]>
Commit | Line | Data |
---|---|---|
3aa6856a | 1 | /* Target-struct-independent code to start (run) and stop an inferior process. |
87273c71 | 2 | Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996 |
101b7f9c | 3 | Free Software Foundation, Inc. |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
3b271cf4 | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
3b271cf4 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
3b271cf4 | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
3b271cf4 | 18 | along with this program; if not, write to the Free Software |
3f687c78 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
bd5635a1 | 20 | |
bd5635a1 | 21 | #include "defs.h" |
2b576293 | 22 | #include "gdb_string.h" |
a6b98cb9 | 23 | #include <ctype.h> |
bd5635a1 RP |
24 | #include "symtab.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
28 | #include "wait.h" | |
29 | #include "gdbcore.h" | |
3950a34e | 30 | #include "gdbcmd.h" |
bd5635a1 | 31 | #include "target.h" |
fdfa3315 | 32 | #include "gdbthread.h" |
1c95d7ab | 33 | #include "annotate.h" |
bd5635a1 RP |
34 | |
35 | #include <signal.h> | |
36 | ||
30875e1c | 37 | /* Prototypes for local functions */ |
bd5635a1 | 38 | |
4cc1b3f7 | 39 | static void signals_info PARAMS ((char *, int)); |
619fd145 | 40 | |
4cc1b3f7 | 41 | static void handle_command PARAMS ((char *, int)); |
30875e1c | 42 | |
67ac9759 | 43 | static void sig_print_info PARAMS ((enum target_signal)); |
30875e1c | 44 | |
4cc1b3f7 | 45 | static void sig_print_header PARAMS ((void)); |
30875e1c | 46 | |
4cc1b3f7 | 47 | static void resume_cleanups PARAMS ((int)); |
30875e1c | 48 | |
4cc1b3f7 | 49 | static int hook_stop_stub PARAMS ((char *)); |
3950a34e | 50 | |
b607efe7 FF |
51 | static void delete_breakpoint_current_contents PARAMS ((PTR)); |
52 | ||
30875e1c SG |
53 | /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the |
54 | program. It needs to examine the jmp_buf argument and extract the PC | |
55 | from it. The return value is non-zero on success, zero otherwise. */ | |
4cc1b3f7 | 56 | |
30875e1c SG |
57 | #ifndef GET_LONGJMP_TARGET |
58 | #define GET_LONGJMP_TARGET(PC_ADDR) 0 | |
59 | #endif | |
60 | ||
d747e0af MT |
61 | |
62 | /* Some machines have trampoline code that sits between function callers | |
63 | and the actual functions themselves. If this machine doesn't have | |
64 | such things, disable their processing. */ | |
4cc1b3f7 | 65 | |
d747e0af MT |
66 | #ifndef SKIP_TRAMPOLINE_CODE |
67 | #define SKIP_TRAMPOLINE_CODE(pc) 0 | |
68 | #endif | |
69 | ||
87273c71 JL |
70 | /* Dynamic function trampolines are similar to solib trampolines in that they |
71 | are between the caller and the callee. The difference is that when you | |
72 | enter a dynamic trampoline, you can't determine the callee's address. Some | |
73 | (usually complex) code needs to run in the dynamic trampoline to figure out | |
74 | the callee's address. This macro is usually called twice. First, when we | |
75 | enter the trampoline (looks like a normal function call at that point). It | |
76 | should return the PC of a point within the trampoline where the callee's | |
77 | address is known. Second, when we hit the breakpoint, this routine returns | |
78 | the callee's address. At that point, things proceed as per a step resume | |
79 | breakpoint. */ | |
80 | ||
81 | #ifndef DYNAMIC_TRAMPOLINE_NEXTPC | |
82 | #define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0 | |
83 | #endif | |
84 | ||
1eeba686 | 85 | /* For SVR4 shared libraries, each call goes through a small piece of |
4cc1b3f7 | 86 | trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates |
1eeba686 | 87 | to nonzero if we are current stopped in one of these. */ |
4cc1b3f7 JK |
88 | |
89 | #ifndef IN_SOLIB_CALL_TRAMPOLINE | |
90 | #define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0 | |
91 | #endif | |
92 | ||
93 | /* In some shared library schemes, the return path from a shared library | |
94 | call may need to go through a trampoline too. */ | |
95 | ||
96 | #ifndef IN_SOLIB_RETURN_TRAMPOLINE | |
97 | #define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0 | |
1eeba686 | 98 | #endif |
d747e0af | 99 | |
4eb4b87e MA |
100 | /* On MIPS16, a function that returns a floating point value may call |
101 | a library helper function to copy the return value to a floating point | |
102 | register. The IGNORE_HELPER_CALL macro returns non-zero if we | |
103 | should ignore (i.e. step over) this function call. */ | |
104 | #ifndef IGNORE_HELPER_CALL | |
105 | #define IGNORE_HELPER_CALL(pc) 0 | |
106 | #endif | |
107 | ||
9f739abd SG |
108 | /* On some systems, the PC may be left pointing at an instruction that won't |
109 | actually be executed. This is usually indicated by a bit in the PSW. If | |
110 | we find ourselves in such a state, then we step the target beyond the | |
111 | nullified instruction before returning control to the user so as to avoid | |
112 | confusion. */ | |
113 | ||
114 | #ifndef INSTRUCTION_NULLIFIED | |
115 | #define INSTRUCTION_NULLIFIED 0 | |
116 | #endif | |
117 | ||
bd5635a1 RP |
118 | /* Tables of how to react to signals; the user sets them. */ |
119 | ||
072b552a JG |
120 | static unsigned char *signal_stop; |
121 | static unsigned char *signal_print; | |
122 | static unsigned char *signal_program; | |
123 | ||
124 | #define SET_SIGS(nsigs,sigs,flags) \ | |
125 | do { \ | |
126 | int signum = (nsigs); \ | |
127 | while (signum-- > 0) \ | |
128 | if ((sigs)[signum]) \ | |
129 | (flags)[signum] = 1; \ | |
130 | } while (0) | |
131 | ||
132 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
133 | do { \ | |
134 | int signum = (nsigs); \ | |
135 | while (signum-- > 0) \ | |
136 | if ((sigs)[signum]) \ | |
137 | (flags)[signum] = 0; \ | |
138 | } while (0) | |
bd5635a1 | 139 | |
3950a34e RP |
140 | |
141 | /* Command list pointer for the "stop" placeholder. */ | |
142 | ||
143 | static struct cmd_list_element *stop_command; | |
144 | ||
bd5635a1 | 145 | /* Nonzero if breakpoints are now inserted in the inferior. */ |
bd5635a1 | 146 | |
3950a34e | 147 | static int breakpoints_inserted; |
bd5635a1 RP |
148 | |
149 | /* Function inferior was in as of last step command. */ | |
150 | ||
151 | static struct symbol *step_start_function; | |
152 | ||
bd5635a1 RP |
153 | /* Nonzero if we are expecting a trace trap and should proceed from it. */ |
154 | ||
155 | static int trap_expected; | |
156 | ||
b607efe7 | 157 | #ifdef SOLIB_ADD |
87273c71 JL |
158 | /* Nonzero if we want to give control to the user when we're notified |
159 | of shared library events by the dynamic linker. */ | |
160 | static int stop_on_solib_events; | |
b607efe7 | 161 | #endif |
87273c71 | 162 | |
c66ed884 | 163 | #ifdef HP_OS_BUG |
bd5635a1 RP |
164 | /* Nonzero if the next time we try to continue the inferior, it will |
165 | step one instruction and generate a spurious trace trap. | |
166 | This is used to compensate for a bug in HP-UX. */ | |
167 | ||
168 | static int trap_expected_after_continue; | |
c66ed884 | 169 | #endif |
bd5635a1 RP |
170 | |
171 | /* Nonzero means expecting a trace trap | |
172 | and should stop the inferior and return silently when it happens. */ | |
173 | ||
174 | int stop_after_trap; | |
175 | ||
176 | /* Nonzero means expecting a trap and caller will handle it themselves. | |
177 | It is used after attach, due to attaching to a process; | |
178 | when running in the shell before the child program has been exec'd; | |
179 | and when running some kinds of remote stuff (FIXME?). */ | |
180 | ||
181 | int stop_soon_quietly; | |
182 | ||
bd5635a1 RP |
183 | /* Nonzero if proceed is being used for a "finish" command or a similar |
184 | situation when stop_registers should be saved. */ | |
185 | ||
186 | int proceed_to_finish; | |
187 | ||
188 | /* Save register contents here when about to pop a stack dummy frame, | |
189 | if-and-only-if proceed_to_finish is set. | |
190 | Thus this contains the return value from the called function (assuming | |
191 | values are returned in a register). */ | |
192 | ||
193 | char stop_registers[REGISTER_BYTES]; | |
194 | ||
195 | /* Nonzero if program stopped due to error trying to insert breakpoints. */ | |
196 | ||
197 | static int breakpoints_failed; | |
198 | ||
199 | /* Nonzero after stop if current stack frame should be printed. */ | |
200 | ||
201 | static int stop_print_frame; | |
202 | ||
a71d17b1 JK |
203 | \f |
204 | /* Things to clean up if we QUIT out of resume (). */ | |
e1ce8aa5 | 205 | /* ARGSUSED */ |
a71d17b1 JK |
206 | static void |
207 | resume_cleanups (arg) | |
208 | int arg; | |
209 | { | |
210 | normal_stop (); | |
211 | } | |
212 | ||
213 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
214 | wants to interrupt some lengthy single-stepping operation | |
215 | (for child processes, the SIGINT goes to the inferior, and so | |
216 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
217 | other targets, that's not true). | |
218 | ||
219 | STEP nonzero if we should step (zero to continue instead). | |
220 | SIG is the signal to give the inferior (zero for none). */ | |
310cc570 | 221 | void |
a71d17b1 JK |
222 | resume (step, sig) |
223 | int step; | |
67ac9759 | 224 | enum target_signal sig; |
a71d17b1 JK |
225 | { |
226 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
227 | QUIT; | |
d11c44f1 | 228 | |
cef4c2e7 PS |
229 | #ifdef CANNOT_STEP_BREAKPOINT |
230 | /* Most targets can step a breakpoint instruction, thus executing it | |
231 | normally. But if this one cannot, just continue and we will hit | |
232 | it anyway. */ | |
233 | if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) | |
234 | step = 0; | |
235 | #endif | |
236 | ||
d11c44f1 JG |
237 | #ifdef NO_SINGLE_STEP |
238 | if (step) { | |
818de002 | 239 | single_step(sig); /* Do it the hard way, w/temp breakpoints */ |
d11c44f1 JG |
240 | step = 0; /* ...and don't ask hardware to do it. */ |
241 | } | |
242 | #endif | |
243 | ||
bdbd5f50 JG |
244 | /* Handle any optimized stores to the inferior NOW... */ |
245 | #ifdef DO_DEFERRED_STORES | |
246 | DO_DEFERRED_STORES; | |
247 | #endif | |
248 | ||
2f1c7c3f JK |
249 | /* Install inferior's terminal modes. */ |
250 | target_terminal_inferior (); | |
251 | ||
de43d7d0 | 252 | target_resume (-1, step, sig); |
a71d17b1 JK |
253 | discard_cleanups (old_cleanups); |
254 | } | |
255 | ||
bd5635a1 RP |
256 | \f |
257 | /* Clear out all variables saying what to do when inferior is continued. | |
258 | First do this, then set the ones you want, then call `proceed'. */ | |
259 | ||
260 | void | |
261 | clear_proceed_status () | |
262 | { | |
263 | trap_expected = 0; | |
264 | step_range_start = 0; | |
265 | step_range_end = 0; | |
266 | step_frame_address = 0; | |
267 | step_over_calls = -1; | |
bd5635a1 RP |
268 | stop_after_trap = 0; |
269 | stop_soon_quietly = 0; | |
270 | proceed_to_finish = 0; | |
271 | breakpoint_proceeded = 1; /* We're about to proceed... */ | |
272 | ||
273 | /* Discard any remaining commands or status from previous stop. */ | |
274 | bpstat_clear (&stop_bpstat); | |
275 | } | |
276 | ||
277 | /* Basic routine for continuing the program in various fashions. | |
278 | ||
279 | ADDR is the address to resume at, or -1 for resume where stopped. | |
280 | SIGGNAL is the signal to give it, or 0 for none, | |
281 | or -1 for act according to how it stopped. | |
282 | STEP is nonzero if should trap after one instruction. | |
283 | -1 means return after that and print nothing. | |
284 | You should probably set various step_... variables | |
285 | before calling here, if you are stepping. | |
286 | ||
287 | You should call clear_proceed_status before calling proceed. */ | |
288 | ||
289 | void | |
290 | proceed (addr, siggnal, step) | |
291 | CORE_ADDR addr; | |
67ac9759 | 292 | enum target_signal siggnal; |
bd5635a1 RP |
293 | int step; |
294 | { | |
295 | int oneproc = 0; | |
296 | ||
297 | if (step > 0) | |
298 | step_start_function = find_pc_function (read_pc ()); | |
299 | if (step < 0) | |
300 | stop_after_trap = 1; | |
301 | ||
bdbd5f50 | 302 | if (addr == (CORE_ADDR)-1) |
bd5635a1 RP |
303 | { |
304 | /* If there is a breakpoint at the address we will resume at, | |
305 | step one instruction before inserting breakpoints | |
306 | so that we do not stop right away. */ | |
307 | ||
4eb4b87e | 308 | if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) |
bd5635a1 | 309 | oneproc = 1; |
b5aff268 JK |
310 | |
311 | #ifdef STEP_SKIPS_DELAY | |
312 | /* Check breakpoint_here_p first, because breakpoint_here_p is fast | |
313 | (it just checks internal GDB data structures) and STEP_SKIPS_DELAY | |
314 | is slow (it needs to read memory from the target). */ | |
315 | if (breakpoint_here_p (read_pc () + 4) | |
316 | && STEP_SKIPS_DELAY (read_pc ())) | |
317 | oneproc = 1; | |
318 | #endif /* STEP_SKIPS_DELAY */ | |
bd5635a1 RP |
319 | } |
320 | else | |
101b7f9c | 321 | write_pc (addr); |
bd5635a1 | 322 | |
320f93f7 SG |
323 | #ifdef PREPARE_TO_PROCEED |
324 | /* In a multi-threaded task we may select another thread and then continue. | |
325 | ||
326 | In this case the thread that stopped at a breakpoint will immediately | |
327 | cause another stop, if it is not stepped over first. On the other hand, | |
328 | if (ADDR != -1) we only want to single step over the breakpoint if we did | |
329 | switch to another thread. | |
330 | ||
331 | If we are single stepping, don't do any of the above. | |
332 | (Note that in the current implementation single stepping another | |
333 | thread after a breakpoint and then continuing will cause the original | |
334 | breakpoint to be hit again, but you can always continue, so it's not | |
335 | a big deal.) */ | |
336 | ||
479f0f18 | 337 | if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ())) |
320f93f7 SG |
338 | oneproc = 1; |
339 | #endif /* PREPARE_TO_PROCEED */ | |
340 | ||
c66ed884 | 341 | #ifdef HP_OS_BUG |
bd5635a1 RP |
342 | if (trap_expected_after_continue) |
343 | { | |
344 | /* If (step == 0), a trap will be automatically generated after | |
345 | the first instruction is executed. Force step one | |
346 | instruction to clear this condition. This should not occur | |
347 | if step is nonzero, but it is harmless in that case. */ | |
348 | oneproc = 1; | |
349 | trap_expected_after_continue = 0; | |
350 | } | |
c66ed884 | 351 | #endif /* HP_OS_BUG */ |
bd5635a1 RP |
352 | |
353 | if (oneproc) | |
354 | /* We will get a trace trap after one instruction. | |
355 | Continue it automatically and insert breakpoints then. */ | |
356 | trap_expected = 1; | |
357 | else | |
358 | { | |
359 | int temp = insert_breakpoints (); | |
360 | if (temp) | |
361 | { | |
362 | print_sys_errmsg ("ptrace", temp); | |
363 | error ("Cannot insert breakpoints.\n\ | |
364 | The same program may be running in another process."); | |
365 | } | |
366 | breakpoints_inserted = 1; | |
367 | } | |
368 | ||
fcbc95a7 | 369 | if (siggnal != TARGET_SIGNAL_DEFAULT) |
bd5635a1 RP |
370 | stop_signal = siggnal; |
371 | /* If this signal should not be seen by program, | |
372 | give it zero. Used for debugging signals. */ | |
67ac9759 | 373 | else if (!signal_program[stop_signal]) |
fcbc95a7 | 374 | stop_signal = TARGET_SIGNAL_0; |
bd5635a1 | 375 | |
1c95d7ab JK |
376 | annotate_starting (); |
377 | ||
c66ed884 SG |
378 | /* Make sure that output from GDB appears before output from the |
379 | inferior. */ | |
380 | gdb_flush (gdb_stdout); | |
381 | ||
bd5635a1 | 382 | /* Resume inferior. */ |
a71d17b1 | 383 | resume (oneproc || step || bpstat_should_step (), stop_signal); |
bd5635a1 RP |
384 | |
385 | /* Wait for it to stop (if not standalone) | |
386 | and in any case decode why it stopped, and act accordingly. */ | |
387 | ||
388 | wait_for_inferior (); | |
389 | normal_stop (); | |
390 | } | |
391 | ||
bd5635a1 RP |
392 | /* Record the pc and sp of the program the last time it stopped. |
393 | These are just used internally by wait_for_inferior, but need | |
394 | to be preserved over calls to it and cleared when the inferior | |
395 | is started. */ | |
396 | static CORE_ADDR prev_pc; | |
bd5635a1 RP |
397 | static CORE_ADDR prev_func_start; |
398 | static char *prev_func_name; | |
399 | ||
a71d17b1 | 400 | \f |
bd5635a1 RP |
401 | /* Start remote-debugging of a machine over a serial link. */ |
402 | ||
403 | void | |
404 | start_remote () | |
405 | { | |
4cc1b3f7 | 406 | init_thread_list (); |
bd5635a1 RP |
407 | init_wait_for_inferior (); |
408 | clear_proceed_status (); | |
409 | stop_soon_quietly = 1; | |
410 | trap_expected = 0; | |
98885d76 JK |
411 | wait_for_inferior (); |
412 | normal_stop (); | |
bd5635a1 RP |
413 | } |
414 | ||
415 | /* Initialize static vars when a new inferior begins. */ | |
416 | ||
417 | void | |
418 | init_wait_for_inferior () | |
419 | { | |
420 | /* These are meaningless until the first time through wait_for_inferior. */ | |
421 | prev_pc = 0; | |
bd5635a1 RP |
422 | prev_func_start = 0; |
423 | prev_func_name = NULL; | |
424 | ||
c66ed884 | 425 | #ifdef HP_OS_BUG |
bd5635a1 | 426 | trap_expected_after_continue = 0; |
c66ed884 | 427 | #endif |
bd5635a1 | 428 | breakpoints_inserted = 0; |
cf3e377e | 429 | breakpoint_init_inferior (); |
67ac9759 JK |
430 | |
431 | /* Don't confuse first call to proceed(). */ | |
432 | stop_signal = TARGET_SIGNAL_0; | |
bd5635a1 RP |
433 | } |
434 | ||
fe675038 JK |
435 | static void |
436 | delete_breakpoint_current_contents (arg) | |
437 | PTR arg; | |
438 | { | |
439 | struct breakpoint **breakpointp = (struct breakpoint **)arg; | |
440 | if (*breakpointp != NULL) | |
441 | delete_breakpoint (*breakpointp); | |
442 | } | |
bd5635a1 RP |
443 | \f |
444 | /* Wait for control to return from inferior to debugger. | |
445 | If inferior gets a signal, we may decide to start it up again | |
446 | instead of returning. That is why there is a loop in this function. | |
447 | When this function actually returns it means the inferior | |
448 | should be left stopped and GDB should read more commands. */ | |
449 | ||
450 | void | |
451 | wait_for_inferior () | |
452 | { | |
fe675038 | 453 | struct cleanup *old_cleanups; |
67ac9759 | 454 | struct target_waitstatus w; |
bd5635a1 | 455 | int another_trap; |
b607efe7 | 456 | int random_signal = 0; |
bd5635a1 | 457 | CORE_ADDR stop_func_start; |
67ac9759 | 458 | CORE_ADDR stop_func_end; |
bd5635a1 | 459 | char *stop_func_name; |
894d8e69 JL |
460 | #if 0 |
461 | CORE_ADDR prologue_pc = 0; | |
462 | #endif | |
463 | CORE_ADDR tmp; | |
bd5635a1 RP |
464 | struct symtab_and_line sal; |
465 | int remove_breakpoints_on_following_step = 0; | |
b3b39c0c | 466 | int current_line; |
b2f03c30 | 467 | struct symtab *current_symtab; |
30875e1c | 468 | int handling_longjmp = 0; /* FIXME */ |
fe675038 | 469 | struct breakpoint *step_resume_breakpoint = NULL; |
bcc37718 | 470 | struct breakpoint *through_sigtramp_breakpoint = NULL; |
37c99ddb | 471 | int pid; |
479f0f18 | 472 | int update_step_sp = 0; |
bd5635a1 | 473 | |
fe675038 JK |
474 | old_cleanups = make_cleanup (delete_breakpoint_current_contents, |
475 | &step_resume_breakpoint); | |
bcc37718 JK |
476 | make_cleanup (delete_breakpoint_current_contents, |
477 | &through_sigtramp_breakpoint); | |
b3b39c0c SG |
478 | sal = find_pc_line(prev_pc, 0); |
479 | current_line = sal.line; | |
b2f03c30 | 480 | current_symtab = sal.symtab; |
b3b39c0c | 481 | |
cb6b0202 | 482 | /* Are we stepping? */ |
bcc37718 JK |
483 | #define CURRENTLY_STEPPING() \ |
484 | ((through_sigtramp_breakpoint == NULL \ | |
485 | && !handling_longjmp \ | |
486 | && ((step_range_end && step_resume_breakpoint == NULL) \ | |
487 | || trap_expected)) \ | |
488 | || bpstat_should_step ()) | |
cb6b0202 | 489 | |
bd5635a1 RP |
490 | while (1) |
491 | { | |
320f93f7 SG |
492 | /* We have to invalidate the registers BEFORE calling target_wait because |
493 | they can be loaded from the target while in target_wait. This makes | |
494 | remote debugging a bit more efficient for those targets that provide | |
495 | critical registers as part of their normal status mechanism. */ | |
496 | ||
497 | registers_changed (); | |
498 | ||
479f0f18 SG |
499 | if (target_wait_hook) |
500 | pid = target_wait_hook (-1, &w); | |
501 | else | |
502 | pid = target_wait (-1, &w); | |
1c95d7ab | 503 | |
894d8e69 JL |
504 | /* Gross. |
505 | ||
506 | We goto this label from elsewhere in wait_for_inferior when we want | |
507 | to continue the main loop without calling "wait" and trashing the | |
508 | waitstatus contained in W. */ | |
48f4903f JL |
509 | have_waited: |
510 | ||
bd5635a1 | 511 | flush_cached_frames (); |
320f93f7 SG |
512 | |
513 | /* If it's a new process, add it to the thread database */ | |
514 | ||
515 | if (pid != inferior_pid | |
516 | && !in_thread_list (pid)) | |
517 | { | |
518 | fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid)); | |
519 | add_thread (pid); | |
479f0f18 SG |
520 | |
521 | /* We may want to consider not doing a resume here in order to give | |
522 | the user a chance to play with the new thread. It might be good | |
523 | to make that a user-settable option. */ | |
524 | ||
525 | /* At this point, all threads are stopped (happens automatically in | |
526 | either the OS or the native code). Therefore we need to continue | |
527 | all threads in order to make progress. */ | |
528 | ||
529 | target_resume (-1, 0, TARGET_SIGNAL_0); | |
530 | continue; | |
320f93f7 | 531 | } |
bd5635a1 | 532 | |
fcbc95a7 JK |
533 | switch (w.kind) |
534 | { | |
535 | case TARGET_WAITKIND_LOADED: | |
536 | /* Ignore it gracefully. */ | |
537 | if (breakpoints_inserted) | |
538 | { | |
539 | mark_breakpoints_out (); | |
540 | insert_breakpoints (); | |
541 | } | |
542 | resume (0, TARGET_SIGNAL_0); | |
543 | continue; | |
1eeba686 | 544 | |
fcbc95a7 JK |
545 | case TARGET_WAITKIND_SPURIOUS: |
546 | resume (0, TARGET_SIGNAL_0); | |
547 | continue; | |
1eeba686 | 548 | |
fcbc95a7 | 549 | case TARGET_WAITKIND_EXITED: |
bd5635a1 | 550 | target_terminal_ours (); /* Must do this before mourn anyway */ |
1c95d7ab | 551 | annotate_exited (w.value.integer); |
67ac9759 | 552 | if (w.value.integer) |
e37a6e9c | 553 | printf_filtered ("\nProgram exited with code 0%o.\n", |
67ac9759 | 554 | (unsigned int)w.value.integer); |
bd5635a1 | 555 | else |
479f0f18 | 556 | printf_filtered ("\nProgram exited normally.\n"); |
2b576293 C |
557 | |
558 | /* Record the exit code in the convenience variable $_exitcode, so | |
559 | that the user can inspect this again later. */ | |
560 | set_internalvar (lookup_internalvar ("_exitcode"), | |
561 | value_from_longest (builtin_type_int, | |
562 | (LONGEST) w.value.integer)); | |
199b2450 | 563 | gdb_flush (gdb_stdout); |
bd5635a1 RP |
564 | target_mourn_inferior (); |
565 | #ifdef NO_SINGLE_STEP | |
566 | one_stepped = 0; | |
567 | #endif | |
568 | stop_print_frame = 0; | |
fcbc95a7 | 569 | goto stop_stepping; |
67ac9759 | 570 | |
fcbc95a7 | 571 | case TARGET_WAITKIND_SIGNALLED: |
bd5635a1 | 572 | stop_print_frame = 0; |
67ac9759 | 573 | stop_signal = w.value.sig; |
bd5635a1 | 574 | target_terminal_ours (); /* Must do this before mourn anyway */ |
1c95d7ab | 575 | annotate_signalled (); |
4cc1b3f7 JK |
576 | |
577 | /* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED | |
578 | mean it is already dead? This has been here since GDB 2.8, so | |
579 | perhaps it means rms didn't understand unix waitstatuses? | |
580 | For the moment I'm just kludging around this in remote.c | |
581 | rather than trying to change it here --kingdon, 5 Dec 1994. */ | |
30875e1c | 582 | target_kill (); /* kill mourns as well */ |
4cc1b3f7 | 583 | |
1c95d7ab JK |
584 | printf_filtered ("\nProgram terminated with signal "); |
585 | annotate_signal_name (); | |
586 | printf_filtered ("%s", target_signal_to_name (stop_signal)); | |
587 | annotate_signal_name_end (); | |
588 | printf_filtered (", "); | |
589 | annotate_signal_string (); | |
590 | printf_filtered ("%s", target_signal_to_string (stop_signal)); | |
591 | annotate_signal_string_end (); | |
592 | printf_filtered (".\n"); | |
67ac9759 | 593 | |
fee44494 | 594 | printf_filtered ("The program no longer exists.\n"); |
199b2450 | 595 | gdb_flush (gdb_stdout); |
bd5635a1 RP |
596 | #ifdef NO_SINGLE_STEP |
597 | one_stepped = 0; | |
598 | #endif | |
fcbc95a7 JK |
599 | goto stop_stepping; |
600 | ||
601 | case TARGET_WAITKIND_STOPPED: | |
602 | /* This is the only case in which we keep going; the above cases | |
603 | end in a continue or goto. */ | |
bd5635a1 RP |
604 | break; |
605 | } | |
de43d7d0 | 606 | |
48f4903f JL |
607 | stop_signal = w.value.sig; |
608 | ||
609 | stop_pc = read_pc_pid (pid); | |
610 | ||
320f93f7 SG |
611 | /* See if a thread hit a thread-specific breakpoint that was meant for |
612 | another thread. If so, then step that thread past the breakpoint, | |
613 | and continue it. */ | |
de43d7d0 | 614 | |
8fc2b417 | 615 | if (stop_signal == TARGET_SIGNAL_TRAP) |
b2f03c30 | 616 | { |
8fc2b417 SG |
617 | #ifdef NO_SINGLE_STEP |
618 | if (one_stepped) | |
619 | random_signal = 0; | |
620 | else | |
621 | #endif | |
622 | if (breakpoints_inserted | |
623 | && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK)) | |
624 | { | |
625 | random_signal = 0; | |
626 | if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid)) | |
627 | { | |
628 | /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */ | |
629 | write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid); | |
630 | ||
631 | remove_breakpoints (); | |
632 | target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */ | |
633 | /* FIXME: What if a signal arrives instead of the single-step | |
634 | happening? */ | |
635 | ||
636 | if (target_wait_hook) | |
637 | target_wait_hook (pid, &w); | |
638 | else | |
639 | target_wait (pid, &w); | |
640 | insert_breakpoints (); | |
641 | ||
642 | /* We need to restart all the threads now. */ | |
643 | target_resume (-1, 0, TARGET_SIGNAL_0); | |
644 | continue; | |
645 | } | |
646 | } | |
b2f03c30 | 647 | } |
320f93f7 SG |
648 | else |
649 | random_signal = 1; | |
650 | ||
651 | /* See if something interesting happened to the non-current thread. If | |
652 | so, then switch to that thread, and eventually give control back to | |
653 | the user. */ | |
de43d7d0 | 654 | |
37c99ddb JK |
655 | if (pid != inferior_pid) |
656 | { | |
657 | int printed = 0; | |
658 | ||
320f93f7 SG |
659 | /* If it's a random signal for a non-current thread, notify user |
660 | if he's expressed an interest. */ | |
661 | ||
662 | if (random_signal | |
663 | && signal_print[stop_signal]) | |
664 | { | |
665 | printed = 1; | |
666 | target_terminal_ours_for_output (); | |
667 | printf_filtered ("\nProgram received signal %s, %s.\n", | |
668 | target_signal_to_name (stop_signal), | |
669 | target_signal_to_string (stop_signal)); | |
670 | gdb_flush (gdb_stdout); | |
671 | } | |
672 | ||
673 | /* If it's not SIGTRAP and not a signal we want to stop for, then | |
674 | continue the thread. */ | |
675 | ||
676 | if (stop_signal != TARGET_SIGNAL_TRAP | |
677 | && !signal_stop[stop_signal]) | |
37c99ddb | 678 | { |
320f93f7 SG |
679 | if (printed) |
680 | target_terminal_inferior (); | |
37c99ddb | 681 | |
320f93f7 SG |
682 | /* Clear the signal if it should not be passed. */ |
683 | if (signal_program[stop_signal] == 0) | |
684 | stop_signal = TARGET_SIGNAL_0; | |
685 | ||
686 | target_resume (pid, 0, stop_signal); | |
37c99ddb JK |
687 | continue; |
688 | } | |
320f93f7 SG |
689 | |
690 | /* It's a SIGTRAP or a signal we're interested in. Switch threads, | |
691 | and fall into the rest of wait_for_inferior(). */ | |
692 | ||
2b576293 C |
693 | /* Save infrun state for the old thread. */ |
694 | save_infrun_state (inferior_pid, prev_pc, | |
695 | prev_func_start, prev_func_name, | |
696 | trap_expected, step_resume_breakpoint, | |
697 | through_sigtramp_breakpoint, | |
698 | step_range_start, step_range_end, | |
699 | step_frame_address, handling_longjmp, | |
700 | another_trap); | |
701 | ||
320f93f7 | 702 | inferior_pid = pid; |
2b576293 C |
703 | |
704 | /* Load infrun state for the new thread. */ | |
705 | load_infrun_state (inferior_pid, &prev_pc, | |
706 | &prev_func_start, &prev_func_name, | |
707 | &trap_expected, &step_resume_breakpoint, | |
708 | &through_sigtramp_breakpoint, | |
709 | &step_range_start, &step_range_end, | |
710 | &step_frame_address, &handling_longjmp, | |
711 | &another_trap); | |
320f93f7 SG |
712 | printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid)); |
713 | ||
714 | flush_cached_frames (); | |
37c99ddb JK |
715 | } |
716 | ||
bd5635a1 RP |
717 | #ifdef NO_SINGLE_STEP |
718 | if (one_stepped) | |
719 | single_step (0); /* This actually cleans up the ss */ | |
720 | #endif /* NO_SINGLE_STEP */ | |
721 | ||
999dd04b JL |
722 | /* If PC is pointing at a nullified instruction, then step beyond |
723 | it so that the user won't be confused when GDB appears to be ready | |
724 | to execute it. */ | |
9f739abd SG |
725 | |
726 | if (INSTRUCTION_NULLIFIED) | |
727 | { | |
894d8e69 JL |
728 | struct target_waitstatus tmpstatus; |
729 | ||
7dbb5eed | 730 | registers_changed (); |
894d8e69 JL |
731 | target_resume (pid, 1, TARGET_SIGNAL_0); |
732 | ||
733 | /* We may have received a signal that we want to pass to | |
734 | the inferior; therefore, we must not clobber the waitstatus | |
735 | in W. So we call wait ourselves, then continue the loop | |
736 | at the "have_waited" label. */ | |
737 | if (target_wait_hook) | |
738 | target_wait_hook (pid, &tmpstatus); | |
739 | else | |
740 | target_wait (pid, &tmpstatus); | |
741 | ||
7dbb5eed | 742 | |
894d8e69 | 743 | goto have_waited; |
9f739abd SG |
744 | } |
745 | ||
48f4903f JL |
746 | #ifdef HAVE_STEPPABLE_WATCHPOINT |
747 | /* It may not be necessary to disable the watchpoint to stop over | |
748 | it. For example, the PA can (with some kernel cooperation) | |
749 | single step over a watchpoint without disabling the watchpoint. */ | |
750 | if (STOPPED_BY_WATCHPOINT (w)) | |
751 | { | |
752 | resume (1, 0); | |
753 | continue; | |
754 | } | |
755 | #endif | |
756 | ||
757 | #ifdef HAVE_NONSTEPPABLE_WATCHPOINT | |
758 | /* It is far more common to need to disable a watchpoint | |
759 | to step the inferior over it. FIXME. What else might | |
760 | a debug register or page protection watchpoint scheme need | |
761 | here? */ | |
762 | if (STOPPED_BY_WATCHPOINT (w)) | |
763 | { | |
764 | /* At this point, we are stopped at an instruction which has attempted to write | |
765 | to a piece of memory under control of a watchpoint. The instruction hasn't | |
766 | actually executed yet. If we were to evaluate the watchpoint expression | |
767 | now, we would get the old value, and therefore no change would seem to have | |
768 | occurred. | |
769 | ||
770 | In order to make watchpoints work `right', we really need to complete the | |
771 | memory write, and then evaluate the watchpoint expression. The following | |
772 | code does that by removing the watchpoint (actually, all watchpoints and | |
773 | breakpoints), single-stepping the target, re-inserting watchpoints, and then | |
774 | falling through to let normal single-step processing handle proceed. Since | |
775 | this includes evaluating watchpoints, things will come to a stop in the | |
776 | correct manner. */ | |
777 | ||
778 | write_pc (stop_pc - DECR_PC_AFTER_BREAK); | |
779 | ||
780 | remove_breakpoints (); | |
781 | target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */ | |
782 | ||
783 | if (target_wait_hook) | |
784 | target_wait_hook (pid, &w); | |
785 | else | |
786 | target_wait (pid, &w); | |
787 | insert_breakpoints (); | |
788 | /* FIXME-maybe: is this cleaner than setting a flag? Does it | |
789 | handle things like signals arriving and other things happening | |
790 | in combination correctly? */ | |
791 | goto have_waited; | |
792 | } | |
793 | #endif | |
794 | ||
795 | #ifdef HAVE_CONTINUABLE_WATCHPOINT | |
796 | /* It may be possible to simply continue after a watchpoint. */ | |
797 | STOPPED_BY_WATCHPOINT (w); | |
798 | #endif | |
799 | ||
bd5635a1 | 800 | stop_func_start = 0; |
4eb4b87e | 801 | stop_func_end = 0; |
bd5635a1 RP |
802 | stop_func_name = 0; |
803 | /* Don't care about return value; stop_func_start and stop_func_name | |
804 | will both be 0 if it doesn't work. */ | |
37c99ddb | 805 | find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start, |
67ac9759 | 806 | &stop_func_end); |
bd5635a1 RP |
807 | stop_func_start += FUNCTION_START_OFFSET; |
808 | another_trap = 0; | |
809 | bpstat_clear (&stop_bpstat); | |
810 | stop_step = 0; | |
811 | stop_stack_dummy = 0; | |
812 | stop_print_frame = 1; | |
bd5635a1 RP |
813 | random_signal = 0; |
814 | stopped_by_random_signal = 0; | |
815 | breakpoints_failed = 0; | |
816 | ||
817 | /* Look at the cause of the stop, and decide what to do. | |
818 | The alternatives are: | |
819 | 1) break; to really stop and return to the debugger, | |
820 | 2) drop through to start up again | |
821 | (set another_trap to 1 to single step once) | |
822 | 3) set random_signal to 1, and the decision between 1 and 2 | |
823 | will be made according to the signal handling tables. */ | |
824 | ||
bd5635a1 RP |
825 | /* First, distinguish signals caused by the debugger from signals |
826 | that have to do with the program's own actions. | |
827 | Note that breakpoint insns may cause SIGTRAP or SIGILL | |
828 | or SIGEMT, depending on the operating system version. | |
829 | Here we detect when a SIGILL or SIGEMT is really a breakpoint | |
830 | and change it to SIGTRAP. */ | |
831 | ||
67ac9759 | 832 | if (stop_signal == TARGET_SIGNAL_TRAP |
bd5635a1 | 833 | || (breakpoints_inserted && |
67ac9759 JK |
834 | (stop_signal == TARGET_SIGNAL_ILL |
835 | || stop_signal == TARGET_SIGNAL_EMT | |
e37a6e9c | 836 | )) |
bd5635a1 RP |
837 | || stop_soon_quietly) |
838 | { | |
67ac9759 | 839 | if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) |
bd5635a1 RP |
840 | { |
841 | stop_print_frame = 0; | |
842 | break; | |
843 | } | |
844 | if (stop_soon_quietly) | |
845 | break; | |
846 | ||
847 | /* Don't even think about breakpoints | |
848 | if just proceeded over a breakpoint. | |
849 | ||
850 | However, if we are trying to proceed over a breakpoint | |
bcc37718 | 851 | and end up in sigtramp, then through_sigtramp_breakpoint |
bd5635a1 RP |
852 | will be set and we should check whether we've hit the |
853 | step breakpoint. */ | |
67ac9759 | 854 | if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected |
bcc37718 | 855 | && through_sigtramp_breakpoint == NULL) |
bd5635a1 RP |
856 | bpstat_clear (&stop_bpstat); |
857 | else | |
858 | { | |
859 | /* See if there is a breakpoint at the current PC. */ | |
cb6b0202 | 860 | stop_bpstat = bpstat_stop_status |
479f0f18 | 861 | (&stop_pc, |
4eb4b87e | 862 | (DECR_PC_AFTER_BREAK ? |
cb6b0202 JK |
863 | /* Notice the case of stepping through a jump |
864 | that lands just after a breakpoint. | |
865 | Don't confuse that with hitting the breakpoint. | |
866 | What we check for is that 1) stepping is going on | |
867 | and 2) the pc before the last insn does not match | |
868 | the address of the breakpoint before the current pc. */ | |
869 | (prev_pc != stop_pc - DECR_PC_AFTER_BREAK | |
4eb4b87e MA |
870 | && CURRENTLY_STEPPING ()) : |
871 | 0) | |
cb6b0202 JK |
872 | ); |
873 | /* Following in case break condition called a | |
874 | function. */ | |
875 | stop_print_frame = 1; | |
bd5635a1 | 876 | } |
fe675038 | 877 | |
67ac9759 | 878 | if (stop_signal == TARGET_SIGNAL_TRAP) |
bd5635a1 RP |
879 | random_signal |
880 | = !(bpstat_explains_signal (stop_bpstat) | |
881 | || trap_expected | |
84d59861 | 882 | #ifndef CALL_DUMMY_BREAKPOINT_OFFSET |
479f0f18 SG |
883 | || PC_IN_CALL_DUMMY (stop_pc, read_sp (), |
884 | FRAME_FP (get_current_frame ())) | |
84d59861 | 885 | #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */ |
fe675038 | 886 | || (step_range_end && step_resume_breakpoint == NULL)); |
bd5635a1 RP |
887 | else |
888 | { | |
889 | random_signal | |
890 | = !(bpstat_explains_signal (stop_bpstat) | |
bd5635a1 RP |
891 | /* End of a stack dummy. Some systems (e.g. Sony |
892 | news) give another signal besides SIGTRAP, | |
893 | so check here as well as above. */ | |
84d59861 | 894 | #ifndef CALL_DUMMY_BREAKPOINT_OFFSET |
479f0f18 SG |
895 | || PC_IN_CALL_DUMMY (stop_pc, read_sp (), |
896 | FRAME_FP (get_current_frame ())) | |
84d59861 | 897 | #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */ |
bd5635a1 RP |
898 | ); |
899 | if (!random_signal) | |
67ac9759 | 900 | stop_signal = TARGET_SIGNAL_TRAP; |
bd5635a1 RP |
901 | } |
902 | } | |
903 | else | |
904 | random_signal = 1; | |
fe675038 | 905 | |
bd5635a1 RP |
906 | /* For the program's own signals, act according to |
907 | the signal handling tables. */ | |
fe675038 | 908 | |
bd5635a1 RP |
909 | if (random_signal) |
910 | { | |
911 | /* Signal not for debugging purposes. */ | |
912 | int printed = 0; | |
913 | ||
914 | stopped_by_random_signal = 1; | |
915 | ||
67ac9759 | 916 | if (signal_print[stop_signal]) |
bd5635a1 RP |
917 | { |
918 | printed = 1; | |
919 | target_terminal_ours_for_output (); | |
1c95d7ab JK |
920 | annotate_signal (); |
921 | printf_filtered ("\nProgram received signal "); | |
922 | annotate_signal_name (); | |
923 | printf_filtered ("%s", target_signal_to_name (stop_signal)); | |
924 | annotate_signal_name_end (); | |
925 | printf_filtered (", "); | |
926 | annotate_signal_string (); | |
927 | printf_filtered ("%s", target_signal_to_string (stop_signal)); | |
928 | annotate_signal_string_end (); | |
929 | printf_filtered (".\n"); | |
199b2450 | 930 | gdb_flush (gdb_stdout); |
bd5635a1 | 931 | } |
67ac9759 | 932 | if (signal_stop[stop_signal]) |
bd5635a1 RP |
933 | break; |
934 | /* If not going to stop, give terminal back | |
935 | if we took it away. */ | |
936 | else if (printed) | |
937 | target_terminal_inferior (); | |
b7f81b57 | 938 | |
101b7f9c PS |
939 | /* Clear the signal if it should not be passed. */ |
940 | if (signal_program[stop_signal] == 0) | |
67ac9759 | 941 | stop_signal = TARGET_SIGNAL_0; |
101b7f9c | 942 | |
fe675038 JK |
943 | /* I'm not sure whether this needs to be check_sigtramp2 or |
944 | whether it could/should be keep_going. */ | |
945 | goto check_sigtramp2; | |
bd5635a1 | 946 | } |
30875e1c | 947 | |
bd5635a1 | 948 | /* Handle cases caused by hitting a breakpoint. */ |
fe675038 JK |
949 | { |
950 | CORE_ADDR jmp_buf_pc; | |
29c6dce2 JK |
951 | struct bpstat_what what; |
952 | ||
953 | what = bpstat_what (stop_bpstat); | |
bd5635a1 | 954 | |
84d59861 JK |
955 | if (what.call_dummy) |
956 | { | |
957 | stop_stack_dummy = 1; | |
958 | #ifdef HP_OS_BUG | |
959 | trap_expected_after_continue = 1; | |
960 | #endif | |
961 | } | |
962 | ||
fe675038 JK |
963 | switch (what.main_action) |
964 | { | |
965 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
966 | /* If we hit the breakpoint at longjmp, disable it for the | |
967 | duration of this command. Then, install a temporary | |
968 | breakpoint at the target of the jmp_buf. */ | |
969 | disable_longjmp_breakpoint(); | |
970 | remove_breakpoints (); | |
971 | breakpoints_inserted = 0; | |
972 | if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going; | |
973 | ||
974 | /* Need to blow away step-resume breakpoint, as it | |
975 | interferes with us */ | |
976 | if (step_resume_breakpoint != NULL) | |
977 | { | |
978 | delete_breakpoint (step_resume_breakpoint); | |
979 | step_resume_breakpoint = NULL; | |
bcc37718 JK |
980 | } |
981 | /* Not sure whether we need to blow this away too, but probably | |
982 | it is like the step-resume breakpoint. */ | |
983 | if (through_sigtramp_breakpoint != NULL) | |
984 | { | |
985 | delete_breakpoint (through_sigtramp_breakpoint); | |
986 | through_sigtramp_breakpoint = NULL; | |
fe675038 | 987 | } |
30875e1c | 988 | |
101b7f9c | 989 | #if 0 |
fe675038 JK |
990 | /* FIXME - Need to implement nested temporary breakpoints */ |
991 | if (step_over_calls > 0) | |
992 | set_longjmp_resume_breakpoint(jmp_buf_pc, | |
993 | get_current_frame()); | |
994 | else | |
30875e1c | 995 | #endif /* 0 */ |
fe675038 JK |
996 | set_longjmp_resume_breakpoint(jmp_buf_pc, NULL); |
997 | handling_longjmp = 1; /* FIXME */ | |
998 | goto keep_going; | |
999 | ||
1000 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: | |
1001 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: | |
1002 | remove_breakpoints (); | |
1003 | breakpoints_inserted = 0; | |
101b7f9c | 1004 | #if 0 |
fe675038 JK |
1005 | /* FIXME - Need to implement nested temporary breakpoints */ |
1006 | if (step_over_calls | |
479f0f18 | 1007 | && (FRAME_FP (get_current_frame ()) |
fe675038 JK |
1008 | INNER_THAN step_frame_address)) |
1009 | { | |
1010 | another_trap = 1; | |
1011 | goto keep_going; | |
1012 | } | |
30875e1c | 1013 | #endif /* 0 */ |
fe675038 JK |
1014 | disable_longjmp_breakpoint(); |
1015 | handling_longjmp = 0; /* FIXME */ | |
1016 | if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) | |
101b7f9c | 1017 | break; |
fe675038 JK |
1018 | /* else fallthrough */ |
1019 | ||
1020 | case BPSTAT_WHAT_SINGLE: | |
1021 | if (breakpoints_inserted) | |
1022 | remove_breakpoints (); | |
1023 | breakpoints_inserted = 0; | |
1024 | another_trap = 1; | |
1025 | /* Still need to check other stuff, at least the case | |
1026 | where we are stepping and step out of the right range. */ | |
1027 | break; | |
1028 | ||
1029 | case BPSTAT_WHAT_STOP_NOISY: | |
1030 | stop_print_frame = 1; | |
bcc37718 JK |
1031 | |
1032 | /* We are about to nuke the step_resume_breakpoint and | |
1033 | through_sigtramp_breakpoint via the cleanup chain, so | |
1034 | no need to worry about it here. */ | |
1035 | ||
fe675038 | 1036 | goto stop_stepping; |
101b7f9c | 1037 | |
fe675038 JK |
1038 | case BPSTAT_WHAT_STOP_SILENT: |
1039 | stop_print_frame = 0; | |
fe675038 | 1040 | |
bcc37718 JK |
1041 | /* We are about to nuke the step_resume_breakpoint and |
1042 | through_sigtramp_breakpoint via the cleanup chain, so | |
1043 | no need to worry about it here. */ | |
100f92e2 | 1044 | |
bcc37718 | 1045 | goto stop_stepping; |
fe675038 | 1046 | |
bcc37718 | 1047 | case BPSTAT_WHAT_STEP_RESUME: |
fe675038 JK |
1048 | delete_breakpoint (step_resume_breakpoint); |
1049 | step_resume_breakpoint = NULL; | |
bcc37718 JK |
1050 | break; |
1051 | ||
1052 | case BPSTAT_WHAT_THROUGH_SIGTRAMP: | |
479f0f18 SG |
1053 | if (through_sigtramp_breakpoint) |
1054 | delete_breakpoint (through_sigtramp_breakpoint); | |
bcc37718 | 1055 | through_sigtramp_breakpoint = NULL; |
30875e1c | 1056 | |
fe675038 JK |
1057 | /* If were waiting for a trap, hitting the step_resume_break |
1058 | doesn't count as getting it. */ | |
1059 | if (trap_expected) | |
1060 | another_trap = 1; | |
bcc37718 JK |
1061 | break; |
1062 | ||
87273c71 | 1063 | case BPSTAT_WHAT_CHECK_SHLIBS: |
b607efe7 | 1064 | #ifdef SOLIB_ADD |
87273c71 JL |
1065 | { |
1066 | extern int auto_solib_add; | |
1067 | ||
fa3764e2 JL |
1068 | /* Remove breakpoints, we eventually want to step over the |
1069 | shlib event breakpoint, and SOLIB_ADD might adjust | |
1070 | breakpoint addresses via breakpoint_re_set. */ | |
1071 | if (breakpoints_inserted) | |
1072 | remove_breakpoints (); | |
1073 | breakpoints_inserted = 0; | |
1074 | ||
87273c71 JL |
1075 | /* Check for any newly added shared libraries if we're |
1076 | supposed to be adding them automatically. */ | |
1077 | if (auto_solib_add) | |
11be829f | 1078 | { |
11be829f JL |
1079 | /* Switch terminal for any messages produced by |
1080 | breakpoint_re_set. */ | |
1081 | target_terminal_ours_for_output (); | |
1082 | SOLIB_ADD (NULL, 0, NULL); | |
1083 | target_terminal_inferior (); | |
1084 | } | |
87273c71 | 1085 | |
4eb4b87e MA |
1086 | /* Try to reenable shared library breakpoints, additional |
1087 | code segments in shared libraries might be mapped in now. */ | |
1088 | re_enable_breakpoints_in_shlibs (); | |
1089 | ||
87273c71 JL |
1090 | /* If requested, stop when the dynamic linker notifies |
1091 | gdb of events. This allows the user to get control | |
1092 | and place breakpoints in initializer routines for | |
1093 | dynamically loaded objects (among other things). */ | |
1094 | if (stop_on_solib_events) | |
1095 | { | |
1096 | stop_print_frame = 0; | |
1097 | goto stop_stepping; | |
1098 | } | |
1099 | else | |
1100 | { | |
1101 | /* We want to step over this breakpoint, then keep going. */ | |
1102 | another_trap = 1; | |
87273c71 JL |
1103 | break; |
1104 | } | |
1105 | } | |
1106 | #endif | |
b607efe7 | 1107 | break; |
87273c71 | 1108 | |
bcc37718 JK |
1109 | case BPSTAT_WHAT_LAST: |
1110 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
1111 | ||
1112 | case BPSTAT_WHAT_KEEP_CHECKING: | |
1113 | break; | |
30875e1c | 1114 | } |
fe675038 | 1115 | } |
30875e1c SG |
1116 | |
1117 | /* We come here if we hit a breakpoint but should not | |
1118 | stop for it. Possibly we also were stepping | |
1119 | and should stop for that. So fall through and | |
1120 | test for stepping. But, if not stepping, | |
1121 | do not stop. */ | |
1122 | ||
84d59861 JK |
1123 | #ifndef CALL_DUMMY_BREAKPOINT_OFFSET |
1124 | /* This is the old way of detecting the end of the stack dummy. | |
1125 | An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets | |
1126 | handled above. As soon as we can test it on all of them, all | |
1127 | architectures should define it. */ | |
1128 | ||
bd5635a1 | 1129 | /* If this is the breakpoint at the end of a stack dummy, |
c9de302b SG |
1130 | just stop silently, unless the user was doing an si/ni, in which |
1131 | case she'd better know what she's doing. */ | |
1132 | ||
479f0f18 | 1133 | if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ())) |
c9de302b SG |
1134 | && !step_range_end) |
1135 | { | |
1136 | stop_print_frame = 0; | |
1137 | stop_stack_dummy = 1; | |
bd5635a1 | 1138 | #ifdef HP_OS_BUG |
c9de302b | 1139 | trap_expected_after_continue = 1; |
bd5635a1 | 1140 | #endif |
c9de302b SG |
1141 | break; |
1142 | } | |
84d59861 JK |
1143 | #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */ |
1144 | ||
fe675038 | 1145 | if (step_resume_breakpoint) |
bd5635a1 RP |
1146 | /* Having a step-resume breakpoint overrides anything |
1147 | else having to do with stepping commands until | |
1148 | that breakpoint is reached. */ | |
bcc37718 JK |
1149 | /* I'm not sure whether this needs to be check_sigtramp2 or |
1150 | whether it could/should be keep_going. */ | |
fe675038 JK |
1151 | goto check_sigtramp2; |
1152 | ||
1153 | if (step_range_end == 0) | |
1154 | /* Likewise if we aren't even stepping. */ | |
1155 | /* I'm not sure whether this needs to be check_sigtramp2 or | |
1156 | whether it could/should be keep_going. */ | |
1157 | goto check_sigtramp2; | |
1158 | ||
bd5635a1 | 1159 | /* If stepping through a line, keep going if still within it. */ |
fe675038 JK |
1160 | if (stop_pc >= step_range_start |
1161 | && stop_pc < step_range_end | |
3f687c78 SG |
1162 | #if 0 |
1163 | /* I haven't a clue what might trigger this clause, and it seems wrong anyway, | |
1164 | so I've disabled it until someone complains. -Stu 10/24/95 */ | |
1165 | ||
fe675038 JK |
1166 | /* The step range might include the start of the |
1167 | function, so if we are at the start of the | |
1168 | step range and either the stack or frame pointers | |
1169 | just changed, we've stepped outside */ | |
1170 | && !(stop_pc == step_range_start | |
479f0f18 SG |
1171 | && FRAME_FP (get_current_frame ()) |
1172 | && (read_sp () INNER_THAN step_sp | |
3f687c78 SG |
1173 | || FRAME_FP (get_current_frame ()) != step_frame_address)) |
1174 | #endif | |
1175 | ) | |
bd5635a1 | 1176 | { |
fe675038 JK |
1177 | /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal. |
1178 | So definately need to check for sigtramp here. */ | |
1179 | goto check_sigtramp2; | |
bd5635a1 | 1180 | } |
fe675038 | 1181 | |
479f0f18 SG |
1182 | /* We stepped out of the stepping range. */ |
1183 | ||
1184 | /* We can't update step_sp every time through the loop, because | |
1185 | reading the stack pointer would slow down stepping too much. | |
1186 | But we can update it every time we leave the step range. */ | |
1187 | update_step_sp = 1; | |
fe675038 JK |
1188 | |
1189 | /* Did we just take a signal? */ | |
1190 | if (IN_SIGTRAMP (stop_pc, stop_func_name) | |
b607efe7 FF |
1191 | && !IN_SIGTRAMP (prev_pc, prev_func_name) |
1192 | && read_sp () INNER_THAN step_sp) | |
bd5635a1 | 1193 | { |
bcc37718 JK |
1194 | /* We've just taken a signal; go until we are back to |
1195 | the point where we took it and one more. */ | |
1196 | ||
fe675038 JK |
1197 | /* This code is needed at least in the following case: |
1198 | The user types "next" and then a signal arrives (before | |
1199 | the "next" is done). */ | |
bcc37718 JK |
1200 | |
1201 | /* Note that if we are stopped at a breakpoint, then we need | |
1202 | the step_resume breakpoint to override any breakpoints at | |
1203 | the same location, so that we will still step over the | |
1204 | breakpoint even though the signal happened. */ | |
1205 | ||
fe675038 JK |
1206 | { |
1207 | struct symtab_and_line sr_sal; | |
1208 | ||
4eb4b87e | 1209 | INIT_SAL (&sr_sal); /* initialize to zeroes */ |
fe675038 | 1210 | sr_sal.pc = prev_pc; |
d1c0c6cf | 1211 | /* We could probably be setting the frame to |
479f0f18 | 1212 | step_frame_address; I don't think anyone thought to try it. */ |
fe675038 | 1213 | step_resume_breakpoint = |
bcc37718 | 1214 | set_momentary_breakpoint (sr_sal, NULL, bp_step_resume); |
fe675038 JK |
1215 | if (breakpoints_inserted) |
1216 | insert_breakpoints (); | |
1217 | } | |
bd5635a1 | 1218 | |
fe675038 JK |
1219 | /* If this is stepi or nexti, make sure that the stepping range |
1220 | gets us past that instruction. */ | |
1221 | if (step_range_end == 1) | |
1222 | /* FIXME: Does this run afoul of the code below which, if | |
1223 | we step into the middle of a line, resets the stepping | |
1224 | range? */ | |
1225 | step_range_end = (step_range_start = prev_pc) + 1; | |
101b7f9c | 1226 | |
fe675038 JK |
1227 | remove_breakpoints_on_following_step = 1; |
1228 | goto keep_going; | |
1229 | } | |
30875e1c | 1230 | |
3f687c78 SG |
1231 | #if 0 |
1232 | /* I disabled this test because it was too complicated and slow. The | |
1233 | SKIP_PROLOGUE was especially slow, because it caused unnecessary | |
1234 | prologue examination on various architectures. The code in the #else | |
1235 | clause has been tested on the Sparc, Mips, PA, and Power | |
1236 | architectures, so it's pretty likely to be correct. -Stu 10/24/95 */ | |
1237 | ||
479f0f18 SG |
1238 | /* See if we left the step range due to a subroutine call that |
1239 | we should proceed to the end of. */ | |
1240 | ||
fe675038 JK |
1241 | if (stop_func_start) |
1242 | { | |
320f93f7 SG |
1243 | struct symtab *s; |
1244 | ||
fe675038 JK |
1245 | /* Do this after the IN_SIGTRAMP check; it might give |
1246 | an error. */ | |
1247 | prologue_pc = stop_func_start; | |
320f93f7 SG |
1248 | |
1249 | /* Don't skip the prologue if this is assembly source */ | |
1250 | s = find_pc_symtab (stop_pc); | |
1251 | if (s && s->language != language_asm) | |
1252 | SKIP_PROLOGUE (prologue_pc); | |
fe675038 | 1253 | } |
30875e1c | 1254 | |
b607efe7 FF |
1255 | if (!(step_sp INNER_THAN read_sp ()) /* don't mistake (sig)return as a call */ |
1256 | && (/* Might be a non-recursive call. If the symbols are missing | |
1257 | enough that stop_func_start == prev_func_start even though | |
1258 | they are really two functions, we will treat some calls as | |
1259 | jumps. */ | |
1260 | stop_func_start != prev_func_start | |
1261 | ||
1262 | /* Might be a recursive call if either we have a prologue | |
1263 | or the call instruction itself saves the PC on the stack. */ | |
1264 | || prologue_pc != stop_func_start | |
1265 | || read_sp () != step_sp) | |
199b2450 TL |
1266 | && (/* PC is completely out of bounds of any known objfiles. Treat |
1267 | like a subroutine call. */ | |
1268 | ! stop_func_start | |
c0c14c1e | 1269 | |
f1619234 | 1270 | /* If we do a call, we will be at the start of a function... */ |
c0c14c1e | 1271 | || stop_pc == stop_func_start |
f1619234 JK |
1272 | |
1273 | /* ...except on the Alpha with -O (and also Irix 5 and | |
1274 | perhaps others), in which we might call the address | |
1275 | after the load of gp. Since prologues don't contain | |
1276 | calls, we can't return to within one, and we don't | |
1277 | jump back into them, so this check is OK. */ | |
c0c14c1e | 1278 | |
c0c14c1e | 1279 | || stop_pc < prologue_pc |
d747e0af | 1280 | |
479f0f18 SG |
1281 | /* ...and if it is a leaf function, the prologue might |
1282 | consist of gp loading only, so the call transfers to | |
1283 | the first instruction after the prologue. */ | |
1284 | || (stop_pc == prologue_pc | |
1285 | ||
1286 | /* Distinguish this from the case where we jump back | |
1287 | to the first instruction after the prologue, | |
1288 | within a function. */ | |
1289 | && stop_func_start != prev_func_start) | |
1290 | ||
c0c14c1e JK |
1291 | /* If we end up in certain places, it means we did a subroutine |
1292 | call. I'm not completely sure this is necessary now that we | |
1293 | have the above checks with stop_func_start (and now that | |
100f92e2 | 1294 | find_pc_partial_function is pickier). */ |
4cc1b3f7 | 1295 | || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name) |
c0c14c1e JK |
1296 | |
1297 | /* If none of the above apply, it is a jump within a function, | |
1298 | or a return from a subroutine. The other case is longjmp, | |
1299 | which can no longer happen here as long as the | |
1300 | handling_longjmp stuff is working. */ | |
1301 | )) | |
320f93f7 | 1302 | #else |
87273c71 JL |
1303 | /* This test is a much more streamlined, (but hopefully correct) |
1304 | replacement for the code above. It's been tested on the Sparc, | |
1305 | Mips, PA, and Power architectures with good results. */ | |
320f93f7 | 1306 | |
3f687c78 SG |
1307 | if (stop_pc == stop_func_start /* Quick test */ |
1308 | || in_prologue (stop_pc, stop_func_start) | |
1309 | || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name) | |
1310 | || stop_func_start == 0) | |
320f93f7 | 1311 | #endif |
3f687c78 | 1312 | |
fe675038 JK |
1313 | { |
1314 | /* It's a subroutine call. */ | |
fee44494 | 1315 | |
fe675038 JK |
1316 | if (step_over_calls == 0) |
1317 | { | |
1318 | /* I presume that step_over_calls is only 0 when we're | |
1319 | supposed to be stepping at the assembly language level | |
1320 | ("stepi"). Just stop. */ | |
1321 | stop_step = 1; | |
1322 | break; | |
1323 | } | |
fee44494 | 1324 | |
4eb4b87e | 1325 | if (step_over_calls > 0 || IGNORE_HELPER_CALL (stop_pc)) |
fe675038 JK |
1326 | /* We're doing a "next". */ |
1327 | goto step_over_function; | |
1328 | ||
1329 | /* If we are in a function call trampoline (a stub between | |
1330 | the calling routine and the real function), locate the real | |
1331 | function. That's what tells us (a) whether we want to step | |
1332 | into it at all, and (b) what prologue we want to run to | |
1333 | the end of, if we do step into it. */ | |
1334 | tmp = SKIP_TRAMPOLINE_CODE (stop_pc); | |
1335 | if (tmp != 0) | |
1336 | stop_func_start = tmp; | |
87273c71 JL |
1337 | else |
1338 | { | |
1339 | tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc); | |
1340 | if (tmp) | |
1341 | { | |
1342 | struct symtab_and_line xxx; | |
4eb4b87e MA |
1343 | /* Why isn't this s_a_l called "sr_sal", like all of the |
1344 | other s_a_l's where this code is duplicated? */ | |
1345 | INIT_SAL (&xxx); /* initialize to zeroes */ | |
87273c71 | 1346 | xxx.pc = tmp; |
87273c71 JL |
1347 | step_resume_breakpoint = |
1348 | set_momentary_breakpoint (xxx, NULL, bp_step_resume); | |
1349 | insert_breakpoints (); | |
1350 | goto keep_going; | |
1351 | } | |
1352 | } | |
fe675038 JK |
1353 | |
1354 | /* If we have line number information for the function we | |
1355 | are thinking of stepping into, step into it. | |
1356 | ||
1357 | If there are several symtabs at that PC (e.g. with include | |
1358 | files), just want to know whether *any* of them have line | |
1359 | numbers. find_pc_line handles this. */ | |
1360 | { | |
1361 | struct symtab_and_line tmp_sal; | |
1362 | ||
1363 | tmp_sal = find_pc_line (stop_func_start, 0); | |
1364 | if (tmp_sal.line != 0) | |
1365 | goto step_into_function; | |
1366 | } | |
d747e0af MT |
1367 | |
1368 | step_over_function: | |
fe675038 JK |
1369 | /* A subroutine call has happened. */ |
1370 | { | |
1371 | /* Set a special breakpoint after the return */ | |
1372 | struct symtab_and_line sr_sal; | |
4eb4b87e MA |
1373 | |
1374 | INIT_SAL (&sr_sal); /* initialize to zeroes */ | |
fe675038 JK |
1375 | sr_sal.pc = |
1376 | ADDR_BITS_REMOVE | |
1377 | (SAVED_PC_AFTER_CALL (get_current_frame ())); | |
fe675038 JK |
1378 | step_resume_breakpoint = |
1379 | set_momentary_breakpoint (sr_sal, get_current_frame (), | |
1380 | bp_step_resume); | |
479f0f18 | 1381 | step_resume_breakpoint->frame = step_frame_address; |
fe675038 JK |
1382 | if (breakpoints_inserted) |
1383 | insert_breakpoints (); | |
1384 | } | |
1385 | goto keep_going; | |
d747e0af MT |
1386 | |
1387 | step_into_function: | |
fe675038 JK |
1388 | /* Subroutine call with source code we should not step over. |
1389 | Do step to the first line of code in it. */ | |
320f93f7 SG |
1390 | { |
1391 | struct symtab *s; | |
1392 | ||
1393 | s = find_pc_symtab (stop_pc); | |
1394 | if (s && s->language != language_asm) | |
1395 | SKIP_PROLOGUE (stop_func_start); | |
1396 | } | |
fe675038 JK |
1397 | sal = find_pc_line (stop_func_start, 0); |
1398 | /* Use the step_resume_break to step until | |
1399 | the end of the prologue, even if that involves jumps | |
1400 | (as it seems to on the vax under 4.2). */ | |
1401 | /* If the prologue ends in the middle of a source line, | |
67ac9759 JK |
1402 | continue to the end of that source line (if it is still |
1403 | within the function). Otherwise, just go to end of prologue. */ | |
bd5635a1 | 1404 | #ifdef PROLOGUE_FIRSTLINE_OVERLAP |
fe675038 JK |
1405 | /* no, don't either. It skips any code that's |
1406 | legitimately on the first line. */ | |
bd5635a1 | 1407 | #else |
67ac9759 | 1408 | if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end) |
fe675038 | 1409 | stop_func_start = sal.end; |
bd5635a1 | 1410 | #endif |
d747e0af | 1411 | |
fe675038 JK |
1412 | if (stop_func_start == stop_pc) |
1413 | { | |
1414 | /* We are already there: stop now. */ | |
1415 | stop_step = 1; | |
1416 | break; | |
1417 | } | |
1418 | else | |
1419 | /* Put the step-breakpoint there and go until there. */ | |
1420 | { | |
1421 | struct symtab_and_line sr_sal; | |
1422 | ||
4eb4b87e | 1423 | INIT_SAL (&sr_sal); /* initialize to zeroes */ |
fe675038 | 1424 | sr_sal.pc = stop_func_start; |
fe675038 JK |
1425 | /* Do not specify what the fp should be when we stop |
1426 | since on some machines the prologue | |
1427 | is where the new fp value is established. */ | |
1428 | step_resume_breakpoint = | |
84d59861 | 1429 | set_momentary_breakpoint (sr_sal, NULL, bp_step_resume); |
fe675038 JK |
1430 | if (breakpoints_inserted) |
1431 | insert_breakpoints (); | |
1432 | ||
1433 | /* And make sure stepping stops right away then. */ | |
1434 | step_range_end = step_range_start; | |
bd5635a1 | 1435 | } |
fe675038 JK |
1436 | goto keep_going; |
1437 | } | |
d747e0af | 1438 | |
b2f03c30 | 1439 | /* We've wandered out of the step range. */ |
d747e0af | 1440 | |
fe675038 JK |
1441 | sal = find_pc_line(stop_pc, 0); |
1442 | ||
1443 | if (step_range_end == 1) | |
1444 | { | |
1445 | /* It is stepi or nexti. We always want to stop stepping after | |
1446 | one instruction. */ | |
1447 | stop_step = 1; | |
1448 | break; | |
1449 | } | |
1450 | ||
4cc1b3f7 JK |
1451 | /* If we're in the return path from a shared library trampoline, |
1452 | we want to proceed through the trampoline when stepping. */ | |
1453 | if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name)) | |
1454 | { | |
1455 | CORE_ADDR tmp; | |
1456 | ||
1457 | /* Determine where this trampoline returns. */ | |
1458 | tmp = SKIP_TRAMPOLINE_CODE (stop_pc); | |
1459 | ||
1460 | /* Only proceed through if we know where it's going. */ | |
1461 | if (tmp) | |
1462 | { | |
1463 | /* And put the step-breakpoint there and go until there. */ | |
1464 | struct symtab_and_line sr_sal; | |
1465 | ||
4eb4b87e | 1466 | INIT_SAL (&sr_sal); /* initialize to zeroes */ |
4cc1b3f7 | 1467 | sr_sal.pc = tmp; |
4cc1b3f7 JK |
1468 | /* Do not specify what the fp should be when we stop |
1469 | since on some machines the prologue | |
1470 | is where the new fp value is established. */ | |
1471 | step_resume_breakpoint = | |
1472 | set_momentary_breakpoint (sr_sal, NULL, bp_step_resume); | |
1473 | if (breakpoints_inserted) | |
1474 | insert_breakpoints (); | |
1475 | ||
1476 | /* Restart without fiddling with the step ranges or | |
1477 | other state. */ | |
1478 | goto keep_going; | |
1479 | } | |
1480 | } | |
1481 | ||
fe675038 JK |
1482 | if (sal.line == 0) |
1483 | { | |
1484 | /* We have no line number information. That means to stop | |
1485 | stepping (does this always happen right after one instruction, | |
1486 | when we do "s" in a function with no line numbers, | |
1487 | or can this happen as a result of a return or longjmp?). */ | |
1488 | stop_step = 1; | |
1489 | break; | |
1490 | } | |
1491 | ||
b2f03c30 JK |
1492 | if (stop_pc == sal.pc |
1493 | && (current_line != sal.line || current_symtab != sal.symtab)) | |
fe675038 JK |
1494 | { |
1495 | /* We are at the start of a different line. So stop. Note that | |
1496 | we don't stop if we step into the middle of a different line. | |
1497 | That is said to make things like for (;;) statements work | |
1498 | better. */ | |
1499 | stop_step = 1; | |
1500 | break; | |
bd5635a1 RP |
1501 | } |
1502 | ||
fe675038 JK |
1503 | /* We aren't done stepping. |
1504 | ||
1505 | Optimize by setting the stepping range to the line. | |
1506 | (We might not be in the original line, but if we entered a | |
1507 | new line in mid-statement, we continue stepping. This makes | |
1508 | things like for(;;) statements work better.) */ | |
67ac9759 JK |
1509 | |
1510 | if (stop_func_end && sal.end >= stop_func_end) | |
1511 | { | |
1512 | /* If this is the last line of the function, don't keep stepping | |
1513 | (it would probably step us out of the function). | |
1514 | This is particularly necessary for a one-line function, | |
1515 | in which after skipping the prologue we better stop even though | |
1516 | we will be in mid-line. */ | |
1517 | stop_step = 1; | |
1518 | break; | |
1519 | } | |
fe675038 JK |
1520 | step_range_start = sal.pc; |
1521 | step_range_end = sal.end; | |
b607efe7 | 1522 | step_frame_address = FRAME_FP (get_current_frame ()); |
4eb4b87e MA |
1523 | current_line = sal.line; |
1524 | current_symtab = sal.symtab; | |
fe675038 JK |
1525 | goto keep_going; |
1526 | ||
1527 | check_sigtramp2: | |
d747e0af MT |
1528 | if (trap_expected |
1529 | && IN_SIGTRAMP (stop_pc, stop_func_name) | |
b607efe7 FF |
1530 | && !IN_SIGTRAMP (prev_pc, prev_func_name) |
1531 | && read_sp () INNER_THAN step_sp) | |
bd5635a1 RP |
1532 | { |
1533 | /* What has happened here is that we have just stepped the inferior | |
1534 | with a signal (because it is a signal which shouldn't make | |
1535 | us stop), thus stepping into sigtramp. | |
1536 | ||
1537 | So we need to set a step_resume_break_address breakpoint | |
fe675038 JK |
1538 | and continue until we hit it, and then step. FIXME: This should |
1539 | be more enduring than a step_resume breakpoint; we should know | |
1540 | that we will later need to keep going rather than re-hitting | |
1541 | the breakpoint here (see testsuite/gdb.t06/signals.exp where | |
1542 | it says "exceedingly difficult"). */ | |
1543 | struct symtab_and_line sr_sal; | |
1544 | ||
4eb4b87e | 1545 | INIT_SAL (&sr_sal); /* initialize to zeroes */ |
fe675038 | 1546 | sr_sal.pc = prev_pc; |
bcc37718 JK |
1547 | /* We perhaps could set the frame if we kept track of what |
1548 | the frame corresponding to prev_pc was. But we don't, | |
1549 | so don't. */ | |
1550 | through_sigtramp_breakpoint = | |
1551 | set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp); | |
bd5635a1 | 1552 | if (breakpoints_inserted) |
fe675038 JK |
1553 | insert_breakpoints (); |
1554 | ||
bd5635a1 RP |
1555 | remove_breakpoints_on_following_step = 1; |
1556 | another_trap = 1; | |
1557 | } | |
1558 | ||
30875e1c | 1559 | keep_going: |
fe675038 JK |
1560 | /* Come to this label when you need to resume the inferior. |
1561 | It's really much cleaner to do a goto than a maze of if-else | |
1562 | conditions. */ | |
30875e1c | 1563 | |
bd5635a1 RP |
1564 | /* Save the pc before execution, to compare with pc after stop. */ |
1565 | prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ | |
1566 | prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER | |
1567 | BREAK is defined, the | |
1568 | original pc would not have | |
1569 | been at the start of a | |
1570 | function. */ | |
1571 | prev_func_name = stop_func_name; | |
479f0f18 SG |
1572 | |
1573 | if (update_step_sp) | |
1574 | step_sp = read_sp (); | |
1575 | update_step_sp = 0; | |
bd5635a1 RP |
1576 | |
1577 | /* If we did not do break;, it means we should keep | |
1578 | running the inferior and not return to debugger. */ | |
1579 | ||
67ac9759 | 1580 | if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) |
bd5635a1 RP |
1581 | { |
1582 | /* We took a signal (which we are supposed to pass through to | |
1583 | the inferior, else we'd have done a break above) and we | |
1584 | haven't yet gotten our trap. Simply continue. */ | |
cb6b0202 | 1585 | resume (CURRENTLY_STEPPING (), stop_signal); |
bd5635a1 RP |
1586 | } |
1587 | else | |
1588 | { | |
1589 | /* Either the trap was not expected, but we are continuing | |
1590 | anyway (the user asked that this signal be passed to the | |
1591 | child) | |
1592 | -- or -- | |
1593 | The signal was SIGTRAP, e.g. it was our signal, but we | |
1594 | decided we should resume from it. | |
1595 | ||
1596 | We're going to run this baby now! | |
1597 | ||
1598 | Insert breakpoints now, unless we are trying | |
1599 | to one-proceed past a breakpoint. */ | |
1600 | /* If we've just finished a special step resume and we don't | |
1601 | want to hit a breakpoint, pull em out. */ | |
d1c0c6cf JK |
1602 | if (step_resume_breakpoint == NULL |
1603 | && through_sigtramp_breakpoint == NULL | |
1604 | && remove_breakpoints_on_following_step) | |
bd5635a1 RP |
1605 | { |
1606 | remove_breakpoints_on_following_step = 0; | |
1607 | remove_breakpoints (); | |
1608 | breakpoints_inserted = 0; | |
1609 | } | |
1610 | else if (!breakpoints_inserted && | |
bcc37718 | 1611 | (through_sigtramp_breakpoint != NULL || !another_trap)) |
bd5635a1 | 1612 | { |
bd5635a1 RP |
1613 | breakpoints_failed = insert_breakpoints (); |
1614 | if (breakpoints_failed) | |
1615 | break; | |
1616 | breakpoints_inserted = 1; | |
1617 | } | |
1618 | ||
1619 | trap_expected = another_trap; | |
1620 | ||
67ac9759 JK |
1621 | if (stop_signal == TARGET_SIGNAL_TRAP) |
1622 | stop_signal = TARGET_SIGNAL_0; | |
bd5635a1 RP |
1623 | |
1624 | #ifdef SHIFT_INST_REGS | |
1625 | /* I'm not sure when this following segment applies. I do know, now, | |
1626 | that we shouldn't rewrite the regs when we were stopped by a | |
1627 | random signal from the inferior process. */ | |
cef4c2e7 PS |
1628 | /* FIXME: Shouldn't this be based on the valid bit of the SXIP? |
1629 | (this is only used on the 88k). */ | |
bd5635a1 | 1630 | |
d11c44f1 | 1631 | if (!bpstat_explains_signal (stop_bpstat) |
67ac9759 | 1632 | && (stop_signal != TARGET_SIGNAL_CHLD) |
bd5635a1 | 1633 | && !stopped_by_random_signal) |
07a5991a | 1634 | SHIFT_INST_REGS(); |
bd5635a1 RP |
1635 | #endif /* SHIFT_INST_REGS */ |
1636 | ||
cb6b0202 | 1637 | resume (CURRENTLY_STEPPING (), stop_signal); |
bd5635a1 RP |
1638 | } |
1639 | } | |
30875e1c SG |
1640 | |
1641 | stop_stepping: | |
bd5635a1 RP |
1642 | if (target_has_execution) |
1643 | { | |
1644 | /* Assuming the inferior still exists, set these up for next | |
1645 | time, just like we did above if we didn't break out of the | |
1646 | loop. */ | |
1647 | prev_pc = read_pc (); | |
1648 | prev_func_start = stop_func_start; | |
1649 | prev_func_name = stop_func_name; | |
bd5635a1 | 1650 | } |
fe675038 | 1651 | do_cleanups (old_cleanups); |
bd5635a1 RP |
1652 | } |
1653 | \f | |
1654 | /* Here to return control to GDB when the inferior stops for real. | |
1655 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
1656 | ||
1657 | STOP_PRINT_FRAME nonzero means print the executing frame | |
1658 | (pc, function, args, file, line number and line text). | |
1659 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
1660 | attempting to insert breakpoints. */ | |
1661 | ||
1662 | void | |
1663 | normal_stop () | |
1664 | { | |
1665 | /* Make sure that the current_frame's pc is correct. This | |
1666 | is a correction for setting up the frame info before doing | |
1667 | DECR_PC_AFTER_BREAK */ | |
3f0184ac | 1668 | if (target_has_execution && get_current_frame()) |
bd5635a1 RP |
1669 | (get_current_frame ())->pc = read_pc (); |
1670 | ||
1671 | if (breakpoints_failed) | |
1672 | { | |
1673 | target_terminal_ours_for_output (); | |
1674 | print_sys_errmsg ("ptrace", breakpoints_failed); | |
e37a6e9c | 1675 | printf_filtered ("Stopped; cannot insert breakpoints.\n\ |
bd5635a1 RP |
1676 | The same program may be running in another process.\n"); |
1677 | } | |
1678 | ||
bd5635a1 RP |
1679 | if (target_has_execution && breakpoints_inserted) |
1680 | if (remove_breakpoints ()) | |
1681 | { | |
1682 | target_terminal_ours_for_output (); | |
e37a6e9c | 1683 | printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\ |
bd5635a1 RP |
1684 | It might be running in another process.\n\ |
1685 | Further execution is probably impossible.\n"); | |
1686 | } | |
1687 | ||
1688 | breakpoints_inserted = 0; | |
1689 | ||
1690 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
1691 | Delete any breakpoint that is to be deleted at the next stop. */ | |
1692 | ||
1693 | breakpoint_auto_delete (stop_bpstat); | |
1694 | ||
1695 | /* If an auto-display called a function and that got a signal, | |
1696 | delete that auto-display to avoid an infinite recursion. */ | |
1697 | ||
1698 | if (stopped_by_random_signal) | |
1699 | disable_current_display (); | |
1700 | ||
1701 | if (step_multi && stop_step) | |
1c95d7ab | 1702 | goto done; |
bd5635a1 RP |
1703 | |
1704 | target_terminal_ours (); | |
1705 | ||
11be829f JL |
1706 | if (stop_bpstat |
1707 | && stop_bpstat->breakpoint_at | |
1708 | && stop_bpstat->breakpoint_at->type == bp_shlib_event) | |
87273c71 JL |
1709 | printf_filtered ("Stopped due to shared library event\n"); |
1710 | ||
3950a34e RP |
1711 | /* Look up the hook_stop and run it if it exists. */ |
1712 | ||
1713 | if (stop_command->hook) | |
1714 | { | |
1715 | catch_errors (hook_stop_stub, (char *)stop_command->hook, | |
fee44494 | 1716 | "Error while running hook_stop:\n", RETURN_MASK_ALL); |
3950a34e RP |
1717 | } |
1718 | ||
bd5635a1 | 1719 | if (!target_has_stack) |
1c95d7ab | 1720 | goto done; |
bd5635a1 RP |
1721 | |
1722 | /* Select innermost stack frame except on return from a stack dummy routine, | |
1515ff18 JG |
1723 | or if the program has exited. Print it without a level number if |
1724 | we have changed functions or hit a breakpoint. Print source line | |
1725 | if we have one. */ | |
bd5635a1 RP |
1726 | if (!stop_stack_dummy) |
1727 | { | |
479f0f18 SG |
1728 | select_frame (get_current_frame (), 0); |
1729 | ||
bd5635a1 RP |
1730 | if (stop_print_frame) |
1731 | { | |
1515ff18 JG |
1732 | int source_only; |
1733 | ||
1734 | source_only = bpstat_print (stop_bpstat); | |
1735 | source_only = source_only || | |
1736 | ( stop_step | |
479f0f18 | 1737 | && step_frame_address == FRAME_FP (get_current_frame ()) |
1515ff18 JG |
1738 | && step_start_function == find_pc_function (stop_pc)); |
1739 | ||
1740 | print_stack_frame (selected_frame, -1, source_only? -1: 1); | |
bd5635a1 RP |
1741 | |
1742 | /* Display the auto-display expressions. */ | |
1743 | do_displays (); | |
1744 | } | |
1745 | } | |
1746 | ||
1747 | /* Save the function value return registers, if we care. | |
1748 | We might be about to restore their previous contents. */ | |
1749 | if (proceed_to_finish) | |
1750 | read_register_bytes (0, stop_registers, REGISTER_BYTES); | |
1751 | ||
1752 | if (stop_stack_dummy) | |
1753 | { | |
1754 | /* Pop the empty frame that contains the stack dummy. | |
1755 | POP_FRAME ends with a setting of the current frame, so we | |
1756 | can use that next. */ | |
1757 | POP_FRAME; | |
f1de67d3 PS |
1758 | /* Set stop_pc to what it was before we called the function. Can't rely |
1759 | on restore_inferior_status because that only gets called if we don't | |
1760 | stop in the called function. */ | |
1761 | stop_pc = read_pc(); | |
bd5635a1 RP |
1762 | select_frame (get_current_frame (), 0); |
1763 | } | |
1c95d7ab JK |
1764 | done: |
1765 | annotate_stopped (); | |
bd5635a1 | 1766 | } |
3950a34e RP |
1767 | |
1768 | static int | |
1769 | hook_stop_stub (cmd) | |
1770 | char *cmd; | |
1771 | { | |
1772 | execute_user_command ((struct cmd_list_element *)cmd, 0); | |
a8a69e63 | 1773 | return (0); |
3950a34e | 1774 | } |
bd5635a1 | 1775 | \f |
cc221e76 FF |
1776 | int signal_stop_state (signo) |
1777 | int signo; | |
1778 | { | |
67ac9759 | 1779 | return signal_stop[signo]; |
cc221e76 FF |
1780 | } |
1781 | ||
1782 | int signal_print_state (signo) | |
1783 | int signo; | |
1784 | { | |
67ac9759 | 1785 | return signal_print[signo]; |
cc221e76 FF |
1786 | } |
1787 | ||
1788 | int signal_pass_state (signo) | |
1789 | int signo; | |
1790 | { | |
67ac9759 | 1791 | return signal_program[signo]; |
cc221e76 FF |
1792 | } |
1793 | ||
bd5635a1 RP |
1794 | static void |
1795 | sig_print_header () | |
1796 | { | |
67ac9759 JK |
1797 | printf_filtered ("\ |
1798 | Signal Stop\tPrint\tPass to program\tDescription\n"); | |
bd5635a1 RP |
1799 | } |
1800 | ||
1801 | static void | |
67ac9759 JK |
1802 | sig_print_info (oursig) |
1803 | enum target_signal oursig; | |
bd5635a1 | 1804 | { |
67ac9759 JK |
1805 | char *name = target_signal_to_name (oursig); |
1806 | printf_filtered ("%s", name); | |
1807 | printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name), | |
1808 | " "); | |
1809 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); | |
1810 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
1811 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
1812 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
bd5635a1 RP |
1813 | } |
1814 | ||
1815 | /* Specify how various signals in the inferior should be handled. */ | |
1816 | ||
1817 | static void | |
1818 | handle_command (args, from_tty) | |
1819 | char *args; | |
1820 | int from_tty; | |
1821 | { | |
072b552a JG |
1822 | char **argv; |
1823 | int digits, wordlen; | |
1824 | int sigfirst, signum, siglast; | |
67ac9759 | 1825 | enum target_signal oursig; |
072b552a JG |
1826 | int allsigs; |
1827 | int nsigs; | |
1828 | unsigned char *sigs; | |
1829 | struct cleanup *old_chain; | |
1830 | ||
1831 | if (args == NULL) | |
1832 | { | |
1833 | error_no_arg ("signal to handle"); | |
1834 | } | |
bd5635a1 | 1835 | |
072b552a JG |
1836 | /* Allocate and zero an array of flags for which signals to handle. */ |
1837 | ||
67ac9759 | 1838 | nsigs = (int)TARGET_SIGNAL_LAST; |
072b552a JG |
1839 | sigs = (unsigned char *) alloca (nsigs); |
1840 | memset (sigs, 0, nsigs); | |
bd5635a1 | 1841 | |
072b552a JG |
1842 | /* Break the command line up into args. */ |
1843 | ||
1844 | argv = buildargv (args); | |
1845 | if (argv == NULL) | |
bd5635a1 | 1846 | { |
072b552a JG |
1847 | nomem (0); |
1848 | } | |
1849 | old_chain = make_cleanup (freeargv, (char *) argv); | |
bd5635a1 | 1850 | |
67ac9759 | 1851 | /* Walk through the args, looking for signal oursigs, signal names, and |
072b552a JG |
1852 | actions. Signal numbers and signal names may be interspersed with |
1853 | actions, with the actions being performed for all signals cumulatively | |
1854 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
bd5635a1 | 1855 | |
072b552a JG |
1856 | while (*argv != NULL) |
1857 | { | |
1858 | wordlen = strlen (*argv); | |
1859 | for (digits = 0; isdigit ((*argv)[digits]); digits++) {;} | |
1860 | allsigs = 0; | |
1861 | sigfirst = siglast = -1; | |
1862 | ||
1863 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
1864 | { | |
1865 | /* Apply action to all signals except those used by the | |
1866 | debugger. Silently skip those. */ | |
1867 | allsigs = 1; | |
1868 | sigfirst = 0; | |
1869 | siglast = nsigs - 1; | |
1870 | } | |
1871 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
1872 | { | |
1873 | SET_SIGS (nsigs, sigs, signal_stop); | |
1874 | SET_SIGS (nsigs, sigs, signal_print); | |
1875 | } | |
1876 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
1877 | { | |
1878 | UNSET_SIGS (nsigs, sigs, signal_program); | |
1879 | } | |
1880 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
1881 | { | |
1882 | SET_SIGS (nsigs, sigs, signal_print); | |
1883 | } | |
1884 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
1885 | { | |
1886 | SET_SIGS (nsigs, sigs, signal_program); | |
1887 | } | |
1888 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
1889 | { | |
1890 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
1891 | } | |
1892 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
1893 | { | |
1894 | SET_SIGS (nsigs, sigs, signal_program); | |
1895 | } | |
1896 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
1897 | { | |
1898 | UNSET_SIGS (nsigs, sigs, signal_print); | |
1899 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
1900 | } | |
1901 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
1902 | { | |
1903 | UNSET_SIGS (nsigs, sigs, signal_program); | |
1904 | } | |
1905 | else if (digits > 0) | |
bd5635a1 | 1906 | { |
67ac9759 JK |
1907 | /* It is numeric. The numeric signal refers to our own internal |
1908 | signal numbering from target.h, not to host/target signal number. | |
1909 | This is a feature; users really should be using symbolic names | |
1910 | anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc. | |
1911 | will work right anyway. */ | |
1912 | ||
c66ed884 | 1913 | sigfirst = siglast = (int) target_signal_from_command (atoi (*argv)); |
072b552a | 1914 | if ((*argv)[digits] == '-') |
bd5635a1 | 1915 | { |
c66ed884 SG |
1916 | siglast = |
1917 | (int) target_signal_from_command (atoi ((*argv) + digits + 1)); | |
bd5635a1 | 1918 | } |
072b552a | 1919 | if (sigfirst > siglast) |
bd5635a1 | 1920 | { |
072b552a JG |
1921 | /* Bet he didn't figure we'd think of this case... */ |
1922 | signum = sigfirst; | |
1923 | sigfirst = siglast; | |
1924 | siglast = signum; | |
bd5635a1 | 1925 | } |
bd5635a1 | 1926 | } |
072b552a | 1927 | else |
bd5635a1 | 1928 | { |
fcbc95a7 JK |
1929 | oursig = target_signal_from_name (*argv); |
1930 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
1931 | { | |
1932 | sigfirst = siglast = (int)oursig; | |
1933 | } | |
1934 | else | |
1935 | { | |
1936 | /* Not a number and not a recognized flag word => complain. */ | |
1937 | error ("Unrecognized or ambiguous flag word: \"%s\".", *argv); | |
1938 | } | |
bd5635a1 | 1939 | } |
072b552a JG |
1940 | |
1941 | /* If any signal numbers or symbol names were found, set flags for | |
1942 | which signals to apply actions to. */ | |
1943 | ||
1944 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
bd5635a1 | 1945 | { |
67ac9759 | 1946 | switch ((enum target_signal)signum) |
072b552a | 1947 | { |
67ac9759 JK |
1948 | case TARGET_SIGNAL_TRAP: |
1949 | case TARGET_SIGNAL_INT: | |
072b552a JG |
1950 | if (!allsigs && !sigs[signum]) |
1951 | { | |
67ac9759 JK |
1952 | if (query ("%s is used by the debugger.\n\ |
1953 | Are you sure you want to change it? ", | |
1954 | target_signal_to_name | |
1955 | ((enum target_signal)signum))) | |
072b552a JG |
1956 | { |
1957 | sigs[signum] = 1; | |
1958 | } | |
1959 | else | |
1960 | { | |
199b2450 TL |
1961 | printf_unfiltered ("Not confirmed, unchanged.\n"); |
1962 | gdb_flush (gdb_stdout); | |
072b552a JG |
1963 | } |
1964 | } | |
1965 | break; | |
c66ed884 SG |
1966 | case TARGET_SIGNAL_0: |
1967 | case TARGET_SIGNAL_DEFAULT: | |
1968 | case TARGET_SIGNAL_UNKNOWN: | |
1969 | /* Make sure that "all" doesn't print these. */ | |
1970 | break; | |
072b552a JG |
1971 | default: |
1972 | sigs[signum] = 1; | |
1973 | break; | |
1974 | } | |
bd5635a1 RP |
1975 | } |
1976 | ||
072b552a | 1977 | argv++; |
bd5635a1 RP |
1978 | } |
1979 | ||
de43d7d0 | 1980 | target_notice_signals(inferior_pid); |
cc221e76 | 1981 | |
bd5635a1 RP |
1982 | if (from_tty) |
1983 | { | |
1984 | /* Show the results. */ | |
1985 | sig_print_header (); | |
072b552a JG |
1986 | for (signum = 0; signum < nsigs; signum++) |
1987 | { | |
1988 | if (sigs[signum]) | |
1989 | { | |
1990 | sig_print_info (signum); | |
1991 | } | |
1992 | } | |
bd5635a1 | 1993 | } |
072b552a JG |
1994 | |
1995 | do_cleanups (old_chain); | |
bd5635a1 RP |
1996 | } |
1997 | ||
67ac9759 JK |
1998 | /* Print current contents of the tables set by the handle command. |
1999 | It is possible we should just be printing signals actually used | |
2000 | by the current target (but for things to work right when switching | |
2001 | targets, all signals should be in the signal tables). */ | |
bd5635a1 RP |
2002 | |
2003 | static void | |
e37a6e9c | 2004 | signals_info (signum_exp, from_tty) |
bd5635a1 | 2005 | char *signum_exp; |
e37a6e9c | 2006 | int from_tty; |
bd5635a1 | 2007 | { |
67ac9759 | 2008 | enum target_signal oursig; |
bd5635a1 RP |
2009 | sig_print_header (); |
2010 | ||
2011 | if (signum_exp) | |
2012 | { | |
2013 | /* First see if this is a symbol name. */ | |
67ac9759 JK |
2014 | oursig = target_signal_from_name (signum_exp); |
2015 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
bd5635a1 | 2016 | { |
c66ed884 SG |
2017 | /* No, try numeric. */ |
2018 | oursig = | |
2019 | target_signal_from_command (parse_and_eval_address (signum_exp)); | |
bd5635a1 | 2020 | } |
67ac9759 | 2021 | sig_print_info (oursig); |
bd5635a1 RP |
2022 | return; |
2023 | } | |
2024 | ||
2025 | printf_filtered ("\n"); | |
db4340a6 | 2026 | /* These ugly casts brought to you by the native VAX compiler. */ |
2fe3b329 | 2027 | for (oursig = TARGET_SIGNAL_FIRST; |
db4340a6 JK |
2028 | (int)oursig < (int)TARGET_SIGNAL_LAST; |
2029 | oursig = (enum target_signal)((int)oursig + 1)) | |
bd5635a1 RP |
2030 | { |
2031 | QUIT; | |
2032 | ||
fcbc95a7 JK |
2033 | if (oursig != TARGET_SIGNAL_UNKNOWN |
2034 | && oursig != TARGET_SIGNAL_DEFAULT | |
2035 | && oursig != TARGET_SIGNAL_0) | |
67ac9759 | 2036 | sig_print_info (oursig); |
bd5635a1 RP |
2037 | } |
2038 | ||
2039 | printf_filtered ("\nUse the \"handle\" command to change these tables.\n"); | |
2040 | } | |
2041 | \f | |
2042 | /* Save all of the information associated with the inferior<==>gdb | |
2043 | connection. INF_STATUS is a pointer to a "struct inferior_status" | |
2044 | (defined in inferior.h). */ | |
2045 | ||
2046 | void | |
2047 | save_inferior_status (inf_status, restore_stack_info) | |
2048 | struct inferior_status *inf_status; | |
2049 | int restore_stack_info; | |
2050 | { | |
bd5635a1 RP |
2051 | inf_status->stop_signal = stop_signal; |
2052 | inf_status->stop_pc = stop_pc; | |
bd5635a1 RP |
2053 | inf_status->stop_step = stop_step; |
2054 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
2055 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
2056 | inf_status->trap_expected = trap_expected; | |
2057 | inf_status->step_range_start = step_range_start; | |
2058 | inf_status->step_range_end = step_range_end; | |
2059 | inf_status->step_frame_address = step_frame_address; | |
2060 | inf_status->step_over_calls = step_over_calls; | |
bd5635a1 RP |
2061 | inf_status->stop_after_trap = stop_after_trap; |
2062 | inf_status->stop_soon_quietly = stop_soon_quietly; | |
2063 | /* Save original bpstat chain here; replace it with copy of chain. | |
2064 | If caller's caller is walking the chain, they'll be happier if we | |
2065 | hand them back the original chain when restore_i_s is called. */ | |
2066 | inf_status->stop_bpstat = stop_bpstat; | |
2067 | stop_bpstat = bpstat_copy (stop_bpstat); | |
2068 | inf_status->breakpoint_proceeded = breakpoint_proceeded; | |
2069 | inf_status->restore_stack_info = restore_stack_info; | |
2070 | inf_status->proceed_to_finish = proceed_to_finish; | |
2071 | ||
072b552a | 2072 | memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES); |
37c99ddb JK |
2073 | |
2074 | read_register_bytes (0, inf_status->registers, REGISTER_BYTES); | |
2075 | ||
bd5635a1 RP |
2076 | record_selected_frame (&(inf_status->selected_frame_address), |
2077 | &(inf_status->selected_level)); | |
2078 | return; | |
2079 | } | |
2080 | ||
37c99ddb | 2081 | struct restore_selected_frame_args { |
4cc1b3f7 | 2082 | CORE_ADDR frame_address; |
37c99ddb JK |
2083 | int level; |
2084 | }; | |
2085 | ||
2086 | static int restore_selected_frame PARAMS ((char *)); | |
2087 | ||
2088 | /* Restore the selected frame. args is really a struct | |
2089 | restore_selected_frame_args * (declared as char * for catch_errors) | |
2090 | telling us what frame to restore. Returns 1 for success, or 0 for | |
2091 | failure. An error message will have been printed on error. */ | |
4cc1b3f7 | 2092 | |
37c99ddb JK |
2093 | static int |
2094 | restore_selected_frame (args) | |
2095 | char *args; | |
2096 | { | |
2097 | struct restore_selected_frame_args *fr = | |
2098 | (struct restore_selected_frame_args *) args; | |
4cc1b3f7 | 2099 | struct frame_info *frame; |
37c99ddb JK |
2100 | int level = fr->level; |
2101 | ||
4cc1b3f7 | 2102 | frame = find_relative_frame (get_current_frame (), &level); |
37c99ddb JK |
2103 | |
2104 | /* If inf_status->selected_frame_address is NULL, there was no | |
2105 | previously selected frame. */ | |
4cc1b3f7 JK |
2106 | if (frame == NULL || |
2107 | FRAME_FP (frame) != fr->frame_address || | |
37c99ddb JK |
2108 | level != 0) |
2109 | { | |
2110 | warning ("Unable to restore previously selected frame.\n"); | |
2111 | return 0; | |
2112 | } | |
4cc1b3f7 | 2113 | select_frame (frame, fr->level); |
37c99ddb JK |
2114 | return(1); |
2115 | } | |
2116 | ||
bd5635a1 RP |
2117 | void |
2118 | restore_inferior_status (inf_status) | |
2119 | struct inferior_status *inf_status; | |
2120 | { | |
bd5635a1 RP |
2121 | stop_signal = inf_status->stop_signal; |
2122 | stop_pc = inf_status->stop_pc; | |
bd5635a1 RP |
2123 | stop_step = inf_status->stop_step; |
2124 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
2125 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
2126 | trap_expected = inf_status->trap_expected; | |
2127 | step_range_start = inf_status->step_range_start; | |
2128 | step_range_end = inf_status->step_range_end; | |
2129 | step_frame_address = inf_status->step_frame_address; | |
2130 | step_over_calls = inf_status->step_over_calls; | |
bd5635a1 RP |
2131 | stop_after_trap = inf_status->stop_after_trap; |
2132 | stop_soon_quietly = inf_status->stop_soon_quietly; | |
2133 | bpstat_clear (&stop_bpstat); | |
2134 | stop_bpstat = inf_status->stop_bpstat; | |
2135 | breakpoint_proceeded = inf_status->breakpoint_proceeded; | |
2136 | proceed_to_finish = inf_status->proceed_to_finish; | |
2137 | ||
072b552a | 2138 | memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES); |
bd5635a1 RP |
2139 | |
2140 | /* The inferior can be gone if the user types "print exit(0)" | |
2141 | (and perhaps other times). */ | |
37c99ddb JK |
2142 | if (target_has_execution) |
2143 | write_register_bytes (0, inf_status->registers, REGISTER_BYTES); | |
2144 | ||
2145 | /* The inferior can be gone if the user types "print exit(0)" | |
2146 | (and perhaps other times). */ | |
2147 | ||
2148 | /* FIXME: If we are being called after stopping in a function which | |
2149 | is called from gdb, we should not be trying to restore the | |
2150 | selected frame; it just prints a spurious error message (The | |
2151 | message is useful, however, in detecting bugs in gdb (like if gdb | |
2152 | clobbers the stack)). In fact, should we be restoring the | |
2153 | inferior status at all in that case? . */ | |
2154 | ||
bd5635a1 RP |
2155 | if (target_has_stack && inf_status->restore_stack_info) |
2156 | { | |
37c99ddb JK |
2157 | struct restore_selected_frame_args fr; |
2158 | fr.level = inf_status->selected_level; | |
2159 | fr.frame_address = inf_status->selected_frame_address; | |
2160 | /* The point of catch_errors is that if the stack is clobbered, | |
2161 | walking the stack might encounter a garbage pointer and error() | |
2162 | trying to dereference it. */ | |
2163 | if (catch_errors (restore_selected_frame, &fr, | |
2164 | "Unable to restore previously selected frame:\n", | |
2165 | RETURN_MASK_ERROR) == 0) | |
2166 | /* Error in restoring the selected frame. Select the innermost | |
2167 | frame. */ | |
2168 | select_frame (get_current_frame (), 0); | |
bd5635a1 RP |
2169 | } |
2170 | } | |
2171 | ||
2172 | \f | |
2173 | void | |
2174 | _initialize_infrun () | |
2175 | { | |
2176 | register int i; | |
e37a6e9c | 2177 | register int numsigs; |
bd5635a1 RP |
2178 | |
2179 | add_info ("signals", signals_info, | |
2180 | "What debugger does when program gets various signals.\n\ | |
c66ed884 | 2181 | Specify a signal as argument to print info on that signal only."); |
6b50c5c2 | 2182 | add_info_alias ("handle", "signals", 0); |
bd5635a1 RP |
2183 | |
2184 | add_com ("handle", class_run, handle_command, | |
c66ed884 SG |
2185 | concat ("Specify how to handle a signal.\n\ |
2186 | Args are signals and actions to apply to those signals.\n\ | |
2187 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
2188 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
2189 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
072b552a | 2190 | The special arg \"all\" is recognized to mean all signals except those\n\ |
c66ed884 SG |
2191 | used by the debugger, typically SIGTRAP and SIGINT.\n", |
2192 | "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ | |
072b552a | 2193 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
bd5635a1 | 2194 | Stop means reenter debugger if this signal happens (implies print).\n\ |
072b552a | 2195 | Print means print a message if this signal happens.\n\ |
bd5635a1 | 2196 | Pass means let program see this signal; otherwise program doesn't know.\n\ |
072b552a | 2197 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ |
c66ed884 | 2198 | Pass and Stop may be combined.", NULL)); |
bd5635a1 | 2199 | |
a8a69e63 | 2200 | stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command, |
3950a34e RP |
2201 | "There is no `stop' command, but you can set a hook on `stop'.\n\ |
2202 | This allows you to set a list of commands to be run each time execution\n\ | |
fee44494 | 2203 | of the program stops.", &cmdlist); |
3950a34e | 2204 | |
67ac9759 JK |
2205 | numsigs = (int)TARGET_SIGNAL_LAST; |
2206 | signal_stop = (unsigned char *) | |
2207 | xmalloc (sizeof (signal_stop[0]) * numsigs); | |
2208 | signal_print = (unsigned char *) | |
2209 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
072b552a | 2210 | signal_program = (unsigned char *) |
67ac9759 | 2211 | xmalloc (sizeof (signal_program[0]) * numsigs); |
e37a6e9c | 2212 | for (i = 0; i < numsigs; i++) |
bd5635a1 RP |
2213 | { |
2214 | signal_stop[i] = 1; | |
2215 | signal_print[i] = 1; | |
2216 | signal_program[i] = 1; | |
2217 | } | |
2218 | ||
2219 | /* Signals caused by debugger's own actions | |
2220 | should not be given to the program afterwards. */ | |
67ac9759 JK |
2221 | signal_program[TARGET_SIGNAL_TRAP] = 0; |
2222 | signal_program[TARGET_SIGNAL_INT] = 0; | |
bd5635a1 RP |
2223 | |
2224 | /* Signals that are not errors should not normally enter the debugger. */ | |
67ac9759 JK |
2225 | signal_stop[TARGET_SIGNAL_ALRM] = 0; |
2226 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
2227 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
2228 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
2229 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
2230 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
2231 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
2232 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
2233 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
2234 | signal_print[TARGET_SIGNAL_IO] = 0; | |
4d4f2d50 JK |
2235 | signal_stop[TARGET_SIGNAL_POLL] = 0; |
2236 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
67ac9759 JK |
2237 | signal_stop[TARGET_SIGNAL_URG] = 0; |
2238 | signal_print[TARGET_SIGNAL_URG] = 0; | |
87273c71 JL |
2239 | |
2240 | #ifdef SOLIB_ADD | |
2241 | add_show_from_set | |
2242 | (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger, | |
2243 | (char *) &stop_on_solib_events, | |
2244 | "Set stopping for shared library events.\n\ | |
2245 | If nonzero, gdb will give control to the user when the dynamic linker\n\ | |
2246 | notifies gdb of shared library events. The most common event of interest\n\ | |
2247 | to the user would be loading/unloading of a new library.\n", | |
2248 | &setlist), | |
2249 | &showlist); | |
2250 | #endif | |
bd5635a1 | 2251 | } |