]>
Commit | Line | Data |
---|---|---|
d95a8903 AC |
1 | /* Target-dependent code for Renesas M32R, for GDB. |
2 | ||
3 | Copyright 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software | |
4 | Foundation, Inc. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
24 | #include "frame.h" | |
25 | #include "frame-unwind.h" | |
26 | #include "frame-base.h" | |
27 | #include "symtab.h" | |
28 | #include "gdbtypes.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "gdbcore.h" | |
31 | #include "gdb_string.h" | |
32 | #include "value.h" | |
33 | #include "inferior.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
36 | #include "language.h" | |
37 | #include "arch-utils.h" | |
38 | #include "regcache.h" | |
39 | #include "trad-frame.h" | |
73e8eb51 | 40 | #include "dis-asm.h" |
d95a8903 AC |
41 | |
42 | #include "gdb_assert.h" | |
43 | ||
44 | struct gdbarch_tdep | |
45 | { | |
46 | /* gdbarch target dependent data here. Currently unused for M32R. */ | |
47 | }; | |
48 | ||
49 | /* m32r register names. */ | |
50 | ||
51 | enum | |
52 | { | |
53 | R0_REGNUM = 0, | |
54 | R3_REGNUM = 3, | |
55 | M32R_FP_REGNUM = 13, | |
56 | LR_REGNUM = 14, | |
57 | M32R_SP_REGNUM = 15, | |
58 | PSW_REGNUM = 16, | |
59 | M32R_PC_REGNUM = 21, | |
60 | /* m32r calling convention. */ | |
61 | ARG1_REGNUM = R0_REGNUM, | |
62 | ARGN_REGNUM = R3_REGNUM, | |
63 | RET1_REGNUM = R0_REGNUM, | |
64 | }; | |
65 | ||
66 | /* Local functions */ | |
67 | ||
68 | extern void _initialize_m32r_tdep (void); | |
69 | ||
70 | static CORE_ADDR | |
71 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | |
72 | { | |
73 | /* Align to the size of an instruction (so that they can safely be | |
74 | pushed onto the stack. */ | |
75 | return sp & ~3; | |
76 | } | |
77 | ||
74055713 AC |
78 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
79 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE | |
80 | is the type (which is known to be struct, union or array). | |
d95a8903 AC |
81 | |
82 | The m32r returns anything less than 8 bytes in size in | |
83 | registers. */ | |
84 | ||
85 | static int | |
86 | m32r_use_struct_convention (int gcc_p, struct type *type) | |
87 | { | |
88 | return (TYPE_LENGTH (type) > 8); | |
89 | } | |
90 | ||
91 | ||
92 | /* BREAKPOINT */ | |
93 | #define M32R_BE_BREAKPOINT32 {0x10, 0xf1, 0x70, 0x00} | |
94 | #define M32R_LE_BREAKPOINT32 {0xf1, 0x10, 0x00, 0x70} | |
95 | #define M32R_BE_BREAKPOINT16 {0x10, 0xf1} | |
96 | #define M32R_LE_BREAKPOINT16 {0xf1, 0x10} | |
97 | ||
98 | static int | |
99 | m32r_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) | |
100 | { | |
101 | int val; | |
102 | unsigned char *bp; | |
103 | int bplen; | |
104 | ||
105 | bplen = (addr & 3) ? 2 : 4; | |
106 | ||
107 | /* Save the memory contents. */ | |
108 | val = target_read_memory (addr, contents_cache, bplen); | |
109 | if (val != 0) | |
110 | return val; /* return error */ | |
111 | ||
112 | /* Determine appropriate breakpoint contents and size for this address. */ | |
113 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
114 | { | |
7e3dd49e AC |
115 | if (((addr & 3) == 0) |
116 | && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80))) | |
d95a8903 AC |
117 | { |
118 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
119 | bp = insn; | |
120 | bplen = sizeof (insn); | |
121 | } | |
122 | else | |
123 | { | |
124 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
125 | bp = insn; | |
126 | bplen = sizeof (insn); | |
127 | } | |
128 | } | |
129 | else | |
130 | { /* little-endian */ | |
7e3dd49e AC |
131 | if (((addr & 3) == 0) |
132 | && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80))) | |
d95a8903 AC |
133 | { |
134 | static unsigned char insn[] = M32R_LE_BREAKPOINT32; | |
135 | bp = insn; | |
136 | bplen = sizeof (insn); | |
137 | } | |
138 | else | |
139 | { | |
140 | static unsigned char insn[] = M32R_LE_BREAKPOINT16; | |
141 | bp = insn; | |
142 | bplen = sizeof (insn); | |
143 | } | |
144 | } | |
145 | ||
146 | /* Write the breakpoint. */ | |
147 | val = target_write_memory (addr, (char *) bp, bplen); | |
148 | return val; | |
149 | } | |
150 | ||
151 | static int | |
152 | m32r_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) | |
153 | { | |
154 | int val; | |
155 | int bplen; | |
156 | ||
157 | /* Determine appropriate breakpoint contents and size for this address. */ | |
158 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
159 | { | |
7e3dd49e AC |
160 | if (((addr & 3) == 0) |
161 | && ((contents_cache[0] & 0x80) || (contents_cache[2] & 0x80))) | |
d95a8903 AC |
162 | { |
163 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
164 | bplen = sizeof (insn); | |
165 | } | |
166 | else | |
167 | { | |
168 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
169 | bplen = sizeof (insn); | |
170 | } | |
171 | } | |
172 | else | |
173 | { | |
174 | /* little-endian */ | |
7e3dd49e AC |
175 | if (((addr & 3) == 0) |
176 | && ((contents_cache[1] & 0x80) || (contents_cache[3] & 0x80))) | |
d95a8903 AC |
177 | { |
178 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
179 | bplen = sizeof (insn); | |
180 | } | |
181 | else | |
182 | { | |
183 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
184 | bplen = sizeof (insn); | |
185 | } | |
186 | } | |
187 | ||
188 | /* Write contents. */ | |
189 | val = target_write_memory (addr, contents_cache, bplen); | |
190 | return val; | |
191 | } | |
192 | ||
193 | static const unsigned char * | |
194 | m32r_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
195 | { | |
196 | unsigned char *bp; | |
197 | ||
198 | /* Determine appropriate breakpoint. */ | |
199 | if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) | |
200 | { | |
201 | if ((*pcptr & 3) == 0) | |
202 | { | |
203 | static unsigned char insn[] = M32R_BE_BREAKPOINT32; | |
204 | bp = insn; | |
205 | *lenptr = sizeof (insn); | |
206 | } | |
207 | else | |
208 | { | |
209 | static unsigned char insn[] = M32R_BE_BREAKPOINT16; | |
210 | bp = insn; | |
211 | *lenptr = sizeof (insn); | |
212 | } | |
213 | } | |
214 | else | |
215 | { | |
216 | if ((*pcptr & 3) == 0) | |
217 | { | |
218 | static unsigned char insn[] = M32R_LE_BREAKPOINT32; | |
219 | bp = insn; | |
220 | *lenptr = sizeof (insn); | |
221 | } | |
222 | else | |
223 | { | |
224 | static unsigned char insn[] = M32R_LE_BREAKPOINT16; | |
225 | bp = insn; | |
226 | *lenptr = sizeof (insn); | |
227 | } | |
228 | } | |
229 | ||
230 | return bp; | |
231 | } | |
232 | ||
233 | ||
234 | char *m32r_register_names[] = { | |
235 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
236 | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | |
237 | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | |
238 | "evb" | |
239 | }; | |
240 | ||
241 | static int | |
242 | m32r_num_regs (void) | |
243 | { | |
244 | return (sizeof (m32r_register_names) / sizeof (m32r_register_names[0])); | |
245 | } | |
246 | ||
247 | static const char * | |
248 | m32r_register_name (int reg_nr) | |
249 | { | |
250 | if (reg_nr < 0) | |
251 | return NULL; | |
252 | if (reg_nr >= m32r_num_regs ()) | |
253 | return NULL; | |
254 | return m32r_register_names[reg_nr]; | |
255 | } | |
256 | ||
257 | ||
258 | /* Return the GDB type object for the "standard" data type | |
259 | of data in register N. */ | |
260 | ||
261 | static struct type * | |
262 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | |
263 | { | |
264 | if (reg_nr == M32R_PC_REGNUM) | |
265 | return builtin_type_void_func_ptr; | |
266 | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | |
267 | return builtin_type_void_data_ptr; | |
268 | else | |
269 | return builtin_type_int32; | |
270 | } | |
271 | ||
272 | ||
273 | /* Write into appropriate registers a function return value | |
274 | of type TYPE, given in virtual format. | |
275 | ||
276 | Things always get returned in RET1_REGNUM, RET2_REGNUM. */ | |
277 | ||
278 | static void | |
279 | m32r_store_return_value (struct type *type, struct regcache *regcache, | |
280 | const void *valbuf) | |
281 | { | |
282 | CORE_ADDR regval; | |
283 | int len = TYPE_LENGTH (type); | |
284 | ||
285 | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len); | |
286 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | |
287 | ||
288 | if (len > 4) | |
289 | { | |
880bc914 | 290 | regval = extract_unsigned_integer ((char *) valbuf + 4, len - 4); |
d95a8903 AC |
291 | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); |
292 | } | |
293 | } | |
294 | ||
295 | /* Extract from an array REGBUF containing the (raw) register state | |
296 | the address in which a function should return its structure value, | |
297 | as a CORE_ADDR (or an expression that can be used as one). */ | |
298 | ||
299 | static CORE_ADDR | |
300 | m32r_extract_struct_value_address (struct regcache *regcache) | |
301 | { | |
302 | ULONGEST addr; | |
303 | regcache_cooked_read_unsigned (regcache, ARG1_REGNUM, &addr); | |
304 | return addr; | |
305 | } | |
306 | ||
307 | ||
308 | /* This is required by skip_prologue. The results of decoding a prologue | |
309 | should be cached because this thrashing is getting nuts. */ | |
310 | ||
311 | static void | |
312 | decode_prologue (CORE_ADDR start_pc, CORE_ADDR scan_limit, | |
313 | CORE_ADDR *pl_endptr) | |
314 | { | |
315 | unsigned long framesize; | |
316 | int insn; | |
317 | int op1; | |
318 | int maybe_one_more = 0; | |
319 | CORE_ADDR after_prologue = 0; | |
320 | CORE_ADDR after_stack_adjust = 0; | |
321 | CORE_ADDR current_pc; | |
322 | ||
323 | framesize = 0; | |
324 | after_prologue = 0; | |
325 | ||
326 | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | |
327 | { | |
328 | insn = read_memory_unsigned_integer (current_pc, 2); | |
329 | ||
330 | /* If this is a 32 bit instruction, we dont want to examine its | |
331 | immediate data as though it were an instruction */ | |
332 | if (current_pc & 0x02) | |
333 | { | |
334 | /* Clear the parallel execution bit from 16 bit instruction */ | |
335 | if (maybe_one_more) | |
336 | { | |
337 | /* The last instruction was a branch, usually terminates | |
338 | the series, but if this is a parallel instruction, | |
339 | it may be a stack framing instruction */ | |
340 | if (!(insn & 0x8000)) | |
341 | { | |
342 | /* nope, we are really done */ | |
343 | break; | |
344 | } | |
345 | } | |
346 | /* decode this instruction further */ | |
347 | insn &= 0x7fff; | |
348 | } | |
349 | else | |
350 | { | |
351 | if (maybe_one_more) | |
352 | break; /* This isnt the one more */ | |
353 | if (insn & 0x8000) | |
354 | { | |
355 | if (current_pc == scan_limit) | |
356 | scan_limit += 2; /* extend the search */ | |
357 | current_pc += 2; /* skip the immediate data */ | |
358 | if (insn == 0x8faf) /* add3 sp, sp, xxxx */ | |
359 | /* add 16 bit sign-extended offset */ | |
360 | { | |
361 | framesize += | |
362 | -((short) read_memory_unsigned_integer (current_pc, 2)); | |
363 | } | |
364 | else | |
365 | { | |
7e3dd49e AC |
366 | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ |
367 | && read_memory_unsigned_integer (current_pc + 2, | |
368 | 2) == 0x0f24) | |
d95a8903 AC |
369 | /* subtract 24 bit sign-extended negative-offset */ |
370 | { | |
371 | insn = read_memory_unsigned_integer (current_pc - 2, 4); | |
372 | if (insn & 0x00800000) /* sign extend */ | |
373 | insn |= 0xff000000; /* negative */ | |
374 | else | |
375 | insn &= 0x00ffffff; /* positive */ | |
376 | framesize += insn; | |
377 | } | |
378 | } | |
379 | after_prologue = current_pc; | |
380 | continue; | |
381 | } | |
382 | } | |
383 | op1 = insn & 0xf000; /* isolate just the first nibble */ | |
384 | ||
385 | if ((insn & 0xf0ff) == 0x207f) | |
386 | { /* st reg, @-sp */ | |
387 | int regno; | |
388 | framesize += 4; | |
389 | regno = ((insn >> 8) & 0xf); | |
390 | after_prologue = 0; | |
391 | continue; | |
392 | } | |
393 | if ((insn >> 8) == 0x4f) /* addi sp, xx */ | |
394 | /* add 8 bit sign-extended offset */ | |
395 | { | |
396 | int stack_adjust = (char) (insn & 0xff); | |
397 | ||
398 | /* there are probably two of these stack adjustments: | |
399 | 1) A negative one in the prologue, and | |
400 | 2) A positive one in the epilogue. | |
401 | We are only interested in the first one. */ | |
402 | ||
403 | if (stack_adjust < 0) | |
404 | { | |
405 | framesize -= stack_adjust; | |
406 | after_prologue = 0; | |
407 | /* A frameless function may have no "mv fp, sp". | |
408 | In that case, this is the end of the prologue. */ | |
409 | after_stack_adjust = current_pc + 2; | |
410 | } | |
411 | continue; | |
412 | } | |
413 | if (insn == 0x1d8f) | |
414 | { /* mv fp, sp */ | |
415 | after_prologue = current_pc + 2; | |
416 | break; /* end of stack adjustments */ | |
417 | } | |
418 | /* Nop looks like a branch, continue explicitly */ | |
419 | if (insn == 0x7000) | |
420 | { | |
421 | after_prologue = current_pc + 2; | |
422 | continue; /* nop occurs between pushes */ | |
423 | } | |
424 | /* End of prolog if any of these are branch instructions */ | |
425 | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | |
426 | { | |
427 | after_prologue = current_pc; | |
428 | maybe_one_more = 1; | |
429 | continue; | |
430 | } | |
431 | /* Some of the branch instructions are mixed with other types */ | |
432 | if (op1 == 0x1000) | |
433 | { | |
434 | int subop = insn & 0x0ff0; | |
435 | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | |
436 | { | |
437 | after_prologue = current_pc; | |
438 | maybe_one_more = 1; | |
439 | continue; /* jmp , jl */ | |
440 | } | |
441 | } | |
442 | } | |
443 | ||
444 | if (current_pc >= scan_limit) | |
445 | { | |
446 | if (pl_endptr) | |
447 | { | |
448 | if (after_stack_adjust != 0) | |
449 | /* We did not find a "mv fp,sp", but we DID find | |
450 | a stack_adjust. Is it safe to use that as the | |
451 | end of the prologue? I just don't know. */ | |
452 | { | |
453 | *pl_endptr = after_stack_adjust; | |
454 | } | |
455 | else | |
456 | /* We reached the end of the loop without finding the end | |
457 | of the prologue. No way to win -- we should report failure. | |
458 | The way we do that is to return the original start_pc. | |
459 | GDB will set a breakpoint at the start of the function (etc.) */ | |
460 | *pl_endptr = start_pc; | |
461 | } | |
462 | return; | |
463 | } | |
464 | if (after_prologue == 0) | |
465 | after_prologue = current_pc; | |
466 | ||
467 | if (pl_endptr) | |
468 | *pl_endptr = after_prologue; | |
469 | } /* decode_prologue */ | |
470 | ||
471 | /* Function: skip_prologue | |
472 | Find end of function prologue */ | |
473 | ||
474 | #define DEFAULT_SEARCH_LIMIT 44 | |
475 | ||
476 | CORE_ADDR | |
477 | m32r_skip_prologue (CORE_ADDR pc) | |
478 | { | |
479 | CORE_ADDR func_addr, func_end; | |
480 | struct symtab_and_line sal; | |
481 | ||
482 | /* See what the symbol table says */ | |
483 | ||
484 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
485 | { | |
486 | sal = find_pc_line (func_addr, 0); | |
487 | ||
488 | if (sal.line != 0 && sal.end <= func_end) | |
489 | { | |
490 | func_end = sal.end; | |
491 | } | |
492 | else | |
493 | /* Either there's no line info, or the line after the prologue is after | |
494 | the end of the function. In this case, there probably isn't a | |
495 | prologue. */ | |
496 | { | |
497 | func_end = min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | |
498 | } | |
499 | } | |
500 | else | |
501 | func_end = pc + DEFAULT_SEARCH_LIMIT; | |
502 | decode_prologue (pc, func_end, &sal.end); | |
503 | return sal.end; | |
504 | } | |
505 | ||
506 | ||
507 | struct m32r_unwind_cache | |
508 | { | |
509 | /* The previous frame's inner most stack address. Used as this | |
510 | frame ID's stack_addr. */ | |
511 | CORE_ADDR prev_sp; | |
512 | /* The frame's base, optionally used by the high-level debug info. */ | |
513 | CORE_ADDR base; | |
514 | int size; | |
515 | /* How far the SP and r13 (FP) have been offset from the start of | |
516 | the stack frame (as defined by the previous frame's stack | |
517 | pointer). */ | |
518 | LONGEST sp_offset; | |
519 | LONGEST r13_offset; | |
520 | int uses_frame; | |
521 | /* Table indicating the location of each and every register. */ | |
522 | struct trad_frame_saved_reg *saved_regs; | |
523 | }; | |
524 | ||
525 | /* Put here the code to store, into fi->saved_regs, the addresses of | |
526 | the saved registers of frame described by FRAME_INFO. This | |
527 | includes special registers such as pc and fp saved in special ways | |
528 | in the stack frame. sp is even more special: the address we return | |
529 | for it IS the sp for the next frame. */ | |
530 | ||
531 | static struct m32r_unwind_cache * | |
532 | m32r_frame_unwind_cache (struct frame_info *next_frame, | |
533 | void **this_prologue_cache) | |
534 | { | |
535 | CORE_ADDR pc; | |
536 | ULONGEST prev_sp; | |
537 | ULONGEST this_base; | |
538 | unsigned long op; | |
539 | int i; | |
540 | struct m32r_unwind_cache *info; | |
541 | ||
542 | if ((*this_prologue_cache)) | |
543 | return (*this_prologue_cache); | |
544 | ||
545 | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | |
546 | (*this_prologue_cache) = info; | |
547 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
548 | ||
549 | info->size = 0; | |
550 | info->sp_offset = 0; | |
551 | ||
552 | info->uses_frame = 0; | |
553 | for (pc = frame_func_unwind (next_frame); | |
554 | pc > 0 && pc < frame_pc_unwind (next_frame); pc += 2) | |
555 | { | |
556 | if ((pc & 2) == 0) | |
557 | { | |
558 | op = get_frame_memory_unsigned (next_frame, pc, 4); | |
559 | if ((op & 0x80000000) == 0x80000000) | |
560 | { | |
561 | /* 32-bit instruction */ | |
562 | if ((op & 0xffff0000) == 0x8faf0000) | |
563 | { | |
564 | /* add3 sp,sp,xxxx */ | |
565 | short n = op & 0xffff; | |
566 | info->sp_offset += n; | |
567 | } | |
7e3dd49e AC |
568 | else if (((op >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ |
569 | && get_frame_memory_unsigned (next_frame, pc + 4, | |
570 | 2) == 0x0f24) | |
d95a8903 AC |
571 | { |
572 | unsigned long n = op & 0xffffff; | |
573 | info->sp_offset += n; | |
574 | pc += 2; | |
575 | } | |
576 | else | |
577 | break; | |
578 | ||
579 | pc += 2; | |
580 | continue; | |
581 | } | |
582 | } | |
583 | ||
584 | /* 16-bit instructions */ | |
585 | op = get_frame_memory_unsigned (next_frame, pc, 2) & 0x7fff; | |
586 | if ((op & 0xf0ff) == 0x207f) | |
587 | { | |
588 | /* st rn, @-sp */ | |
589 | int regno = ((op >> 8) & 0xf); | |
590 | info->sp_offset -= 4; | |
591 | info->saved_regs[regno].addr = info->sp_offset; | |
592 | } | |
593 | else if ((op & 0xff00) == 0x4f00) | |
594 | { | |
595 | /* addi sp, xx */ | |
596 | int n = (char) (op & 0xff); | |
597 | info->sp_offset += n; | |
598 | } | |
599 | else if (op == 0x1d8f) | |
600 | { | |
601 | /* mv fp, sp */ | |
602 | info->uses_frame = 1; | |
603 | info->r13_offset = info->sp_offset; | |
604 | } | |
605 | else if (op == 0x7000) | |
606 | /* nop */ | |
607 | continue; | |
608 | else | |
609 | break; | |
610 | } | |
611 | ||
612 | info->size = -info->sp_offset; | |
613 | ||
614 | /* Compute the previous frame's stack pointer (which is also the | |
615 | frame's ID's stack address), and this frame's base pointer. */ | |
616 | if (info->uses_frame) | |
617 | { | |
618 | /* The SP was moved to the FP. This indicates that a new frame | |
619 | was created. Get THIS frame's FP value by unwinding it from | |
620 | the next frame. */ | |
7e3dd49e | 621 | this_base = frame_unwind_register_unsigned (next_frame, M32R_FP_REGNUM); |
d95a8903 AC |
622 | /* The FP points at the last saved register. Adjust the FP back |
623 | to before the first saved register giving the SP. */ | |
624 | prev_sp = this_base + info->size; | |
625 | } | |
626 | else | |
627 | { | |
628 | /* Assume that the FP is this frame's SP but with that pushed | |
629 | stack space added back. */ | |
7e3dd49e | 630 | this_base = frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
631 | prev_sp = this_base + info->size; |
632 | } | |
633 | ||
634 | /* Convert that SP/BASE into real addresses. */ | |
635 | info->prev_sp = prev_sp; | |
636 | info->base = this_base; | |
637 | ||
638 | /* Adjust all the saved registers so that they contain addresses and | |
639 | not offsets. */ | |
640 | for (i = 0; i < NUM_REGS - 1; i++) | |
641 | if (trad_frame_addr_p (info->saved_regs, i)) | |
642 | info->saved_regs[i].addr = (info->prev_sp + info->saved_regs[i].addr); | |
643 | ||
644 | /* The call instruction moves the caller's PC in the callee's LR. | |
645 | Since this is an unwind, do the reverse. Copy the location of LR | |
646 | into PC (the address / regnum) so that a request for PC will be | |
647 | converted into a request for the LR. */ | |
648 | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | |
649 | ||
650 | /* The previous frame's SP needed to be computed. Save the computed | |
651 | value. */ | |
652 | trad_frame_set_value (info->saved_regs, M32R_SP_REGNUM, prev_sp); | |
653 | ||
654 | return info; | |
655 | } | |
656 | ||
657 | static CORE_ADDR | |
658 | m32r_read_pc (ptid_t ptid) | |
659 | { | |
660 | ptid_t save_ptid; | |
7e3dd49e | 661 | ULONGEST pc; |
d95a8903 AC |
662 | |
663 | save_ptid = inferior_ptid; | |
664 | inferior_ptid = ptid; | |
7e3dd49e | 665 | regcache_cooked_read_unsigned (current_regcache, M32R_PC_REGNUM, &pc); |
d95a8903 AC |
666 | inferior_ptid = save_ptid; |
667 | return pc; | |
668 | } | |
669 | ||
670 | static void | |
671 | m32r_write_pc (CORE_ADDR val, ptid_t ptid) | |
672 | { | |
673 | ptid_t save_ptid; | |
674 | ||
675 | save_ptid = inferior_ptid; | |
676 | inferior_ptid = ptid; | |
677 | write_register (M32R_PC_REGNUM, val); | |
678 | inferior_ptid = save_ptid; | |
679 | } | |
680 | ||
681 | static CORE_ADDR | |
682 | m32r_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
683 | { | |
7e3dd49e | 684 | return frame_unwind_register_unsigned (next_frame, M32R_SP_REGNUM); |
d95a8903 AC |
685 | } |
686 | ||
687 | ||
688 | static CORE_ADDR | |
689 | m32r_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr, | |
690 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
691 | struct value **args, CORE_ADDR sp, int struct_return, | |
692 | CORE_ADDR struct_addr) | |
693 | { | |
694 | int stack_offset, stack_alloc; | |
695 | int argreg = ARG1_REGNUM; | |
696 | int argnum; | |
697 | struct type *type; | |
698 | enum type_code typecode; | |
699 | CORE_ADDR regval; | |
700 | char *val; | |
701 | char valbuf[MAX_REGISTER_SIZE]; | |
702 | int len; | |
703 | int odd_sized_struct; | |
704 | ||
705 | /* first force sp to a 4-byte alignment */ | |
706 | sp = sp & ~3; | |
707 | ||
708 | /* Set the return address. For the m32r, the return breakpoint is | |
709 | always at BP_ADDR. */ | |
710 | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | |
711 | ||
712 | /* If STRUCT_RETURN is true, then the struct return address (in | |
713 | STRUCT_ADDR) will consume the first argument-passing register. | |
714 | Both adjust the register count and store that value. */ | |
715 | if (struct_return) | |
716 | { | |
717 | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | |
718 | argreg++; | |
719 | } | |
720 | ||
721 | /* Now make sure there's space on the stack */ | |
722 | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | |
723 | stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3); | |
724 | sp -= stack_alloc; /* make room on stack for args */ | |
725 | ||
726 | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | |
727 | { | |
728 | type = VALUE_TYPE (args[argnum]); | |
729 | typecode = TYPE_CODE (type); | |
730 | len = TYPE_LENGTH (type); | |
731 | ||
732 | memset (valbuf, 0, sizeof (valbuf)); | |
733 | ||
734 | /* Passes structures that do not fit in 2 registers by reference. */ | |
735 | if (len > 8 | |
736 | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | |
737 | { | |
738 | store_unsigned_integer (valbuf, 4, VALUE_ADDRESS (args[argnum])); | |
739 | typecode = TYPE_CODE_PTR; | |
740 | len = 4; | |
741 | val = valbuf; | |
742 | } | |
743 | else if (len < 4) | |
744 | { | |
745 | /* value gets right-justified in the register or stack word */ | |
7e3dd49e | 746 | memcpy (valbuf + (register_size (gdbarch, argreg) - len), |
d95a8903 AC |
747 | (char *) VALUE_CONTENTS (args[argnum]), len); |
748 | val = valbuf; | |
749 | } | |
750 | else | |
751 | val = (char *) VALUE_CONTENTS (args[argnum]); | |
752 | ||
753 | while (len > 0) | |
754 | { | |
755 | if (argreg > ARGN_REGNUM) | |
756 | { | |
757 | /* must go on the stack */ | |
758 | write_memory (sp + stack_offset, val, 4); | |
759 | stack_offset += 4; | |
760 | } | |
761 | else if (argreg <= ARGN_REGNUM) | |
762 | { | |
763 | /* there's room in a register */ | |
764 | regval = | |
7e3dd49e AC |
765 | extract_unsigned_integer (val, |
766 | register_size (gdbarch, argreg)); | |
d95a8903 AC |
767 | regcache_cooked_write_unsigned (regcache, argreg++, regval); |
768 | } | |
769 | ||
770 | /* Store the value 4 bytes at a time. This means that things | |
771 | larger than 4 bytes may go partly in registers and partly | |
772 | on the stack. */ | |
7e3dd49e AC |
773 | len -= register_size (gdbarch, argreg); |
774 | val += register_size (gdbarch, argreg); | |
d95a8903 AC |
775 | } |
776 | } | |
777 | ||
778 | /* Finally, update the SP register. */ | |
779 | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | |
780 | ||
781 | return sp; | |
782 | } | |
783 | ||
784 | ||
785 | /* Given a return value in `regbuf' with a type `valtype', | |
786 | extract and copy its value into `valbuf'. */ | |
787 | ||
788 | static void | |
789 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | |
790 | void *dst) | |
791 | { | |
792 | bfd_byte *valbuf = dst; | |
793 | int len = TYPE_LENGTH (type); | |
794 | ULONGEST tmp; | |
795 | ||
796 | /* By using store_unsigned_integer we avoid having to do | |
797 | anything special for small big-endian values. */ | |
798 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | |
799 | store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), tmp); | |
800 | ||
801 | /* Ignore return values more than 8 bytes in size because the m32r | |
802 | returns anything more than 8 bytes in the stack. */ | |
803 | if (len > 4) | |
804 | { | |
805 | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | |
806 | store_unsigned_integer (valbuf + len - 4, 4, tmp); | |
807 | } | |
808 | } | |
809 | ||
810 | ||
811 | static CORE_ADDR | |
812 | m32r_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
813 | { | |
7e3dd49e | 814 | return frame_unwind_register_unsigned (next_frame, M32R_PC_REGNUM); |
d95a8903 AC |
815 | } |
816 | ||
817 | /* Given a GDB frame, determine the address of the calling function's | |
818 | frame. This will be used to create a new GDB frame struct. */ | |
819 | ||
820 | static void | |
821 | m32r_frame_this_id (struct frame_info *next_frame, | |
822 | void **this_prologue_cache, struct frame_id *this_id) | |
823 | { | |
824 | struct m32r_unwind_cache *info | |
825 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
826 | CORE_ADDR base; | |
827 | CORE_ADDR func; | |
828 | struct minimal_symbol *msym_stack; | |
829 | struct frame_id id; | |
830 | ||
831 | /* The FUNC is easy. */ | |
832 | func = frame_func_unwind (next_frame); | |
833 | ||
d95a8903 AC |
834 | /* Check if the stack is empty. */ |
835 | msym_stack = lookup_minimal_symbol ("_stack", NULL, NULL); | |
836 | if (msym_stack && info->base == SYMBOL_VALUE_ADDRESS (msym_stack)) | |
837 | return; | |
838 | ||
839 | /* Hopefully the prologue analysis either correctly determined the | |
840 | frame's base (which is the SP from the previous frame), or set | |
841 | that base to "NULL". */ | |
842 | base = info->prev_sp; | |
843 | if (base == 0) | |
844 | return; | |
845 | ||
846 | id = frame_id_build (base, func); | |
847 | ||
848 | /* Check that we're not going round in circles with the same frame | |
849 | ID (but avoid applying the test to sentinel frames which do go | |
850 | round in circles). Can't use frame_id_eq() as that doesn't yet | |
851 | compare the frame's PC value. */ | |
852 | if (frame_relative_level (next_frame) >= 0 | |
853 | && get_frame_type (next_frame) != DUMMY_FRAME | |
854 | && frame_id_eq (get_frame_id (next_frame), id)) | |
855 | return; | |
856 | ||
857 | (*this_id) = id; | |
858 | } | |
859 | ||
860 | static void | |
861 | m32r_frame_prev_register (struct frame_info *next_frame, | |
862 | void **this_prologue_cache, | |
863 | int regnum, int *optimizedp, | |
864 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
865 | int *realnump, void *bufferp) | |
866 | { | |
867 | struct m32r_unwind_cache *info | |
868 | = m32r_frame_unwind_cache (next_frame, this_prologue_cache); | |
869 | trad_frame_prev_register (next_frame, info->saved_regs, regnum, | |
870 | optimizedp, lvalp, addrp, realnump, bufferp); | |
871 | } | |
872 | ||
873 | static const struct frame_unwind m32r_frame_unwind = { | |
874 | NORMAL_FRAME, | |
875 | m32r_frame_this_id, | |
876 | m32r_frame_prev_register | |
877 | }; | |
878 | ||
879 | static const struct frame_unwind * | |
7e3dd49e | 880 | m32r_frame_sniffer (struct frame_info *next_frame) |
d95a8903 AC |
881 | { |
882 | return &m32r_frame_unwind; | |
883 | } | |
884 | ||
885 | static CORE_ADDR | |
886 | m32r_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
887 | { | |
888 | struct m32r_unwind_cache *info | |
889 | = m32r_frame_unwind_cache (next_frame, this_cache); | |
890 | return info->base; | |
891 | } | |
892 | ||
893 | static const struct frame_base m32r_frame_base = { | |
894 | &m32r_frame_unwind, | |
895 | m32r_frame_base_address, | |
896 | m32r_frame_base_address, | |
897 | m32r_frame_base_address | |
898 | }; | |
899 | ||
900 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that | |
901 | dummy frame. The frame ID's base needs to match the TOS value | |
902 | saved by save_dummy_frame_tos(), and the PC match the dummy frame's | |
903 | breakpoint. */ | |
904 | ||
905 | static struct frame_id | |
906 | m32r_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
907 | { | |
908 | return frame_id_build (m32r_unwind_sp (gdbarch, next_frame), | |
909 | frame_pc_unwind (next_frame)); | |
910 | } | |
911 | ||
912 | ||
913 | static gdbarch_init_ftype m32r_gdbarch_init; | |
914 | ||
915 | static struct gdbarch * | |
916 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
917 | { | |
918 | struct gdbarch *gdbarch; | |
919 | struct gdbarch_tdep *tdep; | |
920 | ||
921 | /* If there is already a candidate, use it. */ | |
922 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
923 | if (arches != NULL) | |
924 | return arches->gdbarch; | |
925 | ||
926 | /* Allocate space for the new architecture. */ | |
927 | tdep = XMALLOC (struct gdbarch_tdep); | |
928 | gdbarch = gdbarch_alloc (&info, tdep); | |
929 | ||
930 | set_gdbarch_read_pc (gdbarch, m32r_read_pc); | |
931 | set_gdbarch_write_pc (gdbarch, m32r_write_pc); | |
932 | set_gdbarch_unwind_sp (gdbarch, m32r_unwind_sp); | |
933 | ||
934 | set_gdbarch_num_regs (gdbarch, m32r_num_regs ()); | |
935 | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); | |
936 | set_gdbarch_register_name (gdbarch, m32r_register_name); | |
937 | set_gdbarch_register_type (gdbarch, m32r_register_type); | |
938 | ||
939 | set_gdbarch_extract_return_value (gdbarch, m32r_extract_return_value); | |
940 | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); | |
941 | set_gdbarch_store_return_value (gdbarch, m32r_store_return_value); | |
74055713 | 942 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m32r_extract_struct_value_address); |
d95a8903 AC |
943 | set_gdbarch_use_struct_convention (gdbarch, m32r_use_struct_convention); |
944 | ||
945 | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | |
946 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
d95a8903 AC |
947 | set_gdbarch_breakpoint_from_pc (gdbarch, m32r_breakpoint_from_pc); |
948 | set_gdbarch_memory_insert_breakpoint (gdbarch, | |
949 | m32r_memory_insert_breakpoint); | |
950 | set_gdbarch_memory_remove_breakpoint (gdbarch, | |
951 | m32r_memory_remove_breakpoint); | |
952 | ||
19772a2c | 953 | set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue); |
d95a8903 AC |
954 | |
955 | set_gdbarch_frame_align (gdbarch, m32r_frame_align); | |
956 | ||
7e3dd49e | 957 | frame_unwind_append_sniffer (gdbarch, m32r_frame_sniffer); |
d95a8903 AC |
958 | frame_base_set_default (gdbarch, &m32r_frame_base); |
959 | ||
960 | /* Methods for saving / extracting a dummy frame's ID. The ID's | |
961 | stack address must match the SP value returned by | |
962 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
963 | set_gdbarch_unwind_dummy_id (gdbarch, m32r_unwind_dummy_id); | |
964 | ||
965 | /* Return the unwound PC value. */ | |
966 | set_gdbarch_unwind_pc (gdbarch, m32r_unwind_pc); | |
967 | ||
968 | set_gdbarch_print_insn (gdbarch, print_insn_m32r); | |
969 | ||
970 | return gdbarch; | |
971 | } | |
972 | ||
973 | void | |
974 | _initialize_m32r_tdep (void) | |
975 | { | |
976 | register_gdbarch_init (bfd_arch_m32r, m32r_gdbarch_init); | |
977 | } |