]>
Commit | Line | Data |
---|---|---|
dd3b648e RP |
1 | /* Parameters for targeting on a Gould NP1, for GDB, the GNU debugger. |
2 | Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
99a7de40 | 6 | This program is free software; you can redistribute it and/or modify |
dd3b648e | 7 | it under the terms of the GNU General Public License as published by |
99a7de40 JG |
8 | the Free Software Foundation; either version 2 of the License, or |
9 | (at your option) any later version. | |
dd3b648e | 10 | |
99a7de40 | 11 | This program is distributed in the hope that it will be useful, |
dd3b648e RP |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
99a7de40 JG |
17 | along with this program; if not, write to the Free Software |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
dd3b648e RP |
19 | |
20 | #define GOULD_NPL | |
21 | ||
22 | #define TARGET_BYTE_ORDER BIG_ENDIAN | |
23 | ||
24 | /* N_ENTRY appears in libraries on Gould machines. | |
25 | Don't know what 0xa4 is; it's mentioned in stab.h | |
26 | but only in the sdb symbol list. */ | |
27 | #define IGNORE_SYMBOL(type) (type == N_ENTRY || type == 0xa4) | |
28 | ||
29 | /* We don't want the extra gnu symbols on the machine; | |
30 | they will interfere with the shared segment symbols. */ | |
31 | #define NO_GNU_STABS | |
32 | ||
33 | /* Macro for text-offset and data info (in NPL a.out format). */ | |
34 | #define TEXTINFO \ | |
35 | text_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr); \ | |
36 | exec_data_offset = N_TXTOFF (exec_coffhdr, exec_aouthdr)\ | |
37 | + exec_aouthdr.a_text | |
38 | ||
39 | /* Macro for number of symbol table entries */ | |
40 | #define NUMBER_OF_SYMBOLS \ | |
41 | (coffhdr.f_nsyms) | |
42 | ||
43 | /* Macro for file-offset of symbol table (in NPL a.out format). */ | |
44 | #define SYMBOL_TABLE_OFFSET \ | |
45 | N_SYMOFF (coffhdr) | |
46 | ||
47 | /* Macro for file-offset of string table (in NPL a.out format). */ | |
48 | #define STRING_TABLE_OFFSET \ | |
49 | (N_STROFF (coffhdr)) | |
50 | ||
51 | /* Macro to store the length of the string table data in INTO. */ | |
52 | #define READ_STRING_TABLE_SIZE(INTO) \ | |
53 | { INTO = hdr.a_stsize; } | |
54 | ||
55 | /* Macro to declare variables to hold the file's header data. */ | |
56 | #define DECLARE_FILE_HEADERS struct exec hdr; \ | |
57 | FILHDR coffhdr | |
58 | ||
59 | /* Macro to read the header data from descriptor DESC and validate it. | |
60 | NAME is the file name, for error messages. */ | |
61 | #define READ_FILE_HEADERS(DESC, NAME) \ | |
62 | { val = myread (DESC, &coffhdr, sizeof coffhdr); \ | |
63 | if (val < 0) \ | |
64 | perror_with_name (NAME); \ | |
65 | val = myread (DESC, &hdr, sizeof hdr); \ | |
66 | if (val < 0) \ | |
67 | perror_with_name (NAME); \ | |
68 | if (coffhdr.f_magic != GNP1MAGIC) \ | |
69 | error ("File \"%s\" not in coff executable format.", NAME); \ | |
70 | if (N_BADMAG (hdr)) \ | |
71 | error ("File \"%s\" not in executable format.", NAME); } | |
72 | ||
73 | /* Define COFF and other symbolic names needed on NP1 */ | |
74 | #define NS32GMAGIC GNP1MAGIC | |
75 | #define NS32SMAGIC GPNMAGIC | |
76 | ||
77 | /* Define this if the C compiler puts an underscore at the front | |
78 | of external names before giving them to the linker. */ | |
79 | #define NAMES_HAVE_UNDERSCORE | |
80 | ||
81 | /* Debugger information will be in DBX format. */ | |
82 | #define READ_DBX_FORMAT | |
83 | ||
84 | /* Address of blocks in N_LBRAC and N_RBRAC symbols are absolute addresses, | |
85 | not relative to start of source address. */ | |
86 | #define BLOCK_ADDRESS_ABSOLUTE | |
87 | ||
88 | /* Offset from address of function to start of its code. | |
89 | Zero on most machines. */ | |
90 | #define FUNCTION_START_OFFSET 8 | |
91 | ||
92 | /* Advance PC across any function entry prologue instructions | |
93 | to reach some "real" code. One NPL we can have one two startup | |
94 | sequences depending on the size of the local stack: | |
95 | ||
96 | Either: | |
97 | "suabr b2, #" | |
98 | of | |
99 | "lil r4, #", "suabr b2, #(r4)" | |
100 | ||
101 | "lwbr b6, #", "stw r1, 8(b2)" | |
102 | Optional "stwbr b3, c(b2)" | |
103 | Optional "trr r2,r7" (Gould first argument register passing) | |
104 | or | |
105 | Optional "stw r2,8(b3)" (Gould first argument register passing) | |
106 | */ | |
107 | #define SKIP_PROLOGUE(pc) { \ | |
108 | register int op = read_memory_integer ((pc), 4); \ | |
109 | if ((op & 0xffff0000) == 0xFA0B0000) { \ | |
110 | pc += 4; \ | |
111 | op = read_memory_integer ((pc), 4); \ | |
112 | if ((op & 0xffff0000) == 0x59400000) { \ | |
113 | pc += 4; \ | |
114 | op = read_memory_integer ((pc), 4); \ | |
115 | if ((op & 0xffff0000) == 0x5F000000) { \ | |
116 | pc += 4; \ | |
117 | op = read_memory_integer ((pc), 4); \ | |
118 | if (op == 0xD4820008) { \ | |
119 | pc += 4; \ | |
120 | op = read_memory_integer ((pc), 4); \ | |
121 | if (op == 0x5582000C) { \ | |
122 | pc += 4; \ | |
123 | op = read_memory_integer ((pc), 2); \ | |
124 | if (op == 0x2fa0) { \ | |
125 | pc += 2; \ | |
126 | } else { \ | |
127 | op = read_memory_integer ((pc), 4); \ | |
128 | if (op == 0xd5030008) { \ | |
129 | pc += 4; \ | |
130 | } \ | |
131 | } \ | |
132 | } else { \ | |
133 | op = read_memory_integer ((pc), 2); \ | |
134 | if (op == 0x2fa0) { \ | |
135 | pc += 2; \ | |
136 | } \ | |
137 | } \ | |
138 | } \ | |
139 | } \ | |
140 | } \ | |
141 | } \ | |
142 | if ((op & 0xffff0000) == 0x59000000) { \ | |
143 | pc += 4; \ | |
144 | op = read_memory_integer ((pc), 4); \ | |
145 | if ((op & 0xffff0000) == 0x5F000000) { \ | |
146 | pc += 4; \ | |
147 | op = read_memory_integer ((pc), 4); \ | |
148 | if (op == 0xD4820008) { \ | |
149 | pc += 4; \ | |
150 | op = read_memory_integer ((pc), 4); \ | |
151 | if (op == 0x5582000C) { \ | |
152 | pc += 4; \ | |
153 | op = read_memory_integer ((pc), 2); \ | |
154 | if (op == 0x2fa0) { \ | |
155 | pc += 2; \ | |
156 | } else { \ | |
157 | op = read_memory_integer ((pc), 4); \ | |
158 | if (op == 0xd5030008) { \ | |
159 | pc += 4; \ | |
160 | } \ | |
161 | } \ | |
162 | } else { \ | |
163 | op = read_memory_integer ((pc), 2); \ | |
164 | if (op == 0x2fa0) { \ | |
165 | pc += 2; \ | |
166 | } \ | |
167 | } \ | |
168 | } \ | |
169 | } \ | |
170 | } \ | |
171 | } | |
172 | ||
173 | /* Immediately after a function call, return the saved pc. | |
174 | Can't go through the frames for this because on some machines | |
175 | the new frame is not set up until the new function executes | |
176 | some instructions. True on NPL! Return address is in R1. | |
177 | The true return address is REALLY 4 past that location! */ | |
178 | #define SAVED_PC_AFTER_CALL(frame) \ | |
179 | (read_register(R1_REGNUM) + 4) | |
180 | ||
181 | /* Address of end of stack space. */ | |
182 | #define STACK_END_ADDR 0x7fffc000 | |
183 | ||
184 | /* Stack grows downward. */ | |
185 | #define INNER_THAN < | |
186 | ||
187 | /* Sequence of bytes for breakpoint instruction. | |
188 | This is padded out to the size of a machine word. When it was just | |
189 | {0x28, 0x09} it gave problems if hit breakpoint on returning from a | |
190 | function call. */ | |
191 | #define BREAKPOINT {0x28, 0x09, 0x0, 0x0} | |
192 | ||
193 | /* Amount PC must be decremented by after a breakpoint. | |
194 | This is often the number of bytes in BREAKPOINT | |
195 | but not always. */ | |
196 | #define DECR_PC_AFTER_BREAK 2 | |
197 | ||
198 | /* Nonzero if instruction at PC is a return instruction. "bu 4(r1)" */ | |
199 | #define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 4) == 0x40100004) | |
200 | ||
201 | /* Return 1 if P points to an invalid floating point value. */ | |
202 | #define INVALID_FLOAT(p, len) ((*(short *)p & 0xff80) == 0x8000) | |
203 | ||
204 | /* Say how long (ordinary) registers are. */ | |
205 | #define REGISTER_TYPE long | |
206 | ||
207 | /* Size of bytes of vector register (NP1 only), 32 elements * sizeof(int) */ | |
208 | #define VR_SIZE 128 | |
209 | ||
210 | /* Number of machine registers */ | |
211 | #define NUM_REGS 27 | |
212 | #define NUM_GEN_REGS 16 | |
213 | #define NUM_CPU_REGS 4 | |
214 | #define NUM_VECTOR_REGS 7 | |
215 | ||
216 | /* Initializer for an array of names of registers. | |
217 | There should be NUM_REGS strings in this initializer. */ | |
218 | #define REGISTER_NAMES { \ | |
219 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \ | |
220 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", \ | |
221 | "sp", "ps", "pc", "ve", \ | |
222 | "v1", "v2", "v3", "v4", "v5", "v6", "v7", \ | |
223 | } | |
224 | ||
225 | /* Register numbers of various important registers. | |
226 | Note that some of these values are "real" register numbers, | |
227 | and correspond to the general registers of the machine, | |
228 | and some are "phony" register numbers which are too large | |
229 | to be actual register numbers as far as the user is concerned | |
230 | but do serve to get the desired values when passed to read_register. */ | |
231 | #define R1_REGNUM 1 /* Gr1 => return address of caller */ | |
232 | #define R2_REGNUM 2 /* Gr2 => return value from function */ | |
233 | #define R4_REGNUM 4 /* Gr4 => register save area */ | |
234 | #define R5_REGNUM 5 /* Gr5 => register save area */ | |
235 | #define R6_REGNUM 6 /* Gr6 => register save area */ | |
236 | #define R7_REGNUM 7 /* Gr7 => register save area */ | |
237 | #define B1_REGNUM 9 /* Br1 => start of this code routine */ | |
238 | #define SP_REGNUM 10 /* Br2 == (sp) */ | |
239 | #define AP_REGNUM 11 /* Br3 == (ap) */ | |
240 | #define FP_REGNUM 16 /* A copy of Br2 saved in trap */ | |
241 | #define PS_REGNUM 17 /* Contains processor status */ | |
242 | #define PC_REGNUM 18 /* Contains program counter */ | |
243 | #define VE_REGNUM 19 /* Vector end (user setup) register */ | |
244 | #define V1_REGNUM 20 /* First vector register */ | |
245 | #define V7_REGNUM 26 /* First vector register */ | |
246 | ||
247 | /* Total amount of space needed to store our copies of the machine's | |
248 | register state, the array `registers'. */ | |
249 | #define REGISTER_BYTES \ | |
250 | (NUM_GEN_REGS*4 + NUM_VECTOR_REGS*VR_SIZE + NUM_CPU_REGS*4) | |
251 | ||
252 | /* Index within `registers' of the first byte of the space for | |
253 | register N. */ | |
254 | #define REGISTER_BYTE(N) \ | |
255 | (((N) < V1_REGNUM) ? ((N) * 4) : (((N) - V1_REGNUM) * VR_SIZE) + 80) | |
256 | ||
257 | /* Number of bytes of storage in the actual machine representation | |
258 | for register N. On the NP1, all normal regs are 4 bytes, but | |
259 | the vector registers are VR_SIZE*4 bytes long. */ | |
260 | #define REGISTER_RAW_SIZE(N) \ | |
261 | (((N) < V1_REGNUM) ? 4 : VR_SIZE) | |
262 | ||
263 | /* Number of bytes of storage in the program's representation | |
264 | for register N. On the NP1, all regs are 4 bytes. */ | |
265 | #define REGISTER_VIRTUAL_SIZE(N) \ | |
266 | (((N) < V1_REGNUM) ? 4 : VR_SIZE) | |
267 | ||
268 | /* Largest value REGISTER_RAW_SIZE can have. */ | |
269 | #define MAX_REGISTER_RAW_SIZE VR_SIZE | |
270 | ||
271 | /* Largest value REGISTER_VIRTUAL_SIZE can have. */ | |
272 | #define MAX_REGISTER_VIRTUAL_SIZE VR_SIZE | |
273 | ||
274 | /* Nonzero if register N requires conversion | |
275 | from raw format to virtual format. */ | |
276 | #define REGISTER_CONVERTIBLE(N) (0) | |
277 | ||
278 | /* Convert data from raw format for register REGNUM | |
279 | to virtual format for register REGNUM. */ | |
280 | #define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \ | |
281 | bcopy ((FROM), (TO), REGISTER_RAW_SIZE(REGNUM)); | |
282 | ||
283 | /* Convert data from virtual format for register REGNUM | |
284 | to raw format for register REGNUM. */ | |
285 | #define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \ | |
286 | bcopy ((FROM), (TO), REGISTER_VIRTUAL_SIZE(REGNUM)); | |
287 | ||
288 | /* Return the GDB type object for the "standard" data type | |
289 | of data in register N. */ | |
290 | #define REGISTER_VIRTUAL_TYPE(N) \ | |
291 | ((N) > VE_REGNUM ? builtin_type_np1_vector : builtin_type_int) | |
292 | extern struct type *builtin_type_np1_vector; | |
293 | ||
294 | /* Store the address of the place in which to copy the structure the | |
295 | subroutine will return. This is called from call_function. | |
296 | ||
297 | On this machine this is a no-op, because gcc isn't used on it | |
298 | yet. So this calling convention is not used. */ | |
299 | ||
300 | #define STORE_STRUCT_RETURN(ADDR, SP) push_word(SP + 8, ADDR) | |
301 | ||
302 | /* Extract from an arrary REGBUF containing the (raw) register state | |
303 | a function return value of type TYPE, and copy that, in virtual format, | |
304 | into VALBUF. */ | |
305 | ||
306 | #define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \ | |
307 | bcopy (((int *)(REGBUF)) + 2, VALBUF, TYPE_LENGTH (TYPE)) | |
308 | ||
309 | /* Write into appropriate registers a function return value | |
310 | of type TYPE, given in virtual format. */ | |
311 | ||
312 | #define STORE_RETURN_VALUE(TYPE,VALBUF) \ | |
313 | write_register_bytes (REGISTER_BYTE (R2_REGNUM), VALBUF, \ | |
314 | TYPE_LENGTH (TYPE)) | |
315 | ||
316 | /* Extract from an array REGBUF containing the (raw) register state | |
317 | the address in which a function should return its structure value, | |
318 | as a CORE_ADDR (or an expression that can be used as one). */ | |
319 | ||
320 | #define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*((int *)(REGBUF) + 2)) | |
321 | ||
322 | /* Both gcc and cc return small structs in registers (i.e. in GDB | |
323 | terminology, small structs don't use the struct return convention). */ | |
324 | #define USE_STRUCT_CONVENTION(gcc_p, type) (TYPE_LENGTH(type) > 8) | |
325 | \f | |
326 | /* Describe the pointer in each stack frame to the previous stack frame | |
327 | (its caller). */ | |
328 | ||
329 | /* FRAME_CHAIN takes a frame's nominal address | |
330 | and produces the frame's chain-pointer. | |
331 | ||
332 | FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address | |
333 | and produces the nominal address of the caller frame. | |
334 | ||
335 | However, if FRAME_CHAIN_VALID returns zero, | |
336 | it means the given frame is the outermost one and has no caller. | |
337 | In that case, FRAME_CHAIN_COMBINE is not used. */ | |
338 | ||
339 | /* In the case of the NPL, the frame's norminal address is Br2 and the | |
340 | previous routines frame is up the stack X bytes, where X is the | |
341 | value stored in the code function header xA(Br1). */ | |
342 | #define FRAME_CHAIN(thisframe) (findframe(thisframe)) | |
343 | ||
344 | #define FRAME_CHAIN_VALID(chain, thisframe) \ | |
345 | (chain != 0 && chain != (thisframe)->frame) | |
346 | ||
347 | #define FRAME_CHAIN_COMBINE(chain, thisframe) \ | |
348 | (chain) | |
349 | ||
350 | /* Define other aspects of the stack frame on NPL. */ | |
351 | #define FRAME_SAVED_PC(FRAME) \ | |
352 | (read_memory_integer ((FRAME)->frame + 8, 4)) | |
353 | ||
354 | #define FRAME_ARGS_ADDRESS(fi) \ | |
355 | ((fi)->next_frame ? \ | |
356 | read_memory_integer ((fi)->frame + 12, 4) : \ | |
357 | read_register (AP_REGNUM)) | |
358 | ||
359 | #define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame) | |
360 | ||
361 | /* Set VAL to the number of args passed to frame described by FI. | |
362 | Can set VAL to -1, meaning no way to tell. */ | |
363 | ||
364 | /* We can check the stab info to see how | |
365 | many arg we have. No info in stack will tell us */ | |
366 | #define FRAME_NUM_ARGS(val,fi) (val = findarg(fi)) | |
367 | ||
368 | /* Return number of bytes at start of arglist that are not really args. */ | |
369 | #define FRAME_ARGS_SKIP 8 | |
370 | ||
371 | /* Put here the code to store, into a struct frame_saved_regs, | |
372 | the addresses of the saved registers of frame described by FRAME_INFO. | |
373 | This includes special registers such as pc and fp saved in special | |
374 | ways in the stack frame. sp is even more special: | |
375 | the address we return for it IS the sp for the next frame. */ | |
376 | ||
377 | #define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \ | |
378 | { \ | |
379 | bzero (&frame_saved_regs, sizeof frame_saved_regs); \ | |
380 | (frame_saved_regs).regs[SP_REGNUM] = framechain (frame_info); \ | |
381 | (frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame + 8; \ | |
382 | (frame_saved_regs).regs[R4_REGNUM] = (frame_info)->frame + 0x30; \ | |
383 | (frame_saved_regs).regs[R5_REGNUM] = (frame_info)->frame + 0x34; \ | |
384 | (frame_saved_regs).regs[R6_REGNUM] = (frame_info)->frame + 0x38; \ | |
385 | (frame_saved_regs).regs[R7_REGNUM] = (frame_info)->frame + 0x3C; \ | |
386 | } | |
387 | \f | |
388 | /* Things needed for making the inferior call functions. */ | |
389 | ||
841c051c JG |
390 | #define CALL_DUMMY_LOCATION BEFORE_TEXT_END |
391 | #define NEED_TEXT_START_END | |
dd3b648e RP |
392 | |
393 | /* Push an empty stack frame, to record the current PC, etc. */ | |
394 | ||
395 | #define PUSH_DUMMY_FRAME \ | |
396 | { register CORE_ADDR sp = read_register (SP_REGNUM); \ | |
397 | register int regnum; \ | |
398 | for (regnum = 0; regnum < FP_REGNUM; regnum++) \ | |
399 | sp = push_word (sp, read_register (regnum)); \ | |
400 | sp = push_word (sp, read_register (PS_REGNUM)); \ | |
401 | sp = push_word (sp, read_register (PC_REGNUM)); \ | |
402 | write_register (SP_REGNUM, sp);} | |
403 | ||
404 | /* Discard from the stack the innermost frame, | |
405 | restoring all saved registers. */ | |
406 | ||
407 | #define POP_FRAME \ | |
408 | { CORE_ADDR sp = read_register(SP_REGNUM); \ | |
409 | REGISTER_TYPE reg; \ | |
410 | int regnum; \ | |
411 | for(regnum = 0;regnum < FP_REGNUM;regnum++){ \ | |
412 | sp-=sizeof(REGISTER_TYPE); \ | |
413 | read_memory(sp,®,sizeof(REGISTER_TYPE)); \ | |
414 | write_register(regnum,reg);} \ | |
415 | sp-=sizeof(REGISTER_TYPE); \ | |
416 | read_memory(sp,®,sizeof(REGISTER_TYPE)); \ | |
417 | write_register(PS_REGNUM,reg); \ | |
418 | sp-=sizeof(REGISTER_TYPE); \ | |
419 | read_memory(sp,®,sizeof(REGISTER_TYPE)); \ | |
420 | write_register(PC_REGNUM,reg);} | |
421 | ||
422 | /* MJD - Size of dummy frame pushed onto stack by PUSH_DUMMY_FRAME */ | |
423 | ||
424 | #define DUMMY_FRAME_SIZE (0x48) | |
425 | ||
426 | /* MJD - The sequence of words in the instructions is | |
427 | halt | |
428 | halt | |
429 | halt | |
430 | halt | |
431 | subr b2,stack size,0 grab stack space for dummy call | |
432 | labr b3,x0(b2),0 set AP_REGNUM to point at arguments | |
433 | lw r2,x8(b3),0 load r2 with first argument | |
434 | lwbr b1,arguments size(b2),0 load address of function to be called | |
435 | brlnk r1,x8(b1),0 call function | |
436 | halt | |
437 | halt | |
438 | labr b2,stack size(b2),0 give back stack | |
439 | break break | |
440 | */ | |
441 | ||
442 | #define CALL_DUMMY {0x00000000, \ | |
443 | 0x00000000, \ | |
444 | 0x59000000, \ | |
445 | 0x598a0000, \ | |
446 | 0xb5030008, \ | |
447 | 0x5c820000, \ | |
448 | 0x44810008, \ | |
449 | 0x00000000, \ | |
450 | 0x590a0000, \ | |
451 | 0x28090000 } | |
452 | ||
453 | #define CALL_DUMMY_LENGTH 40 | |
454 | ||
455 | #define CALL_DUMMY_START_OFFSET 8 | |
456 | ||
457 | #define CALL_DUMMY_STACK_ADJUST 8 | |
458 | ||
459 | /* MJD - Fixup CALL_DUMMY for the specific function call. | |
460 | OK heres the problems | |
461 | 1) On a trap there are two copies of the stack pointer, one in SP_REGNUM | |
462 | which is read/write and one in FP_REGNUM which is only read. It seems | |
463 | that when restarting the GOULD NP1 uses FP_REGNUM's value. | |
464 | 2) Loading function address into b1 looks a bit difficult if bigger than | |
465 | 0x0000fffc, infact from what I can tell the compiler sets up table of | |
466 | function address in base3 through which function calls are referenced. | |
467 | ||
468 | OK my solutions | |
469 | Calculate the size of the dummy stack frame and do adjustments of | |
470 | SP_REGNUM in the dummy call. | |
471 | Push function address onto the stack and load it in the dummy call | |
472 | */ | |
473 | ||
474 | #define FIX_CALL_DUMMY(dummyname, sp, fun, nargs, args, type, gcc_p) \ | |
475 | { int i;\ | |
476 | int arg_len = 0, total_len;\ | |
477 | old_sp = push_word(old_sp,fun);\ | |
478 | for(i = nargs - 1;i >= 0;i--)\ | |
479 | arg_len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i])));\ | |
480 | if(struct_return)\ | |
481 | arg_len += TYPE_LENGTH(value_type);\ | |
482 | total_len = DUMMY_FRAME_SIZE+CALL_DUMMY_STACK_ADJUST+4+arg_len;\ | |
483 | dummyname[0] += total_len;\ | |
484 | dummyname[2] += total_len;\ | |
485 | dummyname[5] += arg_len+CALL_DUMMY_STACK_ADJUST;\ | |
486 | dummyname[8] += total_len;} | |
487 | ||
488 | /* MJD - So the stack should end up looking like this | |
489 | ||
490 | | Normal stack frame | | |
491 | | from normal program | | |
492 | | flow | | |
493 | +---------------------+ <- Final sp - 0x08 - argument size | |
494 | | | - 0x4 - dummy_frame_size | |
495 | | Pushed dummy frame | | |
496 | | b0-b7, r0-r7 | | |
497 | | pc and ps | | |
498 | | | | |
499 | +---------------------+ | |
500 | | Function address | | |
501 | +---------------------+ <- Final sp - 0x8 - arguments size | |
502 | | | | |
503 | | | | |
504 | | | | |
505 | | Arguments to | | |
506 | | Function | | |
507 | | | | |
508 | | | | |
509 | | | | |
510 | +---------------------+ <- Final sp - 0x8 | |
511 | | Dummy_stack_adjust | | |
512 | +---------------------+ <- Final sp | |
513 | | | | |
514 | | where call will | | |
515 | | build frame | | |
516 | */ |