, NUM(r1) */ | |
638 | (tmp == 0x9421) || /* stu r1, NUM(r1) */ | |
cdb1cc92 | 639 | (tmp == 0x93e1)) /* st r31, NUM(r1) */ |
6c6afbb9 | 640 | { |
cdb1cc92 ILT |
641 | int tmp2; |
642 | ||
6c6afbb9 PB |
643 | /* gcc takes a short cut and uses this instruction to save r31 only. */ |
644 | ||
cdb1cc92 | 645 | if (tmp == 0x93e1) { |
6c6afbb9 PB |
646 | if (fdata->offset) |
647 | /* fatal ("Unrecognized prolog."); */ | |
648 | printf ("Unrecognized prolog!\n"); | |
649 | ||
650 | fdata->saved_gpr = 31; | |
cdb1cc92 ILT |
651 | tmp2 = op & 0xffff; |
652 | if (tmp2 > 0x7fff) { | |
653 | tmp2 = - ((~0 &~ 0xffff) | tmp2); | |
654 | fdata->saved_fpr = (tmp2 - ((32 - 31) * 4)) / 8; | |
655 | if ( fdata->saved_fpr > 0) | |
656 | fdata->saved_fpr = 32 - fdata->saved_fpr; | |
657 | else | |
658 | fdata->saved_fpr = -1; | |
659 | } | |
660 | fdata->offset = tmp2; | |
6c6afbb9 PB |
661 | } |
662 | pc += 4; | |
663 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 664 | fdata->frameless = 0; |
6c6afbb9 PB |
665 | } |
666 | ||
667 | while ((tmp = (op >> 22)) == 0x20f) { /* l r31, ... or */ | |
668 | pc += 4; /* l r30, ... */ | |
669 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 670 | fdata->frameless = 0; |
6c6afbb9 PB |
671 | } |
672 | ||
673 | /* store parameters into stack */ | |
674 | while( | |
675 | (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */ | |
676 | (op & 0xfc1f0000) == 0x90010000 || /* st r?, NUM(r1) */ | |
677 | (op & 0xfc000000) == 0xfc000000 || /* frsp, fp?, .. */ | |
678 | (op & 0xd0000000) == 0xd0000000) /* stfs, fp?, .. */ | |
679 | { | |
680 | pc += 4; /* store fpr double */ | |
681 | op = read_memory_integer (pc, 4); | |
cdb1cc92 | 682 | fdata->frameless = 0; |
6c6afbb9 PB |
683 | } |
684 | ||
cdb1cc92 | 685 | if (op == 0x603f0000) { /* oril r31, r1, 0x0 */ |
6c6afbb9 | 686 | fdata->alloca_reg = 31; |
cdb1cc92 ILT |
687 | fdata->frameless = 0; |
688 | } | |
41abdfbd JG |
689 | } |
690 | ||
691 | ||
692 | /* Pass the arguments in either registers, or in the stack. In RS6000, the first | |
693 | eight words of the argument list (that might be less than eight parameters if | |
694 | some parameters occupy more than one word) are passed in r3..r11 registers. | |
695 | float and double parameters are passed in fpr's, in addition to that. Rest of | |
696 | the parameters if any are passed in user stack. There might be cases in which | |
697 | half of the parameter is copied into registers, the other half is pushed into | |
698 | stack. | |
699 | ||
700 | If the function is returning a structure, then the return address is passed | |
701 | in r3, then the first 7 words of the parametes can be passed in registers, | |
702 | starting from r4. */ | |
703 | ||
704 | CORE_ADDR | |
705 | push_arguments (nargs, args, sp, struct_return, struct_addr) | |
706 | int nargs; | |
707 | value *args; | |
708 | CORE_ADDR sp; | |
709 | int struct_return; | |
710 | CORE_ADDR struct_addr; | |
711 | { | |
712 | int ii, len; | |
713 | int argno; /* current argument number */ | |
714 | int argbytes; /* current argument byte */ | |
715 | char tmp_buffer [50]; | |
716 | value arg; | |
717 | int f_argno = 0; /* current floating point argno */ | |
718 | ||
719 | CORE_ADDR saved_sp, pc; | |
720 | ||
721 | if ( dummy_frame_count <= 0) | |
722 | printf ("FATAL ERROR -push_arguments()! frame not found!!\n"); | |
723 | ||
724 | /* The first eight words of ther arguments are passed in registers. Copy | |
725 | them appropriately. | |
726 | ||
727 | If the function is returning a `struct', then the first word (which | |
728 | will be passed in r3) is used for struct return address. In that | |
729 | case we should advance one word and start from r4 register to copy | |
730 | parameters. */ | |
731 | ||
732 | ii = struct_return ? 1 : 0; | |
733 | ||
734 | for (argno=0, argbytes=0; argno < nargs && ii<8; ++ii) { | |
735 | ||
736 | arg = value_arg_coerce (args[argno]); | |
737 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
738 | ||
739 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT) { | |
740 | ||
741 | /* floating point arguments are passed in fpr's, as well as gpr's. | |
742 | There are 13 fpr's reserved for passing parameters. At this point | |
743 | there is no way we would run out of them. */ | |
744 | ||
745 | if (len > 8) | |
746 | printf ( | |
747 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
748 | ||
749 | bcopy (VALUE_CONTENTS (arg), | |
750 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
751 | ++f_argno; | |
752 | } | |
753 | ||
754 | if (len > 4) { | |
755 | ||
756 | /* Argument takes more than one register. */ | |
757 | while (argbytes < len) { | |
758 | ||
759 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
760 | bcopy ( ((char*)VALUE_CONTENTS (arg))+argbytes, | |
761 | ®isters[REGISTER_BYTE(ii+3)], | |
762 | (len - argbytes) > 4 ? 4 : len - argbytes); | |
763 | ++ii, argbytes += 4; | |
764 | ||
765 | if (ii >= 8) | |
766 | goto ran_out_of_registers_for_arguments; | |
767 | } | |
768 | argbytes = 0; | |
769 | --ii; | |
770 | } | |
771 | else { /* Argument can fit in one register. No problem. */ | |
772 | *(int*)®isters[REGISTER_BYTE(ii+3)] = 0; | |
773 | bcopy (VALUE_CONTENTS (arg), ®isters[REGISTER_BYTE(ii+3)], len); | |
774 | } | |
775 | ++argno; | |
776 | } | |
777 | ||
778 | ran_out_of_registers_for_arguments: | |
779 | ||
780 | /* location for 8 parameters are always reserved. */ | |
781 | sp -= 4 * 8; | |
782 | ||
783 | /* another six words for back chain, TOC register, link register, etc. */ | |
784 | sp -= 24; | |
785 | ||
786 | /* if there are more arguments, allocate space for them in | |
787 | the stack, then push them starting from the ninth one. */ | |
788 | ||
789 | if ((argno < nargs) || argbytes) { | |
790 | int space = 0, jj; | |
791 | value val; | |
792 | ||
793 | if (argbytes) { | |
794 | space += ((len - argbytes + 3) & -4); | |
795 | jj = argno + 1; | |
796 | } | |
797 | else | |
798 | jj = argno; | |
799 | ||
800 | for (; jj < nargs; ++jj) { | |
801 | val = value_arg_coerce (args[jj]); | |
802 | space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4; | |
803 | } | |
804 | ||
805 | /* add location required for the rest of the parameters */ | |
806 | space = (space + 7) & -8; | |
807 | sp -= space; | |
808 | ||
809 | /* This is another instance we need to be concerned about securing our | |
810 | stack space. If we write anything underneath %sp (r1), we might conflict | |
811 | with the kernel who thinks he is free to use this area. So, update %sp | |
812 | first before doing anything else. */ | |
813 | ||
814 | write_register (SP_REGNUM, sp); | |
815 | ||
41abdfbd JG |
816 | /* if the last argument copied into the registers didn't fit there |
817 | completely, push the rest of it into stack. */ | |
818 | ||
819 | if (argbytes) { | |
820 | write_memory ( | |
821 | sp+24+(ii*4), ((char*)VALUE_CONTENTS (arg))+argbytes, len - argbytes); | |
822 | ++argno; | |
823 | ii += ((len - argbytes + 3) & -4) / 4; | |
824 | } | |
825 | ||
826 | /* push the rest of the arguments into stack. */ | |
827 | for (; argno < nargs; ++argno) { | |
828 | ||
829 | arg = value_arg_coerce (args[argno]); | |
830 | len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
831 | ||
832 | ||
833 | /* float types should be passed in fpr's, as well as in the stack. */ | |
834 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FLT && f_argno < 13) { | |
835 | ||
836 | if (len > 8) | |
837 | printf ( | |
838 | "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno); | |
839 | ||
840 | bcopy (VALUE_CONTENTS (arg), | |
841 | ®isters[REGISTER_BYTE(FP0_REGNUM + 1 + f_argno)], len); | |
842 | ++f_argno; | |
843 | } | |
844 | ||
359a097f | 845 | write_memory (sp+24+(ii*4), (char *) VALUE_CONTENTS (arg), len); |
41abdfbd JG |
846 | ii += ((len + 3) & -4) / 4; |
847 | } | |
848 | } | |
6c6afbb9 | 849 | else |
41abdfbd JG |
850 | /* Secure stack areas first, before doing anything else. */ |
851 | write_register (SP_REGNUM, sp); | |
852 | ||
41abdfbd JG |
853 | saved_sp = dummy_frame_addr [dummy_frame_count - 1]; |
854 | read_memory (saved_sp, tmp_buffer, 24); | |
855 | write_memory (sp, tmp_buffer, 24); | |
856 | ||
857 | write_memory (sp, &saved_sp, 4); /* set back chain properly */ | |
858 | ||
5f1c39ef | 859 | target_store_registers (-1); |
41abdfbd JG |
860 | return sp; |
861 | } | |
862 | ||
863 | /* a given return value in `regbuf' with a type `valtype', extract and copy its | |
864 | value into `valbuf' */ | |
865 | ||
ecf4059f | 866 | void |
41abdfbd JG |
867 | extract_return_value (valtype, regbuf, valbuf) |
868 | struct type *valtype; | |
869 | char regbuf[REGISTER_BYTES]; | |
870 | char *valbuf; | |
871 | { | |
872 | ||
873 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) { | |
874 | ||
875 | double dd; float ff; | |
876 | /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes. | |
877 | We need to truncate the return value into float size (4 byte) if | |
878 | necessary. */ | |
879 | ||
880 | if (TYPE_LENGTH (valtype) > 4) /* this is a double */ | |
881 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], valbuf, | |
882 | TYPE_LENGTH (valtype)); | |
883 | else { /* float */ | |
884 | bcopy (®buf[REGISTER_BYTE (FP0_REGNUM + 1)], &dd, 8); | |
885 | ff = (float)dd; | |
886 | bcopy (&ff, valbuf, sizeof(float)); | |
887 | } | |
888 | } | |
889 | else | |
890 | /* return value is copied starting from r3. */ | |
891 | bcopy (®buf[REGISTER_BYTE (3)], valbuf, TYPE_LENGTH (valtype)); | |
892 | } | |
893 | ||
894 | ||
ecf4059f JG |
895 | /* keep structure return address in this variable. |
896 | FIXME: This is a horrid kludge which should not be allowed to continue | |
897 | living. This only allows a single nested call to a structure-returning | |
898 | function. Come on, guys! -- [email protected], Aug 92 */ | |
41abdfbd JG |
899 | |
900 | CORE_ADDR rs6000_struct_return_address; | |
901 | ||
902 | ||
c2e4669f JG |
903 | /* Indirect function calls use a piece of trampoline code to do context |
904 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
905 | its first instruction (as when we have single-stepped to here). | |
906 | Result is desired PC to step until, or NULL if we are not in | |
907 | trampoline code. */ | |
41abdfbd | 908 | |
ecf4059f | 909 | CORE_ADDR |
41abdfbd | 910 | skip_trampoline_code (pc) |
ecf4059f | 911 | CORE_ADDR pc; |
41abdfbd JG |
912 | { |
913 | register unsigned int ii, op; | |
914 | ||
915 | static unsigned trampoline_code[] = { | |
916 | 0x800b0000, /* l r0,0x0(r11) */ | |
917 | 0x90410014, /* st r2,0x14(r1) */ | |
918 | 0x7c0903a6, /* mtctr r0 */ | |
919 | 0x804b0004, /* l r2,0x4(r11) */ | |
920 | 0x816b0008, /* l r11,0x8(r11) */ | |
921 | 0x4e800420, /* bctr */ | |
922 | 0x4e800020, /* br */ | |
923 | 0 | |
924 | }; | |
925 | ||
926 | for (ii=0; trampoline_code[ii]; ++ii) { | |
927 | op = read_memory_integer (pc + (ii*4), 4); | |
928 | if (op != trampoline_code [ii]) | |
359a097f | 929 | return 0; |
41abdfbd JG |
930 | } |
931 | ii = read_register (11); /* r11 holds destination addr */ | |
932 | pc = read_memory_integer (ii, 4); /* (r11) value */ | |
933 | return pc; | |
934 | } | |
935 | ||
ecf4059f JG |
936 | |
937 | /* Determines whether the function FI has a frame on the stack or not. | |
cdb1cc92 ILT |
938 | Called from the FRAMELESS_FUNCTION_INVOCATION macro in tm.h with a |
939 | second argument of 0, and from the FRAME_SAVED_PC macro with a | |
940 | second argument of 1. */ | |
ecf4059f JG |
941 | |
942 | int | |
cdb1cc92 | 943 | frameless_function_invocation (fi, pcsaved) |
ecf4059f | 944 | struct frame_info *fi; |
cdb1cc92 | 945 | int pcsaved; |
ecf4059f JG |
946 | { |
947 | CORE_ADDR func_start; | |
948 | struct aix_framedata fdata; | |
949 | ||
b0e932ad JK |
950 | if (fi->next != NULL) |
951 | /* Don't even think about framelessness except on the innermost frame. */ | |
952 | return 0; | |
953 | ||
ecf4059f JG |
954 | func_start = get_pc_function_start (fi->pc) + FUNCTION_START_OFFSET; |
955 | ||
956 | /* If we failed to find the start of the function, it is a mistake | |
957 | to inspect the instructions. */ | |
958 | ||
959 | if (!func_start) | |
960 | return 0; | |
961 | ||
962 | function_frame_info (func_start, &fdata); | |
cdb1cc92 | 963 | return pcsaved ? fdata.nosavedpc : fdata.frameless; |
ecf4059f JG |
964 | } |
965 | ||
966 | ||
967 | /* If saved registers of frame FI are not known yet, read and cache them. | |
968 | &FDATAP contains aix_framedata; TDATAP can be NULL, | |
969 | in which case the framedata are read. */ | |
970 | ||
971 | static void | |
972 | frame_get_cache_fsr (fi, fdatap) | |
973 | struct frame_info *fi; | |
974 | struct aix_framedata *fdatap; | |
975 | { | |
976 | int ii; | |
977 | CORE_ADDR frame_addr; | |
978 | struct aix_framedata work_fdata; | |
979 | ||
980 | if (fi->cache_fsr) | |
981 | return; | |
982 | ||
983 | if (fdatap == NULL) { | |
984 | fdatap = &work_fdata; | |
985 | function_frame_info (get_pc_function_start (fi->pc), fdatap); | |
986 | } | |
987 | ||
988 | fi->cache_fsr = (struct frame_saved_regs *) | |
989 | obstack_alloc (&frame_cache_obstack, sizeof (struct frame_saved_regs)); | |
990 | bzero (fi->cache_fsr, sizeof (struct frame_saved_regs)); | |
991 | ||
992 | if (fi->prev && fi->prev->frame) | |
993 | frame_addr = fi->prev->frame; | |
994 | else | |
995 | frame_addr = read_memory_integer (fi->frame, 4); | |
996 | ||
997 | /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr. | |
998 | All fpr's from saved_fpr to fp31 are saved right underneath caller | |
999 | stack pointer, starting from fp31 first. */ | |
1000 | ||
1001 | if (fdatap->saved_fpr >= 0) { | |
1002 | for (ii=31; ii >= fdatap->saved_fpr; --ii) | |
1003 | fi->cache_fsr->regs [FP0_REGNUM + ii] = frame_addr - ((32 - ii) * 8); | |
1004 | frame_addr -= (32 - fdatap->saved_fpr) * 8; | |
1005 | } | |
1006 | ||
1007 | /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr. | |
1008 | All gpr's from saved_gpr to gpr31 are saved right under saved fprs, | |
1009 | starting from r31 first. */ | |
1010 | ||
1011 | if (fdatap->saved_gpr >= 0) | |
1012 | for (ii=31; ii >= fdatap->saved_gpr; --ii) | |
1013 | fi->cache_fsr->regs [ii] = frame_addr - ((32 - ii) * 4); | |
1014 | } | |
1015 | ||
1016 | /* Return the address of a frame. This is the inital %sp value when the frame | |
1017 | was first allocated. For functions calling alloca(), it might be saved in | |
1018 | an alloca register. */ | |
1019 | ||
1020 | CORE_ADDR | |
1021 | frame_initial_stack_address (fi) | |
1022 | struct frame_info *fi; | |
1023 | { | |
1024 | CORE_ADDR tmpaddr; | |
1025 | struct aix_framedata fdata; | |
1026 | struct frame_info *callee_fi; | |
1027 | ||
1028 | /* if the initial stack pointer (frame address) of this frame is known, | |
1029 | just return it. */ | |
1030 | ||
1031 | if (fi->initial_sp) | |
1032 | return fi->initial_sp; | |
1033 | ||
1034 | /* find out if this function is using an alloca register.. */ | |
1035 | ||
1036 | function_frame_info (get_pc_function_start (fi->pc), &fdata); | |
1037 | ||
1038 | /* if saved registers of this frame are not known yet, read and cache them. */ | |
1039 | ||
1040 | if (!fi->cache_fsr) | |
1041 | frame_get_cache_fsr (fi, &fdata); | |
1042 | ||
1043 | /* If no alloca register used, then fi->frame is the value of the %sp for | |
1044 | this frame, and it is good enough. */ | |
1045 | ||
1046 | if (fdata.alloca_reg < 0) { | |
1047 | fi->initial_sp = fi->frame; | |
1048 | return fi->initial_sp; | |
1049 | } | |
1050 | ||
1051 | /* This function has an alloca register. If this is the top-most frame | |
1052 | (with the lowest address), the value in alloca register is good. */ | |
1053 | ||
1054 | if (!fi->next) | |
1055 | return fi->initial_sp = read_register (fdata.alloca_reg); | |
1056 | ||
1057 | /* Otherwise, this is a caller frame. Callee has usually already saved | |
1058 | registers, but there are exceptions (such as when the callee | |
1059 | has no parameters). Find the address in which caller's alloca | |
1060 | register is saved. */ | |
1061 | ||
1062 | for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next) { | |
1063 | ||
1064 | if (!callee_fi->cache_fsr) | |
cdb1cc92 | 1065 | frame_get_cache_fsr (callee_fi, NULL); |
ecf4059f JG |
1066 | |
1067 | /* this is the address in which alloca register is saved. */ | |
1068 | ||
1069 | tmpaddr = callee_fi->cache_fsr->regs [fdata.alloca_reg]; | |
1070 | if (tmpaddr) { | |
1071 | fi->initial_sp = read_memory_integer (tmpaddr, 4); | |
1072 | return fi->initial_sp; | |
1073 | } | |
1074 | ||
1075 | /* Go look into deeper levels of the frame chain to see if any one of | |
1076 | the callees has saved alloca register. */ | |
1077 | } | |
1078 | ||
1079 | /* If alloca register was not saved, by the callee (or any of its callees) | |
1080 | then the value in the register is still good. */ | |
1081 | ||
1082 | return fi->initial_sp = read_register (fdata.alloca_reg); | |
1083 | } | |
1084 | ||
f3649227 JK |
1085 | FRAME_ADDR |
1086 | rs6000_frame_chain (thisframe) | |
1087 | struct frame_info *thisframe; | |
1088 | { | |
1089 | FRAME_ADDR fp; | |
1090 | if (inside_entry_file ((thisframe)->pc)) | |
1091 | return 0; | |
cee86be3 | 1092 | if (thisframe->signal_handler_caller) |
f3649227 | 1093 | { |
f3649227 JK |
1094 | /* This was determined by experimentation on AIX 3.2. Perhaps |
1095 | it corresponds to some offset in /usr/include/sys/user.h or | |
1096 | something like that. Using some system include file would | |
1097 | have the advantage of probably being more robust in the face | |
1098 | of OS upgrades, but the disadvantage of being wrong for | |
1099 | cross-debugging. */ | |
1100 | ||
1101 | #define SIG_FRAME_FP_OFFSET 284 | |
1102 | fp = read_memory_integer (thisframe->frame + SIG_FRAME_FP_OFFSET, 4); | |
1103 | } | |
cee86be3 JK |
1104 | else |
1105 | fp = read_memory_integer ((thisframe)->frame, 4); | |
1106 | ||
f3649227 JK |
1107 | return fp; |
1108 | } | |
1109 | ||
1110 | \f | |
ecf4059f JG |
1111 | /* xcoff_relocate_symtab - hook for symbol table relocation. |
1112 | also reads shared libraries.. */ | |
1113 | ||
1114 | xcoff_relocate_symtab (pid) | |
1115 | unsigned int pid; | |
1116 | { | |
1117 | #define MAX_LOAD_SEGS 64 /* maximum number of load segments */ | |
1118 | ||
1119 | struct ld_info *ldi; | |
1120 | int temp; | |
1121 | ||
1122 | ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi)); | |
1123 | ||
1124 | /* According to my humble theory, AIX has some timing problems and | |
1125 | when the user stack grows, kernel doesn't update stack info in time | |
1126 | and ptrace calls step on user stack. That is why we sleep here a little, | |
1127 | and give kernel to update its internals. */ | |
1128 | ||
1129 | usleep (36000); | |
1130 | ||
1131 | errno = 0; | |
1132 | ptrace(PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi, | |
1133 | MAX_LOAD_SEGS * sizeof(*ldi), ldi); | |
1134 | if (errno) { | |
1135 | perror_with_name ("ptrace ldinfo"); | |
1136 | return 0; | |
1137 | } | |
1138 | ||
1139 | vmap_ldinfo(ldi); | |
1140 | ||
1141 | do { | |
359a097f JK |
1142 | /* We are allowed to assume CORE_ADDR == pointer. This code is |
1143 | native only. */ | |
1144 | add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg, | |
1145 | (CORE_ADDR) ldi->ldinfo_dataorg); | |
ecf4059f JG |
1146 | } while (ldi->ldinfo_next |
1147 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
1148 | ||
1149 | #if 0 | |
1150 | /* Now that we've jumbled things around, re-sort them. */ | |
1151 | sort_minimal_symbols (); | |
1152 | #endif | |
1153 | ||
1154 | /* relocate the exec and core sections as well. */ | |
1155 | vmap_exec (); | |
1156 | } | |
1157 | \f | |
1158 | /* Keep an array of load segment information and their TOC table addresses. | |
1159 | This info will be useful when calling a shared library function by hand. */ | |
1160 | ||
1161 | struct loadinfo { | |
1162 | CORE_ADDR textorg, dataorg; | |
1163 | unsigned long toc_offset; | |
1164 | }; | |
1165 | ||
1166 | #define LOADINFOLEN 10 | |
1167 | ||
ecf4059f JG |
1168 | static struct loadinfo *loadinfo = NULL; |
1169 | static int loadinfolen = 0; | |
1170 | static int loadinfotocindex = 0; | |
3c02636b | 1171 | static int loadinfotextindex = 0; |
ecf4059f JG |
1172 | |
1173 | ||
1174 | void | |
1175 | xcoff_init_loadinfo () | |
1176 | { | |
1177 | loadinfotocindex = 0; | |
1178 | loadinfotextindex = 0; | |
1179 | ||
1180 | if (loadinfolen == 0) { | |
1181 | loadinfo = (struct loadinfo *) | |
1182 | xmalloc (sizeof (struct loadinfo) * LOADINFOLEN); | |
1183 | loadinfolen = LOADINFOLEN; | |
1184 | } | |
1185 | } | |
1186 | ||
1187 | ||
1188 | /* FIXME -- this is never called! */ | |
1189 | void | |
1190 | free_loadinfo () | |
1191 | { | |
1192 | if (loadinfo) | |
1193 | free (loadinfo); | |
1194 | loadinfo = NULL; | |
1195 | loadinfolen = 0; | |
1196 | loadinfotocindex = 0; | |
1197 | loadinfotextindex = 0; | |
1198 | } | |
1199 | ||
1200 | /* this is called from xcoffread.c */ | |
1201 | ||
1202 | void | |
1203 | xcoff_add_toc_to_loadinfo (unsigned long tocoff) | |
1204 | { | |
1205 | while (loadinfotocindex >= loadinfolen) { | |
1206 | loadinfolen += LOADINFOLEN; | |
1207 | loadinfo = (struct loadinfo *) | |
1208 | xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen); | |
1209 | } | |
1210 | loadinfo [loadinfotocindex++].toc_offset = tocoff; | |
1211 | } | |
1212 | ||
1213 | ||
2aefe6e4 | 1214 | void |
ecf4059f JG |
1215 | add_text_to_loadinfo (textaddr, dataaddr) |
1216 | CORE_ADDR textaddr; | |
1217 | CORE_ADDR dataaddr; | |
1218 | { | |
1219 | while (loadinfotextindex >= loadinfolen) { | |
1220 | loadinfolen += LOADINFOLEN; | |
1221 | loadinfo = (struct loadinfo *) | |
1222 | xrealloc (loadinfo, sizeof(struct loadinfo) * loadinfolen); | |
1223 | } | |
1224 | loadinfo [loadinfotextindex].textorg = textaddr; | |
1225 | loadinfo [loadinfotextindex].dataorg = dataaddr; | |
1226 | ++loadinfotextindex; | |
1227 | } | |
1228 | ||
1229 | ||
1230 | /* FIXME: This assumes that the "textorg" and "dataorg" elements | |
1231 | of a member of this array are correlated with the "toc_offset" | |
1232 | element of the same member. But they are sequentially assigned in wildly | |
1233 | different places, and probably there is no correlation. FIXME! */ | |
1234 | ||
1235 | static CORE_ADDR | |
1236 | find_toc_address (pc) | |
1237 | CORE_ADDR pc; | |
1238 | { | |
1239 | int ii, toc_entry, tocbase = 0; | |
1240 | ||
1241 | for (ii=0; ii < loadinfotextindex; ++ii) | |
1242 | if (pc > loadinfo[ii].textorg && loadinfo[ii].textorg > tocbase) { | |
1243 | toc_entry = ii; | |
1244 | tocbase = loadinfo[ii].textorg; | |
1245 | } | |
1246 | ||
1247 | return loadinfo[toc_entry].dataorg + loadinfo[toc_entry].toc_offset; | |
1248 | } |