]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Target-machine dependent code for the AMD 29000 |
2 | Copyright 1990, 1991, 1992, 1993, 1994, 1995 | |
3 | Free Software Foundation, Inc. | |
4 | Contributed by Cygnus Support. Written by Jim Kingdon. | |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "gdbcore.h" | |
24 | #include "frame.h" | |
25 | #include "value.h" | |
26 | #include "symtab.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcmd.h" | |
29 | ||
30 | /* If all these bits in an instruction word are zero, it is a "tag word" | |
31 | which precedes a function entry point and gives stack traceback info. | |
32 | This used to be defined as 0xff000000, but that treated 0x00000deb as | |
33 | a tag word, while it is really used as a breakpoint. */ | |
34 | #define TAGWORD_ZERO_MASK 0xff00f800 | |
35 | ||
36 | extern CORE_ADDR text_start; /* FIXME, kludge... */ | |
37 | ||
38 | /* The user-settable top of the register stack in virtual memory. We | |
39 | won't attempt to access any stored registers above this address, if set | |
40 | nonzero. */ | |
41 | ||
42 | static CORE_ADDR rstack_high_address = UINT_MAX; | |
43 | ||
44 | ||
45 | /* Should call_function allocate stack space for a struct return? */ | |
46 | /* On the a29k objects over 16 words require the caller to allocate space. */ | |
47 | int | |
48 | a29k_use_struct_convention (gcc_p, type) | |
49 | int gcc_p; | |
50 | struct type *type; | |
51 | { | |
52 | return (TYPE_LENGTH (type) > 16 * 4); | |
53 | } | |
54 | ||
55 | ||
56 | /* Structure to hold cached info about function prologues. */ | |
57 | ||
58 | struct prologue_info | |
59 | { | |
60 | CORE_ADDR pc; /* First addr after fn prologue */ | |
61 | unsigned rsize, msize; /* register stack frame size, mem stack ditto */ | |
62 | unsigned mfp_used : 1; /* memory frame pointer used */ | |
63 | unsigned rsize_valid : 1; /* Validity bits for the above */ | |
64 | unsigned msize_valid : 1; | |
65 | unsigned mfp_valid : 1; | |
66 | }; | |
67 | ||
68 | /* Examine the prologue of a function which starts at PC. Return | |
69 | the first addess past the prologue. If MSIZE is non-NULL, then | |
70 | set *MSIZE to the memory stack frame size. If RSIZE is non-NULL, | |
71 | then set *RSIZE to the register stack frame size (not including | |
72 | incoming arguments and the return address & frame pointer stored | |
73 | with them). If no prologue is found, *RSIZE is set to zero. | |
74 | If no prologue is found, or a prologue which doesn't involve | |
75 | allocating a memory stack frame, then set *MSIZE to zero. | |
76 | ||
77 | Note that both msize and rsize are in bytes. This is not consistent | |
78 | with the _User's Manual_ with respect to rsize, but it is much more | |
79 | convenient. | |
80 | ||
81 | If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory | |
82 | frame pointer is being used. */ | |
83 | ||
84 | CORE_ADDR | |
85 | examine_prologue (pc, rsize, msize, mfp_used) | |
86 | CORE_ADDR pc; | |
87 | unsigned *msize; | |
88 | unsigned *rsize; | |
89 | int *mfp_used; | |
90 | { | |
91 | long insn; | |
92 | CORE_ADDR p = pc; | |
93 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
94 | struct prologue_info *mi = 0; | |
95 | ||
96 | if (msymbol != NULL) | |
97 | mi = (struct prologue_info *) msymbol -> info; | |
98 | ||
99 | if (mi != 0) | |
100 | { | |
101 | int valid = 1; | |
102 | if (rsize != NULL) | |
103 | { | |
104 | *rsize = mi->rsize; | |
105 | valid &= mi->rsize_valid; | |
106 | } | |
107 | if (msize != NULL) | |
108 | { | |
109 | *msize = mi->msize; | |
110 | valid &= mi->msize_valid; | |
111 | } | |
112 | if (mfp_used != NULL) | |
113 | { | |
114 | *mfp_used = mi->mfp_used; | |
115 | valid &= mi->mfp_valid; | |
116 | } | |
117 | if (valid) | |
118 | return mi->pc; | |
119 | } | |
120 | ||
121 | if (rsize != NULL) | |
122 | *rsize = 0; | |
123 | if (msize != NULL) | |
124 | *msize = 0; | |
125 | if (mfp_used != NULL) | |
126 | *mfp_used = 0; | |
127 | ||
128 | /* Prologue must start with subtracting a constant from gr1. | |
129 | Normally this is sub gr1,gr1,<rsize * 4>. */ | |
130 | insn = read_memory_integer (p, 4); | |
131 | if ((insn & 0xffffff00) != 0x25010100) | |
132 | { | |
133 | /* If the frame is large, instead of a single instruction it | |
134 | might be a pair of instructions: | |
135 | const <reg>, <rsize * 4> | |
136 | sub gr1,gr1,<reg> | |
137 | */ | |
138 | int reg; | |
139 | /* Possible value for rsize. */ | |
140 | unsigned int rsize0; | |
141 | ||
142 | if ((insn & 0xff000000) != 0x03000000) | |
143 | { | |
144 | p = pc; | |
145 | goto done; | |
146 | } | |
147 | reg = (insn >> 8) & 0xff; | |
148 | rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff)); | |
149 | p += 4; | |
150 | insn = read_memory_integer (p, 4); | |
151 | if ((insn & 0xffffff00) != 0x24010100 | |
152 | || (insn & 0xff) != reg) | |
153 | { | |
154 | p = pc; | |
155 | goto done; | |
156 | } | |
157 | if (rsize != NULL) | |
158 | *rsize = rsize0; | |
159 | } | |
160 | else | |
161 | { | |
162 | if (rsize != NULL) | |
163 | *rsize = (insn & 0xff); | |
164 | } | |
165 | p += 4; | |
166 | ||
167 | /* Next instruction ought to be asgeu V_SPILL,gr1,rab. | |
168 | * We don't check the vector number to allow for kernel debugging. The | |
169 | * kernel will use a different trap number. | |
170 | * If this insn is missing, we just keep going; Metaware R2.3u compiler | |
171 | * generates prologue that intermixes initializations and puts the asgeu | |
172 | * way down. | |
173 | */ | |
174 | insn = read_memory_integer (p, 4); | |
175 | if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM)) | |
176 | { | |
177 | p += 4; | |
178 | } | |
179 | ||
180 | /* Next instruction usually sets the frame pointer (lr1) by adding | |
181 | <size * 4> from gr1. However, this can (and high C does) be | |
182 | deferred until anytime before the first function call. So it is | |
183 | OK if we don't see anything which sets lr1. | |
184 | To allow for alternate register sets (gcc -mkernel-registers) the msp | |
185 | register number is a compile time constant. */ | |
186 | ||
187 | /* Normally this is just add lr1,gr1,<size * 4>. */ | |
188 | insn = read_memory_integer (p, 4); | |
189 | if ((insn & 0xffffff00) == 0x15810100) | |
190 | p += 4; | |
191 | else | |
192 | { | |
193 | /* However, for large frames it can be | |
194 | const <reg>, <size *4> | |
195 | add lr1,gr1,<reg> | |
196 | */ | |
197 | int reg; | |
198 | CORE_ADDR q; | |
199 | ||
200 | if ((insn & 0xff000000) == 0x03000000) | |
201 | { | |
202 | reg = (insn >> 8) & 0xff; | |
203 | q = p + 4; | |
204 | insn = read_memory_integer (q, 4); | |
205 | if ((insn & 0xffffff00) == 0x14810100 | |
206 | && (insn & 0xff) == reg) | |
207 | p = q; | |
208 | } | |
209 | } | |
210 | ||
211 | /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory | |
212 | frame pointer is in use. We just check for add lr<anything>,msp,0; | |
213 | we don't check this rsize against the first instruction, and | |
214 | we don't check that the trace-back tag indicates a memory frame pointer | |
215 | is in use. | |
216 | To allow for alternate register sets (gcc -mkernel-registers) the msp | |
217 | register number is a compile time constant. | |
218 | ||
219 | The recommended instruction is actually "sll lr<whatever>,msp,0". | |
220 | We check for that, too. Originally Jim Kingdon's code seemed | |
221 | to be looking for a "sub" instruction here, but the mask was set | |
222 | up to lose all the time. */ | |
223 | insn = read_memory_integer (p, 4); | |
224 | if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */ | |
225 | || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */ | |
226 | { | |
227 | p += 4; | |
228 | if (mfp_used != NULL) | |
229 | *mfp_used = 1; | |
230 | } | |
231 | ||
232 | /* Next comes a subtraction from msp to allocate a memory frame, | |
233 | but only if a memory frame is | |
234 | being used. We don't check msize against the trace-back tag. | |
235 | ||
236 | To allow for alternate register sets (gcc -mkernel-registers) the msp | |
237 | register number is a compile time constant. | |
238 | ||
239 | Normally this is just | |
240 | sub msp,msp,<msize> | |
241 | */ | |
242 | insn = read_memory_integer (p, 4); | |
243 | if ((insn & 0xffffff00) == | |
244 | (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))) | |
245 | { | |
246 | p += 4; | |
247 | if (msize != NULL) | |
248 | *msize = insn & 0xff; | |
249 | } | |
250 | else | |
251 | { | |
252 | /* For large frames, instead of a single instruction it might | |
253 | be | |
254 | ||
255 | const <reg>, <msize> | |
256 | consth <reg>, <msize> ; optional | |
257 | sub msp,msp,<reg> | |
258 | */ | |
259 | int reg; | |
260 | unsigned msize0; | |
261 | CORE_ADDR q = p; | |
262 | ||
263 | if ((insn & 0xff000000) == 0x03000000) | |
264 | { | |
265 | reg = (insn >> 8) & 0xff; | |
266 | msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff); | |
267 | q += 4; | |
268 | insn = read_memory_integer (q, 4); | |
269 | /* Check for consth. */ | |
270 | if ((insn & 0xff000000) == 0x02000000 | |
271 | && (insn & 0x0000ff00) == reg) | |
272 | { | |
273 | msize0 |= (insn << 8) & 0xff000000; | |
274 | msize0 |= (insn << 16) & 0x00ff0000; | |
275 | q += 4; | |
276 | insn = read_memory_integer (q, 4); | |
277 | } | |
278 | /* Check for sub msp,msp,<reg>. */ | |
279 | if ((insn & 0xffffff00) == | |
280 | (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)) | |
281 | && (insn & 0xff) == reg) | |
282 | { | |
283 | p = q + 4; | |
284 | if (msize != NULL) | |
285 | *msize = msize0; | |
286 | } | |
287 | } | |
288 | } | |
289 | ||
290 | /* Next instruction might be asgeu V_SPILL,gr1,rab. | |
291 | * We don't check the vector number to allow for kernel debugging. The | |
292 | * kernel will use a different trap number. | |
293 | * Metaware R2.3u compiler | |
294 | * generates prologue that intermixes initializations and puts the asgeu | |
295 | * way down after everything else. | |
296 | */ | |
297 | insn = read_memory_integer (p, 4); | |
298 | if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM)) | |
299 | { | |
300 | p += 4; | |
301 | } | |
302 | ||
303 | done: | |
304 | if (msymbol != NULL) | |
305 | { | |
306 | if (mi == 0) | |
307 | { | |
308 | /* Add a new cache entry. */ | |
309 | mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info)); | |
310 | msymbol -> info = (char *)mi; | |
311 | mi->rsize_valid = 0; | |
312 | mi->msize_valid = 0; | |
313 | mi->mfp_valid = 0; | |
314 | } | |
315 | /* else, cache entry exists, but info is incomplete. */ | |
316 | mi->pc = p; | |
317 | if (rsize != NULL) | |
318 | { | |
319 | mi->rsize = *rsize; | |
320 | mi->rsize_valid = 1; | |
321 | } | |
322 | if (msize != NULL) | |
323 | { | |
324 | mi->msize = *msize; | |
325 | mi->msize_valid = 1; | |
326 | } | |
327 | if (mfp_used != NULL) | |
328 | { | |
329 | mi->mfp_used = *mfp_used; | |
330 | mi->mfp_valid = 1; | |
331 | } | |
332 | } | |
333 | return p; | |
334 | } | |
335 | ||
336 | /* Advance PC across any function entry prologue instructions | |
337 | to reach some "real" code. */ | |
338 | ||
339 | CORE_ADDR | |
340 | skip_prologue (pc) | |
341 | CORE_ADDR pc; | |
342 | { | |
343 | return examine_prologue (pc, NULL, NULL, NULL); | |
344 | } | |
345 | ||
346 | /* | |
347 | * Examine the one or two word tag at the beginning of a function. | |
348 | * The tag word is expect to be at 'p', if it is not there, we fail | |
349 | * by returning 0. The documentation for the tag word was taken from | |
350 | * page 7-15 of the 29050 User's Manual. We are assuming that the | |
351 | * m bit is in bit 22 of the tag word, which seems to be the agreed upon | |
352 | * convention today (1/15/92). | |
353 | * msize is return in bytes. | |
354 | */ | |
355 | ||
356 | static int /* 0/1 - failure/success of finding the tag word */ | |
357 | examine_tag (p, is_trans, argcount, msize, mfp_used) | |
358 | CORE_ADDR p; | |
359 | int *is_trans; | |
360 | int *argcount; | |
361 | unsigned *msize; | |
362 | int *mfp_used; | |
363 | { | |
364 | unsigned int tag1, tag2; | |
365 | ||
366 | tag1 = read_memory_integer (p, 4); | |
367 | if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */ | |
368 | return 0; | |
369 | if (tag1 & (1<<23)) /* A two word tag */ | |
370 | { | |
371 | tag2 = read_memory_integer (p-4, 4); | |
372 | if (msize) | |
373 | *msize = tag2 * 2; | |
374 | } | |
375 | else /* A one word tag */ | |
376 | { | |
377 | if (msize) | |
378 | *msize = tag1 & 0x7ff; | |
379 | } | |
380 | if (is_trans) | |
381 | *is_trans = ((tag1 & (1<<21)) ? 1 : 0); | |
382 | /* Note that this includes the frame pointer and the return address | |
383 | register, so the actual number of registers of arguments is two less. | |
384 | argcount can be zero, however, sometimes, for strange assembler | |
385 | routines. */ | |
386 | if (argcount) | |
387 | *argcount = (tag1 >> 16) & 0x1f; | |
388 | if (mfp_used) | |
389 | *mfp_used = ((tag1 & (1<<22)) ? 1 : 0); | |
390 | return 1; | |
391 | } | |
392 | ||
393 | /* Initialize the frame. In addition to setting "extra" frame info, | |
394 | we also set ->frame because we use it in a nonstandard way, and ->pc | |
395 | because we need to know it to get the other stuff. See the diagram | |
396 | of stacks and the frame cache in tm-a29k.h for more detail. */ | |
397 | ||
398 | static void | |
399 | init_frame_info (innermost_frame, frame) | |
400 | int innermost_frame; | |
401 | struct frame_info *frame; | |
402 | { | |
403 | CORE_ADDR p; | |
404 | long insn; | |
405 | unsigned rsize; | |
406 | unsigned msize; | |
407 | int mfp_used, trans; | |
408 | struct symbol *func; | |
409 | ||
410 | p = frame->pc; | |
411 | ||
412 | if (innermost_frame) | |
413 | frame->frame = read_register (GR1_REGNUM); | |
414 | else | |
415 | frame->frame = frame->next->frame + frame->next->rsize; | |
416 | ||
417 | #if 0 /* CALL_DUMMY_LOCATION == ON_STACK */ | |
418 | This wont work; | |
419 | #else | |
420 | if (PC_IN_CALL_DUMMY (p, 0, 0)) | |
421 | #endif | |
422 | { | |
423 | frame->rsize = DUMMY_FRAME_RSIZE; | |
424 | /* This doesn't matter since we never try to get locals or args | |
425 | from a dummy frame. */ | |
426 | frame->msize = 0; | |
427 | /* Dummy frames always use a memory frame pointer. */ | |
428 | frame->saved_msp = | |
429 | read_register_stack_integer (frame->frame + DUMMY_FRAME_RSIZE - 4, 4); | |
430 | frame->flags |= (TRANSPARENT_FRAME|MFP_USED); | |
431 | return; | |
432 | } | |
433 | ||
434 | func = find_pc_function (p); | |
435 | if (func != NULL) | |
436 | p = BLOCK_START (SYMBOL_BLOCK_VALUE (func)); | |
437 | else | |
438 | { | |
439 | /* Search backward to find the trace-back tag. However, | |
440 | do not trace back beyond the start of the text segment | |
441 | (just as a sanity check to avoid going into never-never land). */ | |
442 | #if 1 | |
443 | while (p >= text_start | |
444 | && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0) | |
445 | p -= 4; | |
446 | #else /* 0 */ | |
447 | char pat[4] = {0, 0, 0, 0}; | |
448 | char mask[4]; | |
449 | char insn_raw[4]; | |
450 | store_unsigned_integer (mask, 4, TAGWORD_ZERO_MASK); | |
451 | /* Enable this once target_search is enabled and tested. */ | |
452 | target_search (4, pat, mask, p, -4, text_start, p+1, &p, &insn_raw); | |
453 | insn = extract_unsigned_integer (insn_raw, 4); | |
454 | #endif /* 0 */ | |
455 | ||
456 | if (p < text_start) | |
457 | { | |
458 | /* Couldn't find the trace-back tag. | |
459 | Something strange is going on. */ | |
460 | frame->saved_msp = 0; | |
461 | frame->rsize = 0; | |
462 | frame->msize = 0; | |
463 | frame->flags = TRANSPARENT_FRAME; | |
464 | return; | |
465 | } | |
466 | else | |
467 | /* Advance to the first word of the function, i.e. the word | |
468 | after the trace-back tag. */ | |
469 | p += 4; | |
470 | } | |
471 | ||
472 | /* We've found the start of the function. | |
473 | Try looking for a tag word that indicates whether there is a | |
474 | memory frame pointer and what the memory stack allocation is. | |
475 | If one doesn't exist, try using a more exhaustive search of | |
476 | the prologue. */ | |
477 | ||
478 | if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */ | |
479 | examine_prologue (p, &rsize, 0, 0); | |
480 | else /* No tag try prologue */ | |
481 | examine_prologue (p, &rsize, &msize, &mfp_used); | |
482 | ||
483 | frame->rsize = rsize; | |
484 | frame->msize = msize; | |
485 | frame->flags = 0; | |
486 | if (mfp_used) | |
487 | frame->flags |= MFP_USED; | |
488 | if (trans) | |
489 | frame->flags |= TRANSPARENT_FRAME; | |
490 | if (innermost_frame) | |
491 | { | |
492 | frame->saved_msp = read_register (MSP_REGNUM) + msize; | |
493 | } | |
494 | else | |
495 | { | |
496 | if (mfp_used) | |
497 | frame->saved_msp = | |
498 | read_register_stack_integer (frame->frame + rsize - 4, 4); | |
499 | else | |
500 | frame->saved_msp = frame->next->saved_msp + msize; | |
501 | } | |
502 | } | |
503 | ||
504 | void | |
505 | init_extra_frame_info (frame) | |
506 | struct frame_info *frame; | |
507 | { | |
508 | if (frame->next == 0) | |
509 | /* Assume innermost frame. May produce strange results for "info frame" | |
510 | but there isn't any way to tell the difference. */ | |
511 | init_frame_info (1, frame); | |
512 | else { | |
7a292a7a | 513 | /* We're in get_prev_frame. |
c906108c SS |
514 | Take care of everything in init_frame_pc. */ |
515 | ; | |
516 | } | |
517 | } | |
518 | ||
519 | void | |
520 | init_frame_pc (fromleaf, frame) | |
521 | int fromleaf; | |
522 | struct frame_info *frame; | |
523 | { | |
524 | frame->pc = (fromleaf ? SAVED_PC_AFTER_CALL (frame->next) : | |
525 | frame->next ? FRAME_SAVED_PC (frame->next) : read_pc ()); | |
526 | init_frame_info (fromleaf, frame); | |
527 | } | |
528 | \f | |
529 | /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their | |
530 | offsets being relative to the memory stack pointer (high C) or | |
531 | saved_msp (gcc). */ | |
532 | ||
533 | CORE_ADDR | |
534 | frame_locals_address (fi) | |
535 | struct frame_info *fi; | |
536 | { | |
537 | if (fi->flags & MFP_USED) | |
538 | return fi->saved_msp; | |
539 | else | |
540 | return fi->saved_msp - fi->msize; | |
541 | } | |
542 | \f | |
543 | /* Routines for reading the register stack. The caller gets to treat | |
544 | the register stack as a uniform stack in memory, from address $gr1 | |
545 | straight through $rfb and beyond. */ | |
546 | ||
547 | /* Analogous to read_memory except the length is understood to be 4. | |
548 | Also, myaddr can be NULL (meaning don't bother to read), and | |
549 | if actual_mem_addr is non-NULL, store there the address that it | |
550 | was fetched from (or if from a register the offset within | |
551 | registers). Set *LVAL to lval_memory or lval_register, depending | |
552 | on where it came from. The contents written into MYADDR are in | |
553 | target format. */ | |
554 | void | |
555 | read_register_stack (memaddr, myaddr, actual_mem_addr, lval) | |
556 | CORE_ADDR memaddr; | |
557 | char *myaddr; | |
558 | CORE_ADDR *actual_mem_addr; | |
559 | enum lval_type *lval; | |
560 | { | |
561 | long rfb = read_register (RFB_REGNUM); | |
562 | long rsp = read_register (RSP_REGNUM); | |
563 | ||
564 | /* If we don't do this 'info register' stops in the middle. */ | |
565 | if (memaddr >= rstack_high_address) | |
566 | { | |
567 | /* a bogus value */ | |
568 | static char val[] = {~0, ~0, ~0, ~0}; | |
569 | /* It's in a local register, but off the end of the stack. */ | |
570 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
571 | if (myaddr != NULL) | |
572 | { | |
573 | /* Provide bogusness */ | |
574 | memcpy (myaddr, val, 4); | |
575 | } | |
576 | supply_register(regnum, val); /* More bogusness */ | |
577 | if (lval != NULL) | |
578 | *lval = lval_register; | |
579 | if (actual_mem_addr != NULL) | |
580 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
581 | } | |
582 | /* If it's in the part of the register stack that's in real registers, | |
583 | get the value from the registers. If it's anywhere else in memory | |
584 | (e.g. in another thread's saved stack), skip this part and get | |
585 | it from real live memory. */ | |
586 | else if (memaddr < rfb && memaddr >= rsp) | |
587 | { | |
588 | /* It's in a register. */ | |
589 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
590 | if (regnum > LR0_REGNUM + 127) | |
591 | error ("Attempt to read register stack out of range."); | |
592 | if (myaddr != NULL) | |
593 | read_register_gen (regnum, myaddr); | |
594 | if (lval != NULL) | |
595 | *lval = lval_register; | |
596 | if (actual_mem_addr != NULL) | |
597 | *actual_mem_addr = REGISTER_BYTE (regnum); | |
598 | } | |
599 | else | |
600 | { | |
601 | /* It's in the memory portion of the register stack. */ | |
602 | if (myaddr != NULL) | |
603 | read_memory (memaddr, myaddr, 4); | |
604 | if (lval != NULL) | |
605 | *lval = lval_memory; | |
606 | if (actual_mem_addr != NULL) | |
607 | *actual_mem_addr = memaddr; | |
608 | } | |
609 | } | |
610 | ||
611 | /* Analogous to read_memory_integer | |
612 | except the length is understood to be 4. */ | |
613 | long | |
614 | read_register_stack_integer (memaddr, len) | |
615 | CORE_ADDR memaddr; | |
616 | int len; | |
617 | { | |
618 | char buf[4]; | |
619 | read_register_stack (memaddr, buf, NULL, NULL); | |
620 | return extract_signed_integer (buf, 4); | |
621 | } | |
622 | ||
623 | /* Copy 4 bytes from GDB memory at MYADDR into inferior memory | |
624 | at MEMADDR and put the actual address written into in | |
625 | *ACTUAL_MEM_ADDR. */ | |
626 | static void | |
627 | write_register_stack (memaddr, myaddr, actual_mem_addr) | |
628 | CORE_ADDR memaddr; | |
629 | char *myaddr; | |
630 | CORE_ADDR *actual_mem_addr; | |
631 | { | |
632 | long rfb = read_register (RFB_REGNUM); | |
633 | long rsp = read_register (RSP_REGNUM); | |
634 | /* If we don't do this 'info register' stops in the middle. */ | |
635 | if (memaddr >= rstack_high_address) | |
636 | { | |
637 | /* It's in a register, but off the end of the stack. */ | |
638 | if (actual_mem_addr != NULL) | |
639 | *actual_mem_addr = 0; | |
640 | } | |
641 | else if (memaddr < rfb) | |
642 | { | |
643 | /* It's in a register. */ | |
644 | int regnum = (memaddr - rsp) / 4 + LR0_REGNUM; | |
645 | if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127) | |
646 | error ("Attempt to read register stack out of range."); | |
647 | if (myaddr != NULL) | |
648 | write_register (regnum, *(long *)myaddr); | |
649 | if (actual_mem_addr != NULL) | |
650 | *actual_mem_addr = 0; | |
651 | } | |
652 | else | |
653 | { | |
654 | /* It's in the memory portion of the register stack. */ | |
655 | if (myaddr != NULL) | |
656 | write_memory (memaddr, myaddr, 4); | |
657 | if (actual_mem_addr != NULL) | |
658 | *actual_mem_addr = memaddr; | |
659 | } | |
660 | } | |
661 | \f | |
662 | /* Find register number REGNUM relative to FRAME and put its | |
663 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
664 | was optimized out (and thus can't be fetched). If the variable | |
665 | was fetched from memory, set *ADDRP to where it was fetched from, | |
666 | otherwise it was fetched from a register. | |
667 | ||
668 | The argument RAW_BUFFER must point to aligned memory. */ | |
669 | ||
670 | void | |
7a292a7a | 671 | a29k_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp) |
c906108c SS |
672 | char *raw_buffer; |
673 | int *optimized; | |
674 | CORE_ADDR *addrp; | |
675 | struct frame_info *frame; | |
676 | int regnum; | |
677 | enum lval_type *lvalp; | |
678 | { | |
679 | struct frame_info *fi; | |
680 | CORE_ADDR addr; | |
681 | enum lval_type lval; | |
682 | ||
683 | if (!target_has_registers) | |
684 | error ("No registers."); | |
685 | ||
686 | /* Probably now redundant with the target_has_registers check. */ | |
687 | if (frame == 0) | |
688 | return; | |
689 | ||
690 | /* Once something has a register number, it doesn't get optimized out. */ | |
691 | if (optimized != NULL) | |
692 | *optimized = 0; | |
693 | if (regnum == RSP_REGNUM) | |
694 | { | |
695 | if (raw_buffer != NULL) | |
696 | { | |
697 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame); | |
698 | } | |
699 | if (lvalp != NULL) | |
700 | *lvalp = not_lval; | |
701 | return; | |
702 | } | |
703 | else if (regnum == PC_REGNUM && frame->next != NULL) | |
704 | { | |
705 | if (raw_buffer != NULL) | |
706 | { | |
707 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); | |
708 | } | |
709 | ||
710 | /* Not sure we have to do this. */ | |
711 | if (lvalp != NULL) | |
712 | *lvalp = not_lval; | |
713 | ||
714 | return; | |
715 | } | |
716 | else if (regnum == MSP_REGNUM) | |
717 | { | |
718 | if (raw_buffer != NULL) | |
719 | { | |
720 | if (frame->next != NULL) | |
721 | { | |
722 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
723 | frame->next->saved_msp); | |
724 | } | |
725 | else | |
726 | read_register_gen (MSP_REGNUM, raw_buffer); | |
727 | } | |
728 | /* The value may have been computed, not fetched. */ | |
729 | if (lvalp != NULL) | |
730 | *lvalp = not_lval; | |
731 | return; | |
732 | } | |
733 | else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128) | |
734 | { | |
735 | /* These registers are not saved over procedure calls, | |
736 | so just print out the current values. */ | |
737 | if (raw_buffer != NULL) | |
738 | read_register_gen (regnum, raw_buffer); | |
739 | if (lvalp != NULL) | |
740 | *lvalp = lval_register; | |
741 | if (addrp != NULL) | |
742 | *addrp = REGISTER_BYTE (regnum); | |
743 | return; | |
744 | } | |
745 | ||
746 | addr = frame->frame + (regnum - LR0_REGNUM) * 4; | |
747 | if (raw_buffer != NULL) | |
748 | read_register_stack (addr, raw_buffer, &addr, &lval); | |
749 | if (lvalp != NULL) | |
750 | *lvalp = lval; | |
751 | if (addrp != NULL) | |
752 | *addrp = addr; | |
753 | } | |
754 | \f | |
755 | ||
756 | /* Discard from the stack the innermost frame, | |
757 | restoring all saved registers. */ | |
758 | ||
759 | void | |
760 | pop_frame () | |
761 | { | |
762 | struct frame_info *frame = get_current_frame (); | |
763 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
764 | CORE_ADDR gr1 = frame->frame + frame->rsize; | |
765 | CORE_ADDR lr1; | |
766 | CORE_ADDR original_lr0; | |
767 | int must_fix_lr0 = 0; | |
768 | int i; | |
769 | ||
770 | /* If popping a dummy frame, need to restore registers. */ | |
771 | if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM), | |
772 | read_register (SP_REGNUM), | |
773 | FRAME_FP (frame))) | |
774 | { | |
775 | int lrnum = LR0_REGNUM + DUMMY_ARG/4; | |
776 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
777 | write_register (SR_REGNUM (i + 128),read_register (lrnum++)); | |
778 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
779 | write_register (SR_REGNUM(i+160), read_register (lrnum++)); | |
780 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) | |
781 | write_register (RETURN_REGNUM + i, read_register (lrnum++)); | |
782 | /* Restore the PCs and prepare to restore LR0. */ | |
783 | write_register(PC_REGNUM, read_register (lrnum++)); | |
784 | write_register(NPC_REGNUM, read_register (lrnum++)); | |
785 | write_register(PC2_REGNUM, read_register (lrnum++)); | |
786 | original_lr0 = read_register (lrnum++); | |
787 | must_fix_lr0 = 1; | |
788 | } | |
789 | ||
790 | /* Restore the memory stack pointer. */ | |
791 | write_register (MSP_REGNUM, frame->saved_msp); | |
792 | /* Restore the register stack pointer. */ | |
793 | write_register (GR1_REGNUM, gr1); | |
794 | ||
795 | /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */ | |
796 | if (must_fix_lr0) | |
797 | write_register (LR0_REGNUM, original_lr0); | |
798 | ||
799 | /* Check whether we need to fill registers. */ | |
800 | lr1 = read_register (LR0_REGNUM + 1); | |
801 | if (lr1 > rfb) | |
802 | { | |
803 | /* Fill. */ | |
804 | int num_bytes = lr1 - rfb; | |
805 | int i; | |
806 | long word; | |
807 | ||
808 | write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes); | |
809 | write_register (RFB_REGNUM, lr1); | |
810 | for (i = 0; i < num_bytes; i += 4) | |
811 | { | |
812 | /* Note: word is in host byte order. */ | |
813 | word = read_memory_integer (rfb + i, 4); | |
814 | write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word); | |
815 | } | |
816 | } | |
817 | flush_cached_frames (); | |
818 | } | |
819 | ||
820 | /* Push an empty stack frame, to record the current PC, etc. */ | |
821 | ||
822 | void | |
823 | push_dummy_frame () | |
824 | { | |
825 | long w; | |
826 | CORE_ADDR rab, gr1; | |
827 | CORE_ADDR msp = read_register (MSP_REGNUM); | |
828 | int lrnum, i; | |
829 | CORE_ADDR original_lr0; | |
830 | ||
831 | /* Read original lr0 before changing gr1. This order isn't really needed | |
832 | since GDB happens to have a snapshot of all the regs and doesn't toss | |
833 | it when gr1 is changed. But it's The Right Thing To Do. */ | |
834 | original_lr0 = read_register (LR0_REGNUM); | |
835 | ||
836 | /* Allocate the new frame. */ | |
837 | gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE; | |
838 | write_register (GR1_REGNUM, gr1); | |
839 | ||
840 | #ifdef VXWORKS_TARGET | |
841 | /* We force re-reading all registers to get the new local registers set | |
842 | after gr1 has been modified. This fix is due to the lack of single | |
843 | register read/write operation in the RPC interface between VxGDB and | |
844 | VxWorks. This really must be changed ! */ | |
845 | ||
846 | vx_read_register (-1); | |
847 | ||
848 | #endif /* VXWORK_TARGET */ | |
849 | ||
850 | rab = read_register (RAB_REGNUM); | |
851 | if (gr1 < rab) | |
852 | { | |
853 | /* We need to spill registers. */ | |
854 | int num_bytes = rab - gr1; | |
855 | CORE_ADDR rfb = read_register (RFB_REGNUM); | |
856 | int i; | |
857 | long word; | |
858 | ||
859 | write_register (RFB_REGNUM, rfb - num_bytes); | |
860 | write_register (RAB_REGNUM, gr1); | |
861 | for (i = 0; i < num_bytes; i += 4) | |
862 | { | |
863 | /* Note: word is in target byte order. */ | |
864 | read_register_gen (LR0_REGNUM + i / 4, (char *) &word); | |
865 | write_memory (rfb - num_bytes + i, (char *) &word, 4); | |
866 | } | |
867 | } | |
868 | ||
869 | /* There are no arguments in to the dummy frame, so we don't need | |
870 | more than rsize plus the return address and lr1. */ | |
871 | write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4); | |
872 | ||
873 | /* Set the memory frame pointer. */ | |
874 | write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp); | |
875 | ||
876 | /* Allocate arg_slop. */ | |
877 | write_register (MSP_REGNUM, msp - 16 * 4); | |
878 | ||
879 | /* Save registers. */ | |
880 | lrnum = LR0_REGNUM + DUMMY_ARG/4; | |
881 | for (i = 0; i < DUMMY_SAVE_SR128; ++i) | |
882 | write_register (lrnum++, read_register (SR_REGNUM (i + 128))); | |
883 | for (i = 0; i < DUMMY_SAVE_SR160; ++i) | |
884 | write_register (lrnum++, read_register (SR_REGNUM (i + 160))); | |
885 | for (i = 0; i < DUMMY_SAVE_GREGS; ++i) | |
886 | write_register (lrnum++, read_register (RETURN_REGNUM + i)); | |
887 | /* Save the PCs and LR0. */ | |
888 | write_register (lrnum++, read_register (PC_REGNUM)); | |
889 | write_register (lrnum++, read_register (NPC_REGNUM)); | |
890 | write_register (lrnum++, read_register (PC2_REGNUM)); | |
891 | ||
892 | /* Why are we saving LR0? What would clobber it? (the dummy frame should | |
893 | be below it on the register stack, no?). */ | |
894 | write_register (lrnum++, original_lr0); | |
895 | } | |
896 | ||
897 | ||
898 | ||
899 | /* | |
900 | This routine takes three arguments and makes the cached frames look | |
901 | as if these arguments defined a frame on the cache. This allows the | |
902 | rest of `info frame' to extract the important arguments without much | |
903 | difficulty. Since an individual frame on the 29K is determined by | |
904 | three values (FP, PC, and MSP), we really need all three to do a | |
905 | good job. */ | |
906 | ||
907 | struct frame_info * | |
908 | setup_arbitrary_frame (argc, argv) | |
909 | int argc; | |
910 | CORE_ADDR *argv; | |
911 | { | |
912 | struct frame_info *frame; | |
913 | ||
914 | if (argc != 3) | |
915 | error ("AMD 29k frame specifications require three arguments: rsp pc msp"); | |
916 | ||
917 | frame = create_new_frame (argv[0], argv[1]); | |
918 | ||
919 | if (!frame) | |
920 | fatal ("internal: create_new_frame returned invalid frame id"); | |
921 | ||
922 | /* Creating a new frame munges the `frame' value from the current | |
923 | GR1, so we restore it again here. FIXME, untangle all this | |
924 | 29K frame stuff... */ | |
925 | frame->frame = argv[0]; | |
926 | ||
927 | /* Our MSP is in argv[2]. It'd be intelligent if we could just | |
928 | save this value in the FRAME. But the way it's set up (FIXME), | |
929 | we must save our caller's MSP. We compute that by adding our | |
930 | memory stack frame size to our MSP. */ | |
931 | frame->saved_msp = argv[2] + frame->msize; | |
932 | ||
933 | return frame; | |
934 | } | |
935 | ||
936 | int | |
937 | gdb_print_insn_a29k (memaddr, info) | |
938 | bfd_vma memaddr; | |
939 | disassemble_info *info; | |
940 | { | |
941 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
942 | return print_insn_big_a29k (memaddr, info); | |
943 | else | |
944 | return print_insn_little_a29k (memaddr, info); | |
945 | } | |
946 | ||
947 | enum a29k_processor_types processor_type = a29k_unknown; | |
948 | ||
949 | void | |
950 | a29k_get_processor_type () | |
951 | { | |
952 | unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM); | |
953 | ||
954 | /* Most of these don't have freeze mode. */ | |
955 | processor_type = a29k_no_freeze_mode; | |
956 | ||
957 | switch ((cfg_reg >> 28) & 0xf) | |
958 | { | |
959 | case 0: | |
960 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29000"); | |
961 | break; | |
962 | case 1: | |
963 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29005"); | |
964 | break; | |
965 | case 2: | |
966 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29050"); | |
967 | processor_type = a29k_freeze_mode; | |
968 | break; | |
969 | case 3: | |
970 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29035"); | |
971 | break; | |
972 | case 4: | |
973 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29030"); | |
974 | break; | |
975 | case 5: | |
976 | fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*"); | |
977 | break; | |
978 | case 6: | |
979 | fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*"); | |
980 | break; | |
981 | case 7: | |
982 | fprintf_filtered (gdb_stderr, "Remote debugging an Am29040"); | |
983 | break; | |
984 | default: | |
985 | fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n"); | |
986 | /* Don't bother to print the revision. */ | |
987 | return; | |
988 | } | |
989 | fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f)); | |
990 | } | |
991 | ||
992 | #ifdef GET_LONGJMP_TARGET | |
993 | /* Figure out where the longjmp will land. We expect that we have just entered | |
994 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
995 | output regs. lr2 (LR2_REGNUM) points at the jmp_buf structure from which we | |
996 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
997 | This routine returns true on success */ | |
998 | ||
999 | int | |
1000 | get_longjmp_target(pc) | |
1001 | CORE_ADDR *pc; | |
1002 | { | |
1003 | CORE_ADDR jb_addr; | |
1004 | char buf[sizeof(CORE_ADDR)]; | |
1005 | ||
1006 | jb_addr = read_register(LR2_REGNUM); | |
1007 | ||
1008 | if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, (char *) buf, | |
1009 | sizeof(CORE_ADDR))) | |
1010 | return 0; | |
1011 | ||
1012 | *pc = extract_address ((PTR) buf, sizeof(CORE_ADDR)); | |
1013 | return 1; | |
1014 | } | |
1015 | #endif /* GET_LONGJMP_TARGET */ | |
1016 | ||
1017 | void | |
1018 | _initialize_a29k_tdep () | |
1019 | { | |
1020 | extern CORE_ADDR text_end; | |
1021 | ||
1022 | tm_print_insn = gdb_print_insn_a29k; | |
1023 | ||
1024 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ | |
1025 | add_show_from_set | |
1026 | (add_set_cmd ("rstack_high_address", class_support, var_uinteger, | |
1027 | (char *)&rstack_high_address, | |
1028 | "Set top address in memory of the register stack.\n\ | |
1029 | Attempts to access registers saved above this address will be ignored\n\ | |
1030 | or will produce the value -1.", &setlist), | |
1031 | &showlist); | |
1032 | ||
1033 | /* FIXME, there should be a way to make a CORE_ADDR variable settable. */ | |
1034 | add_show_from_set | |
1035 | (add_set_cmd ("call_scratch_address", class_support, var_uinteger, | |
1036 | (char *)&text_end, | |
1037 | "Set address in memory where small amounts of RAM can be used\n\ | |
1038 | when making function calls into the inferior.", &setlist), | |
1039 | &showlist); | |
1040 | } |