]>
Commit | Line | Data |
---|---|---|
252b5132 RH |
1 | /* bfd back-end for HP PA-RISC SOM objects. |
2 | Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | Contributed by the Center for Software Science at the | |
6 | University of Utah ([email protected]). | |
7 | ||
8 | This file is part of BFD, the Binary File Descriptor library. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
23 | 02111-1307, USA. */ | |
24 | ||
25 | #include "bfd.h" | |
26 | #include "sysdep.h" | |
27 | ||
28 | #if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX) | |
29 | ||
30 | #include "libbfd.h" | |
31 | #include "som.h" | |
32 | ||
33 | #include <sys/param.h> | |
34 | #include <signal.h> | |
35 | #include <machine/reg.h> | |
36 | #include <sys/file.h> | |
37 | #include <ctype.h> | |
38 | ||
39 | /* Magic not defined in standard HP-UX header files until 8.0 */ | |
40 | ||
41 | #ifndef CPU_PA_RISC1_0 | |
42 | #define CPU_PA_RISC1_0 0x20B | |
43 | #endif /* CPU_PA_RISC1_0 */ | |
44 | ||
45 | #ifndef CPU_PA_RISC1_1 | |
46 | #define CPU_PA_RISC1_1 0x210 | |
47 | #endif /* CPU_PA_RISC1_1 */ | |
48 | ||
49 | #ifndef CPU_PA_RISC2_0 | |
50 | #define CPU_PA_RISC2_0 0x214 | |
51 | #endif /* CPU_PA_RISC2_0 */ | |
52 | ||
53 | #ifndef _PA_RISC1_0_ID | |
54 | #define _PA_RISC1_0_ID CPU_PA_RISC1_0 | |
55 | #endif /* _PA_RISC1_0_ID */ | |
56 | ||
57 | #ifndef _PA_RISC1_1_ID | |
58 | #define _PA_RISC1_1_ID CPU_PA_RISC1_1 | |
59 | #endif /* _PA_RISC1_1_ID */ | |
60 | ||
61 | #ifndef _PA_RISC2_0_ID | |
62 | #define _PA_RISC2_0_ID CPU_PA_RISC2_0 | |
63 | #endif /* _PA_RISC2_0_ID */ | |
64 | ||
65 | #ifndef _PA_RISC_MAXID | |
66 | #define _PA_RISC_MAXID 0x2FF | |
67 | #endif /* _PA_RISC_MAXID */ | |
68 | ||
69 | #ifndef _PA_RISC_ID | |
70 | #define _PA_RISC_ID(__m_num) \ | |
71 | (((__m_num) == _PA_RISC1_0_ID) || \ | |
72 | ((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID)) | |
73 | #endif /* _PA_RISC_ID */ | |
74 | ||
75 | ||
76 | /* HIUX in it's infinite stupidity changed the names for several "well | |
77 | known" constants. Work around such braindamage. Try the HPUX version | |
78 | first, then the HIUX version, and finally provide a default. */ | |
79 | #ifdef HPUX_AUX_ID | |
80 | #define EXEC_AUX_ID HPUX_AUX_ID | |
81 | #endif | |
82 | ||
83 | #if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID) | |
84 | #define EXEC_AUX_ID HIUX_AUX_ID | |
85 | #endif | |
86 | ||
87 | #ifndef EXEC_AUX_ID | |
88 | #define EXEC_AUX_ID 0 | |
89 | #endif | |
90 | ||
91 | /* Size (in chars) of the temporary buffers used during fixup and string | |
92 | table writes. */ | |
93 | ||
94 | #define SOM_TMP_BUFSIZE 8192 | |
95 | ||
96 | /* Size of the hash table in archives. */ | |
97 | #define SOM_LST_HASH_SIZE 31 | |
98 | ||
99 | /* Max number of SOMs to be found in an archive. */ | |
100 | #define SOM_LST_MODULE_LIMIT 1024 | |
101 | ||
102 | /* Generic alignment macro. */ | |
103 | #define SOM_ALIGN(val, alignment) \ | |
104 | (((val) + (alignment) - 1) & ~((alignment) - 1)) | |
105 | ||
106 | /* SOM allows any one of the four previous relocations to be reused | |
107 | with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP | |
108 | relocations are always a single byte, using a R_PREV_FIXUP instead | |
109 | of some multi-byte relocation makes object files smaller. | |
110 | ||
111 | Note one side effect of using a R_PREV_FIXUP is the relocation that | |
112 | is being repeated moves to the front of the queue. */ | |
113 | struct reloc_queue | |
114 | { | |
115 | unsigned char *reloc; | |
116 | unsigned int size; | |
117 | } reloc_queue[4]; | |
118 | ||
119 | /* This fully describes the symbol types which may be attached to | |
120 | an EXPORT or IMPORT directive. Only SOM uses this formation | |
121 | (ELF has no need for it). */ | |
122 | typedef enum | |
123 | { | |
124 | SYMBOL_TYPE_UNKNOWN, | |
125 | SYMBOL_TYPE_ABSOLUTE, | |
126 | SYMBOL_TYPE_CODE, | |
127 | SYMBOL_TYPE_DATA, | |
128 | SYMBOL_TYPE_ENTRY, | |
129 | SYMBOL_TYPE_MILLICODE, | |
130 | SYMBOL_TYPE_PLABEL, | |
131 | SYMBOL_TYPE_PRI_PROG, | |
132 | SYMBOL_TYPE_SEC_PROG, | |
133 | } pa_symbol_type; | |
134 | ||
135 | struct section_to_type | |
136 | { | |
137 | char *section; | |
138 | char type; | |
139 | }; | |
140 | ||
141 | /* Assorted symbol information that needs to be derived from the BFD symbol | |
142 | and/or the BFD backend private symbol data. */ | |
143 | struct som_misc_symbol_info | |
144 | { | |
145 | unsigned int symbol_type; | |
146 | unsigned int symbol_scope; | |
147 | unsigned int arg_reloc; | |
148 | unsigned int symbol_info; | |
149 | unsigned int symbol_value; | |
150 | unsigned int priv_level; | |
151 | }; | |
152 | ||
153 | /* Forward declarations */ | |
154 | ||
155 | static boolean som_mkobject PARAMS ((bfd *)); | |
156 | static const bfd_target * som_object_setup PARAMS ((bfd *, | |
157 | struct header *, | |
158 | struct som_exec_auxhdr *, | |
159 | unsigned long)); | |
160 | static boolean setup_sections PARAMS ((bfd *, struct header *, unsigned long)); | |
161 | static const bfd_target * som_object_p PARAMS ((bfd *)); | |
162 | static boolean som_write_object_contents PARAMS ((bfd *)); | |
163 | static boolean som_slurp_string_table PARAMS ((bfd *)); | |
164 | static unsigned int som_slurp_symbol_table PARAMS ((bfd *)); | |
165 | static long som_get_symtab_upper_bound PARAMS ((bfd *)); | |
166 | static long som_canonicalize_reloc PARAMS ((bfd *, sec_ptr, | |
167 | arelent **, asymbol **)); | |
168 | static long som_get_reloc_upper_bound PARAMS ((bfd *, sec_ptr)); | |
169 | static unsigned int som_set_reloc_info PARAMS ((unsigned char *, unsigned int, | |
170 | arelent *, asection *, | |
171 | asymbol **, boolean)); | |
172 | static boolean som_slurp_reloc_table PARAMS ((bfd *, asection *, | |
173 | asymbol **, boolean)); | |
174 | static long som_get_symtab PARAMS ((bfd *, asymbol **)); | |
175 | static asymbol * som_make_empty_symbol PARAMS ((bfd *)); | |
176 | static void som_print_symbol PARAMS ((bfd *, PTR, | |
177 | asymbol *, bfd_print_symbol_type)); | |
178 | static boolean som_new_section_hook PARAMS ((bfd *, asection *)); | |
179 | static boolean som_bfd_copy_private_symbol_data PARAMS ((bfd *, asymbol *, | |
180 | bfd *, asymbol *)); | |
181 | static boolean som_bfd_copy_private_section_data PARAMS ((bfd *, asection *, | |
182 | bfd *, asection *)); | |
183 | static boolean som_bfd_copy_private_bfd_data PARAMS ((bfd *, bfd *)); | |
184 | #define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data | |
185 | #define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags | |
186 | static boolean som_bfd_is_local_label_name PARAMS ((bfd *, const char *)); | |
187 | static boolean som_set_section_contents PARAMS ((bfd *, sec_ptr, PTR, | |
188 | file_ptr, bfd_size_type)); | |
189 | static boolean som_get_section_contents PARAMS ((bfd *, sec_ptr, PTR, | |
190 | file_ptr, bfd_size_type)); | |
191 | static boolean som_set_arch_mach PARAMS ((bfd *, enum bfd_architecture, | |
192 | unsigned long)); | |
193 | static boolean som_find_nearest_line PARAMS ((bfd *, asection *, | |
194 | asymbol **, bfd_vma, | |
195 | CONST char **, | |
196 | CONST char **, | |
197 | unsigned int *)); | |
198 | static void som_get_symbol_info PARAMS ((bfd *, asymbol *, symbol_info *)); | |
199 | static asection * bfd_section_from_som_symbol PARAMS ((bfd *, | |
200 | struct symbol_dictionary_record *)); | |
201 | static int log2 PARAMS ((unsigned int)); | |
202 | static bfd_reloc_status_type hppa_som_reloc PARAMS ((bfd *, arelent *, | |
203 | asymbol *, PTR, | |
204 | asection *, bfd *, | |
205 | char **)); | |
206 | static void som_initialize_reloc_queue PARAMS ((struct reloc_queue *)); | |
207 | static void som_reloc_queue_insert PARAMS ((unsigned char *, unsigned int, | |
208 | struct reloc_queue *)); | |
209 | static void som_reloc_queue_fix PARAMS ((struct reloc_queue *, unsigned int)); | |
210 | static int som_reloc_queue_find PARAMS ((unsigned char *, unsigned int, | |
211 | struct reloc_queue *)); | |
212 | static unsigned char * try_prev_fixup PARAMS ((bfd *, int *, unsigned char *, | |
213 | unsigned int, | |
214 | struct reloc_queue *)); | |
215 | ||
216 | static unsigned char * som_reloc_skip PARAMS ((bfd *, unsigned int, | |
217 | unsigned char *, unsigned int *, | |
218 | struct reloc_queue *)); | |
219 | static unsigned char * som_reloc_addend PARAMS ((bfd *, int, unsigned char *, | |
220 | unsigned int *, | |
221 | struct reloc_queue *)); | |
222 | static unsigned char * som_reloc_call PARAMS ((bfd *, unsigned char *, | |
223 | unsigned int *, | |
224 | arelent *, int, | |
225 | struct reloc_queue *)); | |
226 | static unsigned long som_count_spaces PARAMS ((bfd *)); | |
227 | static unsigned long som_count_subspaces PARAMS ((bfd *)); | |
228 | static int compare_syms PARAMS ((const void *, const void *)); | |
229 | static int compare_subspaces PARAMS ((const void *, const void *)); | |
230 | static unsigned long som_compute_checksum PARAMS ((bfd *)); | |
231 | static boolean som_prep_headers PARAMS ((bfd *)); | |
232 | static int som_sizeof_headers PARAMS ((bfd *, boolean)); | |
233 | static boolean som_finish_writing PARAMS ((bfd *)); | |
234 | static boolean som_build_and_write_symbol_table PARAMS ((bfd *)); | |
235 | static void som_prep_for_fixups PARAMS ((bfd *, asymbol **, unsigned long)); | |
236 | static boolean som_write_fixups PARAMS ((bfd *, unsigned long, unsigned int *)); | |
237 | static boolean som_write_space_strings PARAMS ((bfd *, unsigned long, | |
238 | unsigned int *)); | |
239 | static boolean som_write_symbol_strings PARAMS ((bfd *, unsigned long, | |
240 | asymbol **, unsigned int, | |
241 | unsigned *, | |
242 | COMPUNIT *)); | |
243 | static boolean som_begin_writing PARAMS ((bfd *)); | |
244 | static reloc_howto_type * som_bfd_reloc_type_lookup | |
245 | PARAMS ((bfd *, bfd_reloc_code_real_type)); | |
246 | static char som_section_type PARAMS ((const char *)); | |
247 | static int som_decode_symclass PARAMS ((asymbol *)); | |
248 | static boolean som_bfd_count_ar_symbols PARAMS ((bfd *, struct lst_header *, | |
249 | symindex *)); | |
250 | ||
251 | static boolean som_bfd_fill_in_ar_symbols PARAMS ((bfd *, struct lst_header *, | |
252 | carsym **syms)); | |
253 | static boolean som_slurp_armap PARAMS ((bfd *)); | |
254 | static boolean som_write_armap PARAMS ((bfd *, unsigned int, struct orl *, | |
255 | unsigned int, int)); | |
256 | static void som_bfd_derive_misc_symbol_info PARAMS ((bfd *, asymbol *, | |
257 | struct som_misc_symbol_info *)); | |
258 | static boolean som_bfd_prep_for_ar_write PARAMS ((bfd *, unsigned int *, | |
259 | unsigned int *)); | |
260 | static unsigned int som_bfd_ar_symbol_hash PARAMS ((asymbol *)); | |
261 | static boolean som_bfd_ar_write_symbol_stuff PARAMS ((bfd *, unsigned int, | |
262 | unsigned int, | |
263 | struct lst_header, | |
264 | unsigned int)); | |
265 | static boolean som_is_space PARAMS ((asection *)); | |
266 | static boolean som_is_subspace PARAMS ((asection *)); | |
267 | static boolean som_is_container PARAMS ((asection *, asection *)); | |
268 | static boolean som_bfd_free_cached_info PARAMS ((bfd *)); | |
269 | static boolean som_bfd_link_split_section PARAMS ((bfd *, asection *)); | |
270 | ||
271 | /* Map SOM section names to POSIX/BSD single-character symbol types. | |
272 | ||
273 | This table includes all the standard subspaces as defined in the | |
274 | current "PRO ABI for PA-RISC Systems", $UNWIND$ which for | |
275 | some reason was left out, and sections specific to embedded stabs. */ | |
276 | ||
277 | static const struct section_to_type stt[] = { | |
278 | {"$TEXT$", 't'}, | |
279 | {"$SHLIB_INFO$", 't'}, | |
280 | {"$MILLICODE$", 't'}, | |
281 | {"$LIT$", 't'}, | |
282 | {"$CODE$", 't'}, | |
283 | {"$UNWIND_START$", 't'}, | |
284 | {"$UNWIND$", 't'}, | |
285 | {"$PRIVATE$", 'd'}, | |
286 | {"$PLT$", 'd'}, | |
287 | {"$SHLIB_DATA$", 'd'}, | |
288 | {"$DATA$", 'd'}, | |
289 | {"$SHORTDATA$", 'g'}, | |
290 | {"$DLT$", 'd'}, | |
291 | {"$GLOBAL$", 'g'}, | |
292 | {"$SHORTBSS$", 's'}, | |
293 | {"$BSS$", 'b'}, | |
294 | {"$GDB_STRINGS$", 'N'}, | |
295 | {"$GDB_SYMBOLS$", 'N'}, | |
296 | {0, 0} | |
297 | }; | |
298 | ||
299 | /* About the relocation formatting table... | |
300 | ||
301 | There are 256 entries in the table, one for each possible | |
302 | relocation opcode available in SOM. We index the table by | |
303 | the relocation opcode. The names and operations are those | |
304 | defined by a.out_800 (4). | |
305 | ||
306 | Right now this table is only used to count and perform minimal | |
307 | processing on relocation streams so that they can be internalized | |
308 | into BFD and symbolically printed by utilities. To make actual use | |
309 | of them would be much more difficult, BFD's concept of relocations | |
310 | is far too simple to handle SOM relocations. The basic assumption | |
311 | that a relocation can be completely processed independent of other | |
312 | relocations before an object file is written is invalid for SOM. | |
313 | ||
314 | The SOM relocations are meant to be processed as a stream, they | |
315 | specify copying of data from the input section to the output section | |
316 | while possibly modifying the data in some manner. They also can | |
317 | specify that a variable number of zeros or uninitialized data be | |
318 | inserted on in the output segment at the current offset. Some | |
319 | relocations specify that some previous relocation be re-applied at | |
320 | the current location in the input/output sections. And finally a number | |
321 | of relocations have effects on other sections (R_ENTRY, R_EXIT, | |
322 | R_UNWIND_AUX and a variety of others). There isn't even enough room | |
323 | in the BFD relocation data structure to store enough information to | |
324 | perform all the relocations. | |
325 | ||
326 | Each entry in the table has three fields. | |
327 | ||
328 | The first entry is an index into this "class" of relocations. This | |
329 | index can then be used as a variable within the relocation itself. | |
330 | ||
331 | The second field is a format string which actually controls processing | |
332 | of the relocation. It uses a simple postfix machine to do calculations | |
333 | based on variables/constants found in the string and the relocation | |
334 | stream. | |
335 | ||
336 | The third field specifys whether or not this relocation may use | |
337 | a constant (V) from the previous R_DATA_OVERRIDE rather than a constant | |
338 | stored in the instruction. | |
339 | ||
340 | Variables: | |
341 | ||
342 | L = input space byte count | |
343 | D = index into class of relocations | |
344 | M = output space byte count | |
345 | N = statement number (unused?) | |
346 | O = stack operation | |
347 | R = parameter relocation bits | |
348 | S = symbol index | |
349 | T = first 32 bits of stack unwind information | |
350 | U = second 32 bits of stack unwind information | |
351 | V = a literal constant (usually used in the next relocation) | |
352 | P = a previous relocation | |
353 | ||
354 | Lower case letters (starting with 'b') refer to following | |
355 | bytes in the relocation stream. 'b' is the next 1 byte, | |
356 | c is the next 2 bytes, d is the next 3 bytes, etc... | |
357 | This is the variable part of the relocation entries that | |
358 | makes our life a living hell. | |
359 | ||
360 | numerical constants are also used in the format string. Note | |
361 | the constants are represented in decimal. | |
362 | ||
363 | '+', "*" and "=" represents the obvious postfix operators. | |
364 | '<' represents a left shift. | |
365 | ||
366 | Stack Operations: | |
367 | ||
368 | Parameter Relocation Bits: | |
369 | ||
370 | Unwind Entries: | |
371 | ||
372 | Previous Relocations: The index field represents which in the queue | |
373 | of 4 previous fixups should be re-applied. | |
374 | ||
375 | Literal Constants: These are generally used to represent addend | |
376 | parts of relocations when these constants are not stored in the | |
377 | fields of the instructions themselves. For example the instruction | |
378 | addil foo-$global$-0x1234 would use an override for "0x1234" rather | |
379 | than storing it into the addil itself. */ | |
380 | ||
381 | struct fixup_format | |
382 | { | |
383 | int D; | |
384 | char *format; | |
385 | }; | |
386 | ||
387 | static const struct fixup_format som_fixup_formats[256] = | |
388 | { | |
389 | /* R_NO_RELOCATION */ | |
390 | 0, "LD1+4*=", /* 0x00 */ | |
391 | 1, "LD1+4*=", /* 0x01 */ | |
392 | 2, "LD1+4*=", /* 0x02 */ | |
393 | 3, "LD1+4*=", /* 0x03 */ | |
394 | 4, "LD1+4*=", /* 0x04 */ | |
395 | 5, "LD1+4*=", /* 0x05 */ | |
396 | 6, "LD1+4*=", /* 0x06 */ | |
397 | 7, "LD1+4*=", /* 0x07 */ | |
398 | 8, "LD1+4*=", /* 0x08 */ | |
399 | 9, "LD1+4*=", /* 0x09 */ | |
400 | 10, "LD1+4*=", /* 0x0a */ | |
401 | 11, "LD1+4*=", /* 0x0b */ | |
402 | 12, "LD1+4*=", /* 0x0c */ | |
403 | 13, "LD1+4*=", /* 0x0d */ | |
404 | 14, "LD1+4*=", /* 0x0e */ | |
405 | 15, "LD1+4*=", /* 0x0f */ | |
406 | 16, "LD1+4*=", /* 0x10 */ | |
407 | 17, "LD1+4*=", /* 0x11 */ | |
408 | 18, "LD1+4*=", /* 0x12 */ | |
409 | 19, "LD1+4*=", /* 0x13 */ | |
410 | 20, "LD1+4*=", /* 0x14 */ | |
411 | 21, "LD1+4*=", /* 0x15 */ | |
412 | 22, "LD1+4*=", /* 0x16 */ | |
413 | 23, "LD1+4*=", /* 0x17 */ | |
414 | 0, "LD8<b+1+4*=", /* 0x18 */ | |
415 | 1, "LD8<b+1+4*=", /* 0x19 */ | |
416 | 2, "LD8<b+1+4*=", /* 0x1a */ | |
417 | 3, "LD8<b+1+4*=", /* 0x1b */ | |
418 | 0, "LD16<c+1+4*=", /* 0x1c */ | |
419 | 1, "LD16<c+1+4*=", /* 0x1d */ | |
420 | 2, "LD16<c+1+4*=", /* 0x1e */ | |
421 | 0, "Ld1+=", /* 0x1f */ | |
422 | /* R_ZEROES */ | |
423 | 0, "Lb1+4*=", /* 0x20 */ | |
424 | 1, "Ld1+=", /* 0x21 */ | |
425 | /* R_UNINIT */ | |
426 | 0, "Lb1+4*=", /* 0x22 */ | |
427 | 1, "Ld1+=", /* 0x23 */ | |
428 | /* R_RELOCATION */ | |
429 | 0, "L4=", /* 0x24 */ | |
430 | /* R_DATA_ONE_SYMBOL */ | |
431 | 0, "L4=Sb=", /* 0x25 */ | |
432 | 1, "L4=Sd=", /* 0x26 */ | |
433 | /* R_DATA_PLEBEL */ | |
434 | 0, "L4=Sb=", /* 0x27 */ | |
435 | 1, "L4=Sd=", /* 0x28 */ | |
436 | /* R_SPACE_REF */ | |
437 | 0, "L4=", /* 0x29 */ | |
438 | /* R_REPEATED_INIT */ | |
439 | 0, "L4=Mb1+4*=", /* 0x2a */ | |
440 | 1, "Lb4*=Mb1+L*=", /* 0x2b */ | |
441 | 2, "Lb4*=Md1+4*=", /* 0x2c */ | |
442 | 3, "Ld1+=Me1+=", /* 0x2d */ | |
252b5132 | 443 | 0, "", /* 0x2e */ |
252b5132 RH |
444 | 0, "", /* 0x2f */ |
445 | /* R_PCREL_CALL */ | |
446 | 0, "L4=RD=Sb=", /* 0x30 */ | |
447 | 1, "L4=RD=Sb=", /* 0x31 */ | |
448 | 2, "L4=RD=Sb=", /* 0x32 */ | |
449 | 3, "L4=RD=Sb=", /* 0x33 */ | |
450 | 4, "L4=RD=Sb=", /* 0x34 */ | |
451 | 5, "L4=RD=Sb=", /* 0x35 */ | |
452 | 6, "L4=RD=Sb=", /* 0x36 */ | |
453 | 7, "L4=RD=Sb=", /* 0x37 */ | |
454 | 8, "L4=RD=Sb=", /* 0x38 */ | |
455 | 9, "L4=RD=Sb=", /* 0x39 */ | |
456 | 0, "L4=RD8<b+=Sb=",/* 0x3a */ | |
457 | 1, "L4=RD8<b+=Sb=",/* 0x3b */ | |
458 | 0, "L4=RD8<b+=Sd=",/* 0x3c */ | |
459 | 1, "L4=RD8<b+=Sd=",/* 0x3d */ | |
c1006781 | 460 | /* R_SHORT_PCREL_MODE */ |
252b5132 | 461 | 0, "", /* 0x3e */ |
c1006781 | 462 | /* R_LONG_PCREL_MODE */ |
252b5132 RH |
463 | 0, "", /* 0x3f */ |
464 | /* R_ABS_CALL */ | |
465 | 0, "L4=RD=Sb=", /* 0x40 */ | |
466 | 1, "L4=RD=Sb=", /* 0x41 */ | |
467 | 2, "L4=RD=Sb=", /* 0x42 */ | |
468 | 3, "L4=RD=Sb=", /* 0x43 */ | |
469 | 4, "L4=RD=Sb=", /* 0x44 */ | |
470 | 5, "L4=RD=Sb=", /* 0x45 */ | |
471 | 6, "L4=RD=Sb=", /* 0x46 */ | |
472 | 7, "L4=RD=Sb=", /* 0x47 */ | |
473 | 8, "L4=RD=Sb=", /* 0x48 */ | |
474 | 9, "L4=RD=Sb=", /* 0x49 */ | |
475 | 0, "L4=RD8<b+=Sb=",/* 0x4a */ | |
476 | 1, "L4=RD8<b+=Sb=",/* 0x4b */ | |
477 | 0, "L4=RD8<b+=Sd=",/* 0x4c */ | |
478 | 1, "L4=RD8<b+=Sd=",/* 0x4d */ | |
479 | /* R_RESERVED */ | |
480 | 0, "", /* 0x4e */ | |
481 | 0, "", /* 0x4f */ | |
482 | /* R_DP_RELATIVE */ | |
483 | 0, "L4=SD=", /* 0x50 */ | |
484 | 1, "L4=SD=", /* 0x51 */ | |
485 | 2, "L4=SD=", /* 0x52 */ | |
486 | 3, "L4=SD=", /* 0x53 */ | |
487 | 4, "L4=SD=", /* 0x54 */ | |
488 | 5, "L4=SD=", /* 0x55 */ | |
489 | 6, "L4=SD=", /* 0x56 */ | |
490 | 7, "L4=SD=", /* 0x57 */ | |
491 | 8, "L4=SD=", /* 0x58 */ | |
492 | 9, "L4=SD=", /* 0x59 */ | |
493 | 10, "L4=SD=", /* 0x5a */ | |
494 | 11, "L4=SD=", /* 0x5b */ | |
495 | 12, "L4=SD=", /* 0x5c */ | |
496 | 13, "L4=SD=", /* 0x5d */ | |
497 | 14, "L4=SD=", /* 0x5e */ | |
498 | 15, "L4=SD=", /* 0x5f */ | |
499 | 16, "L4=SD=", /* 0x60 */ | |
500 | 17, "L4=SD=", /* 0x61 */ | |
501 | 18, "L4=SD=", /* 0x62 */ | |
502 | 19, "L4=SD=", /* 0x63 */ | |
503 | 20, "L4=SD=", /* 0x64 */ | |
504 | 21, "L4=SD=", /* 0x65 */ | |
505 | 22, "L4=SD=", /* 0x66 */ | |
506 | 23, "L4=SD=", /* 0x67 */ | |
507 | 24, "L4=SD=", /* 0x68 */ | |
508 | 25, "L4=SD=", /* 0x69 */ | |
509 | 26, "L4=SD=", /* 0x6a */ | |
510 | 27, "L4=SD=", /* 0x6b */ | |
511 | 28, "L4=SD=", /* 0x6c */ | |
512 | 29, "L4=SD=", /* 0x6d */ | |
513 | 30, "L4=SD=", /* 0x6e */ | |
514 | 31, "L4=SD=", /* 0x6f */ | |
515 | 32, "L4=Sb=", /* 0x70 */ | |
516 | 33, "L4=Sd=", /* 0x71 */ | |
517 | /* R_RESERVED */ | |
518 | 0, "", /* 0x72 */ | |
519 | 0, "", /* 0x73 */ | |
520 | 0, "", /* 0x74 */ | |
521 | 0, "", /* 0x75 */ | |
522 | 0, "", /* 0x76 */ | |
523 | 0, "", /* 0x77 */ | |
524 | /* R_DLT_REL */ | |
525 | 0, "L4=Sb=", /* 0x78 */ | |
526 | 1, "L4=Sd=", /* 0x79 */ | |
527 | /* R_RESERVED */ | |
528 | 0, "", /* 0x7a */ | |
529 | 0, "", /* 0x7b */ | |
530 | 0, "", /* 0x7c */ | |
531 | 0, "", /* 0x7d */ | |
532 | 0, "", /* 0x7e */ | |
533 | 0, "", /* 0x7f */ | |
534 | /* R_CODE_ONE_SYMBOL */ | |
535 | 0, "L4=SD=", /* 0x80 */ | |
536 | 1, "L4=SD=", /* 0x81 */ | |
537 | 2, "L4=SD=", /* 0x82 */ | |
538 | 3, "L4=SD=", /* 0x83 */ | |
539 | 4, "L4=SD=", /* 0x84 */ | |
540 | 5, "L4=SD=", /* 0x85 */ | |
541 | 6, "L4=SD=", /* 0x86 */ | |
542 | 7, "L4=SD=", /* 0x87 */ | |
543 | 8, "L4=SD=", /* 0x88 */ | |
544 | 9, "L4=SD=", /* 0x89 */ | |
545 | 10, "L4=SD=", /* 0x8q */ | |
546 | 11, "L4=SD=", /* 0x8b */ | |
547 | 12, "L4=SD=", /* 0x8c */ | |
548 | 13, "L4=SD=", /* 0x8d */ | |
549 | 14, "L4=SD=", /* 0x8e */ | |
550 | 15, "L4=SD=", /* 0x8f */ | |
551 | 16, "L4=SD=", /* 0x90 */ | |
552 | 17, "L4=SD=", /* 0x91 */ | |
553 | 18, "L4=SD=", /* 0x92 */ | |
554 | 19, "L4=SD=", /* 0x93 */ | |
555 | 20, "L4=SD=", /* 0x94 */ | |
556 | 21, "L4=SD=", /* 0x95 */ | |
557 | 22, "L4=SD=", /* 0x96 */ | |
558 | 23, "L4=SD=", /* 0x97 */ | |
559 | 24, "L4=SD=", /* 0x98 */ | |
560 | 25, "L4=SD=", /* 0x99 */ | |
561 | 26, "L4=SD=", /* 0x9a */ | |
562 | 27, "L4=SD=", /* 0x9b */ | |
563 | 28, "L4=SD=", /* 0x9c */ | |
564 | 29, "L4=SD=", /* 0x9d */ | |
565 | 30, "L4=SD=", /* 0x9e */ | |
566 | 31, "L4=SD=", /* 0x9f */ | |
567 | 32, "L4=Sb=", /* 0xa0 */ | |
568 | 33, "L4=Sd=", /* 0xa1 */ | |
569 | /* R_RESERVED */ | |
570 | 0, "", /* 0xa2 */ | |
571 | 0, "", /* 0xa3 */ | |
572 | 0, "", /* 0xa4 */ | |
573 | 0, "", /* 0xa5 */ | |
574 | 0, "", /* 0xa6 */ | |
575 | 0, "", /* 0xa7 */ | |
576 | 0, "", /* 0xa8 */ | |
577 | 0, "", /* 0xa9 */ | |
578 | 0, "", /* 0xaa */ | |
579 | 0, "", /* 0xab */ | |
580 | 0, "", /* 0xac */ | |
581 | 0, "", /* 0xad */ | |
582 | /* R_MILLI_REL */ | |
583 | 0, "L4=Sb=", /* 0xae */ | |
584 | 1, "L4=Sd=", /* 0xaf */ | |
585 | /* R_CODE_PLABEL */ | |
586 | 0, "L4=Sb=", /* 0xb0 */ | |
587 | 1, "L4=Sd=", /* 0xb1 */ | |
588 | /* R_BREAKPOINT */ | |
589 | 0, "L4=", /* 0xb2 */ | |
590 | /* R_ENTRY */ | |
591 | 0, "Te=Ue=", /* 0xb3 */ | |
592 | 1, "Uf=", /* 0xb4 */ | |
593 | /* R_ALT_ENTRY */ | |
594 | 0, "", /* 0xb5 */ | |
595 | /* R_EXIT */ | |
596 | 0, "", /* 0xb6 */ | |
597 | /* R_BEGIN_TRY */ | |
598 | 0, "", /* 0xb7 */ | |
599 | /* R_END_TRY */ | |
600 | 0, "R0=", /* 0xb8 */ | |
601 | 1, "Rb4*=", /* 0xb9 */ | |
602 | 2, "Rd4*=", /* 0xba */ | |
603 | /* R_BEGIN_BRTAB */ | |
604 | 0, "", /* 0xbb */ | |
605 | /* R_END_BRTAB */ | |
606 | 0, "", /* 0xbc */ | |
607 | /* R_STATEMENT */ | |
608 | 0, "Nb=", /* 0xbd */ | |
609 | 1, "Nc=", /* 0xbe */ | |
610 | 2, "Nd=", /* 0xbf */ | |
611 | /* R_DATA_EXPR */ | |
612 | 0, "L4=", /* 0xc0 */ | |
613 | /* R_CODE_EXPR */ | |
614 | 0, "L4=", /* 0xc1 */ | |
615 | /* R_FSEL */ | |
616 | 0, "", /* 0xc2 */ | |
617 | /* R_LSEL */ | |
618 | 0, "", /* 0xc3 */ | |
619 | /* R_RSEL */ | |
620 | 0, "", /* 0xc4 */ | |
621 | /* R_N_MODE */ | |
622 | 0, "", /* 0xc5 */ | |
623 | /* R_S_MODE */ | |
624 | 0, "", /* 0xc6 */ | |
625 | /* R_D_MODE */ | |
626 | 0, "", /* 0xc7 */ | |
627 | /* R_R_MODE */ | |
628 | 0, "", /* 0xc8 */ | |
629 | /* R_DATA_OVERRIDE */ | |
630 | 0, "V0=", /* 0xc9 */ | |
631 | 1, "Vb=", /* 0xca */ | |
632 | 2, "Vc=", /* 0xcb */ | |
633 | 3, "Vd=", /* 0xcc */ | |
634 | 4, "Ve=", /* 0xcd */ | |
635 | /* R_TRANSLATED */ | |
636 | 0, "", /* 0xce */ | |
637 | /* R_RESERVED */ | |
638 | 0, "", /* 0xcf */ | |
639 | /* R_COMP1 */ | |
640 | 0, "Ob=", /* 0xd0 */ | |
641 | /* R_COMP2 */ | |
642 | 0, "Ob=Sd=", /* 0xd1 */ | |
643 | /* R_COMP3 */ | |
644 | 0, "Ob=Ve=", /* 0xd2 */ | |
645 | /* R_PREV_FIXUP */ | |
646 | 0, "P", /* 0xd3 */ | |
647 | 1, "P", /* 0xd4 */ | |
648 | 2, "P", /* 0xd5 */ | |
649 | 3, "P", /* 0xd6 */ | |
650 | /* R_SEC_STMT */ | |
651 | 0, "", /* 0xd7 */ | |
652 | /* R_N0SEL */ | |
653 | 0, "", /* 0xd8 */ | |
654 | /* R_N1SEL */ | |
655 | 0, "", /* 0xd9 */ | |
656 | /* R_LINETAB */ | |
657 | 0, "", /* 0xda */ | |
658 | /* R_LINETAB_ESC */ | |
659 | 0, "", /* 0xdb */ | |
660 | /* R_LTP_OVERRIDE */ | |
661 | 0, "", /* 0xdc */ | |
662 | /* R_COMMENT */ | |
663 | 0, "", /* 0xdd */ | |
664 | /* R_RESERVED */ | |
665 | 0, "", /* 0xde */ | |
666 | 0, "", /* 0xdf */ | |
667 | 0, "", /* 0xe0 */ | |
668 | 0, "", /* 0xe1 */ | |
669 | 0, "", /* 0xe2 */ | |
670 | 0, "", /* 0xe3 */ | |
671 | 0, "", /* 0xe4 */ | |
672 | 0, "", /* 0xe5 */ | |
673 | 0, "", /* 0xe6 */ | |
674 | 0, "", /* 0xe7 */ | |
675 | 0, "", /* 0xe8 */ | |
676 | 0, "", /* 0xe9 */ | |
677 | 0, "", /* 0xea */ | |
678 | 0, "", /* 0xeb */ | |
679 | 0, "", /* 0xec */ | |
680 | 0, "", /* 0xed */ | |
681 | 0, "", /* 0xee */ | |
682 | 0, "", /* 0xef */ | |
683 | 0, "", /* 0xf0 */ | |
684 | 0, "", /* 0xf1 */ | |
685 | 0, "", /* 0xf2 */ | |
686 | 0, "", /* 0xf3 */ | |
687 | 0, "", /* 0xf4 */ | |
688 | 0, "", /* 0xf5 */ | |
689 | 0, "", /* 0xf6 */ | |
690 | 0, "", /* 0xf7 */ | |
691 | 0, "", /* 0xf8 */ | |
692 | 0, "", /* 0xf9 */ | |
693 | 0, "", /* 0xfa */ | |
694 | 0, "", /* 0xfb */ | |
695 | 0, "", /* 0xfc */ | |
696 | 0, "", /* 0xfd */ | |
697 | 0, "", /* 0xfe */ | |
698 | 0, "", /* 0xff */ | |
699 | }; | |
700 | ||
701 | static const int comp1_opcodes[] = | |
702 | { | |
703 | 0x00, | |
704 | 0x40, | |
705 | 0x41, | |
706 | 0x42, | |
707 | 0x43, | |
708 | 0x44, | |
709 | 0x45, | |
710 | 0x46, | |
711 | 0x47, | |
712 | 0x48, | |
713 | 0x49, | |
714 | 0x4a, | |
715 | 0x4b, | |
716 | 0x60, | |
717 | 0x80, | |
718 | 0xa0, | |
719 | 0xc0, | |
720 | -1 | |
721 | }; | |
722 | ||
723 | static const int comp2_opcodes[] = | |
724 | { | |
725 | 0x00, | |
726 | 0x80, | |
727 | 0x82, | |
728 | 0xc0, | |
729 | -1 | |
730 | }; | |
731 | ||
732 | static const int comp3_opcodes[] = | |
733 | { | |
734 | 0x00, | |
735 | 0x02, | |
736 | -1 | |
737 | }; | |
738 | ||
739 | /* These apparently are not in older versions of hpux reloc.h (hpux7). */ | |
740 | #ifndef R_DLT_REL | |
741 | #define R_DLT_REL 0x78 | |
742 | #endif | |
743 | ||
744 | #ifndef R_AUX_UNWIND | |
745 | #define R_AUX_UNWIND 0xcf | |
746 | #endif | |
747 | ||
748 | #ifndef R_SEC_STMT | |
749 | #define R_SEC_STMT 0xd7 | |
750 | #endif | |
751 | ||
752 | /* And these first appeared in hpux10. */ | |
753 | #ifndef R_SHORT_PCREL_MODE | |
754 | #define R_SHORT_PCREL_MODE 0x3e | |
755 | #endif | |
756 | ||
757 | #ifndef R_LONG_PCREL_MODE | |
758 | #define R_LONG_PCREL_MODE 0x3f | |
759 | #endif | |
760 | ||
761 | #ifndef R_N0SEL | |
762 | #define R_N0SEL 0xd8 | |
763 | #endif | |
764 | ||
765 | #ifndef R_N1SEL | |
766 | #define R_N1SEL 0xd9 | |
767 | #endif | |
768 | ||
769 | #ifndef R_LINETAB | |
770 | #define R_LINETAB 0xda | |
771 | #endif | |
772 | ||
773 | #ifndef R_LINETAB_ESC | |
774 | #define R_LINETAB_ESC 0xdb | |
775 | #endif | |
776 | ||
777 | #ifndef R_LTP_OVERRIDE | |
778 | #define R_LTP_OVERRIDE 0xdc | |
779 | #endif | |
780 | ||
781 | #ifndef R_COMMENT | |
782 | #define R_COMMENT 0xdd | |
783 | #endif | |
784 | ||
785 | static reloc_howto_type som_hppa_howto_table[] = | |
786 | { | |
787 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
788 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
789 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
790 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
791 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
792 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
793 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
794 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
795 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
796 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
797 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
798 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
799 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
800 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
801 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
802 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
803 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
804 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
805 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
806 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
807 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
808 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
809 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
810 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
811 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
812 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
813 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
814 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
815 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
816 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
817 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
818 | {R_NO_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_NO_RELOCATION"}, | |
819 | {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"}, | |
820 | {R_ZEROES, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ZEROES"}, | |
821 | {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"}, | |
822 | {R_UNINIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_UNINIT"}, | |
823 | {R_RELOCATION, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RELOCATION"}, | |
824 | {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"}, | |
825 | {R_DATA_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_ONE_SYMBOL"}, | |
826 | {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"}, | |
827 | {R_DATA_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_PLABEL"}, | |
828 | {R_SPACE_REF, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SPACE_REF"}, | |
829 | {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, | |
830 | {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, | |
831 | {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, | |
832 | {R_REPEATED_INIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "REPEATED_INIT"}, | |
833 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
834 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
835 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
836 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
837 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
838 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
839 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
840 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
841 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
842 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
843 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
844 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
845 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
846 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
847 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
848 | {R_PCREL_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PCREL_CALL"}, | |
849 | {R_SHORT_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SHORT_PCREL_MODE"}, | |
850 | {R_LONG_PCREL_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LONG_PCREL_MODE"}, | |
851 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
852 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
853 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
854 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
855 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
856 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
857 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
858 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
859 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
860 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
861 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
862 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
863 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
864 | {R_ABS_CALL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ABS_CALL"}, | |
865 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
866 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
867 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
868 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
869 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
870 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
871 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
872 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
873 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
874 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
875 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
876 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
877 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
878 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
879 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
880 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
881 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
882 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
883 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
884 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
885 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
886 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
887 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
888 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
889 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
890 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
891 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
892 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
893 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
894 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
895 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
896 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
897 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
898 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
899 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
900 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
901 | {R_DP_RELATIVE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DP_RELATIVE"}, | |
902 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
903 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
904 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
905 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
906 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
907 | {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"}, | |
908 | {R_DLT_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DLT_REL"}, | |
909 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
910 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
911 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
912 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
913 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
914 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
915 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
916 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
917 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
918 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
919 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
920 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
921 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
922 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
923 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
924 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
925 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
926 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
927 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
928 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
929 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
930 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
931 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
932 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
933 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
934 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
935 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
936 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
937 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
938 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
939 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
940 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
941 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
942 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
943 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
944 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
945 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
946 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
947 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
948 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
949 | {R_CODE_ONE_SYMBOL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_ONE_SYMBOL"}, | |
950 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
951 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
952 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
953 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
954 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
955 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
956 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
957 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
958 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
959 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
960 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
961 | {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"}, | |
962 | {R_MILLI_REL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_MILLI_REL"}, | |
963 | {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"}, | |
964 | {R_CODE_PLABEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_PLABEL"}, | |
965 | {R_BREAKPOINT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BREAKPOINT"}, | |
966 | {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"}, | |
967 | {R_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ENTRY"}, | |
968 | {R_ALT_ENTRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_ALT_ENTRY"}, | |
969 | {R_EXIT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_EXIT"}, | |
970 | {R_BEGIN_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_TRY"}, | |
971 | {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"}, | |
972 | {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"}, | |
973 | {R_END_TRY, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_TRY"}, | |
974 | {R_BEGIN_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_BEGIN_BRTAB"}, | |
975 | {R_END_BRTAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_END_BRTAB"}, | |
976 | {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, | |
977 | {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, | |
978 | {R_STATEMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_STATEMENT"}, | |
979 | {R_DATA_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_EXPR"}, | |
980 | {R_CODE_EXPR, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_CODE_EXPR"}, | |
981 | {R_FSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_FSEL"}, | |
982 | {R_LSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LSEL"}, | |
983 | {R_RSEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RSEL"}, | |
984 | {R_N_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N_MODE"}, | |
985 | {R_S_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_S_MODE"}, | |
986 | {R_D_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_D_MODE"}, | |
987 | {R_R_MODE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_R_MODE"}, | |
988 | {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, | |
989 | {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, | |
990 | {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, | |
991 | {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, | |
992 | {R_DATA_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_DATA_OVERRIDE"}, | |
993 | {R_TRANSLATED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_TRANSLATED"}, | |
994 | {R_AUX_UNWIND, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_AUX_UNWIND"}, | |
995 | {R_COMP1, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP1"}, | |
996 | {R_COMP2, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP2"}, | |
997 | {R_COMP3, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMP3"}, | |
998 | {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, | |
999 | {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, | |
1000 | {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, | |
1001 | {R_PREV_FIXUP, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_PREV_FIXUP"}, | |
1002 | {R_SEC_STMT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_SEC_STMT"}, | |
1003 | {R_N0SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N0SEL"}, | |
1004 | {R_N1SEL, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_N1SEL"}, | |
1005 | {R_LINETAB, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB"}, | |
1006 | {R_LINETAB_ESC, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LINETAB_ESC"}, | |
1007 | {R_LTP_OVERRIDE, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_LTP_OVERRIDE"}, | |
1008 | {R_COMMENT, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_COMMENT"}, | |
1009 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1010 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1011 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1012 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1013 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1014 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1015 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1016 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1017 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1018 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1019 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1020 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1021 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1022 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1023 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1024 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1025 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1026 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1027 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1028 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1029 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1030 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1031 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1032 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1033 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1034 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1035 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1036 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1037 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1038 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1039 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1040 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1041 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}, | |
1042 | {R_RESERVED, 0, 0, 32, false, 0, 0, hppa_som_reloc, "R_RESERVED"}}; | |
1043 | ||
1044 | /* Initialize the SOM relocation queue. By definition the queue holds | |
1045 | the last four multibyte fixups. */ | |
1046 | ||
1047 | static void | |
1048 | som_initialize_reloc_queue (queue) | |
1049 | struct reloc_queue *queue; | |
1050 | { | |
1051 | queue[0].reloc = NULL; | |
1052 | queue[0].size = 0; | |
1053 | queue[1].reloc = NULL; | |
1054 | queue[1].size = 0; | |
1055 | queue[2].reloc = NULL; | |
1056 | queue[2].size = 0; | |
1057 | queue[3].reloc = NULL; | |
1058 | queue[3].size = 0; | |
1059 | } | |
1060 | ||
1061 | /* Insert a new relocation into the relocation queue. */ | |
1062 | ||
1063 | static void | |
1064 | som_reloc_queue_insert (p, size, queue) | |
1065 | unsigned char *p; | |
1066 | unsigned int size; | |
1067 | struct reloc_queue *queue; | |
1068 | { | |
1069 | queue[3].reloc = queue[2].reloc; | |
1070 | queue[3].size = queue[2].size; | |
1071 | queue[2].reloc = queue[1].reloc; | |
1072 | queue[2].size = queue[1].size; | |
1073 | queue[1].reloc = queue[0].reloc; | |
1074 | queue[1].size = queue[0].size; | |
1075 | queue[0].reloc = p; | |
1076 | queue[0].size = size; | |
1077 | } | |
1078 | ||
1079 | /* When an entry in the relocation queue is reused, the entry moves | |
1080 | to the front of the queue. */ | |
1081 | ||
1082 | static void | |
1083 | som_reloc_queue_fix (queue, index) | |
1084 | struct reloc_queue *queue; | |
1085 | unsigned int index; | |
1086 | { | |
1087 | if (index == 0) | |
1088 | return; | |
1089 | ||
1090 | if (index == 1) | |
1091 | { | |
1092 | unsigned char *tmp1 = queue[0].reloc; | |
1093 | unsigned int tmp2 = queue[0].size; | |
1094 | queue[0].reloc = queue[1].reloc; | |
1095 | queue[0].size = queue[1].size; | |
1096 | queue[1].reloc = tmp1; | |
1097 | queue[1].size = tmp2; | |
1098 | return; | |
1099 | } | |
1100 | ||
1101 | if (index == 2) | |
1102 | { | |
1103 | unsigned char *tmp1 = queue[0].reloc; | |
1104 | unsigned int tmp2 = queue[0].size; | |
1105 | queue[0].reloc = queue[2].reloc; | |
1106 | queue[0].size = queue[2].size; | |
1107 | queue[2].reloc = queue[1].reloc; | |
1108 | queue[2].size = queue[1].size; | |
1109 | queue[1].reloc = tmp1; | |
1110 | queue[1].size = tmp2; | |
1111 | return; | |
1112 | } | |
1113 | ||
1114 | if (index == 3) | |
1115 | { | |
1116 | unsigned char *tmp1 = queue[0].reloc; | |
1117 | unsigned int tmp2 = queue[0].size; | |
1118 | queue[0].reloc = queue[3].reloc; | |
1119 | queue[0].size = queue[3].size; | |
1120 | queue[3].reloc = queue[2].reloc; | |
1121 | queue[3].size = queue[2].size; | |
1122 | queue[2].reloc = queue[1].reloc; | |
1123 | queue[2].size = queue[1].size; | |
1124 | queue[1].reloc = tmp1; | |
1125 | queue[1].size = tmp2; | |
1126 | return; | |
1127 | } | |
1128 | abort(); | |
1129 | } | |
1130 | ||
1131 | /* Search for a particular relocation in the relocation queue. */ | |
1132 | ||
1133 | static int | |
1134 | som_reloc_queue_find (p, size, queue) | |
1135 | unsigned char *p; | |
1136 | unsigned int size; | |
1137 | struct reloc_queue *queue; | |
1138 | { | |
1139 | if (queue[0].reloc && !memcmp (p, queue[0].reloc, size) | |
1140 | && size == queue[0].size) | |
1141 | return 0; | |
1142 | if (queue[1].reloc && !memcmp (p, queue[1].reloc, size) | |
1143 | && size == queue[1].size) | |
1144 | return 1; | |
1145 | if (queue[2].reloc && !memcmp (p, queue[2].reloc, size) | |
1146 | && size == queue[2].size) | |
1147 | return 2; | |
1148 | if (queue[3].reloc && !memcmp (p, queue[3].reloc, size) | |
1149 | && size == queue[3].size) | |
1150 | return 3; | |
1151 | return -1; | |
1152 | } | |
1153 | ||
1154 | static unsigned char * | |
1155 | try_prev_fixup (abfd, subspace_reloc_sizep, p, size, queue) | |
1156 | bfd *abfd; | |
1157 | int *subspace_reloc_sizep; | |
1158 | unsigned char *p; | |
1159 | unsigned int size; | |
1160 | struct reloc_queue *queue; | |
1161 | { | |
1162 | int queue_index = som_reloc_queue_find (p, size, queue); | |
1163 | ||
1164 | if (queue_index != -1) | |
1165 | { | |
1166 | /* Found this in a previous fixup. Undo the fixup we | |
1167 | just built and use R_PREV_FIXUP instead. We saved | |
1168 | a total of size - 1 bytes in the fixup stream. */ | |
1169 | bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p); | |
1170 | p += 1; | |
1171 | *subspace_reloc_sizep += 1; | |
1172 | som_reloc_queue_fix (queue, queue_index); | |
1173 | } | |
1174 | else | |
1175 | { | |
1176 | som_reloc_queue_insert (p, size, queue); | |
1177 | *subspace_reloc_sizep += size; | |
1178 | p += size; | |
1179 | } | |
1180 | return p; | |
1181 | } | |
1182 | ||
1183 | /* Emit the proper R_NO_RELOCATION fixups to map the next SKIP | |
1184 | bytes without any relocation. Update the size of the subspace | |
1185 | relocation stream via SUBSPACE_RELOC_SIZE_P; also return the | |
1186 | current pointer into the relocation stream. */ | |
1187 | ||
1188 | static unsigned char * | |
1189 | som_reloc_skip (abfd, skip, p, subspace_reloc_sizep, queue) | |
1190 | bfd *abfd; | |
1191 | unsigned int skip; | |
1192 | unsigned char *p; | |
1193 | unsigned int *subspace_reloc_sizep; | |
1194 | struct reloc_queue *queue; | |
1195 | { | |
1196 | /* Use a 4 byte R_NO_RELOCATION entry with a maximal value | |
1197 | then R_PREV_FIXUPs to get the difference down to a | |
1198 | reasonable size. */ | |
1199 | if (skip >= 0x1000000) | |
1200 | { | |
1201 | skip -= 0x1000000; | |
1202 | bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); | |
1203 | bfd_put_8 (abfd, 0xff, p + 1); | |
1204 | bfd_put_16 (abfd, 0xffff, p + 2); | |
1205 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); | |
1206 | while (skip >= 0x1000000) | |
1207 | { | |
1208 | skip -= 0x1000000; | |
1209 | bfd_put_8 (abfd, R_PREV_FIXUP, p); | |
1210 | p++; | |
1211 | *subspace_reloc_sizep += 1; | |
1212 | /* No need to adjust queue here since we are repeating the | |
1213 | most recent fixup. */ | |
1214 | } | |
1215 | } | |
1216 | ||
1217 | /* The difference must be less than 0x1000000. Use one | |
1218 | more R_NO_RELOCATION entry to get to the right difference. */ | |
1219 | if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0) | |
1220 | { | |
1221 | /* Difference can be handled in a simple single-byte | |
1222 | R_NO_RELOCATION entry. */ | |
1223 | if (skip <= 0x60) | |
1224 | { | |
1225 | bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p); | |
1226 | *subspace_reloc_sizep += 1; | |
1227 | p++; | |
1228 | } | |
1229 | /* Handle it with a two byte R_NO_RELOCATION entry. */ | |
1230 | else if (skip <= 0x1000) | |
1231 | { | |
1232 | bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p); | |
1233 | bfd_put_8 (abfd, (skip >> 2) - 1, p + 1); | |
1234 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); | |
1235 | } | |
1236 | /* Handle it with a three byte R_NO_RELOCATION entry. */ | |
1237 | else | |
1238 | { | |
1239 | bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p); | |
1240 | bfd_put_16 (abfd, (skip >> 2) - 1, p + 1); | |
1241 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); | |
1242 | } | |
1243 | } | |
1244 | /* Ugh. Punt and use a 4 byte entry. */ | |
1245 | else if (skip > 0) | |
1246 | { | |
1247 | bfd_put_8 (abfd, R_NO_RELOCATION + 31, p); | |
1248 | bfd_put_8 (abfd, (skip - 1) >> 16, p + 1); | |
1249 | bfd_put_16 (abfd, skip - 1, p + 2); | |
1250 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); | |
1251 | } | |
1252 | return p; | |
1253 | } | |
1254 | ||
1255 | /* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend | |
1256 | from a BFD relocation. Update the size of the subspace relocation | |
1257 | stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer | |
1258 | into the relocation stream. */ | |
1259 | ||
1260 | static unsigned char * | |
1261 | som_reloc_addend (abfd, addend, p, subspace_reloc_sizep, queue) | |
1262 | bfd *abfd; | |
1263 | int addend; | |
1264 | unsigned char *p; | |
1265 | unsigned int *subspace_reloc_sizep; | |
1266 | struct reloc_queue *queue; | |
1267 | { | |
1268 | if ((unsigned)(addend) + 0x80 < 0x100) | |
1269 | { | |
1270 | bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p); | |
1271 | bfd_put_8 (abfd, addend, p + 1); | |
1272 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); | |
1273 | } | |
1274 | else if ((unsigned) (addend) + 0x8000 < 0x10000) | |
1275 | { | |
1276 | bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p); | |
1277 | bfd_put_16 (abfd, addend, p + 1); | |
1278 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); | |
1279 | } | |
1280 | else if ((unsigned) (addend) + 0x800000 < 0x1000000) | |
1281 | { | |
1282 | bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p); | |
1283 | bfd_put_8 (abfd, addend >> 16, p + 1); | |
1284 | bfd_put_16 (abfd, addend, p + 2); | |
1285 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue); | |
1286 | } | |
1287 | else | |
1288 | { | |
1289 | bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p); | |
1290 | bfd_put_32 (abfd, addend, p + 1); | |
1291 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); | |
1292 | } | |
1293 | return p; | |
1294 | } | |
1295 | ||
1296 | /* Handle a single function call relocation. */ | |
1297 | ||
1298 | static unsigned char * | |
1299 | som_reloc_call (abfd, p, subspace_reloc_sizep, bfd_reloc, sym_num, queue) | |
1300 | bfd *abfd; | |
1301 | unsigned char *p; | |
1302 | unsigned int *subspace_reloc_sizep; | |
1303 | arelent *bfd_reloc; | |
1304 | int sym_num; | |
1305 | struct reloc_queue *queue; | |
1306 | { | |
1307 | int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend); | |
1308 | int rtn_bits = arg_bits & 0x3; | |
1309 | int type, done = 0; | |
1310 | ||
1311 | /* You'll never believe all this is necessary to handle relocations | |
1312 | for function calls. Having to compute and pack the argument | |
1313 | relocation bits is the real nightmare. | |
1314 | ||
1315 | If you're interested in how this works, just forget it. You really | |
1316 | do not want to know about this braindamage. */ | |
1317 | ||
1318 | /* First see if this can be done with a "simple" relocation. Simple | |
1319 | relocations have a symbol number < 0x100 and have simple encodings | |
1320 | of argument relocations. */ | |
1321 | ||
1322 | if (sym_num < 0x100) | |
1323 | { | |
1324 | switch (arg_bits) | |
1325 | { | |
1326 | case 0: | |
1327 | case 1: | |
1328 | type = 0; | |
1329 | break; | |
1330 | case 1 << 8: | |
1331 | case 1 << 8 | 1: | |
1332 | type = 1; | |
1333 | break; | |
1334 | case 1 << 8 | 1 << 6: | |
1335 | case 1 << 8 | 1 << 6 | 1: | |
1336 | type = 2; | |
1337 | break; | |
1338 | case 1 << 8 | 1 << 6 | 1 << 4: | |
1339 | case 1 << 8 | 1 << 6 | 1 << 4 | 1: | |
1340 | type = 3; | |
1341 | break; | |
1342 | case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2: | |
1343 | case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1: | |
1344 | type = 4; | |
1345 | break; | |
1346 | default: | |
1347 | /* Not one of the easy encodings. This will have to be | |
1348 | handled by the more complex code below. */ | |
1349 | type = -1; | |
1350 | break; | |
1351 | } | |
1352 | if (type != -1) | |
1353 | { | |
1354 | /* Account for the return value too. */ | |
1355 | if (rtn_bits) | |
1356 | type += 5; | |
1357 | ||
1358 | /* Emit a 2 byte relocation. Then see if it can be handled | |
1359 | with a relocation which is already in the relocation queue. */ | |
1360 | bfd_put_8 (abfd, bfd_reloc->howto->type + type, p); | |
1361 | bfd_put_8 (abfd, sym_num, p + 1); | |
1362 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue); | |
1363 | done = 1; | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | /* If this could not be handled with a simple relocation, then do a hard | |
1368 | one. Hard relocations occur if the symbol number was too high or if | |
1369 | the encoding of argument relocation bits is too complex. */ | |
1370 | if (! done) | |
1371 | { | |
1372 | /* Don't ask about these magic sequences. I took them straight | |
1373 | from gas-1.36 which took them from the a.out man page. */ | |
1374 | type = rtn_bits; | |
1375 | if ((arg_bits >> 6 & 0xf) == 0xe) | |
1376 | type += 9 * 40; | |
1377 | else | |
1378 | type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40; | |
1379 | if ((arg_bits >> 2 & 0xf) == 0xe) | |
1380 | type += 9 * 4; | |
1381 | else | |
1382 | type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4; | |
1383 | ||
1384 | /* Output the first two bytes of the relocation. These describe | |
1385 | the length of the relocation and encoding style. */ | |
1386 | bfd_put_8 (abfd, bfd_reloc->howto->type + 10 | |
1387 | + 2 * (sym_num >= 0x100) + (type >= 0x100), | |
1388 | p); | |
1389 | bfd_put_8 (abfd, type, p + 1); | |
1390 | ||
1391 | /* Now output the symbol index and see if this bizarre relocation | |
1392 | just happened to be in the relocation queue. */ | |
1393 | if (sym_num < 0x100) | |
1394 | { | |
1395 | bfd_put_8 (abfd, sym_num, p + 2); | |
1396 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue); | |
1397 | } | |
1398 | else | |
1399 | { | |
1400 | bfd_put_8 (abfd, sym_num >> 16, p + 2); | |
1401 | bfd_put_16 (abfd, sym_num, p + 3); | |
1402 | p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue); | |
1403 | } | |
1404 | } | |
1405 | return p; | |
1406 | } | |
1407 | ||
1408 | ||
1409 | /* Return the logarithm of X, base 2, considering X unsigned. | |
1410 | Abort -1 if X is not a power or two or is zero. */ | |
1411 | ||
1412 | static int | |
1413 | log2 (x) | |
1414 | unsigned int x; | |
1415 | { | |
1416 | int log = 0; | |
1417 | ||
1418 | /* Test for 0 or a power of 2. */ | |
1419 | if (x == 0 || x != (x & -x)) | |
1420 | return -1; | |
1421 | ||
1422 | while ((x >>= 1) != 0) | |
1423 | log++; | |
1424 | return log; | |
1425 | } | |
1426 | ||
1427 | static bfd_reloc_status_type | |
1428 | hppa_som_reloc (abfd, reloc_entry, symbol_in, data, | |
1429 | input_section, output_bfd, error_message) | |
1430 | bfd *abfd; | |
1431 | arelent *reloc_entry; | |
1432 | asymbol *symbol_in; | |
1433 | PTR data; | |
1434 | asection *input_section; | |
1435 | bfd *output_bfd; | |
1436 | char **error_message; | |
1437 | { | |
1438 | if (output_bfd) | |
1439 | { | |
1440 | reloc_entry->address += input_section->output_offset; | |
1441 | return bfd_reloc_ok; | |
1442 | } | |
1443 | return bfd_reloc_ok; | |
1444 | } | |
1445 | ||
1446 | /* Given a generic HPPA relocation type, the instruction format, | |
1447 | and a field selector, return one or more appropriate SOM relocations. */ | |
1448 | ||
1449 | int ** | |
1450 | hppa_som_gen_reloc_type (abfd, base_type, format, field, sym_diff, sym) | |
1451 | bfd *abfd; | |
1452 | int base_type; | |
1453 | int format; | |
1454 | enum hppa_reloc_field_selector_type_alt field; | |
1455 | int sym_diff; | |
1456 | asymbol *sym; | |
1457 | { | |
1458 | int *final_type, **final_types; | |
1459 | ||
1460 | final_types = (int **) bfd_alloc (abfd, sizeof (int *) * 6); | |
1461 | final_type = (int *) bfd_alloc (abfd, sizeof (int)); | |
1462 | if (!final_types || !final_type) | |
1463 | return NULL; | |
1464 | ||
1465 | /* The field selector may require additional relocations to be | |
1466 | generated. It's impossible to know at this moment if additional | |
1467 | relocations will be needed, so we make them. The code to actually | |
1468 | write the relocation/fixup stream is responsible for removing | |
1469 | any redundant relocations. */ | |
1470 | switch (field) | |
1471 | { | |
1472 | case e_fsel: | |
1473 | case e_psel: | |
1474 | case e_lpsel: | |
1475 | case e_rpsel: | |
1476 | final_types[0] = final_type; | |
1477 | final_types[1] = NULL; | |
1478 | final_types[2] = NULL; | |
1479 | *final_type = base_type; | |
1480 | break; | |
1481 | ||
1482 | case e_tsel: | |
1483 | case e_ltsel: | |
1484 | case e_rtsel: | |
1485 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1486 | if (!final_types[0]) | |
1487 | return NULL; | |
1488 | if (field == e_tsel) | |
1489 | *final_types[0] = R_FSEL; | |
1490 | else if (field == e_ltsel) | |
1491 | *final_types[0] = R_LSEL; | |
1492 | else | |
1493 | *final_types[0] = R_RSEL; | |
1494 | final_types[1] = final_type; | |
1495 | final_types[2] = NULL; | |
1496 | *final_type = base_type; | |
1497 | break; | |
1498 | ||
1499 | case e_lssel: | |
1500 | case e_rssel: | |
1501 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1502 | if (!final_types[0]) | |
1503 | return NULL; | |
1504 | *final_types[0] = R_S_MODE; | |
1505 | final_types[1] = final_type; | |
1506 | final_types[2] = NULL; | |
1507 | *final_type = base_type; | |
1508 | break; | |
1509 | ||
1510 | case e_lsel: | |
1511 | case e_rsel: | |
1512 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1513 | if (!final_types[0]) | |
1514 | return NULL; | |
1515 | *final_types[0] = R_N_MODE; | |
1516 | final_types[1] = final_type; | |
1517 | final_types[2] = NULL; | |
1518 | *final_type = base_type; | |
1519 | break; | |
1520 | ||
1521 | case e_ldsel: | |
1522 | case e_rdsel: | |
1523 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1524 | if (!final_types[0]) | |
1525 | return NULL; | |
1526 | *final_types[0] = R_D_MODE; | |
1527 | final_types[1] = final_type; | |
1528 | final_types[2] = NULL; | |
1529 | *final_type = base_type; | |
1530 | break; | |
1531 | ||
1532 | case e_lrsel: | |
1533 | case e_rrsel: | |
1534 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1535 | if (!final_types[0]) | |
1536 | return NULL; | |
1537 | *final_types[0] = R_R_MODE; | |
1538 | final_types[1] = final_type; | |
1539 | final_types[2] = NULL; | |
1540 | *final_type = base_type; | |
1541 | break; | |
1542 | ||
1543 | case e_nsel: | |
1544 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1545 | if (!final_types[0]) | |
1546 | return NULL; | |
1547 | *final_types[0] = R_N1SEL; | |
1548 | final_types[1] = final_type; | |
1549 | final_types[2] = NULL; | |
1550 | *final_type = base_type; | |
1551 | break; | |
1552 | ||
1553 | case e_nlsel: | |
1554 | case e_nlrsel: | |
1555 | final_types[0] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1556 | if (!final_types[0]) | |
1557 | return NULL; | |
1558 | *final_types[0] = R_N0SEL; | |
1559 | final_types[1] = (int *) bfd_alloc (abfd, sizeof (int)); | |
1560 | if (!final_types[1]) | |
1561 | return NULL; | |
1562 | if (field == e_nlsel) | |
1563 | *final_types[1] = R_N_MODE; | |
1564 | else | |
1565 | *final_types[1] = R_R_MODE; | |
1566 | final_types[2] = final_type; | |
1567 | final_types[3] = NULL; | |
1568 | *final_type = base_type; | |
1569 | break; | |
1570 | } | |
1571 | ||
1572 | switch (base_type) | |
1573 | { | |
1574 | case R_HPPA: | |
1575 | /* The difference of two symbols needs *very* special handling. */ | |
1576 | if (sym_diff) | |
1577 | { | |
1578 | final_types[0] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1579 | final_types[1] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1580 | final_types[2] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1581 | final_types[3] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1582 | if (!final_types[0] || !final_types[1] || !final_types[2]) | |
1583 | return NULL; | |
1584 | if (field == e_fsel) | |
1585 | *final_types[0] = R_FSEL; | |
1586 | else if (field == e_rsel) | |
1587 | *final_types[0] = R_RSEL; | |
1588 | else if (field == e_lsel) | |
1589 | *final_types[0] = R_LSEL; | |
1590 | *final_types[1] = R_COMP2; | |
1591 | *final_types[2] = R_COMP2; | |
1592 | *final_types[3] = R_COMP1; | |
1593 | final_types[4] = final_type; | |
1594 | if (format == 32) | |
1595 | *final_types[4] = R_DATA_EXPR; | |
1596 | else | |
1597 | *final_types[4] = R_CODE_EXPR; | |
1598 | final_types[5] = NULL; | |
1599 | break; | |
1600 | } | |
1601 | /* PLABELs get their own relocation type. */ | |
1602 | else if (field == e_psel | |
1603 | || field == e_lpsel | |
1604 | || field == e_rpsel) | |
1605 | { | |
1606 | /* A PLABEL relocation that has a size of 32 bits must | |
1607 | be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */ | |
1608 | if (format == 32) | |
1609 | *final_type = R_DATA_PLABEL; | |
1610 | else | |
1611 | *final_type = R_CODE_PLABEL; | |
1612 | } | |
1613 | /* PIC stuff. */ | |
1614 | else if (field == e_tsel | |
1615 | || field == e_ltsel | |
1616 | || field == e_rtsel) | |
1617 | *final_type = R_DLT_REL; | |
1618 | /* A relocation in the data space is always a full 32bits. */ | |
1619 | else if (format == 32) | |
1620 | { | |
1621 | *final_type = R_DATA_ONE_SYMBOL; | |
1622 | ||
1623 | /* If there's no SOM symbol type associated with this BFD | |
1624 | symbol, then set the symbol type to ST_DATA. | |
1625 | ||
1626 | Only do this if the type is going to default later when | |
1627 | we write the object file. | |
1628 | ||
1629 | This is done so that the linker never encounters an | |
1630 | R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol. | |
1631 | ||
1632 | This allows the compiler to generate exception handling | |
1633 | tables. | |
1634 | ||
1635 | Note that one day we may need to also emit BEGIN_BRTAB and | |
1636 | END_BRTAB to prevent the linker from optimizing away insns | |
1637 | in exception handling regions. */ | |
1638 | if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN | |
1639 | && (sym->flags & BSF_SECTION_SYM) == 0 | |
1640 | && (sym->flags & BSF_FUNCTION) == 0 | |
1641 | && ! bfd_is_com_section (sym->section)) | |
1642 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; | |
1643 | } | |
1644 | break; | |
1645 | ||
1646 | ||
1647 | case R_HPPA_GOTOFF: | |
1648 | /* More PLABEL special cases. */ | |
1649 | if (field == e_psel | |
1650 | || field == e_lpsel | |
1651 | || field == e_rpsel) | |
1652 | *final_type = R_DATA_PLABEL; | |
1653 | break; | |
1654 | ||
1655 | case R_HPPA_COMPLEX: | |
1656 | /* The difference of two symbols needs *very* special handling. */ | |
1657 | if (sym_diff) | |
1658 | { | |
1659 | final_types[0] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1660 | final_types[1] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1661 | final_types[2] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1662 | final_types[3] = (int *)bfd_alloc (abfd, sizeof (int)); | |
1663 | if (!final_types[0] || !final_types[1] || !final_types[2]) | |
1664 | return NULL; | |
1665 | if (field == e_fsel) | |
1666 | *final_types[0] = R_FSEL; | |
1667 | else if (field == e_rsel) | |
1668 | *final_types[0] = R_RSEL; | |
1669 | else if (field == e_lsel) | |
1670 | *final_types[0] = R_LSEL; | |
1671 | *final_types[1] = R_COMP2; | |
1672 | *final_types[2] = R_COMP2; | |
1673 | *final_types[3] = R_COMP1; | |
1674 | final_types[4] = final_type; | |
1675 | if (format == 32) | |
1676 | *final_types[4] = R_DATA_EXPR; | |
1677 | else | |
1678 | *final_types[4] = R_CODE_EXPR; | |
1679 | final_types[5] = NULL; | |
1680 | break; | |
1681 | } | |
1682 | else | |
1683 | break; | |
1684 | ||
1685 | case R_HPPA_NONE: | |
1686 | case R_HPPA_ABS_CALL: | |
1687 | case R_HPPA_PCREL_CALL: | |
1688 | /* Right now we can default all these. */ | |
1689 | break; | |
1690 | } | |
1691 | return final_types; | |
1692 | } | |
1693 | ||
1694 | /* Return the address of the correct entry in the PA SOM relocation | |
1695 | howto table. */ | |
1696 | ||
1697 | /*ARGSUSED*/ | |
1698 | static reloc_howto_type * | |
1699 | som_bfd_reloc_type_lookup (abfd, code) | |
1700 | bfd *abfd; | |
1701 | bfd_reloc_code_real_type code; | |
1702 | { | |
1703 | if ((int) code < (int) R_NO_RELOCATION + 255) | |
1704 | { | |
1705 | BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code); | |
1706 | return &som_hppa_howto_table[(int) code]; | |
1707 | } | |
1708 | ||
1709 | return (reloc_howto_type *) 0; | |
1710 | } | |
1711 | ||
1712 | /* Perform some initialization for an object. Save results of this | |
1713 | initialization in the BFD. */ | |
1714 | ||
1715 | static const bfd_target * | |
1716 | som_object_setup (abfd, file_hdrp, aux_hdrp, current_offset) | |
1717 | bfd *abfd; | |
1718 | struct header *file_hdrp; | |
1719 | struct som_exec_auxhdr *aux_hdrp; | |
1720 | unsigned long current_offset; | |
1721 | { | |
1722 | asection *section; | |
1723 | int found; | |
1724 | ||
1725 | /* som_mkobject will set bfd_error if som_mkobject fails. */ | |
1726 | if (som_mkobject (abfd) != true) | |
1727 | return 0; | |
1728 | ||
1729 | /* Set BFD flags based on what information is available in the SOM. */ | |
1730 | abfd->flags = BFD_NO_FLAGS; | |
1731 | if (file_hdrp->symbol_total) | |
1732 | abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS; | |
1733 | ||
1734 | switch (file_hdrp->a_magic) | |
1735 | { | |
1736 | case DEMAND_MAGIC: | |
1737 | abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P); | |
1738 | break; | |
1739 | case SHARE_MAGIC: | |
1740 | abfd->flags |= (WP_TEXT | EXEC_P); | |
1741 | break; | |
1742 | case EXEC_MAGIC: | |
1743 | abfd->flags |= (EXEC_P); | |
1744 | break; | |
1745 | case RELOC_MAGIC: | |
1746 | abfd->flags |= HAS_RELOC; | |
1747 | break; | |
1748 | #ifdef SHL_MAGIC | |
1749 | case SHL_MAGIC: | |
1750 | #endif | |
1751 | #ifdef DL_MAGIC | |
1752 | case DL_MAGIC: | |
1753 | #endif | |
1754 | abfd->flags |= DYNAMIC; | |
1755 | break; | |
1756 | ||
1757 | default: | |
1758 | break; | |
1759 | } | |
1760 | ||
1761 | /* Allocate space to hold the saved exec header information. */ | |
1762 | obj_som_exec_data (abfd) = (struct som_exec_data *) | |
1763 | bfd_zalloc (abfd, sizeof (struct som_exec_data )); | |
1764 | if (obj_som_exec_data (abfd) == NULL) | |
1765 | return NULL; | |
1766 | ||
1767 | /* The braindamaged OSF1 linker switched exec_flags and exec_entry! | |
1768 | ||
1769 | We used to identify OSF1 binaries based on NEW_VERSION_ID, but | |
1770 | apparently the latest HPUX linker is using NEW_VERSION_ID now. | |
1771 | ||
1772 | It's about time, OSF has used the new id since at least 1992; | |
1773 | HPUX didn't start till nearly 1995!. | |
1774 | ||
1775 | The new approach examines the entry field. If it's zero or not 4 | |
1776 | byte aligned then it's not a proper code address and we guess it's | |
1777 | really the executable flags. */ | |
1778 | found = 0; | |
1779 | for (section = abfd->sections; section; section = section->next) | |
1780 | { | |
1781 | if ((section->flags & SEC_CODE) == 0) | |
1782 | continue; | |
1783 | if (aux_hdrp->exec_entry >= section->vma | |
1784 | && aux_hdrp->exec_entry < section->vma + section->_cooked_size) | |
1785 | found = 1; | |
1786 | } | |
1787 | if (aux_hdrp->exec_entry == 0 | |
1788 | || (aux_hdrp->exec_entry & 0x3) != 0 | |
1789 | || ! found) | |
1790 | { | |
1791 | bfd_get_start_address (abfd) = aux_hdrp->exec_flags; | |
1792 | obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry; | |
1793 | } | |
1794 | else | |
1795 | { | |
1796 | bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset; | |
1797 | obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags; | |
1798 | } | |
1799 | ||
1800 | bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10); | |
1801 | bfd_get_symcount (abfd) = file_hdrp->symbol_total; | |
1802 | ||
1803 | /* Initialize the saved symbol table and string table to NULL. | |
1804 | Save important offsets and sizes from the SOM header into | |
1805 | the BFD. */ | |
1806 | obj_som_stringtab (abfd) = (char *) NULL; | |
1807 | obj_som_symtab (abfd) = (som_symbol_type *) NULL; | |
1808 | obj_som_sorted_syms (abfd) = NULL; | |
1809 | obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size; | |
1810 | obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset; | |
1811 | obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location | |
1812 | + current_offset); | |
1813 | obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location | |
1814 | + current_offset); | |
1815 | obj_som_exec_data (abfd)->system_id = file_hdrp->system_id; | |
1816 | ||
1817 | return abfd->xvec; | |
1818 | } | |
1819 | ||
1820 | /* Convert all of the space and subspace info into BFD sections. Each space | |
1821 | contains a number of subspaces, which in turn describe the mapping between | |
1822 | regions of the exec file, and the address space that the program runs in. | |
1823 | BFD sections which correspond to spaces will overlap the sections for the | |
1824 | associated subspaces. */ | |
1825 | ||
1826 | static boolean | |
1827 | setup_sections (abfd, file_hdr, current_offset) | |
1828 | bfd *abfd; | |
1829 | struct header *file_hdr; | |
1830 | unsigned long current_offset; | |
1831 | { | |
1832 | char *space_strings; | |
1833 | unsigned int space_index, i; | |
1834 | unsigned int total_subspaces = 0; | |
1835 | asection **subspace_sections, *section; | |
1836 | ||
1837 | /* First, read in space names */ | |
1838 | ||
1839 | space_strings = bfd_malloc (file_hdr->space_strings_size); | |
1840 | if (!space_strings && file_hdr->space_strings_size != 0) | |
1841 | goto error_return; | |
1842 | ||
1843 | if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location, | |
1844 | SEEK_SET) < 0) | |
1845 | goto error_return; | |
1846 | if (bfd_read (space_strings, 1, file_hdr->space_strings_size, abfd) | |
1847 | != file_hdr->space_strings_size) | |
1848 | goto error_return; | |
1849 | ||
1850 | /* Loop over all of the space dictionaries, building up sections */ | |
1851 | for (space_index = 0; space_index < file_hdr->space_total; space_index++) | |
1852 | { | |
1853 | struct space_dictionary_record space; | |
1854 | struct subspace_dictionary_record subspace, save_subspace; | |
1855 | int subspace_index; | |
1856 | asection *space_asect; | |
1857 | char *newname; | |
1858 | ||
1859 | /* Read the space dictionary element */ | |
1860 | if (bfd_seek (abfd, | |
1861 | (current_offset + file_hdr->space_location | |
1862 | + space_index * sizeof space), | |
1863 | SEEK_SET) < 0) | |
1864 | goto error_return; | |
1865 | if (bfd_read (&space, 1, sizeof space, abfd) != sizeof space) | |
1866 | goto error_return; | |
1867 | ||
1868 | /* Setup the space name string */ | |
1869 | space.name.n_name = space.name.n_strx + space_strings; | |
1870 | ||
1871 | /* Make a section out of it */ | |
1872 | newname = bfd_alloc (abfd, strlen (space.name.n_name) + 1); | |
1873 | if (!newname) | |
1874 | goto error_return; | |
1875 | strcpy (newname, space.name.n_name); | |
1876 | ||
1877 | space_asect = bfd_make_section_anyway (abfd, newname); | |
1878 | if (!space_asect) | |
1879 | goto error_return; | |
1880 | ||
1881 | if (space.is_loadable == 0) | |
1882 | space_asect->flags |= SEC_DEBUGGING; | |
1883 | ||
1884 | /* Set up all the attributes for the space. */ | |
1885 | if (bfd_som_set_section_attributes (space_asect, space.is_defined, | |
1886 | space.is_private, space.sort_key, | |
1887 | space.space_number) == false) | |
1888 | goto error_return; | |
1889 | ||
1890 | /* If the space has no subspaces, then we're done. */ | |
1891 | if (space.subspace_quantity == 0) | |
1892 | continue; | |
1893 | ||
1894 | /* Now, read in the first subspace for this space */ | |
1895 | if (bfd_seek (abfd, | |
1896 | (current_offset + file_hdr->subspace_location | |
1897 | + space.subspace_index * sizeof subspace), | |
1898 | SEEK_SET) < 0) | |
1899 | goto error_return; | |
1900 | if (bfd_read (&subspace, 1, sizeof subspace, abfd) != sizeof subspace) | |
1901 | goto error_return; | |
1902 | /* Seek back to the start of the subspaces for loop below */ | |
1903 | if (bfd_seek (abfd, | |
1904 | (current_offset + file_hdr->subspace_location | |
1905 | + space.subspace_index * sizeof subspace), | |
1906 | SEEK_SET) < 0) | |
1907 | goto error_return; | |
1908 | ||
1909 | /* Setup the start address and file loc from the first subspace record */ | |
1910 | space_asect->vma = subspace.subspace_start; | |
1911 | space_asect->filepos = subspace.file_loc_init_value + current_offset; | |
1912 | space_asect->alignment_power = log2 (subspace.alignment); | |
1913 | if (space_asect->alignment_power == -1) | |
1914 | goto error_return; | |
1915 | ||
1916 | /* Initialize save_subspace so we can reliably determine if this | |
1917 | loop placed any useful values into it. */ | |
1918 | memset (&save_subspace, 0, sizeof (struct subspace_dictionary_record)); | |
1919 | ||
1920 | /* Loop over the rest of the subspaces, building up more sections */ | |
1921 | for (subspace_index = 0; subspace_index < space.subspace_quantity; | |
1922 | subspace_index++) | |
1923 | { | |
1924 | asection *subspace_asect; | |
1925 | ||
1926 | /* Read in the next subspace */ | |
1927 | if (bfd_read (&subspace, 1, sizeof subspace, abfd) | |
1928 | != sizeof subspace) | |
1929 | goto error_return; | |
1930 | ||
1931 | /* Setup the subspace name string */ | |
1932 | subspace.name.n_name = subspace.name.n_strx + space_strings; | |
1933 | ||
1934 | newname = bfd_alloc (abfd, strlen (subspace.name.n_name) + 1); | |
1935 | if (!newname) | |
1936 | goto error_return; | |
1937 | strcpy (newname, subspace.name.n_name); | |
1938 | ||
1939 | /* Make a section out of this subspace */ | |
1940 | subspace_asect = bfd_make_section_anyway (abfd, newname); | |
1941 | if (!subspace_asect) | |
1942 | goto error_return; | |
1943 | ||
1944 | /* Store private information about the section. */ | |
1945 | if (bfd_som_set_subsection_attributes (subspace_asect, space_asect, | |
1946 | subspace.access_control_bits, | |
1947 | subspace.sort_key, | |
1948 | subspace.quadrant) == false) | |
1949 | goto error_return; | |
1950 | ||
1951 | /* Keep an easy mapping between subspaces and sections. | |
1952 | Note we do not necessarily read the subspaces in the | |
1953 | same order in which they appear in the object file. | |
1954 | ||
1955 | So to make the target index come out correctly, we | |
1956 | store the location of the subspace header in target | |
1957 | index, then sort using the location of the subspace | |
1958 | header as the key. Then we can assign correct | |
1959 | subspace indices. */ | |
1960 | total_subspaces++; | |
1961 | subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace); | |
1962 | ||
1963 | /* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified | |
1964 | by the access_control_bits in the subspace header. */ | |
1965 | switch (subspace.access_control_bits >> 4) | |
1966 | { | |
1967 | /* Readonly data. */ | |
1968 | case 0x0: | |
1969 | subspace_asect->flags |= SEC_DATA | SEC_READONLY; | |
1970 | break; | |
1971 | ||
1972 | /* Normal data. */ | |
1973 | case 0x1: | |
1974 | subspace_asect->flags |= SEC_DATA; | |
1975 | break; | |
1976 | ||
1977 | /* Readonly code and the gateways. | |
1978 | Gateways have other attributes which do not map | |
1979 | into anything BFD knows about. */ | |
1980 | case 0x2: | |
1981 | case 0x4: | |
1982 | case 0x5: | |
1983 | case 0x6: | |
1984 | case 0x7: | |
1985 | subspace_asect->flags |= SEC_CODE | SEC_READONLY; | |
1986 | break; | |
1987 | ||
1988 | /* dynamic (writable) code. */ | |
1989 | case 0x3: | |
1990 | subspace_asect->flags |= SEC_CODE; | |
1991 | break; | |
1992 | } | |
1993 | ||
1994 | if (subspace.dup_common || subspace.is_common) | |
1995 | subspace_asect->flags |= SEC_IS_COMMON; | |
1996 | else if (subspace.subspace_length > 0) | |
1997 | subspace_asect->flags |= SEC_HAS_CONTENTS; | |
1998 | ||
1999 | if (subspace.is_loadable) | |
2000 | subspace_asect->flags |= SEC_ALLOC | SEC_LOAD; | |
2001 | else | |
2002 | subspace_asect->flags |= SEC_DEBUGGING; | |
2003 | ||
2004 | if (subspace.code_only) | |
2005 | subspace_asect->flags |= SEC_CODE; | |
2006 | ||
2007 | /* Both file_loc_init_value and initialization_length will | |
2008 | be zero for a BSS like subspace. */ | |
2009 | if (subspace.file_loc_init_value == 0 | |
2010 | && subspace.initialization_length == 0) | |
2011 | subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS); | |
2012 | ||
2013 | /* This subspace has relocations. | |
2014 | The fixup_request_quantity is a byte count for the number of | |
2015 | entries in the relocation stream; it is not the actual number | |
2016 | of relocations in the subspace. */ | |
2017 | if (subspace.fixup_request_quantity != 0) | |
2018 | { | |
2019 | subspace_asect->flags |= SEC_RELOC; | |
2020 | subspace_asect->rel_filepos = subspace.fixup_request_index; | |
2021 | som_section_data (subspace_asect)->reloc_size | |
2022 | = subspace.fixup_request_quantity; | |
2023 | /* We can not determine this yet. When we read in the | |
2024 | relocation table the correct value will be filled in. */ | |
2025 | subspace_asect->reloc_count = -1; | |
2026 | } | |
2027 | ||
2028 | /* Update save_subspace if appropriate. */ | |
2029 | if (subspace.file_loc_init_value > save_subspace.file_loc_init_value) | |
2030 | save_subspace = subspace; | |
2031 | ||
2032 | subspace_asect->vma = subspace.subspace_start; | |
2033 | subspace_asect->_cooked_size = subspace.subspace_length; | |
2034 | subspace_asect->_raw_size = subspace.subspace_length; | |
2035 | subspace_asect->filepos = (subspace.file_loc_init_value | |
2036 | + current_offset); | |
2037 | subspace_asect->alignment_power = log2 (subspace.alignment); | |
2038 | if (subspace_asect->alignment_power == -1) | |
2039 | goto error_return; | |
2040 | } | |
2041 | ||
2042 | /* This can happen for a .o which defines symbols in otherwise | |
2043 | empty subspaces. */ | |
2044 | if (!save_subspace.file_loc_init_value) | |
2045 | { | |
2046 | space_asect->_cooked_size = 0; | |
2047 | space_asect->_raw_size = 0; | |
2048 | } | |
2049 | else | |
2050 | { | |
2051 | /* Setup the sizes for the space section based upon the info in the | |
2052 | last subspace of the space. */ | |
2053 | space_asect->_cooked_size = (save_subspace.subspace_start | |
2054 | - space_asect->vma | |
2055 | + save_subspace.subspace_length); | |
2056 | space_asect->_raw_size = (save_subspace.file_loc_init_value | |
2057 | - space_asect->filepos | |
2058 | + save_subspace.initialization_length); | |
2059 | } | |
2060 | } | |
2061 | /* Now that we've read in all the subspace records, we need to assign | |
2062 | a target index to each subspace. */ | |
2063 | subspace_sections = (asection **) bfd_malloc (total_subspaces | |
2064 | * sizeof (asection *)); | |
2065 | if (subspace_sections == NULL) | |
2066 | goto error_return; | |
2067 | ||
2068 | for (i = 0, section = abfd->sections; section; section = section->next) | |
2069 | { | |
2070 | if (!som_is_subspace (section)) | |
2071 | continue; | |
2072 | ||
2073 | subspace_sections[i] = section; | |
2074 | i++; | |
2075 | } | |
2076 | qsort (subspace_sections, total_subspaces, | |
2077 | sizeof (asection *), compare_subspaces); | |
2078 | ||
2079 | /* subspace_sections is now sorted in the order in which the subspaces | |
2080 | appear in the object file. Assign an index to each one now. */ | |
2081 | for (i = 0; i < total_subspaces; i++) | |
2082 | subspace_sections[i]->target_index = i; | |
2083 | ||
2084 | if (space_strings != NULL) | |
2085 | free (space_strings); | |
2086 | ||
2087 | if (subspace_sections != NULL) | |
2088 | free (subspace_sections); | |
2089 | ||
2090 | return true; | |
2091 | ||
2092 | error_return: | |
2093 | if (space_strings != NULL) | |
2094 | free (space_strings); | |
2095 | ||
2096 | if (subspace_sections != NULL) | |
2097 | free (subspace_sections); | |
2098 | return false; | |
2099 | } | |
2100 | ||
2101 | /* Read in a SOM object and make it into a BFD. */ | |
2102 | ||
2103 | static const bfd_target * | |
2104 | som_object_p (abfd) | |
2105 | bfd *abfd; | |
2106 | { | |
2107 | struct header file_hdr; | |
2108 | struct som_exec_auxhdr aux_hdr; | |
2109 | unsigned long current_offset = 0; | |
2110 | struct lst_header lst_header; | |
2111 | struct som_entry som_entry; | |
2112 | #define ENTRY_SIZE sizeof(struct som_entry) | |
2113 | ||
2114 | if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE) | |
2115 | { | |
2116 | if (bfd_get_error () != bfd_error_system_call) | |
2117 | bfd_set_error (bfd_error_wrong_format); | |
2118 | return 0; | |
2119 | } | |
2120 | ||
2121 | if (!_PA_RISC_ID (file_hdr.system_id)) | |
2122 | { | |
2123 | bfd_set_error (bfd_error_wrong_format); | |
2124 | return 0; | |
2125 | } | |
2126 | ||
2127 | switch (file_hdr.a_magic) | |
2128 | { | |
2129 | case RELOC_MAGIC: | |
2130 | case EXEC_MAGIC: | |
2131 | case SHARE_MAGIC: | |
2132 | case DEMAND_MAGIC: | |
2133 | #ifdef DL_MAGIC | |
2134 | case DL_MAGIC: | |
2135 | #endif | |
2136 | #ifdef SHL_MAGIC | |
2137 | case SHL_MAGIC: | |
2138 | #endif | |
2139 | #ifdef SHARED_MAGIC_CNX | |
2140 | case SHARED_MAGIC_CNX: | |
2141 | #endif | |
2142 | break; | |
2143 | ||
2144 | #ifdef EXECLIBMAGIC | |
2145 | case EXECLIBMAGIC: | |
2146 | /* Read the lst header and determine where the SOM directory begins */ | |
2147 | ||
2148 | if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0) | |
2149 | { | |
2150 | if (bfd_get_error () != bfd_error_system_call) | |
2151 | bfd_set_error (bfd_error_wrong_format); | |
2152 | return 0; | |
2153 | } | |
2154 | ||
2155 | if (bfd_read ((PTR) & lst_header, 1, SLSTHDR, abfd) != SLSTHDR) | |
2156 | { | |
2157 | if (bfd_get_error () != bfd_error_system_call) | |
2158 | bfd_set_error (bfd_error_wrong_format); | |
2159 | return 0; | |
2160 | } | |
2161 | ||
2162 | /* Position to and read the first directory entry */ | |
2163 | ||
2164 | if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) < 0) | |
2165 | { | |
2166 | if (bfd_get_error () != bfd_error_system_call) | |
2167 | bfd_set_error (bfd_error_wrong_format); | |
2168 | return 0; | |
2169 | } | |
2170 | ||
2171 | if (bfd_read ((PTR) & som_entry, 1, ENTRY_SIZE, abfd) != ENTRY_SIZE) | |
2172 | { | |
2173 | if (bfd_get_error () != bfd_error_system_call) | |
2174 | bfd_set_error (bfd_error_wrong_format); | |
2175 | return 0; | |
2176 | } | |
2177 | ||
2178 | /* Now position to the first SOM */ | |
2179 | ||
2180 | if (bfd_seek (abfd, som_entry.location, SEEK_SET) < 0) | |
2181 | { | |
2182 | if (bfd_get_error () != bfd_error_system_call) | |
2183 | bfd_set_error (bfd_error_wrong_format); | |
2184 | return 0; | |
2185 | } | |
2186 | ||
2187 | current_offset = som_entry.location; | |
2188 | ||
2189 | /* And finally, re-read the som header */ | |
2190 | ||
2191 | if (bfd_read ((PTR) & file_hdr, 1, FILE_HDR_SIZE, abfd) != FILE_HDR_SIZE) | |
2192 | { | |
2193 | if (bfd_get_error () != bfd_error_system_call) | |
2194 | bfd_set_error (bfd_error_wrong_format); | |
2195 | return 0; | |
2196 | } | |
2197 | ||
2198 | break; | |
2199 | #endif | |
2200 | ||
2201 | default: | |
2202 | bfd_set_error (bfd_error_wrong_format); | |
2203 | return 0; | |
2204 | } | |
2205 | ||
2206 | if (file_hdr.version_id != VERSION_ID | |
2207 | && file_hdr.version_id != NEW_VERSION_ID) | |
2208 | { | |
2209 | bfd_set_error (bfd_error_wrong_format); | |
2210 | return 0; | |
2211 | } | |
2212 | ||
2213 | /* If the aux_header_size field in the file header is zero, then this | |
2214 | object is an incomplete executable (a .o file). Do not try to read | |
2215 | a non-existant auxiliary header. */ | |
2216 | memset (&aux_hdr, 0, sizeof (struct som_exec_auxhdr)); | |
2217 | if (file_hdr.aux_header_size != 0) | |
2218 | { | |
2219 | if (bfd_read ((PTR) & aux_hdr, 1, AUX_HDR_SIZE, abfd) != AUX_HDR_SIZE) | |
2220 | { | |
2221 | if (bfd_get_error () != bfd_error_system_call) | |
2222 | bfd_set_error (bfd_error_wrong_format); | |
2223 | return 0; | |
2224 | } | |
2225 | } | |
2226 | ||
2227 | if (!setup_sections (abfd, &file_hdr, current_offset)) | |
2228 | { | |
2229 | /* setup_sections does not bubble up a bfd error code. */ | |
2230 | bfd_set_error (bfd_error_bad_value); | |
2231 | return 0; | |
2232 | } | |
2233 | ||
2234 | /* This appears to be a valid SOM object. Do some initialization. */ | |
2235 | return som_object_setup (abfd, &file_hdr, &aux_hdr, current_offset); | |
2236 | } | |
2237 | ||
2238 | /* Create a SOM object. */ | |
2239 | ||
2240 | static boolean | |
2241 | som_mkobject (abfd) | |
2242 | bfd *abfd; | |
2243 | { | |
2244 | /* Allocate memory to hold backend information. */ | |
2245 | abfd->tdata.som_data = (struct som_data_struct *) | |
2246 | bfd_zalloc (abfd, sizeof (struct som_data_struct)); | |
2247 | if (abfd->tdata.som_data == NULL) | |
2248 | return false; | |
2249 | return true; | |
2250 | } | |
2251 | ||
2252 | /* Initialize some information in the file header. This routine makes | |
2253 | not attempt at doing the right thing for a full executable; it | |
2254 | is only meant to handle relocatable objects. */ | |
2255 | ||
2256 | static boolean | |
2257 | som_prep_headers (abfd) | |
2258 | bfd *abfd; | |
2259 | { | |
2260 | struct header *file_hdr; | |
2261 | asection *section; | |
2262 | ||
2263 | /* Make and attach a file header to the BFD. */ | |
2264 | file_hdr = (struct header *) bfd_zalloc (abfd, sizeof (struct header)); | |
2265 | if (file_hdr == NULL) | |
2266 | return false; | |
2267 | obj_som_file_hdr (abfd) = file_hdr; | |
2268 | ||
2269 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
2270 | { | |
2271 | ||
2272 | /* Make and attach an exec header to the BFD. */ | |
2273 | obj_som_exec_hdr (abfd) = (struct som_exec_auxhdr *) | |
2274 | bfd_zalloc (abfd, sizeof (struct som_exec_auxhdr)); | |
2275 | if (obj_som_exec_hdr (abfd) == NULL) | |
2276 | return false; | |
2277 | ||
2278 | if (abfd->flags & D_PAGED) | |
2279 | file_hdr->a_magic = DEMAND_MAGIC; | |
2280 | else if (abfd->flags & WP_TEXT) | |
2281 | file_hdr->a_magic = SHARE_MAGIC; | |
2282 | #ifdef SHL_MAGIC | |
2283 | else if (abfd->flags & DYNAMIC) | |
2284 | file_hdr->a_magic = SHL_MAGIC; | |
2285 | #endif | |
2286 | else | |
2287 | file_hdr->a_magic = EXEC_MAGIC; | |
2288 | } | |
2289 | else | |
2290 | file_hdr->a_magic = RELOC_MAGIC; | |
2291 | ||
2292 | /* Only new format SOM is supported. */ | |
2293 | file_hdr->version_id = NEW_VERSION_ID; | |
2294 | ||
2295 | /* These fields are optional, and embedding timestamps is not always | |
2296 | a wise thing to do, it makes comparing objects during a multi-stage | |
2297 | bootstrap difficult. */ | |
2298 | file_hdr->file_time.secs = 0; | |
2299 | file_hdr->file_time.nanosecs = 0; | |
2300 | ||
2301 | file_hdr->entry_space = 0; | |
2302 | file_hdr->entry_subspace = 0; | |
2303 | file_hdr->entry_offset = 0; | |
2304 | file_hdr->presumed_dp = 0; | |
2305 | ||
2306 | /* Now iterate over the sections translating information from | |
2307 | BFD sections to SOM spaces/subspaces. */ | |
2308 | ||
2309 | for (section = abfd->sections; section != NULL; section = section->next) | |
2310 | { | |
2311 | /* Ignore anything which has not been marked as a space or | |
2312 | subspace. */ | |
2313 | if (!som_is_space (section) && !som_is_subspace (section)) | |
2314 | continue; | |
2315 | ||
2316 | if (som_is_space (section)) | |
2317 | { | |
2318 | /* Allocate space for the space dictionary. */ | |
2319 | som_section_data (section)->space_dict | |
2320 | = (struct space_dictionary_record *) | |
2321 | bfd_zalloc (abfd, sizeof (struct space_dictionary_record)); | |
2322 | if (som_section_data (section)->space_dict == NULL) | |
2323 | return false; | |
2324 | /* Set space attributes. Note most attributes of SOM spaces | |
2325 | are set based on the subspaces it contains. */ | |
2326 | som_section_data (section)->space_dict->loader_fix_index = -1; | |
2327 | som_section_data (section)->space_dict->init_pointer_index = -1; | |
2328 | ||
2329 | /* Set more attributes that were stuffed away in private data. */ | |
2330 | som_section_data (section)->space_dict->sort_key = | |
2331 | som_section_data (section)->copy_data->sort_key; | |
2332 | som_section_data (section)->space_dict->is_defined = | |
2333 | som_section_data (section)->copy_data->is_defined; | |
2334 | som_section_data (section)->space_dict->is_private = | |
2335 | som_section_data (section)->copy_data->is_private; | |
2336 | som_section_data (section)->space_dict->space_number = | |
2337 | som_section_data (section)->copy_data->space_number; | |
2338 | } | |
2339 | else | |
2340 | { | |
2341 | /* Allocate space for the subspace dictionary. */ | |
2342 | som_section_data (section)->subspace_dict | |
2343 | = (struct subspace_dictionary_record *) | |
2344 | bfd_zalloc (abfd, sizeof (struct subspace_dictionary_record)); | |
2345 | if (som_section_data (section)->subspace_dict == NULL) | |
2346 | return false; | |
2347 | ||
2348 | /* Set subspace attributes. Basic stuff is done here, additional | |
2349 | attributes are filled in later as more information becomes | |
2350 | available. */ | |
2351 | if (section->flags & SEC_IS_COMMON) | |
2352 | { | |
2353 | som_section_data (section)->subspace_dict->dup_common = 1; | |
2354 | som_section_data (section)->subspace_dict->is_common = 1; | |
2355 | } | |
2356 | ||
2357 | if (section->flags & SEC_ALLOC) | |
2358 | som_section_data (section)->subspace_dict->is_loadable = 1; | |
2359 | ||
2360 | if (section->flags & SEC_CODE) | |
2361 | som_section_data (section)->subspace_dict->code_only = 1; | |
2362 | ||
2363 | som_section_data (section)->subspace_dict->subspace_start = | |
2364 | section->vma; | |
2365 | som_section_data (section)->subspace_dict->subspace_length = | |
2366 | bfd_section_size (abfd, section); | |
2367 | som_section_data (section)->subspace_dict->initialization_length = | |
2368 | bfd_section_size (abfd, section); | |
2369 | som_section_data (section)->subspace_dict->alignment = | |
2370 | 1 << section->alignment_power; | |
2371 | ||
2372 | /* Set more attributes that were stuffed away in private data. */ | |
2373 | som_section_data (section)->subspace_dict->sort_key = | |
2374 | som_section_data (section)->copy_data->sort_key; | |
2375 | som_section_data (section)->subspace_dict->access_control_bits = | |
2376 | som_section_data (section)->copy_data->access_control_bits; | |
2377 | som_section_data (section)->subspace_dict->quadrant = | |
2378 | som_section_data (section)->copy_data->quadrant; | |
2379 | } | |
2380 | } | |
2381 | return true; | |
2382 | } | |
2383 | ||
2384 | /* Return true if the given section is a SOM space, false otherwise. */ | |
2385 | ||
2386 | static boolean | |
2387 | som_is_space (section) | |
2388 | asection *section; | |
2389 | { | |
2390 | /* If no copy data is available, then it's neither a space nor a | |
2391 | subspace. */ | |
2392 | if (som_section_data (section)->copy_data == NULL) | |
2393 | return false; | |
2394 | ||
2395 | /* If the containing space isn't the same as the given section, | |
2396 | then this isn't a space. */ | |
2397 | if (som_section_data (section)->copy_data->container != section | |
2398 | && (som_section_data (section)->copy_data->container->output_section | |
2399 | != section)) | |
2400 | return false; | |
2401 | ||
2402 | /* OK. Must be a space. */ | |
2403 | return true; | |
2404 | } | |
2405 | ||
2406 | /* Return true if the given section is a SOM subspace, false otherwise. */ | |
2407 | ||
2408 | static boolean | |
2409 | som_is_subspace (section) | |
2410 | asection *section; | |
2411 | { | |
2412 | /* If no copy data is available, then it's neither a space nor a | |
2413 | subspace. */ | |
2414 | if (som_section_data (section)->copy_data == NULL) | |
2415 | return false; | |
2416 | ||
2417 | /* If the containing space is the same as the given section, | |
2418 | then this isn't a subspace. */ | |
2419 | if (som_section_data (section)->copy_data->container == section | |
2420 | || (som_section_data (section)->copy_data->container->output_section | |
2421 | == section)) | |
2422 | return false; | |
2423 | ||
2424 | /* OK. Must be a subspace. */ | |
2425 | return true; | |
2426 | } | |
2427 | ||
2428 | /* Return true if the given space containins the given subspace. It | |
2429 | is safe to assume space really is a space, and subspace really | |
2430 | is a subspace. */ | |
2431 | ||
2432 | static boolean | |
2433 | som_is_container (space, subspace) | |
2434 | asection *space, *subspace; | |
2435 | { | |
2436 | return (som_section_data (subspace)->copy_data->container == space | |
2437 | || (som_section_data (subspace)->copy_data->container->output_section | |
2438 | == space)); | |
2439 | } | |
2440 | ||
2441 | /* Count and return the number of spaces attached to the given BFD. */ | |
2442 | ||
2443 | static unsigned long | |
2444 | som_count_spaces (abfd) | |
2445 | bfd *abfd; | |
2446 | { | |
2447 | int count = 0; | |
2448 | asection *section; | |
2449 | ||
2450 | for (section = abfd->sections; section != NULL; section = section->next) | |
2451 | count += som_is_space (section); | |
2452 | ||
2453 | return count; | |
2454 | } | |
2455 | ||
2456 | /* Count the number of subspaces attached to the given BFD. */ | |
2457 | ||
2458 | static unsigned long | |
2459 | som_count_subspaces (abfd) | |
2460 | bfd *abfd; | |
2461 | { | |
2462 | int count = 0; | |
2463 | asection *section; | |
2464 | ||
2465 | for (section = abfd->sections; section != NULL; section = section->next) | |
2466 | count += som_is_subspace (section); | |
2467 | ||
2468 | return count; | |
2469 | } | |
2470 | ||
2471 | /* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2. | |
2472 | ||
2473 | We desire symbols to be ordered starting with the symbol with the | |
2474 | highest relocation count down to the symbol with the lowest relocation | |
2475 | count. Doing so compacts the relocation stream. */ | |
2476 | ||
2477 | static int | |
2478 | compare_syms (arg1, arg2) | |
2479 | const PTR arg1; | |
2480 | const PTR arg2; | |
2481 | ||
2482 | { | |
2483 | asymbol **sym1 = (asymbol **) arg1; | |
2484 | asymbol **sym2 = (asymbol **) arg2; | |
2485 | unsigned int count1, count2; | |
2486 | ||
2487 | /* Get relocation count for each symbol. Note that the count | |
2488 | is stored in the udata pointer for section symbols! */ | |
2489 | if ((*sym1)->flags & BSF_SECTION_SYM) | |
2490 | count1 = (*sym1)->udata.i; | |
2491 | else | |
2492 | count1 = som_symbol_data (*sym1)->reloc_count; | |
2493 | ||
2494 | if ((*sym2)->flags & BSF_SECTION_SYM) | |
2495 | count2 = (*sym2)->udata.i; | |
2496 | else | |
2497 | count2 = som_symbol_data (*sym2)->reloc_count; | |
2498 | ||
2499 | /* Return the appropriate value. */ | |
2500 | if (count1 < count2) | |
2501 | return 1; | |
2502 | else if (count1 > count2) | |
2503 | return -1; | |
2504 | return 0; | |
2505 | } | |
2506 | ||
2507 | /* Return -1, 0, 1 indicating the relative ordering of subspace1 | |
2508 | and subspace. */ | |
2509 | ||
2510 | static int | |
2511 | compare_subspaces (arg1, arg2) | |
2512 | const PTR arg1; | |
2513 | const PTR arg2; | |
2514 | ||
2515 | { | |
2516 | asection **subspace1 = (asection **) arg1; | |
2517 | asection **subspace2 = (asection **) arg2; | |
2518 | unsigned int count1, count2; | |
2519 | ||
2520 | if ((*subspace1)->target_index < (*subspace2)->target_index) | |
2521 | return -1; | |
2522 | else if ((*subspace2)->target_index < (*subspace1)->target_index) | |
2523 | return 1; | |
2524 | else | |
2525 | return 0; | |
2526 | } | |
2527 | ||
2528 | /* Perform various work in preparation for emitting the fixup stream. */ | |
2529 | ||
2530 | static void | |
2531 | som_prep_for_fixups (abfd, syms, num_syms) | |
2532 | bfd *abfd; | |
2533 | asymbol **syms; | |
2534 | unsigned long num_syms; | |
2535 | { | |
2536 | int i; | |
2537 | asection *section; | |
2538 | asymbol **sorted_syms; | |
2539 | ||
2540 | /* Most SOM relocations involving a symbol have a length which is | |
2541 | dependent on the index of the symbol. So symbols which are | |
2542 | used often in relocations should have a small index. */ | |
2543 | ||
2544 | /* First initialize the counters for each symbol. */ | |
2545 | for (i = 0; i < num_syms; i++) | |
2546 | { | |
2547 | /* Handle a section symbol; these have no pointers back to the | |
2548 | SOM symbol info. So we just use the udata field to hold the | |
2549 | relocation count. */ | |
2550 | if (som_symbol_data (syms[i]) == NULL | |
2551 | || syms[i]->flags & BSF_SECTION_SYM) | |
2552 | { | |
2553 | syms[i]->flags |= BSF_SECTION_SYM; | |
2554 | syms[i]->udata.i = 0; | |
2555 | } | |
2556 | else | |
2557 | som_symbol_data (syms[i])->reloc_count = 0; | |
2558 | } | |
2559 | ||
2560 | /* Now that the counters are initialized, make a weighted count | |
2561 | of how often a given symbol is used in a relocation. */ | |
2562 | for (section = abfd->sections; section != NULL; section = section->next) | |
2563 | { | |
2564 | int i; | |
2565 | ||
2566 | /* Does this section have any relocations? */ | |
2567 | if (section->reloc_count <= 0) | |
2568 | continue; | |
2569 | ||
2570 | /* Walk through each relocation for this section. */ | |
2571 | for (i = 1; i < section->reloc_count; i++) | |
2572 | { | |
2573 | arelent *reloc = section->orelocation[i]; | |
2574 | int scale; | |
2575 | ||
2576 | /* A relocation against a symbol in the *ABS* section really | |
2577 | does not have a symbol. Likewise if the symbol isn't associated | |
2578 | with any section. */ | |
2579 | if (reloc->sym_ptr_ptr == NULL | |
2580 | || bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section)) | |
2581 | continue; | |
2582 | ||
2583 | /* Scaling to encourage symbols involved in R_DP_RELATIVE | |
2584 | and R_CODE_ONE_SYMBOL relocations to come first. These | |
2585 | two relocations have single byte versions if the symbol | |
2586 | index is very small. */ | |
2587 | if (reloc->howto->type == R_DP_RELATIVE | |
2588 | || reloc->howto->type == R_CODE_ONE_SYMBOL) | |
2589 | scale = 2; | |
2590 | else | |
2591 | scale = 1; | |
2592 | ||
2593 | /* Handle section symbols by storing the count in the udata | |
2594 | field. It will not be used and the count is very important | |
2595 | for these symbols. */ | |
2596 | if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) | |
2597 | { | |
2598 | (*reloc->sym_ptr_ptr)->udata.i = | |
2599 | (*reloc->sym_ptr_ptr)->udata.i + scale; | |
2600 | continue; | |
2601 | } | |
2602 | ||
2603 | /* A normal symbol. Increment the count. */ | |
2604 | som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale; | |
2605 | } | |
2606 | } | |
2607 | ||
2608 | /* Sort a copy of the symbol table, rather than the canonical | |
2609 | output symbol table. */ | |
2610 | sorted_syms = (asymbol **) bfd_zalloc (abfd, num_syms * sizeof (asymbol *)); | |
2611 | memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *)); | |
2612 | qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms); | |
2613 | obj_som_sorted_syms (abfd) = sorted_syms; | |
2614 | ||
2615 | /* Compute the symbol indexes, they will be needed by the relocation | |
2616 | code. */ | |
2617 | for (i = 0; i < num_syms; i++) | |
2618 | { | |
2619 | /* A section symbol. Again, there is no pointer to backend symbol | |
2620 | information, so we reuse the udata field again. */ | |
2621 | if (sorted_syms[i]->flags & BSF_SECTION_SYM) | |
2622 | sorted_syms[i]->udata.i = i; | |
2623 | else | |
2624 | som_symbol_data (sorted_syms[i])->index = i; | |
2625 | } | |
2626 | } | |
2627 | ||
2628 | static boolean | |
2629 | som_write_fixups (abfd, current_offset, total_reloc_sizep) | |
2630 | bfd *abfd; | |
2631 | unsigned long current_offset; | |
2632 | unsigned int *total_reloc_sizep; | |
2633 | { | |
2634 | unsigned int i, j; | |
2635 | /* Chunk of memory that we can use as buffer space, then throw | |
2636 | away. */ | |
2637 | unsigned char tmp_space[SOM_TMP_BUFSIZE]; | |
2638 | unsigned char *p; | |
2639 | unsigned int total_reloc_size = 0; | |
2640 | unsigned int subspace_reloc_size = 0; | |
2641 | unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total; | |
2642 | asection *section = abfd->sections; | |
2643 | ||
2644 | memset (tmp_space, 0, SOM_TMP_BUFSIZE); | |
2645 | p = tmp_space; | |
2646 | ||
2647 | /* All the fixups for a particular subspace are emitted in a single | |
2648 | stream. All the subspaces for a particular space are emitted | |
2649 | as a single stream. | |
2650 | ||
2651 | So, to get all the locations correct one must iterate through all the | |
2652 | spaces, for each space iterate through its subspaces and output a | |
2653 | fixups stream. */ | |
2654 | for (i = 0; i < num_spaces; i++) | |
2655 | { | |
2656 | asection *subsection; | |
2657 | ||
2658 | /* Find a space. */ | |
2659 | while (!som_is_space (section)) | |
2660 | section = section->next; | |
2661 | ||
2662 | /* Now iterate through each of its subspaces. */ | |
2663 | for (subsection = abfd->sections; | |
2664 | subsection != NULL; | |
2665 | subsection = subsection->next) | |
2666 | { | |
2667 | int reloc_offset, current_rounding_mode; | |
2668 | ||
2669 | /* Find a subspace of this space. */ | |
2670 | if (!som_is_subspace (subsection) | |
2671 | || !som_is_container (section, subsection)) | |
2672 | continue; | |
2673 | ||
2674 | /* If this subspace does not have real data, then we are | |
2675 | finised with it. */ | |
2676 | if ((subsection->flags & SEC_HAS_CONTENTS) == 0) | |
2677 | { | |
2678 | som_section_data (subsection)->subspace_dict->fixup_request_index | |
2679 | = -1; | |
2680 | continue; | |
2681 | } | |
2682 | ||
2683 | /* This subspace has some relocations. Put the relocation stream | |
2684 | index into the subspace record. */ | |
2685 | som_section_data (subsection)->subspace_dict->fixup_request_index | |
2686 | = total_reloc_size; | |
2687 | ||
2688 | /* To make life easier start over with a clean slate for | |
2689 | each subspace. Seek to the start of the relocation stream | |
2690 | for this subspace in preparation for writing out its fixup | |
2691 | stream. */ | |
2692 | if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) < 0) | |
2693 | return false; | |
2694 | ||
2695 | /* Buffer space has already been allocated. Just perform some | |
2696 | initialization here. */ | |
2697 | p = tmp_space; | |
2698 | subspace_reloc_size = 0; | |
2699 | reloc_offset = 0; | |
2700 | som_initialize_reloc_queue (reloc_queue); | |
2701 | current_rounding_mode = R_N_MODE; | |
2702 | ||
2703 | /* Translate each BFD relocation into one or more SOM | |
2704 | relocations. */ | |
2705 | for (j = 0; j < subsection->reloc_count; j++) | |
2706 | { | |
2707 | arelent *bfd_reloc = subsection->orelocation[j]; | |
2708 | unsigned int skip; | |
2709 | int sym_num; | |
2710 | ||
2711 | /* Get the symbol number. Remember it's stored in a | |
2712 | special place for section symbols. */ | |
2713 | if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM) | |
2714 | sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i; | |
2715 | else | |
2716 | sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index; | |
2717 | ||
2718 | /* If there is not enough room for the next couple relocations, | |
2719 | then dump the current buffer contents now. Also reinitialize | |
2720 | the relocation queue. | |
2721 | ||
2722 | No single BFD relocation could ever translate into more | |
2723 | than 100 bytes of SOM relocations (20bytes is probably the | |
2724 | upper limit, but leave lots of space for growth). */ | |
2725 | if (p - tmp_space + 100 > SOM_TMP_BUFSIZE) | |
2726 | { | |
2727 | if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) | |
2728 | != p - tmp_space) | |
2729 | return false; | |
2730 | ||
2731 | p = tmp_space; | |
2732 | som_initialize_reloc_queue (reloc_queue); | |
2733 | } | |
2734 | ||
2735 | /* Emit R_NO_RELOCATION fixups to map any bytes which were | |
2736 | skipped. */ | |
2737 | skip = bfd_reloc->address - reloc_offset; | |
2738 | p = som_reloc_skip (abfd, skip, p, | |
2739 | &subspace_reloc_size, reloc_queue); | |
2740 | ||
2741 | /* Update reloc_offset for the next iteration. | |
2742 | ||
2743 | Many relocations do not consume input bytes. They | |
2744 | are markers, or set state necessary to perform some | |
2745 | later relocation. */ | |
2746 | switch (bfd_reloc->howto->type) | |
2747 | { | |
2748 | case R_ENTRY: | |
2749 | case R_ALT_ENTRY: | |
2750 | case R_EXIT: | |
2751 | case R_N_MODE: | |
2752 | case R_S_MODE: | |
2753 | case R_D_MODE: | |
2754 | case R_R_MODE: | |
2755 | case R_FSEL: | |
2756 | case R_LSEL: | |
2757 | case R_RSEL: | |
2758 | case R_COMP1: | |
2759 | case R_COMP2: | |
2760 | case R_BEGIN_BRTAB: | |
2761 | case R_END_BRTAB: | |
2762 | case R_BEGIN_TRY: | |
2763 | case R_END_TRY: | |
2764 | case R_N0SEL: | |
2765 | case R_N1SEL: | |
2766 | reloc_offset = bfd_reloc->address; | |
2767 | break; | |
2768 | ||
2769 | default: | |
2770 | reloc_offset = bfd_reloc->address + 4; | |
2771 | break; | |
2772 | } | |
2773 | ||
2774 | /* Now the actual relocation we care about. */ | |
2775 | switch (bfd_reloc->howto->type) | |
2776 | { | |
2777 | case R_PCREL_CALL: | |
2778 | case R_ABS_CALL: | |
2779 | p = som_reloc_call (abfd, p, &subspace_reloc_size, | |
2780 | bfd_reloc, sym_num, reloc_queue); | |
2781 | break; | |
2782 | ||
2783 | case R_CODE_ONE_SYMBOL: | |
2784 | case R_DP_RELATIVE: | |
2785 | /* Account for any addend. */ | |
2786 | if (bfd_reloc->addend) | |
2787 | p = som_reloc_addend (abfd, bfd_reloc->addend, p, | |
2788 | &subspace_reloc_size, reloc_queue); | |
2789 | ||
2790 | if (sym_num < 0x20) | |
2791 | { | |
2792 | bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p); | |
2793 | subspace_reloc_size += 1; | |
2794 | p += 1; | |
2795 | } | |
2796 | else if (sym_num < 0x100) | |
2797 | { | |
2798 | bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p); | |
2799 | bfd_put_8 (abfd, sym_num, p + 1); | |
2800 | p = try_prev_fixup (abfd, &subspace_reloc_size, p, | |
2801 | 2, reloc_queue); | |
2802 | } | |
2803 | else if (sym_num < 0x10000000) | |
2804 | { | |
2805 | bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p); | |
2806 | bfd_put_8 (abfd, sym_num >> 16, p + 1); | |
2807 | bfd_put_16 (abfd, sym_num, p + 2); | |
2808 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2809 | p, 4, reloc_queue); | |
2810 | } | |
2811 | else | |
2812 | abort (); | |
2813 | break; | |
2814 | ||
2815 | case R_DATA_ONE_SYMBOL: | |
2816 | case R_DATA_PLABEL: | |
2817 | case R_CODE_PLABEL: | |
2818 | case R_DLT_REL: | |
2819 | /* Account for any addend using R_DATA_OVERRIDE. */ | |
2820 | if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL | |
2821 | && bfd_reloc->addend) | |
2822 | p = som_reloc_addend (abfd, bfd_reloc->addend, p, | |
2823 | &subspace_reloc_size, reloc_queue); | |
2824 | ||
2825 | if (sym_num < 0x100) | |
2826 | { | |
2827 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2828 | bfd_put_8 (abfd, sym_num, p + 1); | |
2829 | p = try_prev_fixup (abfd, &subspace_reloc_size, p, | |
2830 | 2, reloc_queue); | |
2831 | } | |
2832 | else if (sym_num < 0x10000000) | |
2833 | { | |
2834 | bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); | |
2835 | bfd_put_8 (abfd, sym_num >> 16, p + 1); | |
2836 | bfd_put_16 (abfd, sym_num, p + 2); | |
2837 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2838 | p, 4, reloc_queue); | |
2839 | } | |
2840 | else | |
2841 | abort (); | |
2842 | break; | |
2843 | ||
2844 | case R_ENTRY: | |
2845 | { | |
2846 | int tmp; | |
2847 | arelent *tmp_reloc = NULL; | |
2848 | bfd_put_8 (abfd, R_ENTRY, p); | |
2849 | ||
2850 | /* R_ENTRY relocations have 64 bits of associated | |
2851 | data. Unfortunately the addend field of a bfd | |
2852 | relocation is only 32 bits. So, we split up | |
2853 | the 64bit unwind information and store part in | |
2854 | the R_ENTRY relocation, and the rest in the R_EXIT | |
2855 | relocation. */ | |
2856 | bfd_put_32 (abfd, bfd_reloc->addend, p + 1); | |
2857 | ||
2858 | /* Find the next R_EXIT relocation. */ | |
2859 | for (tmp = j; tmp < subsection->reloc_count; tmp++) | |
2860 | { | |
2861 | tmp_reloc = subsection->orelocation[tmp]; | |
2862 | if (tmp_reloc->howto->type == R_EXIT) | |
2863 | break; | |
2864 | } | |
2865 | ||
2866 | if (tmp == subsection->reloc_count) | |
2867 | abort (); | |
2868 | ||
2869 | bfd_put_32 (abfd, tmp_reloc->addend, p + 5); | |
2870 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2871 | p, 9, reloc_queue); | |
2872 | break; | |
2873 | } | |
2874 | ||
2875 | case R_N_MODE: | |
2876 | case R_S_MODE: | |
2877 | case R_D_MODE: | |
2878 | case R_R_MODE: | |
2879 | /* If this relocation requests the current rounding | |
2880 | mode, then it is redundant. */ | |
2881 | if (bfd_reloc->howto->type != current_rounding_mode) | |
2882 | { | |
2883 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2884 | subspace_reloc_size += 1; | |
2885 | p += 1; | |
2886 | current_rounding_mode = bfd_reloc->howto->type; | |
2887 | } | |
2888 | break; | |
2889 | ||
2890 | case R_EXIT: | |
2891 | case R_ALT_ENTRY: | |
2892 | case R_FSEL: | |
2893 | case R_LSEL: | |
2894 | case R_RSEL: | |
2895 | case R_BEGIN_BRTAB: | |
2896 | case R_END_BRTAB: | |
2897 | case R_BEGIN_TRY: | |
2898 | case R_N0SEL: | |
2899 | case R_N1SEL: | |
2900 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2901 | subspace_reloc_size += 1; | |
2902 | p += 1; | |
2903 | break; | |
2904 | ||
2905 | case R_END_TRY: | |
2906 | /* The end of a exception handling region. The reloc's | |
2907 | addend contains the offset of the exception handling | |
2908 | code. */ | |
2909 | if (bfd_reloc->addend == 0) | |
2910 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2911 | else if (bfd_reloc->addend < 1024) | |
2912 | { | |
2913 | bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p); | |
2914 | bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1); | |
2915 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2916 | p, 2, reloc_queue); | |
2917 | } | |
2918 | else | |
2919 | { | |
2920 | bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p); | |
2921 | bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1); | |
2922 | bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2); | |
2923 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2924 | p, 4, reloc_queue); | |
2925 | } | |
2926 | break; | |
2927 | ||
2928 | case R_COMP1: | |
2929 | /* The only time we generate R_COMP1, R_COMP2 and | |
2930 | R_CODE_EXPR relocs is for the difference of two | |
2931 | symbols. Hence we can cheat here. */ | |
2932 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2933 | bfd_put_8 (abfd, 0x44, p + 1); | |
2934 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2935 | p, 2, reloc_queue); | |
2936 | break; | |
2937 | ||
2938 | case R_COMP2: | |
2939 | /* The only time we generate R_COMP1, R_COMP2 and | |
2940 | R_CODE_EXPR relocs is for the difference of two | |
2941 | symbols. Hence we can cheat here. */ | |
2942 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2943 | bfd_put_8 (abfd, 0x80, p + 1); | |
2944 | bfd_put_8 (abfd, sym_num >> 16, p + 2); | |
2945 | bfd_put_16 (abfd, sym_num, p + 3); | |
2946 | p = try_prev_fixup (abfd, &subspace_reloc_size, | |
2947 | p, 5, reloc_queue); | |
2948 | break; | |
2949 | ||
2950 | case R_CODE_EXPR: | |
2951 | case R_DATA_EXPR: | |
2952 | /* The only time we generate R_COMP1, R_COMP2 and | |
2953 | R_CODE_EXPR relocs is for the difference of two | |
2954 | symbols. Hence we can cheat here. */ | |
2955 | bfd_put_8 (abfd, bfd_reloc->howto->type, p); | |
2956 | subspace_reloc_size += 1; | |
2957 | p += 1; | |
2958 | break; | |
2959 | ||
2960 | /* Put a "R_RESERVED" relocation in the stream if | |
2961 | we hit something we do not understand. The linker | |
2962 | will complain loudly if this ever happens. */ | |
2963 | default: | |
2964 | bfd_put_8 (abfd, 0xff, p); | |
2965 | subspace_reloc_size += 1; | |
2966 | p += 1; | |
2967 | break; | |
2968 | } | |
2969 | } | |
2970 | ||
2971 | /* Last BFD relocation for a subspace has been processed. | |
2972 | Map the rest of the subspace with R_NO_RELOCATION fixups. */ | |
2973 | p = som_reloc_skip (abfd, bfd_section_size (abfd, subsection) | |
2974 | - reloc_offset, | |
2975 | p, &subspace_reloc_size, reloc_queue); | |
2976 | ||
2977 | /* Scribble out the relocations. */ | |
2978 | if (bfd_write ((PTR) tmp_space, p - tmp_space, 1, abfd) | |
2979 | != p - tmp_space) | |
2980 | return false; | |
2981 | p = tmp_space; | |
2982 | ||
2983 | total_reloc_size += subspace_reloc_size; | |
2984 | som_section_data (subsection)->subspace_dict->fixup_request_quantity | |
2985 | = subspace_reloc_size; | |
2986 | } | |
2987 | section = section->next; | |
2988 | } | |
2989 | *total_reloc_sizep = total_reloc_size; | |
2990 | return true; | |
2991 | } | |
2992 | ||
2993 | /* Write out the space/subspace string table. */ | |
2994 | ||
2995 | static boolean | |
2996 | som_write_space_strings (abfd, current_offset, string_sizep) | |
2997 | bfd *abfd; | |
2998 | unsigned long current_offset; | |
2999 | unsigned int *string_sizep; | |
3000 | { | |
3001 | /* Chunk of memory that we can use as buffer space, then throw | |
3002 | away. */ | |
3003 | unsigned char tmp_space[SOM_TMP_BUFSIZE]; | |
3004 | unsigned char *p; | |
3005 | unsigned int strings_size = 0; | |
3006 | asection *section; | |
3007 | ||
3008 | memset (tmp_space, 0, SOM_TMP_BUFSIZE); | |
3009 | p = tmp_space; | |
3010 | ||
3011 | /* Seek to the start of the space strings in preparation for writing | |
3012 | them out. */ | |
3013 | if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) | |
3014 | return false; | |
3015 | ||
3016 | /* Walk through all the spaces and subspaces (order is not important) | |
3017 | building up and writing string table entries for their names. */ | |
3018 | for (section = abfd->sections; section != NULL; section = section->next) | |
3019 | { | |
3020 | int length; | |
3021 | ||
3022 | /* Only work with space/subspaces; avoid any other sections | |
3023 | which might have been made (.text for example). */ | |
3024 | if (!som_is_space (section) && !som_is_subspace (section)) | |
3025 | continue; | |
3026 | ||
3027 | /* Get the length of the space/subspace name. */ | |
3028 | length = strlen (section->name); | |
3029 | ||
3030 | /* If there is not enough room for the next entry, then dump the | |
3031 | current buffer contents now. Each entry will take 4 bytes to | |
3032 | hold the string length + the string itself + null terminator. */ | |
3033 | if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE) | |
3034 | { | |
3035 | if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) | |
3036 | != p - tmp_space) | |
3037 | return false; | |
3038 | /* Reset to beginning of the buffer space. */ | |
3039 | p = tmp_space; | |
3040 | } | |
3041 | ||
3042 | /* First element in a string table entry is the length of the | |
3043 | string. Alignment issues are already handled. */ | |
3044 | bfd_put_32 (abfd, length, p); | |
3045 | p += 4; | |
3046 | strings_size += 4; | |
3047 | ||
3048 | /* Record the index in the space/subspace records. */ | |
3049 | if (som_is_space (section)) | |
3050 | som_section_data (section)->space_dict->name.n_strx = strings_size; | |
3051 | else | |
3052 | som_section_data (section)->subspace_dict->name.n_strx = strings_size; | |
3053 | ||
3054 | /* Next comes the string itself + a null terminator. */ | |
3055 | strcpy (p, section->name); | |
3056 | p += length + 1; | |
3057 | strings_size += length + 1; | |
3058 | ||
3059 | /* Always align up to the next word boundary. */ | |
3060 | while (strings_size % 4) | |
3061 | { | |
3062 | bfd_put_8 (abfd, 0, p); | |
3063 | p++; | |
3064 | strings_size++; | |
3065 | } | |
3066 | } | |
3067 | ||
3068 | /* Done with the space/subspace strings. Write out any information | |
3069 | contained in a partial block. */ | |
3070 | if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space) | |
3071 | return false; | |
3072 | *string_sizep = strings_size; | |
3073 | return true; | |
3074 | } | |
3075 | ||
3076 | /* Write out the symbol string table. */ | |
3077 | ||
3078 | static boolean | |
3079 | som_write_symbol_strings (abfd, current_offset, syms, num_syms, string_sizep, | |
3080 | compilation_unit) | |
3081 | bfd *abfd; | |
3082 | unsigned long current_offset; | |
3083 | asymbol **syms; | |
3084 | unsigned int num_syms; | |
3085 | unsigned int *string_sizep; | |
3086 | COMPUNIT *compilation_unit; | |
3087 | { | |
3088 | unsigned int i; | |
3089 | ||
3090 | /* Chunk of memory that we can use as buffer space, then throw | |
3091 | away. */ | |
3092 | unsigned char tmp_space[SOM_TMP_BUFSIZE]; | |
3093 | unsigned char *p; | |
3094 | unsigned int strings_size = 0; | |
3095 | unsigned char *comp[4]; | |
3096 | ||
3097 | /* This gets a bit gruesome because of the compilation unit. The | |
3098 | strings within the compilation unit are part of the symbol | |
3099 | strings, but don't have symbol_dictionary entries. So, manually | |
3100 | write them and update the compliation unit header. On input, the | |
3101 | compilation unit header contains local copies of the strings. | |
3102 | Move them aside. */ | |
3103 | if (compilation_unit) | |
3104 | { | |
3105 | comp[0] = compilation_unit->name.n_name; | |
3106 | comp[1] = compilation_unit->language_name.n_name; | |
3107 | comp[2] = compilation_unit->product_id.n_name; | |
3108 | comp[3] = compilation_unit->version_id.n_name; | |
3109 | } | |
3110 | ||
3111 | memset (tmp_space, 0, SOM_TMP_BUFSIZE); | |
3112 | p = tmp_space; | |
3113 | ||
3114 | /* Seek to the start of the space strings in preparation for writing | |
3115 | them out. */ | |
3116 | if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) | |
3117 | return false; | |
3118 | ||
3119 | if (compilation_unit) | |
3120 | { | |
3121 | for (i = 0; i < 4; i++) | |
3122 | { | |
3123 | int length = strlen (comp[i]); | |
3124 | ||
3125 | /* If there is not enough room for the next entry, then dump | |
3126 | the current buffer contents now. */ | |
3127 | if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE) | |
3128 | { | |
3129 | if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) | |
3130 | != p - tmp_space) | |
3131 | return false; | |
3132 | /* Reset to beginning of the buffer space. */ | |
3133 | p = tmp_space; | |
3134 | } | |
3135 | ||
3136 | /* First element in a string table entry is the length of | |
3137 | the string. This must always be 4 byte aligned. This is | |
3138 | also an appropriate time to fill in the string index | |
3139 | field in the symbol table entry. */ | |
3140 | bfd_put_32 (abfd, length, p); | |
3141 | strings_size += 4; | |
3142 | p += 4; | |
3143 | ||
3144 | /* Next comes the string itself + a null terminator. */ | |
3145 | strcpy (p, comp[i]); | |
3146 | ||
3147 | switch (i) | |
3148 | { | |
3149 | case 0: | |
3150 | obj_som_compilation_unit (abfd)->name.n_strx = strings_size; | |
3151 | break; | |
3152 | case 1: | |
3153 | obj_som_compilation_unit (abfd)->language_name.n_strx = | |
3154 | strings_size; | |
3155 | break; | |
3156 | case 2: | |
3157 | obj_som_compilation_unit (abfd)->product_id.n_strx = | |
3158 | strings_size; | |
3159 | break; | |
3160 | case 3: | |
3161 | obj_som_compilation_unit (abfd)->version_id.n_strx = | |
3162 | strings_size; | |
3163 | break; | |
3164 | } | |
3165 | ||
3166 | p += length + 1; | |
3167 | strings_size += length + 1; | |
3168 | ||
3169 | /* Always align up to the next word boundary. */ | |
3170 | while (strings_size % 4) | |
3171 | { | |
3172 | bfd_put_8 (abfd, 0, p); | |
3173 | strings_size++; | |
3174 | p++; | |
3175 | } | |
3176 | } | |
3177 | } | |
3178 | ||
3179 | for (i = 0; i < num_syms; i++) | |
3180 | { | |
3181 | int length = strlen (syms[i]->name); | |
3182 | ||
3183 | /* If there is not enough room for the next entry, then dump the | |
3184 | current buffer contents now. */ | |
3185 | if (p - tmp_space + 5 + length > SOM_TMP_BUFSIZE) | |
3186 | { | |
3187 | if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) | |
3188 | != p - tmp_space) | |
3189 | return false; | |
3190 | /* Reset to beginning of the buffer space. */ | |
3191 | p = tmp_space; | |
3192 | } | |
3193 | ||
3194 | /* First element in a string table entry is the length of the | |
3195 | string. This must always be 4 byte aligned. This is also | |
3196 | an appropriate time to fill in the string index field in the | |
3197 | symbol table entry. */ | |
3198 | bfd_put_32 (abfd, length, p); | |
3199 | strings_size += 4; | |
3200 | p += 4; | |
3201 | ||
3202 | /* Next comes the string itself + a null terminator. */ | |
3203 | strcpy (p, syms[i]->name); | |
3204 | ||
3205 | som_symbol_data(syms[i])->stringtab_offset = strings_size; | |
3206 | p += length + 1; | |
3207 | strings_size += length + 1; | |
3208 | ||
3209 | /* Always align up to the next word boundary. */ | |
3210 | while (strings_size % 4) | |
3211 | { | |
3212 | bfd_put_8 (abfd, 0, p); | |
3213 | strings_size++; | |
3214 | p++; | |
3215 | } | |
3216 | } | |
3217 | ||
3218 | /* Scribble out any partial block. */ | |
3219 | if (bfd_write ((PTR) &tmp_space[0], p - tmp_space, 1, abfd) != p - tmp_space) | |
3220 | return false; | |
3221 | ||
3222 | *string_sizep = strings_size; | |
3223 | return true; | |
3224 | } | |
3225 | ||
3226 | /* Compute variable information to be placed in the SOM headers, | |
3227 | space/subspace dictionaries, relocation streams, etc. Begin | |
3228 | writing parts of the object file. */ | |
3229 | ||
3230 | static boolean | |
3231 | som_begin_writing (abfd) | |
3232 | bfd *abfd; | |
3233 | { | |
3234 | unsigned long current_offset = 0; | |
3235 | int strings_size = 0; | |
3236 | unsigned int total_reloc_size = 0; | |
3237 | unsigned long num_spaces, num_subspaces, i; | |
3238 | asection *section; | |
3239 | unsigned int total_subspaces = 0; | |
3240 | struct som_exec_auxhdr *exec_header = NULL; | |
3241 | ||
3242 | /* The file header will always be first in an object file, | |
3243 | everything else can be in random locations. To keep things | |
3244 | "simple" BFD will lay out the object file in the manner suggested | |
3245 | by the PRO ABI for PA-RISC Systems. */ | |
3246 | ||
3247 | /* Before any output can really begin offsets for all the major | |
3248 | portions of the object file must be computed. So, starting | |
3249 | with the initial file header compute (and sometimes write) | |
3250 | each portion of the object file. */ | |
3251 | ||
3252 | /* Make room for the file header, it's contents are not complete | |
3253 | yet, so it can not be written at this time. */ | |
3254 | current_offset += sizeof (struct header); | |
3255 | ||
3256 | /* Any auxiliary headers will follow the file header. Right now | |
3257 | we support only the copyright and version headers. */ | |
3258 | obj_som_file_hdr (abfd)->aux_header_location = current_offset; | |
3259 | obj_som_file_hdr (abfd)->aux_header_size = 0; | |
3260 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3261 | { | |
3262 | /* Parts of the exec header will be filled in later, so | |
3263 | delay writing the header itself. Fill in the defaults, | |
3264 | and write it later. */ | |
3265 | current_offset += sizeof (struct som_exec_auxhdr); | |
3266 | obj_som_file_hdr (abfd)->aux_header_size | |
3267 | += sizeof (struct som_exec_auxhdr); | |
3268 | exec_header = obj_som_exec_hdr (abfd); | |
3269 | exec_header->som_auxhdr.type = EXEC_AUX_ID; | |
3270 | exec_header->som_auxhdr.length = 40; | |
3271 | } | |
3272 | if (obj_som_version_hdr (abfd) != NULL) | |
3273 | { | |
3274 | unsigned int len; | |
3275 | ||
3276 | if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) | |
3277 | return false; | |
3278 | ||
3279 | /* Write the aux_id structure and the string length. */ | |
3280 | len = sizeof (struct aux_id) + sizeof (unsigned int); | |
3281 | obj_som_file_hdr (abfd)->aux_header_size += len; | |
3282 | current_offset += len; | |
3283 | if (bfd_write ((PTR) obj_som_version_hdr (abfd), len, 1, abfd) != len) | |
3284 | return false; | |
3285 | ||
3286 | /* Write the version string. */ | |
3287 | len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int); | |
3288 | obj_som_file_hdr (abfd)->aux_header_size += len; | |
3289 | current_offset += len; | |
3290 | if (bfd_write ((PTR) obj_som_version_hdr (abfd)->user_string, | |
3291 | len, 1, abfd) != len) | |
3292 | return false; | |
3293 | } | |
3294 | ||
3295 | if (obj_som_copyright_hdr (abfd) != NULL) | |
3296 | { | |
3297 | unsigned int len; | |
3298 | ||
3299 | if (bfd_seek (abfd, current_offset, SEEK_SET) < 0) | |
3300 | return false; | |
3301 | ||
3302 | /* Write the aux_id structure and the string length. */ | |
3303 | len = sizeof (struct aux_id) + sizeof (unsigned int); | |
3304 | obj_som_file_hdr (abfd)->aux_header_size += len; | |
3305 | current_offset += len; | |
3306 | if (bfd_write ((PTR) obj_som_copyright_hdr (abfd), len, 1, abfd) != len) | |
3307 | return false; | |
3308 | ||
3309 | /* Write the copyright string. */ | |
3310 | len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int); | |
3311 | obj_som_file_hdr (abfd)->aux_header_size += len; | |
3312 | current_offset += len; | |
3313 | if (bfd_write ((PTR) obj_som_copyright_hdr (abfd)->copyright, | |
3314 | len, 1, abfd) != len) | |
3315 | return false; | |
3316 | } | |
3317 | ||
3318 | /* Next comes the initialization pointers; we have no initialization | |
3319 | pointers, so current offset does not change. */ | |
3320 | obj_som_file_hdr (abfd)->init_array_location = current_offset; | |
3321 | obj_som_file_hdr (abfd)->init_array_total = 0; | |
3322 | ||
3323 | /* Next are the space records. These are fixed length records. | |
3324 | ||
3325 | Count the number of spaces to determine how much room is needed | |
3326 | in the object file for the space records. | |
3327 | ||
3328 | The names of the spaces are stored in a separate string table, | |
3329 | and the index for each space into the string table is computed | |
3330 | below. Therefore, it is not possible to write the space headers | |
3331 | at this time. */ | |
3332 | num_spaces = som_count_spaces (abfd); | |
3333 | obj_som_file_hdr (abfd)->space_location = current_offset; | |
3334 | obj_som_file_hdr (abfd)->space_total = num_spaces; | |
3335 | current_offset += num_spaces * sizeof (struct space_dictionary_record); | |
3336 | ||
3337 | /* Next are the subspace records. These are fixed length records. | |
3338 | ||
3339 | Count the number of subspaes to determine how much room is needed | |
3340 | in the object file for the subspace records. | |
3341 | ||
3342 | A variety if fields in the subspace record are still unknown at | |
3343 | this time (index into string table, fixup stream location/size, etc). */ | |
3344 | num_subspaces = som_count_subspaces (abfd); | |
3345 | obj_som_file_hdr (abfd)->subspace_location = current_offset; | |
3346 | obj_som_file_hdr (abfd)->subspace_total = num_subspaces; | |
3347 | current_offset += num_subspaces * sizeof (struct subspace_dictionary_record); | |
3348 | ||
3349 | /* Next is the string table for the space/subspace names. We will | |
3350 | build and write the string table on the fly. At the same time | |
3351 | we will fill in the space/subspace name index fields. */ | |
3352 | ||
3353 | /* The string table needs to be aligned on a word boundary. */ | |
3354 | if (current_offset % 4) | |
3355 | current_offset += (4 - (current_offset % 4)); | |
3356 | ||
3357 | /* Mark the offset of the space/subspace string table in the | |
3358 | file header. */ | |
3359 | obj_som_file_hdr (abfd)->space_strings_location = current_offset; | |
3360 | ||
3361 | /* Scribble out the space strings. */ | |
3362 | if (som_write_space_strings (abfd, current_offset, &strings_size) == false) | |
3363 | return false; | |
3364 | ||
3365 | /* Record total string table size in the header and update the | |
3366 | current offset. */ | |
3367 | obj_som_file_hdr (abfd)->space_strings_size = strings_size; | |
3368 | current_offset += strings_size; | |
3369 | ||
3370 | /* Next is the compilation unit. */ | |
3371 | obj_som_file_hdr (abfd)->compiler_location = current_offset; | |
3372 | obj_som_file_hdr (abfd)->compiler_total = 0; | |
3373 | if (obj_som_compilation_unit (abfd)) | |
3374 | { | |
3375 | obj_som_file_hdr (abfd)->compiler_total = 1; | |
3376 | current_offset += COMPUNITSZ; | |
3377 | } | |
3378 | ||
3379 | /* Now compute the file positions for the loadable subspaces, taking | |
3380 | care to make sure everything stays properly aligned. */ | |
3381 | ||
3382 | section = abfd->sections; | |
3383 | for (i = 0; i < num_spaces; i++) | |
3384 | { | |
3385 | asection *subsection; | |
3386 | int first_subspace; | |
3387 | unsigned int subspace_offset = 0; | |
3388 | ||
3389 | /* Find a space. */ | |
3390 | while (!som_is_space (section)) | |
3391 | section = section->next; | |
3392 | ||
3393 | first_subspace = 1; | |
3394 | /* Now look for all its subspaces. */ | |
3395 | for (subsection = abfd->sections; | |
3396 | subsection != NULL; | |
3397 | subsection = subsection->next) | |
3398 | { | |
3399 | ||
3400 | if (!som_is_subspace (subsection) | |
3401 | || !som_is_container (section, subsection) | |
3402 | || (subsection->flags & SEC_ALLOC) == 0) | |
3403 | continue; | |
3404 | ||
3405 | /* If this is the first subspace in the space, and we are | |
3406 | building an executable, then take care to make sure all | |
3407 | the alignments are correct and update the exec header. */ | |
3408 | if (first_subspace | |
3409 | && (abfd->flags & (EXEC_P | DYNAMIC))) | |
3410 | { | |
3411 | /* Demand paged executables have each space aligned to a | |
3412 | page boundary. Sharable executables (write-protected | |
3413 | text) have just the private (aka data & bss) space aligned | |
3414 | to a page boundary. Ugh. Not true for HPUX. | |
3415 | ||
3416 | The HPUX kernel requires the text to always be page aligned | |
3417 | within the file regardless of the executable's type. */ | |
3418 | if (abfd->flags & (D_PAGED | DYNAMIC) | |
3419 | || (subsection->flags & SEC_CODE) | |
3420 | || ((abfd->flags & WP_TEXT) | |
3421 | && (subsection->flags & SEC_DATA))) | |
3422 | current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); | |
3423 | ||
3424 | /* Update the exec header. */ | |
3425 | if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0) | |
3426 | { | |
3427 | exec_header->exec_tmem = section->vma; | |
3428 | exec_header->exec_tfile = current_offset; | |
3429 | } | |
3430 | if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0) | |
3431 | { | |
3432 | exec_header->exec_dmem = section->vma; | |
3433 | exec_header->exec_dfile = current_offset; | |
3434 | } | |
3435 | ||
3436 | /* Keep track of exactly where we are within a particular | |
3437 | space. This is necessary as the braindamaged HPUX | |
3438 | loader will create holes between subspaces *and* | |
3439 | subspace alignments are *NOT* preserved. What a crock. */ | |
3440 | subspace_offset = subsection->vma; | |
3441 | ||
3442 | /* Only do this for the first subspace within each space. */ | |
3443 | first_subspace = 0; | |
3444 | } | |
3445 | else if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3446 | { | |
3447 | /* The braindamaged HPUX loader may have created a hole | |
3448 | between two subspaces. It is *not* sufficient to use | |
3449 | the alignment specifications within the subspaces to | |
3450 | account for these holes -- I've run into at least one | |
3451 | case where the loader left one code subspace unaligned | |
3452 | in a final executable. | |
3453 | ||
3454 | To combat this we keep a current offset within each space, | |
3455 | and use the subspace vma fields to detect and preserve | |
3456 | holes. What a crock! | |
3457 | ||
3458 | ps. This is not necessary for unloadable space/subspaces. */ | |
3459 | current_offset += subsection->vma - subspace_offset; | |
3460 | if (subsection->flags & SEC_CODE) | |
3461 | exec_header->exec_tsize += subsection->vma - subspace_offset; | |
3462 | else | |
3463 | exec_header->exec_dsize += subsection->vma - subspace_offset; | |
3464 | subspace_offset += subsection->vma - subspace_offset; | |
3465 | } | |
3466 | ||
3467 | ||
3468 | subsection->target_index = total_subspaces++; | |
3469 | /* This is real data to be loaded from the file. */ | |
3470 | if (subsection->flags & SEC_LOAD) | |
3471 | { | |
3472 | /* Update the size of the code & data. */ | |
3473 | if (abfd->flags & (EXEC_P | DYNAMIC) | |
3474 | && subsection->flags & SEC_CODE) | |
3475 | exec_header->exec_tsize += subsection->_cooked_size; | |
3476 | else if (abfd->flags & (EXEC_P | DYNAMIC) | |
3477 | && subsection->flags & SEC_DATA) | |
3478 | exec_header->exec_dsize += subsection->_cooked_size; | |
3479 | som_section_data (subsection)->subspace_dict->file_loc_init_value | |
3480 | = current_offset; | |
3481 | subsection->filepos = current_offset; | |
3482 | current_offset += bfd_section_size (abfd, subsection); | |
3483 | subspace_offset += bfd_section_size (abfd, subsection); | |
3484 | } | |
3485 | /* Looks like uninitialized data. */ | |
3486 | else | |
3487 | { | |
3488 | /* Update the size of the bss section. */ | |
3489 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3490 | exec_header->exec_bsize += subsection->_cooked_size; | |
3491 | ||
3492 | som_section_data (subsection)->subspace_dict->file_loc_init_value | |
3493 | = 0; | |
3494 | som_section_data (subsection)->subspace_dict-> | |
3495 | initialization_length = 0; | |
3496 | } | |
3497 | } | |
3498 | /* Goto the next section. */ | |
3499 | section = section->next; | |
3500 | } | |
3501 | ||
3502 | /* Finally compute the file positions for unloadable subspaces. | |
3503 | If building an executable, start the unloadable stuff on its | |
3504 | own page. */ | |
3505 | ||
3506 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3507 | current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); | |
3508 | ||
3509 | obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset; | |
3510 | section = abfd->sections; | |
3511 | for (i = 0; i < num_spaces; i++) | |
3512 | { | |
3513 | asection *subsection; | |
3514 | ||
3515 | /* Find a space. */ | |
3516 | while (!som_is_space (section)) | |
3517 | section = section->next; | |
3518 | ||
3519 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3520 | current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); | |
3521 | ||
3522 | /* Now look for all its subspaces. */ | |
3523 | for (subsection = abfd->sections; | |
3524 | subsection != NULL; | |
3525 | subsection = subsection->next) | |
3526 | { | |
3527 | ||
3528 | if (!som_is_subspace (subsection) | |
3529 | || !som_is_container (section, subsection) | |
3530 | || (subsection->flags & SEC_ALLOC) != 0) | |
3531 | continue; | |
3532 | ||
3533 | subsection->target_index = total_subspaces++; | |
3534 | /* This is real data to be loaded from the file. */ | |
3535 | if ((subsection->flags & SEC_LOAD) == 0) | |
3536 | { | |
3537 | som_section_data (subsection)->subspace_dict->file_loc_init_value | |
3538 | = current_offset; | |
3539 | subsection->filepos = current_offset; | |
3540 | current_offset += bfd_section_size (abfd, subsection); | |
3541 | } | |
3542 | /* Looks like uninitialized data. */ | |
3543 | else | |
3544 | { | |
3545 | som_section_data (subsection)->subspace_dict->file_loc_init_value | |
3546 | = 0; | |
3547 | som_section_data (subsection)->subspace_dict-> | |
3548 | initialization_length = bfd_section_size (abfd, subsection); | |
3549 | } | |
3550 | } | |
3551 | /* Goto the next section. */ | |
3552 | section = section->next; | |
3553 | } | |
3554 | ||
3555 | /* If building an executable, then make sure to seek to and write | |
3556 | one byte at the end of the file to make sure any necessary | |
3557 | zeros are filled in. Ugh. */ | |
3558 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3559 | current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE); | |
3560 | if (bfd_seek (abfd, current_offset - 1, SEEK_SET) < 0) | |
3561 | return false; | |
3562 | if (bfd_write ((PTR) "", 1, 1, abfd) != 1) | |
3563 | return false; | |
3564 | ||
3565 | obj_som_file_hdr (abfd)->unloadable_sp_size | |
3566 | = current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location; | |
3567 | ||
3568 | /* Loader fixups are not supported in any way shape or form. */ | |
3569 | obj_som_file_hdr (abfd)->loader_fixup_location = 0; | |
3570 | obj_som_file_hdr (abfd)->loader_fixup_total = 0; | |
3571 | ||
3572 | /* Done. Store the total size of the SOM so far. */ | |
3573 | obj_som_file_hdr (abfd)->som_length = current_offset; | |
3574 | ||
3575 | return true; | |
3576 | } | |
3577 | ||
3578 | /* Finally, scribble out the various headers to the disk. */ | |
3579 | ||
3580 | static boolean | |
3581 | som_finish_writing (abfd) | |
3582 | bfd *abfd; | |
3583 | { | |
3584 | int num_spaces = som_count_spaces (abfd); | |
3585 | asymbol **syms = bfd_get_outsymbols (abfd); | |
3586 | int i, num_syms, strings_size; | |
3587 | int subspace_index = 0; | |
3588 | file_ptr location; | |
3589 | asection *section; | |
3590 | unsigned long current_offset; | |
3591 | unsigned int total_reloc_size; | |
3592 | ||
3593 | /* Next is the symbol table. These are fixed length records. | |
3594 | ||
3595 | Count the number of symbols to determine how much room is needed | |
3596 | in the object file for the symbol table. | |
3597 | ||
3598 | The names of the symbols are stored in a separate string table, | |
3599 | and the index for each symbol name into the string table is computed | |
3600 | below. Therefore, it is not possible to write the symbol table | |
3601 | at this time. | |
3602 | ||
3603 | These used to be output before the subspace contents, but they | |
3604 | were moved here to work around a stupid bug in the hpux linker | |
3605 | (fixed in hpux10). */ | |
3606 | current_offset = obj_som_file_hdr (abfd)->som_length; | |
3607 | ||
3608 | /* Make sure we're on a word boundary. */ | |
3609 | if (current_offset % 4) | |
3610 | current_offset += (4 - (current_offset % 4)); | |
3611 | ||
3612 | num_syms = bfd_get_symcount (abfd); | |
3613 | obj_som_file_hdr (abfd)->symbol_location = current_offset; | |
3614 | obj_som_file_hdr (abfd)->symbol_total = num_syms; | |
3615 | current_offset += num_syms * sizeof (struct symbol_dictionary_record); | |
3616 | ||
3617 | /* Next are the symbol strings. | |
3618 | Align them to a word boundary. */ | |
3619 | if (current_offset % 4) | |
3620 | current_offset += (4 - (current_offset % 4)); | |
3621 | obj_som_file_hdr (abfd)->symbol_strings_location = current_offset; | |
3622 | ||
3623 | /* Scribble out the symbol strings. */ | |
3624 | if (som_write_symbol_strings (abfd, current_offset, syms, | |
3625 | num_syms, &strings_size, | |
3626 | obj_som_compilation_unit (abfd)) | |
3627 | == false) | |
3628 | return false; | |
3629 | ||
3630 | /* Record total string table size in header and update the | |
3631 | current offset. */ | |
3632 | obj_som_file_hdr (abfd)->symbol_strings_size = strings_size; | |
3633 | current_offset += strings_size; | |
3634 | ||
3635 | /* Do prep work before handling fixups. */ | |
3636 | som_prep_for_fixups (abfd, | |
3637 | bfd_get_outsymbols (abfd), | |
3638 | bfd_get_symcount (abfd)); | |
3639 | ||
3640 | /* At the end of the file is the fixup stream which starts on a | |
3641 | word boundary. */ | |
3642 | if (current_offset % 4) | |
3643 | current_offset += (4 - (current_offset % 4)); | |
3644 | obj_som_file_hdr (abfd)->fixup_request_location = current_offset; | |
3645 | ||
3646 | /* Write the fixups and update fields in subspace headers which | |
3647 | relate to the fixup stream. */ | |
3648 | if (som_write_fixups (abfd, current_offset, &total_reloc_size) == false) | |
3649 | return false; | |
3650 | ||
3651 | /* Record the total size of the fixup stream in the file header. */ | |
3652 | obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size; | |
3653 | ||
3654 | /* Done. Store the total size of the SOM. */ | |
3655 | obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size; | |
3656 | ||
3657 | /* Now that the symbol table information is complete, build and | |
3658 | write the symbol table. */ | |
3659 | if (som_build_and_write_symbol_table (abfd) == false) | |
3660 | return false; | |
3661 | ||
3662 | /* Subspaces are written first so that we can set up information | |
3663 | about them in their containing spaces as the subspace is written. */ | |
3664 | ||
3665 | /* Seek to the start of the subspace dictionary records. */ | |
3666 | location = obj_som_file_hdr (abfd)->subspace_location; | |
3667 | if (bfd_seek (abfd, location, SEEK_SET) < 0) | |
3668 | return false; | |
3669 | ||
3670 | section = abfd->sections; | |
3671 | /* Now for each loadable space write out records for its subspaces. */ | |
3672 | for (i = 0; i < num_spaces; i++) | |
3673 | { | |
3674 | asection *subsection; | |
3675 | ||
3676 | /* Find a space. */ | |
3677 | while (!som_is_space (section)) | |
3678 | section = section->next; | |
3679 | ||
3680 | /* Now look for all its subspaces. */ | |
3681 | for (subsection = abfd->sections; | |
3682 | subsection != NULL; | |
3683 | subsection = subsection->next) | |
3684 | { | |
3685 | ||
3686 | /* Skip any section which does not correspond to a space | |
3687 | or subspace. Or does not have SEC_ALLOC set (and therefore | |
3688 | has no real bits on the disk). */ | |
3689 | if (!som_is_subspace (subsection) | |
3690 | || !som_is_container (section, subsection) | |
3691 | || (subsection->flags & SEC_ALLOC) == 0) | |
3692 | continue; | |
3693 | ||
3694 | /* If this is the first subspace for this space, then save | |
3695 | the index of the subspace in its containing space. Also | |
3696 | set "is_loadable" in the containing space. */ | |
3697 | ||
3698 | if (som_section_data (section)->space_dict->subspace_quantity == 0) | |
3699 | { | |
3700 | som_section_data (section)->space_dict->is_loadable = 1; | |
3701 | som_section_data (section)->space_dict->subspace_index | |
3702 | = subspace_index; | |
3703 | } | |
3704 | ||
3705 | /* Increment the number of subspaces seen and the number of | |
3706 | subspaces contained within the current space. */ | |
3707 | subspace_index++; | |
3708 | som_section_data (section)->space_dict->subspace_quantity++; | |
3709 | ||
3710 | /* Mark the index of the current space within the subspace's | |
3711 | dictionary record. */ | |
3712 | som_section_data (subsection)->subspace_dict->space_index = i; | |
3713 | ||
3714 | /* Dump the current subspace header. */ | |
3715 | if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict, | |
3716 | sizeof (struct subspace_dictionary_record), 1, abfd) | |
3717 | != sizeof (struct subspace_dictionary_record)) | |
3718 | return false; | |
3719 | } | |
3720 | /* Goto the next section. */ | |
3721 | section = section->next; | |
3722 | } | |
3723 | ||
3724 | /* Now repeat the process for unloadable subspaces. */ | |
3725 | section = abfd->sections; | |
3726 | /* Now for each space write out records for its subspaces. */ | |
3727 | for (i = 0; i < num_spaces; i++) | |
3728 | { | |
3729 | asection *subsection; | |
3730 | ||
3731 | /* Find a space. */ | |
3732 | while (!som_is_space (section)) | |
3733 | section = section->next; | |
3734 | ||
3735 | /* Now look for all its subspaces. */ | |
3736 | for (subsection = abfd->sections; | |
3737 | subsection != NULL; | |
3738 | subsection = subsection->next) | |
3739 | { | |
3740 | ||
3741 | /* Skip any section which does not correspond to a space or | |
3742 | subspace, or which SEC_ALLOC set (and therefore handled | |
3743 | in the loadable spaces/subspaces code above). */ | |
3744 | ||
3745 | if (!som_is_subspace (subsection) | |
3746 | || !som_is_container (section, subsection) | |
3747 | || (subsection->flags & SEC_ALLOC) != 0) | |
3748 | continue; | |
3749 | ||
3750 | /* If this is the first subspace for this space, then save | |
3751 | the index of the subspace in its containing space. Clear | |
3752 | "is_loadable". */ | |
3753 | ||
3754 | if (som_section_data (section)->space_dict->subspace_quantity == 0) | |
3755 | { | |
3756 | som_section_data (section)->space_dict->is_loadable = 0; | |
3757 | som_section_data (section)->space_dict->subspace_index | |
3758 | = subspace_index; | |
3759 | } | |
3760 | ||
3761 | /* Increment the number of subspaces seen and the number of | |
3762 | subspaces contained within the current space. */ | |
3763 | som_section_data (section)->space_dict->subspace_quantity++; | |
3764 | subspace_index++; | |
3765 | ||
3766 | /* Mark the index of the current space within the subspace's | |
3767 | dictionary record. */ | |
3768 | som_section_data (subsection)->subspace_dict->space_index = i; | |
3769 | ||
3770 | /* Dump this subspace header. */ | |
3771 | if (bfd_write ((PTR) som_section_data (subsection)->subspace_dict, | |
3772 | sizeof (struct subspace_dictionary_record), 1, abfd) | |
3773 | != sizeof (struct subspace_dictionary_record)) | |
3774 | return false; | |
3775 | } | |
3776 | /* Goto the next section. */ | |
3777 | section = section->next; | |
3778 | } | |
3779 | ||
3780 | /* All the subspace dictiondary records are written, and all the | |
3781 | fields are set up in the space dictionary records. | |
3782 | ||
3783 | Seek to the right location and start writing the space | |
3784 | dictionary records. */ | |
3785 | location = obj_som_file_hdr (abfd)->space_location; | |
3786 | if (bfd_seek (abfd, location, SEEK_SET) < 0) | |
3787 | return false; | |
3788 | ||
3789 | section = abfd->sections; | |
3790 | for (i = 0; i < num_spaces; i++) | |
3791 | { | |
3792 | ||
3793 | /* Find a space. */ | |
3794 | while (!som_is_space (section)) | |
3795 | section = section->next; | |
3796 | ||
3797 | /* Dump its header */ | |
3798 | if (bfd_write ((PTR) som_section_data (section)->space_dict, | |
3799 | sizeof (struct space_dictionary_record), 1, abfd) | |
3800 | != sizeof (struct space_dictionary_record)) | |
3801 | return false; | |
3802 | ||
3803 | /* Goto the next section. */ | |
3804 | section = section->next; | |
3805 | } | |
3806 | ||
3807 | /* Write the compilation unit record if there is one. */ | |
3808 | if (obj_som_compilation_unit (abfd)) | |
3809 | { | |
3810 | location = obj_som_file_hdr (abfd)->compiler_location; | |
3811 | if (bfd_seek (abfd, location, SEEK_SET) < 0) | |
3812 | return false; | |
3813 | ||
3814 | if (bfd_write ((PTR) obj_som_compilation_unit (abfd), | |
3815 | COMPUNITSZ, 1, abfd) != COMPUNITSZ) | |
3816 | return false; | |
3817 | } | |
3818 | ||
3819 | /* Setting of the system_id has to happen very late now that copying of | |
3820 | BFD private data happens *after* section contents are set. */ | |
3821 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3822 | obj_som_file_hdr(abfd)->system_id = obj_som_exec_data (abfd)->system_id; | |
3823 | else if (bfd_get_mach (abfd) == pa20) | |
3824 | obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC2_0; | |
3825 | else if (bfd_get_mach (abfd) == pa11) | |
3826 | obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_1; | |
3827 | else | |
3828 | obj_som_file_hdr(abfd)->system_id = CPU_PA_RISC1_0; | |
3829 | ||
3830 | /* Compute the checksum for the file header just before writing | |
3831 | the header to disk. */ | |
3832 | obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd); | |
3833 | ||
3834 | /* Only thing left to do is write out the file header. It is always | |
3835 | at location zero. Seek there and write it. */ | |
3836 | if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) < 0) | |
3837 | return false; | |
3838 | if (bfd_write ((PTR) obj_som_file_hdr (abfd), | |
3839 | sizeof (struct header), 1, abfd) | |
3840 | != sizeof (struct header)) | |
3841 | return false; | |
3842 | ||
3843 | /* Now write the exec header. */ | |
3844 | if (abfd->flags & (EXEC_P | DYNAMIC)) | |
3845 | { | |
3846 | long tmp, som_length; | |
3847 | struct som_exec_auxhdr *exec_header; | |
3848 | ||
3849 | exec_header = obj_som_exec_hdr (abfd); | |
3850 | exec_header->exec_entry = bfd_get_start_address (abfd); | |
3851 | exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags; | |
3852 | ||
3853 | /* Oh joys. Ram some of the BSS data into the DATA section | |
3854 | to be compatable with how the hp linker makes objects | |
3855 | (saves memory space). */ | |
3856 | tmp = exec_header->exec_dsize; | |
3857 | tmp = SOM_ALIGN (tmp, PA_PAGESIZE); | |
3858 | exec_header->exec_bsize -= (tmp - exec_header->exec_dsize); | |
3859 | if (exec_header->exec_bsize < 0) | |
3860 | exec_header->exec_bsize = 0; | |
3861 | exec_header->exec_dsize = tmp; | |
3862 | ||
3863 | /* Now perform some sanity checks. The idea is to catch bogons now and | |
3864 | inform the user, instead of silently generating a bogus file. */ | |
3865 | som_length = obj_som_file_hdr (abfd)->som_length; | |
3866 | if (exec_header->exec_tfile + exec_header->exec_tsize > som_length | |
3867 | || exec_header->exec_dfile + exec_header->exec_dsize > som_length) | |
3868 | { | |
3869 | bfd_set_error (bfd_error_bad_value); | |
3870 | return false; | |
3871 | } | |
3872 | ||
3873 | if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location, | |
3874 | SEEK_SET) < 0) | |
3875 | return false; | |
3876 | ||
3877 | if (bfd_write ((PTR) exec_header, AUX_HDR_SIZE, 1, abfd) | |
3878 | != AUX_HDR_SIZE) | |
3879 | return false; | |
3880 | } | |
3881 | return true; | |
3882 | } | |
3883 | ||
3884 | /* Compute and return the checksum for a SOM file header. */ | |
3885 | ||
3886 | static unsigned long | |
3887 | som_compute_checksum (abfd) | |
3888 | bfd *abfd; | |
3889 | { | |
3890 | unsigned long checksum, count, i; | |
3891 | unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd); | |
3892 | ||
3893 | checksum = 0; | |
3894 | count = sizeof (struct header) / sizeof (unsigned long); | |
3895 | for (i = 0; i < count; i++) | |
3896 | checksum ^= *(buffer + i); | |
3897 | ||
3898 | return checksum; | |
3899 | } | |
3900 | ||
3901 | static void | |
3902 | som_bfd_derive_misc_symbol_info (abfd, sym, info) | |
3903 | bfd *abfd; | |
3904 | asymbol *sym; | |
3905 | struct som_misc_symbol_info *info; | |
3906 | { | |
3907 | /* Initialize. */ | |
3908 | memset (info, 0, sizeof (struct som_misc_symbol_info)); | |
3909 | ||
3910 | /* The HP SOM linker requires detailed type information about | |
3911 | all symbols (including undefined symbols!). Unfortunately, | |
3912 | the type specified in an import/export statement does not | |
3913 | always match what the linker wants. Severe braindamage. */ | |
3914 | ||
3915 | /* Section symbols will not have a SOM symbol type assigned to | |
3916 | them yet. Assign all section symbols type ST_DATA. */ | |
3917 | if (sym->flags & BSF_SECTION_SYM) | |
3918 | info->symbol_type = ST_DATA; | |
3919 | else | |
3920 | { | |
3921 | /* Common symbols must have scope SS_UNSAT and type | |
3922 | ST_STORAGE or the linker will choke. */ | |
3923 | if (bfd_is_com_section (sym->section)) | |
3924 | { | |
3925 | info->symbol_scope = SS_UNSAT; | |
3926 | info->symbol_type = ST_STORAGE; | |
3927 | } | |
3928 | ||
3929 | /* It is possible to have a symbol without an associated | |
3930 | type. This happens if the user imported the symbol | |
3931 | without a type and the symbol was never defined | |
3932 | locally. If BSF_FUNCTION is set for this symbol, then | |
3933 | assign it type ST_CODE (the HP linker requires undefined | |
3934 | external functions to have type ST_CODE rather than ST_ENTRY). */ | |
3935 | else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN | |
3936 | || som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) | |
3937 | && bfd_is_und_section (sym->section) | |
3938 | && sym->flags & BSF_FUNCTION) | |
3939 | info->symbol_type = ST_CODE; | |
3940 | ||
3941 | /* Handle function symbols which were defined in this file. | |
3942 | They should have type ST_ENTRY. Also retrieve the argument | |
3943 | relocation bits from the SOM backend information. */ | |
3944 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY | |
3945 | || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE | |
3946 | && (sym->flags & BSF_FUNCTION)) | |
3947 | || (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN | |
3948 | && (sym->flags & BSF_FUNCTION))) | |
3949 | { | |
3950 | info->symbol_type = ST_ENTRY; | |
3951 | info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc; | |
3952 | info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level; | |
3953 | } | |
3954 | ||
3955 | /* For unknown symbols set the symbol's type based on the symbol's | |
3956 | section (ST_DATA for DATA sections, ST_CODE for CODE sections). */ | |
3957 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) | |
3958 | { | |
3959 | if (sym->section->flags & SEC_CODE) | |
3960 | info->symbol_type = ST_CODE; | |
3961 | else | |
3962 | info->symbol_type = ST_DATA; | |
3963 | } | |
3964 | ||
3965 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN) | |
3966 | info->symbol_type = ST_DATA; | |
3967 | ||
3968 | /* From now on it's a very simple mapping. */ | |
3969 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE) | |
3970 | info->symbol_type = ST_ABSOLUTE; | |
3971 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE) | |
3972 | info->symbol_type = ST_CODE; | |
3973 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA) | |
3974 | info->symbol_type = ST_DATA; | |
3975 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE) | |
3976 | info->symbol_type = ST_MILLICODE; | |
3977 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL) | |
3978 | info->symbol_type = ST_PLABEL; | |
3979 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG) | |
3980 | info->symbol_type = ST_PRI_PROG; | |
3981 | else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG) | |
3982 | info->symbol_type = ST_SEC_PROG; | |
3983 | } | |
3984 | ||
3985 | /* Now handle the symbol's scope. Exported data which is not | |
3986 | in the common section has scope SS_UNIVERSAL. Note scope | |
3987 | of common symbols was handled earlier! */ | |
3988 | if (bfd_is_und_section (sym->section)) | |
3989 | info->symbol_scope = SS_UNSAT; | |
3990 | else if (sym->flags & BSF_EXPORT && ! bfd_is_com_section (sym->section)) | |
3991 | info->symbol_scope = SS_UNIVERSAL; | |
3992 | /* Anything else which is not in the common section has scope | |
3993 | SS_LOCAL. */ | |
3994 | else if (! bfd_is_com_section (sym->section)) | |
3995 | info->symbol_scope = SS_LOCAL; | |
3996 | ||
3997 | /* Now set the symbol_info field. It has no real meaning | |
3998 | for undefined or common symbols, but the HP linker will | |
3999 | choke if it's not set to some "reasonable" value. We | |
4000 | use zero as a reasonable value. */ | |
4001 | if (bfd_is_com_section (sym->section) | |
4002 | || bfd_is_und_section (sym->section) | |
4003 | || bfd_is_abs_section (sym->section)) | |
4004 | info->symbol_info = 0; | |
4005 | /* For all other symbols, the symbol_info field contains the | |
4006 | subspace index of the space this symbol is contained in. */ | |
4007 | else | |
4008 | info->symbol_info = sym->section->target_index; | |
4009 | ||
4010 | /* Set the symbol's value. */ | |
4011 | info->symbol_value = sym->value + sym->section->vma; | |
4012 | } | |
4013 | ||
4014 | /* Build and write, in one big chunk, the entire symbol table for | |
4015 | this BFD. */ | |
4016 | ||
4017 | static boolean | |
4018 | som_build_and_write_symbol_table (abfd) | |
4019 | bfd *abfd; | |
4020 | { | |
4021 | unsigned int num_syms = bfd_get_symcount (abfd); | |
4022 | file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location; | |
4023 | asymbol **bfd_syms = obj_som_sorted_syms (abfd); | |
4024 | struct symbol_dictionary_record *som_symtab = NULL; | |
4025 | int i, symtab_size; | |
4026 | ||
4027 | /* Compute total symbol table size and allocate a chunk of memory | |
4028 | to hold the symbol table as we build it. */ | |
4029 | symtab_size = num_syms * sizeof (struct symbol_dictionary_record); | |
4030 | som_symtab = (struct symbol_dictionary_record *) bfd_malloc (symtab_size); | |
4031 | if (som_symtab == NULL && symtab_size != 0) | |
4032 | goto error_return; | |
4033 | memset (som_symtab, 0, symtab_size); | |
4034 | ||
4035 | /* Walk over each symbol. */ | |
4036 | for (i = 0; i < num_syms; i++) | |
4037 | { | |
4038 | struct som_misc_symbol_info info; | |
4039 | ||
4040 | /* This is really an index into the symbol strings table. | |
4041 | By the time we get here, the index has already been | |
4042 | computed and stored into the name field in the BFD symbol. */ | |
4043 | som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset; | |
4044 | ||
4045 | /* Derive SOM information from the BFD symbol. */ | |
4046 | som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info); | |
4047 | ||
4048 | /* Now use it. */ | |
4049 | som_symtab[i].symbol_type = info.symbol_type; | |
4050 | som_symtab[i].symbol_scope = info.symbol_scope; | |
4051 | som_symtab[i].arg_reloc = info.arg_reloc; | |
4052 | som_symtab[i].symbol_info = info.symbol_info; | |
4053 | som_symtab[i].xleast = 3; | |
4054 | som_symtab[i].symbol_value = info.symbol_value | info.priv_level; | |
4055 | } | |
4056 | ||
4057 | /* Everything is ready, seek to the right location and | |
4058 | scribble out the symbol table. */ | |
4059 | if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0) | |
4060 | return false; | |
4061 | ||
4062 | if (bfd_write ((PTR) som_symtab, symtab_size, 1, abfd) != symtab_size) | |
4063 | goto error_return; | |
4064 | ||
4065 | if (som_symtab != NULL) | |
4066 | free (som_symtab); | |
4067 | return true; | |
4068 | error_return: | |
4069 | if (som_symtab != NULL) | |
4070 | free (som_symtab); | |
4071 | return false; | |
4072 | } | |
4073 | ||
4074 | /* Write an object in SOM format. */ | |
4075 | ||
4076 | static boolean | |
4077 | som_write_object_contents (abfd) | |
4078 | bfd *abfd; | |
4079 | { | |
4080 | if (abfd->output_has_begun == false) | |
4081 | { | |
4082 | /* Set up fixed parts of the file, space, and subspace headers. | |
4083 | Notify the world that output has begun. */ | |
4084 | som_prep_headers (abfd); | |
4085 | abfd->output_has_begun = true; | |
4086 | /* Start writing the object file. This include all the string | |
4087 | tables, fixup streams, and other portions of the object file. */ | |
4088 | som_begin_writing (abfd); | |
4089 | } | |
4090 | ||
4091 | return (som_finish_writing (abfd)); | |
4092 | } | |
4093 | ||
4094 | \f | |
4095 | /* Read and save the string table associated with the given BFD. */ | |
4096 | ||
4097 | static boolean | |
4098 | som_slurp_string_table (abfd) | |
4099 | bfd *abfd; | |
4100 | { | |
4101 | char *stringtab; | |
4102 | ||
4103 | /* Use the saved version if its available. */ | |
4104 | if (obj_som_stringtab (abfd) != NULL) | |
4105 | return true; | |
4106 | ||
4107 | /* I don't think this can currently happen, and I'm not sure it should | |
4108 | really be an error, but it's better than getting unpredictable results | |
4109 | from the host's malloc when passed a size of zero. */ | |
4110 | if (obj_som_stringtab_size (abfd) == 0) | |
4111 | { | |
4112 | bfd_set_error (bfd_error_no_symbols); | |
4113 | return false; | |
4114 | } | |
4115 | ||
4116 | /* Allocate and read in the string table. */ | |
4117 | stringtab = bfd_malloc (obj_som_stringtab_size (abfd)); | |
4118 | if (stringtab == NULL) | |
4119 | return false; | |
4120 | memset (stringtab, 0, obj_som_stringtab_size (abfd)); | |
4121 | ||
4122 | if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) < 0) | |
4123 | return false; | |
4124 | ||
4125 | if (bfd_read (stringtab, obj_som_stringtab_size (abfd), 1, abfd) | |
4126 | != obj_som_stringtab_size (abfd)) | |
4127 | return false; | |
4128 | ||
4129 | /* Save our results and return success. */ | |
4130 | obj_som_stringtab (abfd) = stringtab; | |
4131 | return true; | |
4132 | } | |
4133 | ||
4134 | /* Return the amount of data (in bytes) required to hold the symbol | |
4135 | table for this object. */ | |
4136 | ||
4137 | static long | |
4138 | som_get_symtab_upper_bound (abfd) | |
4139 | bfd *abfd; | |
4140 | { | |
4141 | if (!som_slurp_symbol_table (abfd)) | |
4142 | return -1; | |
4143 | ||
4144 | return (bfd_get_symcount (abfd) + 1) * (sizeof (asymbol *)); | |
4145 | } | |
4146 | ||
4147 | /* Convert from a SOM subspace index to a BFD section. */ | |
4148 | ||
4149 | static asection * | |
4150 | bfd_section_from_som_symbol (abfd, symbol) | |
4151 | bfd *abfd; | |
4152 | struct symbol_dictionary_record *symbol; | |
4153 | { | |
4154 | asection *section; | |
4155 | ||
4156 | /* The meaning of the symbol_info field changes for functions | |
4157 | within executables. So only use the quick symbol_info mapping for | |
4158 | incomplete objects and non-function symbols in executables. */ | |
4159 | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 | |
4160 | || (symbol->symbol_type != ST_ENTRY | |
4161 | && symbol->symbol_type != ST_PRI_PROG | |
4162 | && symbol->symbol_type != ST_SEC_PROG | |
4163 | && symbol->symbol_type != ST_MILLICODE)) | |
4164 | { | |
4165 | unsigned int index = symbol->symbol_info; | |
4166 | for (section = abfd->sections; section != NULL; section = section->next) | |
4167 | if (section->target_index == index && som_is_subspace (section)) | |
4168 | return section; | |
4169 | ||
4170 | /* Could be a symbol from an external library (such as an OMOS | |
4171 | shared library). Don't abort. */ | |
4172 | return bfd_abs_section_ptr; | |
4173 | ||
4174 | } | |
4175 | else | |
4176 | { | |
4177 | unsigned int value = symbol->symbol_value; | |
4178 | ||
4179 | /* For executables we will have to use the symbol's address and | |
4180 | find out what section would contain that address. Yuk. */ | |
4181 | for (section = abfd->sections; section; section = section->next) | |
4182 | { | |
4183 | if (value >= section->vma | |
4184 | && value <= section->vma + section->_cooked_size | |
4185 | && som_is_subspace (section)) | |
4186 | return section; | |
4187 | } | |
4188 | ||
4189 | /* Could be a symbol from an external library (such as an OMOS | |
4190 | shared library). Don't abort. */ | |
4191 | return bfd_abs_section_ptr; | |
4192 | ||
4193 | } | |
4194 | } | |
4195 | ||
4196 | /* Read and save the symbol table associated with the given BFD. */ | |
4197 | ||
4198 | static unsigned int | |
4199 | som_slurp_symbol_table (abfd) | |
4200 | bfd *abfd; | |
4201 | { | |
4202 | int symbol_count = bfd_get_symcount (abfd); | |
4203 | int symsize = sizeof (struct symbol_dictionary_record); | |
4204 | char *stringtab; | |
4205 | struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp; | |
4206 | som_symbol_type *sym, *symbase; | |
4207 | ||
4208 | /* Return saved value if it exists. */ | |
4209 | if (obj_som_symtab (abfd) != NULL) | |
4210 | goto successful_return; | |
4211 | ||
4212 | /* Special case. This is *not* an error. */ | |
4213 | if (symbol_count == 0) | |
4214 | goto successful_return; | |
4215 | ||
4216 | if (!som_slurp_string_table (abfd)) | |
4217 | goto error_return; | |
4218 | ||
4219 | stringtab = obj_som_stringtab (abfd); | |
4220 | ||
4221 | symbase = ((som_symbol_type *) | |
4222 | bfd_malloc (symbol_count * sizeof (som_symbol_type))); | |
4223 | if (symbase == NULL) | |
4224 | goto error_return; | |
4225 | memset (symbase, 0, symbol_count * sizeof (som_symbol_type)); | |
4226 | ||
4227 | /* Read in the external SOM representation. */ | |
4228 | buf = bfd_malloc (symbol_count * symsize); | |
4229 | if (buf == NULL && symbol_count * symsize != 0) | |
4230 | goto error_return; | |
4231 | if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) < 0) | |
4232 | goto error_return; | |
4233 | if (bfd_read (buf, symbol_count * symsize, 1, abfd) | |
4234 | != symbol_count * symsize) | |
4235 | goto error_return; | |
4236 | ||
4237 | /* Iterate over all the symbols and internalize them. */ | |
4238 | endbufp = buf + symbol_count; | |
4239 | for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp) | |
4240 | { | |
4241 | ||
4242 | /* I don't think we care about these. */ | |
4243 | if (bufp->symbol_type == ST_SYM_EXT | |
4244 | || bufp->symbol_type == ST_ARG_EXT) | |
4245 | continue; | |
4246 | ||
4247 | /* Set some private data we care about. */ | |
4248 | if (bufp->symbol_type == ST_NULL) | |
4249 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; | |
4250 | else if (bufp->symbol_type == ST_ABSOLUTE) | |
4251 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE; | |
4252 | else if (bufp->symbol_type == ST_DATA) | |
4253 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA; | |
4254 | else if (bufp->symbol_type == ST_CODE) | |
4255 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE; | |
4256 | else if (bufp->symbol_type == ST_PRI_PROG) | |
4257 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG; | |
4258 | else if (bufp->symbol_type == ST_SEC_PROG) | |
4259 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG; | |
4260 | else if (bufp->symbol_type == ST_ENTRY) | |
4261 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY; | |
4262 | else if (bufp->symbol_type == ST_MILLICODE) | |
4263 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE; | |
4264 | else if (bufp->symbol_type == ST_PLABEL) | |
4265 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL; | |
4266 | else | |
4267 | som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN; | |
4268 | som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc; | |
4269 | ||
4270 | /* Some reasonable defaults. */ | |
4271 | sym->symbol.the_bfd = abfd; | |
4272 | sym->symbol.name = bufp->name.n_strx + stringtab; | |
4273 | sym->symbol.value = bufp->symbol_value; | |
4274 | sym->symbol.section = 0; | |
4275 | sym->symbol.flags = 0; | |
4276 | ||
4277 | switch (bufp->symbol_type) | |
4278 | { | |
4279 | case ST_ENTRY: | |
4280 | case ST_MILLICODE: | |
4281 | sym->symbol.flags |= BSF_FUNCTION; | |
4282 | som_symbol_data (sym)->tc_data.ap.hppa_priv_level = | |
4283 | sym->symbol.value & 0x3; | |
4284 | sym->symbol.value &= ~0x3; | |
4285 | break; | |
4286 | ||
4287 | case ST_STUB: | |
4288 | case ST_CODE: | |
4289 | case ST_PRI_PROG: | |
4290 | case ST_SEC_PROG: | |
4291 | som_symbol_data (sym)->tc_data.ap.hppa_priv_level = | |
4292 | sym->symbol.value & 0x3; | |
4293 | sym->symbol.value &= ~0x3; | |
4294 | /* If the symbol's scope is ST_UNSAT, then these are | |
4295 | undefined function symbols. */ | |
4296 | if (bufp->symbol_scope == SS_UNSAT) | |
4297 | sym->symbol.flags |= BSF_FUNCTION; | |
4298 | ||
4299 | ||
4300 | default: | |
4301 | break; | |
4302 | } | |
4303 | ||
4304 | /* Handle scoping and section information. */ | |
4305 | switch (bufp->symbol_scope) | |
4306 | { | |
4307 | /* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols, | |
4308 | so the section associated with this symbol can't be known. */ | |
4309 | case SS_EXTERNAL: | |
4310 | if (bufp->symbol_type != ST_STORAGE) | |
4311 | sym->symbol.section = bfd_und_section_ptr; | |
4312 | else | |
4313 | sym->symbol.section = bfd_com_section_ptr; | |
4314 | sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); | |
4315 | break; | |
4316 | ||
4317 | case SS_UNSAT: | |
4318 | if (bufp->symbol_type != ST_STORAGE) | |
4319 | sym->symbol.section = bfd_und_section_ptr; | |
4320 | else | |
4321 | sym->symbol.section = bfd_com_section_ptr; | |
4322 | break; | |
4323 | ||
4324 | case SS_UNIVERSAL: | |
4325 | sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL); | |
4326 | sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); | |
4327 | sym->symbol.value -= sym->symbol.section->vma; | |
4328 | break; | |
4329 | ||
4330 | #if 0 | |
4331 | /* SS_GLOBAL and SS_LOCAL are two names for the same thing. | |
4332 | Sound dumb? It is. */ | |
4333 | case SS_GLOBAL: | |
4334 | #endif | |
4335 | case SS_LOCAL: | |
4336 | sym->symbol.flags |= BSF_LOCAL; | |
4337 | sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp); | |
4338 | sym->symbol.value -= sym->symbol.section->vma; | |
4339 | break; | |
4340 | } | |
4341 | ||
4342 | /* Mark section symbols and symbols used by the debugger. | |
4343 | Note $START$ is a magic code symbol, NOT a section symbol. */ | |
4344 | if (sym->symbol.name[0] == '$' | |
4345 | && sym->symbol.name[strlen (sym->symbol.name) - 1] == '$' | |
4346 | && !strcmp (sym->symbol.name, sym->symbol.section->name)) | |
4347 | sym->symbol.flags |= BSF_SECTION_SYM; | |
4348 | else if (!strncmp (sym->symbol.name, "L$0\002", 4)) | |
4349 | { | |
4350 | sym->symbol.flags |= BSF_SECTION_SYM; | |
4351 | sym->symbol.name = sym->symbol.section->name; | |
4352 | } | |
4353 | else if (!strncmp (sym->symbol.name, "L$0\001", 4)) | |
4354 | sym->symbol.flags |= BSF_DEBUGGING; | |
4355 | ||
4356 | /* Note increment at bottom of loop, since we skip some symbols | |
4357 | we can not include it as part of the for statement. */ | |
4358 | sym++; | |
4359 | } | |
4360 | ||
4361 | /* We modify the symbol count to record the number of BFD symbols we | |
4362 | created. */ | |
4363 | bfd_get_symcount (abfd) = sym - symbase; | |
4364 | ||
4365 | /* Save our results and return success. */ | |
4366 | obj_som_symtab (abfd) = symbase; | |
4367 | successful_return: | |
4368 | if (buf != NULL) | |
4369 | free (buf); | |
4370 | return (true); | |
4371 | ||
4372 | error_return: | |
4373 | if (buf != NULL) | |
4374 | free (buf); | |
4375 | return false; | |
4376 | } | |
4377 | ||
4378 | /* Canonicalize a SOM symbol table. Return the number of entries | |
4379 | in the symbol table. */ | |
4380 | ||
4381 | static long | |
4382 | som_get_symtab (abfd, location) | |
4383 | bfd *abfd; | |
4384 | asymbol **location; | |
4385 | { | |
4386 | int i; | |
4387 | som_symbol_type *symbase; | |
4388 | ||
4389 | if (!som_slurp_symbol_table (abfd)) | |
4390 | return -1; | |
4391 | ||
4392 | i = bfd_get_symcount (abfd); | |
4393 | symbase = obj_som_symtab (abfd); | |
4394 | ||
4395 | for (; i > 0; i--, location++, symbase++) | |
4396 | *location = &symbase->symbol; | |
4397 | ||
4398 | /* Final null pointer. */ | |
4399 | *location = 0; | |
4400 | return (bfd_get_symcount (abfd)); | |
4401 | } | |
4402 | ||
4403 | /* Make a SOM symbol. There is nothing special to do here. */ | |
4404 | ||
4405 | static asymbol * | |
4406 | som_make_empty_symbol (abfd) | |
4407 | bfd *abfd; | |
4408 | { | |
4409 | som_symbol_type *new = | |
4410 | (som_symbol_type *) bfd_zalloc (abfd, sizeof (som_symbol_type)); | |
4411 | if (new == NULL) | |
4412 | return 0; | |
4413 | new->symbol.the_bfd = abfd; | |
4414 | ||
4415 | return &new->symbol; | |
4416 | } | |
4417 | ||
4418 | /* Print symbol information. */ | |
4419 | ||
4420 | static void | |
4421 | som_print_symbol (ignore_abfd, afile, symbol, how) | |
4422 | bfd *ignore_abfd; | |
4423 | PTR afile; | |
4424 | asymbol *symbol; | |
4425 | bfd_print_symbol_type how; | |
4426 | { | |
4427 | FILE *file = (FILE *) afile; | |
4428 | switch (how) | |
4429 | { | |
4430 | case bfd_print_symbol_name: | |
4431 | fprintf (file, "%s", symbol->name); | |
4432 | break; | |
4433 | case bfd_print_symbol_more: | |
4434 | fprintf (file, "som "); | |
4435 | fprintf_vma (file, symbol->value); | |
4436 | fprintf (file, " %lx", (long) symbol->flags); | |
4437 | break; | |
4438 | case bfd_print_symbol_all: | |
4439 | { | |
4440 | CONST char *section_name; | |
4441 | section_name = symbol->section ? symbol->section->name : "(*none*)"; | |
4442 | bfd_print_symbol_vandf ((PTR) file, symbol); | |
4443 | fprintf (file, " %s\t%s", section_name, symbol->name); | |
4444 | break; | |
4445 | } | |
4446 | } | |
4447 | } | |
4448 | ||
4449 | static boolean | |
4450 | som_bfd_is_local_label_name (abfd, name) | |
4451 | bfd *abfd; | |
4452 | const char *name; | |
4453 | { | |
4454 | return (name[0] == 'L' && name[1] == '$'); | |
4455 | } | |
4456 | ||
4457 | /* Count or process variable-length SOM fixup records. | |
4458 | ||
4459 | To avoid code duplication we use this code both to compute the number | |
4460 | of relocations requested by a stream, and to internalize the stream. | |
4461 | ||
4462 | When computing the number of relocations requested by a stream the | |
4463 | variables rptr, section, and symbols have no meaning. | |
4464 | ||
4465 | Return the number of relocations requested by the fixup stream. When | |
4466 | not just counting | |
4467 | ||
4468 | This needs at least two or three more passes to get it cleaned up. */ | |
4469 | ||
4470 | static unsigned int | |
4471 | som_set_reloc_info (fixup, end, internal_relocs, section, symbols, just_count) | |
4472 | unsigned char *fixup; | |
4473 | unsigned int end; | |
4474 | arelent *internal_relocs; | |
4475 | asection *section; | |
4476 | asymbol **symbols; | |
4477 | boolean just_count; | |
4478 | { | |
4479 | unsigned int op, varname, deallocate_contents = 0; | |
4480 | unsigned char *end_fixups = &fixup[end]; | |
4481 | const struct fixup_format *fp; | |
4482 | char *cp; | |
4483 | unsigned char *save_fixup; | |
4484 | int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits; | |
4485 | const int *subop; | |
4486 | arelent *rptr= internal_relocs; | |
4487 | unsigned int offset = 0; | |
4488 | ||
4489 | #define var(c) variables[(c) - 'A'] | |
4490 | #define push(v) (*sp++ = (v)) | |
4491 | #define pop() (*--sp) | |
4492 | #define emptystack() (sp == stack) | |
4493 | ||
4494 | som_initialize_reloc_queue (reloc_queue); | |
4495 | memset (variables, 0, sizeof (variables)); | |
4496 | memset (stack, 0, sizeof (stack)); | |
4497 | count = 0; | |
4498 | prev_fixup = 0; | |
4499 | saved_unwind_bits = 0; | |
4500 | sp = stack; | |
4501 | ||
4502 | while (fixup < end_fixups) | |
4503 | { | |
4504 | ||
4505 | /* Save pointer to the start of this fixup. We'll use | |
4506 | it later to determine if it is necessary to put this fixup | |
4507 | on the queue. */ | |
4508 | save_fixup = fixup; | |
4509 | ||
4510 | /* Get the fixup code and its associated format. */ | |
4511 | op = *fixup++; | |
4512 | fp = &som_fixup_formats[op]; | |
4513 | ||
4514 | /* Handle a request for a previous fixup. */ | |
4515 | if (*fp->format == 'P') | |
4516 | { | |
4517 | /* Get pointer to the beginning of the prev fixup, move | |
4518 | the repeated fixup to the head of the queue. */ | |
4519 | fixup = reloc_queue[fp->D].reloc; | |
4520 | som_reloc_queue_fix (reloc_queue, fp->D); | |
4521 | prev_fixup = 1; | |
4522 | ||
4523 | /* Get the fixup code and its associated format. */ | |
4524 | op = *fixup++; | |
4525 | fp = &som_fixup_formats[op]; | |
4526 | } | |
4527 | ||
4528 | /* If this fixup will be passed to BFD, set some reasonable defaults. */ | |
4529 | if (! just_count | |
4530 | && som_hppa_howto_table[op].type != R_NO_RELOCATION | |
4531 | && som_hppa_howto_table[op].type != R_DATA_OVERRIDE) | |
4532 | { | |
4533 | rptr->address = offset; | |
4534 | rptr->howto = &som_hppa_howto_table[op]; | |
4535 | rptr->addend = 0; | |
4536 | rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; | |
4537 | } | |
4538 | ||
4539 | /* Set default input length to 0. Get the opcode class index | |
4540 | into D. */ | |
4541 | var ('L') = 0; | |
4542 | var ('D') = fp->D; | |
4543 | var ('U') = saved_unwind_bits; | |
4544 | ||
4545 | /* Get the opcode format. */ | |
4546 | cp = fp->format; | |
4547 | ||
4548 | /* Process the format string. Parsing happens in two phases, | |
4549 | parse RHS, then assign to LHS. Repeat until no more | |
4550 | characters in the format string. */ | |
4551 | while (*cp) | |
4552 | { | |
4553 | /* The variable this pass is going to compute a value for. */ | |
4554 | varname = *cp++; | |
4555 | ||
4556 | /* Start processing RHS. Continue until a NULL or '=' is found. */ | |
4557 | do | |
4558 | { | |
4559 | c = *cp++; | |
4560 | ||
4561 | /* If this is a variable, push it on the stack. */ | |
4562 | if (isupper (c)) | |
4563 | push (var (c)); | |
4564 | ||
4565 | /* If this is a lower case letter, then it represents | |
4566 | additional data from the fixup stream to be pushed onto | |
4567 | the stack. */ | |
4568 | else if (islower (c)) | |
4569 | { | |
4570 | int bits = (c - 'a') * 8; | |
4571 | for (v = 0; c > 'a'; --c) | |
4572 | v = (v << 8) | *fixup++; | |
4573 | if (varname == 'V') | |
4574 | v = sign_extend (v, bits); | |
4575 | push (v); | |
4576 | } | |
4577 | ||
4578 | /* A decimal constant. Push it on the stack. */ | |
4579 | else if (isdigit (c)) | |
4580 | { | |
4581 | v = c - '0'; | |
4582 | while (isdigit (*cp)) | |
4583 | v = (v * 10) + (*cp++ - '0'); | |
4584 | push (v); | |
4585 | } | |
4586 | else | |
4587 | ||
4588 | /* An operator. Pop two two values from the stack and | |
4589 | use them as operands to the given operation. Push | |
4590 | the result of the operation back on the stack. */ | |
4591 | switch (c) | |
4592 | { | |
4593 | case '+': | |
4594 | v = pop (); | |
4595 | v += pop (); | |
4596 | push (v); | |
4597 | break; | |
4598 | case '*': | |
4599 | v = pop (); | |
4600 | v *= pop (); | |
4601 | push (v); | |
4602 | break; | |
4603 | case '<': | |
4604 | v = pop (); | |
4605 | v = pop () << v; | |
4606 | push (v); | |
4607 | break; | |
4608 | default: | |
4609 | abort (); | |
4610 | } | |
4611 | } | |
4612 | while (*cp && *cp != '='); | |
4613 | ||
4614 | /* Move over the equal operator. */ | |
4615 | cp++; | |
4616 | ||
4617 | /* Pop the RHS off the stack. */ | |
4618 | c = pop (); | |
4619 | ||
4620 | /* Perform the assignment. */ | |
4621 | var (varname) = c; | |
4622 | ||
4623 | /* Handle side effects. and special 'O' stack cases. */ | |
4624 | switch (varname) | |
4625 | { | |
4626 | /* Consume some bytes from the input space. */ | |
4627 | case 'L': | |
4628 | offset += c; | |
4629 | break; | |
4630 | /* A symbol to use in the relocation. Make a note | |
4631 | of this if we are not just counting. */ | |
4632 | case 'S': | |
4633 | if (! just_count) | |
4634 | rptr->sym_ptr_ptr = &symbols[c]; | |
4635 | break; | |
4636 | /* Argument relocation bits for a function call. */ | |
4637 | case 'R': | |
4638 | if (! just_count) | |
4639 | { | |
4640 | unsigned int tmp = var ('R'); | |
4641 | rptr->addend = 0; | |
4642 | ||
4643 | if ((som_hppa_howto_table[op].type == R_PCREL_CALL | |
4644 | && R_PCREL_CALL + 10 > op) | |
4645 | || (som_hppa_howto_table[op].type == R_ABS_CALL | |
4646 | && R_ABS_CALL + 10 > op)) | |
4647 | { | |
4648 | /* Simple encoding. */ | |
4649 | if (tmp > 4) | |
4650 | { | |
4651 | tmp -= 5; | |
4652 | rptr->addend |= 1; | |
4653 | } | |
4654 | if (tmp == 4) | |
4655 | rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2; | |
4656 | else if (tmp == 3) | |
4657 | rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4; | |
4658 | else if (tmp == 2) | |
4659 | rptr->addend |= 1 << 8 | 1 << 6; | |
4660 | else if (tmp == 1) | |
4661 | rptr->addend |= 1 << 8; | |
4662 | } | |
4663 | else | |
4664 | { | |
4665 | unsigned int tmp1, tmp2; | |
4666 | ||
4667 | /* First part is easy -- low order two bits are | |
4668 | directly copied, then shifted away. */ | |
4669 | rptr->addend = tmp & 0x3; | |
4670 | tmp >>= 2; | |
4671 | ||
4672 | /* Diving the result by 10 gives us the second | |
4673 | part. If it is 9, then the first two words | |
4674 | are a double precision paramater, else it is | |
4675 | 3 * the first arg bits + the 2nd arg bits. */ | |
4676 | tmp1 = tmp / 10; | |
4677 | tmp -= tmp1 * 10; | |
4678 | if (tmp1 == 9) | |
4679 | rptr->addend += (0xe << 6); | |
4680 | else | |
4681 | { | |
4682 | /* Get the two pieces. */ | |
4683 | tmp2 = tmp1 / 3; | |
4684 | tmp1 -= tmp2 * 3; | |
4685 | /* Put them in the addend. */ | |
4686 | rptr->addend += (tmp2 << 8) + (tmp1 << 6); | |
4687 | } | |
4688 | ||
4689 | /* What's left is the third part. It's unpacked | |
4690 | just like the second. */ | |
4691 | if (tmp == 9) | |
4692 | rptr->addend += (0xe << 2); | |
4693 | else | |
4694 | { | |
4695 | tmp2 = tmp / 3; | |
4696 | tmp -= tmp2 * 3; | |
4697 | rptr->addend += (tmp2 << 4) + (tmp << 2); | |
4698 | } | |
4699 | } | |
4700 | rptr->addend = HPPA_R_ADDEND (rptr->addend, 0); | |
4701 | } | |
4702 | break; | |
4703 | /* Handle the linker expression stack. */ | |
4704 | case 'O': | |
4705 | switch (op) | |
4706 | { | |
4707 | case R_COMP1: | |
4708 | subop = comp1_opcodes; | |
4709 | break; | |
4710 | case R_COMP2: | |
4711 | subop = comp2_opcodes; | |
4712 | break; | |
4713 | case R_COMP3: | |
4714 | subop = comp3_opcodes; | |
4715 | break; | |
4716 | default: | |
4717 | abort (); | |
4718 | } | |
4719 | while (*subop <= (unsigned char) c) | |
4720 | ++subop; | |
4721 | --subop; | |
4722 | break; | |
4723 | /* The lower 32unwind bits must be persistent. */ | |
4724 | case 'U': | |
4725 | saved_unwind_bits = var ('U'); | |
4726 | break; | |
4727 | ||
4728 | default: | |
4729 | break; | |
4730 | } | |
4731 | } | |
4732 | ||
4733 | /* If we used a previous fixup, clean up after it. */ | |
4734 | if (prev_fixup) | |
4735 | { | |
4736 | fixup = save_fixup + 1; | |
4737 | prev_fixup = 0; | |
4738 | } | |
4739 | /* Queue it. */ | |
4740 | else if (fixup > save_fixup + 1) | |
4741 | som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue); | |
4742 | ||
4743 | /* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION | |
4744 | fixups to BFD. */ | |
4745 | if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE | |
4746 | && som_hppa_howto_table[op].type != R_NO_RELOCATION) | |
4747 | { | |
4748 | /* Done with a single reloction. Loop back to the top. */ | |
4749 | if (! just_count) | |
4750 | { | |
4751 | if (som_hppa_howto_table[op].type == R_ENTRY) | |
4752 | rptr->addend = var ('T'); | |
4753 | else if (som_hppa_howto_table[op].type == R_EXIT) | |
4754 | rptr->addend = var ('U'); | |
4755 | else if (som_hppa_howto_table[op].type == R_PCREL_CALL | |
4756 | || som_hppa_howto_table[op].type == R_ABS_CALL) | |
4757 | ; | |
4758 | else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL) | |
4759 | { | |
4760 | unsigned addend = var ('V'); | |
4761 | ||
4762 | /* Try what was specified in R_DATA_OVERRIDE first | |
4763 | (if anything). Then the hard way using the | |
4764 | section contents. */ | |
4765 | rptr->addend = var ('V'); | |
4766 | ||
4767 | if (rptr->addend == 0 && !section->contents) | |
4768 | { | |
4769 | /* Got to read the damn contents first. We don't | |
4770 | bother saving the contents (yet). Add it one | |
4771 | day if the need arises. */ | |
4772 | section->contents = bfd_malloc (section->_raw_size); | |
4773 | if (section->contents == NULL) | |
4774 | return -1; | |
4775 | ||
4776 | deallocate_contents = 1; | |
4777 | bfd_get_section_contents (section->owner, | |
4778 | section, | |
4779 | section->contents, | |
4780 | 0, | |
4781 | section->_raw_size); | |
4782 | } | |
4783 | else if (rptr->addend == 0) | |
4784 | rptr->addend = bfd_get_32 (section->owner, | |
4785 | (section->contents | |
4786 | + offset - var ('L'))); | |
4787 | ||
4788 | } | |
4789 | else | |
4790 | rptr->addend = var ('V'); | |
4791 | rptr++; | |
4792 | } | |
4793 | count++; | |
4794 | /* Now that we've handled a "full" relocation, reset | |
4795 | some state. */ | |
4796 | memset (variables, 0, sizeof (variables)); | |
4797 | memset (stack, 0, sizeof (stack)); | |
4798 | } | |
4799 | } | |
4800 | if (deallocate_contents) | |
4801 | free (section->contents); | |
4802 | ||
4803 | return count; | |
4804 | ||
4805 | #undef var | |
4806 | #undef push | |
4807 | #undef pop | |
4808 | #undef emptystack | |
4809 | } | |
4810 | ||
4811 | /* Read in the relocs (aka fixups in SOM terms) for a section. | |
4812 | ||
4813 | som_get_reloc_upper_bound calls this routine with JUST_COUNT | |
4814 | set to true to indicate it only needs a count of the number | |
4815 | of actual relocations. */ | |
4816 | ||
4817 | static boolean | |
4818 | som_slurp_reloc_table (abfd, section, symbols, just_count) | |
4819 | bfd *abfd; | |
4820 | asection *section; | |
4821 | asymbol **symbols; | |
4822 | boolean just_count; | |
4823 | { | |
4824 | char *external_relocs; | |
4825 | unsigned int fixup_stream_size; | |
4826 | arelent *internal_relocs; | |
4827 | unsigned int num_relocs; | |
4828 | ||
4829 | fixup_stream_size = som_section_data (section)->reloc_size; | |
4830 | /* If there were no relocations, then there is nothing to do. */ | |
4831 | if (section->reloc_count == 0) | |
4832 | return true; | |
4833 | ||
4834 | /* If reloc_count is -1, then the relocation stream has not been | |
4835 | parsed. We must do so now to know how many relocations exist. */ | |
4836 | if (section->reloc_count == -1) | |
4837 | { | |
4838 | external_relocs = (char *) bfd_malloc (fixup_stream_size); | |
4839 | if (external_relocs == (char *) NULL) | |
4840 | return false; | |
4841 | /* Read in the external forms. */ | |
4842 | if (bfd_seek (abfd, | |
4843 | obj_som_reloc_filepos (abfd) + section->rel_filepos, | |
4844 | SEEK_SET) | |
4845 | != 0) | |
4846 | return false; | |
4847 | if (bfd_read (external_relocs, 1, fixup_stream_size, abfd) | |
4848 | != fixup_stream_size) | |
4849 | return false; | |
4850 | ||
4851 | /* Let callers know how many relocations found. | |
4852 | also save the relocation stream as we will | |
4853 | need it again. */ | |
4854 | section->reloc_count = som_set_reloc_info (external_relocs, | |
4855 | fixup_stream_size, | |
4856 | NULL, NULL, NULL, true); | |
4857 | ||
4858 | som_section_data (section)->reloc_stream = external_relocs; | |
4859 | } | |
4860 | ||
4861 | /* If the caller only wanted a count, then return now. */ | |
4862 | if (just_count) | |
4863 | return true; | |
4864 | ||
4865 | num_relocs = section->reloc_count; | |
4866 | external_relocs = som_section_data (section)->reloc_stream; | |
4867 | /* Return saved information about the relocations if it is available. */ | |
4868 | if (section->relocation != (arelent *) NULL) | |
4869 | return true; | |
4870 | ||
4871 | internal_relocs = (arelent *) | |
4872 | bfd_zalloc (abfd, (num_relocs * sizeof (arelent))); | |
4873 | if (internal_relocs == (arelent *) NULL) | |
4874 | return false; | |
4875 | ||
4876 | /* Process and internalize the relocations. */ | |
4877 | som_set_reloc_info (external_relocs, fixup_stream_size, | |
4878 | internal_relocs, section, symbols, false); | |
4879 | ||
4880 | /* We're done with the external relocations. Free them. */ | |
4881 | free (external_relocs); | |
4882 | som_section_data (section)->reloc_stream = NULL; | |
4883 | ||
4884 | /* Save our results and return success. */ | |
4885 | section->relocation = internal_relocs; | |
4886 | return (true); | |
4887 | } | |
4888 | ||
4889 | /* Return the number of bytes required to store the relocation | |
4890 | information associated with the given section. */ | |
4891 | ||
4892 | static long | |
4893 | som_get_reloc_upper_bound (abfd, asect) | |
4894 | bfd *abfd; | |
4895 | sec_ptr asect; | |
4896 | { | |
4897 | /* If section has relocations, then read in the relocation stream | |
4898 | and parse it to determine how many relocations exist. */ | |
4899 | if (asect->flags & SEC_RELOC) | |
4900 | { | |
4901 | if (! som_slurp_reloc_table (abfd, asect, NULL, true)) | |
4902 | return -1; | |
4903 | return (asect->reloc_count + 1) * sizeof (arelent *); | |
4904 | } | |
4905 | /* There are no relocations. */ | |
4906 | return 0; | |
4907 | } | |
4908 | ||
4909 | /* Convert relocations from SOM (external) form into BFD internal | |
4910 | form. Return the number of relocations. */ | |
4911 | ||
4912 | static long | |
4913 | som_canonicalize_reloc (abfd, section, relptr, symbols) | |
4914 | bfd *abfd; | |
4915 | sec_ptr section; | |
4916 | arelent **relptr; | |
4917 | asymbol **symbols; | |
4918 | { | |
4919 | arelent *tblptr; | |
4920 | int count; | |
4921 | ||
4922 | if (som_slurp_reloc_table (abfd, section, symbols, false) == false) | |
4923 | return -1; | |
4924 | ||
4925 | count = section->reloc_count; | |
4926 | tblptr = section->relocation; | |
4927 | ||
4928 | while (count--) | |
4929 | *relptr++ = tblptr++; | |
4930 | ||
4931 | *relptr = (arelent *) NULL; | |
4932 | return section->reloc_count; | |
4933 | } | |
4934 | ||
4935 | extern const bfd_target som_vec; | |
4936 | ||
4937 | /* A hook to set up object file dependent section information. */ | |
4938 | ||
4939 | static boolean | |
4940 | som_new_section_hook (abfd, newsect) | |
4941 | bfd *abfd; | |
4942 | asection *newsect; | |
4943 | { | |
4944 | newsect->used_by_bfd = | |
4945 | (PTR) bfd_zalloc (abfd, sizeof (struct som_section_data_struct)); | |
4946 | if (!newsect->used_by_bfd) | |
4947 | return false; | |
4948 | newsect->alignment_power = 3; | |
4949 | ||
4950 | /* We allow more than three sections internally */ | |
4951 | return true; | |
4952 | } | |
4953 | ||
4954 | /* Copy any private info we understand from the input symbol | |
4955 | to the output symbol. */ | |
4956 | ||
4957 | static boolean | |
4958 | som_bfd_copy_private_symbol_data (ibfd, isymbol, obfd, osymbol) | |
4959 | bfd *ibfd; | |
4960 | asymbol *isymbol; | |
4961 | bfd *obfd; | |
4962 | asymbol *osymbol; | |
4963 | { | |
4964 | struct som_symbol *input_symbol = (struct som_symbol *) isymbol; | |
4965 | struct som_symbol *output_symbol = (struct som_symbol *) osymbol; | |
4966 | ||
4967 | /* One day we may try to grok other private data. */ | |
4968 | if (ibfd->xvec->flavour != bfd_target_som_flavour | |
4969 | || obfd->xvec->flavour != bfd_target_som_flavour) | |
4970 | return false; | |
4971 | ||
4972 | /* The only private information we need to copy is the argument relocation | |
4973 | bits. */ | |
4974 | output_symbol->tc_data.ap.hppa_arg_reloc = | |
4975 | input_symbol->tc_data.ap.hppa_arg_reloc; | |
4976 | ||
4977 | return true; | |
4978 | } | |
4979 | ||
4980 | /* Copy any private info we understand from the input section | |
4981 | to the output section. */ | |
4982 | static boolean | |
4983 | som_bfd_copy_private_section_data (ibfd, isection, obfd, osection) | |
4984 | bfd *ibfd; | |
4985 | asection *isection; | |
4986 | bfd *obfd; | |
4987 | asection *osection; | |
4988 | { | |
4989 | /* One day we may try to grok other private data. */ | |
4990 | if (ibfd->xvec->flavour != bfd_target_som_flavour | |
4991 | || obfd->xvec->flavour != bfd_target_som_flavour | |
4992 | || (!som_is_space (isection) && !som_is_subspace (isection))) | |
4993 | return true; | |
4994 | ||
4995 | som_section_data (osection)->copy_data | |
4996 | = (struct som_copyable_section_data_struct *) | |
4997 | bfd_zalloc (obfd, sizeof (struct som_copyable_section_data_struct)); | |
4998 | if (som_section_data (osection)->copy_data == NULL) | |
4999 | return false; | |
5000 | ||
5001 | memcpy (som_section_data (osection)->copy_data, | |
5002 | som_section_data (isection)->copy_data, | |
5003 | sizeof (struct som_copyable_section_data_struct)); | |
5004 | ||
5005 | /* Reparent if necessary. */ | |
5006 | if (som_section_data (osection)->copy_data->container) | |
5007 | som_section_data (osection)->copy_data->container = | |
5008 | som_section_data (osection)->copy_data->container->output_section; | |
5009 | ||
5010 | return true; | |
5011 | } | |
5012 | ||
5013 | /* Copy any private info we understand from the input bfd | |
5014 | to the output bfd. */ | |
5015 | ||
5016 | static boolean | |
5017 | som_bfd_copy_private_bfd_data (ibfd, obfd) | |
5018 | bfd *ibfd, *obfd; | |
5019 | { | |
5020 | /* One day we may try to grok other private data. */ | |
5021 | if (ibfd->xvec->flavour != bfd_target_som_flavour | |
5022 | || obfd->xvec->flavour != bfd_target_som_flavour) | |
5023 | return true; | |
5024 | ||
5025 | /* Allocate some memory to hold the data we need. */ | |
5026 | obj_som_exec_data (obfd) = (struct som_exec_data *) | |
5027 | bfd_zalloc (obfd, sizeof (struct som_exec_data)); | |
5028 | if (obj_som_exec_data (obfd) == NULL) | |
5029 | return false; | |
5030 | ||
5031 | /* Now copy the data. */ | |
5032 | memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd), | |
5033 | sizeof (struct som_exec_data)); | |
5034 | ||
5035 | return true; | |
5036 | } | |
5037 | ||
5038 | /* Set backend info for sections which can not be described | |
5039 | in the BFD data structures. */ | |
5040 | ||
5041 | boolean | |
5042 | bfd_som_set_section_attributes (section, defined, private, sort_key, spnum) | |
5043 | asection *section; | |
5044 | int defined; | |
5045 | int private; | |
5046 | unsigned int sort_key; | |
5047 | int spnum; | |
5048 | { | |
5049 | /* Allocate memory to hold the magic information. */ | |
5050 | if (som_section_data (section)->copy_data == NULL) | |
5051 | { | |
5052 | som_section_data (section)->copy_data | |
5053 | = (struct som_copyable_section_data_struct *) | |
5054 | bfd_zalloc (section->owner, | |
5055 | sizeof (struct som_copyable_section_data_struct)); | |
5056 | if (som_section_data (section)->copy_data == NULL) | |
5057 | return false; | |
5058 | } | |
5059 | som_section_data (section)->copy_data->sort_key = sort_key; | |
5060 | som_section_data (section)->copy_data->is_defined = defined; | |
5061 | som_section_data (section)->copy_data->is_private = private; | |
5062 | som_section_data (section)->copy_data->container = section; | |
5063 | som_section_data (section)->copy_data->space_number = spnum; | |
5064 | return true; | |
5065 | } | |
5066 | ||
5067 | /* Set backend info for subsections which can not be described | |
5068 | in the BFD data structures. */ | |
5069 | ||
5070 | boolean | |
5071 | bfd_som_set_subsection_attributes (section, container, access, | |
5072 | sort_key, quadrant) | |
5073 | asection *section; | |
5074 | asection *container; | |
5075 | int access; | |
5076 | unsigned int sort_key; | |
5077 | int quadrant; | |
5078 | { | |
5079 | /* Allocate memory to hold the magic information. */ | |
5080 | if (som_section_data (section)->copy_data == NULL) | |
5081 | { | |
5082 | som_section_data (section)->copy_data | |
5083 | = (struct som_copyable_section_data_struct *) | |
5084 | bfd_zalloc (section->owner, | |
5085 | sizeof (struct som_copyable_section_data_struct)); | |
5086 | if (som_section_data (section)->copy_data == NULL) | |
5087 | return false; | |
5088 | } | |
5089 | som_section_data (section)->copy_data->sort_key = sort_key; | |
5090 | som_section_data (section)->copy_data->access_control_bits = access; | |
5091 | som_section_data (section)->copy_data->quadrant = quadrant; | |
5092 | som_section_data (section)->copy_data->container = container; | |
5093 | return true; | |
5094 | } | |
5095 | ||
5096 | /* Set the full SOM symbol type. SOM needs far more symbol information | |
5097 | than any other object file format I'm aware of. It is mandatory | |
5098 | to be able to know if a symbol is an entry point, millicode, data, | |
5099 | code, absolute, storage request, or procedure label. If you get | |
5100 | the symbol type wrong your program will not link. */ | |
5101 | ||
5102 | void | |
5103 | bfd_som_set_symbol_type (symbol, type) | |
5104 | asymbol *symbol; | |
5105 | unsigned int type; | |
5106 | { | |
5107 | som_symbol_data (symbol)->som_type = type; | |
5108 | } | |
5109 | ||
5110 | /* Attach an auxiliary header to the BFD backend so that it may be | |
5111 | written into the object file. */ | |
5112 | boolean | |
5113 | bfd_som_attach_aux_hdr (abfd, type, string) | |
5114 | bfd *abfd; | |
5115 | int type; | |
5116 | char *string; | |
5117 | { | |
5118 | if (type == VERSION_AUX_ID) | |
5119 | { | |
5120 | int len = strlen (string); | |
5121 | int pad = 0; | |
5122 | ||
5123 | if (len % 4) | |
5124 | pad = (4 - (len % 4)); | |
5125 | obj_som_version_hdr (abfd) = (struct user_string_aux_hdr *) | |
5126 | bfd_zalloc (abfd, sizeof (struct aux_id) | |
5127 | + sizeof (unsigned int) + len + pad); | |
5128 | if (!obj_som_version_hdr (abfd)) | |
5129 | return false; | |
5130 | obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID; | |
5131 | obj_som_version_hdr (abfd)->header_id.length = len + pad; | |
5132 | obj_som_version_hdr (abfd)->header_id.length += sizeof (int); | |
5133 | obj_som_version_hdr (abfd)->string_length = len; | |
5134 | strncpy (obj_som_version_hdr (abfd)->user_string, string, len); | |
5135 | } | |
5136 | else if (type == COPYRIGHT_AUX_ID) | |
5137 | { | |
5138 | int len = strlen (string); | |
5139 | int pad = 0; | |
5140 | ||
5141 | if (len % 4) | |
5142 | pad = (4 - (len % 4)); | |
5143 | obj_som_copyright_hdr (abfd) = (struct copyright_aux_hdr *) | |
5144 | bfd_zalloc (abfd, sizeof (struct aux_id) | |
5145 | + sizeof (unsigned int) + len + pad); | |
5146 | if (!obj_som_copyright_hdr (abfd)) | |
5147 | return false; | |
5148 | obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID; | |
5149 | obj_som_copyright_hdr (abfd)->header_id.length = len + pad; | |
5150 | obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int); | |
5151 | obj_som_copyright_hdr (abfd)->string_length = len; | |
5152 | strcpy (obj_som_copyright_hdr (abfd)->copyright, string); | |
5153 | } | |
5154 | return true; | |
5155 | } | |
5156 | ||
5157 | /* Attach an compilation unit header to the BFD backend so that it may be | |
5158 | written into the object file. */ | |
5159 | ||
5160 | boolean | |
5161 | bfd_som_attach_compilation_unit (abfd, name, language_name, product_id, | |
5162 | version_id) | |
5163 | bfd *abfd; | |
5164 | const char *name; | |
5165 | const char *language_name; | |
5166 | const char *product_id; | |
5167 | const char *version_id; | |
5168 | { | |
5169 | COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, COMPUNITSZ); | |
5170 | if (n == NULL) | |
5171 | return false; | |
5172 | ||
5173 | #define STRDUP(f) \ | |
5174 | if (f != NULL) \ | |
5175 | { \ | |
5176 | n->f.n_name = bfd_alloc (abfd, strlen (f) + 1); \ | |
5177 | if (n->f.n_name == NULL) \ | |
5178 | return false; \ | |
5179 | strcpy (n->f.n_name, f); \ | |
5180 | } | |
5181 | ||
5182 | STRDUP (name); | |
5183 | STRDUP (language_name); | |
5184 | STRDUP (product_id); | |
5185 | STRDUP (version_id); | |
5186 | ||
5187 | #undef STRDUP | |
5188 | ||
5189 | obj_som_compilation_unit (abfd) = n; | |
5190 | ||
5191 | return true; | |
5192 | } | |
5193 | ||
5194 | static boolean | |
5195 | som_get_section_contents (abfd, section, location, offset, count) | |
5196 | bfd *abfd; | |
5197 | sec_ptr section; | |
5198 | PTR location; | |
5199 | file_ptr offset; | |
5200 | bfd_size_type count; | |
5201 | { | |
5202 | if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0)) | |
5203 | return true; | |
5204 | if ((bfd_size_type)(offset+count) > section->_raw_size | |
5205 | || bfd_seek (abfd, (file_ptr)(section->filepos + offset), SEEK_SET) == -1 | |
5206 | || bfd_read (location, (bfd_size_type)1, count, abfd) != count) | |
5207 | return (false); /* on error */ | |
5208 | return (true); | |
5209 | } | |
5210 | ||
5211 | static boolean | |
5212 | som_set_section_contents (abfd, section, location, offset, count) | |
5213 | bfd *abfd; | |
5214 | sec_ptr section; | |
5215 | PTR location; | |
5216 | file_ptr offset; | |
5217 | bfd_size_type count; | |
5218 | { | |
5219 | if (abfd->output_has_begun == false) | |
5220 | { | |
5221 | /* Set up fixed parts of the file, space, and subspace headers. | |
5222 | Notify the world that output has begun. */ | |
5223 | som_prep_headers (abfd); | |
5224 | abfd->output_has_begun = true; | |
5225 | /* Start writing the object file. This include all the string | |
5226 | tables, fixup streams, and other portions of the object file. */ | |
5227 | som_begin_writing (abfd); | |
5228 | } | |
5229 | ||
5230 | /* Only write subspaces which have "real" contents (eg. the contents | |
5231 | are not generated at run time by the OS). */ | |
5232 | if (!som_is_subspace (section) | |
5233 | || ((section->flags & SEC_HAS_CONTENTS) == 0)) | |
5234 | return true; | |
5235 | ||
5236 | /* Seek to the proper offset within the object file and write the | |
5237 | data. */ | |
5238 | offset += som_section_data (section)->subspace_dict->file_loc_init_value; | |
5239 | if (bfd_seek (abfd, offset, SEEK_SET) == -1) | |
5240 | return false; | |
5241 | ||
5242 | if (bfd_write ((PTR) location, 1, count, abfd) != count) | |
5243 | return false; | |
5244 | return true; | |
5245 | } | |
5246 | ||
5247 | static boolean | |
5248 | som_set_arch_mach (abfd, arch, machine) | |
5249 | bfd *abfd; | |
5250 | enum bfd_architecture arch; | |
5251 | unsigned long machine; | |
5252 | { | |
5253 | /* Allow any architecture to be supported by the SOM backend */ | |
5254 | return bfd_default_set_arch_mach (abfd, arch, machine); | |
5255 | } | |
5256 | ||
5257 | static boolean | |
5258 | som_find_nearest_line (abfd, section, symbols, offset, filename_ptr, | |
5259 | functionname_ptr, line_ptr) | |
5260 | bfd *abfd; | |
5261 | asection *section; | |
5262 | asymbol **symbols; | |
5263 | bfd_vma offset; | |
5264 | CONST char **filename_ptr; | |
5265 | CONST char **functionname_ptr; | |
5266 | unsigned int *line_ptr; | |
5267 | { | |
5268 | return (false); | |
5269 | } | |
5270 | ||
5271 | static int | |
5272 | som_sizeof_headers (abfd, reloc) | |
5273 | bfd *abfd; | |
5274 | boolean reloc; | |
5275 | { | |
5276 | (*_bfd_error_handler) (_("som_sizeof_headers unimplemented")); | |
5277 | fflush (stderr); | |
5278 | abort (); | |
5279 | return (0); | |
5280 | } | |
5281 | ||
5282 | /* Return the single-character symbol type corresponding to | |
5283 | SOM section S, or '?' for an unknown SOM section. */ | |
5284 | ||
5285 | static char | |
5286 | som_section_type (s) | |
5287 | const char *s; | |
5288 | { | |
5289 | const struct section_to_type *t; | |
5290 | ||
5291 | for (t = &stt[0]; t->section; t++) | |
5292 | if (!strcmp (s, t->section)) | |
5293 | return t->type; | |
5294 | return '?'; | |
5295 | } | |
5296 | ||
5297 | static int | |
5298 | som_decode_symclass (symbol) | |
5299 | asymbol *symbol; | |
5300 | { | |
5301 | char c; | |
5302 | ||
5303 | if (bfd_is_com_section (symbol->section)) | |
5304 | return 'C'; | |
5305 | if (bfd_is_und_section (symbol->section)) | |
5306 | return 'U'; | |
5307 | if (bfd_is_ind_section (symbol->section)) | |
5308 | return 'I'; | |
5309 | if (!(symbol->flags & (BSF_GLOBAL|BSF_LOCAL))) | |
5310 | return '?'; | |
5311 | ||
5312 | if (bfd_is_abs_section (symbol->section) | |
5313 | || (som_symbol_data (symbol) != NULL | |
5314 | && som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE)) | |
5315 | c = 'a'; | |
5316 | else if (symbol->section) | |
5317 | c = som_section_type (symbol->section->name); | |
5318 | else | |
5319 | return '?'; | |
5320 | if (symbol->flags & BSF_GLOBAL) | |
5321 | c = toupper (c); | |
5322 | return c; | |
5323 | } | |
5324 | ||
5325 | /* Return information about SOM symbol SYMBOL in RET. */ | |
5326 | ||
5327 | static void | |
5328 | som_get_symbol_info (ignore_abfd, symbol, ret) | |
5329 | bfd *ignore_abfd; | |
5330 | asymbol *symbol; | |
5331 | symbol_info *ret; | |
5332 | { | |
5333 | ret->type = som_decode_symclass (symbol); | |
5334 | if (ret->type != 'U') | |
5335 | ret->value = symbol->value+symbol->section->vma; | |
5336 | else | |
5337 | ret->value = 0; | |
5338 | ret->name = symbol->name; | |
5339 | } | |
5340 | ||
5341 | /* Count the number of symbols in the archive symbol table. Necessary | |
5342 | so that we can allocate space for all the carsyms at once. */ | |
5343 | ||
5344 | static boolean | |
5345 | som_bfd_count_ar_symbols (abfd, lst_header, count) | |
5346 | bfd *abfd; | |
5347 | struct lst_header *lst_header; | |
5348 | symindex *count; | |
5349 | { | |
5350 | unsigned int i; | |
5351 | unsigned int *hash_table = NULL; | |
5352 | file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); | |
5353 | ||
5354 | hash_table = | |
5355 | (unsigned int *) bfd_malloc (lst_header->hash_size | |
5356 | * sizeof (unsigned int)); | |
5357 | if (hash_table == NULL && lst_header->hash_size != 0) | |
5358 | goto error_return; | |
5359 | ||
5360 | /* Don't forget to initialize the counter! */ | |
5361 | *count = 0; | |
5362 | ||
5363 | /* Read in the hash table. The has table is an array of 32bit file offsets | |
5364 | which point to the hash chains. */ | |
5365 | if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd) | |
5366 | != lst_header->hash_size * 4) | |
5367 | goto error_return; | |
5368 | ||
5369 | /* Walk each chain counting the number of symbols found on that particular | |
5370 | chain. */ | |
5371 | for (i = 0; i < lst_header->hash_size; i++) | |
5372 | { | |
5373 | struct lst_symbol_record lst_symbol; | |
5374 | ||
5375 | /* An empty chain has zero as it's file offset. */ | |
5376 | if (hash_table[i] == 0) | |
5377 | continue; | |
5378 | ||
5379 | /* Seek to the first symbol in this hash chain. */ | |
5380 | if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0) | |
5381 | goto error_return; | |
5382 | ||
5383 | /* Read in this symbol and update the counter. */ | |
5384 | if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) | |
5385 | != sizeof (lst_symbol)) | |
5386 | goto error_return; | |
5387 | ||
5388 | (*count)++; | |
5389 | ||
5390 | /* Now iterate through the rest of the symbols on this chain. */ | |
5391 | while (lst_symbol.next_entry) | |
5392 | { | |
5393 | ||
5394 | /* Seek to the next symbol. */ | |
5395 | if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) | |
5396 | < 0) | |
5397 | goto error_return; | |
5398 | ||
5399 | /* Read the symbol in and update the counter. */ | |
5400 | if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) | |
5401 | != sizeof (lst_symbol)) | |
5402 | goto error_return; | |
5403 | ||
5404 | (*count)++; | |
5405 | } | |
5406 | } | |
5407 | if (hash_table != NULL) | |
5408 | free (hash_table); | |
5409 | return true; | |
5410 | ||
5411 | error_return: | |
5412 | if (hash_table != NULL) | |
5413 | free (hash_table); | |
5414 | return false; | |
5415 | } | |
5416 | ||
5417 | /* Fill in the canonical archive symbols (SYMS) from the archive described | |
5418 | by ABFD and LST_HEADER. */ | |
5419 | ||
5420 | static boolean | |
5421 | som_bfd_fill_in_ar_symbols (abfd, lst_header, syms) | |
5422 | bfd *abfd; | |
5423 | struct lst_header *lst_header; | |
5424 | carsym **syms; | |
5425 | { | |
5426 | unsigned int i, len; | |
5427 | carsym *set = syms[0]; | |
5428 | unsigned int *hash_table = NULL; | |
5429 | struct som_entry *som_dict = NULL; | |
5430 | file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); | |
5431 | ||
5432 | hash_table = | |
5433 | (unsigned int *) bfd_malloc (lst_header->hash_size | |
5434 | * sizeof (unsigned int)); | |
5435 | if (hash_table == NULL && lst_header->hash_size != 0) | |
5436 | goto error_return; | |
5437 | ||
5438 | som_dict = | |
5439 | (struct som_entry *) bfd_malloc (lst_header->module_count | |
5440 | * sizeof (struct som_entry)); | |
5441 | if (som_dict == NULL && lst_header->module_count != 0) | |
5442 | goto error_return; | |
5443 | ||
5444 | /* Read in the hash table. The has table is an array of 32bit file offsets | |
5445 | which point to the hash chains. */ | |
5446 | if (bfd_read ((PTR) hash_table, lst_header->hash_size, 4, abfd) | |
5447 | != lst_header->hash_size * 4) | |
5448 | goto error_return; | |
5449 | ||
5450 | /* Seek to and read in the SOM dictionary. We will need this to fill | |
5451 | in the carsym's filepos field. */ | |
5452 | if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) < 0) | |
5453 | goto error_return; | |
5454 | ||
5455 | if (bfd_read ((PTR) som_dict, lst_header->module_count, | |
5456 | sizeof (struct som_entry), abfd) | |
5457 | != lst_header->module_count * sizeof (struct som_entry)) | |
5458 | goto error_return; | |
5459 | ||
5460 | /* Walk each chain filling in the carsyms as we go along. */ | |
5461 | for (i = 0; i < lst_header->hash_size; i++) | |
5462 | { | |
5463 | struct lst_symbol_record lst_symbol; | |
5464 | ||
5465 | /* An empty chain has zero as it's file offset. */ | |
5466 | if (hash_table[i] == 0) | |
5467 | continue; | |
5468 | ||
5469 | /* Seek to and read the first symbol on the chain. */ | |
5470 | if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) < 0) | |
5471 | goto error_return; | |
5472 | ||
5473 | if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) | |
5474 | != sizeof (lst_symbol)) | |
5475 | goto error_return; | |
5476 | ||
5477 | /* Get the name of the symbol, first get the length which is stored | |
5478 | as a 32bit integer just before the symbol. | |
5479 | ||
5480 | One might ask why we don't just read in the entire string table | |
5481 | and index into it. Well, according to the SOM ABI the string | |
5482 | index can point *anywhere* in the archive to save space, so just | |
5483 | using the string table would not be safe. */ | |
5484 | if (bfd_seek (abfd, lst_filepos + lst_header->string_loc | |
5485 | + lst_symbol.name.n_strx - 4, SEEK_SET) < 0) | |
5486 | goto error_return; | |
5487 | ||
5488 | if (bfd_read (&len, 1, 4, abfd) != 4) | |
5489 | goto error_return; | |
5490 | ||
5491 | /* Allocate space for the name and null terminate it too. */ | |
5492 | set->name = bfd_zalloc (abfd, len + 1); | |
5493 | if (!set->name) | |
5494 | goto error_return; | |
5495 | if (bfd_read (set->name, 1, len, abfd) != len) | |
5496 | goto error_return; | |
5497 | ||
5498 | set->name[len] = 0; | |
5499 | ||
5500 | /* Fill in the file offset. Note that the "location" field points | |
5501 | to the SOM itself, not the ar_hdr in front of it. */ | |
5502 | set->file_offset = som_dict[lst_symbol.som_index].location | |
5503 | - sizeof (struct ar_hdr); | |
5504 | ||
5505 | /* Go to the next symbol. */ | |
5506 | set++; | |
5507 | ||
5508 | /* Iterate through the rest of the chain. */ | |
5509 | while (lst_symbol.next_entry) | |
5510 | { | |
5511 | /* Seek to the next symbol and read it in. */ | |
5512 | if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET) <0) | |
5513 | goto error_return; | |
5514 | ||
5515 | if (bfd_read ((PTR) & lst_symbol, 1, sizeof (lst_symbol), abfd) | |
5516 | != sizeof (lst_symbol)) | |
5517 | goto error_return; | |
5518 | ||
5519 | /* Seek to the name length & string and read them in. */ | |
5520 | if (bfd_seek (abfd, lst_filepos + lst_header->string_loc | |
5521 | + lst_symbol.name.n_strx - 4, SEEK_SET) < 0) | |
5522 | goto error_return; | |
5523 | ||
5524 | if (bfd_read (&len, 1, 4, abfd) != 4) | |
5525 | goto error_return; | |
5526 | ||
5527 | /* Allocate space for the name and null terminate it too. */ | |
5528 | set->name = bfd_zalloc (abfd, len + 1); | |
5529 | if (!set->name) | |
5530 | goto error_return; | |
5531 | ||
5532 | if (bfd_read (set->name, 1, len, abfd) != len) | |
5533 | goto error_return; | |
5534 | set->name[len] = 0; | |
5535 | ||
5536 | /* Fill in the file offset. Note that the "location" field points | |
5537 | to the SOM itself, not the ar_hdr in front of it. */ | |
5538 | set->file_offset = som_dict[lst_symbol.som_index].location | |
5539 | - sizeof (struct ar_hdr); | |
5540 | ||
5541 | /* Go on to the next symbol. */ | |
5542 | set++; | |
5543 | } | |
5544 | } | |
5545 | /* If we haven't died by now, then we successfully read the entire | |
5546 | archive symbol table. */ | |
5547 | if (hash_table != NULL) | |
5548 | free (hash_table); | |
5549 | if (som_dict != NULL) | |
5550 | free (som_dict); | |
5551 | return true; | |
5552 | ||
5553 | error_return: | |
5554 | if (hash_table != NULL) | |
5555 | free (hash_table); | |
5556 | if (som_dict != NULL) | |
5557 | free (som_dict); | |
5558 | return false; | |
5559 | } | |
5560 | ||
5561 | /* Read in the LST from the archive. */ | |
5562 | static boolean | |
5563 | som_slurp_armap (abfd) | |
5564 | bfd *abfd; | |
5565 | { | |
5566 | struct lst_header lst_header; | |
5567 | struct ar_hdr ar_header; | |
5568 | unsigned int parsed_size; | |
5569 | struct artdata *ardata = bfd_ardata (abfd); | |
5570 | char nextname[17]; | |
5571 | int i = bfd_read ((PTR) nextname, 1, 16, abfd); | |
5572 | ||
5573 | /* Special cases. */ | |
5574 | if (i == 0) | |
5575 | return true; | |
5576 | if (i != 16) | |
5577 | return false; | |
5578 | ||
5579 | if (bfd_seek (abfd, (file_ptr) - 16, SEEK_CUR) < 0) | |
5580 | return false; | |
5581 | ||
5582 | /* For archives without .o files there is no symbol table. */ | |
5583 | if (strncmp (nextname, "/ ", 16)) | |
5584 | { | |
5585 | bfd_has_map (abfd) = false; | |
5586 | return true; | |
5587 | } | |
5588 | ||
5589 | /* Read in and sanity check the archive header. */ | |
5590 | if (bfd_read ((PTR) &ar_header, 1, sizeof (struct ar_hdr), abfd) | |
5591 | != sizeof (struct ar_hdr)) | |
5592 | return false; | |
5593 | ||
5594 | if (strncmp (ar_header.ar_fmag, ARFMAG, 2)) | |
5595 | { | |
5596 | bfd_set_error (bfd_error_malformed_archive); | |
5597 | return false; | |
5598 | } | |
5599 | ||
5600 | /* How big is the archive symbol table entry? */ | |
5601 | errno = 0; | |
5602 | parsed_size = strtol (ar_header.ar_size, NULL, 10); | |
5603 | if (errno != 0) | |
5604 | { | |
5605 | bfd_set_error (bfd_error_malformed_archive); | |
5606 | return false; | |
5607 | } | |
5608 | ||
5609 | /* Save off the file offset of the first real user data. */ | |
5610 | ardata->first_file_filepos = bfd_tell (abfd) + parsed_size; | |
5611 | ||
5612 | /* Read in the library symbol table. We'll make heavy use of this | |
5613 | in just a minute. */ | |
5614 | if (bfd_read ((PTR) & lst_header, 1, sizeof (struct lst_header), abfd) | |
5615 | != sizeof (struct lst_header)) | |
5616 | return false; | |
5617 | ||
5618 | /* Sanity check. */ | |
5619 | if (lst_header.a_magic != LIBMAGIC) | |
5620 | { | |
5621 | bfd_set_error (bfd_error_malformed_archive); | |
5622 | return false; | |
5623 | } | |
5624 | ||
5625 | /* Count the number of symbols in the library symbol table. */ | |
5626 | if (som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count) | |
5627 | == false) | |
5628 | return false; | |
5629 | ||
5630 | /* Get back to the start of the library symbol table. */ | |
5631 | if (bfd_seek (abfd, ardata->first_file_filepos - parsed_size | |
5632 | + sizeof (struct lst_header), SEEK_SET) < 0) | |
5633 | return false; | |
5634 | ||
5635 | /* Initializae the cache and allocate space for the library symbols. */ | |
5636 | ardata->cache = 0; | |
5637 | ardata->symdefs = (carsym *) bfd_alloc (abfd, | |
5638 | (ardata->symdef_count | |
5639 | * sizeof (carsym))); | |
5640 | if (!ardata->symdefs) | |
5641 | return false; | |
5642 | ||
5643 | /* Now fill in the canonical archive symbols. */ | |
5644 | if (som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs) | |
5645 | == false) | |
5646 | return false; | |
5647 | ||
5648 | /* Seek back to the "first" file in the archive. Note the "first" | |
5649 | file may be the extended name table. */ | |
5650 | if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) < 0) | |
5651 | return false; | |
5652 | ||
5653 | /* Notify the generic archive code that we have a symbol map. */ | |
5654 | bfd_has_map (abfd) = true; | |
5655 | return true; | |
5656 | } | |
5657 | ||
5658 | /* Begin preparing to write a SOM library symbol table. | |
5659 | ||
5660 | As part of the prep work we need to determine the number of symbols | |
5661 | and the size of the associated string section. */ | |
5662 | ||
5663 | static boolean | |
5664 | som_bfd_prep_for_ar_write (abfd, num_syms, stringsize) | |
5665 | bfd *abfd; | |
5666 | unsigned int *num_syms, *stringsize; | |
5667 | { | |
5668 | bfd *curr_bfd = abfd->archive_head; | |
5669 | ||
5670 | /* Some initialization. */ | |
5671 | *num_syms = 0; | |
5672 | *stringsize = 0; | |
5673 | ||
5674 | /* Iterate over each BFD within this archive. */ | |
5675 | while (curr_bfd != NULL) | |
5676 | { | |
5677 | unsigned int curr_count, i; | |
5678 | som_symbol_type *sym; | |
5679 | ||
5680 | /* Don't bother for non-SOM objects. */ | |
5681 | if (curr_bfd->format != bfd_object | |
5682 | || curr_bfd->xvec->flavour != bfd_target_som_flavour) | |
5683 | { | |
5684 | curr_bfd = curr_bfd->next; | |
5685 | continue; | |
5686 | } | |
5687 | ||
5688 | /* Make sure the symbol table has been read, then snag a pointer | |
5689 | to it. It's a little slimey to grab the symbols via obj_som_symtab, | |
5690 | but doing so avoids allocating lots of extra memory. */ | |
5691 | if (som_slurp_symbol_table (curr_bfd) == false) | |
5692 | return false; | |
5693 | ||
5694 | sym = obj_som_symtab (curr_bfd); | |
5695 | curr_count = bfd_get_symcount (curr_bfd); | |
5696 | ||
5697 | /* Examine each symbol to determine if it belongs in the | |
5698 | library symbol table. */ | |
5699 | for (i = 0; i < curr_count; i++, sym++) | |
5700 | { | |
5701 | struct som_misc_symbol_info info; | |
5702 | ||
5703 | /* Derive SOM information from the BFD symbol. */ | |
5704 | som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); | |
5705 | ||
5706 | /* Should we include this symbol? */ | |
5707 | if (info.symbol_type == ST_NULL | |
5708 | || info.symbol_type == ST_SYM_EXT | |
5709 | || info.symbol_type == ST_ARG_EXT) | |
5710 | continue; | |
5711 | ||
5712 | /* Only global symbols and unsatisfied commons. */ | |
5713 | if (info.symbol_scope != SS_UNIVERSAL | |
5714 | && info.symbol_type != ST_STORAGE) | |
5715 | continue; | |
5716 | ||
5717 | /* Do no include undefined symbols. */ | |
5718 | if (bfd_is_und_section (sym->symbol.section)) | |
5719 | continue; | |
5720 | ||
5721 | /* Bump the various counters, being careful to honor | |
5722 | alignment considerations in the string table. */ | |
5723 | (*num_syms)++; | |
5724 | *stringsize = *stringsize + strlen (sym->symbol.name) + 5; | |
5725 | while (*stringsize % 4) | |
5726 | (*stringsize)++; | |
5727 | } | |
5728 | ||
5729 | curr_bfd = curr_bfd->next; | |
5730 | } | |
5731 | return true; | |
5732 | } | |
5733 | ||
5734 | /* Hash a symbol name based on the hashing algorithm presented in the | |
5735 | SOM ABI. */ | |
5736 | static unsigned int | |
5737 | som_bfd_ar_symbol_hash (symbol) | |
5738 | asymbol *symbol; | |
5739 | { | |
5740 | unsigned int len = strlen (symbol->name); | |
5741 | ||
5742 | /* Names with length 1 are special. */ | |
5743 | if (len == 1) | |
5744 | return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0]; | |
5745 | ||
5746 | return ((len & 0x7f) << 24) | (symbol->name[1] << 16) | |
5747 | | (symbol->name[len-2] << 8) | symbol->name[len-1]; | |
5748 | } | |
5749 | ||
5750 | /* Do the bulk of the work required to write the SOM library | |
5751 | symbol table. */ | |
5752 | ||
5753 | static boolean | |
5754 | som_bfd_ar_write_symbol_stuff (abfd, nsyms, string_size, lst, elength) | |
5755 | bfd *abfd; | |
5756 | unsigned int nsyms, string_size; | |
5757 | struct lst_header lst; | |
5758 | unsigned elength; | |
5759 | { | |
5760 | file_ptr lst_filepos; | |
5761 | char *strings = NULL, *p; | |
5762 | struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym; | |
5763 | bfd *curr_bfd; | |
5764 | unsigned int *hash_table = NULL; | |
5765 | struct som_entry *som_dict = NULL; | |
5766 | struct lst_symbol_record **last_hash_entry = NULL; | |
5767 | unsigned int curr_som_offset, som_index = 0; | |
5768 | ||
5769 | hash_table = | |
5770 | (unsigned int *) bfd_malloc (lst.hash_size * sizeof (unsigned int)); | |
5771 | if (hash_table == NULL && lst.hash_size != 0) | |
5772 | goto error_return; | |
5773 | som_dict = | |
5774 | (struct som_entry *) bfd_malloc (lst.module_count | |
5775 | * sizeof (struct som_entry)); | |
5776 | if (som_dict == NULL && lst.module_count != 0) | |
5777 | goto error_return; | |
5778 | ||
5779 | last_hash_entry = | |
5780 | ((struct lst_symbol_record **) | |
5781 | bfd_malloc (lst.hash_size * sizeof (struct lst_symbol_record *))); | |
5782 | if (last_hash_entry == NULL && lst.hash_size != 0) | |
5783 | goto error_return; | |
5784 | ||
5785 | /* Lots of fields are file positions relative to the start | |
5786 | of the lst record. So save its location. */ | |
5787 | lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header); | |
5788 | ||
5789 | /* Some initialization. */ | |
5790 | memset (hash_table, 0, 4 * lst.hash_size); | |
5791 | memset (som_dict, 0, lst.module_count * sizeof (struct som_entry)); | |
5792 | memset (last_hash_entry, 0, | |
5793 | lst.hash_size * sizeof (struct lst_symbol_record *)); | |
5794 | ||
5795 | /* Symbols have som_index fields, so we have to keep track of the | |
5796 | index of each SOM in the archive. | |
5797 | ||
5798 | The SOM dictionary has (among other things) the absolute file | |
5799 | position for the SOM which a particular dictionary entry | |
5800 | describes. We have to compute that information as we iterate | |
5801 | through the SOMs/symbols. */ | |
5802 | som_index = 0; | |
5803 | ||
5804 | /* We add in the size of the archive header twice as the location | |
5805 | in the SOM dictionary is the actual offset of the SOM, not the | |
5806 | archive header before the SOM. */ | |
5807 | curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end; | |
5808 | ||
5809 | /* Make room for the archive header and the contents of the | |
5810 | extended string table. Note that elength includes the size | |
5811 | of the archive header for the extended name table! */ | |
5812 | if (elength) | |
5813 | curr_som_offset += elength; | |
5814 | ||
5815 | /* Make sure we're properly aligned. */ | |
5816 | curr_som_offset = (curr_som_offset + 0x1) & ~0x1; | |
5817 | ||
5818 | /* FIXME should be done with buffers just like everything else... */ | |
5819 | lst_syms = bfd_malloc (nsyms * sizeof (struct lst_symbol_record)); | |
5820 | if (lst_syms == NULL && nsyms != 0) | |
5821 | goto error_return; | |
5822 | strings = bfd_malloc (string_size); | |
5823 | if (strings == NULL && string_size != 0) | |
5824 | goto error_return; | |
5825 | ||
5826 | p = strings; | |
5827 | curr_lst_sym = lst_syms; | |
5828 | ||
5829 | curr_bfd = abfd->archive_head; | |
5830 | while (curr_bfd != NULL) | |
5831 | { | |
5832 | unsigned int curr_count, i; | |
5833 | som_symbol_type *sym; | |
5834 | ||
5835 | /* Don't bother for non-SOM objects. */ | |
5836 | if (curr_bfd->format != bfd_object | |
5837 | || curr_bfd->xvec->flavour != bfd_target_som_flavour) | |
5838 | { | |
5839 | curr_bfd = curr_bfd->next; | |
5840 | continue; | |
5841 | } | |
5842 | ||
5843 | /* Make sure the symbol table has been read, then snag a pointer | |
5844 | to it. It's a little slimey to grab the symbols via obj_som_symtab, | |
5845 | but doing so avoids allocating lots of extra memory. */ | |
5846 | if (som_slurp_symbol_table (curr_bfd) == false) | |
5847 | goto error_return; | |
5848 | ||
5849 | sym = obj_som_symtab (curr_bfd); | |
5850 | curr_count = bfd_get_symcount (curr_bfd); | |
5851 | ||
5852 | for (i = 0; i < curr_count; i++, sym++) | |
5853 | { | |
5854 | struct som_misc_symbol_info info; | |
5855 | ||
5856 | /* Derive SOM information from the BFD symbol. */ | |
5857 | som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info); | |
5858 | ||
5859 | /* Should we include this symbol? */ | |
5860 | if (info.symbol_type == ST_NULL | |
5861 | || info.symbol_type == ST_SYM_EXT | |
5862 | || info.symbol_type == ST_ARG_EXT) | |
5863 | continue; | |
5864 | ||
5865 | /* Only global symbols and unsatisfied commons. */ | |
5866 | if (info.symbol_scope != SS_UNIVERSAL | |
5867 | && info.symbol_type != ST_STORAGE) | |
5868 | continue; | |
5869 | ||
5870 | /* Do no include undefined symbols. */ | |
5871 | if (bfd_is_und_section (sym->symbol.section)) | |
5872 | continue; | |
5873 | ||
5874 | /* If this is the first symbol from this SOM, then update | |
5875 | the SOM dictionary too. */ | |
5876 | if (som_dict[som_index].location == 0) | |
5877 | { | |
5878 | som_dict[som_index].location = curr_som_offset; | |
5879 | som_dict[som_index].length = arelt_size (curr_bfd); | |
5880 | } | |
5881 | ||
5882 | /* Fill in the lst symbol record. */ | |
5883 | curr_lst_sym->hidden = 0; | |
5884 | curr_lst_sym->secondary_def = 0; | |
5885 | curr_lst_sym->symbol_type = info.symbol_type; | |
5886 | curr_lst_sym->symbol_scope = info.symbol_scope; | |
5887 | curr_lst_sym->check_level = 0; | |
5888 | curr_lst_sym->must_qualify = 0; | |
5889 | curr_lst_sym->initially_frozen = 0; | |
5890 | curr_lst_sym->memory_resident = 0; | |
5891 | curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section); | |
5892 | curr_lst_sym->dup_common = 0; | |
5893 | curr_lst_sym->xleast = 3; | |
5894 | curr_lst_sym->arg_reloc = info.arg_reloc; | |
5895 | curr_lst_sym->name.n_strx = p - strings + 4; | |
5896 | curr_lst_sym->qualifier_name.n_strx = 0; | |
5897 | curr_lst_sym->symbol_info = info.symbol_info; | |
5898 | curr_lst_sym->symbol_value = info.symbol_value | info.priv_level; | |
5899 | curr_lst_sym->symbol_descriptor = 0; | |
5900 | curr_lst_sym->reserved = 0; | |
5901 | curr_lst_sym->som_index = som_index; | |
5902 | curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol); | |
5903 | curr_lst_sym->next_entry = 0; | |
5904 | ||
5905 | /* Insert into the hash table. */ | |
5906 | if (hash_table[curr_lst_sym->symbol_key % lst.hash_size]) | |
5907 | { | |
5908 | struct lst_symbol_record *tmp; | |
5909 | ||
5910 | /* There is already something at the head of this hash chain, | |
5911 | so tack this symbol onto the end of the chain. */ | |
5912 | tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]; | |
5913 | tmp->next_entry | |
5914 | = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) | |
5915 | + lst.hash_size * 4 | |
5916 | + lst.module_count * sizeof (struct som_entry) | |
5917 | + sizeof (struct lst_header); | |
5918 | } | |
5919 | else | |
5920 | { | |
5921 | /* First entry in this hash chain. */ | |
5922 | hash_table[curr_lst_sym->symbol_key % lst.hash_size] | |
5923 | = (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record) | |
5924 | + lst.hash_size * 4 | |
5925 | + lst.module_count * sizeof (struct som_entry) | |
5926 | + sizeof (struct lst_header); | |
5927 | } | |
5928 | ||
5929 | /* Keep track of the last symbol we added to this chain so we can | |
5930 | easily update its next_entry pointer. */ | |
5931 | last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size] | |
5932 | = curr_lst_sym; | |
5933 | ||
5934 | ||
5935 | /* Update the string table. */ | |
5936 | bfd_put_32 (abfd, strlen (sym->symbol.name), p); | |
5937 | p += 4; | |
5938 | strcpy (p, sym->symbol.name); | |
5939 | p += strlen (sym->symbol.name) + 1; | |
5940 | while ((int)p % 4) | |
5941 | { | |
5942 | bfd_put_8 (abfd, 0, p); | |
5943 | p++; | |
5944 | } | |
5945 | ||
5946 | /* Head to the next symbol. */ | |
5947 | curr_lst_sym++; | |
5948 | } | |
5949 | ||
5950 | /* Keep track of where each SOM will finally reside; then look | |
5951 | at the next BFD. */ | |
5952 | curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr); | |
5953 | ||
5954 | /* A particular object in the archive may have an odd length; the | |
5955 | linker requires objects begin on an even boundary. So round | |
5956 | up the current offset as necessary. */ | |
5957 | curr_som_offset = (curr_som_offset + 0x1) & ~0x1; | |
5958 | curr_bfd = curr_bfd->next; | |
5959 | som_index++; | |
5960 | } | |
5961 | ||
5962 | /* Now scribble out the hash table. */ | |
5963 | if (bfd_write ((PTR) hash_table, lst.hash_size, 4, abfd) | |
5964 | != lst.hash_size * 4) | |
5965 | goto error_return; | |
5966 | ||
5967 | /* Then the SOM dictionary. */ | |
5968 | if (bfd_write ((PTR) som_dict, lst.module_count, | |
5969 | sizeof (struct som_entry), abfd) | |
5970 | != lst.module_count * sizeof (struct som_entry)) | |
5971 | goto error_return; | |
5972 | ||
5973 | /* The library symbols. */ | |
5974 | if (bfd_write ((PTR) lst_syms, nsyms, sizeof (struct lst_symbol_record), abfd) | |
5975 | != nsyms * sizeof (struct lst_symbol_record)) | |
5976 | goto error_return; | |
5977 | ||
5978 | /* And finally the strings. */ | |
5979 | if (bfd_write ((PTR) strings, string_size, 1, abfd) != string_size) | |
5980 | goto error_return; | |
5981 | ||
5982 | if (hash_table != NULL) | |
5983 | free (hash_table); | |
5984 | if (som_dict != NULL) | |
5985 | free (som_dict); | |
5986 | if (last_hash_entry != NULL) | |
5987 | free (last_hash_entry); | |
5988 | if (lst_syms != NULL) | |
5989 | free (lst_syms); | |
5990 | if (strings != NULL) | |
5991 | free (strings); | |
5992 | return true; | |
5993 | ||
5994 | error_return: | |
5995 | if (hash_table != NULL) | |
5996 | free (hash_table); | |
5997 | if (som_dict != NULL) | |
5998 | free (som_dict); | |
5999 | if (last_hash_entry != NULL) | |
6000 | free (last_hash_entry); | |
6001 | if (lst_syms != NULL) | |
6002 | free (lst_syms); | |
6003 | if (strings != NULL) | |
6004 | free (strings); | |
6005 | ||
6006 | return false; | |
6007 | } | |
6008 | ||
6009 | /* Write out the LST for the archive. | |
6010 | ||
6011 | You'll never believe this is really how armaps are handled in SOM... */ | |
6012 | ||
6013 | /*ARGSUSED*/ | |
6014 | static boolean | |
6015 | som_write_armap (abfd, elength, map, orl_count, stridx) | |
6016 | bfd *abfd; | |
6017 | unsigned int elength; | |
6018 | struct orl *map; | |
6019 | unsigned int orl_count; | |
6020 | int stridx; | |
6021 | { | |
6022 | bfd *curr_bfd; | |
6023 | struct stat statbuf; | |
6024 | unsigned int i, lst_size, nsyms, stringsize; | |
6025 | struct ar_hdr hdr; | |
6026 | struct lst_header lst; | |
6027 | int *p; | |
6028 | ||
6029 | /* We'll use this for the archive's date and mode later. */ | |
6030 | if (stat (abfd->filename, &statbuf) != 0) | |
6031 | { | |
6032 | bfd_set_error (bfd_error_system_call); | |
6033 | return false; | |
6034 | } | |
6035 | /* Fudge factor. */ | |
6036 | bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60; | |
6037 | ||
6038 | /* Account for the lst header first. */ | |
6039 | lst_size = sizeof (struct lst_header); | |
6040 | ||
6041 | /* Start building the LST header. */ | |
6042 | /* FIXME: Do we need to examine each element to determine the | |
6043 | largest id number? */ | |
6044 | lst.system_id = CPU_PA_RISC1_0; | |
6045 | lst.a_magic = LIBMAGIC; | |
6046 | lst.version_id = VERSION_ID; | |
6047 | lst.file_time.secs = 0; | |
6048 | lst.file_time.nanosecs = 0; | |
6049 | ||
6050 | lst.hash_loc = lst_size; | |
6051 | lst.hash_size = SOM_LST_HASH_SIZE; | |
6052 | ||
6053 | /* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */ | |
6054 | lst_size += 4 * SOM_LST_HASH_SIZE; | |
6055 | ||
6056 | /* We need to count the number of SOMs in this archive. */ | |
6057 | curr_bfd = abfd->archive_head; | |
6058 | lst.module_count = 0; | |
6059 | while (curr_bfd != NULL) | |
6060 | { | |
6061 | /* Only true SOM objects count. */ | |
6062 | if (curr_bfd->format == bfd_object | |
6063 | && curr_bfd->xvec->flavour == bfd_target_som_flavour) | |
6064 | lst.module_count++; | |
6065 | curr_bfd = curr_bfd->next; | |
6066 | } | |
6067 | lst.module_limit = lst.module_count; | |
6068 | lst.dir_loc = lst_size; | |
6069 | lst_size += sizeof (struct som_entry) * lst.module_count; | |
6070 | ||
6071 | /* We don't support import/export tables, auxiliary headers, | |
6072 | or free lists yet. Make the linker work a little harder | |
6073 | to make our life easier. */ | |
6074 | ||
6075 | lst.export_loc = 0; | |
6076 | lst.export_count = 0; | |
6077 | lst.import_loc = 0; | |
6078 | lst.aux_loc = 0; | |
6079 | lst.aux_size = 0; | |
6080 | ||
6081 | /* Count how many symbols we will have on the hash chains and the | |
6082 | size of the associated string table. */ | |
6083 | if (som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize) == false) | |
6084 | return false; | |
6085 | ||
6086 | lst_size += sizeof (struct lst_symbol_record) * nsyms; | |
6087 | ||
6088 | /* For the string table. One day we might actually use this info | |
6089 | to avoid small seeks/reads when reading archives. */ | |
6090 | lst.string_loc = lst_size; | |
6091 | lst.string_size = stringsize; | |
6092 | lst_size += stringsize; | |
6093 | ||
6094 | /* SOM ABI says this must be zero. */ | |
6095 | lst.free_list = 0; | |
6096 | lst.file_end = lst_size; | |
6097 | ||
6098 | /* Compute the checksum. Must happen after the entire lst header | |
6099 | has filled in. */ | |
6100 | p = (int *)&lst; | |
6101 | lst.checksum = 0; | |
6102 | for (i = 0; i < sizeof (struct lst_header)/sizeof (int) - 1; i++) | |
6103 | lst.checksum ^= *p++; | |
6104 | ||
6105 | sprintf (hdr.ar_name, "/ "); | |
6106 | sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp); | |
6107 | sprintf (hdr.ar_uid, "%ld", (long) getuid ()); | |
6108 | sprintf (hdr.ar_gid, "%ld", (long) getgid ()); | |
6109 | sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode); | |
6110 | sprintf (hdr.ar_size, "%-10d", (int) lst_size); | |
6111 | hdr.ar_fmag[0] = '`'; | |
6112 | hdr.ar_fmag[1] = '\012'; | |
6113 | ||
6114 | /* Turn any nulls into spaces. */ | |
6115 | for (i = 0; i < sizeof (struct ar_hdr); i++) | |
6116 | if (((char *) (&hdr))[i] == '\0') | |
6117 | (((char *) (&hdr))[i]) = ' '; | |
6118 | ||
6119 | /* Scribble out the ar header. */ | |
6120 | if (bfd_write ((PTR) &hdr, 1, sizeof (struct ar_hdr), abfd) | |
6121 | != sizeof (struct ar_hdr)) | |
6122 | return false; | |
6123 | ||
6124 | /* Now scribble out the lst header. */ | |
6125 | if (bfd_write ((PTR) &lst, 1, sizeof (struct lst_header), abfd) | |
6126 | != sizeof (struct lst_header)) | |
6127 | return false; | |
6128 | ||
6129 | /* Build and write the armap. */ | |
6130 | if (som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength) | |
6131 | == false) | |
6132 | return false; | |
6133 | ||
6134 | /* Done. */ | |
6135 | return true; | |
6136 | } | |
6137 | ||
6138 | /* Free all information we have cached for this BFD. We can always | |
6139 | read it again later if we need it. */ | |
6140 | ||
6141 | static boolean | |
6142 | som_bfd_free_cached_info (abfd) | |
6143 | bfd *abfd; | |
6144 | { | |
6145 | asection *o; | |
6146 | ||
6147 | if (bfd_get_format (abfd) != bfd_object) | |
6148 | return true; | |
6149 | ||
6150 | #define FREE(x) if (x != NULL) { free (x); x = NULL; } | |
6151 | /* Free the native string and symbol tables. */ | |
6152 | FREE (obj_som_symtab (abfd)); | |
6153 | FREE (obj_som_stringtab (abfd)); | |
6154 | for (o = abfd->sections; o != (asection *) NULL; o = o->next) | |
6155 | { | |
6156 | /* Free the native relocations. */ | |
6157 | o->reloc_count = -1; | |
6158 | FREE (som_section_data (o)->reloc_stream); | |
6159 | /* Free the generic relocations. */ | |
6160 | FREE (o->relocation); | |
6161 | } | |
6162 | #undef FREE | |
6163 | ||
6164 | return true; | |
6165 | } | |
6166 | ||
6167 | /* End of miscellaneous support functions. */ | |
6168 | ||
6169 | /* Linker support functions. */ | |
6170 | static boolean | |
6171 | som_bfd_link_split_section (abfd, sec) | |
6172 | bfd *abfd; | |
6173 | asection *sec; | |
6174 | { | |
6175 | return (som_is_subspace (sec) && sec->_raw_size > 240000); | |
6176 | } | |
6177 | ||
6178 | #define som_close_and_cleanup som_bfd_free_cached_info | |
6179 | ||
6180 | #define som_read_ar_hdr _bfd_generic_read_ar_hdr | |
6181 | #define som_openr_next_archived_file bfd_generic_openr_next_archived_file | |
6182 | #define som_get_elt_at_index _bfd_generic_get_elt_at_index | |
6183 | #define som_generic_stat_arch_elt bfd_generic_stat_arch_elt | |
6184 | #define som_truncate_arname bfd_bsd_truncate_arname | |
6185 | #define som_slurp_extended_name_table _bfd_slurp_extended_name_table | |
6186 | #define som_construct_extended_name_table \ | |
6187 | _bfd_archive_coff_construct_extended_name_table | |
6188 | #define som_update_armap_timestamp bfd_true | |
6189 | #define som_bfd_print_private_bfd_data _bfd_generic_bfd_print_private_bfd_data | |
6190 | ||
6191 | #define som_get_lineno _bfd_nosymbols_get_lineno | |
6192 | #define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol | |
6193 | #define som_read_minisymbols _bfd_generic_read_minisymbols | |
6194 | #define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol | |
6195 | #define som_get_section_contents_in_window \ | |
6196 | _bfd_generic_get_section_contents_in_window | |
6197 | ||
6198 | #define som_bfd_get_relocated_section_contents \ | |
6199 | bfd_generic_get_relocated_section_contents | |
6200 | #define som_bfd_relax_section bfd_generic_relax_section | |
6201 | #define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create | |
6202 | #define som_bfd_link_add_symbols _bfd_generic_link_add_symbols | |
6203 | #define som_bfd_final_link _bfd_generic_final_link | |
6204 | ||
6205 | #define som_bfd_gc_sections bfd_generic_gc_sections | |
6206 | ||
6207 | ||
6208 | const bfd_target som_vec = | |
6209 | { | |
6210 | "som", /* name */ | |
6211 | bfd_target_som_flavour, | |
6212 | BFD_ENDIAN_BIG, /* target byte order */ | |
6213 | BFD_ENDIAN_BIG, /* target headers byte order */ | |
6214 | (HAS_RELOC | EXEC_P | /* object flags */ | |
6215 | HAS_LINENO | HAS_DEBUG | | |
6216 | HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC), | |
6217 | (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | |
6218 | | SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* section flags */ | |
6219 | ||
6220 | /* leading_symbol_char: is the first char of a user symbol | |
6221 | predictable, and if so what is it */ | |
6222 | 0, | |
6223 | '/', /* ar_pad_char */ | |
6224 | 14, /* ar_max_namelen */ | |
6225 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
6226 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
6227 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* data */ | |
6228 | bfd_getb64, bfd_getb_signed_64, bfd_putb64, | |
6229 | bfd_getb32, bfd_getb_signed_32, bfd_putb32, | |
6230 | bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* hdrs */ | |
6231 | {_bfd_dummy_target, | |
6232 | som_object_p, /* bfd_check_format */ | |
6233 | bfd_generic_archive_p, | |
6234 | _bfd_dummy_target | |
6235 | }, | |
6236 | { | |
6237 | bfd_false, | |
6238 | som_mkobject, | |
6239 | _bfd_generic_mkarchive, | |
6240 | bfd_false | |
6241 | }, | |
6242 | { | |
6243 | bfd_false, | |
6244 | som_write_object_contents, | |
6245 | _bfd_write_archive_contents, | |
6246 | bfd_false, | |
6247 | }, | |
6248 | #undef som | |
6249 | ||
6250 | BFD_JUMP_TABLE_GENERIC (som), | |
6251 | BFD_JUMP_TABLE_COPY (som), | |
6252 | BFD_JUMP_TABLE_CORE (_bfd_nocore), | |
6253 | BFD_JUMP_TABLE_ARCHIVE (som), | |
6254 | BFD_JUMP_TABLE_SYMBOLS (som), | |
6255 | BFD_JUMP_TABLE_RELOCS (som), | |
6256 | BFD_JUMP_TABLE_WRITE (som), | |
6257 | BFD_JUMP_TABLE_LINK (som), | |
6258 | BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), | |
6259 | ||
6260 | (PTR) 0 | |
6261 | }; | |
6262 | ||
6263 | #endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */ |