]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Fortran language support routines for GDB, the GNU debugger. |
ce27fb25 | 2 | |
3666a048 | 3 | Copyright (C) 1993-2021 Free Software Foundation, Inc. |
ce27fb25 | 4 | |
c906108c SS |
5 | Contributed by Motorola. Adapted from the C parser by Farooq Butt |
6 | ([email protected]). | |
7 | ||
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 13 | (at your option) any later version. |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b | 20 | You should have received a copy of the GNU General Public License |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
22 | |
23 | #include "defs.h" | |
4de283e4 | 24 | #include "symtab.h" |
d55e5aa6 | 25 | #include "gdbtypes.h" |
4de283e4 | 26 | #include "expression.h" |
d55e5aa6 | 27 | #include "parser-defs.h" |
4de283e4 TT |
28 | #include "language.h" |
29 | #include "varobj.h" | |
30 | #include "gdbcore.h" | |
31 | #include "f-lang.h" | |
745b8ca0 | 32 | #include "valprint.h" |
5f9a71c3 | 33 | #include "value.h" |
4de283e4 TT |
34 | #include "cp-support.h" |
35 | #include "charset.h" | |
36 | #include "c-lang.h" | |
37 | #include "target-float.h" | |
0d12e84c | 38 | #include "gdbarch.h" |
a5c641b5 AB |
39 | #include "gdbcmd.h" |
40 | #include "f-array-walker.h" | |
9dcd3e29 | 41 | #include "f-exp.h" |
4de283e4 TT |
42 | |
43 | #include <math.h> | |
c906108c | 44 | |
a5c641b5 AB |
45 | /* Whether GDB should repack array slices created by the user. */ |
46 | static bool repack_array_slices = false; | |
47 | ||
48 | /* Implement 'show fortran repack-array-slices'. */ | |
49 | static void | |
50 | show_repack_array_slices (struct ui_file *file, int from_tty, | |
51 | struct cmd_list_element *c, const char *value) | |
52 | { | |
53 | fprintf_filtered (file, _("Repacking of Fortran array slices is %s.\n"), | |
54 | value); | |
55 | } | |
56 | ||
57 | /* Debugging of Fortran's array slicing. */ | |
58 | static bool fortran_array_slicing_debug = false; | |
59 | ||
60 | /* Implement 'show debug fortran-array-slicing'. */ | |
61 | static void | |
62 | show_fortran_array_slicing_debug (struct ui_file *file, int from_tty, | |
63 | struct cmd_list_element *c, | |
64 | const char *value) | |
65 | { | |
66 | fprintf_filtered (file, _("Debugging of Fortran array slicing is %s.\n"), | |
67 | value); | |
68 | } | |
69 | ||
c906108c SS |
70 | /* Local functions */ |
71 | ||
2f98abe1 TT |
72 | static value *fortran_prepare_argument (struct expression *exp, |
73 | expr::operation *subexp, | |
74 | int arg_num, bool is_internal_call_p, | |
75 | struct type *func_type, enum noside noside); | |
5a7cf527 | 76 | |
3b2b8fea TT |
77 | /* Return the encoding that should be used for the character type |
78 | TYPE. */ | |
79 | ||
1a0ea399 AB |
80 | const char * |
81 | f_language::get_encoding (struct type *type) | |
3b2b8fea TT |
82 | { |
83 | const char *encoding; | |
84 | ||
85 | switch (TYPE_LENGTH (type)) | |
86 | { | |
87 | case 1: | |
8ee511af | 88 | encoding = target_charset (type->arch ()); |
3b2b8fea TT |
89 | break; |
90 | case 4: | |
34877895 | 91 | if (type_byte_order (type) == BFD_ENDIAN_BIG) |
3b2b8fea TT |
92 | encoding = "UTF-32BE"; |
93 | else | |
94 | encoding = "UTF-32LE"; | |
95 | break; | |
96 | ||
97 | default: | |
98 | error (_("unrecognized character type")); | |
99 | } | |
100 | ||
101 | return encoding; | |
102 | } | |
103 | ||
c906108c | 104 | \f |
c5aa993b | 105 | |
3c18c49c TT |
106 | /* A helper function for the "bound" intrinsics that checks that TYPE |
107 | is an array. LBOUND_P is true for lower bound; this is used for | |
108 | the error message, if any. */ | |
109 | ||
110 | static void | |
111 | fortran_require_array (struct type *type, bool lbound_p) | |
112 | { | |
113 | type = check_typedef (type); | |
114 | if (type->code () != TYPE_CODE_ARRAY) | |
115 | { | |
116 | if (lbound_p) | |
117 | error (_("LBOUND can only be applied to arrays")); | |
118 | else | |
119 | error (_("UBOUND can only be applied to arrays")); | |
120 | } | |
121 | } | |
122 | ||
e92c8eb8 AB |
123 | /* Create an array containing the lower bounds (when LBOUND_P is true) or |
124 | the upper bounds (when LBOUND_P is false) of ARRAY (which must be of | |
125 | array type). GDBARCH is the current architecture. */ | |
126 | ||
127 | static struct value * | |
128 | fortran_bounds_all_dims (bool lbound_p, | |
129 | struct gdbarch *gdbarch, | |
130 | struct value *array) | |
131 | { | |
132 | type *array_type = check_typedef (value_type (array)); | |
133 | int ndimensions = calc_f77_array_dims (array_type); | |
134 | ||
135 | /* Allocate a result value of the correct type. */ | |
136 | struct type *range | |
137 | = create_static_range_type (nullptr, | |
138 | builtin_type (gdbarch)->builtin_int, | |
139 | 1, ndimensions); | |
140 | struct type *elm_type = builtin_type (gdbarch)->builtin_long_long; | |
141 | struct type *result_type = create_array_type (nullptr, elm_type, range); | |
142 | struct value *result = allocate_value (result_type); | |
143 | ||
144 | /* Walk the array dimensions backwards due to the way the array will be | |
145 | laid out in memory, the first dimension will be the most inner. */ | |
146 | LONGEST elm_len = TYPE_LENGTH (elm_type); | |
147 | for (LONGEST dst_offset = elm_len * (ndimensions - 1); | |
148 | dst_offset >= 0; | |
149 | dst_offset -= elm_len) | |
150 | { | |
151 | LONGEST b; | |
152 | ||
153 | /* Grab the required bound. */ | |
154 | if (lbound_p) | |
155 | b = f77_get_lowerbound (array_type); | |
156 | else | |
157 | b = f77_get_upperbound (array_type); | |
158 | ||
159 | /* And copy the value into the result value. */ | |
160 | struct value *v = value_from_longest (elm_type, b); | |
161 | gdb_assert (dst_offset + TYPE_LENGTH (value_type (v)) | |
162 | <= TYPE_LENGTH (value_type (result))); | |
163 | gdb_assert (TYPE_LENGTH (value_type (v)) == elm_len); | |
164 | value_contents_copy (result, dst_offset, v, 0, elm_len); | |
165 | ||
166 | /* Peel another dimension of the array. */ | |
167 | array_type = TYPE_TARGET_TYPE (array_type); | |
168 | } | |
169 | ||
170 | return result; | |
171 | } | |
172 | ||
173 | /* Return the lower bound (when LBOUND_P is true) or the upper bound (when | |
174 | LBOUND_P is false) for dimension DIM_VAL (which must be an integer) of | |
175 | ARRAY (which must be an array). GDBARCH is the current architecture. */ | |
176 | ||
177 | static struct value * | |
178 | fortran_bounds_for_dimension (bool lbound_p, | |
179 | struct gdbarch *gdbarch, | |
180 | struct value *array, | |
181 | struct value *dim_val) | |
182 | { | |
183 | /* Check the requested dimension is valid for this array. */ | |
184 | type *array_type = check_typedef (value_type (array)); | |
185 | int ndimensions = calc_f77_array_dims (array_type); | |
186 | long dim = value_as_long (dim_val); | |
187 | if (dim < 1 || dim > ndimensions) | |
188 | { | |
189 | if (lbound_p) | |
190 | error (_("LBOUND dimension must be from 1 to %d"), ndimensions); | |
191 | else | |
192 | error (_("UBOUND dimension must be from 1 to %d"), ndimensions); | |
193 | } | |
194 | ||
195 | /* The type for the result. */ | |
196 | struct type *bound_type = builtin_type (gdbarch)->builtin_long_long; | |
197 | ||
198 | /* Walk the dimensions backwards, due to the ordering in which arrays are | |
199 | laid out the first dimension is the most inner. */ | |
200 | for (int i = ndimensions - 1; i >= 0; --i) | |
201 | { | |
202 | /* If this is the requested dimension then we're done. Grab the | |
203 | bounds and return. */ | |
204 | if (i == dim - 1) | |
205 | { | |
206 | LONGEST b; | |
207 | ||
208 | if (lbound_p) | |
209 | b = f77_get_lowerbound (array_type); | |
210 | else | |
211 | b = f77_get_upperbound (array_type); | |
212 | ||
213 | return value_from_longest (bound_type, b); | |
214 | } | |
215 | ||
216 | /* Peel off another dimension of the array. */ | |
217 | array_type = TYPE_TARGET_TYPE (array_type); | |
218 | } | |
219 | ||
220 | gdb_assert_not_reached ("failed to find matching dimension"); | |
221 | } | |
222 | \f | |
223 | ||
6d816919 AB |
224 | /* Return the number of dimensions for a Fortran array or string. */ |
225 | ||
226 | int | |
227 | calc_f77_array_dims (struct type *array_type) | |
228 | { | |
229 | int ndimen = 1; | |
230 | struct type *tmp_type; | |
231 | ||
232 | if ((array_type->code () == TYPE_CODE_STRING)) | |
233 | return 1; | |
234 | ||
235 | if ((array_type->code () != TYPE_CODE_ARRAY)) | |
236 | error (_("Can't get dimensions for a non-array type")); | |
237 | ||
238 | tmp_type = array_type; | |
239 | ||
240 | while ((tmp_type = TYPE_TARGET_TYPE (tmp_type))) | |
241 | { | |
242 | if (tmp_type->code () == TYPE_CODE_ARRAY) | |
243 | ++ndimen; | |
244 | } | |
245 | return ndimen; | |
246 | } | |
247 | ||
a5c641b5 AB |
248 | /* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array |
249 | slices. This is a base class for two alternative repacking mechanisms, | |
250 | one for when repacking from a lazy value, and one for repacking from a | |
251 | non-lazy (already loaded) value. */ | |
252 | class fortran_array_repacker_base_impl | |
253 | : public fortran_array_walker_base_impl | |
254 | { | |
255 | public: | |
256 | /* Constructor, DEST is the value we are repacking into. */ | |
257 | fortran_array_repacker_base_impl (struct value *dest) | |
258 | : m_dest (dest), | |
259 | m_dest_offset (0) | |
260 | { /* Nothing. */ } | |
261 | ||
262 | /* When we start processing the inner most dimension, this is where we | |
263 | will be creating values for each element as we load them and then copy | |
264 | them into the M_DEST value. Set a value mark so we can free these | |
265 | temporary values. */ | |
266 | void start_dimension (bool inner_p) | |
267 | { | |
268 | if (inner_p) | |
269 | { | |
270 | gdb_assert (m_mark == nullptr); | |
271 | m_mark = value_mark (); | |
272 | } | |
273 | } | |
274 | ||
275 | /* When we finish processing the inner most dimension free all temporary | |
276 | value that were created. */ | |
277 | void finish_dimension (bool inner_p, bool last_p) | |
278 | { | |
279 | if (inner_p) | |
280 | { | |
281 | gdb_assert (m_mark != nullptr); | |
282 | value_free_to_mark (m_mark); | |
283 | m_mark = nullptr; | |
284 | } | |
285 | } | |
286 | ||
287 | protected: | |
288 | /* Copy the contents of array element ELT into M_DEST at the next | |
289 | available offset. */ | |
290 | void copy_element_to_dest (struct value *elt) | |
291 | { | |
292 | value_contents_copy (m_dest, m_dest_offset, elt, 0, | |
293 | TYPE_LENGTH (value_type (elt))); | |
294 | m_dest_offset += TYPE_LENGTH (value_type (elt)); | |
295 | } | |
296 | ||
297 | /* The value being written to. */ | |
298 | struct value *m_dest; | |
299 | ||
300 | /* The byte offset in M_DEST at which the next element should be | |
301 | written. */ | |
302 | LONGEST m_dest_offset; | |
303 | ||
304 | /* Set with a call to VALUE_MARK, and then reset after calling | |
305 | VALUE_FREE_TO_MARK. */ | |
306 | struct value *m_mark = nullptr; | |
307 | }; | |
308 | ||
309 | /* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array | |
310 | slices. This class is specialised for repacking an array slice from a | |
311 | lazy array value, as such it does not require the parent array value to | |
312 | be loaded into GDB's memory; the parent value could be huge, while the | |
313 | slice could be tiny. */ | |
314 | class fortran_lazy_array_repacker_impl | |
315 | : public fortran_array_repacker_base_impl | |
316 | { | |
317 | public: | |
318 | /* Constructor. TYPE is the type of the slice being loaded from the | |
319 | parent value, so this type will correctly reflect the strides required | |
320 | to find all of the elements from the parent value. ADDRESS is the | |
321 | address in target memory of value matching TYPE, and DEST is the value | |
322 | we are repacking into. */ | |
323 | explicit fortran_lazy_array_repacker_impl (struct type *type, | |
324 | CORE_ADDR address, | |
325 | struct value *dest) | |
326 | : fortran_array_repacker_base_impl (dest), | |
327 | m_addr (address) | |
328 | { /* Nothing. */ } | |
329 | ||
330 | /* Create a lazy value in target memory representing a single element, | |
331 | then load the element into GDB's memory and copy the contents into the | |
332 | destination value. */ | |
333 | void process_element (struct type *elt_type, LONGEST elt_off, bool last_p) | |
334 | { | |
335 | copy_element_to_dest (value_at_lazy (elt_type, m_addr + elt_off)); | |
336 | } | |
337 | ||
a99be8c1 TT |
338 | private: |
339 | /* The address in target memory where the parent value starts. */ | |
340 | CORE_ADDR m_addr; | |
341 | }; | |
6d816919 | 342 | |
a99be8c1 TT |
343 | /* A class used by FORTRAN_VALUE_SUBARRAY when repacking Fortran array |
344 | slices. This class is specialised for repacking an array slice from a | |
345 | previously loaded (non-lazy) array value, as such it fetches the | |
346 | element values from the contents of the parent value. */ | |
347 | class fortran_array_repacker_impl | |
348 | : public fortran_array_repacker_base_impl | |
349 | { | |
350 | public: | |
351 | /* Constructor. TYPE is the type for the array slice within the parent | |
352 | value, as such it has stride values as required to find the elements | |
353 | within the original parent value. ADDRESS is the address in target | |
354 | memory of the value matching TYPE. BASE_OFFSET is the offset from | |
355 | the start of VAL's content buffer to the start of the object of TYPE, | |
356 | VAL is the parent object from which we are loading the value, and | |
357 | DEST is the value into which we are repacking. */ | |
358 | explicit fortran_array_repacker_impl (struct type *type, CORE_ADDR address, | |
359 | LONGEST base_offset, | |
360 | struct value *val, struct value *dest) | |
361 | : fortran_array_repacker_base_impl (dest), | |
362 | m_base_offset (base_offset), | |
363 | m_val (val) | |
364 | { | |
365 | gdb_assert (!value_lazy (val)); | |
366 | } | |
a5c641b5 | 367 | |
a99be8c1 TT |
368 | /* Extract an element of ELT_TYPE at offset (M_BASE_OFFSET + ELT_OFF) |
369 | from the content buffer of M_VAL then copy this extracted value into | |
370 | the repacked destination value. */ | |
371 | void process_element (struct type *elt_type, LONGEST elt_off, bool last_p) | |
372 | { | |
373 | struct value *elt | |
374 | = value_from_component (m_val, elt_type, (elt_off + m_base_offset)); | |
375 | copy_element_to_dest (elt); | |
376 | } | |
a5c641b5 | 377 | |
a99be8c1 TT |
378 | private: |
379 | /* The offset into the content buffer of M_VAL to the start of the slice | |
380 | being extracted. */ | |
381 | LONGEST m_base_offset; | |
6d816919 | 382 | |
a99be8c1 TT |
383 | /* The parent value from which we are extracting a slice. */ |
384 | struct value *m_val; | |
385 | }; | |
6d816919 | 386 | |
6d816919 | 387 | |
faeb9f13 AB |
388 | /* Evaluate FORTRAN_ASSOCIATED expressions. Both GDBARCH and LANG are |
389 | extracted from the expression being evaluated. POINTER is the required | |
390 | first argument to the 'associated' keyword, and TARGET is the optional | |
391 | second argument, this will be nullptr if the user only passed one | |
392 | argument to their use of 'associated'. */ | |
393 | ||
394 | static struct value * | |
395 | fortran_associated (struct gdbarch *gdbarch, const language_defn *lang, | |
396 | struct value *pointer, struct value *target = nullptr) | |
397 | { | |
398 | struct type *result_type = language_bool_type (lang, gdbarch); | |
399 | ||
400 | /* All Fortran pointers should have the associated property, this is | |
401 | how we know the pointer is pointing at something or not. */ | |
402 | struct type *pointer_type = check_typedef (value_type (pointer)); | |
403 | if (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr | |
404 | && pointer_type->code () != TYPE_CODE_PTR) | |
405 | error (_("ASSOCIATED can only be applied to pointers")); | |
406 | ||
407 | /* Get an address from POINTER. Fortran (or at least gfortran) models | |
408 | array pointers as arrays with a dynamic data address, so we need to | |
409 | use two approaches here, for real pointers we take the contents of the | |
410 | pointer as an address. For non-pointers we take the address of the | |
411 | content. */ | |
412 | CORE_ADDR pointer_addr; | |
413 | if (pointer_type->code () == TYPE_CODE_PTR) | |
414 | pointer_addr = value_as_address (pointer); | |
415 | else | |
416 | pointer_addr = value_address (pointer); | |
417 | ||
418 | /* The single argument case, is POINTER associated with anything? */ | |
419 | if (target == nullptr) | |
420 | { | |
421 | bool is_associated = false; | |
422 | ||
423 | /* If POINTER is an actual pointer and doesn't have an associated | |
424 | property then we need to figure out whether this pointer is | |
425 | associated by looking at the value of the pointer itself. We make | |
426 | the assumption that a non-associated pointer will be set to 0. | |
427 | This is probably true for most targets, but might not be true for | |
428 | everyone. */ | |
429 | if (pointer_type->code () == TYPE_CODE_PTR | |
430 | && TYPE_ASSOCIATED_PROP (pointer_type) == nullptr) | |
431 | is_associated = (pointer_addr != 0); | |
432 | else | |
433 | is_associated = !type_not_associated (pointer_type); | |
434 | return value_from_longest (result_type, is_associated ? 1 : 0); | |
435 | } | |
436 | ||
437 | /* The two argument case, is POINTER associated with TARGET? */ | |
438 | ||
439 | struct type *target_type = check_typedef (value_type (target)); | |
440 | ||
441 | struct type *pointer_target_type; | |
442 | if (pointer_type->code () == TYPE_CODE_PTR) | |
443 | pointer_target_type = TYPE_TARGET_TYPE (pointer_type); | |
444 | else | |
445 | pointer_target_type = pointer_type; | |
446 | ||
447 | struct type *target_target_type; | |
448 | if (target_type->code () == TYPE_CODE_PTR) | |
449 | target_target_type = TYPE_TARGET_TYPE (target_type); | |
450 | else | |
451 | target_target_type = target_type; | |
452 | ||
453 | if (pointer_target_type->code () != target_target_type->code () | |
454 | || (pointer_target_type->code () != TYPE_CODE_ARRAY | |
455 | && (TYPE_LENGTH (pointer_target_type) | |
456 | != TYPE_LENGTH (target_target_type)))) | |
457 | error (_("arguments to associated must be of same type and kind")); | |
458 | ||
459 | /* If TARGET is not in memory, or the original pointer is specifically | |
460 | known to be not associated with anything, then the answer is obviously | |
461 | false. Alternatively, if POINTER is an actual pointer and has no | |
462 | associated property, then we have to check if its associated by | |
463 | looking the value of the pointer itself. We make the assumption that | |
464 | a non-associated pointer will be set to 0. This is probably true for | |
465 | most targets, but might not be true for everyone. */ | |
466 | if (value_lval_const (target) != lval_memory | |
467 | || type_not_associated (pointer_type) | |
468 | || (TYPE_ASSOCIATED_PROP (pointer_type) == nullptr | |
469 | && pointer_type->code () == TYPE_CODE_PTR | |
470 | && pointer_addr == 0)) | |
471 | return value_from_longest (result_type, 0); | |
472 | ||
473 | /* See the comment for POINTER_ADDR above. */ | |
474 | CORE_ADDR target_addr; | |
475 | if (target_type->code () == TYPE_CODE_PTR) | |
476 | target_addr = value_as_address (target); | |
477 | else | |
478 | target_addr = value_address (target); | |
479 | ||
480 | /* Wrap the following checks inside a do { ... } while (false) loop so | |
481 | that we can use `break' to jump out of the loop. */ | |
482 | bool is_associated = false; | |
483 | do | |
484 | { | |
485 | /* If the addresses are different then POINTER is definitely not | |
486 | pointing at TARGET. */ | |
487 | if (pointer_addr != target_addr) | |
488 | break; | |
489 | ||
490 | /* If POINTER is a real pointer (i.e. not an array pointer, which are | |
491 | implemented as arrays with a dynamic content address), then this | |
492 | is all the checking that is needed. */ | |
493 | if (pointer_type->code () == TYPE_CODE_PTR) | |
494 | { | |
495 | is_associated = true; | |
496 | break; | |
497 | } | |
498 | ||
499 | /* We have an array pointer. Check the number of dimensions. */ | |
500 | int pointer_dims = calc_f77_array_dims (pointer_type); | |
501 | int target_dims = calc_f77_array_dims (target_type); | |
502 | if (pointer_dims != target_dims) | |
503 | break; | |
504 | ||
505 | /* Now check that every dimension has the same upper bound, lower | |
506 | bound, and stride value. */ | |
507 | int dim = 0; | |
508 | while (dim < pointer_dims) | |
509 | { | |
510 | LONGEST pointer_lowerbound, pointer_upperbound, pointer_stride; | |
511 | LONGEST target_lowerbound, target_upperbound, target_stride; | |
512 | ||
513 | pointer_type = check_typedef (pointer_type); | |
514 | target_type = check_typedef (target_type); | |
515 | ||
516 | struct type *pointer_range = pointer_type->index_type (); | |
517 | struct type *target_range = target_type->index_type (); | |
518 | ||
519 | if (!get_discrete_bounds (pointer_range, &pointer_lowerbound, | |
520 | &pointer_upperbound)) | |
521 | break; | |
522 | ||
523 | if (!get_discrete_bounds (target_range, &target_lowerbound, | |
524 | &target_upperbound)) | |
525 | break; | |
526 | ||
527 | if (pointer_lowerbound != target_lowerbound | |
528 | || pointer_upperbound != target_upperbound) | |
529 | break; | |
530 | ||
531 | /* Figure out the stride (in bits) for both pointer and target. | |
532 | If either doesn't have a stride then we take the element size, | |
533 | but we need to convert to bits (hence the * 8). */ | |
534 | pointer_stride = pointer_range->bounds ()->bit_stride (); | |
535 | if (pointer_stride == 0) | |
536 | pointer_stride | |
537 | = type_length_units (check_typedef | |
538 | (TYPE_TARGET_TYPE (pointer_type))) * 8; | |
539 | target_stride = target_range->bounds ()->bit_stride (); | |
540 | if (target_stride == 0) | |
541 | target_stride | |
542 | = type_length_units (check_typedef | |
543 | (TYPE_TARGET_TYPE (target_type))) * 8; | |
544 | if (pointer_stride != target_stride) | |
545 | break; | |
546 | ||
547 | ++dim; | |
548 | } | |
549 | ||
550 | if (dim < pointer_dims) | |
551 | break; | |
552 | ||
553 | is_associated = true; | |
554 | } | |
555 | while (false); | |
556 | ||
557 | return value_from_longest (result_type, is_associated ? 1 : 0); | |
558 | } | |
559 | ||
eb4c9271 TT |
560 | struct value * |
561 | eval_op_f_associated (struct type *expect_type, | |
562 | struct expression *exp, | |
563 | enum noside noside, | |
564 | enum exp_opcode opcode, | |
565 | struct value *arg1) | |
566 | { | |
567 | return fortran_associated (exp->gdbarch, exp->language_defn, arg1); | |
568 | } | |
569 | ||
570 | struct value * | |
571 | eval_op_f_associated (struct type *expect_type, | |
572 | struct expression *exp, | |
573 | enum noside noside, | |
574 | enum exp_opcode opcode, | |
575 | struct value *arg1, | |
576 | struct value *arg2) | |
577 | { | |
578 | return fortran_associated (exp->gdbarch, exp->language_defn, arg1, arg2); | |
579 | } | |
faeb9f13 | 580 | |
7ba155b3 AB |
581 | /* Implement FORTRAN_ARRAY_SIZE expression, this corresponds to the 'SIZE' |
582 | keyword. Both GDBARCH and LANG are extracted from the expression being | |
583 | evaluated. ARRAY is the value that should be an array, though this will | |
584 | not have been checked before calling this function. DIM is optional, if | |
585 | present then it should be an integer identifying a dimension of the | |
586 | array to ask about. As with ARRAY the validity of DIM is not checked | |
587 | before calling this function. | |
588 | ||
589 | Return either the total number of elements in ARRAY (when DIM is | |
590 | nullptr), or the number of elements in dimension DIM. */ | |
591 | ||
592 | static struct value * | |
593 | fortran_array_size (struct gdbarch *gdbarch, const language_defn *lang, | |
594 | struct value *array, struct value *dim_val = nullptr) | |
595 | { | |
596 | /* Check that ARRAY is the correct type. */ | |
597 | struct type *array_type = check_typedef (value_type (array)); | |
598 | if (array_type->code () != TYPE_CODE_ARRAY) | |
599 | error (_("SIZE can only be applied to arrays")); | |
600 | if (type_not_allocated (array_type) || type_not_associated (array_type)) | |
601 | error (_("SIZE can only be used on allocated/associated arrays")); | |
602 | ||
603 | int ndimensions = calc_f77_array_dims (array_type); | |
604 | int dim = -1; | |
605 | LONGEST result = 0; | |
606 | ||
607 | if (dim_val != nullptr) | |
608 | { | |
609 | if (check_typedef (value_type (dim_val))->code () != TYPE_CODE_INT) | |
610 | error (_("DIM argument to SIZE must be an integer")); | |
611 | dim = (int) value_as_long (dim_val); | |
612 | ||
613 | if (dim < 1 || dim > ndimensions) | |
614 | error (_("DIM argument to SIZE must be between 1 and %d"), | |
615 | ndimensions); | |
616 | } | |
617 | ||
618 | /* Now walk over all the dimensions of the array totalling up the | |
619 | elements in each dimension. */ | |
620 | for (int i = ndimensions - 1; i >= 0; --i) | |
621 | { | |
622 | /* If this is the requested dimension then we're done. Grab the | |
623 | bounds and return. */ | |
624 | if (i == dim - 1 || dim == -1) | |
625 | { | |
626 | LONGEST lbound, ubound; | |
627 | struct type *range = array_type->index_type (); | |
628 | ||
629 | if (!get_discrete_bounds (range, &lbound, &ubound)) | |
630 | error (_("failed to find array bounds")); | |
631 | ||
632 | LONGEST dim_size = (ubound - lbound + 1); | |
633 | if (result == 0) | |
634 | result = dim_size; | |
635 | else | |
636 | result *= dim_size; | |
637 | ||
638 | if (dim != -1) | |
639 | break; | |
640 | } | |
641 | ||
642 | /* Peel off another dimension of the array. */ | |
643 | array_type = TYPE_TARGET_TYPE (array_type); | |
644 | } | |
645 | ||
646 | struct type *result_type | |
647 | = builtin_f_type (gdbarch)->builtin_integer; | |
648 | return value_from_longest (result_type, result); | |
649 | } | |
650 | ||
651 | /* See f-exp.h. */ | |
652 | ||
653 | struct value * | |
654 | eval_op_f_array_size (struct type *expect_type, | |
655 | struct expression *exp, | |
656 | enum noside noside, | |
657 | enum exp_opcode opcode, | |
658 | struct value *arg1) | |
659 | { | |
660 | gdb_assert (opcode == FORTRAN_ARRAY_SIZE); | |
661 | return fortran_array_size (exp->gdbarch, exp->language_defn, arg1); | |
662 | } | |
663 | ||
664 | /* See f-exp.h. */ | |
665 | ||
666 | struct value * | |
667 | eval_op_f_array_size (struct type *expect_type, | |
668 | struct expression *exp, | |
669 | enum noside noside, | |
670 | enum exp_opcode opcode, | |
671 | struct value *arg1, | |
672 | struct value *arg2) | |
673 | { | |
674 | gdb_assert (opcode == FORTRAN_ARRAY_SIZE); | |
675 | return fortran_array_size (exp->gdbarch, exp->language_defn, arg1, arg2); | |
676 | } | |
677 | ||
eef32f59 AB |
678 | /* Implement UNOP_FORTRAN_SHAPE expression. Both GDBARCH and LANG are |
679 | extracted from the expression being evaluated. VAL is the value on | |
680 | which 'shape' was used, this can be any type. | |
681 | ||
682 | Return an array of integers. If VAL is not an array then the returned | |
683 | array should have zero elements. If VAL is an array then the returned | |
684 | array should have one element per dimension, with the element | |
685 | containing the extent of that dimension from VAL. */ | |
686 | ||
687 | static struct value * | |
688 | fortran_array_shape (struct gdbarch *gdbarch, const language_defn *lang, | |
689 | struct value *val) | |
690 | { | |
691 | struct type *val_type = check_typedef (value_type (val)); | |
692 | ||
693 | /* If we are passed an array that is either not allocated, or not | |
694 | associated, then this is explicitly not allowed according to the | |
695 | Fortran specification. */ | |
696 | if (val_type->code () == TYPE_CODE_ARRAY | |
697 | && (type_not_associated (val_type) || type_not_allocated (val_type))) | |
698 | error (_("The array passed to SHAPE must be allocated or associated")); | |
699 | ||
700 | /* The Fortran specification allows non-array types to be passed to this | |
701 | function, in which case we get back an empty array. | |
702 | ||
703 | Calculate the number of dimensions for the resulting array. */ | |
704 | int ndimensions = 0; | |
705 | if (val_type->code () == TYPE_CODE_ARRAY) | |
706 | ndimensions = calc_f77_array_dims (val_type); | |
707 | ||
708 | /* Allocate a result value of the correct type. */ | |
709 | struct type *range | |
710 | = create_static_range_type (nullptr, | |
711 | builtin_type (gdbarch)->builtin_int, | |
712 | 1, ndimensions); | |
713 | struct type *elm_type = builtin_f_type (gdbarch)->builtin_integer; | |
714 | struct type *result_type = create_array_type (nullptr, elm_type, range); | |
715 | struct value *result = allocate_value (result_type); | |
716 | LONGEST elm_len = TYPE_LENGTH (elm_type); | |
717 | ||
718 | /* Walk the array dimensions backwards due to the way the array will be | |
719 | laid out in memory, the first dimension will be the most inner. | |
720 | ||
721 | If VAL was not an array then ndimensions will be 0, in which case we | |
722 | will never go around this loop. */ | |
723 | for (LONGEST dst_offset = elm_len * (ndimensions - 1); | |
724 | dst_offset >= 0; | |
725 | dst_offset -= elm_len) | |
726 | { | |
727 | LONGEST lbound, ubound; | |
728 | ||
729 | if (!get_discrete_bounds (val_type->index_type (), &lbound, &ubound)) | |
730 | error (_("failed to find array bounds")); | |
731 | ||
732 | LONGEST dim_size = (ubound - lbound + 1); | |
733 | ||
734 | /* And copy the value into the result value. */ | |
735 | struct value *v = value_from_longest (elm_type, dim_size); | |
736 | gdb_assert (dst_offset + TYPE_LENGTH (value_type (v)) | |
737 | <= TYPE_LENGTH (value_type (result))); | |
738 | gdb_assert (TYPE_LENGTH (value_type (v)) == elm_len); | |
739 | value_contents_copy (result, dst_offset, v, 0, elm_len); | |
740 | ||
741 | /* Peel another dimension of the array. */ | |
742 | val_type = TYPE_TARGET_TYPE (val_type); | |
743 | } | |
744 | ||
745 | return result; | |
746 | } | |
747 | ||
748 | /* See f-exp.h. */ | |
749 | ||
750 | struct value * | |
751 | eval_op_f_array_shape (struct type *expect_type, struct expression *exp, | |
752 | enum noside noside, enum exp_opcode opcode, | |
753 | struct value *arg1) | |
754 | { | |
755 | gdb_assert (opcode == UNOP_FORTRAN_SHAPE); | |
756 | return fortran_array_shape (exp->gdbarch, exp->language_defn, arg1); | |
757 | } | |
758 | ||
cc05c68e TT |
759 | /* A helper function for UNOP_ABS. */ |
760 | ||
9dcd3e29 | 761 | struct value * |
cc05c68e TT |
762 | eval_op_f_abs (struct type *expect_type, struct expression *exp, |
763 | enum noside noside, | |
9dcd3e29 | 764 | enum exp_opcode opcode, |
cc05c68e TT |
765 | struct value *arg1) |
766 | { | |
cc05c68e TT |
767 | struct type *type = value_type (arg1); |
768 | switch (type->code ()) | |
769 | { | |
770 | case TYPE_CODE_FLT: | |
771 | { | |
772 | double d | |
50888e42 | 773 | = fabs (target_float_to_host_double (value_contents (arg1).data (), |
cc05c68e TT |
774 | value_type (arg1))); |
775 | return value_from_host_double (type, d); | |
776 | } | |
777 | case TYPE_CODE_INT: | |
778 | { | |
779 | LONGEST l = value_as_long (arg1); | |
780 | l = llabs (l); | |
781 | return value_from_longest (type, l); | |
782 | } | |
783 | } | |
784 | error (_("ABS of type %s not supported"), TYPE_SAFE_NAME (type)); | |
785 | } | |
786 | ||
e08109f2 TT |
787 | /* A helper function for BINOP_MOD. */ |
788 | ||
9dcd3e29 | 789 | struct value * |
e08109f2 TT |
790 | eval_op_f_mod (struct type *expect_type, struct expression *exp, |
791 | enum noside noside, | |
9dcd3e29 | 792 | enum exp_opcode opcode, |
e08109f2 TT |
793 | struct value *arg1, struct value *arg2) |
794 | { | |
e08109f2 TT |
795 | struct type *type = value_type (arg1); |
796 | if (type->code () != value_type (arg2)->code ()) | |
797 | error (_("non-matching types for parameters to MOD ()")); | |
798 | switch (type->code ()) | |
799 | { | |
800 | case TYPE_CODE_FLT: | |
801 | { | |
802 | double d1 | |
50888e42 | 803 | = target_float_to_host_double (value_contents (arg1).data (), |
e08109f2 TT |
804 | value_type (arg1)); |
805 | double d2 | |
50888e42 | 806 | = target_float_to_host_double (value_contents (arg2).data (), |
e08109f2 TT |
807 | value_type (arg2)); |
808 | double d3 = fmod (d1, d2); | |
809 | return value_from_host_double (type, d3); | |
810 | } | |
811 | case TYPE_CODE_INT: | |
812 | { | |
813 | LONGEST v1 = value_as_long (arg1); | |
814 | LONGEST v2 = value_as_long (arg2); | |
815 | if (v2 == 0) | |
816 | error (_("calling MOD (N, 0) is undefined")); | |
817 | LONGEST v3 = v1 - (v1 / v2) * v2; | |
818 | return value_from_longest (value_type (arg1), v3); | |
819 | } | |
820 | } | |
821 | error (_("MOD of type %s not supported"), TYPE_SAFE_NAME (type)); | |
822 | } | |
823 | ||
3dc41f3c TT |
824 | /* A helper function for UNOP_FORTRAN_CEILING. */ |
825 | ||
9dcd3e29 | 826 | struct value * |
3dc41f3c TT |
827 | eval_op_f_ceil (struct type *expect_type, struct expression *exp, |
828 | enum noside noside, | |
9dcd3e29 | 829 | enum exp_opcode opcode, |
3dc41f3c TT |
830 | struct value *arg1) |
831 | { | |
3dc41f3c TT |
832 | struct type *type = value_type (arg1); |
833 | if (type->code () != TYPE_CODE_FLT) | |
834 | error (_("argument to CEILING must be of type float")); | |
835 | double val | |
50888e42 | 836 | = target_float_to_host_double (value_contents (arg1).data (), |
3dc41f3c TT |
837 | value_type (arg1)); |
838 | val = ceil (val); | |
839 | return value_from_host_double (type, val); | |
840 | } | |
841 | ||
9f1a1f3c TT |
842 | /* A helper function for UNOP_FORTRAN_FLOOR. */ |
843 | ||
9dcd3e29 | 844 | struct value * |
9f1a1f3c TT |
845 | eval_op_f_floor (struct type *expect_type, struct expression *exp, |
846 | enum noside noside, | |
9dcd3e29 | 847 | enum exp_opcode opcode, |
9f1a1f3c TT |
848 | struct value *arg1) |
849 | { | |
9f1a1f3c TT |
850 | struct type *type = value_type (arg1); |
851 | if (type->code () != TYPE_CODE_FLT) | |
852 | error (_("argument to FLOOR must be of type float")); | |
853 | double val | |
50888e42 | 854 | = target_float_to_host_double (value_contents (arg1).data (), |
9f1a1f3c TT |
855 | value_type (arg1)); |
856 | val = floor (val); | |
857 | return value_from_host_double (type, val); | |
858 | } | |
859 | ||
93b2b5fa TT |
860 | /* A helper function for BINOP_FORTRAN_MODULO. */ |
861 | ||
9dcd3e29 | 862 | struct value * |
93b2b5fa TT |
863 | eval_op_f_modulo (struct type *expect_type, struct expression *exp, |
864 | enum noside noside, | |
9dcd3e29 | 865 | enum exp_opcode opcode, |
93b2b5fa TT |
866 | struct value *arg1, struct value *arg2) |
867 | { | |
93b2b5fa TT |
868 | struct type *type = value_type (arg1); |
869 | if (type->code () != value_type (arg2)->code ()) | |
870 | error (_("non-matching types for parameters to MODULO ()")); | |
871 | /* MODULO(A, P) = A - FLOOR (A / P) * P */ | |
872 | switch (type->code ()) | |
873 | { | |
874 | case TYPE_CODE_INT: | |
875 | { | |
876 | LONGEST a = value_as_long (arg1); | |
877 | LONGEST p = value_as_long (arg2); | |
878 | LONGEST result = a - (a / p) * p; | |
879 | if (result != 0 && (a < 0) != (p < 0)) | |
880 | result += p; | |
881 | return value_from_longest (value_type (arg1), result); | |
882 | } | |
883 | case TYPE_CODE_FLT: | |
884 | { | |
885 | double a | |
50888e42 | 886 | = target_float_to_host_double (value_contents (arg1).data (), |
93b2b5fa TT |
887 | value_type (arg1)); |
888 | double p | |
50888e42 | 889 | = target_float_to_host_double (value_contents (arg2).data (), |
93b2b5fa TT |
890 | value_type (arg2)); |
891 | double result = fmod (a, p); | |
892 | if (result != 0 && (a < 0.0) != (p < 0.0)) | |
893 | result += p; | |
894 | return value_from_host_double (type, result); | |
895 | } | |
896 | } | |
897 | error (_("MODULO of type %s not supported"), TYPE_SAFE_NAME (type)); | |
898 | } | |
899 | ||
00f2db6f TT |
900 | /* A helper function for BINOP_FORTRAN_CMPLX. */ |
901 | ||
9dcd3e29 | 902 | struct value * |
00f2db6f TT |
903 | eval_op_f_cmplx (struct type *expect_type, struct expression *exp, |
904 | enum noside noside, | |
9dcd3e29 | 905 | enum exp_opcode opcode, |
00f2db6f TT |
906 | struct value *arg1, struct value *arg2) |
907 | { | |
00f2db6f TT |
908 | struct type *type = builtin_f_type(exp->gdbarch)->builtin_complex_s16; |
909 | return value_literal_complex (arg1, arg2, type); | |
910 | } | |
911 | ||
216f6fcb TT |
912 | /* A helper function for UNOP_FORTRAN_KIND. */ |
913 | ||
9dcd3e29 | 914 | struct value * |
216f6fcb TT |
915 | eval_op_f_kind (struct type *expect_type, struct expression *exp, |
916 | enum noside noside, | |
9dcd3e29 | 917 | enum exp_opcode opcode, |
216f6fcb TT |
918 | struct value *arg1) |
919 | { | |
920 | struct type *type = value_type (arg1); | |
921 | ||
922 | switch (type->code ()) | |
923 | { | |
924 | case TYPE_CODE_STRUCT: | |
925 | case TYPE_CODE_UNION: | |
926 | case TYPE_CODE_MODULE: | |
927 | case TYPE_CODE_FUNC: | |
928 | error (_("argument to kind must be an intrinsic type")); | |
929 | } | |
930 | ||
931 | if (!TYPE_TARGET_TYPE (type)) | |
932 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, | |
933 | TYPE_LENGTH (type)); | |
934 | return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, | |
935 | TYPE_LENGTH (TYPE_TARGET_TYPE (type))); | |
936 | } | |
937 | ||
9cbd1c20 TT |
938 | /* A helper function for UNOP_FORTRAN_ALLOCATED. */ |
939 | ||
f403a4e4 | 940 | struct value * |
9cbd1c20 TT |
941 | eval_op_f_allocated (struct type *expect_type, struct expression *exp, |
942 | enum noside noside, enum exp_opcode op, | |
943 | struct value *arg1) | |
944 | { | |
945 | struct type *type = check_typedef (value_type (arg1)); | |
946 | if (type->code () != TYPE_CODE_ARRAY) | |
947 | error (_("ALLOCATED can only be applied to arrays")); | |
948 | struct type *result_type | |
949 | = builtin_f_type (exp->gdbarch)->builtin_logical; | |
950 | LONGEST result_value = type_not_allocated (type) ? 0 : 1; | |
951 | return value_from_longest (result_type, result_value); | |
952 | } | |
953 | ||
e14816a8 AB |
954 | /* See f-exp.h. */ |
955 | ||
956 | struct value * | |
957 | eval_op_f_rank (struct type *expect_type, | |
958 | struct expression *exp, | |
959 | enum noside noside, | |
960 | enum exp_opcode op, | |
961 | struct value *arg1) | |
962 | { | |
963 | gdb_assert (op == UNOP_FORTRAN_RANK); | |
964 | ||
965 | struct type *result_type | |
966 | = builtin_f_type (exp->gdbarch)->builtin_integer; | |
967 | struct type *type = check_typedef (value_type (arg1)); | |
968 | if (type->code () != TYPE_CODE_ARRAY) | |
969 | return value_from_longest (result_type, 0); | |
970 | LONGEST ndim = calc_f77_array_dims (type); | |
971 | return value_from_longest (result_type, ndim); | |
972 | } | |
973 | ||
611aa09d FW |
974 | /* A helper function for UNOP_FORTRAN_LOC. */ |
975 | ||
976 | struct value * | |
977 | eval_op_f_loc (struct type *expect_type, struct expression *exp, | |
978 | enum noside noside, enum exp_opcode op, | |
979 | struct value *arg1) | |
980 | { | |
981 | struct type *result_type; | |
982 | if (gdbarch_ptr_bit (exp->gdbarch) == 16) | |
983 | result_type = builtin_f_type (exp->gdbarch)->builtin_integer_s2; | |
984 | else if (gdbarch_ptr_bit (exp->gdbarch) == 32) | |
985 | result_type = builtin_f_type (exp->gdbarch)->builtin_integer; | |
986 | else | |
987 | result_type = builtin_f_type (exp->gdbarch)->builtin_integer_s8; | |
988 | ||
989 | LONGEST result_value = value_address (arg1); | |
990 | return value_from_longest (result_type, result_value); | |
991 | } | |
992 | ||
2f98abe1 TT |
993 | namespace expr |
994 | { | |
995 | ||
996 | /* Called from evaluate to perform array indexing, and sub-range | |
997 | extraction, for Fortran. As well as arrays this function also | |
998 | handles strings as they can be treated like arrays of characters. | |
999 | ARRAY is the array or string being accessed. EXP and NOSIDE are as | |
1000 | for evaluate. */ | |
1001 | ||
1002 | value * | |
1003 | fortran_undetermined::value_subarray (value *array, | |
1004 | struct expression *exp, | |
1005 | enum noside noside) | |
1006 | { | |
1007 | type *original_array_type = check_typedef (value_type (array)); | |
1008 | bool is_string_p = original_array_type->code () == TYPE_CODE_STRING; | |
1009 | const std::vector<operation_up> &ops = std::get<1> (m_storage); | |
1010 | int nargs = ops.size (); | |
1011 | ||
1012 | /* Perform checks for ARRAY not being available. The somewhat overly | |
1013 | complex logic here is just to keep backward compatibility with the | |
1014 | errors that we used to get before FORTRAN_VALUE_SUBARRAY was | |
1015 | rewritten. Maybe a future task would streamline the error messages we | |
1016 | get here, and update all the expected test results. */ | |
1017 | if (ops[0]->opcode () != OP_RANGE) | |
1018 | { | |
1019 | if (type_not_associated (original_array_type)) | |
1020 | error (_("no such vector element (vector not associated)")); | |
1021 | else if (type_not_allocated (original_array_type)) | |
1022 | error (_("no such vector element (vector not allocated)")); | |
1023 | } | |
1024 | else | |
1025 | { | |
1026 | if (type_not_associated (original_array_type)) | |
1027 | error (_("array not associated")); | |
1028 | else if (type_not_allocated (original_array_type)) | |
1029 | error (_("array not allocated")); | |
1030 | } | |
1031 | ||
1032 | /* First check that the number of dimensions in the type we are slicing | |
1033 | matches the number of arguments we were passed. */ | |
1034 | int ndimensions = calc_f77_array_dims (original_array_type); | |
1035 | if (nargs != ndimensions) | |
1036 | error (_("Wrong number of subscripts")); | |
1037 | ||
1038 | /* This will be initialised below with the type of the elements held in | |
1039 | ARRAY. */ | |
1040 | struct type *inner_element_type; | |
1041 | ||
1042 | /* Extract the types of each array dimension from the original array | |
1043 | type. We need these available so we can fill in the default upper and | |
1044 | lower bounds if the user requested slice doesn't provide that | |
1045 | information. Additionally unpacking the dimensions like this gives us | |
1046 | the inner element type. */ | |
1047 | std::vector<struct type *> dim_types; | |
1048 | { | |
1049 | dim_types.reserve (ndimensions); | |
1050 | struct type *type = original_array_type; | |
1051 | for (int i = 0; i < ndimensions; ++i) | |
1052 | { | |
1053 | dim_types.push_back (type); | |
1054 | type = TYPE_TARGET_TYPE (type); | |
1055 | } | |
1056 | /* TYPE is now the inner element type of the array, we start the new | |
1057 | array slice off as this type, then as we process the requested slice | |
1058 | (from the user) we wrap new types around this to build up the final | |
1059 | slice type. */ | |
1060 | inner_element_type = type; | |
1061 | } | |
1062 | ||
1063 | /* As we analyse the new slice type we need to understand if the data | |
1064 | being referenced is contiguous. Do decide this we must track the size | |
1065 | of an element at each dimension of the new slice array. Initially the | |
1066 | elements of the inner most dimension of the array are the same inner | |
1067 | most elements as the original ARRAY. */ | |
1068 | LONGEST slice_element_size = TYPE_LENGTH (inner_element_type); | |
1069 | ||
1070 | /* Start off assuming all data is contiguous, this will be set to false | |
1071 | if access to any dimension results in non-contiguous data. */ | |
1072 | bool is_all_contiguous = true; | |
1073 | ||
1074 | /* The TOTAL_OFFSET is the distance in bytes from the start of the | |
1075 | original ARRAY to the start of the new slice. This is calculated as | |
1076 | we process the information from the user. */ | |
1077 | LONGEST total_offset = 0; | |
1078 | ||
1079 | /* A structure representing information about each dimension of the | |
1080 | resulting slice. */ | |
1081 | struct slice_dim | |
1082 | { | |
1083 | /* Constructor. */ | |
1084 | slice_dim (LONGEST l, LONGEST h, LONGEST s, struct type *idx) | |
1085 | : low (l), | |
1086 | high (h), | |
1087 | stride (s), | |
1088 | index (idx) | |
1089 | { /* Nothing. */ } | |
1090 | ||
1091 | /* The low bound for this dimension of the slice. */ | |
1092 | LONGEST low; | |
1093 | ||
1094 | /* The high bound for this dimension of the slice. */ | |
1095 | LONGEST high; | |
1096 | ||
1097 | /* The byte stride for this dimension of the slice. */ | |
1098 | LONGEST stride; | |
1099 | ||
1100 | struct type *index; | |
1101 | }; | |
1102 | ||
1103 | /* The dimensions of the resulting slice. */ | |
1104 | std::vector<slice_dim> slice_dims; | |
1105 | ||
1106 | /* Process the incoming arguments. These arguments are in the reverse | |
1107 | order to the array dimensions, that is the first argument refers to | |
1108 | the last array dimension. */ | |
1109 | if (fortran_array_slicing_debug) | |
1110 | debug_printf ("Processing array access:\n"); | |
1111 | for (int i = 0; i < nargs; ++i) | |
1112 | { | |
1113 | /* For each dimension of the array the user will have either provided | |
1114 | a ranged access with optional lower bound, upper bound, and | |
1115 | stride, or the user will have supplied a single index. */ | |
1116 | struct type *dim_type = dim_types[ndimensions - (i + 1)]; | |
1117 | fortran_range_operation *range_op | |
1118 | = dynamic_cast<fortran_range_operation *> (ops[i].get ()); | |
1119 | if (range_op != nullptr) | |
1120 | { | |
1121 | enum range_flag range_flag = range_op->get_flags (); | |
1122 | ||
1123 | LONGEST low, high, stride; | |
1124 | low = high = stride = 0; | |
1125 | ||
1126 | if ((range_flag & RANGE_LOW_BOUND_DEFAULT) == 0) | |
1127 | low = value_as_long (range_op->evaluate0 (exp, noside)); | |
1128 | else | |
1129 | low = f77_get_lowerbound (dim_type); | |
1130 | if ((range_flag & RANGE_HIGH_BOUND_DEFAULT) == 0) | |
1131 | high = value_as_long (range_op->evaluate1 (exp, noside)); | |
1132 | else | |
1133 | high = f77_get_upperbound (dim_type); | |
1134 | if ((range_flag & RANGE_HAS_STRIDE) == RANGE_HAS_STRIDE) | |
1135 | stride = value_as_long (range_op->evaluate2 (exp, noside)); | |
1136 | else | |
1137 | stride = 1; | |
1138 | ||
1139 | if (stride == 0) | |
1140 | error (_("stride must not be 0")); | |
1141 | ||
1142 | /* Get information about this dimension in the original ARRAY. */ | |
1143 | struct type *target_type = TYPE_TARGET_TYPE (dim_type); | |
1144 | struct type *index_type = dim_type->index_type (); | |
1145 | LONGEST lb = f77_get_lowerbound (dim_type); | |
1146 | LONGEST ub = f77_get_upperbound (dim_type); | |
1147 | LONGEST sd = index_type->bit_stride (); | |
1148 | if (sd == 0) | |
1149 | sd = TYPE_LENGTH (target_type) * 8; | |
1150 | ||
1151 | if (fortran_array_slicing_debug) | |
1152 | { | |
1153 | debug_printf ("|-> Range access\n"); | |
1154 | std::string str = type_to_string (dim_type); | |
1155 | debug_printf ("| |-> Type: %s\n", str.c_str ()); | |
1156 | debug_printf ("| |-> Array:\n"); | |
1157 | debug_printf ("| | |-> Low bound: %s\n", plongest (lb)); | |
1158 | debug_printf ("| | |-> High bound: %s\n", plongest (ub)); | |
1159 | debug_printf ("| | |-> Bit stride: %s\n", plongest (sd)); | |
1160 | debug_printf ("| | |-> Byte stride: %s\n", plongest (sd / 8)); | |
1161 | debug_printf ("| | |-> Type size: %s\n", | |
1162 | pulongest (TYPE_LENGTH (dim_type))); | |
1163 | debug_printf ("| | '-> Target type size: %s\n", | |
1164 | pulongest (TYPE_LENGTH (target_type))); | |
1165 | debug_printf ("| |-> Accessing:\n"); | |
1166 | debug_printf ("| | |-> Low bound: %s\n", | |
1167 | plongest (low)); | |
1168 | debug_printf ("| | |-> High bound: %s\n", | |
1169 | plongest (high)); | |
1170 | debug_printf ("| | '-> Element stride: %s\n", | |
1171 | plongest (stride)); | |
1172 | } | |
1173 | ||
1174 | /* Check the user hasn't asked for something invalid. */ | |
1175 | if (high > ub || low < lb) | |
1176 | error (_("array subscript out of bounds")); | |
1177 | ||
1178 | /* Calculate what this dimension of the new slice array will look | |
1179 | like. OFFSET is the byte offset from the start of the | |
1180 | previous (more outer) dimension to the start of this | |
1181 | dimension. E_COUNT is the number of elements in this | |
1182 | dimension. REMAINDER is the number of elements remaining | |
1183 | between the last included element and the upper bound. For | |
1184 | example an access '1:6:2' will include elements 1, 3, 5 and | |
1185 | have a remainder of 1 (element #6). */ | |
1186 | LONGEST lowest = std::min (low, high); | |
1187 | LONGEST offset = (sd / 8) * (lowest - lb); | |
1188 | LONGEST e_count = std::abs (high - low) + 1; | |
1189 | e_count = (e_count + (std::abs (stride) - 1)) / std::abs (stride); | |
1190 | LONGEST new_low = 1; | |
1191 | LONGEST new_high = new_low + e_count - 1; | |
1192 | LONGEST new_stride = (sd * stride) / 8; | |
1193 | LONGEST last_elem = low + ((e_count - 1) * stride); | |
1194 | LONGEST remainder = high - last_elem; | |
1195 | if (low > high) | |
1196 | { | |
1197 | offset += std::abs (remainder) * TYPE_LENGTH (target_type); | |
1198 | if (stride > 0) | |
1199 | error (_("incorrect stride and boundary combination")); | |
1200 | } | |
1201 | else if (stride < 0) | |
1202 | error (_("incorrect stride and boundary combination")); | |
1203 | ||
1204 | /* Is the data within this dimension contiguous? It is if the | |
1205 | newly computed stride is the same size as a single element of | |
1206 | this dimension. */ | |
1207 | bool is_dim_contiguous = (new_stride == slice_element_size); | |
1208 | is_all_contiguous &= is_dim_contiguous; | |
1209 | ||
1210 | if (fortran_array_slicing_debug) | |
1211 | { | |
1212 | debug_printf ("| '-> Results:\n"); | |
1213 | debug_printf ("| |-> Offset = %s\n", plongest (offset)); | |
1214 | debug_printf ("| |-> Elements = %s\n", plongest (e_count)); | |
1215 | debug_printf ("| |-> Low bound = %s\n", plongest (new_low)); | |
1216 | debug_printf ("| |-> High bound = %s\n", | |
1217 | plongest (new_high)); | |
1218 | debug_printf ("| |-> Byte stride = %s\n", | |
1219 | plongest (new_stride)); | |
1220 | debug_printf ("| |-> Last element = %s\n", | |
1221 | plongest (last_elem)); | |
1222 | debug_printf ("| |-> Remainder = %s\n", | |
1223 | plongest (remainder)); | |
1224 | debug_printf ("| '-> Contiguous = %s\n", | |
1225 | (is_dim_contiguous ? "Yes" : "No")); | |
1226 | } | |
1227 | ||
1228 | /* Figure out how big (in bytes) an element of this dimension of | |
1229 | the new array slice will be. */ | |
1230 | slice_element_size = std::abs (new_stride * e_count); | |
1231 | ||
1232 | slice_dims.emplace_back (new_low, new_high, new_stride, | |
1233 | index_type); | |
1234 | ||
1235 | /* Update the total offset. */ | |
1236 | total_offset += offset; | |
1237 | } | |
1238 | else | |
1239 | { | |
1240 | /* There is a single index for this dimension. */ | |
1241 | LONGEST index | |
1242 | = value_as_long (ops[i]->evaluate_with_coercion (exp, noside)); | |
1243 | ||
1244 | /* Get information about this dimension in the original ARRAY. */ | |
1245 | struct type *target_type = TYPE_TARGET_TYPE (dim_type); | |
1246 | struct type *index_type = dim_type->index_type (); | |
1247 | LONGEST lb = f77_get_lowerbound (dim_type); | |
1248 | LONGEST ub = f77_get_upperbound (dim_type); | |
1249 | LONGEST sd = index_type->bit_stride () / 8; | |
1250 | if (sd == 0) | |
1251 | sd = TYPE_LENGTH (target_type); | |
1252 | ||
1253 | if (fortran_array_slicing_debug) | |
1254 | { | |
1255 | debug_printf ("|-> Index access\n"); | |
1256 | std::string str = type_to_string (dim_type); | |
1257 | debug_printf ("| |-> Type: %s\n", str.c_str ()); | |
1258 | debug_printf ("| |-> Array:\n"); | |
1259 | debug_printf ("| | |-> Low bound: %s\n", plongest (lb)); | |
1260 | debug_printf ("| | |-> High bound: %s\n", plongest (ub)); | |
1261 | debug_printf ("| | |-> Byte stride: %s\n", plongest (sd)); | |
1262 | debug_printf ("| | |-> Type size: %s\n", | |
1263 | pulongest (TYPE_LENGTH (dim_type))); | |
1264 | debug_printf ("| | '-> Target type size: %s\n", | |
1265 | pulongest (TYPE_LENGTH (target_type))); | |
1266 | debug_printf ("| '-> Accessing:\n"); | |
1267 | debug_printf ("| '-> Index: %s\n", | |
1268 | plongest (index)); | |
1269 | } | |
1270 | ||
1271 | /* If the array has actual content then check the index is in | |
1272 | bounds. An array without content (an unbound array) doesn't | |
1273 | have a known upper bound, so don't error check in that | |
1274 | situation. */ | |
1275 | if (index < lb | |
1276 | || (dim_type->index_type ()->bounds ()->high.kind () != PROP_UNDEFINED | |
1277 | && index > ub) | |
1278 | || (VALUE_LVAL (array) != lval_memory | |
1279 | && dim_type->index_type ()->bounds ()->high.kind () == PROP_UNDEFINED)) | |
1280 | { | |
1281 | if (type_not_associated (dim_type)) | |
1282 | error (_("no such vector element (vector not associated)")); | |
1283 | else if (type_not_allocated (dim_type)) | |
1284 | error (_("no such vector element (vector not allocated)")); | |
1285 | else | |
1286 | error (_("no such vector element")); | |
1287 | } | |
1288 | ||
1289 | /* Calculate using the type stride, not the target type size. */ | |
1290 | LONGEST offset = sd * (index - lb); | |
1291 | total_offset += offset; | |
1292 | } | |
1293 | } | |
1294 | ||
1295 | /* Build a type that represents the new array slice in the target memory | |
1296 | of the original ARRAY, this type makes use of strides to correctly | |
1297 | find only those elements that are part of the new slice. */ | |
1298 | struct type *array_slice_type = inner_element_type; | |
1299 | for (const auto &d : slice_dims) | |
1300 | { | |
1301 | /* Create the range. */ | |
1302 | dynamic_prop p_low, p_high, p_stride; | |
1303 | ||
1304 | p_low.set_const_val (d.low); | |
1305 | p_high.set_const_val (d.high); | |
1306 | p_stride.set_const_val (d.stride); | |
1307 | ||
1308 | struct type *new_range | |
1309 | = create_range_type_with_stride ((struct type *) NULL, | |
1310 | TYPE_TARGET_TYPE (d.index), | |
1311 | &p_low, &p_high, 0, &p_stride, | |
1312 | true); | |
1313 | array_slice_type | |
1314 | = create_array_type (nullptr, array_slice_type, new_range); | |
1315 | } | |
1316 | ||
1317 | if (fortran_array_slicing_debug) | |
1318 | { | |
1319 | debug_printf ("'-> Final result:\n"); | |
1320 | debug_printf (" |-> Type: %s\n", | |
1321 | type_to_string (array_slice_type).c_str ()); | |
1322 | debug_printf (" |-> Total offset: %s\n", | |
1323 | plongest (total_offset)); | |
1324 | debug_printf (" |-> Base address: %s\n", | |
1325 | core_addr_to_string (value_address (array))); | |
1326 | debug_printf (" '-> Contiguous = %s\n", | |
1327 | (is_all_contiguous ? "Yes" : "No")); | |
1328 | } | |
1329 | ||
1330 | /* Should we repack this array slice? */ | |
1331 | if (!is_all_contiguous && (repack_array_slices || is_string_p)) | |
1332 | { | |
1333 | /* Build a type for the repacked slice. */ | |
1334 | struct type *repacked_array_type = inner_element_type; | |
1335 | for (const auto &d : slice_dims) | |
1336 | { | |
1337 | /* Create the range. */ | |
1338 | dynamic_prop p_low, p_high, p_stride; | |
1339 | ||
1340 | p_low.set_const_val (d.low); | |
1341 | p_high.set_const_val (d.high); | |
1342 | p_stride.set_const_val (TYPE_LENGTH (repacked_array_type)); | |
1343 | ||
1344 | struct type *new_range | |
1345 | = create_range_type_with_stride ((struct type *) NULL, | |
1346 | TYPE_TARGET_TYPE (d.index), | |
1347 | &p_low, &p_high, 0, &p_stride, | |
1348 | true); | |
1349 | repacked_array_type | |
1350 | = create_array_type (nullptr, repacked_array_type, new_range); | |
1351 | } | |
1352 | ||
1353 | /* Now copy the elements from the original ARRAY into the packed | |
1354 | array value DEST. */ | |
1355 | struct value *dest = allocate_value (repacked_array_type); | |
1356 | if (value_lazy (array) | |
1357 | || (total_offset + TYPE_LENGTH (array_slice_type) | |
1358 | > TYPE_LENGTH (check_typedef (value_type (array))))) | |
1359 | { | |
1360 | fortran_array_walker<fortran_lazy_array_repacker_impl> p | |
1361 | (array_slice_type, value_address (array) + total_offset, dest); | |
1362 | p.walk (); | |
1363 | } | |
1364 | else | |
1365 | { | |
1366 | fortran_array_walker<fortran_array_repacker_impl> p | |
1367 | (array_slice_type, value_address (array) + total_offset, | |
1368 | total_offset, array, dest); | |
1369 | p.walk (); | |
1370 | } | |
1371 | array = dest; | |
1372 | } | |
1373 | else | |
1374 | { | |
1375 | if (VALUE_LVAL (array) == lval_memory) | |
1376 | { | |
1377 | /* If the value we're taking a slice from is not yet loaded, or | |
1378 | the requested slice is outside the values content range then | |
1379 | just create a new lazy value pointing at the memory where the | |
1380 | contents we're looking for exist. */ | |
1381 | if (value_lazy (array) | |
1382 | || (total_offset + TYPE_LENGTH (array_slice_type) | |
1383 | > TYPE_LENGTH (check_typedef (value_type (array))))) | |
1384 | array = value_at_lazy (array_slice_type, | |
1385 | value_address (array) + total_offset); | |
1386 | else | |
50888e42 SM |
1387 | array = value_from_contents_and_address |
1388 | (array_slice_type, value_contents (array).data () + total_offset, | |
1389 | value_address (array) + total_offset); | |
2f98abe1 TT |
1390 | } |
1391 | else if (!value_lazy (array)) | |
1392 | array = value_from_component (array, array_slice_type, total_offset); | |
1393 | else | |
1394 | error (_("cannot subscript arrays that are not in memory")); | |
1395 | } | |
1396 | ||
1397 | return array; | |
1398 | } | |
1399 | ||
1400 | value * | |
1401 | fortran_undetermined::evaluate (struct type *expect_type, | |
1402 | struct expression *exp, | |
1403 | enum noside noside) | |
1404 | { | |
1405 | value *callee = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
0a703a4c AB |
1406 | if (noside == EVAL_AVOID_SIDE_EFFECTS |
1407 | && is_dynamic_type (value_type (callee))) | |
1408 | callee = std::get<0> (m_storage)->evaluate (nullptr, exp, EVAL_NORMAL); | |
2f98abe1 TT |
1409 | struct type *type = check_typedef (value_type (callee)); |
1410 | enum type_code code = type->code (); | |
1411 | ||
1412 | if (code == TYPE_CODE_PTR) | |
1413 | { | |
1414 | /* Fortran always passes variable to subroutines as pointer. | |
1415 | So we need to look into its target type to see if it is | |
1416 | array, string or function. If it is, we need to switch | |
1417 | to the target value the original one points to. */ | |
1418 | struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1419 | ||
1420 | if (target_type->code () == TYPE_CODE_ARRAY | |
1421 | || target_type->code () == TYPE_CODE_STRING | |
1422 | || target_type->code () == TYPE_CODE_FUNC) | |
1423 | { | |
1424 | callee = value_ind (callee); | |
1425 | type = check_typedef (value_type (callee)); | |
1426 | code = type->code (); | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | switch (code) | |
1431 | { | |
1432 | case TYPE_CODE_ARRAY: | |
1433 | case TYPE_CODE_STRING: | |
1434 | return value_subarray (callee, exp, noside); | |
1435 | ||
1436 | case TYPE_CODE_PTR: | |
1437 | case TYPE_CODE_FUNC: | |
1438 | case TYPE_CODE_INTERNAL_FUNCTION: | |
1439 | { | |
1440 | /* It's a function call. Allocate arg vector, including | |
1441 | space for the function to be called in argvec[0] and a | |
1442 | termination NULL. */ | |
1443 | const std::vector<operation_up> &actual (std::get<1> (m_storage)); | |
1444 | std::vector<value *> argvec (actual.size ()); | |
1445 | bool is_internal_func = (code == TYPE_CODE_INTERNAL_FUNCTION); | |
1446 | for (int tem = 0; tem < argvec.size (); tem++) | |
1447 | argvec[tem] = fortran_prepare_argument (exp, actual[tem].get (), | |
1448 | tem, is_internal_func, | |
1449 | value_type (callee), | |
1450 | noside); | |
1451 | return evaluate_subexp_do_call (exp, noside, callee, argvec, | |
1452 | nullptr, expect_type); | |
1453 | } | |
1454 | ||
1455 | default: | |
1456 | error (_("Cannot perform substring on this type")); | |
1457 | } | |
1458 | } | |
1459 | ||
58a76c72 TT |
1460 | value * |
1461 | fortran_bound_1arg::evaluate (struct type *expect_type, | |
1462 | struct expression *exp, | |
1463 | enum noside noside) | |
1464 | { | |
1465 | bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND; | |
1466 | value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); | |
1467 | fortran_require_array (value_type (arg1), lbound_p); | |
1468 | return fortran_bounds_all_dims (lbound_p, exp->gdbarch, arg1); | |
1469 | } | |
1470 | ||
1471 | value * | |
1472 | fortran_bound_2arg::evaluate (struct type *expect_type, | |
1473 | struct expression *exp, | |
1474 | enum noside noside) | |
1475 | { | |
1476 | bool lbound_p = std::get<0> (m_storage) == FORTRAN_LBOUND; | |
1477 | value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside); | |
1478 | fortran_require_array (value_type (arg1), lbound_p); | |
1479 | ||
1480 | /* User asked for the bounds of a specific dimension of the array. */ | |
1481 | value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside); | |
1482 | struct type *type = check_typedef (value_type (arg2)); | |
1483 | if (type->code () != TYPE_CODE_INT) | |
1484 | { | |
1485 | if (lbound_p) | |
1486 | error (_("LBOUND second argument should be an integer")); | |
1487 | else | |
1488 | error (_("UBOUND second argument should be an integer")); | |
1489 | } | |
1490 | ||
1491 | return fortran_bounds_for_dimension (lbound_p, exp->gdbarch, arg1, arg2); | |
1492 | } | |
1493 | ||
0a703a4c AB |
1494 | /* Implement STRUCTOP_STRUCT for Fortran. See operation::evaluate in |
1495 | expression.h for argument descriptions. */ | |
1496 | ||
1497 | value * | |
1498 | fortran_structop_operation::evaluate (struct type *expect_type, | |
1499 | struct expression *exp, | |
1500 | enum noside noside) | |
1501 | { | |
1502 | value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside); | |
1503 | const char *str = std::get<1> (m_storage).c_str (); | |
1504 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1505 | { | |
1506 | struct type *type = lookup_struct_elt_type (value_type (arg1), str, 1); | |
1507 | ||
1508 | if (type != nullptr && is_dynamic_type (type)) | |
1509 | arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, EVAL_NORMAL); | |
1510 | } | |
1511 | ||
158cc4fe | 1512 | value *elt = value_struct_elt (&arg1, {}, str, NULL, "structure"); |
0a703a4c AB |
1513 | |
1514 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
1515 | { | |
1516 | struct type *elt_type = value_type (elt); | |
1517 | if (is_dynamic_type (elt_type)) | |
1518 | { | |
50888e42 | 1519 | const gdb_byte *valaddr = value_contents_for_printing (elt).data (); |
0a703a4c AB |
1520 | CORE_ADDR address = value_address (elt); |
1521 | gdb::array_view<const gdb_byte> view | |
1522 | = gdb::make_array_view (valaddr, TYPE_LENGTH (elt_type)); | |
1523 | elt_type = resolve_dynamic_type (elt_type, view, address); | |
1524 | } | |
1525 | elt = value_zero (elt_type, VALUE_LVAL (elt)); | |
1526 | } | |
1527 | ||
1528 | return elt; | |
1529 | } | |
1530 | ||
2f98abe1 TT |
1531 | } /* namespace expr */ |
1532 | ||
1a0ea399 | 1533 | /* See language.h. */ |
0874fd07 | 1534 | |
1a0ea399 AB |
1535 | void |
1536 | f_language::language_arch_info (struct gdbarch *gdbarch, | |
1537 | struct language_arch_info *lai) const | |
0874fd07 | 1538 | { |
1a0ea399 AB |
1539 | const struct builtin_f_type *builtin = builtin_f_type (gdbarch); |
1540 | ||
7bea47f0 AB |
1541 | /* Helper function to allow shorter lines below. */ |
1542 | auto add = [&] (struct type * t) | |
1543 | { | |
1544 | lai->add_primitive_type (t); | |
1545 | }; | |
1546 | ||
1547 | add (builtin->builtin_character); | |
1548 | add (builtin->builtin_logical); | |
1549 | add (builtin->builtin_logical_s1); | |
1550 | add (builtin->builtin_logical_s2); | |
1551 | add (builtin->builtin_logical_s8); | |
1552 | add (builtin->builtin_real); | |
1553 | add (builtin->builtin_real_s8); | |
1554 | add (builtin->builtin_real_s16); | |
1555 | add (builtin->builtin_complex_s8); | |
1556 | add (builtin->builtin_complex_s16); | |
1557 | add (builtin->builtin_void); | |
1558 | ||
1559 | lai->set_string_char_type (builtin->builtin_character); | |
1560 | lai->set_bool_type (builtin->builtin_logical_s2, "logical"); | |
1a0ea399 | 1561 | } |
5aba6ebe | 1562 | |
1a0ea399 | 1563 | /* See language.h. */ |
5aba6ebe | 1564 | |
1a0ea399 AB |
1565 | unsigned int |
1566 | f_language::search_name_hash (const char *name) const | |
1567 | { | |
1568 | return cp_search_name_hash (name); | |
1569 | } | |
b7c6e27d | 1570 | |
1a0ea399 | 1571 | /* See language.h. */ |
b7c6e27d | 1572 | |
1a0ea399 AB |
1573 | struct block_symbol |
1574 | f_language::lookup_symbol_nonlocal (const char *name, | |
1575 | const struct block *block, | |
1576 | const domain_enum domain) const | |
1577 | { | |
1578 | return cp_lookup_symbol_nonlocal (this, name, block, domain); | |
1579 | } | |
c9debfb9 | 1580 | |
1a0ea399 | 1581 | /* See language.h. */ |
c9debfb9 | 1582 | |
1a0ea399 AB |
1583 | symbol_name_matcher_ftype * |
1584 | f_language::get_symbol_name_matcher_inner | |
1585 | (const lookup_name_info &lookup_name) const | |
1586 | { | |
1587 | return cp_get_symbol_name_matcher (lookup_name); | |
1588 | } | |
0874fd07 AB |
1589 | |
1590 | /* Single instance of the Fortran language class. */ | |
1591 | ||
1592 | static f_language f_language_defn; | |
1593 | ||
54ef06c7 UW |
1594 | static void * |
1595 | build_fortran_types (struct gdbarch *gdbarch) | |
c906108c | 1596 | { |
54ef06c7 UW |
1597 | struct builtin_f_type *builtin_f_type |
1598 | = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_f_type); | |
1599 | ||
e9bb382b | 1600 | builtin_f_type->builtin_void |
bbe75b9d | 1601 | = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); |
e9bb382b UW |
1602 | |
1603 | builtin_f_type->builtin_character | |
4a270568 | 1604 | = arch_type (gdbarch, TYPE_CODE_CHAR, TARGET_CHAR_BIT, "character"); |
e9bb382b UW |
1605 | |
1606 | builtin_f_type->builtin_logical_s1 | |
1607 | = arch_boolean_type (gdbarch, TARGET_CHAR_BIT, 1, "logical*1"); | |
1608 | ||
1609 | builtin_f_type->builtin_integer_s2 | |
1610 | = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 0, | |
1611 | "integer*2"); | |
1612 | ||
067630bd AB |
1613 | builtin_f_type->builtin_integer_s8 |
1614 | = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 0, | |
1615 | "integer*8"); | |
1616 | ||
e9bb382b UW |
1617 | builtin_f_type->builtin_logical_s2 |
1618 | = arch_boolean_type (gdbarch, gdbarch_short_bit (gdbarch), 1, | |
1619 | "logical*2"); | |
1620 | ||
ce4b0682 SDJ |
1621 | builtin_f_type->builtin_logical_s8 |
1622 | = arch_boolean_type (gdbarch, gdbarch_long_long_bit (gdbarch), 1, | |
1623 | "logical*8"); | |
1624 | ||
e9bb382b UW |
1625 | builtin_f_type->builtin_integer |
1626 | = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 0, | |
1627 | "integer"); | |
1628 | ||
1629 | builtin_f_type->builtin_logical | |
1630 | = arch_boolean_type (gdbarch, gdbarch_int_bit (gdbarch), 1, | |
1631 | "logical*4"); | |
1632 | ||
1633 | builtin_f_type->builtin_real | |
1634 | = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), | |
49f190bc | 1635 | "real", gdbarch_float_format (gdbarch)); |
e9bb382b UW |
1636 | builtin_f_type->builtin_real_s8 |
1637 | = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), | |
49f190bc | 1638 | "real*8", gdbarch_double_format (gdbarch)); |
34d11c68 | 1639 | auto fmt = gdbarch_floatformat_for_type (gdbarch, "real(kind=16)", 128); |
dc42e902 AB |
1640 | if (fmt != nullptr) |
1641 | builtin_f_type->builtin_real_s16 | |
1642 | = arch_float_type (gdbarch, 128, "real*16", fmt); | |
1643 | else if (gdbarch_long_double_bit (gdbarch) == 128) | |
1644 | builtin_f_type->builtin_real_s16 | |
1645 | = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch), | |
1646 | "real*16", gdbarch_long_double_format (gdbarch)); | |
1647 | else | |
1648 | builtin_f_type->builtin_real_s16 | |
1649 | = arch_type (gdbarch, TYPE_CODE_ERROR, 128, "real*16"); | |
e9bb382b UW |
1650 | |
1651 | builtin_f_type->builtin_complex_s8 | |
5b930b45 | 1652 | = init_complex_type ("complex*8", builtin_f_type->builtin_real); |
e9bb382b | 1653 | builtin_f_type->builtin_complex_s16 |
5b930b45 | 1654 | = init_complex_type ("complex*16", builtin_f_type->builtin_real_s8); |
0830d301 | 1655 | |
78134374 | 1656 | if (builtin_f_type->builtin_real_s16->code () == TYPE_CODE_ERROR) |
0830d301 TT |
1657 | builtin_f_type->builtin_complex_s32 |
1658 | = arch_type (gdbarch, TYPE_CODE_ERROR, 256, "complex*32"); | |
1659 | else | |
1660 | builtin_f_type->builtin_complex_s32 | |
1661 | = init_complex_type ("complex*32", builtin_f_type->builtin_real_s16); | |
54ef06c7 UW |
1662 | |
1663 | return builtin_f_type; | |
1664 | } | |
1665 | ||
1666 | static struct gdbarch_data *f_type_data; | |
1667 | ||
1668 | const struct builtin_f_type * | |
1669 | builtin_f_type (struct gdbarch *gdbarch) | |
1670 | { | |
9a3c8263 | 1671 | return (const struct builtin_f_type *) gdbarch_data (gdbarch, f_type_data); |
4e845cd3 MS |
1672 | } |
1673 | ||
a5c641b5 AB |
1674 | /* Command-list for the "set/show fortran" prefix command. */ |
1675 | static struct cmd_list_element *set_fortran_list; | |
1676 | static struct cmd_list_element *show_fortran_list; | |
1677 | ||
6c265988 | 1678 | void _initialize_f_language (); |
4e845cd3 | 1679 | void |
6c265988 | 1680 | _initialize_f_language () |
4e845cd3 | 1681 | { |
54ef06c7 | 1682 | f_type_data = gdbarch_data_register_post_init (build_fortran_types); |
a5c641b5 | 1683 | |
f54bdb6d SM |
1684 | add_setshow_prefix_cmd |
1685 | ("fortran", no_class, | |
1686 | _("Prefix command for changing Fortran-specific settings."), | |
1687 | _("Generic command for showing Fortran-specific settings."), | |
1688 | &set_fortran_list, &show_fortran_list, | |
1689 | &setlist, &showlist); | |
a5c641b5 AB |
1690 | |
1691 | add_setshow_boolean_cmd ("repack-array-slices", class_vars, | |
1692 | &repack_array_slices, _("\ | |
1693 | Enable or disable repacking of non-contiguous array slices."), _("\ | |
1694 | Show whether non-contiguous array slices are repacked."), _("\ | |
1695 | When the user requests a slice of a Fortran array then we can either return\n\ | |
1696 | a descriptor that describes the array in place (using the original array data\n\ | |
1697 | in its existing location) or the original data can be repacked (copied) to a\n\ | |
1698 | new location.\n\ | |
1699 | \n\ | |
1700 | When the content of the array slice is contiguous within the original array\n\ | |
1701 | then the result will never be repacked, but when the data for the new array\n\ | |
1702 | is non-contiguous within the original array repacking will only be performed\n\ | |
1703 | when this setting is on."), | |
1704 | NULL, | |
1705 | show_repack_array_slices, | |
1706 | &set_fortran_list, &show_fortran_list); | |
1707 | ||
1708 | /* Debug Fortran's array slicing logic. */ | |
1709 | add_setshow_boolean_cmd ("fortran-array-slicing", class_maintenance, | |
1710 | &fortran_array_slicing_debug, _("\ | |
1711 | Set debugging of Fortran array slicing."), _("\ | |
1712 | Show debugging of Fortran array slicing."), _("\ | |
1713 | When on, debugging of Fortran array slicing is enabled."), | |
1714 | NULL, | |
1715 | show_fortran_array_slicing_debug, | |
1716 | &setdebuglist, &showdebuglist); | |
c906108c | 1717 | } |
aa3cfbda | 1718 | |
5a7cf527 AB |
1719 | /* Ensures that function argument VALUE is in the appropriate form to |
1720 | pass to a Fortran function. Returns a possibly new value that should | |
1721 | be used instead of VALUE. | |
1722 | ||
1723 | When IS_ARTIFICIAL is true this indicates an artificial argument, | |
1724 | e.g. hidden string lengths which the GNU Fortran argument passing | |
1725 | convention specifies as being passed by value. | |
aa3cfbda | 1726 | |
5a7cf527 AB |
1727 | When IS_ARTIFICIAL is false, the argument is passed by pointer. If the |
1728 | value is already in target memory then return a value that is a pointer | |
1729 | to VALUE. If VALUE is not in memory (e.g. an integer literal), allocate | |
1730 | space in the target, copy VALUE in, and return a pointer to the in | |
1731 | memory copy. */ | |
1732 | ||
1733 | static struct value * | |
aa3cfbda RB |
1734 | fortran_argument_convert (struct value *value, bool is_artificial) |
1735 | { | |
1736 | if (!is_artificial) | |
1737 | { | |
1738 | /* If the value is not in the inferior e.g. registers values, | |
1739 | convenience variables and user input. */ | |
1740 | if (VALUE_LVAL (value) != lval_memory) | |
1741 | { | |
1742 | struct type *type = value_type (value); | |
1743 | const int length = TYPE_LENGTH (type); | |
1744 | const CORE_ADDR addr | |
1745 | = value_as_long (value_allocate_space_in_inferior (length)); | |
50888e42 SM |
1746 | write_memory (addr, value_contents (value).data (), length); |
1747 | struct value *val = value_from_contents_and_address | |
1748 | (type, value_contents (value).data (), addr); | |
aa3cfbda RB |
1749 | return value_addr (val); |
1750 | } | |
1751 | else | |
1752 | return value_addr (value); /* Program variables, e.g. arrays. */ | |
1753 | } | |
1754 | return value; | |
1755 | } | |
1756 | ||
2f98abe1 TT |
1757 | /* Prepare (and return) an argument value ready for an inferior function |
1758 | call to a Fortran function. EXP and POS are the expressions describing | |
1759 | the argument to prepare. ARG_NUM is the argument number being | |
1760 | prepared, with 0 being the first argument and so on. FUNC_TYPE is the | |
1761 | type of the function being called. | |
1762 | ||
1763 | IS_INTERNAL_CALL_P is true if this is a call to a function of type | |
1764 | TYPE_CODE_INTERNAL_FUNCTION, otherwise this parameter is false. | |
1765 | ||
1766 | NOSIDE has its usual meaning for expression parsing (see eval.c). | |
1767 | ||
1768 | Arguments in Fortran are normally passed by address, we coerce the | |
1769 | arguments here rather than in value_arg_coerce as otherwise the call to | |
1770 | malloc (to place the non-lvalue parameters in target memory) is hit by | |
1771 | this Fortran specific logic. This results in malloc being called with a | |
1772 | pointer to an integer followed by an attempt to malloc the arguments to | |
1773 | malloc in target memory. Infinite recursion ensues. */ | |
1774 | ||
1775 | static value * | |
1776 | fortran_prepare_argument (struct expression *exp, | |
1777 | expr::operation *subexp, | |
1778 | int arg_num, bool is_internal_call_p, | |
1779 | struct type *func_type, enum noside noside) | |
1780 | { | |
1781 | if (is_internal_call_p) | |
1782 | return subexp->evaluate_with_coercion (exp, noside); | |
1783 | ||
1784 | bool is_artificial = ((arg_num >= func_type->num_fields ()) | |
1785 | ? true | |
1786 | : TYPE_FIELD_ARTIFICIAL (func_type, arg_num)); | |
1787 | ||
1788 | /* If this is an artificial argument, then either, this is an argument | |
1789 | beyond the end of the known arguments, or possibly, there are no known | |
1790 | arguments (maybe missing debug info). | |
1791 | ||
1792 | For these artificial arguments, if the user has prefixed it with '&' | |
1793 | (for address-of), then lets always allow this to succeed, even if the | |
1794 | argument is not actually in inferior memory. This will allow the user | |
1795 | to pass arguments to a Fortran function even when there's no debug | |
1796 | information. | |
1797 | ||
1798 | As we already pass the address of non-artificial arguments, all we | |
1799 | need to do if skip the UNOP_ADDR operator in the expression and mark | |
1800 | the argument as non-artificial. */ | |
1801 | if (is_artificial) | |
1802 | { | |
1803 | expr::unop_addr_operation *addrop | |
1804 | = dynamic_cast<expr::unop_addr_operation *> (subexp); | |
1805 | if (addrop != nullptr) | |
1806 | { | |
1807 | subexp = addrop->get_expression ().get (); | |
1808 | is_artificial = false; | |
1809 | } | |
1810 | } | |
1811 | ||
1812 | struct value *arg_val = subexp->evaluate_with_coercion (exp, noside); | |
1813 | return fortran_argument_convert (arg_val, is_artificial); | |
1814 | } | |
1815 | ||
aa3cfbda RB |
1816 | /* See f-lang.h. */ |
1817 | ||
1818 | struct type * | |
1819 | fortran_preserve_arg_pointer (struct value *arg, struct type *type) | |
1820 | { | |
78134374 | 1821 | if (value_type (arg)->code () == TYPE_CODE_PTR) |
aa3cfbda RB |
1822 | return value_type (arg); |
1823 | return type; | |
1824 | } | |
a5c641b5 AB |
1825 | |
1826 | /* See f-lang.h. */ | |
1827 | ||
1828 | CORE_ADDR | |
1829 | fortran_adjust_dynamic_array_base_address_hack (struct type *type, | |
1830 | CORE_ADDR address) | |
1831 | { | |
1832 | gdb_assert (type->code () == TYPE_CODE_ARRAY); | |
1833 | ||
b7874836 AB |
1834 | /* We can't adjust the base address for arrays that have no content. */ |
1835 | if (type_not_allocated (type) || type_not_associated (type)) | |
1836 | return address; | |
1837 | ||
a5c641b5 AB |
1838 | int ndimensions = calc_f77_array_dims (type); |
1839 | LONGEST total_offset = 0; | |
1840 | ||
1841 | /* Walk through each of the dimensions of this array type and figure out | |
1842 | if any of the dimensions are "backwards", that is the base address | |
1843 | for this dimension points to the element at the highest memory | |
1844 | address and the stride is negative. */ | |
1845 | struct type *tmp_type = type; | |
1846 | for (int i = 0 ; i < ndimensions; ++i) | |
1847 | { | |
1848 | /* Grab the range for this dimension and extract the lower and upper | |
1849 | bounds. */ | |
1850 | tmp_type = check_typedef (tmp_type); | |
1851 | struct type *range_type = tmp_type->index_type (); | |
1852 | LONGEST lowerbound, upperbound, stride; | |
1f8d2881 | 1853 | if (!get_discrete_bounds (range_type, &lowerbound, &upperbound)) |
a5c641b5 AB |
1854 | error ("failed to get range bounds"); |
1855 | ||
1856 | /* Figure out the stride for this dimension. */ | |
1857 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (tmp_type)); | |
1858 | stride = tmp_type->index_type ()->bounds ()->bit_stride (); | |
1859 | if (stride == 0) | |
1860 | stride = type_length_units (elt_type); | |
1861 | else | |
1862 | { | |
8ee511af SM |
1863 | int unit_size |
1864 | = gdbarch_addressable_memory_unit_size (elt_type->arch ()); | |
a5c641b5 AB |
1865 | stride /= (unit_size * 8); |
1866 | } | |
1867 | ||
1868 | /* If this dimension is "backward" then figure out the offset | |
1869 | adjustment required to point to the element at the lowest memory | |
1870 | address, and add this to the total offset. */ | |
1871 | LONGEST offset = 0; | |
1872 | if (stride < 0 && lowerbound < upperbound) | |
1873 | offset = (upperbound - lowerbound) * stride; | |
1874 | total_offset += offset; | |
1875 | tmp_type = TYPE_TARGET_TYPE (tmp_type); | |
1876 | } | |
1877 | ||
1878 | /* Adjust the address of this object and return it. */ | |
1879 | address += total_offset; | |
1880 | return address; | |
1881 | } |