]>
Commit | Line | Data |
---|---|---|
e0001a05 | 1 | /* Xtensa-specific support for 32-bit ELF. |
3eb128b2 | 2 | Copyright 2003, 2004, 2005 Free Software Foundation, Inc. |
e0001a05 NC |
3 | |
4 | This file is part of BFD, the Binary File Descriptor library. | |
5 | ||
6 | This program is free software; you can redistribute it and/or | |
7 | modify it under the terms of the GNU General Public License as | |
8 | published by the Free Software Foundation; either version 2 of the | |
9 | License, or (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, but | |
12 | WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
14 | General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
3e110533 | 18 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA |
53e09e0a | 19 | 02110-1301, USA. */ |
e0001a05 NC |
20 | |
21 | #include "bfd.h" | |
22 | #include "sysdep.h" | |
23 | ||
e0001a05 | 24 | #include <stdarg.h> |
e0001a05 NC |
25 | #include <strings.h> |
26 | ||
27 | #include "bfdlink.h" | |
28 | #include "libbfd.h" | |
29 | #include "elf-bfd.h" | |
30 | #include "elf/xtensa.h" | |
31 | #include "xtensa-isa.h" | |
32 | #include "xtensa-config.h" | |
33 | ||
43cd72b9 BW |
34 | #define XTENSA_NO_NOP_REMOVAL 0 |
35 | ||
e0001a05 NC |
36 | /* Local helper functions. */ |
37 | ||
7fa3d080 | 38 | static bfd_boolean add_extra_plt_sections (bfd *, int); |
2db662be | 39 | static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); |
e0001a05 | 40 | static bfd_reloc_status_type bfd_elf_xtensa_reloc |
7fa3d080 | 41 | (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); |
43cd72b9 | 42 | static bfd_boolean do_fix_for_relocatable_link |
7fa3d080 | 43 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); |
e0001a05 | 44 | static void do_fix_for_final_link |
7fa3d080 | 45 | (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); |
e0001a05 NC |
46 | |
47 | /* Local functions to handle Xtensa configurability. */ | |
48 | ||
7fa3d080 BW |
49 | static bfd_boolean is_indirect_call_opcode (xtensa_opcode); |
50 | static bfd_boolean is_direct_call_opcode (xtensa_opcode); | |
51 | static bfd_boolean is_windowed_call_opcode (xtensa_opcode); | |
52 | static xtensa_opcode get_const16_opcode (void); | |
53 | static xtensa_opcode get_l32r_opcode (void); | |
54 | static bfd_vma l32r_offset (bfd_vma, bfd_vma); | |
55 | static int get_relocation_opnd (xtensa_opcode, int); | |
56 | static int get_relocation_slot (int); | |
e0001a05 | 57 | static xtensa_opcode get_relocation_opcode |
7fa3d080 | 58 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
e0001a05 | 59 | static bfd_boolean is_l32r_relocation |
7fa3d080 BW |
60 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); |
61 | static bfd_boolean is_alt_relocation (int); | |
62 | static bfd_boolean is_operand_relocation (int); | |
43cd72b9 | 63 | static bfd_size_type insn_decode_len |
7fa3d080 | 64 | (bfd_byte *, bfd_size_type, bfd_size_type); |
43cd72b9 | 65 | static xtensa_opcode insn_decode_opcode |
7fa3d080 | 66 | (bfd_byte *, bfd_size_type, bfd_size_type, int); |
43cd72b9 | 67 | static bfd_boolean check_branch_target_aligned |
7fa3d080 | 68 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
43cd72b9 | 69 | static bfd_boolean check_loop_aligned |
7fa3d080 BW |
70 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); |
71 | static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); | |
43cd72b9 | 72 | static bfd_size_type get_asm_simplify_size |
7fa3d080 | 73 | (bfd_byte *, bfd_size_type, bfd_size_type); |
e0001a05 NC |
74 | |
75 | /* Functions for link-time code simplifications. */ | |
76 | ||
43cd72b9 | 77 | static bfd_reloc_status_type elf_xtensa_do_asm_simplify |
7fa3d080 | 78 | (bfd_byte *, bfd_vma, bfd_vma, char **); |
e0001a05 | 79 | static bfd_reloc_status_type contract_asm_expansion |
7fa3d080 BW |
80 | (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); |
81 | static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); | |
82 | static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); | |
e0001a05 NC |
83 | |
84 | /* Access to internal relocations, section contents and symbols. */ | |
85 | ||
86 | static Elf_Internal_Rela *retrieve_internal_relocs | |
7fa3d080 BW |
87 | (bfd *, asection *, bfd_boolean); |
88 | static void pin_internal_relocs (asection *, Elf_Internal_Rela *); | |
89 | static void release_internal_relocs (asection *, Elf_Internal_Rela *); | |
90 | static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); | |
91 | static void pin_contents (asection *, bfd_byte *); | |
92 | static void release_contents (asection *, bfd_byte *); | |
93 | static Elf_Internal_Sym *retrieve_local_syms (bfd *); | |
e0001a05 NC |
94 | |
95 | /* Miscellaneous utility functions. */ | |
96 | ||
7fa3d080 BW |
97 | static asection *elf_xtensa_get_plt_section (bfd *, int); |
98 | static asection *elf_xtensa_get_gotplt_section (bfd *, int); | |
99 | static asection *get_elf_r_symndx_section (bfd *, unsigned long); | |
e0001a05 | 100 | static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry |
7fa3d080 BW |
101 | (bfd *, unsigned long); |
102 | static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); | |
103 | static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); | |
104 | static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); | |
105 | static bfd_boolean xtensa_is_property_section (asection *); | |
106 | static bfd_boolean xtensa_is_littable_section (asection *); | |
107 | static int internal_reloc_compare (const void *, const void *); | |
108 | static int internal_reloc_matches (const void *, const void *); | |
109 | extern char *xtensa_get_property_section_name (asection *, const char *); | |
110 | static flagword xtensa_get_property_predef_flags (asection *); | |
e0001a05 NC |
111 | |
112 | /* Other functions called directly by the linker. */ | |
113 | ||
114 | typedef void (*deps_callback_t) | |
7fa3d080 | 115 | (asection *, bfd_vma, asection *, bfd_vma, void *); |
e0001a05 | 116 | extern bfd_boolean xtensa_callback_required_dependence |
7fa3d080 | 117 | (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); |
e0001a05 NC |
118 | |
119 | ||
43cd72b9 BW |
120 | /* Globally visible flag for choosing size optimization of NOP removal |
121 | instead of branch-target-aware minimization for NOP removal. | |
122 | When nonzero, narrow all instructions and remove all NOPs possible | |
123 | around longcall expansions. */ | |
7fa3d080 | 124 | |
43cd72b9 BW |
125 | int elf32xtensa_size_opt; |
126 | ||
127 | ||
128 | /* The "new_section_hook" is used to set up a per-section | |
129 | "xtensa_relax_info" data structure with additional information used | |
130 | during relaxation. */ | |
e0001a05 | 131 | |
7fa3d080 | 132 | typedef struct xtensa_relax_info_struct xtensa_relax_info; |
e0001a05 | 133 | |
43cd72b9 | 134 | |
e0001a05 NC |
135 | /* Total count of PLT relocations seen during check_relocs. |
136 | The actual PLT code must be split into multiple sections and all | |
137 | the sections have to be created before size_dynamic_sections, | |
138 | where we figure out the exact number of PLT entries that will be | |
b536dc1e | 139 | needed. It is OK if this count is an overestimate, e.g., some |
e0001a05 NC |
140 | relocations may be removed by GC. */ |
141 | ||
142 | static int plt_reloc_count = 0; | |
143 | ||
144 | ||
43cd72b9 BW |
145 | /* The GNU tools do not easily allow extending interfaces to pass around |
146 | the pointer to the Xtensa ISA information, so instead we add a global | |
147 | variable here (in BFD) that can be used by any of the tools that need | |
148 | this information. */ | |
149 | ||
150 | xtensa_isa xtensa_default_isa; | |
151 | ||
152 | ||
e0001a05 NC |
153 | /* When this is true, relocations may have been modified to refer to |
154 | symbols from other input files. The per-section list of "fix" | |
155 | records needs to be checked when resolving relocations. */ | |
156 | ||
157 | static bfd_boolean relaxing_section = FALSE; | |
158 | ||
43cd72b9 BW |
159 | /* When this is true, during final links, literals that cannot be |
160 | coalesced and their relocations may be moved to other sections. */ | |
161 | ||
162 | int elf32xtensa_no_literal_movement = 1; | |
163 | ||
e0001a05 NC |
164 | \f |
165 | static reloc_howto_type elf_howto_table[] = | |
166 | { | |
167 | HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, | |
168 | bfd_elf_xtensa_reloc, "R_XTENSA_NONE", | |
169 | FALSE, 0x00000000, 0x00000000, FALSE), | |
170 | HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
171 | bfd_elf_xtensa_reloc, "R_XTENSA_32", | |
172 | TRUE, 0xffffffff, 0xffffffff, FALSE), | |
173 | /* Replace a 32-bit value with a value from the runtime linker (only | |
174 | used by linker-generated stub functions). The r_addend value is | |
175 | special: 1 means to substitute a pointer to the runtime linker's | |
176 | dynamic resolver function; 2 means to substitute the link map for | |
177 | the shared object. */ | |
178 | HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, | |
179 | NULL, "R_XTENSA_RTLD", | |
180 | FALSE, 0x00000000, 0x00000000, FALSE), | |
181 | HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
182 | bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", | |
183 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
184 | HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
185 | bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", | |
186 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
187 | HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
188 | bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", | |
189 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
190 | HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
191 | bfd_elf_xtensa_reloc, "R_XTENSA_PLT", | |
192 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
193 | EMPTY_HOWTO (7), | |
194 | HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
195 | bfd_elf_xtensa_reloc, "R_XTENSA_OP0", | |
196 | FALSE, 0x00000000, 0x00000000, TRUE), | |
197 | HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
198 | bfd_elf_xtensa_reloc, "R_XTENSA_OP1", | |
199 | FALSE, 0x00000000, 0x00000000, TRUE), | |
200 | HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
201 | bfd_elf_xtensa_reloc, "R_XTENSA_OP2", | |
202 | FALSE, 0x00000000, 0x00000000, TRUE), | |
203 | /* Assembly auto-expansion. */ | |
204 | HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
205 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", | |
206 | FALSE, 0x00000000, 0x00000000, FALSE), | |
207 | /* Relax assembly auto-expansion. */ | |
208 | HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
209 | bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", | |
210 | FALSE, 0x00000000, 0x00000000, TRUE), | |
211 | EMPTY_HOWTO (13), | |
212 | EMPTY_HOWTO (14), | |
213 | /* GNU extension to record C++ vtable hierarchy. */ | |
214 | HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
215 | NULL, "R_XTENSA_GNU_VTINHERIT", | |
216 | FALSE, 0x00000000, 0x00000000, FALSE), | |
217 | /* GNU extension to record C++ vtable member usage. */ | |
218 | HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, | |
219 | _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", | |
43cd72b9 BW |
220 | FALSE, 0x00000000, 0x00000000, FALSE), |
221 | ||
222 | /* Relocations for supporting difference of symbols. */ | |
223 | HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, | |
224 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", | |
225 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
226 | HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, | |
227 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", | |
228 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
229 | HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, | |
230 | bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", | |
231 | FALSE, 0xffffffff, 0xffffffff, FALSE), | |
232 | ||
233 | /* General immediate operand relocations. */ | |
234 | HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
235 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", | |
236 | FALSE, 0x00000000, 0x00000000, TRUE), | |
237 | HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
238 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", | |
239 | FALSE, 0x00000000, 0x00000000, TRUE), | |
240 | HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
241 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", | |
242 | FALSE, 0x00000000, 0x00000000, TRUE), | |
243 | HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
244 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", | |
245 | FALSE, 0x00000000, 0x00000000, TRUE), | |
246 | HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
247 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", | |
248 | FALSE, 0x00000000, 0x00000000, TRUE), | |
249 | HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
250 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", | |
251 | FALSE, 0x00000000, 0x00000000, TRUE), | |
252 | HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
253 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", | |
254 | FALSE, 0x00000000, 0x00000000, TRUE), | |
255 | HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
256 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", | |
257 | FALSE, 0x00000000, 0x00000000, TRUE), | |
258 | HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
259 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", | |
260 | FALSE, 0x00000000, 0x00000000, TRUE), | |
261 | HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
262 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", | |
263 | FALSE, 0x00000000, 0x00000000, TRUE), | |
264 | HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
265 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", | |
266 | FALSE, 0x00000000, 0x00000000, TRUE), | |
267 | HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
268 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", | |
269 | FALSE, 0x00000000, 0x00000000, TRUE), | |
270 | HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
271 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", | |
272 | FALSE, 0x00000000, 0x00000000, TRUE), | |
273 | HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
274 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", | |
275 | FALSE, 0x00000000, 0x00000000, TRUE), | |
276 | HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
277 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", | |
278 | FALSE, 0x00000000, 0x00000000, TRUE), | |
279 | ||
280 | /* "Alternate" relocations. The meaning of these is opcode-specific. */ | |
281 | HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
282 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", | |
283 | FALSE, 0x00000000, 0x00000000, TRUE), | |
284 | HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
285 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", | |
286 | FALSE, 0x00000000, 0x00000000, TRUE), | |
287 | HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
288 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", | |
289 | FALSE, 0x00000000, 0x00000000, TRUE), | |
290 | HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
291 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", | |
292 | FALSE, 0x00000000, 0x00000000, TRUE), | |
293 | HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
294 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", | |
295 | FALSE, 0x00000000, 0x00000000, TRUE), | |
296 | HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
297 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", | |
298 | FALSE, 0x00000000, 0x00000000, TRUE), | |
299 | HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
300 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", | |
301 | FALSE, 0x00000000, 0x00000000, TRUE), | |
302 | HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
303 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", | |
304 | FALSE, 0x00000000, 0x00000000, TRUE), | |
305 | HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
306 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", | |
307 | FALSE, 0x00000000, 0x00000000, TRUE), | |
308 | HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
309 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", | |
310 | FALSE, 0x00000000, 0x00000000, TRUE), | |
311 | HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
312 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", | |
313 | FALSE, 0x00000000, 0x00000000, TRUE), | |
314 | HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
315 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", | |
316 | FALSE, 0x00000000, 0x00000000, TRUE), | |
317 | HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
318 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", | |
319 | FALSE, 0x00000000, 0x00000000, TRUE), | |
320 | HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
321 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", | |
322 | FALSE, 0x00000000, 0x00000000, TRUE), | |
323 | HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, | |
324 | bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", | |
325 | FALSE, 0x00000000, 0x00000000, TRUE) | |
e0001a05 NC |
326 | }; |
327 | ||
43cd72b9 | 328 | #if DEBUG_GEN_RELOC |
e0001a05 NC |
329 | #define TRACE(str) \ |
330 | fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) | |
331 | #else | |
332 | #define TRACE(str) | |
333 | #endif | |
334 | ||
335 | static reloc_howto_type * | |
7fa3d080 BW |
336 | elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, |
337 | bfd_reloc_code_real_type code) | |
e0001a05 NC |
338 | { |
339 | switch (code) | |
340 | { | |
341 | case BFD_RELOC_NONE: | |
342 | TRACE ("BFD_RELOC_NONE"); | |
343 | return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; | |
344 | ||
345 | case BFD_RELOC_32: | |
346 | TRACE ("BFD_RELOC_32"); | |
347 | return &elf_howto_table[(unsigned) R_XTENSA_32 ]; | |
348 | ||
43cd72b9 BW |
349 | case BFD_RELOC_XTENSA_DIFF8: |
350 | TRACE ("BFD_RELOC_XTENSA_DIFF8"); | |
351 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; | |
352 | ||
353 | case BFD_RELOC_XTENSA_DIFF16: | |
354 | TRACE ("BFD_RELOC_XTENSA_DIFF16"); | |
355 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; | |
356 | ||
357 | case BFD_RELOC_XTENSA_DIFF32: | |
358 | TRACE ("BFD_RELOC_XTENSA_DIFF32"); | |
359 | return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; | |
360 | ||
e0001a05 NC |
361 | case BFD_RELOC_XTENSA_RTLD: |
362 | TRACE ("BFD_RELOC_XTENSA_RTLD"); | |
363 | return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; | |
364 | ||
365 | case BFD_RELOC_XTENSA_GLOB_DAT: | |
366 | TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); | |
367 | return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; | |
368 | ||
369 | case BFD_RELOC_XTENSA_JMP_SLOT: | |
370 | TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); | |
371 | return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; | |
372 | ||
373 | case BFD_RELOC_XTENSA_RELATIVE: | |
374 | TRACE ("BFD_RELOC_XTENSA_RELATIVE"); | |
375 | return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; | |
376 | ||
377 | case BFD_RELOC_XTENSA_PLT: | |
378 | TRACE ("BFD_RELOC_XTENSA_PLT"); | |
379 | return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; | |
380 | ||
381 | case BFD_RELOC_XTENSA_OP0: | |
382 | TRACE ("BFD_RELOC_XTENSA_OP0"); | |
383 | return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; | |
384 | ||
385 | case BFD_RELOC_XTENSA_OP1: | |
386 | TRACE ("BFD_RELOC_XTENSA_OP1"); | |
387 | return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; | |
388 | ||
389 | case BFD_RELOC_XTENSA_OP2: | |
390 | TRACE ("BFD_RELOC_XTENSA_OP2"); | |
391 | return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; | |
392 | ||
393 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
394 | TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); | |
395 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; | |
396 | ||
397 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
398 | TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); | |
399 | return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; | |
400 | ||
401 | case BFD_RELOC_VTABLE_INHERIT: | |
402 | TRACE ("BFD_RELOC_VTABLE_INHERIT"); | |
403 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; | |
404 | ||
405 | case BFD_RELOC_VTABLE_ENTRY: | |
406 | TRACE ("BFD_RELOC_VTABLE_ENTRY"); | |
407 | return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; | |
408 | ||
409 | default: | |
43cd72b9 BW |
410 | if (code >= BFD_RELOC_XTENSA_SLOT0_OP |
411 | && code <= BFD_RELOC_XTENSA_SLOT14_OP) | |
412 | { | |
413 | unsigned n = (R_XTENSA_SLOT0_OP + | |
414 | (code - BFD_RELOC_XTENSA_SLOT0_OP)); | |
415 | return &elf_howto_table[n]; | |
416 | } | |
417 | ||
418 | if (code >= BFD_RELOC_XTENSA_SLOT0_ALT | |
419 | && code <= BFD_RELOC_XTENSA_SLOT14_ALT) | |
420 | { | |
421 | unsigned n = (R_XTENSA_SLOT0_ALT + | |
422 | (code - BFD_RELOC_XTENSA_SLOT0_ALT)); | |
423 | return &elf_howto_table[n]; | |
424 | } | |
425 | ||
e0001a05 NC |
426 | break; |
427 | } | |
428 | ||
429 | TRACE ("Unknown"); | |
430 | return NULL; | |
431 | } | |
432 | ||
433 | ||
434 | /* Given an ELF "rela" relocation, find the corresponding howto and record | |
435 | it in the BFD internal arelent representation of the relocation. */ | |
436 | ||
437 | static void | |
7fa3d080 BW |
438 | elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, |
439 | arelent *cache_ptr, | |
440 | Elf_Internal_Rela *dst) | |
e0001a05 NC |
441 | { |
442 | unsigned int r_type = ELF32_R_TYPE (dst->r_info); | |
443 | ||
444 | BFD_ASSERT (r_type < (unsigned int) R_XTENSA_max); | |
445 | cache_ptr->howto = &elf_howto_table[r_type]; | |
446 | } | |
447 | ||
448 | \f | |
449 | /* Functions for the Xtensa ELF linker. */ | |
450 | ||
451 | /* The name of the dynamic interpreter. This is put in the .interp | |
452 | section. */ | |
453 | ||
454 | #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" | |
455 | ||
456 | /* The size in bytes of an entry in the procedure linkage table. | |
457 | (This does _not_ include the space for the literals associated with | |
458 | the PLT entry.) */ | |
459 | ||
460 | #define PLT_ENTRY_SIZE 16 | |
461 | ||
462 | /* For _really_ large PLTs, we may need to alternate between literals | |
463 | and code to keep the literals within the 256K range of the L32R | |
464 | instructions in the code. It's unlikely that anyone would ever need | |
465 | such a big PLT, but an arbitrary limit on the PLT size would be bad. | |
466 | Thus, we split the PLT into chunks. Since there's very little | |
467 | overhead (2 extra literals) for each chunk, the chunk size is kept | |
468 | small so that the code for handling multiple chunks get used and | |
469 | tested regularly. With 254 entries, there are 1K of literals for | |
470 | each chunk, and that seems like a nice round number. */ | |
471 | ||
472 | #define PLT_ENTRIES_PER_CHUNK 254 | |
473 | ||
474 | /* PLT entries are actually used as stub functions for lazy symbol | |
475 | resolution. Once the symbol is resolved, the stub function is never | |
476 | invoked. Note: the 32-byte frame size used here cannot be changed | |
477 | without a corresponding change in the runtime linker. */ | |
478 | ||
479 | static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = | |
480 | { | |
481 | 0x6c, 0x10, 0x04, /* entry sp, 32 */ | |
482 | 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
483 | 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
484 | 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
485 | 0x0a, 0x80, 0x00, /* jx a8 */ | |
486 | 0 /* unused */ | |
487 | }; | |
488 | ||
489 | static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = | |
490 | { | |
491 | 0x36, 0x41, 0x00, /* entry sp, 32 */ | |
492 | 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ | |
493 | 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ | |
494 | 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ | |
495 | 0xa0, 0x08, 0x00, /* jx a8 */ | |
496 | 0 /* unused */ | |
497 | }; | |
498 | ||
571b5725 BW |
499 | |
500 | static inline bfd_boolean | |
7fa3d080 BW |
501 | xtensa_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, |
502 | struct bfd_link_info *info) | |
571b5725 BW |
503 | { |
504 | /* Check if we should do dynamic things to this symbol. The | |
505 | "ignore_protected" argument need not be set, because Xtensa code | |
506 | does not require special handling of STV_PROTECTED to make function | |
507 | pointer comparisons work properly. The PLT addresses are never | |
508 | used for function pointers. */ | |
509 | ||
510 | return _bfd_elf_dynamic_symbol_p (h, info, 0); | |
511 | } | |
512 | ||
e0001a05 NC |
513 | \f |
514 | static int | |
7fa3d080 | 515 | property_table_compare (const void *ap, const void *bp) |
e0001a05 NC |
516 | { |
517 | const property_table_entry *a = (const property_table_entry *) ap; | |
518 | const property_table_entry *b = (const property_table_entry *) bp; | |
519 | ||
43cd72b9 BW |
520 | if (a->address == b->address) |
521 | { | |
43cd72b9 BW |
522 | if (a->size != b->size) |
523 | return (a->size - b->size); | |
524 | ||
525 | if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) | |
526 | return ((b->flags & XTENSA_PROP_ALIGN) | |
527 | - (a->flags & XTENSA_PROP_ALIGN)); | |
528 | ||
529 | if ((a->flags & XTENSA_PROP_ALIGN) | |
530 | && (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
531 | != GET_XTENSA_PROP_ALIGNMENT (b->flags))) | |
532 | return (GET_XTENSA_PROP_ALIGNMENT (a->flags) | |
533 | - GET_XTENSA_PROP_ALIGNMENT (b->flags)); | |
534 | ||
535 | if ((a->flags & XTENSA_PROP_UNREACHABLE) | |
536 | != (b->flags & XTENSA_PROP_UNREACHABLE)) | |
537 | return ((b->flags & XTENSA_PROP_UNREACHABLE) | |
538 | - (a->flags & XTENSA_PROP_UNREACHABLE)); | |
539 | ||
540 | return (a->flags - b->flags); | |
541 | } | |
542 | ||
543 | return (a->address - b->address); | |
544 | } | |
545 | ||
546 | ||
547 | static int | |
7fa3d080 | 548 | property_table_matches (const void *ap, const void *bp) |
43cd72b9 BW |
549 | { |
550 | const property_table_entry *a = (const property_table_entry *) ap; | |
551 | const property_table_entry *b = (const property_table_entry *) bp; | |
552 | ||
553 | /* Check if one entry overlaps with the other. */ | |
e0001a05 NC |
554 | if ((b->address >= a->address && b->address < (a->address + a->size)) |
555 | || (a->address >= b->address && a->address < (b->address + b->size))) | |
556 | return 0; | |
557 | ||
558 | return (a->address - b->address); | |
559 | } | |
560 | ||
561 | ||
43cd72b9 BW |
562 | /* Get the literal table or property table entries for the given |
563 | section. Sets TABLE_P and returns the number of entries. On | |
564 | error, returns a negative value. */ | |
e0001a05 | 565 | |
7fa3d080 BW |
566 | static int |
567 | xtensa_read_table_entries (bfd *abfd, | |
568 | asection *section, | |
569 | property_table_entry **table_p, | |
570 | const char *sec_name, | |
571 | bfd_boolean output_addr) | |
e0001a05 NC |
572 | { |
573 | asection *table_section; | |
574 | char *table_section_name; | |
575 | bfd_size_type table_size = 0; | |
576 | bfd_byte *table_data; | |
577 | property_table_entry *blocks; | |
e4115460 | 578 | int blk, block_count; |
e0001a05 NC |
579 | bfd_size_type num_records; |
580 | Elf_Internal_Rela *internal_relocs; | |
3ba3bc8c | 581 | bfd_vma section_addr; |
43cd72b9 BW |
582 | flagword predef_flags; |
583 | bfd_size_type table_entry_size; | |
584 | ||
585 | if (!section | |
586 | || !(section->flags & SEC_ALLOC) | |
587 | || (section->flags & SEC_DEBUGGING)) | |
588 | { | |
589 | *table_p = NULL; | |
590 | return 0; | |
591 | } | |
e0001a05 | 592 | |
43cd72b9 | 593 | table_section_name = xtensa_get_property_section_name (section, sec_name); |
e0001a05 | 594 | table_section = bfd_get_section_by_name (abfd, table_section_name); |
b614a702 | 595 | free (table_section_name); |
43cd72b9 | 596 | if (table_section) |
eea6121a | 597 | table_size = table_section->size; |
43cd72b9 | 598 | |
e0001a05 NC |
599 | if (table_size == 0) |
600 | { | |
601 | *table_p = NULL; | |
602 | return 0; | |
603 | } | |
604 | ||
43cd72b9 BW |
605 | predef_flags = xtensa_get_property_predef_flags (table_section); |
606 | table_entry_size = 12; | |
607 | if (predef_flags) | |
608 | table_entry_size -= 4; | |
609 | ||
610 | num_records = table_size / table_entry_size; | |
e0001a05 NC |
611 | table_data = retrieve_contents (abfd, table_section, TRUE); |
612 | blocks = (property_table_entry *) | |
613 | bfd_malloc (num_records * sizeof (property_table_entry)); | |
614 | block_count = 0; | |
43cd72b9 BW |
615 | |
616 | if (output_addr) | |
617 | section_addr = section->output_section->vma + section->output_offset; | |
618 | else | |
619 | section_addr = section->vma; | |
3ba3bc8c | 620 | |
e0001a05 NC |
621 | /* If the file has not yet been relocated, process the relocations |
622 | and sort out the table entries that apply to the specified section. */ | |
623 | internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); | |
3ba3bc8c | 624 | if (internal_relocs && !table_section->reloc_done) |
e0001a05 NC |
625 | { |
626 | unsigned i; | |
627 | ||
628 | for (i = 0; i < table_section->reloc_count; i++) | |
629 | { | |
630 | Elf_Internal_Rela *rel = &internal_relocs[i]; | |
631 | unsigned long r_symndx; | |
632 | ||
633 | if (ELF32_R_TYPE (rel->r_info) == R_XTENSA_NONE) | |
634 | continue; | |
635 | ||
636 | BFD_ASSERT (ELF32_R_TYPE (rel->r_info) == R_XTENSA_32); | |
637 | r_symndx = ELF32_R_SYM (rel->r_info); | |
638 | ||
639 | if (get_elf_r_symndx_section (abfd, r_symndx) == section) | |
640 | { | |
641 | bfd_vma sym_off = get_elf_r_symndx_offset (abfd, r_symndx); | |
43cd72b9 BW |
642 | BFD_ASSERT (sym_off == 0); |
643 | BFD_ASSERT (rel->r_addend == 0); | |
e0001a05 | 644 | blocks[block_count].address = |
3ba3bc8c | 645 | (section_addr + sym_off + rel->r_addend |
e0001a05 NC |
646 | + bfd_get_32 (abfd, table_data + rel->r_offset)); |
647 | blocks[block_count].size = | |
648 | bfd_get_32 (abfd, table_data + rel->r_offset + 4); | |
43cd72b9 BW |
649 | if (predef_flags) |
650 | blocks[block_count].flags = predef_flags; | |
651 | else | |
652 | blocks[block_count].flags = | |
653 | bfd_get_32 (abfd, table_data + rel->r_offset + 8); | |
e0001a05 NC |
654 | block_count++; |
655 | } | |
656 | } | |
657 | } | |
658 | else | |
659 | { | |
3ba3bc8c BW |
660 | /* The file has already been relocated and the addresses are |
661 | already in the table. */ | |
e0001a05 | 662 | bfd_vma off; |
43cd72b9 | 663 | bfd_size_type section_limit = bfd_get_section_limit (abfd, section); |
e0001a05 | 664 | |
43cd72b9 | 665 | for (off = 0; off < table_size; off += table_entry_size) |
e0001a05 NC |
666 | { |
667 | bfd_vma address = bfd_get_32 (abfd, table_data + off); | |
668 | ||
3ba3bc8c | 669 | if (address >= section_addr |
43cd72b9 | 670 | && address < section_addr + section_limit) |
e0001a05 NC |
671 | { |
672 | blocks[block_count].address = address; | |
673 | blocks[block_count].size = | |
674 | bfd_get_32 (abfd, table_data + off + 4); | |
43cd72b9 BW |
675 | if (predef_flags) |
676 | blocks[block_count].flags = predef_flags; | |
677 | else | |
678 | blocks[block_count].flags = | |
679 | bfd_get_32 (abfd, table_data + off + 8); | |
e0001a05 NC |
680 | block_count++; |
681 | } | |
682 | } | |
683 | } | |
684 | ||
685 | release_contents (table_section, table_data); | |
686 | release_internal_relocs (table_section, internal_relocs); | |
687 | ||
43cd72b9 | 688 | if (block_count > 0) |
e0001a05 NC |
689 | { |
690 | /* Now sort them into address order for easy reference. */ | |
691 | qsort (blocks, block_count, sizeof (property_table_entry), | |
692 | property_table_compare); | |
e4115460 BW |
693 | |
694 | /* Check that the table contents are valid. Problems may occur, | |
695 | for example, if an unrelocated object file is stripped. */ | |
696 | for (blk = 1; blk < block_count; blk++) | |
697 | { | |
698 | /* The only circumstance where two entries may legitimately | |
699 | have the same address is when one of them is a zero-size | |
700 | placeholder to mark a place where fill can be inserted. | |
701 | The zero-size entry should come first. */ | |
702 | if (blocks[blk - 1].address == blocks[blk].address && | |
703 | blocks[blk - 1].size != 0) | |
704 | { | |
705 | (*_bfd_error_handler) (_("%B(%A): invalid property table"), | |
706 | abfd, section); | |
707 | bfd_set_error (bfd_error_bad_value); | |
708 | free (blocks); | |
709 | return -1; | |
710 | } | |
711 | } | |
e0001a05 | 712 | } |
43cd72b9 | 713 | |
e0001a05 NC |
714 | *table_p = blocks; |
715 | return block_count; | |
716 | } | |
717 | ||
718 | ||
7fa3d080 BW |
719 | static property_table_entry * |
720 | elf_xtensa_find_property_entry (property_table_entry *property_table, | |
721 | int property_table_size, | |
722 | bfd_vma addr) | |
e0001a05 NC |
723 | { |
724 | property_table_entry entry; | |
43cd72b9 | 725 | property_table_entry *rv; |
e0001a05 | 726 | |
43cd72b9 BW |
727 | if (property_table_size == 0) |
728 | return NULL; | |
e0001a05 NC |
729 | |
730 | entry.address = addr; | |
731 | entry.size = 1; | |
43cd72b9 | 732 | entry.flags = 0; |
e0001a05 | 733 | |
43cd72b9 BW |
734 | rv = bsearch (&entry, property_table, property_table_size, |
735 | sizeof (property_table_entry), property_table_matches); | |
736 | return rv; | |
737 | } | |
738 | ||
739 | ||
740 | static bfd_boolean | |
7fa3d080 BW |
741 | elf_xtensa_in_literal_pool (property_table_entry *lit_table, |
742 | int lit_table_size, | |
743 | bfd_vma addr) | |
43cd72b9 BW |
744 | { |
745 | if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) | |
e0001a05 NC |
746 | return TRUE; |
747 | ||
748 | return FALSE; | |
749 | } | |
750 | ||
751 | \f | |
752 | /* Look through the relocs for a section during the first phase, and | |
753 | calculate needed space in the dynamic reloc sections. */ | |
754 | ||
755 | static bfd_boolean | |
7fa3d080 BW |
756 | elf_xtensa_check_relocs (bfd *abfd, |
757 | struct bfd_link_info *info, | |
758 | asection *sec, | |
759 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
760 | { |
761 | Elf_Internal_Shdr *symtab_hdr; | |
762 | struct elf_link_hash_entry **sym_hashes; | |
763 | const Elf_Internal_Rela *rel; | |
764 | const Elf_Internal_Rela *rel_end; | |
e0001a05 | 765 | |
1049f94e | 766 | if (info->relocatable) |
e0001a05 NC |
767 | return TRUE; |
768 | ||
769 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
770 | sym_hashes = elf_sym_hashes (abfd); | |
771 | ||
e0001a05 NC |
772 | rel_end = relocs + sec->reloc_count; |
773 | for (rel = relocs; rel < rel_end; rel++) | |
774 | { | |
775 | unsigned int r_type; | |
776 | unsigned long r_symndx; | |
777 | struct elf_link_hash_entry *h; | |
778 | ||
779 | r_symndx = ELF32_R_SYM (rel->r_info); | |
780 | r_type = ELF32_R_TYPE (rel->r_info); | |
781 | ||
782 | if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) | |
783 | { | |
d003868e AM |
784 | (*_bfd_error_handler) (_("%B: bad symbol index: %d"), |
785 | abfd, r_symndx); | |
e0001a05 NC |
786 | return FALSE; |
787 | } | |
788 | ||
789 | if (r_symndx < symtab_hdr->sh_info) | |
790 | h = NULL; | |
791 | else | |
792 | { | |
793 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
794 | while (h->root.type == bfd_link_hash_indirect | |
795 | || h->root.type == bfd_link_hash_warning) | |
796 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
797 | } | |
798 | ||
799 | switch (r_type) | |
800 | { | |
801 | case R_XTENSA_32: | |
802 | if (h == NULL) | |
803 | goto local_literal; | |
804 | ||
805 | if ((sec->flags & SEC_ALLOC) != 0) | |
806 | { | |
e0001a05 NC |
807 | if (h->got.refcount <= 0) |
808 | h->got.refcount = 1; | |
809 | else | |
810 | h->got.refcount += 1; | |
811 | } | |
812 | break; | |
813 | ||
814 | case R_XTENSA_PLT: | |
815 | /* If this relocation is against a local symbol, then it's | |
816 | exactly the same as a normal local GOT entry. */ | |
817 | if (h == NULL) | |
818 | goto local_literal; | |
819 | ||
820 | if ((sec->flags & SEC_ALLOC) != 0) | |
821 | { | |
e0001a05 NC |
822 | if (h->plt.refcount <= 0) |
823 | { | |
f5385ebf | 824 | h->needs_plt = 1; |
e0001a05 NC |
825 | h->plt.refcount = 1; |
826 | } | |
827 | else | |
828 | h->plt.refcount += 1; | |
829 | ||
830 | /* Keep track of the total PLT relocation count even if we | |
831 | don't yet know whether the dynamic sections will be | |
832 | created. */ | |
833 | plt_reloc_count += 1; | |
834 | ||
835 | if (elf_hash_table (info)->dynamic_sections_created) | |
836 | { | |
837 | if (!add_extra_plt_sections (elf_hash_table (info)->dynobj, | |
838 | plt_reloc_count)) | |
839 | return FALSE; | |
840 | } | |
841 | } | |
842 | break; | |
843 | ||
844 | local_literal: | |
845 | if ((sec->flags & SEC_ALLOC) != 0) | |
846 | { | |
847 | bfd_signed_vma *local_got_refcounts; | |
848 | ||
849 | /* This is a global offset table entry for a local symbol. */ | |
850 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
851 | if (local_got_refcounts == NULL) | |
852 | { | |
853 | bfd_size_type size; | |
854 | ||
855 | size = symtab_hdr->sh_info; | |
856 | size *= sizeof (bfd_signed_vma); | |
43cd72b9 BW |
857 | local_got_refcounts = |
858 | (bfd_signed_vma *) bfd_zalloc (abfd, size); | |
e0001a05 NC |
859 | if (local_got_refcounts == NULL) |
860 | return FALSE; | |
861 | elf_local_got_refcounts (abfd) = local_got_refcounts; | |
862 | } | |
863 | local_got_refcounts[r_symndx] += 1; | |
e0001a05 NC |
864 | } |
865 | break; | |
866 | ||
867 | case R_XTENSA_OP0: | |
868 | case R_XTENSA_OP1: | |
869 | case R_XTENSA_OP2: | |
43cd72b9 BW |
870 | case R_XTENSA_SLOT0_OP: |
871 | case R_XTENSA_SLOT1_OP: | |
872 | case R_XTENSA_SLOT2_OP: | |
873 | case R_XTENSA_SLOT3_OP: | |
874 | case R_XTENSA_SLOT4_OP: | |
875 | case R_XTENSA_SLOT5_OP: | |
876 | case R_XTENSA_SLOT6_OP: | |
877 | case R_XTENSA_SLOT7_OP: | |
878 | case R_XTENSA_SLOT8_OP: | |
879 | case R_XTENSA_SLOT9_OP: | |
880 | case R_XTENSA_SLOT10_OP: | |
881 | case R_XTENSA_SLOT11_OP: | |
882 | case R_XTENSA_SLOT12_OP: | |
883 | case R_XTENSA_SLOT13_OP: | |
884 | case R_XTENSA_SLOT14_OP: | |
885 | case R_XTENSA_SLOT0_ALT: | |
886 | case R_XTENSA_SLOT1_ALT: | |
887 | case R_XTENSA_SLOT2_ALT: | |
888 | case R_XTENSA_SLOT3_ALT: | |
889 | case R_XTENSA_SLOT4_ALT: | |
890 | case R_XTENSA_SLOT5_ALT: | |
891 | case R_XTENSA_SLOT6_ALT: | |
892 | case R_XTENSA_SLOT7_ALT: | |
893 | case R_XTENSA_SLOT8_ALT: | |
894 | case R_XTENSA_SLOT9_ALT: | |
895 | case R_XTENSA_SLOT10_ALT: | |
896 | case R_XTENSA_SLOT11_ALT: | |
897 | case R_XTENSA_SLOT12_ALT: | |
898 | case R_XTENSA_SLOT13_ALT: | |
899 | case R_XTENSA_SLOT14_ALT: | |
e0001a05 NC |
900 | case R_XTENSA_ASM_EXPAND: |
901 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 BW |
902 | case R_XTENSA_DIFF8: |
903 | case R_XTENSA_DIFF16: | |
904 | case R_XTENSA_DIFF32: | |
e0001a05 NC |
905 | /* Nothing to do for these. */ |
906 | break; | |
907 | ||
908 | case R_XTENSA_GNU_VTINHERIT: | |
909 | /* This relocation describes the C++ object vtable hierarchy. | |
910 | Reconstruct it for later use during GC. */ | |
c152c796 | 911 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
e0001a05 NC |
912 | return FALSE; |
913 | break; | |
914 | ||
915 | case R_XTENSA_GNU_VTENTRY: | |
916 | /* This relocation describes which C++ vtable entries are actually | |
917 | used. Record for later use during GC. */ | |
c152c796 | 918 | if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) |
e0001a05 NC |
919 | return FALSE; |
920 | break; | |
921 | ||
922 | default: | |
923 | break; | |
924 | } | |
925 | } | |
926 | ||
e0001a05 NC |
927 | return TRUE; |
928 | } | |
929 | ||
930 | ||
931 | static void | |
7fa3d080 BW |
932 | elf_xtensa_make_sym_local (struct bfd_link_info *info, |
933 | struct elf_link_hash_entry *h) | |
934 | { | |
935 | if (info->shared) | |
936 | { | |
937 | if (h->plt.refcount > 0) | |
938 | { | |
939 | /* Will use RELATIVE relocs instead of JMP_SLOT relocs. */ | |
940 | if (h->got.refcount < 0) | |
941 | h->got.refcount = 0; | |
942 | h->got.refcount += h->plt.refcount; | |
943 | h->plt.refcount = 0; | |
944 | } | |
945 | } | |
946 | else | |
947 | { | |
948 | /* Don't need any dynamic relocations at all. */ | |
949 | h->plt.refcount = 0; | |
950 | h->got.refcount = 0; | |
951 | } | |
952 | } | |
953 | ||
954 | ||
955 | static void | |
956 | elf_xtensa_hide_symbol (struct bfd_link_info *info, | |
957 | struct elf_link_hash_entry *h, | |
958 | bfd_boolean force_local) | |
e0001a05 NC |
959 | { |
960 | /* For a shared link, move the plt refcount to the got refcount to leave | |
961 | space for RELATIVE relocs. */ | |
962 | elf_xtensa_make_sym_local (info, h); | |
963 | ||
964 | _bfd_elf_link_hash_hide_symbol (info, h, force_local); | |
965 | } | |
966 | ||
967 | ||
e0001a05 NC |
968 | /* Return the section that should be marked against GC for a given |
969 | relocation. */ | |
970 | ||
971 | static asection * | |
7fa3d080 BW |
972 | elf_xtensa_gc_mark_hook (asection *sec, |
973 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
974 | Elf_Internal_Rela *rel, | |
975 | struct elf_link_hash_entry *h, | |
976 | Elf_Internal_Sym *sym) | |
e0001a05 | 977 | { |
7fa3d080 | 978 | if (h) |
e0001a05 NC |
979 | { |
980 | switch (ELF32_R_TYPE (rel->r_info)) | |
981 | { | |
982 | case R_XTENSA_GNU_VTINHERIT: | |
983 | case R_XTENSA_GNU_VTENTRY: | |
984 | break; | |
985 | ||
986 | default: | |
987 | switch (h->root.type) | |
988 | { | |
989 | case bfd_link_hash_defined: | |
990 | case bfd_link_hash_defweak: | |
991 | return h->root.u.def.section; | |
992 | ||
993 | case bfd_link_hash_common: | |
994 | return h->root.u.c.p->section; | |
995 | ||
996 | default: | |
997 | break; | |
998 | } | |
999 | } | |
1000 | } | |
1001 | else | |
1002 | return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | |
1003 | ||
1004 | return NULL; | |
1005 | } | |
1006 | ||
7fa3d080 | 1007 | |
e0001a05 NC |
1008 | /* Update the GOT & PLT entry reference counts |
1009 | for the section being removed. */ | |
1010 | ||
1011 | static bfd_boolean | |
7fa3d080 BW |
1012 | elf_xtensa_gc_sweep_hook (bfd *abfd, |
1013 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
1014 | asection *sec, | |
1015 | const Elf_Internal_Rela *relocs) | |
e0001a05 NC |
1016 | { |
1017 | Elf_Internal_Shdr *symtab_hdr; | |
1018 | struct elf_link_hash_entry **sym_hashes; | |
1019 | bfd_signed_vma *local_got_refcounts; | |
1020 | const Elf_Internal_Rela *rel, *relend; | |
1021 | ||
1022 | if ((sec->flags & SEC_ALLOC) == 0) | |
1023 | return TRUE; | |
1024 | ||
1025 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
1026 | sym_hashes = elf_sym_hashes (abfd); | |
1027 | local_got_refcounts = elf_local_got_refcounts (abfd); | |
1028 | ||
1029 | relend = relocs + sec->reloc_count; | |
1030 | for (rel = relocs; rel < relend; rel++) | |
1031 | { | |
1032 | unsigned long r_symndx; | |
1033 | unsigned int r_type; | |
1034 | struct elf_link_hash_entry *h = NULL; | |
1035 | ||
1036 | r_symndx = ELF32_R_SYM (rel->r_info); | |
1037 | if (r_symndx >= symtab_hdr->sh_info) | |
3eb128b2 AM |
1038 | { |
1039 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
1040 | while (h->root.type == bfd_link_hash_indirect | |
1041 | || h->root.type == bfd_link_hash_warning) | |
1042 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1043 | } | |
e0001a05 NC |
1044 | |
1045 | r_type = ELF32_R_TYPE (rel->r_info); | |
1046 | switch (r_type) | |
1047 | { | |
1048 | case R_XTENSA_32: | |
1049 | if (h == NULL) | |
1050 | goto local_literal; | |
1051 | if (h->got.refcount > 0) | |
1052 | h->got.refcount--; | |
1053 | break; | |
1054 | ||
1055 | case R_XTENSA_PLT: | |
1056 | if (h == NULL) | |
1057 | goto local_literal; | |
1058 | if (h->plt.refcount > 0) | |
1059 | h->plt.refcount--; | |
1060 | break; | |
1061 | ||
1062 | local_literal: | |
1063 | if (local_got_refcounts[r_symndx] > 0) | |
1064 | local_got_refcounts[r_symndx] -= 1; | |
1065 | break; | |
1066 | ||
1067 | default: | |
1068 | break; | |
1069 | } | |
1070 | } | |
1071 | ||
1072 | return TRUE; | |
1073 | } | |
1074 | ||
1075 | ||
1076 | /* Create all the dynamic sections. */ | |
1077 | ||
1078 | static bfd_boolean | |
7fa3d080 | 1079 | elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) |
e0001a05 | 1080 | { |
e901de89 | 1081 | flagword flags, noalloc_flags; |
e0001a05 NC |
1082 | asection *s; |
1083 | ||
1084 | /* First do all the standard stuff. */ | |
1085 | if (! _bfd_elf_create_dynamic_sections (dynobj, info)) | |
1086 | return FALSE; | |
1087 | ||
1088 | /* Create any extra PLT sections in case check_relocs has already | |
1089 | been called on all the non-dynamic input files. */ | |
1090 | if (!add_extra_plt_sections (dynobj, plt_reloc_count)) | |
1091 | return FALSE; | |
1092 | ||
e901de89 BW |
1093 | noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
1094 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1095 | flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; | |
e0001a05 NC |
1096 | |
1097 | /* Mark the ".got.plt" section READONLY. */ | |
1098 | s = bfd_get_section_by_name (dynobj, ".got.plt"); | |
1099 | if (s == NULL | |
1100 | || ! bfd_set_section_flags (dynobj, s, flags)) | |
1101 | return FALSE; | |
1102 | ||
1103 | /* Create ".rela.got". */ | |
3496cb2a | 1104 | s = bfd_make_section_with_flags (dynobj, ".rela.got", flags); |
e0001a05 | 1105 | if (s == NULL |
e0001a05 NC |
1106 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1107 | return FALSE; | |
1108 | ||
e901de89 | 1109 | /* Create ".got.loc" (literal tables for use by dynamic linker). */ |
3496cb2a | 1110 | s = bfd_make_section_with_flags (dynobj, ".got.loc", flags); |
e901de89 | 1111 | if (s == NULL |
e901de89 BW |
1112 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1113 | return FALSE; | |
1114 | ||
e0001a05 | 1115 | /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ |
3496cb2a L |
1116 | s = bfd_make_section_with_flags (dynobj, ".xt.lit.plt", |
1117 | noalloc_flags); | |
e0001a05 | 1118 | if (s == NULL |
e0001a05 NC |
1119 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1120 | return FALSE; | |
1121 | ||
1122 | return TRUE; | |
1123 | } | |
1124 | ||
1125 | ||
1126 | static bfd_boolean | |
7fa3d080 | 1127 | add_extra_plt_sections (bfd *dynobj, int count) |
e0001a05 NC |
1128 | { |
1129 | int chunk; | |
1130 | ||
1131 | /* Iterate over all chunks except 0 which uses the standard ".plt" and | |
1132 | ".got.plt" sections. */ | |
1133 | for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) | |
1134 | { | |
1135 | char *sname; | |
1136 | flagword flags; | |
1137 | asection *s; | |
1138 | ||
1139 | /* Stop when we find a section has already been created. */ | |
1140 | if (elf_xtensa_get_plt_section (dynobj, chunk)) | |
1141 | break; | |
1142 | ||
1143 | flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | |
1144 | | SEC_LINKER_CREATED | SEC_READONLY); | |
1145 | ||
1146 | sname = (char *) bfd_malloc (10); | |
1147 | sprintf (sname, ".plt.%u", chunk); | |
3496cb2a L |
1148 | s = bfd_make_section_with_flags (dynobj, sname, |
1149 | flags | SEC_CODE); | |
e0001a05 | 1150 | if (s == NULL |
e0001a05 NC |
1151 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1152 | return FALSE; | |
1153 | ||
1154 | sname = (char *) bfd_malloc (14); | |
1155 | sprintf (sname, ".got.plt.%u", chunk); | |
3496cb2a | 1156 | s = bfd_make_section_with_flags (dynobj, sname, flags); |
e0001a05 | 1157 | if (s == NULL |
e0001a05 NC |
1158 | || ! bfd_set_section_alignment (dynobj, s, 2)) |
1159 | return FALSE; | |
1160 | } | |
1161 | ||
1162 | return TRUE; | |
1163 | } | |
1164 | ||
1165 | ||
1166 | /* Adjust a symbol defined by a dynamic object and referenced by a | |
1167 | regular object. The current definition is in some section of the | |
1168 | dynamic object, but we're not including those sections. We have to | |
1169 | change the definition to something the rest of the link can | |
1170 | understand. */ | |
1171 | ||
1172 | static bfd_boolean | |
7fa3d080 BW |
1173 | elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, |
1174 | struct elf_link_hash_entry *h) | |
e0001a05 NC |
1175 | { |
1176 | /* If this is a weak symbol, and there is a real definition, the | |
1177 | processor independent code will have arranged for us to see the | |
1178 | real definition first, and we can just use the same value. */ | |
7fa3d080 | 1179 | if (h->u.weakdef) |
e0001a05 | 1180 | { |
f6e332e6 AM |
1181 | BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined |
1182 | || h->u.weakdef->root.type == bfd_link_hash_defweak); | |
1183 | h->root.u.def.section = h->u.weakdef->root.u.def.section; | |
1184 | h->root.u.def.value = h->u.weakdef->root.u.def.value; | |
e0001a05 NC |
1185 | return TRUE; |
1186 | } | |
1187 | ||
1188 | /* This is a reference to a symbol defined by a dynamic object. The | |
1189 | reference must go through the GOT, so there's no need for COPY relocs, | |
1190 | .dynbss, etc. */ | |
1191 | ||
1192 | return TRUE; | |
1193 | } | |
1194 | ||
1195 | ||
e0001a05 | 1196 | static bfd_boolean |
7fa3d080 | 1197 | elf_xtensa_fix_refcounts (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1198 | { |
1199 | struct bfd_link_info *info = (struct bfd_link_info *) arg; | |
1200 | ||
1201 | if (h->root.type == bfd_link_hash_warning) | |
1202 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1203 | ||
571b5725 | 1204 | if (! xtensa_elf_dynamic_symbol_p (h, info)) |
e0001a05 NC |
1205 | elf_xtensa_make_sym_local (info, h); |
1206 | ||
e0001a05 NC |
1207 | return TRUE; |
1208 | } | |
1209 | ||
1210 | ||
1211 | static bfd_boolean | |
7fa3d080 | 1212 | elf_xtensa_allocate_plt_size (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1213 | { |
1214 | asection *srelplt = (asection *) arg; | |
1215 | ||
1216 | if (h->root.type == bfd_link_hash_warning) | |
1217 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1218 | ||
1219 | if (h->plt.refcount > 0) | |
eea6121a | 1220 | srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1221 | |
1222 | return TRUE; | |
1223 | } | |
1224 | ||
1225 | ||
1226 | static bfd_boolean | |
7fa3d080 | 1227 | elf_xtensa_allocate_got_size (struct elf_link_hash_entry *h, void *arg) |
e0001a05 NC |
1228 | { |
1229 | asection *srelgot = (asection *) arg; | |
1230 | ||
1231 | if (h->root.type == bfd_link_hash_warning) | |
1232 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
1233 | ||
1234 | if (h->got.refcount > 0) | |
eea6121a | 1235 | srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); |
e0001a05 NC |
1236 | |
1237 | return TRUE; | |
1238 | } | |
1239 | ||
1240 | ||
1241 | static void | |
7fa3d080 BW |
1242 | elf_xtensa_allocate_local_got_size (struct bfd_link_info *info, |
1243 | asection *srelgot) | |
e0001a05 NC |
1244 | { |
1245 | bfd *i; | |
1246 | ||
1247 | for (i = info->input_bfds; i; i = i->link_next) | |
1248 | { | |
1249 | bfd_signed_vma *local_got_refcounts; | |
1250 | bfd_size_type j, cnt; | |
1251 | Elf_Internal_Shdr *symtab_hdr; | |
1252 | ||
1253 | local_got_refcounts = elf_local_got_refcounts (i); | |
1254 | if (!local_got_refcounts) | |
1255 | continue; | |
1256 | ||
1257 | symtab_hdr = &elf_tdata (i)->symtab_hdr; | |
1258 | cnt = symtab_hdr->sh_info; | |
1259 | ||
1260 | for (j = 0; j < cnt; ++j) | |
1261 | { | |
1262 | if (local_got_refcounts[j] > 0) | |
eea6121a AM |
1263 | srelgot->size += (local_got_refcounts[j] |
1264 | * sizeof (Elf32_External_Rela)); | |
e0001a05 NC |
1265 | } |
1266 | } | |
1267 | } | |
1268 | ||
1269 | ||
1270 | /* Set the sizes of the dynamic sections. */ | |
1271 | ||
1272 | static bfd_boolean | |
7fa3d080 BW |
1273 | elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, |
1274 | struct bfd_link_info *info) | |
e0001a05 | 1275 | { |
e901de89 BW |
1276 | bfd *dynobj, *abfd; |
1277 | asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; | |
e0001a05 NC |
1278 | bfd_boolean relplt, relgot; |
1279 | int plt_entries, plt_chunks, chunk; | |
1280 | ||
1281 | plt_entries = 0; | |
1282 | plt_chunks = 0; | |
1283 | srelgot = 0; | |
1284 | ||
1285 | dynobj = elf_hash_table (info)->dynobj; | |
1286 | if (dynobj == NULL) | |
1287 | abort (); | |
1288 | ||
1289 | if (elf_hash_table (info)->dynamic_sections_created) | |
1290 | { | |
1291 | /* Set the contents of the .interp section to the interpreter. */ | |
893c4fe2 | 1292 | if (info->executable) |
e0001a05 NC |
1293 | { |
1294 | s = bfd_get_section_by_name (dynobj, ".interp"); | |
1295 | if (s == NULL) | |
1296 | abort (); | |
eea6121a | 1297 | s->size = sizeof ELF_DYNAMIC_INTERPRETER; |
e0001a05 NC |
1298 | s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; |
1299 | } | |
1300 | ||
1301 | /* Allocate room for one word in ".got". */ | |
1302 | s = bfd_get_section_by_name (dynobj, ".got"); | |
1303 | if (s == NULL) | |
1304 | abort (); | |
eea6121a | 1305 | s->size = 4; |
e0001a05 NC |
1306 | |
1307 | /* Adjust refcounts for symbols that we now know are not "dynamic". */ | |
1308 | elf_link_hash_traverse (elf_hash_table (info), | |
1309 | elf_xtensa_fix_refcounts, | |
7fa3d080 | 1310 | (void *) info); |
e0001a05 NC |
1311 | |
1312 | /* Allocate space in ".rela.got" for literals that reference | |
1313 | global symbols. */ | |
1314 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
1315 | if (srelgot == NULL) | |
1316 | abort (); | |
1317 | elf_link_hash_traverse (elf_hash_table (info), | |
1318 | elf_xtensa_allocate_got_size, | |
7fa3d080 | 1319 | (void *) srelgot); |
e0001a05 NC |
1320 | |
1321 | /* If we are generating a shared object, we also need space in | |
1322 | ".rela.got" for R_XTENSA_RELATIVE relocs for literals that | |
1323 | reference local symbols. */ | |
1324 | if (info->shared) | |
1325 | elf_xtensa_allocate_local_got_size (info, srelgot); | |
1326 | ||
1327 | /* Allocate space in ".rela.plt" for literals that have PLT entries. */ | |
1328 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
1329 | if (srelplt == NULL) | |
1330 | abort (); | |
1331 | elf_link_hash_traverse (elf_hash_table (info), | |
1332 | elf_xtensa_allocate_plt_size, | |
7fa3d080 | 1333 | (void *) srelplt); |
e0001a05 NC |
1334 | |
1335 | /* Allocate space in ".plt" to match the size of ".rela.plt". For | |
1336 | each PLT entry, we need the PLT code plus a 4-byte literal. | |
1337 | For each chunk of ".plt", we also need two more 4-byte | |
1338 | literals, two corresponding entries in ".rela.got", and an | |
1339 | 8-byte entry in ".xt.lit.plt". */ | |
1340 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
1341 | if (spltlittbl == NULL) | |
1342 | abort (); | |
1343 | ||
eea6121a | 1344 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
1345 | plt_chunks = |
1346 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
1347 | ||
1348 | /* Iterate over all the PLT chunks, including any extra sections | |
1349 | created earlier because the initial count of PLT relocations | |
1350 | was an overestimate. */ | |
1351 | for (chunk = 0; | |
1352 | (splt = elf_xtensa_get_plt_section (dynobj, chunk)) != NULL; | |
1353 | chunk++) | |
1354 | { | |
1355 | int chunk_entries; | |
1356 | ||
1357 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1358 | if (sgotplt == NULL) | |
1359 | abort (); | |
1360 | ||
1361 | if (chunk < plt_chunks - 1) | |
1362 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
1363 | else if (chunk == plt_chunks - 1) | |
1364 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
1365 | else | |
1366 | chunk_entries = 0; | |
1367 | ||
1368 | if (chunk_entries != 0) | |
1369 | { | |
eea6121a AM |
1370 | sgotplt->size = 4 * (chunk_entries + 2); |
1371 | splt->size = PLT_ENTRY_SIZE * chunk_entries; | |
1372 | srelgot->size += 2 * sizeof (Elf32_External_Rela); | |
1373 | spltlittbl->size += 8; | |
e0001a05 NC |
1374 | } |
1375 | else | |
1376 | { | |
eea6121a AM |
1377 | sgotplt->size = 0; |
1378 | splt->size = 0; | |
e0001a05 NC |
1379 | } |
1380 | } | |
e901de89 BW |
1381 | |
1382 | /* Allocate space in ".got.loc" to match the total size of all the | |
1383 | literal tables. */ | |
1384 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
1385 | if (sgotloc == NULL) | |
1386 | abort (); | |
eea6121a | 1387 | sgotloc->size = spltlittbl->size; |
e901de89 BW |
1388 | for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next) |
1389 | { | |
1390 | if (abfd->flags & DYNAMIC) | |
1391 | continue; | |
1392 | for (s = abfd->sections; s != NULL; s = s->next) | |
1393 | { | |
b536dc1e BW |
1394 | if (! elf_discarded_section (s) |
1395 | && xtensa_is_littable_section (s) | |
1396 | && s != spltlittbl) | |
eea6121a | 1397 | sgotloc->size += s->size; |
e901de89 BW |
1398 | } |
1399 | } | |
e0001a05 NC |
1400 | } |
1401 | ||
1402 | /* Allocate memory for dynamic sections. */ | |
1403 | relplt = FALSE; | |
1404 | relgot = FALSE; | |
1405 | for (s = dynobj->sections; s != NULL; s = s->next) | |
1406 | { | |
1407 | const char *name; | |
e0001a05 NC |
1408 | |
1409 | if ((s->flags & SEC_LINKER_CREATED) == 0) | |
1410 | continue; | |
1411 | ||
1412 | /* It's OK to base decisions on the section name, because none | |
1413 | of the dynobj section names depend upon the input files. */ | |
1414 | name = bfd_get_section_name (dynobj, s); | |
1415 | ||
e0001a05 NC |
1416 | if (strncmp (name, ".rela", 5) == 0) |
1417 | { | |
c456f082 | 1418 | if (s->size != 0) |
e0001a05 | 1419 | { |
c456f082 AM |
1420 | if (strcmp (name, ".rela.plt") == 0) |
1421 | relplt = TRUE; | |
1422 | else if (strcmp (name, ".rela.got") == 0) | |
1423 | relgot = TRUE; | |
1424 | ||
1425 | /* We use the reloc_count field as a counter if we need | |
1426 | to copy relocs into the output file. */ | |
1427 | s->reloc_count = 0; | |
e0001a05 NC |
1428 | } |
1429 | } | |
c456f082 AM |
1430 | else if (strncmp (name, ".plt.", 5) != 0 |
1431 | && strncmp (name, ".got.plt.", 9) != 0 | |
1432 | && strcmp (name, ".got") != 0 | |
e0001a05 NC |
1433 | && strcmp (name, ".plt") != 0 |
1434 | && strcmp (name, ".got.plt") != 0 | |
e901de89 BW |
1435 | && strcmp (name, ".xt.lit.plt") != 0 |
1436 | && strcmp (name, ".got.loc") != 0) | |
e0001a05 NC |
1437 | { |
1438 | /* It's not one of our sections, so don't allocate space. */ | |
1439 | continue; | |
1440 | } | |
1441 | ||
c456f082 AM |
1442 | if (s->size == 0) |
1443 | { | |
1444 | /* If we don't need this section, strip it from the output | |
1445 | file. We must create the ".plt*" and ".got.plt*" | |
1446 | sections in create_dynamic_sections and/or check_relocs | |
1447 | based on a conservative estimate of the PLT relocation | |
1448 | count, because the sections must be created before the | |
1449 | linker maps input sections to output sections. The | |
1450 | linker does that before size_dynamic_sections, where we | |
1451 | compute the exact size of the PLT, so there may be more | |
1452 | of these sections than are actually needed. */ | |
1453 | s->flags |= SEC_EXCLUDE; | |
1454 | } | |
1455 | else if ((s->flags & SEC_HAS_CONTENTS) != 0) | |
e0001a05 NC |
1456 | { |
1457 | /* Allocate memory for the section contents. */ | |
eea6121a | 1458 | s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); |
c456f082 | 1459 | if (s->contents == NULL) |
e0001a05 NC |
1460 | return FALSE; |
1461 | } | |
1462 | } | |
1463 | ||
1464 | if (elf_hash_table (info)->dynamic_sections_created) | |
1465 | { | |
1466 | /* Add the special XTENSA_RTLD relocations now. The offsets won't be | |
1467 | known until finish_dynamic_sections, but we need to get the relocs | |
1468 | in place before they are sorted. */ | |
1469 | if (srelgot == NULL) | |
1470 | abort (); | |
1471 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
1472 | { | |
1473 | Elf_Internal_Rela irela; | |
1474 | bfd_byte *loc; | |
1475 | ||
1476 | irela.r_offset = 0; | |
1477 | irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); | |
1478 | irela.r_addend = 0; | |
1479 | ||
1480 | loc = (srelgot->contents | |
1481 | + srelgot->reloc_count * sizeof (Elf32_External_Rela)); | |
1482 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
1483 | bfd_elf32_swap_reloca_out (output_bfd, &irela, | |
1484 | loc + sizeof (Elf32_External_Rela)); | |
1485 | srelgot->reloc_count += 2; | |
1486 | } | |
1487 | ||
1488 | /* Add some entries to the .dynamic section. We fill in the | |
1489 | values later, in elf_xtensa_finish_dynamic_sections, but we | |
1490 | must add the entries now so that we get the correct size for | |
1491 | the .dynamic section. The DT_DEBUG entry is filled in by the | |
1492 | dynamic linker and used by the debugger. */ | |
1493 | #define add_dynamic_entry(TAG, VAL) \ | |
5a580b3a | 1494 | _bfd_elf_add_dynamic_entry (info, TAG, VAL) |
e0001a05 NC |
1495 | |
1496 | if (! info->shared) | |
1497 | { | |
1498 | if (!add_dynamic_entry (DT_DEBUG, 0)) | |
1499 | return FALSE; | |
1500 | } | |
1501 | ||
1502 | if (relplt) | |
1503 | { | |
1504 | if (!add_dynamic_entry (DT_PLTGOT, 0) | |
1505 | || !add_dynamic_entry (DT_PLTRELSZ, 0) | |
1506 | || !add_dynamic_entry (DT_PLTREL, DT_RELA) | |
1507 | || !add_dynamic_entry (DT_JMPREL, 0)) | |
1508 | return FALSE; | |
1509 | } | |
1510 | ||
1511 | if (relgot) | |
1512 | { | |
1513 | if (!add_dynamic_entry (DT_RELA, 0) | |
1514 | || !add_dynamic_entry (DT_RELASZ, 0) | |
1515 | || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) | |
1516 | return FALSE; | |
1517 | } | |
1518 | ||
e0001a05 NC |
1519 | if (!add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) |
1520 | || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) | |
1521 | return FALSE; | |
1522 | } | |
1523 | #undef add_dynamic_entry | |
1524 | ||
1525 | return TRUE; | |
1526 | } | |
1527 | ||
1528 | \f | |
1529 | /* Remove any PT_LOAD segments with no allocated sections. Prior to | |
1530 | binutils 2.13, this function used to remove the non-SEC_ALLOC | |
1531 | sections from PT_LOAD segments, but that task has now been moved | |
1532 | into elf.c. We still need this function to remove any empty | |
1533 | segments that result, but there's nothing Xtensa-specific about | |
1534 | this and it probably ought to be moved into elf.c as well. */ | |
1535 | ||
1536 | static bfd_boolean | |
7fa3d080 BW |
1537 | elf_xtensa_modify_segment_map (bfd *abfd, |
1538 | struct bfd_link_info *info ATTRIBUTE_UNUSED) | |
e0001a05 NC |
1539 | { |
1540 | struct elf_segment_map **m_p; | |
1541 | ||
1542 | m_p = &elf_tdata (abfd)->segment_map; | |
7fa3d080 | 1543 | while (*m_p) |
e0001a05 NC |
1544 | { |
1545 | if ((*m_p)->p_type == PT_LOAD && (*m_p)->count == 0) | |
1546 | *m_p = (*m_p)->next; | |
1547 | else | |
1548 | m_p = &(*m_p)->next; | |
1549 | } | |
1550 | return TRUE; | |
1551 | } | |
1552 | ||
1553 | \f | |
1554 | /* Perform the specified relocation. The instruction at (contents + address) | |
1555 | is modified to set one operand to represent the value in "relocation". The | |
1556 | operand position is determined by the relocation type recorded in the | |
1557 | howto. */ | |
1558 | ||
1559 | #define CALL_SEGMENT_BITS (30) | |
7fa3d080 | 1560 | #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) |
e0001a05 NC |
1561 | |
1562 | static bfd_reloc_status_type | |
7fa3d080 BW |
1563 | elf_xtensa_do_reloc (reloc_howto_type *howto, |
1564 | bfd *abfd, | |
1565 | asection *input_section, | |
1566 | bfd_vma relocation, | |
1567 | bfd_byte *contents, | |
1568 | bfd_vma address, | |
1569 | bfd_boolean is_weak_undef, | |
1570 | char **error_message) | |
e0001a05 | 1571 | { |
43cd72b9 | 1572 | xtensa_format fmt; |
e0001a05 | 1573 | xtensa_opcode opcode; |
e0001a05 | 1574 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
1575 | static xtensa_insnbuf ibuff = NULL; |
1576 | static xtensa_insnbuf sbuff = NULL; | |
1577 | bfd_vma self_address = 0; | |
1578 | bfd_size_type input_size; | |
1579 | int opnd, slot; | |
e0001a05 NC |
1580 | uint32 newval; |
1581 | ||
43cd72b9 BW |
1582 | if (!ibuff) |
1583 | { | |
1584 | ibuff = xtensa_insnbuf_alloc (isa); | |
1585 | sbuff = xtensa_insnbuf_alloc (isa); | |
1586 | } | |
1587 | ||
1588 | input_size = bfd_get_section_limit (abfd, input_section); | |
1589 | ||
e0001a05 NC |
1590 | switch (howto->type) |
1591 | { | |
1592 | case R_XTENSA_NONE: | |
43cd72b9 BW |
1593 | case R_XTENSA_DIFF8: |
1594 | case R_XTENSA_DIFF16: | |
1595 | case R_XTENSA_DIFF32: | |
e0001a05 NC |
1596 | return bfd_reloc_ok; |
1597 | ||
1598 | case R_XTENSA_ASM_EXPAND: | |
1599 | if (!is_weak_undef) | |
1600 | { | |
1601 | /* Check for windowed CALL across a 1GB boundary. */ | |
1602 | xtensa_opcode opcode = | |
1603 | get_expanded_call_opcode (contents + address, | |
43cd72b9 | 1604 | input_size - address, 0); |
e0001a05 NC |
1605 | if (is_windowed_call_opcode (opcode)) |
1606 | { | |
1607 | self_address = (input_section->output_section->vma | |
1608 | + input_section->output_offset | |
1609 | + address); | |
43cd72b9 BW |
1610 | if ((self_address >> CALL_SEGMENT_BITS) |
1611 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 NC |
1612 | { |
1613 | *error_message = "windowed longcall crosses 1GB boundary; " | |
1614 | "return may fail"; | |
1615 | return bfd_reloc_dangerous; | |
1616 | } | |
1617 | } | |
1618 | } | |
1619 | return bfd_reloc_ok; | |
1620 | ||
1621 | case R_XTENSA_ASM_SIMPLIFY: | |
43cd72b9 | 1622 | { |
e0001a05 | 1623 | /* Convert the L32R/CALLX to CALL. */ |
43cd72b9 BW |
1624 | bfd_reloc_status_type retval = |
1625 | elf_xtensa_do_asm_simplify (contents, address, input_size, | |
1626 | error_message); | |
e0001a05 | 1627 | if (retval != bfd_reloc_ok) |
43cd72b9 | 1628 | return bfd_reloc_dangerous; |
e0001a05 NC |
1629 | |
1630 | /* The CALL needs to be relocated. Continue below for that part. */ | |
1631 | address += 3; | |
43cd72b9 | 1632 | howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; |
e0001a05 NC |
1633 | } |
1634 | break; | |
1635 | ||
1636 | case R_XTENSA_32: | |
1637 | case R_XTENSA_PLT: | |
1638 | { | |
1639 | bfd_vma x; | |
1640 | x = bfd_get_32 (abfd, contents + address); | |
1641 | x = x + relocation; | |
1642 | bfd_put_32 (abfd, x, contents + address); | |
1643 | } | |
1644 | return bfd_reloc_ok; | |
1645 | } | |
1646 | ||
43cd72b9 BW |
1647 | /* Only instruction slot-specific relocations handled below.... */ |
1648 | slot = get_relocation_slot (howto->type); | |
1649 | if (slot == XTENSA_UNDEFINED) | |
e0001a05 | 1650 | { |
43cd72b9 | 1651 | *error_message = "unexpected relocation"; |
e0001a05 NC |
1652 | return bfd_reloc_dangerous; |
1653 | } | |
1654 | ||
43cd72b9 BW |
1655 | /* Read the instruction into a buffer and decode the opcode. */ |
1656 | xtensa_insnbuf_from_chars (isa, ibuff, contents + address, | |
1657 | input_size - address); | |
1658 | fmt = xtensa_format_decode (isa, ibuff); | |
1659 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 1660 | { |
43cd72b9 | 1661 | *error_message = "cannot decode instruction format"; |
e0001a05 NC |
1662 | return bfd_reloc_dangerous; |
1663 | } | |
1664 | ||
43cd72b9 | 1665 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); |
e0001a05 | 1666 | |
43cd72b9 BW |
1667 | opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); |
1668 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 1669 | { |
43cd72b9 | 1670 | *error_message = "cannot decode instruction opcode"; |
e0001a05 NC |
1671 | return bfd_reloc_dangerous; |
1672 | } | |
1673 | ||
43cd72b9 BW |
1674 | /* Check for opcode-specific "alternate" relocations. */ |
1675 | if (is_alt_relocation (howto->type)) | |
1676 | { | |
1677 | if (opcode == get_l32r_opcode ()) | |
1678 | { | |
1679 | /* Handle the special-case of non-PC-relative L32R instructions. */ | |
1680 | bfd *output_bfd = input_section->output_section->owner; | |
1681 | asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); | |
1682 | if (!lit4_sec) | |
1683 | { | |
1684 | *error_message = "relocation references missing .lit4 section"; | |
1685 | return bfd_reloc_dangerous; | |
1686 | } | |
1687 | self_address = ((lit4_sec->vma & ~0xfff) | |
1688 | + 0x40000 - 3); /* -3 to compensate for do_reloc */ | |
1689 | newval = relocation; | |
1690 | opnd = 1; | |
1691 | } | |
1692 | else if (opcode == get_const16_opcode ()) | |
1693 | { | |
1694 | /* ALT used for high 16 bits. */ | |
1695 | newval = relocation >> 16; | |
1696 | opnd = 1; | |
1697 | } | |
1698 | else | |
1699 | { | |
1700 | /* No other "alternate" relocations currently defined. */ | |
1701 | *error_message = "unexpected relocation"; | |
1702 | return bfd_reloc_dangerous; | |
1703 | } | |
1704 | } | |
1705 | else /* Not an "alternate" relocation.... */ | |
1706 | { | |
1707 | if (opcode == get_const16_opcode ()) | |
1708 | { | |
1709 | newval = relocation & 0xffff; | |
1710 | opnd = 1; | |
1711 | } | |
1712 | else | |
1713 | { | |
1714 | /* ...normal PC-relative relocation.... */ | |
1715 | ||
1716 | /* Determine which operand is being relocated. */ | |
1717 | opnd = get_relocation_opnd (opcode, howto->type); | |
1718 | if (opnd == XTENSA_UNDEFINED) | |
1719 | { | |
1720 | *error_message = "unexpected relocation"; | |
1721 | return bfd_reloc_dangerous; | |
1722 | } | |
1723 | ||
1724 | if (!howto->pc_relative) | |
1725 | { | |
1726 | *error_message = "expected PC-relative relocation"; | |
1727 | return bfd_reloc_dangerous; | |
1728 | } | |
e0001a05 | 1729 | |
43cd72b9 BW |
1730 | /* Calculate the PC address for this instruction. */ |
1731 | self_address = (input_section->output_section->vma | |
1732 | + input_section->output_offset | |
1733 | + address); | |
e0001a05 | 1734 | |
43cd72b9 BW |
1735 | newval = relocation; |
1736 | } | |
1737 | } | |
e0001a05 | 1738 | |
43cd72b9 BW |
1739 | /* Apply the relocation. */ |
1740 | if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) | |
1741 | || xtensa_operand_encode (isa, opcode, opnd, &newval) | |
1742 | || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, | |
1743 | sbuff, newval)) | |
e0001a05 | 1744 | { |
2db662be BW |
1745 | const char *opname = xtensa_opcode_name (isa, opcode); |
1746 | const char *msg; | |
1747 | ||
1748 | msg = "cannot encode"; | |
1749 | if (is_direct_call_opcode (opcode)) | |
1750 | { | |
1751 | if ((relocation & 0x3) != 0) | |
1752 | msg = "misaligned call target"; | |
1753 | else | |
1754 | msg = "call target out of range"; | |
1755 | } | |
1756 | else if (opcode == get_l32r_opcode ()) | |
1757 | { | |
1758 | if ((relocation & 0x3) != 0) | |
1759 | msg = "misaligned literal target"; | |
1760 | else if (is_alt_relocation (howto->type)) | |
1761 | msg = "literal target out of range (too many literals)"; | |
1762 | else if (self_address > relocation) | |
1763 | msg = "literal target out of range (try using text-section-literals)"; | |
1764 | else | |
1765 | msg = "literal placed after use"; | |
1766 | } | |
1767 | ||
1768 | *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); | |
e0001a05 NC |
1769 | return bfd_reloc_dangerous; |
1770 | } | |
1771 | ||
43cd72b9 | 1772 | /* Check for calls across 1GB boundaries. */ |
e0001a05 NC |
1773 | if (is_direct_call_opcode (opcode) |
1774 | && is_windowed_call_opcode (opcode)) | |
1775 | { | |
43cd72b9 BW |
1776 | if ((self_address >> CALL_SEGMENT_BITS) |
1777 | != (relocation >> CALL_SEGMENT_BITS)) | |
e0001a05 | 1778 | { |
43cd72b9 BW |
1779 | *error_message = |
1780 | "windowed call crosses 1GB boundary; return may fail"; | |
e0001a05 NC |
1781 | return bfd_reloc_dangerous; |
1782 | } | |
1783 | } | |
1784 | ||
43cd72b9 BW |
1785 | /* Write the modified instruction back out of the buffer. */ |
1786 | xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); | |
1787 | xtensa_insnbuf_to_chars (isa, ibuff, contents + address, | |
1788 | input_size - address); | |
e0001a05 NC |
1789 | return bfd_reloc_ok; |
1790 | } | |
1791 | ||
1792 | ||
2db662be | 1793 | static char * |
7fa3d080 | 1794 | vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) |
e0001a05 NC |
1795 | { |
1796 | /* To reduce the size of the memory leak, | |
1797 | we only use a single message buffer. */ | |
1798 | static bfd_size_type alloc_size = 0; | |
1799 | static char *message = NULL; | |
1800 | bfd_size_type orig_len, len = 0; | |
1801 | bfd_boolean is_append; | |
1802 | ||
1803 | VA_OPEN (ap, arglen); | |
1804 | VA_FIXEDARG (ap, const char *, origmsg); | |
1805 | ||
1806 | is_append = (origmsg == message); | |
1807 | ||
1808 | orig_len = strlen (origmsg); | |
1809 | len = orig_len + strlen (fmt) + arglen + 20; | |
1810 | if (len > alloc_size) | |
1811 | { | |
1812 | message = (char *) bfd_realloc (message, len); | |
1813 | alloc_size = len; | |
1814 | } | |
1815 | if (!is_append) | |
1816 | memcpy (message, origmsg, orig_len); | |
1817 | vsprintf (message + orig_len, fmt, ap); | |
1818 | VA_CLOSE (ap); | |
1819 | return message; | |
1820 | } | |
1821 | ||
1822 | ||
e0001a05 NC |
1823 | /* This function is registered as the "special_function" in the |
1824 | Xtensa howto for handling simplify operations. | |
1825 | bfd_perform_relocation / bfd_install_relocation use it to | |
1826 | perform (install) the specified relocation. Since this replaces the code | |
1827 | in bfd_perform_relocation, it is basically an Xtensa-specific, | |
1828 | stripped-down version of bfd_perform_relocation. */ | |
1829 | ||
1830 | static bfd_reloc_status_type | |
7fa3d080 BW |
1831 | bfd_elf_xtensa_reloc (bfd *abfd, |
1832 | arelent *reloc_entry, | |
1833 | asymbol *symbol, | |
1834 | void *data, | |
1835 | asection *input_section, | |
1836 | bfd *output_bfd, | |
1837 | char **error_message) | |
e0001a05 NC |
1838 | { |
1839 | bfd_vma relocation; | |
1840 | bfd_reloc_status_type flag; | |
1841 | bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); | |
1842 | bfd_vma output_base = 0; | |
1843 | reloc_howto_type *howto = reloc_entry->howto; | |
1844 | asection *reloc_target_output_section; | |
1845 | bfd_boolean is_weak_undef; | |
1846 | ||
dd1a320b BW |
1847 | if (!xtensa_default_isa) |
1848 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
1849 | ||
1049f94e | 1850 | /* ELF relocs are against symbols. If we are producing relocatable |
e0001a05 NC |
1851 | output, and the reloc is against an external symbol, the resulting |
1852 | reloc will also be against the same symbol. In such a case, we | |
1853 | don't want to change anything about the way the reloc is handled, | |
1854 | since it will all be done at final link time. This test is similar | |
1855 | to what bfd_elf_generic_reloc does except that it lets relocs with | |
1856 | howto->partial_inplace go through even if the addend is non-zero. | |
1857 | (The real problem is that partial_inplace is set for XTENSA_32 | |
1858 | relocs to begin with, but that's a long story and there's little we | |
1859 | can do about it now....) */ | |
1860 | ||
7fa3d080 | 1861 | if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) |
e0001a05 NC |
1862 | { |
1863 | reloc_entry->address += input_section->output_offset; | |
1864 | return bfd_reloc_ok; | |
1865 | } | |
1866 | ||
1867 | /* Is the address of the relocation really within the section? */ | |
07515404 | 1868 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
e0001a05 NC |
1869 | return bfd_reloc_outofrange; |
1870 | ||
4cc11e76 | 1871 | /* Work out which section the relocation is targeted at and the |
e0001a05 NC |
1872 | initial relocation command value. */ |
1873 | ||
1874 | /* Get symbol value. (Common symbols are special.) */ | |
1875 | if (bfd_is_com_section (symbol->section)) | |
1876 | relocation = 0; | |
1877 | else | |
1878 | relocation = symbol->value; | |
1879 | ||
1880 | reloc_target_output_section = symbol->section->output_section; | |
1881 | ||
1882 | /* Convert input-section-relative symbol value to absolute. */ | |
1883 | if ((output_bfd && !howto->partial_inplace) | |
1884 | || reloc_target_output_section == NULL) | |
1885 | output_base = 0; | |
1886 | else | |
1887 | output_base = reloc_target_output_section->vma; | |
1888 | ||
1889 | relocation += output_base + symbol->section->output_offset; | |
1890 | ||
1891 | /* Add in supplied addend. */ | |
1892 | relocation += reloc_entry->addend; | |
1893 | ||
1894 | /* Here the variable relocation holds the final address of the | |
1895 | symbol we are relocating against, plus any addend. */ | |
1896 | if (output_bfd) | |
1897 | { | |
1898 | if (!howto->partial_inplace) | |
1899 | { | |
1900 | /* This is a partial relocation, and we want to apply the relocation | |
1901 | to the reloc entry rather than the raw data. Everything except | |
1902 | relocations against section symbols has already been handled | |
1903 | above. */ | |
43cd72b9 | 1904 | |
e0001a05 NC |
1905 | BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); |
1906 | reloc_entry->addend = relocation; | |
1907 | reloc_entry->address += input_section->output_offset; | |
1908 | return bfd_reloc_ok; | |
1909 | } | |
1910 | else | |
1911 | { | |
1912 | reloc_entry->address += input_section->output_offset; | |
1913 | reloc_entry->addend = 0; | |
1914 | } | |
1915 | } | |
1916 | ||
1917 | is_weak_undef = (bfd_is_und_section (symbol->section) | |
1918 | && (symbol->flags & BSF_WEAK) != 0); | |
1919 | flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, | |
1920 | (bfd_byte *) data, (bfd_vma) octets, | |
1921 | is_weak_undef, error_message); | |
1922 | ||
1923 | if (flag == bfd_reloc_dangerous) | |
1924 | { | |
1925 | /* Add the symbol name to the error message. */ | |
1926 | if (! *error_message) | |
1927 | *error_message = ""; | |
1928 | *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", | |
1929 | strlen (symbol->name) + 17, | |
70961b9d AM |
1930 | symbol->name, |
1931 | (unsigned long) reloc_entry->addend); | |
e0001a05 NC |
1932 | } |
1933 | ||
1934 | return flag; | |
1935 | } | |
1936 | ||
1937 | ||
1938 | /* Set up an entry in the procedure linkage table. */ | |
1939 | ||
1940 | static bfd_vma | |
7fa3d080 BW |
1941 | elf_xtensa_create_plt_entry (bfd *dynobj, |
1942 | bfd *output_bfd, | |
1943 | unsigned reloc_index) | |
e0001a05 NC |
1944 | { |
1945 | asection *splt, *sgotplt; | |
1946 | bfd_vma plt_base, got_base; | |
1947 | bfd_vma code_offset, lit_offset; | |
1948 | int chunk; | |
1949 | ||
1950 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
1951 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
1952 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
1953 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
1954 | ||
1955 | plt_base = splt->output_section->vma + splt->output_offset; | |
1956 | got_base = sgotplt->output_section->vma + sgotplt->output_offset; | |
1957 | ||
1958 | lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; | |
1959 | code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; | |
1960 | ||
1961 | /* Fill in the literal entry. This is the offset of the dynamic | |
1962 | relocation entry. */ | |
1963 | bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), | |
1964 | sgotplt->contents + lit_offset); | |
1965 | ||
1966 | /* Fill in the entry in the procedure linkage table. */ | |
1967 | memcpy (splt->contents + code_offset, | |
1968 | (bfd_big_endian (output_bfd) | |
1969 | ? elf_xtensa_be_plt_entry | |
1970 | : elf_xtensa_le_plt_entry), | |
1971 | PLT_ENTRY_SIZE); | |
1972 | bfd_put_16 (output_bfd, l32r_offset (got_base + 0, | |
1973 | plt_base + code_offset + 3), | |
1974 | splt->contents + code_offset + 4); | |
1975 | bfd_put_16 (output_bfd, l32r_offset (got_base + 4, | |
1976 | plt_base + code_offset + 6), | |
1977 | splt->contents + code_offset + 7); | |
1978 | bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, | |
1979 | plt_base + code_offset + 9), | |
1980 | splt->contents + code_offset + 10); | |
1981 | ||
1982 | return plt_base + code_offset; | |
1983 | } | |
1984 | ||
1985 | ||
e0001a05 | 1986 | /* Relocate an Xtensa ELF section. This is invoked by the linker for |
1049f94e | 1987 | both relocatable and final links. */ |
e0001a05 NC |
1988 | |
1989 | static bfd_boolean | |
7fa3d080 BW |
1990 | elf_xtensa_relocate_section (bfd *output_bfd, |
1991 | struct bfd_link_info *info, | |
1992 | bfd *input_bfd, | |
1993 | asection *input_section, | |
1994 | bfd_byte *contents, | |
1995 | Elf_Internal_Rela *relocs, | |
1996 | Elf_Internal_Sym *local_syms, | |
1997 | asection **local_sections) | |
e0001a05 NC |
1998 | { |
1999 | Elf_Internal_Shdr *symtab_hdr; | |
2000 | Elf_Internal_Rela *rel; | |
2001 | Elf_Internal_Rela *relend; | |
2002 | struct elf_link_hash_entry **sym_hashes; | |
2003 | asection *srelgot, *srelplt; | |
2004 | bfd *dynobj; | |
88d65ad6 BW |
2005 | property_table_entry *lit_table = 0; |
2006 | int ltblsize = 0; | |
e0001a05 | 2007 | char *error_message = NULL; |
43cd72b9 | 2008 | bfd_size_type input_size; |
e0001a05 | 2009 | |
43cd72b9 BW |
2010 | if (!xtensa_default_isa) |
2011 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 NC |
2012 | |
2013 | dynobj = elf_hash_table (info)->dynobj; | |
2014 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
2015 | sym_hashes = elf_sym_hashes (input_bfd); | |
2016 | ||
2017 | srelgot = NULL; | |
2018 | srelplt = NULL; | |
7fa3d080 | 2019 | if (dynobj) |
e0001a05 NC |
2020 | { |
2021 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
2022 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
2023 | } | |
2024 | ||
88d65ad6 BW |
2025 | if (elf_hash_table (info)->dynamic_sections_created) |
2026 | { | |
2027 | ltblsize = xtensa_read_table_entries (input_bfd, input_section, | |
43cd72b9 BW |
2028 | &lit_table, XTENSA_LIT_SEC_NAME, |
2029 | TRUE); | |
88d65ad6 BW |
2030 | if (ltblsize < 0) |
2031 | return FALSE; | |
2032 | } | |
2033 | ||
43cd72b9 BW |
2034 | input_size = bfd_get_section_limit (input_bfd, input_section); |
2035 | ||
e0001a05 NC |
2036 | rel = relocs; |
2037 | relend = relocs + input_section->reloc_count; | |
2038 | for (; rel < relend; rel++) | |
2039 | { | |
2040 | int r_type; | |
2041 | reloc_howto_type *howto; | |
2042 | unsigned long r_symndx; | |
2043 | struct elf_link_hash_entry *h; | |
2044 | Elf_Internal_Sym *sym; | |
2045 | asection *sec; | |
2046 | bfd_vma relocation; | |
2047 | bfd_reloc_status_type r; | |
2048 | bfd_boolean is_weak_undef; | |
2049 | bfd_boolean unresolved_reloc; | |
9b8c98a4 | 2050 | bfd_boolean warned; |
e0001a05 NC |
2051 | |
2052 | r_type = ELF32_R_TYPE (rel->r_info); | |
2053 | if (r_type == (int) R_XTENSA_GNU_VTINHERIT | |
2054 | || r_type == (int) R_XTENSA_GNU_VTENTRY) | |
2055 | continue; | |
2056 | ||
2057 | if (r_type < 0 || r_type >= (int) R_XTENSA_max) | |
2058 | { | |
2059 | bfd_set_error (bfd_error_bad_value); | |
2060 | return FALSE; | |
2061 | } | |
2062 | howto = &elf_howto_table[r_type]; | |
2063 | ||
2064 | r_symndx = ELF32_R_SYM (rel->r_info); | |
2065 | ||
1049f94e | 2066 | if (info->relocatable) |
e0001a05 | 2067 | { |
43cd72b9 | 2068 | /* This is a relocatable link. |
e0001a05 NC |
2069 | 1) If the reloc is against a section symbol, adjust |
2070 | according to the output section. | |
2071 | 2) If there is a new target for this relocation, | |
2072 | the new target will be in the same output section. | |
2073 | We adjust the relocation by the output section | |
2074 | difference. */ | |
2075 | ||
2076 | if (relaxing_section) | |
2077 | { | |
2078 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2079 | if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, |
2080 | contents)) | |
2081 | return FALSE; | |
e0001a05 NC |
2082 | r_type = ELF32_R_TYPE (rel->r_info); |
2083 | } | |
2084 | ||
43cd72b9 | 2085 | if (r_type == R_XTENSA_ASM_SIMPLIFY) |
e0001a05 | 2086 | { |
43cd72b9 | 2087 | char *error_message = NULL; |
e0001a05 NC |
2088 | /* Convert ASM_SIMPLIFY into the simpler relocation |
2089 | so that they never escape a relaxing link. */ | |
43cd72b9 BW |
2090 | r = contract_asm_expansion (contents, input_size, rel, |
2091 | &error_message); | |
2092 | if (r != bfd_reloc_ok) | |
2093 | { | |
2094 | if (!((*info->callbacks->reloc_dangerous) | |
2095 | (info, error_message, input_bfd, input_section, | |
2096 | rel->r_offset))) | |
2097 | return FALSE; | |
2098 | } | |
e0001a05 NC |
2099 | r_type = ELF32_R_TYPE (rel->r_info); |
2100 | } | |
2101 | ||
1049f94e | 2102 | /* This is a relocatable link, so we don't have to change |
e0001a05 NC |
2103 | anything unless the reloc is against a section symbol, |
2104 | in which case we have to adjust according to where the | |
2105 | section symbol winds up in the output section. */ | |
2106 | if (r_symndx < symtab_hdr->sh_info) | |
2107 | { | |
2108 | sym = local_syms + r_symndx; | |
2109 | if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) | |
2110 | { | |
2111 | sec = local_sections[r_symndx]; | |
2112 | rel->r_addend += sec->output_offset + sym->st_value; | |
2113 | } | |
2114 | } | |
2115 | ||
2116 | /* If there is an addend with a partial_inplace howto, | |
2117 | then move the addend to the contents. This is a hack | |
1049f94e | 2118 | to work around problems with DWARF in relocatable links |
e0001a05 NC |
2119 | with some previous version of BFD. Now we can't easily get |
2120 | rid of the hack without breaking backward compatibility.... */ | |
2121 | if (rel->r_addend) | |
2122 | { | |
2123 | howto = &elf_howto_table[r_type]; | |
2124 | if (howto->partial_inplace) | |
2125 | { | |
2126 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2127 | rel->r_addend, contents, | |
2128 | rel->r_offset, FALSE, | |
2129 | &error_message); | |
2130 | if (r != bfd_reloc_ok) | |
2131 | { | |
2132 | if (!((*info->callbacks->reloc_dangerous) | |
2133 | (info, error_message, input_bfd, input_section, | |
2134 | rel->r_offset))) | |
2135 | return FALSE; | |
2136 | } | |
2137 | rel->r_addend = 0; | |
2138 | } | |
2139 | } | |
2140 | ||
1049f94e | 2141 | /* Done with work for relocatable link; continue with next reloc. */ |
e0001a05 NC |
2142 | continue; |
2143 | } | |
2144 | ||
2145 | /* This is a final link. */ | |
2146 | ||
2147 | h = NULL; | |
2148 | sym = NULL; | |
2149 | sec = NULL; | |
2150 | is_weak_undef = FALSE; | |
2151 | unresolved_reloc = FALSE; | |
9b8c98a4 | 2152 | warned = FALSE; |
e0001a05 NC |
2153 | |
2154 | if (howto->partial_inplace) | |
2155 | { | |
2156 | /* Because R_XTENSA_32 was made partial_inplace to fix some | |
2157 | problems with DWARF info in partial links, there may be | |
2158 | an addend stored in the contents. Take it out of there | |
2159 | and move it back into the addend field of the reloc. */ | |
2160 | rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); | |
2161 | bfd_put_32 (input_bfd, 0, contents + rel->r_offset); | |
2162 | } | |
2163 | ||
2164 | if (r_symndx < symtab_hdr->sh_info) | |
2165 | { | |
2166 | sym = local_syms + r_symndx; | |
2167 | sec = local_sections[r_symndx]; | |
8517fae7 | 2168 | relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); |
e0001a05 NC |
2169 | } |
2170 | else | |
2171 | { | |
b2a8e766 AM |
2172 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, |
2173 | r_symndx, symtab_hdr, sym_hashes, | |
2174 | h, sec, relocation, | |
2175 | unresolved_reloc, warned); | |
560e09e9 NC |
2176 | |
2177 | if (relocation == 0 | |
2178 | && !unresolved_reloc | |
2179 | && h->root.type == bfd_link_hash_undefweak) | |
e0001a05 | 2180 | is_weak_undef = TRUE; |
e0001a05 NC |
2181 | } |
2182 | ||
2183 | if (relaxing_section) | |
2184 | { | |
2185 | /* Check if this references a section in another input file. */ | |
43cd72b9 BW |
2186 | do_fix_for_final_link (rel, input_bfd, input_section, contents, |
2187 | &relocation); | |
e0001a05 NC |
2188 | |
2189 | /* Update some already cached values. */ | |
2190 | r_type = ELF32_R_TYPE (rel->r_info); | |
2191 | howto = &elf_howto_table[r_type]; | |
2192 | } | |
2193 | ||
2194 | /* Sanity check the address. */ | |
43cd72b9 | 2195 | if (rel->r_offset >= input_size |
e0001a05 NC |
2196 | && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) |
2197 | { | |
43cd72b9 BW |
2198 | (*_bfd_error_handler) |
2199 | (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), | |
2200 | input_bfd, input_section, rel->r_offset, input_size); | |
e0001a05 NC |
2201 | bfd_set_error (bfd_error_bad_value); |
2202 | return FALSE; | |
2203 | } | |
2204 | ||
2205 | /* Generate dynamic relocations. */ | |
2206 | if (elf_hash_table (info)->dynamic_sections_created) | |
2207 | { | |
571b5725 | 2208 | bfd_boolean dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 | 2209 | |
43cd72b9 | 2210 | if (dynamic_symbol && is_operand_relocation (r_type)) |
e0001a05 NC |
2211 | { |
2212 | /* This is an error. The symbol's real value won't be known | |
2213 | until runtime and it's likely to be out of range anyway. */ | |
2214 | const char *name = h->root.root.string; | |
2215 | error_message = vsprint_msg ("invalid relocation for dynamic " | |
2216 | "symbol", ": %s", | |
2217 | strlen (name) + 2, name); | |
2218 | if (!((*info->callbacks->reloc_dangerous) | |
2219 | (info, error_message, input_bfd, input_section, | |
2220 | rel->r_offset))) | |
2221 | return FALSE; | |
2222 | } | |
2223 | else if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
2224 | && (input_section->flags & SEC_ALLOC) != 0 | |
2225 | && (dynamic_symbol || info->shared)) | |
2226 | { | |
2227 | Elf_Internal_Rela outrel; | |
2228 | bfd_byte *loc; | |
2229 | asection *srel; | |
2230 | ||
2231 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
2232 | srel = srelplt; | |
2233 | else | |
2234 | srel = srelgot; | |
2235 | ||
2236 | BFD_ASSERT (srel != NULL); | |
2237 | ||
2238 | outrel.r_offset = | |
2239 | _bfd_elf_section_offset (output_bfd, info, | |
2240 | input_section, rel->r_offset); | |
2241 | ||
2242 | if ((outrel.r_offset | 1) == (bfd_vma) -1) | |
2243 | memset (&outrel, 0, sizeof outrel); | |
2244 | else | |
2245 | { | |
f0578e28 BW |
2246 | outrel.r_offset += (input_section->output_section->vma |
2247 | + input_section->output_offset); | |
e0001a05 | 2248 | |
88d65ad6 BW |
2249 | /* Complain if the relocation is in a read-only section |
2250 | and not in a literal pool. */ | |
2251 | if ((input_section->flags & SEC_READONLY) != 0 | |
2252 | && !elf_xtensa_in_literal_pool (lit_table, ltblsize, | |
3ba3bc8c | 2253 | outrel.r_offset)) |
88d65ad6 BW |
2254 | { |
2255 | error_message = | |
2256 | _("dynamic relocation in read-only section"); | |
2257 | if (!((*info->callbacks->reloc_dangerous) | |
2258 | (info, error_message, input_bfd, input_section, | |
2259 | rel->r_offset))) | |
2260 | return FALSE; | |
2261 | } | |
2262 | ||
e0001a05 NC |
2263 | if (dynamic_symbol) |
2264 | { | |
2265 | outrel.r_addend = rel->r_addend; | |
2266 | rel->r_addend = 0; | |
2267 | ||
2268 | if (r_type == R_XTENSA_32) | |
2269 | { | |
2270 | outrel.r_info = | |
2271 | ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); | |
2272 | relocation = 0; | |
2273 | } | |
2274 | else /* r_type == R_XTENSA_PLT */ | |
2275 | { | |
2276 | outrel.r_info = | |
2277 | ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); | |
2278 | ||
2279 | /* Create the PLT entry and set the initial | |
2280 | contents of the literal entry to the address of | |
2281 | the PLT entry. */ | |
43cd72b9 | 2282 | relocation = |
e0001a05 NC |
2283 | elf_xtensa_create_plt_entry (dynobj, output_bfd, |
2284 | srel->reloc_count); | |
2285 | } | |
2286 | unresolved_reloc = FALSE; | |
2287 | } | |
2288 | else | |
2289 | { | |
2290 | /* Generate a RELATIVE relocation. */ | |
2291 | outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); | |
2292 | outrel.r_addend = 0; | |
2293 | } | |
2294 | } | |
2295 | ||
2296 | loc = (srel->contents | |
2297 | + srel->reloc_count++ * sizeof (Elf32_External_Rela)); | |
2298 | bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); | |
2299 | BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count | |
eea6121a | 2300 | <= srel->size); |
e0001a05 NC |
2301 | } |
2302 | } | |
2303 | ||
2304 | /* Dynamic relocs are not propagated for SEC_DEBUGGING sections | |
2305 | because such sections are not SEC_ALLOC and thus ld.so will | |
2306 | not process them. */ | |
2307 | if (unresolved_reloc | |
2308 | && !((input_section->flags & SEC_DEBUGGING) != 0 | |
f5385ebf | 2309 | && h->def_dynamic)) |
e0001a05 | 2310 | (*_bfd_error_handler) |
843fe662 | 2311 | (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), |
d003868e AM |
2312 | input_bfd, |
2313 | input_section, | |
e0001a05 | 2314 | (long) rel->r_offset, |
843fe662 | 2315 | howto->name, |
e0001a05 NC |
2316 | h->root.root.string); |
2317 | ||
2318 | /* There's no point in calling bfd_perform_relocation here. | |
2319 | Just go directly to our "special function". */ | |
2320 | r = elf_xtensa_do_reloc (howto, input_bfd, input_section, | |
2321 | relocation + rel->r_addend, | |
2322 | contents, rel->r_offset, is_weak_undef, | |
2323 | &error_message); | |
43cd72b9 | 2324 | |
9b8c98a4 | 2325 | if (r != bfd_reloc_ok && !warned) |
e0001a05 NC |
2326 | { |
2327 | const char *name; | |
2328 | ||
43cd72b9 | 2329 | BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); |
7fa3d080 | 2330 | BFD_ASSERT (error_message != NULL); |
e0001a05 | 2331 | |
7fa3d080 | 2332 | if (h) |
e0001a05 NC |
2333 | name = h->root.root.string; |
2334 | else | |
2335 | { | |
2336 | name = bfd_elf_string_from_elf_section | |
2337 | (input_bfd, symtab_hdr->sh_link, sym->st_name); | |
2338 | if (name && *name == '\0') | |
2339 | name = bfd_section_name (input_bfd, sec); | |
2340 | } | |
2341 | if (name) | |
43cd72b9 BW |
2342 | { |
2343 | if (rel->r_addend == 0) | |
2344 | error_message = vsprint_msg (error_message, ": %s", | |
2345 | strlen (name) + 2, name); | |
2346 | else | |
2347 | error_message = vsprint_msg (error_message, ": (%s+0x%x)", | |
2348 | strlen (name) + 22, | |
0fd3a477 | 2349 | name, (int)rel->r_addend); |
43cd72b9 BW |
2350 | } |
2351 | ||
e0001a05 NC |
2352 | if (!((*info->callbacks->reloc_dangerous) |
2353 | (info, error_message, input_bfd, input_section, | |
2354 | rel->r_offset))) | |
2355 | return FALSE; | |
2356 | } | |
2357 | } | |
2358 | ||
88d65ad6 BW |
2359 | if (lit_table) |
2360 | free (lit_table); | |
2361 | ||
3ba3bc8c BW |
2362 | input_section->reloc_done = TRUE; |
2363 | ||
e0001a05 NC |
2364 | return TRUE; |
2365 | } | |
2366 | ||
2367 | ||
2368 | /* Finish up dynamic symbol handling. There's not much to do here since | |
2369 | the PLT and GOT entries are all set up by relocate_section. */ | |
2370 | ||
2371 | static bfd_boolean | |
7fa3d080 BW |
2372 | elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, |
2373 | struct bfd_link_info *info ATTRIBUTE_UNUSED, | |
2374 | struct elf_link_hash_entry *h, | |
2375 | Elf_Internal_Sym *sym) | |
e0001a05 | 2376 | { |
f5385ebf AM |
2377 | if (h->needs_plt |
2378 | && !h->def_regular) | |
e0001a05 NC |
2379 | { |
2380 | /* Mark the symbol as undefined, rather than as defined in | |
2381 | the .plt section. Leave the value alone. */ | |
2382 | sym->st_shndx = SHN_UNDEF; | |
2383 | } | |
2384 | ||
2385 | /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ | |
2386 | if (strcmp (h->root.root.string, "_DYNAMIC") == 0 | |
2387 | || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) | |
2388 | sym->st_shndx = SHN_ABS; | |
2389 | ||
2390 | return TRUE; | |
2391 | } | |
2392 | ||
2393 | ||
2394 | /* Combine adjacent literal table entries in the output. Adjacent | |
2395 | entries within each input section may have been removed during | |
2396 | relaxation, but we repeat the process here, even though it's too late | |
2397 | to shrink the output section, because it's important to minimize the | |
2398 | number of literal table entries to reduce the start-up work for the | |
2399 | runtime linker. Returns the number of remaining table entries or -1 | |
2400 | on error. */ | |
2401 | ||
2402 | static int | |
7fa3d080 BW |
2403 | elf_xtensa_combine_prop_entries (bfd *output_bfd, |
2404 | asection *sxtlit, | |
2405 | asection *sgotloc) | |
e0001a05 | 2406 | { |
e0001a05 NC |
2407 | bfd_byte *contents; |
2408 | property_table_entry *table; | |
e901de89 | 2409 | bfd_size_type section_size, sgotloc_size; |
e0001a05 NC |
2410 | bfd_vma offset; |
2411 | int n, m, num; | |
2412 | ||
eea6121a | 2413 | section_size = sxtlit->size; |
e0001a05 NC |
2414 | BFD_ASSERT (section_size % 8 == 0); |
2415 | num = section_size / 8; | |
2416 | ||
eea6121a | 2417 | sgotloc_size = sgotloc->size; |
e901de89 | 2418 | if (sgotloc_size != section_size) |
b536dc1e BW |
2419 | { |
2420 | (*_bfd_error_handler) | |
43cd72b9 | 2421 | (_("internal inconsistency in size of .got.loc section")); |
b536dc1e BW |
2422 | return -1; |
2423 | } | |
e901de89 | 2424 | |
eea6121a AM |
2425 | table = bfd_malloc (num * sizeof (property_table_entry)); |
2426 | if (table == 0) | |
e0001a05 NC |
2427 | return -1; |
2428 | ||
2429 | /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this | |
2430 | propagates to the output section, where it doesn't really apply and | |
eea6121a | 2431 | where it breaks the following call to bfd_malloc_and_get_section. */ |
e901de89 | 2432 | sxtlit->flags &= ~SEC_IN_MEMORY; |
e0001a05 | 2433 | |
eea6121a AM |
2434 | if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) |
2435 | { | |
2436 | if (contents != 0) | |
2437 | free (contents); | |
2438 | free (table); | |
2439 | return -1; | |
2440 | } | |
e0001a05 NC |
2441 | |
2442 | /* There should never be any relocations left at this point, so this | |
2443 | is quite a bit easier than what is done during relaxation. */ | |
2444 | ||
2445 | /* Copy the raw contents into a property table array and sort it. */ | |
2446 | offset = 0; | |
2447 | for (n = 0; n < num; n++) | |
2448 | { | |
2449 | table[n].address = bfd_get_32 (output_bfd, &contents[offset]); | |
2450 | table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); | |
2451 | offset += 8; | |
2452 | } | |
2453 | qsort (table, num, sizeof (property_table_entry), property_table_compare); | |
2454 | ||
2455 | for (n = 0; n < num; n++) | |
2456 | { | |
2457 | bfd_boolean remove = FALSE; | |
2458 | ||
2459 | if (table[n].size == 0) | |
2460 | remove = TRUE; | |
2461 | else if (n > 0 && | |
2462 | (table[n-1].address + table[n-1].size == table[n].address)) | |
2463 | { | |
2464 | table[n-1].size += table[n].size; | |
2465 | remove = TRUE; | |
2466 | } | |
2467 | ||
2468 | if (remove) | |
2469 | { | |
2470 | for (m = n; m < num - 1; m++) | |
2471 | { | |
2472 | table[m].address = table[m+1].address; | |
2473 | table[m].size = table[m+1].size; | |
2474 | } | |
2475 | ||
2476 | n--; | |
2477 | num--; | |
2478 | } | |
2479 | } | |
2480 | ||
2481 | /* Copy the data back to the raw contents. */ | |
2482 | offset = 0; | |
2483 | for (n = 0; n < num; n++) | |
2484 | { | |
2485 | bfd_put_32 (output_bfd, table[n].address, &contents[offset]); | |
2486 | bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); | |
2487 | offset += 8; | |
2488 | } | |
2489 | ||
2490 | /* Clear the removed bytes. */ | |
2491 | if ((bfd_size_type) (num * 8) < section_size) | |
b54d4b07 | 2492 | memset (&contents[num * 8], 0, section_size - num * 8); |
e0001a05 | 2493 | |
e901de89 BW |
2494 | if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, |
2495 | section_size)) | |
e0001a05 NC |
2496 | return -1; |
2497 | ||
e901de89 BW |
2498 | /* Copy the contents to ".got.loc". */ |
2499 | memcpy (sgotloc->contents, contents, section_size); | |
2500 | ||
e0001a05 | 2501 | free (contents); |
b614a702 | 2502 | free (table); |
e0001a05 NC |
2503 | return num; |
2504 | } | |
2505 | ||
2506 | ||
2507 | /* Finish up the dynamic sections. */ | |
2508 | ||
2509 | static bfd_boolean | |
7fa3d080 BW |
2510 | elf_xtensa_finish_dynamic_sections (bfd *output_bfd, |
2511 | struct bfd_link_info *info) | |
e0001a05 NC |
2512 | { |
2513 | bfd *dynobj; | |
e901de89 | 2514 | asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; |
e0001a05 NC |
2515 | Elf32_External_Dyn *dyncon, *dynconend; |
2516 | int num_xtlit_entries; | |
2517 | ||
2518 | if (! elf_hash_table (info)->dynamic_sections_created) | |
2519 | return TRUE; | |
2520 | ||
2521 | dynobj = elf_hash_table (info)->dynobj; | |
2522 | sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); | |
2523 | BFD_ASSERT (sdyn != NULL); | |
2524 | ||
2525 | /* Set the first entry in the global offset table to the address of | |
2526 | the dynamic section. */ | |
2527 | sgot = bfd_get_section_by_name (dynobj, ".got"); | |
2528 | if (sgot) | |
2529 | { | |
eea6121a | 2530 | BFD_ASSERT (sgot->size == 4); |
e0001a05 | 2531 | if (sdyn == NULL) |
7fa3d080 | 2532 | bfd_put_32 (output_bfd, 0, sgot->contents); |
e0001a05 NC |
2533 | else |
2534 | bfd_put_32 (output_bfd, | |
2535 | sdyn->output_section->vma + sdyn->output_offset, | |
2536 | sgot->contents); | |
2537 | } | |
2538 | ||
2539 | srelplt = bfd_get_section_by_name (dynobj, ".rela.plt"); | |
7fa3d080 | 2540 | if (srelplt && srelplt->size != 0) |
e0001a05 NC |
2541 | { |
2542 | asection *sgotplt, *srelgot, *spltlittbl; | |
2543 | int chunk, plt_chunks, plt_entries; | |
2544 | Elf_Internal_Rela irela; | |
2545 | bfd_byte *loc; | |
2546 | unsigned rtld_reloc; | |
2547 | ||
2548 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got");; | |
2549 | BFD_ASSERT (srelgot != NULL); | |
2550 | ||
2551 | spltlittbl = bfd_get_section_by_name (dynobj, ".xt.lit.plt"); | |
2552 | BFD_ASSERT (spltlittbl != NULL); | |
2553 | ||
2554 | /* Find the first XTENSA_RTLD relocation. Presumably the rest | |
2555 | of them follow immediately after.... */ | |
2556 | for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) | |
2557 | { | |
2558 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2559 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2560 | if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) | |
2561 | break; | |
2562 | } | |
2563 | BFD_ASSERT (rtld_reloc < srelgot->reloc_count); | |
2564 | ||
eea6121a | 2565 | plt_entries = srelplt->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
2566 | plt_chunks = |
2567 | (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; | |
2568 | ||
2569 | for (chunk = 0; chunk < plt_chunks; chunk++) | |
2570 | { | |
2571 | int chunk_entries = 0; | |
2572 | ||
2573 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
2574 | BFD_ASSERT (sgotplt != NULL); | |
2575 | ||
2576 | /* Emit special RTLD relocations for the first two entries in | |
2577 | each chunk of the .got.plt section. */ | |
2578 | ||
2579 | loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); | |
2580 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2581 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2582 | irela.r_offset = (sgotplt->output_section->vma | |
2583 | + sgotplt->output_offset); | |
2584 | irela.r_addend = 1; /* tell rtld to set value to resolver function */ | |
2585 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2586 | rtld_reloc += 1; | |
2587 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2588 | ||
2589 | /* Next literal immediately follows the first. */ | |
2590 | loc += sizeof (Elf32_External_Rela); | |
2591 | bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); | |
2592 | BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); | |
2593 | irela.r_offset = (sgotplt->output_section->vma | |
2594 | + sgotplt->output_offset + 4); | |
2595 | /* Tell rtld to set value to object's link map. */ | |
2596 | irela.r_addend = 2; | |
2597 | bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); | |
2598 | rtld_reloc += 1; | |
2599 | BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); | |
2600 | ||
2601 | /* Fill in the literal table. */ | |
2602 | if (chunk < plt_chunks - 1) | |
2603 | chunk_entries = PLT_ENTRIES_PER_CHUNK; | |
2604 | else | |
2605 | chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); | |
2606 | ||
eea6121a | 2607 | BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); |
e0001a05 NC |
2608 | bfd_put_32 (output_bfd, |
2609 | sgotplt->output_section->vma + sgotplt->output_offset, | |
2610 | spltlittbl->contents + (chunk * 8) + 0); | |
2611 | bfd_put_32 (output_bfd, | |
2612 | 8 + (chunk_entries * 4), | |
2613 | spltlittbl->contents + (chunk * 8) + 4); | |
2614 | } | |
2615 | ||
2616 | /* All the dynamic relocations have been emitted at this point. | |
2617 | Make sure the relocation sections are the correct size. */ | |
eea6121a AM |
2618 | if (srelgot->size != (sizeof (Elf32_External_Rela) |
2619 | * srelgot->reloc_count) | |
2620 | || srelplt->size != (sizeof (Elf32_External_Rela) | |
2621 | * srelplt->reloc_count)) | |
e0001a05 NC |
2622 | abort (); |
2623 | ||
2624 | /* The .xt.lit.plt section has just been modified. This must | |
2625 | happen before the code below which combines adjacent literal | |
2626 | table entries, and the .xt.lit.plt contents have to be forced to | |
2627 | the output here. */ | |
2628 | if (! bfd_set_section_contents (output_bfd, | |
2629 | spltlittbl->output_section, | |
2630 | spltlittbl->contents, | |
2631 | spltlittbl->output_offset, | |
eea6121a | 2632 | spltlittbl->size)) |
e0001a05 NC |
2633 | return FALSE; |
2634 | /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ | |
2635 | spltlittbl->flags &= ~SEC_HAS_CONTENTS; | |
2636 | } | |
2637 | ||
2638 | /* Combine adjacent literal table entries. */ | |
1049f94e | 2639 | BFD_ASSERT (! info->relocatable); |
e901de89 BW |
2640 | sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); |
2641 | sgotloc = bfd_get_section_by_name (dynobj, ".got.loc"); | |
b536dc1e | 2642 | BFD_ASSERT (sxtlit && sgotloc); |
e901de89 BW |
2643 | num_xtlit_entries = |
2644 | elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); | |
e0001a05 NC |
2645 | if (num_xtlit_entries < 0) |
2646 | return FALSE; | |
2647 | ||
2648 | dyncon = (Elf32_External_Dyn *) sdyn->contents; | |
eea6121a | 2649 | dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); |
e0001a05 NC |
2650 | for (; dyncon < dynconend; dyncon++) |
2651 | { | |
2652 | Elf_Internal_Dyn dyn; | |
2653 | const char *name; | |
2654 | asection *s; | |
2655 | ||
2656 | bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); | |
2657 | ||
2658 | switch (dyn.d_tag) | |
2659 | { | |
2660 | default: | |
2661 | break; | |
2662 | ||
2663 | case DT_XTENSA_GOT_LOC_SZ: | |
e0001a05 NC |
2664 | dyn.d_un.d_val = num_xtlit_entries; |
2665 | break; | |
2666 | ||
2667 | case DT_XTENSA_GOT_LOC_OFF: | |
e901de89 | 2668 | name = ".got.loc"; |
e0001a05 NC |
2669 | goto get_vma; |
2670 | case DT_PLTGOT: | |
2671 | name = ".got"; | |
2672 | goto get_vma; | |
2673 | case DT_JMPREL: | |
2674 | name = ".rela.plt"; | |
2675 | get_vma: | |
2676 | s = bfd_get_section_by_name (output_bfd, name); | |
2677 | BFD_ASSERT (s); | |
2678 | dyn.d_un.d_ptr = s->vma; | |
2679 | break; | |
2680 | ||
2681 | case DT_PLTRELSZ: | |
2682 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2683 | BFD_ASSERT (s); | |
eea6121a | 2684 | dyn.d_un.d_val = s->size; |
e0001a05 NC |
2685 | break; |
2686 | ||
2687 | case DT_RELASZ: | |
2688 | /* Adjust RELASZ to not include JMPREL. This matches what | |
2689 | glibc expects and what is done for several other ELF | |
2690 | targets (e.g., i386, alpha), but the "correct" behavior | |
2691 | seems to be unresolved. Since the linker script arranges | |
2692 | for .rela.plt to follow all other relocation sections, we | |
2693 | don't have to worry about changing the DT_RELA entry. */ | |
2694 | s = bfd_get_section_by_name (output_bfd, ".rela.plt"); | |
2695 | if (s) | |
eea6121a | 2696 | dyn.d_un.d_val -= s->size; |
e0001a05 NC |
2697 | break; |
2698 | } | |
2699 | ||
2700 | bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); | |
2701 | } | |
2702 | ||
2703 | return TRUE; | |
2704 | } | |
2705 | ||
2706 | \f | |
2707 | /* Functions for dealing with the e_flags field. */ | |
2708 | ||
2709 | /* Merge backend specific data from an object file to the output | |
2710 | object file when linking. */ | |
2711 | ||
2712 | static bfd_boolean | |
7fa3d080 | 2713 | elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
e0001a05 NC |
2714 | { |
2715 | unsigned out_mach, in_mach; | |
2716 | flagword out_flag, in_flag; | |
2717 | ||
2718 | /* Check if we have the same endianess. */ | |
2719 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
2720 | return FALSE; | |
2721 | ||
2722 | /* Don't even pretend to support mixed-format linking. */ | |
2723 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
2724 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
2725 | return FALSE; | |
2726 | ||
2727 | out_flag = elf_elfheader (obfd)->e_flags; | |
2728 | in_flag = elf_elfheader (ibfd)->e_flags; | |
2729 | ||
2730 | out_mach = out_flag & EF_XTENSA_MACH; | |
2731 | in_mach = in_flag & EF_XTENSA_MACH; | |
43cd72b9 | 2732 | if (out_mach != in_mach) |
e0001a05 NC |
2733 | { |
2734 | (*_bfd_error_handler) | |
43cd72b9 | 2735 | (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), |
d003868e | 2736 | ibfd, out_mach, in_mach); |
e0001a05 NC |
2737 | bfd_set_error (bfd_error_wrong_format); |
2738 | return FALSE; | |
2739 | } | |
2740 | ||
2741 | if (! elf_flags_init (obfd)) | |
2742 | { | |
2743 | elf_flags_init (obfd) = TRUE; | |
2744 | elf_elfheader (obfd)->e_flags = in_flag; | |
43cd72b9 | 2745 | |
e0001a05 NC |
2746 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
2747 | && bfd_get_arch_info (obfd)->the_default) | |
2748 | return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
2749 | bfd_get_mach (ibfd)); | |
43cd72b9 | 2750 | |
e0001a05 NC |
2751 | return TRUE; |
2752 | } | |
2753 | ||
43cd72b9 BW |
2754 | if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) |
2755 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); | |
e0001a05 | 2756 | |
43cd72b9 BW |
2757 | if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) |
2758 | elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); | |
e0001a05 NC |
2759 | |
2760 | return TRUE; | |
2761 | } | |
2762 | ||
2763 | ||
2764 | static bfd_boolean | |
7fa3d080 | 2765 | elf_xtensa_set_private_flags (bfd *abfd, flagword flags) |
e0001a05 NC |
2766 | { |
2767 | BFD_ASSERT (!elf_flags_init (abfd) | |
2768 | || elf_elfheader (abfd)->e_flags == flags); | |
2769 | ||
2770 | elf_elfheader (abfd)->e_flags |= flags; | |
2771 | elf_flags_init (abfd) = TRUE; | |
2772 | ||
2773 | return TRUE; | |
2774 | } | |
2775 | ||
2776 | ||
e0001a05 | 2777 | static bfd_boolean |
7fa3d080 | 2778 | elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) |
e0001a05 NC |
2779 | { |
2780 | FILE *f = (FILE *) farg; | |
2781 | flagword e_flags = elf_elfheader (abfd)->e_flags; | |
2782 | ||
2783 | fprintf (f, "\nXtensa header:\n"); | |
43cd72b9 | 2784 | if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) |
e0001a05 NC |
2785 | fprintf (f, "\nMachine = Base\n"); |
2786 | else | |
2787 | fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); | |
2788 | ||
2789 | fprintf (f, "Insn tables = %s\n", | |
2790 | (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); | |
2791 | ||
2792 | fprintf (f, "Literal tables = %s\n", | |
2793 | (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); | |
2794 | ||
2795 | return _bfd_elf_print_private_bfd_data (abfd, farg); | |
2796 | } | |
2797 | ||
2798 | ||
2799 | /* Set the right machine number for an Xtensa ELF file. */ | |
2800 | ||
2801 | static bfd_boolean | |
7fa3d080 | 2802 | elf_xtensa_object_p (bfd *abfd) |
e0001a05 NC |
2803 | { |
2804 | int mach; | |
2805 | unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; | |
2806 | ||
2807 | switch (arch) | |
2808 | { | |
2809 | case E_XTENSA_MACH: | |
2810 | mach = bfd_mach_xtensa; | |
2811 | break; | |
2812 | default: | |
2813 | return FALSE; | |
2814 | } | |
2815 | ||
2816 | (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); | |
2817 | return TRUE; | |
2818 | } | |
2819 | ||
2820 | ||
2821 | /* The final processing done just before writing out an Xtensa ELF object | |
2822 | file. This gets the Xtensa architecture right based on the machine | |
2823 | number. */ | |
2824 | ||
2825 | static void | |
7fa3d080 BW |
2826 | elf_xtensa_final_write_processing (bfd *abfd, |
2827 | bfd_boolean linker ATTRIBUTE_UNUSED) | |
e0001a05 NC |
2828 | { |
2829 | int mach; | |
2830 | unsigned long val; | |
2831 | ||
2832 | switch (mach = bfd_get_mach (abfd)) | |
2833 | { | |
2834 | case bfd_mach_xtensa: | |
2835 | val = E_XTENSA_MACH; | |
2836 | break; | |
2837 | default: | |
2838 | return; | |
2839 | } | |
2840 | ||
2841 | elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); | |
2842 | elf_elfheader (abfd)->e_flags |= val; | |
2843 | } | |
2844 | ||
2845 | ||
2846 | static enum elf_reloc_type_class | |
7fa3d080 | 2847 | elf_xtensa_reloc_type_class (const Elf_Internal_Rela *rela) |
e0001a05 NC |
2848 | { |
2849 | switch ((int) ELF32_R_TYPE (rela->r_info)) | |
2850 | { | |
2851 | case R_XTENSA_RELATIVE: | |
2852 | return reloc_class_relative; | |
2853 | case R_XTENSA_JMP_SLOT: | |
2854 | return reloc_class_plt; | |
2855 | default: | |
2856 | return reloc_class_normal; | |
2857 | } | |
2858 | } | |
2859 | ||
2860 | \f | |
2861 | static bfd_boolean | |
7fa3d080 BW |
2862 | elf_xtensa_discard_info_for_section (bfd *abfd, |
2863 | struct elf_reloc_cookie *cookie, | |
2864 | struct bfd_link_info *info, | |
2865 | asection *sec) | |
e0001a05 NC |
2866 | { |
2867 | bfd_byte *contents; | |
2868 | bfd_vma section_size; | |
2869 | bfd_vma offset, actual_offset; | |
2870 | size_t removed_bytes = 0; | |
2871 | ||
eea6121a | 2872 | section_size = sec->size; |
e0001a05 NC |
2873 | if (section_size == 0 || section_size % 8 != 0) |
2874 | return FALSE; | |
2875 | ||
2876 | if (sec->output_section | |
2877 | && bfd_is_abs_section (sec->output_section)) | |
2878 | return FALSE; | |
2879 | ||
2880 | contents = retrieve_contents (abfd, sec, info->keep_memory); | |
2881 | if (!contents) | |
2882 | return FALSE; | |
2883 | ||
2884 | cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); | |
2885 | if (!cookie->rels) | |
2886 | { | |
2887 | release_contents (sec, contents); | |
2888 | return FALSE; | |
2889 | } | |
2890 | ||
2891 | cookie->rel = cookie->rels; | |
2892 | cookie->relend = cookie->rels + sec->reloc_count; | |
2893 | ||
2894 | for (offset = 0; offset < section_size; offset += 8) | |
2895 | { | |
2896 | actual_offset = offset - removed_bytes; | |
2897 | ||
2898 | /* The ...symbol_deleted_p function will skip over relocs but it | |
2899 | won't adjust their offsets, so do that here. */ | |
2900 | while (cookie->rel < cookie->relend | |
2901 | && cookie->rel->r_offset < offset) | |
2902 | { | |
2903 | cookie->rel->r_offset -= removed_bytes; | |
2904 | cookie->rel++; | |
2905 | } | |
2906 | ||
2907 | while (cookie->rel < cookie->relend | |
2908 | && cookie->rel->r_offset == offset) | |
2909 | { | |
c152c796 | 2910 | if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) |
e0001a05 NC |
2911 | { |
2912 | /* Remove the table entry. (If the reloc type is NONE, then | |
2913 | the entry has already been merged with another and deleted | |
2914 | during relaxation.) */ | |
2915 | if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) | |
2916 | { | |
2917 | /* Shift the contents up. */ | |
2918 | if (offset + 8 < section_size) | |
2919 | memmove (&contents[actual_offset], | |
2920 | &contents[actual_offset+8], | |
2921 | section_size - offset - 8); | |
2922 | removed_bytes += 8; | |
2923 | } | |
2924 | ||
2925 | /* Remove this relocation. */ | |
2926 | cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
2927 | } | |
2928 | ||
2929 | /* Adjust the relocation offset for previous removals. This | |
2930 | should not be done before calling ...symbol_deleted_p | |
2931 | because it might mess up the offset comparisons there. | |
2932 | Make sure the offset doesn't underflow in the case where | |
2933 | the first entry is removed. */ | |
2934 | if (cookie->rel->r_offset >= removed_bytes) | |
2935 | cookie->rel->r_offset -= removed_bytes; | |
2936 | else | |
2937 | cookie->rel->r_offset = 0; | |
2938 | ||
2939 | cookie->rel++; | |
2940 | } | |
2941 | } | |
2942 | ||
2943 | if (removed_bytes != 0) | |
2944 | { | |
2945 | /* Adjust any remaining relocs (shouldn't be any). */ | |
2946 | for (; cookie->rel < cookie->relend; cookie->rel++) | |
2947 | { | |
2948 | if (cookie->rel->r_offset >= removed_bytes) | |
2949 | cookie->rel->r_offset -= removed_bytes; | |
2950 | else | |
2951 | cookie->rel->r_offset = 0; | |
2952 | } | |
2953 | ||
2954 | /* Clear the removed bytes. */ | |
2955 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
2956 | ||
2957 | pin_contents (sec, contents); | |
2958 | pin_internal_relocs (sec, cookie->rels); | |
2959 | ||
eea6121a AM |
2960 | /* Shrink size. */ |
2961 | sec->size = section_size - removed_bytes; | |
b536dc1e BW |
2962 | |
2963 | if (xtensa_is_littable_section (sec)) | |
2964 | { | |
2965 | bfd *dynobj = elf_hash_table (info)->dynobj; | |
2966 | if (dynobj) | |
2967 | { | |
2968 | asection *sgotloc = | |
2969 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
2970 | if (sgotloc) | |
eea6121a | 2971 | sgotloc->size -= removed_bytes; |
b536dc1e BW |
2972 | } |
2973 | } | |
e0001a05 NC |
2974 | } |
2975 | else | |
2976 | { | |
2977 | release_contents (sec, contents); | |
2978 | release_internal_relocs (sec, cookie->rels); | |
2979 | } | |
2980 | ||
2981 | return (removed_bytes != 0); | |
2982 | } | |
2983 | ||
2984 | ||
2985 | static bfd_boolean | |
7fa3d080 BW |
2986 | elf_xtensa_discard_info (bfd *abfd, |
2987 | struct elf_reloc_cookie *cookie, | |
2988 | struct bfd_link_info *info) | |
e0001a05 NC |
2989 | { |
2990 | asection *sec; | |
2991 | bfd_boolean changed = FALSE; | |
2992 | ||
2993 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
2994 | { | |
2995 | if (xtensa_is_property_section (sec)) | |
2996 | { | |
2997 | if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) | |
2998 | changed = TRUE; | |
2999 | } | |
3000 | } | |
3001 | ||
3002 | return changed; | |
3003 | } | |
3004 | ||
3005 | ||
3006 | static bfd_boolean | |
7fa3d080 | 3007 | elf_xtensa_ignore_discarded_relocs (asection *sec) |
e0001a05 NC |
3008 | { |
3009 | return xtensa_is_property_section (sec); | |
3010 | } | |
3011 | ||
3012 | \f | |
3013 | /* Support for core dump NOTE sections. */ | |
3014 | ||
3015 | static bfd_boolean | |
7fa3d080 | 3016 | elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3017 | { |
3018 | int offset; | |
eea6121a | 3019 | unsigned int size; |
e0001a05 NC |
3020 | |
3021 | /* The size for Xtensa is variable, so don't try to recognize the format | |
3022 | based on the size. Just assume this is GNU/Linux. */ | |
3023 | ||
3024 | /* pr_cursig */ | |
3025 | elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12); | |
3026 | ||
3027 | /* pr_pid */ | |
3028 | elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24); | |
3029 | ||
3030 | /* pr_reg */ | |
3031 | offset = 72; | |
eea6121a | 3032 | size = note->descsz - offset - 4; |
e0001a05 NC |
3033 | |
3034 | /* Make a ".reg/999" section. */ | |
3035 | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | |
eea6121a | 3036 | size, note->descpos + offset); |
e0001a05 NC |
3037 | } |
3038 | ||
3039 | ||
3040 | static bfd_boolean | |
7fa3d080 | 3041 | elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
e0001a05 NC |
3042 | { |
3043 | switch (note->descsz) | |
3044 | { | |
3045 | default: | |
3046 | return FALSE; | |
3047 | ||
3048 | case 128: /* GNU/Linux elf_prpsinfo */ | |
3049 | elf_tdata (abfd)->core_program | |
3050 | = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); | |
3051 | elf_tdata (abfd)->core_command | |
3052 | = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); | |
3053 | } | |
3054 | ||
3055 | /* Note that for some reason, a spurious space is tacked | |
3056 | onto the end of the args in some (at least one anyway) | |
3057 | implementations, so strip it off if it exists. */ | |
3058 | ||
3059 | { | |
3060 | char *command = elf_tdata (abfd)->core_command; | |
3061 | int n = strlen (command); | |
3062 | ||
3063 | if (0 < n && command[n - 1] == ' ') | |
3064 | command[n - 1] = '\0'; | |
3065 | } | |
3066 | ||
3067 | return TRUE; | |
3068 | } | |
3069 | ||
3070 | \f | |
3071 | /* Generic Xtensa configurability stuff. */ | |
3072 | ||
3073 | static xtensa_opcode callx0_op = XTENSA_UNDEFINED; | |
3074 | static xtensa_opcode callx4_op = XTENSA_UNDEFINED; | |
3075 | static xtensa_opcode callx8_op = XTENSA_UNDEFINED; | |
3076 | static xtensa_opcode callx12_op = XTENSA_UNDEFINED; | |
3077 | static xtensa_opcode call0_op = XTENSA_UNDEFINED; | |
3078 | static xtensa_opcode call4_op = XTENSA_UNDEFINED; | |
3079 | static xtensa_opcode call8_op = XTENSA_UNDEFINED; | |
3080 | static xtensa_opcode call12_op = XTENSA_UNDEFINED; | |
3081 | ||
3082 | static void | |
7fa3d080 | 3083 | init_call_opcodes (void) |
e0001a05 NC |
3084 | { |
3085 | if (callx0_op == XTENSA_UNDEFINED) | |
3086 | { | |
3087 | callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); | |
3088 | callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); | |
3089 | callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); | |
3090 | callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); | |
3091 | call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); | |
3092 | call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); | |
3093 | call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); | |
3094 | call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); | |
3095 | } | |
3096 | } | |
3097 | ||
3098 | ||
3099 | static bfd_boolean | |
7fa3d080 | 3100 | is_indirect_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3101 | { |
3102 | init_call_opcodes (); | |
3103 | return (opcode == callx0_op | |
3104 | || opcode == callx4_op | |
3105 | || opcode == callx8_op | |
3106 | || opcode == callx12_op); | |
3107 | } | |
3108 | ||
3109 | ||
3110 | static bfd_boolean | |
7fa3d080 | 3111 | is_direct_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3112 | { |
3113 | init_call_opcodes (); | |
3114 | return (opcode == call0_op | |
3115 | || opcode == call4_op | |
3116 | || opcode == call8_op | |
3117 | || opcode == call12_op); | |
3118 | } | |
3119 | ||
3120 | ||
3121 | static bfd_boolean | |
7fa3d080 | 3122 | is_windowed_call_opcode (xtensa_opcode opcode) |
e0001a05 NC |
3123 | { |
3124 | init_call_opcodes (); | |
3125 | return (opcode == call4_op | |
3126 | || opcode == call8_op | |
3127 | || opcode == call12_op | |
3128 | || opcode == callx4_op | |
3129 | || opcode == callx8_op | |
3130 | || opcode == callx12_op); | |
3131 | } | |
3132 | ||
3133 | ||
43cd72b9 BW |
3134 | static xtensa_opcode |
3135 | get_const16_opcode (void) | |
3136 | { | |
3137 | static bfd_boolean done_lookup = FALSE; | |
3138 | static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; | |
3139 | if (!done_lookup) | |
3140 | { | |
3141 | const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); | |
3142 | done_lookup = TRUE; | |
3143 | } | |
3144 | return const16_opcode; | |
3145 | } | |
3146 | ||
3147 | ||
e0001a05 NC |
3148 | static xtensa_opcode |
3149 | get_l32r_opcode (void) | |
3150 | { | |
3151 | static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; | |
43cd72b9 BW |
3152 | static bfd_boolean done_lookup = FALSE; |
3153 | ||
3154 | if (!done_lookup) | |
e0001a05 NC |
3155 | { |
3156 | l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); | |
43cd72b9 | 3157 | done_lookup = TRUE; |
e0001a05 NC |
3158 | } |
3159 | return l32r_opcode; | |
3160 | } | |
3161 | ||
3162 | ||
3163 | static bfd_vma | |
7fa3d080 | 3164 | l32r_offset (bfd_vma addr, bfd_vma pc) |
e0001a05 NC |
3165 | { |
3166 | bfd_vma offset; | |
3167 | ||
3168 | offset = addr - ((pc+3) & -4); | |
3169 | BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); | |
3170 | offset = (signed int) offset >> 2; | |
3171 | BFD_ASSERT ((signed int) offset >> 16 == -1); | |
3172 | return offset; | |
3173 | } | |
3174 | ||
3175 | ||
e0001a05 | 3176 | static int |
7fa3d080 | 3177 | get_relocation_opnd (xtensa_opcode opcode, int r_type) |
e0001a05 | 3178 | { |
43cd72b9 BW |
3179 | xtensa_isa isa = xtensa_default_isa; |
3180 | int last_immed, last_opnd, opi; | |
3181 | ||
3182 | if (opcode == XTENSA_UNDEFINED) | |
3183 | return XTENSA_UNDEFINED; | |
3184 | ||
3185 | /* Find the last visible PC-relative immediate operand for the opcode. | |
3186 | If there are no PC-relative immediates, then choose the last visible | |
3187 | immediate; otherwise, fail and return XTENSA_UNDEFINED. */ | |
3188 | last_immed = XTENSA_UNDEFINED; | |
3189 | last_opnd = xtensa_opcode_num_operands (isa, opcode); | |
3190 | for (opi = last_opnd - 1; opi >= 0; opi--) | |
3191 | { | |
3192 | if (xtensa_operand_is_visible (isa, opcode, opi) == 0) | |
3193 | continue; | |
3194 | if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) | |
3195 | { | |
3196 | last_immed = opi; | |
3197 | break; | |
3198 | } | |
3199 | if (last_immed == XTENSA_UNDEFINED | |
3200 | && xtensa_operand_is_register (isa, opcode, opi) == 0) | |
3201 | last_immed = opi; | |
3202 | } | |
3203 | if (last_immed < 0) | |
3204 | return XTENSA_UNDEFINED; | |
3205 | ||
3206 | /* If the operand number was specified in an old-style relocation, | |
3207 | check for consistency with the operand computed above. */ | |
3208 | if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) | |
3209 | { | |
3210 | int reloc_opnd = r_type - R_XTENSA_OP0; | |
3211 | if (reloc_opnd != last_immed) | |
3212 | return XTENSA_UNDEFINED; | |
3213 | } | |
3214 | ||
3215 | return last_immed; | |
3216 | } | |
3217 | ||
3218 | ||
3219 | int | |
7fa3d080 | 3220 | get_relocation_slot (int r_type) |
43cd72b9 BW |
3221 | { |
3222 | switch (r_type) | |
3223 | { | |
3224 | case R_XTENSA_OP0: | |
3225 | case R_XTENSA_OP1: | |
3226 | case R_XTENSA_OP2: | |
3227 | return 0; | |
3228 | ||
3229 | default: | |
3230 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3231 | return r_type - R_XTENSA_SLOT0_OP; | |
3232 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3233 | return r_type - R_XTENSA_SLOT0_ALT; | |
3234 | break; | |
3235 | } | |
3236 | ||
3237 | return XTENSA_UNDEFINED; | |
e0001a05 NC |
3238 | } |
3239 | ||
3240 | ||
3241 | /* Get the opcode for a relocation. */ | |
3242 | ||
3243 | static xtensa_opcode | |
7fa3d080 BW |
3244 | get_relocation_opcode (bfd *abfd, |
3245 | asection *sec, | |
3246 | bfd_byte *contents, | |
3247 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3248 | { |
3249 | static xtensa_insnbuf ibuff = NULL; | |
43cd72b9 | 3250 | static xtensa_insnbuf sbuff = NULL; |
e0001a05 | 3251 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3252 | xtensa_format fmt; |
3253 | int slot; | |
e0001a05 NC |
3254 | |
3255 | if (contents == NULL) | |
3256 | return XTENSA_UNDEFINED; | |
3257 | ||
43cd72b9 | 3258 | if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) |
e0001a05 NC |
3259 | return XTENSA_UNDEFINED; |
3260 | ||
3261 | if (ibuff == NULL) | |
43cd72b9 BW |
3262 | { |
3263 | ibuff = xtensa_insnbuf_alloc (isa); | |
3264 | sbuff = xtensa_insnbuf_alloc (isa); | |
3265 | } | |
3266 | ||
e0001a05 | 3267 | /* Decode the instruction. */ |
43cd72b9 BW |
3268 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], |
3269 | sec->size - irel->r_offset); | |
3270 | fmt = xtensa_format_decode (isa, ibuff); | |
3271 | slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); | |
3272 | if (slot == XTENSA_UNDEFINED) | |
3273 | return XTENSA_UNDEFINED; | |
3274 | xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); | |
3275 | return xtensa_opcode_decode (isa, fmt, slot, sbuff); | |
e0001a05 NC |
3276 | } |
3277 | ||
3278 | ||
3279 | bfd_boolean | |
7fa3d080 BW |
3280 | is_l32r_relocation (bfd *abfd, |
3281 | asection *sec, | |
3282 | bfd_byte *contents, | |
3283 | Elf_Internal_Rela *irel) | |
e0001a05 NC |
3284 | { |
3285 | xtensa_opcode opcode; | |
43cd72b9 | 3286 | if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) |
e0001a05 | 3287 | return FALSE; |
43cd72b9 | 3288 | opcode = get_relocation_opcode (abfd, sec, contents, irel); |
e0001a05 NC |
3289 | return (opcode == get_l32r_opcode ()); |
3290 | } | |
3291 | ||
e0001a05 | 3292 | |
43cd72b9 | 3293 | static bfd_size_type |
7fa3d080 BW |
3294 | get_asm_simplify_size (bfd_byte *contents, |
3295 | bfd_size_type content_len, | |
3296 | bfd_size_type offset) | |
e0001a05 | 3297 | { |
43cd72b9 | 3298 | bfd_size_type insnlen, size = 0; |
e0001a05 | 3299 | |
43cd72b9 BW |
3300 | /* Decode the size of the next two instructions. */ |
3301 | insnlen = insn_decode_len (contents, content_len, offset); | |
3302 | if (insnlen == 0) | |
3303 | return 0; | |
e0001a05 | 3304 | |
43cd72b9 | 3305 | size += insnlen; |
e0001a05 | 3306 | |
43cd72b9 BW |
3307 | insnlen = insn_decode_len (contents, content_len, offset + size); |
3308 | if (insnlen == 0) | |
3309 | return 0; | |
e0001a05 | 3310 | |
43cd72b9 BW |
3311 | size += insnlen; |
3312 | return size; | |
3313 | } | |
e0001a05 | 3314 | |
43cd72b9 BW |
3315 | |
3316 | bfd_boolean | |
7fa3d080 | 3317 | is_alt_relocation (int r_type) |
43cd72b9 BW |
3318 | { |
3319 | return (r_type >= R_XTENSA_SLOT0_ALT | |
3320 | && r_type <= R_XTENSA_SLOT14_ALT); | |
e0001a05 NC |
3321 | } |
3322 | ||
3323 | ||
43cd72b9 | 3324 | bfd_boolean |
7fa3d080 | 3325 | is_operand_relocation (int r_type) |
e0001a05 | 3326 | { |
43cd72b9 BW |
3327 | switch (r_type) |
3328 | { | |
3329 | case R_XTENSA_OP0: | |
3330 | case R_XTENSA_OP1: | |
3331 | case R_XTENSA_OP2: | |
3332 | return TRUE; | |
e0001a05 | 3333 | |
43cd72b9 BW |
3334 | default: |
3335 | if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) | |
3336 | return TRUE; | |
3337 | if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) | |
3338 | return TRUE; | |
3339 | break; | |
3340 | } | |
e0001a05 | 3341 | |
43cd72b9 | 3342 | return FALSE; |
e0001a05 NC |
3343 | } |
3344 | ||
43cd72b9 BW |
3345 | |
3346 | #define MIN_INSN_LENGTH 2 | |
e0001a05 | 3347 | |
43cd72b9 BW |
3348 | /* Return 0 if it fails to decode. */ |
3349 | ||
3350 | bfd_size_type | |
7fa3d080 BW |
3351 | insn_decode_len (bfd_byte *contents, |
3352 | bfd_size_type content_len, | |
3353 | bfd_size_type offset) | |
e0001a05 | 3354 | { |
43cd72b9 BW |
3355 | int insn_len; |
3356 | xtensa_isa isa = xtensa_default_isa; | |
3357 | xtensa_format fmt; | |
3358 | static xtensa_insnbuf ibuff = NULL; | |
e0001a05 | 3359 | |
43cd72b9 BW |
3360 | if (offset + MIN_INSN_LENGTH > content_len) |
3361 | return 0; | |
e0001a05 | 3362 | |
43cd72b9 BW |
3363 | if (ibuff == NULL) |
3364 | ibuff = xtensa_insnbuf_alloc (isa); | |
3365 | xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], | |
3366 | content_len - offset); | |
3367 | fmt = xtensa_format_decode (isa, ibuff); | |
3368 | if (fmt == XTENSA_UNDEFINED) | |
3369 | return 0; | |
3370 | insn_len = xtensa_format_length (isa, fmt); | |
3371 | if (insn_len == XTENSA_UNDEFINED) | |
3372 | return 0; | |
3373 | return insn_len; | |
e0001a05 NC |
3374 | } |
3375 | ||
3376 | ||
43cd72b9 BW |
3377 | /* Decode the opcode for a single slot instruction. |
3378 | Return 0 if it fails to decode or the instruction is multi-slot. */ | |
e0001a05 | 3379 | |
43cd72b9 | 3380 | xtensa_opcode |
7fa3d080 BW |
3381 | insn_decode_opcode (bfd_byte *contents, |
3382 | bfd_size_type content_len, | |
3383 | bfd_size_type offset, | |
3384 | int slot) | |
e0001a05 | 3385 | { |
e0001a05 | 3386 | xtensa_isa isa = xtensa_default_isa; |
43cd72b9 BW |
3387 | xtensa_format fmt; |
3388 | static xtensa_insnbuf insnbuf = NULL; | |
3389 | static xtensa_insnbuf slotbuf = NULL; | |
3390 | ||
3391 | if (offset + MIN_INSN_LENGTH > content_len) | |
e0001a05 NC |
3392 | return XTENSA_UNDEFINED; |
3393 | ||
3394 | if (insnbuf == NULL) | |
43cd72b9 BW |
3395 | { |
3396 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3397 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3398 | } | |
3399 | ||
3400 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3401 | content_len - offset); | |
3402 | fmt = xtensa_format_decode (isa, insnbuf); | |
3403 | if (fmt == XTENSA_UNDEFINED) | |
e0001a05 | 3404 | return XTENSA_UNDEFINED; |
43cd72b9 BW |
3405 | |
3406 | if (slot >= xtensa_format_num_slots (isa, fmt)) | |
e0001a05 | 3407 | return XTENSA_UNDEFINED; |
e0001a05 | 3408 | |
43cd72b9 BW |
3409 | xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); |
3410 | return xtensa_opcode_decode (isa, fmt, slot, slotbuf); | |
3411 | } | |
e0001a05 | 3412 | |
e0001a05 | 3413 | |
43cd72b9 BW |
3414 | /* The offset is the offset in the contents. |
3415 | The address is the address of that offset. */ | |
e0001a05 | 3416 | |
43cd72b9 | 3417 | static bfd_boolean |
7fa3d080 BW |
3418 | check_branch_target_aligned (bfd_byte *contents, |
3419 | bfd_size_type content_length, | |
3420 | bfd_vma offset, | |
3421 | bfd_vma address) | |
43cd72b9 BW |
3422 | { |
3423 | bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); | |
3424 | if (insn_len == 0) | |
3425 | return FALSE; | |
3426 | return check_branch_target_aligned_address (address, insn_len); | |
3427 | } | |
e0001a05 | 3428 | |
e0001a05 | 3429 | |
43cd72b9 | 3430 | static bfd_boolean |
7fa3d080 BW |
3431 | check_loop_aligned (bfd_byte *contents, |
3432 | bfd_size_type content_length, | |
3433 | bfd_vma offset, | |
3434 | bfd_vma address) | |
e0001a05 | 3435 | { |
43cd72b9 BW |
3436 | bfd_size_type loop_len, insn_len; |
3437 | xtensa_opcode opcode = | |
3438 | insn_decode_opcode (contents, content_length, offset, 0); | |
3439 | BFD_ASSERT (opcode != XTENSA_UNDEFINED); | |
3440 | if (opcode != XTENSA_UNDEFINED) | |
3441 | return FALSE; | |
3442 | BFD_ASSERT (xtensa_opcode_is_loop (xtensa_default_isa, opcode)); | |
3443 | if (!xtensa_opcode_is_loop (xtensa_default_isa, opcode)) | |
3444 | return FALSE; | |
e0001a05 | 3445 | |
43cd72b9 BW |
3446 | loop_len = insn_decode_len (contents, content_length, offset); |
3447 | BFD_ASSERT (loop_len != 0); | |
3448 | if (loop_len == 0) | |
3449 | return FALSE; | |
3450 | ||
3451 | insn_len = insn_decode_len (contents, content_length, offset + loop_len); | |
3452 | BFD_ASSERT (insn_len != 0); | |
3453 | if (insn_len == 0) | |
3454 | return FALSE; | |
e0001a05 | 3455 | |
43cd72b9 BW |
3456 | return check_branch_target_aligned_address (address + loop_len, insn_len); |
3457 | } | |
e0001a05 | 3458 | |
e0001a05 NC |
3459 | |
3460 | static bfd_boolean | |
7fa3d080 | 3461 | check_branch_target_aligned_address (bfd_vma addr, int len) |
e0001a05 | 3462 | { |
43cd72b9 BW |
3463 | if (len == 8) |
3464 | return (addr % 8 == 0); | |
3465 | return ((addr >> 2) == ((addr + len - 1) >> 2)); | |
e0001a05 NC |
3466 | } |
3467 | ||
43cd72b9 BW |
3468 | \f |
3469 | /* Instruction widening and narrowing. */ | |
e0001a05 | 3470 | |
7fa3d080 BW |
3471 | /* When FLIX is available we need to access certain instructions only |
3472 | when they are 16-bit or 24-bit instructions. This table caches | |
3473 | information about such instructions by walking through all the | |
3474 | opcodes and finding the smallest single-slot format into which each | |
3475 | can be encoded. */ | |
3476 | ||
3477 | static xtensa_format *op_single_fmt_table = NULL; | |
e0001a05 NC |
3478 | |
3479 | ||
7fa3d080 BW |
3480 | static void |
3481 | init_op_single_format_table (void) | |
e0001a05 | 3482 | { |
7fa3d080 BW |
3483 | xtensa_isa isa = xtensa_default_isa; |
3484 | xtensa_insnbuf ibuf; | |
3485 | xtensa_opcode opcode; | |
3486 | xtensa_format fmt; | |
3487 | int num_opcodes; | |
3488 | ||
3489 | if (op_single_fmt_table) | |
3490 | return; | |
3491 | ||
3492 | ibuf = xtensa_insnbuf_alloc (isa); | |
3493 | num_opcodes = xtensa_isa_num_opcodes (isa); | |
3494 | ||
3495 | op_single_fmt_table = (xtensa_format *) | |
3496 | bfd_malloc (sizeof (xtensa_format) * num_opcodes); | |
3497 | for (opcode = 0; opcode < num_opcodes; opcode++) | |
3498 | { | |
3499 | op_single_fmt_table[opcode] = XTENSA_UNDEFINED; | |
3500 | for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) | |
3501 | { | |
3502 | if (xtensa_format_num_slots (isa, fmt) == 1 | |
3503 | && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) | |
3504 | { | |
3505 | xtensa_opcode old_fmt = op_single_fmt_table[opcode]; | |
3506 | int fmt_length = xtensa_format_length (isa, fmt); | |
3507 | if (old_fmt == XTENSA_UNDEFINED | |
3508 | || fmt_length < xtensa_format_length (isa, old_fmt)) | |
3509 | op_single_fmt_table[opcode] = fmt; | |
3510 | } | |
3511 | } | |
3512 | } | |
3513 | xtensa_insnbuf_free (isa, ibuf); | |
3514 | } | |
3515 | ||
3516 | ||
3517 | static xtensa_format | |
3518 | get_single_format (xtensa_opcode opcode) | |
3519 | { | |
3520 | init_op_single_format_table (); | |
3521 | return op_single_fmt_table[opcode]; | |
3522 | } | |
e0001a05 | 3523 | |
e0001a05 | 3524 | |
43cd72b9 BW |
3525 | /* For the set of narrowable instructions we do NOT include the |
3526 | narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities | |
3527 | involved during linker relaxation that may require these to | |
3528 | re-expand in some conditions. Also, the narrowing "or" -> mov.n | |
3529 | requires special case code to ensure it only works when op1 == op2. */ | |
e0001a05 | 3530 | |
7fa3d080 BW |
3531 | struct string_pair |
3532 | { | |
3533 | const char *wide; | |
3534 | const char *narrow; | |
3535 | }; | |
3536 | ||
43cd72b9 | 3537 | struct string_pair narrowable[] = |
e0001a05 | 3538 | { |
43cd72b9 BW |
3539 | { "add", "add.n" }, |
3540 | { "addi", "addi.n" }, | |
3541 | { "addmi", "addi.n" }, | |
3542 | { "l32i", "l32i.n" }, | |
3543 | { "movi", "movi.n" }, | |
3544 | { "ret", "ret.n" }, | |
3545 | { "retw", "retw.n" }, | |
3546 | { "s32i", "s32i.n" }, | |
3547 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3548 | }; | |
e0001a05 | 3549 | |
43cd72b9 | 3550 | struct string_pair widenable[] = |
e0001a05 | 3551 | { |
43cd72b9 BW |
3552 | { "add", "add.n" }, |
3553 | { "addi", "addi.n" }, | |
3554 | { "addmi", "addi.n" }, | |
3555 | { "beqz", "beqz.n" }, | |
3556 | { "bnez", "bnez.n" }, | |
3557 | { "l32i", "l32i.n" }, | |
3558 | { "movi", "movi.n" }, | |
3559 | { "ret", "ret.n" }, | |
3560 | { "retw", "retw.n" }, | |
3561 | { "s32i", "s32i.n" }, | |
3562 | { "or", "mov.n" } /* special case only when op1 == op2 */ | |
3563 | }; | |
e0001a05 NC |
3564 | |
3565 | ||
43cd72b9 BW |
3566 | /* Attempt to narrow an instruction. Return true if the narrowing is |
3567 | valid. If the do_it parameter is non-zero, then perform the action | |
3568 | in-place directly into the contents. Otherwise, do not modify the | |
3569 | contents. The set of valid narrowing are specified by a string table | |
3570 | but require some special case operand checks in some cases. */ | |
3571 | ||
e0001a05 | 3572 | static bfd_boolean |
7fa3d080 BW |
3573 | narrow_instruction (bfd_byte *contents, |
3574 | bfd_size_type content_length, | |
3575 | bfd_size_type offset, | |
3576 | bfd_boolean do_it) | |
e0001a05 | 3577 | { |
43cd72b9 BW |
3578 | xtensa_opcode opcode; |
3579 | bfd_size_type insn_len, opi; | |
3580 | xtensa_isa isa = xtensa_default_isa; | |
3581 | xtensa_format fmt, o_fmt; | |
e0001a05 | 3582 | |
43cd72b9 BW |
3583 | static xtensa_insnbuf insnbuf = NULL; |
3584 | static xtensa_insnbuf slotbuf = NULL; | |
3585 | static xtensa_insnbuf o_insnbuf = NULL; | |
3586 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 3587 | |
43cd72b9 BW |
3588 | if (insnbuf == NULL) |
3589 | { | |
3590 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3591 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3592 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
3593 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3594 | } | |
e0001a05 | 3595 | |
43cd72b9 | 3596 | BFD_ASSERT (offset < content_length); |
e0001a05 | 3597 | |
43cd72b9 BW |
3598 | if (content_length < 2) |
3599 | return FALSE; | |
e0001a05 | 3600 | |
43cd72b9 BW |
3601 | /* We will hand-code a few of these for a little while. |
3602 | These have all been specified in the assembler aleady. */ | |
3603 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3604 | content_length - offset); | |
3605 | fmt = xtensa_format_decode (isa, insnbuf); | |
3606 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
3607 | return FALSE; | |
e0001a05 | 3608 | |
43cd72b9 BW |
3609 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
3610 | return FALSE; | |
e0001a05 | 3611 | |
43cd72b9 BW |
3612 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
3613 | if (opcode == XTENSA_UNDEFINED) | |
3614 | return FALSE; | |
3615 | insn_len = xtensa_format_length (isa, fmt); | |
3616 | if (insn_len > content_length) | |
3617 | return FALSE; | |
e0001a05 | 3618 | |
43cd72b9 BW |
3619 | for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); ++opi) |
3620 | { | |
3621 | bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); | |
e0001a05 | 3622 | |
43cd72b9 BW |
3623 | if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) |
3624 | { | |
3625 | uint32 value, newval; | |
3626 | int i, operand_count, o_operand_count; | |
3627 | xtensa_opcode o_opcode; | |
e0001a05 | 3628 | |
43cd72b9 BW |
3629 | /* Address does not matter in this case. We might need to |
3630 | fix it to handle branches/jumps. */ | |
3631 | bfd_vma self_address = 0; | |
e0001a05 | 3632 | |
43cd72b9 BW |
3633 | o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); |
3634 | if (o_opcode == XTENSA_UNDEFINED) | |
3635 | return FALSE; | |
3636 | o_fmt = get_single_format (o_opcode); | |
3637 | if (o_fmt == XTENSA_UNDEFINED) | |
3638 | return FALSE; | |
e0001a05 | 3639 | |
43cd72b9 BW |
3640 | if (xtensa_format_length (isa, fmt) != 3 |
3641 | || xtensa_format_length (isa, o_fmt) != 2) | |
3642 | return FALSE; | |
e0001a05 | 3643 | |
43cd72b9 BW |
3644 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3645 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3646 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
e0001a05 | 3647 | |
43cd72b9 BW |
3648 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
3649 | return FALSE; | |
e0001a05 | 3650 | |
43cd72b9 BW |
3651 | if (!is_or) |
3652 | { | |
3653 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
3654 | return FALSE; | |
3655 | } | |
3656 | else | |
3657 | { | |
3658 | uint32 rawval0, rawval1, rawval2; | |
e0001a05 | 3659 | |
43cd72b9 BW |
3660 | if (o_operand_count + 1 != operand_count) |
3661 | return FALSE; | |
3662 | if (xtensa_operand_get_field (isa, opcode, 0, | |
3663 | fmt, 0, slotbuf, &rawval0) != 0) | |
3664 | return FALSE; | |
3665 | if (xtensa_operand_get_field (isa, opcode, 1, | |
3666 | fmt, 0, slotbuf, &rawval1) != 0) | |
3667 | return FALSE; | |
3668 | if (xtensa_operand_get_field (isa, opcode, 2, | |
3669 | fmt, 0, slotbuf, &rawval2) != 0) | |
3670 | return FALSE; | |
e0001a05 | 3671 | |
43cd72b9 BW |
3672 | if (rawval1 != rawval2) |
3673 | return FALSE; | |
3674 | if (rawval0 == rawval1) /* it is a nop */ | |
3675 | return FALSE; | |
3676 | } | |
e0001a05 | 3677 | |
43cd72b9 BW |
3678 | for (i = 0; i < o_operand_count; ++i) |
3679 | { | |
3680 | if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, | |
3681 | slotbuf, &value) | |
3682 | || xtensa_operand_decode (isa, opcode, i, &value)) | |
3683 | return FALSE; | |
e0001a05 | 3684 | |
43cd72b9 BW |
3685 | /* PC-relative branches need adjustment, but |
3686 | the PC-rel operand will always have a relocation. */ | |
3687 | newval = value; | |
3688 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3689 | self_address) | |
3690 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3691 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3692 | o_slotbuf, newval)) | |
3693 | return FALSE; | |
3694 | } | |
e0001a05 | 3695 | |
43cd72b9 BW |
3696 | if (xtensa_format_set_slot (isa, o_fmt, 0, |
3697 | o_insnbuf, o_slotbuf) != 0) | |
3698 | return FALSE; | |
e0001a05 | 3699 | |
43cd72b9 BW |
3700 | if (do_it) |
3701 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3702 | content_length - offset); | |
3703 | return TRUE; | |
3704 | } | |
3705 | } | |
3706 | return FALSE; | |
3707 | } | |
e0001a05 | 3708 | |
e0001a05 | 3709 | |
43cd72b9 BW |
3710 | /* Attempt to widen an instruction. Return true if the widening is |
3711 | valid. If the do_it parameter is non-zero, then the action should | |
3712 | be performed inplace into the contents. Otherwise, do not modify | |
3713 | the contents. The set of valid widenings are specified by a string | |
3714 | table but require some special case operand checks in some | |
3715 | cases. */ | |
e0001a05 | 3716 | |
43cd72b9 | 3717 | static bfd_boolean |
7fa3d080 BW |
3718 | widen_instruction (bfd_byte *contents, |
3719 | bfd_size_type content_length, | |
3720 | bfd_size_type offset, | |
3721 | bfd_boolean do_it) | |
e0001a05 | 3722 | { |
43cd72b9 BW |
3723 | xtensa_opcode opcode; |
3724 | bfd_size_type insn_len, opi; | |
3725 | xtensa_isa isa = xtensa_default_isa; | |
3726 | xtensa_format fmt, o_fmt; | |
e0001a05 | 3727 | |
43cd72b9 BW |
3728 | static xtensa_insnbuf insnbuf = NULL; |
3729 | static xtensa_insnbuf slotbuf = NULL; | |
3730 | static xtensa_insnbuf o_insnbuf = NULL; | |
3731 | static xtensa_insnbuf o_slotbuf = NULL; | |
e0001a05 | 3732 | |
43cd72b9 BW |
3733 | if (insnbuf == NULL) |
3734 | { | |
3735 | insnbuf = xtensa_insnbuf_alloc (isa); | |
3736 | slotbuf = xtensa_insnbuf_alloc (isa); | |
3737 | o_insnbuf = xtensa_insnbuf_alloc (isa); | |
3738 | o_slotbuf = xtensa_insnbuf_alloc (isa); | |
3739 | } | |
e0001a05 | 3740 | |
43cd72b9 | 3741 | BFD_ASSERT (offset < content_length); |
2c8c90bc | 3742 | |
43cd72b9 | 3743 | if (content_length < 2) |
e0001a05 NC |
3744 | return FALSE; |
3745 | ||
43cd72b9 BW |
3746 | /* We will hand code a few of these for a little while. |
3747 | These have all been specified in the assembler aleady. */ | |
3748 | xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], | |
3749 | content_length - offset); | |
3750 | fmt = xtensa_format_decode (isa, insnbuf); | |
3751 | if (xtensa_format_num_slots (isa, fmt) != 1) | |
e0001a05 NC |
3752 | return FALSE; |
3753 | ||
43cd72b9 | 3754 | if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) |
e0001a05 NC |
3755 | return FALSE; |
3756 | ||
43cd72b9 BW |
3757 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); |
3758 | if (opcode == XTENSA_UNDEFINED) | |
e0001a05 | 3759 | return FALSE; |
43cd72b9 BW |
3760 | insn_len = xtensa_format_length (isa, fmt); |
3761 | if (insn_len > content_length) | |
3762 | return FALSE; | |
3763 | ||
3764 | for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); ++opi) | |
e0001a05 | 3765 | { |
43cd72b9 BW |
3766 | bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); |
3767 | bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 | |
3768 | || strcmp ("bnez", widenable[opi].wide) == 0); | |
e0001a05 | 3769 | |
43cd72b9 BW |
3770 | if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) |
3771 | { | |
3772 | uint32 value, newval; | |
3773 | int i, operand_count, o_operand_count, check_operand_count; | |
3774 | xtensa_opcode o_opcode; | |
e0001a05 | 3775 | |
43cd72b9 BW |
3776 | /* Address does not matter in this case. We might need to fix it |
3777 | to handle branches/jumps. */ | |
3778 | bfd_vma self_address = 0; | |
e0001a05 | 3779 | |
43cd72b9 BW |
3780 | o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); |
3781 | if (o_opcode == XTENSA_UNDEFINED) | |
3782 | return FALSE; | |
3783 | o_fmt = get_single_format (o_opcode); | |
3784 | if (o_fmt == XTENSA_UNDEFINED) | |
3785 | return FALSE; | |
e0001a05 | 3786 | |
43cd72b9 BW |
3787 | if (xtensa_format_length (isa, fmt) != 2 |
3788 | || xtensa_format_length (isa, o_fmt) != 3) | |
3789 | return FALSE; | |
e0001a05 | 3790 | |
43cd72b9 BW |
3791 | xtensa_format_encode (isa, o_fmt, o_insnbuf); |
3792 | operand_count = xtensa_opcode_num_operands (isa, opcode); | |
3793 | o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); | |
3794 | check_operand_count = o_operand_count; | |
e0001a05 | 3795 | |
43cd72b9 BW |
3796 | if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) |
3797 | return FALSE; | |
e0001a05 | 3798 | |
43cd72b9 BW |
3799 | if (!is_or) |
3800 | { | |
3801 | if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) | |
3802 | return FALSE; | |
3803 | } | |
3804 | else | |
3805 | { | |
3806 | uint32 rawval0, rawval1; | |
3807 | ||
3808 | if (o_operand_count != operand_count + 1) | |
3809 | return FALSE; | |
3810 | if (xtensa_operand_get_field (isa, opcode, 0, | |
3811 | fmt, 0, slotbuf, &rawval0) != 0) | |
3812 | return FALSE; | |
3813 | if (xtensa_operand_get_field (isa, opcode, 1, | |
3814 | fmt, 0, slotbuf, &rawval1) != 0) | |
3815 | return FALSE; | |
3816 | if (rawval0 == rawval1) /* it is a nop */ | |
3817 | return FALSE; | |
3818 | } | |
3819 | if (is_branch) | |
3820 | check_operand_count--; | |
3821 | ||
3822 | for (i = 0; i < check_operand_count; ++i) | |
3823 | { | |
3824 | int new_i = i; | |
3825 | if (is_or && i == o_operand_count - 1) | |
3826 | new_i = i - 1; | |
3827 | if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, | |
3828 | slotbuf, &value) | |
3829 | || xtensa_operand_decode (isa, opcode, new_i, &value)) | |
3830 | return FALSE; | |
3831 | ||
3832 | /* PC-relative branches need adjustment, but | |
3833 | the PC-rel operand will always have a relocation. */ | |
3834 | newval = value; | |
3835 | if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, | |
3836 | self_address) | |
3837 | || xtensa_operand_encode (isa, o_opcode, i, &newval) | |
3838 | || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, | |
3839 | o_slotbuf, newval)) | |
3840 | return FALSE; | |
3841 | } | |
3842 | ||
3843 | if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) | |
3844 | return FALSE; | |
3845 | ||
3846 | if (do_it) | |
3847 | xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, | |
3848 | content_length - offset); | |
3849 | return TRUE; | |
3850 | } | |
3851 | } | |
3852 | return FALSE; | |
e0001a05 NC |
3853 | } |
3854 | ||
43cd72b9 BW |
3855 | \f |
3856 | /* Code for transforming CALLs at link-time. */ | |
e0001a05 | 3857 | |
43cd72b9 | 3858 | static bfd_reloc_status_type |
7fa3d080 BW |
3859 | elf_xtensa_do_asm_simplify (bfd_byte *contents, |
3860 | bfd_vma address, | |
3861 | bfd_vma content_length, | |
3862 | char **error_message) | |
e0001a05 | 3863 | { |
43cd72b9 BW |
3864 | static xtensa_insnbuf insnbuf = NULL; |
3865 | static xtensa_insnbuf slotbuf = NULL; | |
3866 | xtensa_format core_format = XTENSA_UNDEFINED; | |
3867 | xtensa_opcode opcode; | |
3868 | xtensa_opcode direct_call_opcode; | |
3869 | xtensa_isa isa = xtensa_default_isa; | |
3870 | bfd_byte *chbuf = contents + address; | |
3871 | int opn; | |
e0001a05 | 3872 | |
43cd72b9 | 3873 | if (insnbuf == NULL) |
e0001a05 | 3874 | { |
43cd72b9 BW |
3875 | insnbuf = xtensa_insnbuf_alloc (isa); |
3876 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 3877 | } |
e0001a05 | 3878 | |
43cd72b9 BW |
3879 | if (content_length < address) |
3880 | { | |
3881 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3882 | return bfd_reloc_other; | |
3883 | } | |
e0001a05 | 3884 | |
43cd72b9 BW |
3885 | opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); |
3886 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
3887 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
3888 | { | |
3889 | *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); | |
3890 | return bfd_reloc_other; | |
3891 | } | |
3892 | ||
3893 | /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ | |
3894 | core_format = xtensa_format_lookup (isa, "x24"); | |
3895 | opcode = xtensa_opcode_lookup (isa, "or"); | |
3896 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); | |
3897 | for (opn = 0; opn < 3; opn++) | |
3898 | { | |
3899 | uint32 regno = 1; | |
3900 | xtensa_operand_encode (isa, opcode, opn, ®no); | |
3901 | xtensa_operand_set_field (isa, opcode, opn, core_format, 0, | |
3902 | slotbuf, regno); | |
3903 | } | |
3904 | xtensa_format_encode (isa, core_format, insnbuf); | |
3905 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3906 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); | |
e0001a05 | 3907 | |
43cd72b9 BW |
3908 | /* Assemble a CALL ("callN 0") into the 3 byte offset. */ |
3909 | xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); | |
3910 | xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); | |
e0001a05 | 3911 | |
43cd72b9 BW |
3912 | xtensa_format_encode (isa, core_format, insnbuf); |
3913 | xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); | |
3914 | xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, | |
3915 | content_length - address - 3); | |
e0001a05 | 3916 | |
43cd72b9 BW |
3917 | return bfd_reloc_ok; |
3918 | } | |
e0001a05 | 3919 | |
e0001a05 | 3920 | |
43cd72b9 | 3921 | static bfd_reloc_status_type |
7fa3d080 BW |
3922 | contract_asm_expansion (bfd_byte *contents, |
3923 | bfd_vma content_length, | |
3924 | Elf_Internal_Rela *irel, | |
3925 | char **error_message) | |
43cd72b9 BW |
3926 | { |
3927 | bfd_reloc_status_type retval = | |
3928 | elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, | |
3929 | error_message); | |
e0001a05 | 3930 | |
43cd72b9 BW |
3931 | if (retval != bfd_reloc_ok) |
3932 | return bfd_reloc_dangerous; | |
e0001a05 | 3933 | |
43cd72b9 BW |
3934 | /* Update the irel->r_offset field so that the right immediate and |
3935 | the right instruction are modified during the relocation. */ | |
3936 | irel->r_offset += 3; | |
3937 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); | |
3938 | return bfd_reloc_ok; | |
3939 | } | |
e0001a05 | 3940 | |
e0001a05 | 3941 | |
43cd72b9 | 3942 | static xtensa_opcode |
7fa3d080 | 3943 | swap_callx_for_call_opcode (xtensa_opcode opcode) |
e0001a05 | 3944 | { |
43cd72b9 | 3945 | init_call_opcodes (); |
e0001a05 | 3946 | |
43cd72b9 BW |
3947 | if (opcode == callx0_op) return call0_op; |
3948 | if (opcode == callx4_op) return call4_op; | |
3949 | if (opcode == callx8_op) return call8_op; | |
3950 | if (opcode == callx12_op) return call12_op; | |
e0001a05 | 3951 | |
43cd72b9 BW |
3952 | /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ |
3953 | return XTENSA_UNDEFINED; | |
3954 | } | |
e0001a05 | 3955 | |
e0001a05 | 3956 | |
43cd72b9 BW |
3957 | /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; |
3958 | CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. | |
3959 | If not, return XTENSA_UNDEFINED. */ | |
e0001a05 | 3960 | |
43cd72b9 BW |
3961 | #define L32R_TARGET_REG_OPERAND 0 |
3962 | #define CONST16_TARGET_REG_OPERAND 0 | |
3963 | #define CALLN_SOURCE_OPERAND 0 | |
e0001a05 | 3964 | |
43cd72b9 | 3965 | static xtensa_opcode |
7fa3d080 | 3966 | get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) |
e0001a05 | 3967 | { |
43cd72b9 BW |
3968 | static xtensa_insnbuf insnbuf = NULL; |
3969 | static xtensa_insnbuf slotbuf = NULL; | |
3970 | xtensa_format fmt; | |
3971 | xtensa_opcode opcode; | |
3972 | xtensa_isa isa = xtensa_default_isa; | |
3973 | uint32 regno, const16_regno, call_regno; | |
3974 | int offset = 0; | |
e0001a05 | 3975 | |
43cd72b9 | 3976 | if (insnbuf == NULL) |
e0001a05 | 3977 | { |
43cd72b9 BW |
3978 | insnbuf = xtensa_insnbuf_alloc (isa); |
3979 | slotbuf = xtensa_insnbuf_alloc (isa); | |
e0001a05 | 3980 | } |
43cd72b9 BW |
3981 | |
3982 | xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); | |
3983 | fmt = xtensa_format_decode (isa, insnbuf); | |
3984 | if (fmt == XTENSA_UNDEFINED | |
3985 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
3986 | return XTENSA_UNDEFINED; | |
3987 | ||
3988 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
3989 | if (opcode == XTENSA_UNDEFINED) | |
3990 | return XTENSA_UNDEFINED; | |
3991 | ||
3992 | if (opcode == get_l32r_opcode ()) | |
e0001a05 | 3993 | { |
43cd72b9 BW |
3994 | if (p_uses_l32r) |
3995 | *p_uses_l32r = TRUE; | |
3996 | if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, | |
3997 | fmt, 0, slotbuf, ®no) | |
3998 | || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, | |
3999 | ®no)) | |
4000 | return XTENSA_UNDEFINED; | |
e0001a05 | 4001 | } |
43cd72b9 | 4002 | else if (opcode == get_const16_opcode ()) |
e0001a05 | 4003 | { |
43cd72b9 BW |
4004 | if (p_uses_l32r) |
4005 | *p_uses_l32r = FALSE; | |
4006 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4007 | fmt, 0, slotbuf, ®no) | |
4008 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4009 | ®no)) | |
4010 | return XTENSA_UNDEFINED; | |
4011 | ||
4012 | /* Check that the next instruction is also CONST16. */ | |
4013 | offset += xtensa_format_length (isa, fmt); | |
4014 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4015 | fmt = xtensa_format_decode (isa, insnbuf); | |
4016 | if (fmt == XTENSA_UNDEFINED | |
4017 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4018 | return XTENSA_UNDEFINED; | |
4019 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4020 | if (opcode != get_const16_opcode ()) | |
4021 | return XTENSA_UNDEFINED; | |
4022 | ||
4023 | if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4024 | fmt, 0, slotbuf, &const16_regno) | |
4025 | || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, | |
4026 | &const16_regno) | |
4027 | || const16_regno != regno) | |
4028 | return XTENSA_UNDEFINED; | |
e0001a05 | 4029 | } |
43cd72b9 BW |
4030 | else |
4031 | return XTENSA_UNDEFINED; | |
e0001a05 | 4032 | |
43cd72b9 BW |
4033 | /* Next instruction should be an CALLXn with operand 0 == regno. */ |
4034 | offset += xtensa_format_length (isa, fmt); | |
4035 | xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); | |
4036 | fmt = xtensa_format_decode (isa, insnbuf); | |
4037 | if (fmt == XTENSA_UNDEFINED | |
4038 | || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) | |
4039 | return XTENSA_UNDEFINED; | |
4040 | opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); | |
4041 | if (opcode == XTENSA_UNDEFINED | |
4042 | || !is_indirect_call_opcode (opcode)) | |
4043 | return XTENSA_UNDEFINED; | |
e0001a05 | 4044 | |
43cd72b9 BW |
4045 | if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, |
4046 | fmt, 0, slotbuf, &call_regno) | |
4047 | || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, | |
4048 | &call_regno)) | |
4049 | return XTENSA_UNDEFINED; | |
e0001a05 | 4050 | |
43cd72b9 BW |
4051 | if (call_regno != regno) |
4052 | return XTENSA_UNDEFINED; | |
e0001a05 | 4053 | |
43cd72b9 BW |
4054 | return opcode; |
4055 | } | |
e0001a05 | 4056 | |
43cd72b9 BW |
4057 | \f |
4058 | /* Data structures used during relaxation. */ | |
e0001a05 | 4059 | |
43cd72b9 | 4060 | /* r_reloc: relocation values. */ |
e0001a05 | 4061 | |
43cd72b9 BW |
4062 | /* Through the relaxation process, we need to keep track of the values |
4063 | that will result from evaluating relocations. The standard ELF | |
4064 | relocation structure is not sufficient for this purpose because we're | |
4065 | operating on multiple input files at once, so we need to know which | |
4066 | input file a relocation refers to. The r_reloc structure thus | |
4067 | records both the input file (bfd) and ELF relocation. | |
e0001a05 | 4068 | |
43cd72b9 BW |
4069 | For efficiency, an r_reloc also contains a "target_offset" field to |
4070 | cache the target-section-relative offset value that is represented by | |
4071 | the relocation. | |
4072 | ||
4073 | The r_reloc also contains a virtual offset that allows multiple | |
4074 | inserted literals to be placed at the same "address" with | |
4075 | different offsets. */ | |
e0001a05 | 4076 | |
43cd72b9 | 4077 | typedef struct r_reloc_struct r_reloc; |
e0001a05 | 4078 | |
43cd72b9 | 4079 | struct r_reloc_struct |
e0001a05 | 4080 | { |
43cd72b9 BW |
4081 | bfd *abfd; |
4082 | Elf_Internal_Rela rela; | |
e0001a05 | 4083 | bfd_vma target_offset; |
43cd72b9 | 4084 | bfd_vma virtual_offset; |
e0001a05 NC |
4085 | }; |
4086 | ||
e0001a05 | 4087 | |
43cd72b9 BW |
4088 | /* The r_reloc structure is included by value in literal_value, but not |
4089 | every literal_value has an associated relocation -- some are simple | |
4090 | constants. In such cases, we set all the fields in the r_reloc | |
4091 | struct to zero. The r_reloc_is_const function should be used to | |
4092 | detect this case. */ | |
e0001a05 | 4093 | |
43cd72b9 | 4094 | static bfd_boolean |
7fa3d080 | 4095 | r_reloc_is_const (const r_reloc *r_rel) |
e0001a05 | 4096 | { |
43cd72b9 | 4097 | return (r_rel->abfd == NULL); |
e0001a05 NC |
4098 | } |
4099 | ||
4100 | ||
43cd72b9 | 4101 | static bfd_vma |
7fa3d080 | 4102 | r_reloc_get_target_offset (const r_reloc *r_rel) |
e0001a05 | 4103 | { |
43cd72b9 BW |
4104 | bfd_vma target_offset; |
4105 | unsigned long r_symndx; | |
e0001a05 | 4106 | |
43cd72b9 BW |
4107 | BFD_ASSERT (!r_reloc_is_const (r_rel)); |
4108 | r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4109 | target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); | |
4110 | return (target_offset + r_rel->rela.r_addend); | |
4111 | } | |
e0001a05 | 4112 | |
e0001a05 | 4113 | |
43cd72b9 | 4114 | static struct elf_link_hash_entry * |
7fa3d080 | 4115 | r_reloc_get_hash_entry (const r_reloc *r_rel) |
e0001a05 | 4116 | { |
43cd72b9 BW |
4117 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); |
4118 | return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); | |
4119 | } | |
e0001a05 | 4120 | |
43cd72b9 BW |
4121 | |
4122 | static asection * | |
7fa3d080 | 4123 | r_reloc_get_section (const r_reloc *r_rel) |
43cd72b9 BW |
4124 | { |
4125 | unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); | |
4126 | return get_elf_r_symndx_section (r_rel->abfd, r_symndx); | |
4127 | } | |
e0001a05 NC |
4128 | |
4129 | ||
4130 | static bfd_boolean | |
7fa3d080 | 4131 | r_reloc_is_defined (const r_reloc *r_rel) |
e0001a05 | 4132 | { |
43cd72b9 BW |
4133 | asection *sec; |
4134 | if (r_rel == NULL) | |
e0001a05 | 4135 | return FALSE; |
e0001a05 | 4136 | |
43cd72b9 BW |
4137 | sec = r_reloc_get_section (r_rel); |
4138 | if (sec == bfd_abs_section_ptr | |
4139 | || sec == bfd_com_section_ptr | |
4140 | || sec == bfd_und_section_ptr) | |
4141 | return FALSE; | |
4142 | return TRUE; | |
e0001a05 NC |
4143 | } |
4144 | ||
4145 | ||
7fa3d080 BW |
4146 | static void |
4147 | r_reloc_init (r_reloc *r_rel, | |
4148 | bfd *abfd, | |
4149 | Elf_Internal_Rela *irel, | |
4150 | bfd_byte *contents, | |
4151 | bfd_size_type content_length) | |
4152 | { | |
4153 | int r_type; | |
4154 | reloc_howto_type *howto; | |
4155 | ||
4156 | if (irel) | |
4157 | { | |
4158 | r_rel->rela = *irel; | |
4159 | r_rel->abfd = abfd; | |
4160 | r_rel->target_offset = r_reloc_get_target_offset (r_rel); | |
4161 | r_rel->virtual_offset = 0; | |
4162 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
4163 | howto = &elf_howto_table[r_type]; | |
4164 | if (howto->partial_inplace) | |
4165 | { | |
4166 | bfd_vma inplace_val; | |
4167 | BFD_ASSERT (r_rel->rela.r_offset < content_length); | |
4168 | ||
4169 | inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); | |
4170 | r_rel->target_offset += inplace_val; | |
4171 | } | |
4172 | } | |
4173 | else | |
4174 | memset (r_rel, 0, sizeof (r_reloc)); | |
4175 | } | |
4176 | ||
4177 | ||
43cd72b9 BW |
4178 | #if DEBUG |
4179 | ||
e0001a05 | 4180 | static void |
7fa3d080 | 4181 | print_r_reloc (FILE *fp, const r_reloc *r_rel) |
e0001a05 | 4182 | { |
43cd72b9 BW |
4183 | if (r_reloc_is_defined (r_rel)) |
4184 | { | |
4185 | asection *sec = r_reloc_get_section (r_rel); | |
4186 | fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); | |
4187 | } | |
4188 | else if (r_reloc_get_hash_entry (r_rel)) | |
4189 | fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); | |
4190 | else | |
4191 | fprintf (fp, " ?? + "); | |
e0001a05 | 4192 | |
43cd72b9 BW |
4193 | fprintf_vma (fp, r_rel->target_offset); |
4194 | if (r_rel->virtual_offset) | |
4195 | { | |
4196 | fprintf (fp, " + "); | |
4197 | fprintf_vma (fp, r_rel->virtual_offset); | |
4198 | } | |
4199 | ||
4200 | fprintf (fp, ")"); | |
4201 | } | |
e0001a05 | 4202 | |
43cd72b9 | 4203 | #endif /* DEBUG */ |
e0001a05 | 4204 | |
43cd72b9 BW |
4205 | \f |
4206 | /* source_reloc: relocations that reference literals. */ | |
e0001a05 | 4207 | |
43cd72b9 BW |
4208 | /* To determine whether literals can be coalesced, we need to first |
4209 | record all the relocations that reference the literals. The | |
4210 | source_reloc structure below is used for this purpose. The | |
4211 | source_reloc entries are kept in a per-literal-section array, sorted | |
4212 | by offset within the literal section (i.e., target offset). | |
e0001a05 | 4213 | |
43cd72b9 BW |
4214 | The source_sec and r_rel.rela.r_offset fields identify the source of |
4215 | the relocation. The r_rel field records the relocation value, i.e., | |
4216 | the offset of the literal being referenced. The opnd field is needed | |
4217 | to determine the range of the immediate field to which the relocation | |
4218 | applies, so we can determine whether another literal with the same | |
4219 | value is within range. The is_null field is true when the relocation | |
4220 | is being removed (e.g., when an L32R is being removed due to a CALLX | |
4221 | that is converted to a direct CALL). */ | |
e0001a05 | 4222 | |
43cd72b9 BW |
4223 | typedef struct source_reloc_struct source_reloc; |
4224 | ||
4225 | struct source_reloc_struct | |
e0001a05 | 4226 | { |
43cd72b9 BW |
4227 | asection *source_sec; |
4228 | r_reloc r_rel; | |
4229 | xtensa_opcode opcode; | |
4230 | int opnd; | |
4231 | bfd_boolean is_null; | |
4232 | bfd_boolean is_abs_literal; | |
4233 | }; | |
e0001a05 | 4234 | |
e0001a05 | 4235 | |
e0001a05 | 4236 | static void |
7fa3d080 BW |
4237 | init_source_reloc (source_reloc *reloc, |
4238 | asection *source_sec, | |
4239 | const r_reloc *r_rel, | |
4240 | xtensa_opcode opcode, | |
4241 | int opnd, | |
4242 | bfd_boolean is_abs_literal) | |
e0001a05 | 4243 | { |
43cd72b9 BW |
4244 | reloc->source_sec = source_sec; |
4245 | reloc->r_rel = *r_rel; | |
4246 | reloc->opcode = opcode; | |
4247 | reloc->opnd = opnd; | |
4248 | reloc->is_null = FALSE; | |
4249 | reloc->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4250 | } |
4251 | ||
e0001a05 | 4252 | |
43cd72b9 BW |
4253 | /* Find the source_reloc for a particular source offset and relocation |
4254 | type. Note that the array is sorted by _target_ offset, so this is | |
4255 | just a linear search. */ | |
e0001a05 | 4256 | |
43cd72b9 | 4257 | static source_reloc * |
7fa3d080 BW |
4258 | find_source_reloc (source_reloc *src_relocs, |
4259 | int src_count, | |
4260 | asection *sec, | |
4261 | Elf_Internal_Rela *irel) | |
e0001a05 | 4262 | { |
43cd72b9 | 4263 | int i; |
e0001a05 | 4264 | |
43cd72b9 BW |
4265 | for (i = 0; i < src_count; i++) |
4266 | { | |
4267 | if (src_relocs[i].source_sec == sec | |
4268 | && src_relocs[i].r_rel.rela.r_offset == irel->r_offset | |
4269 | && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) | |
4270 | == ELF32_R_TYPE (irel->r_info))) | |
4271 | return &src_relocs[i]; | |
4272 | } | |
e0001a05 | 4273 | |
43cd72b9 | 4274 | return NULL; |
e0001a05 NC |
4275 | } |
4276 | ||
4277 | ||
43cd72b9 | 4278 | static int |
7fa3d080 | 4279 | source_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 4280 | { |
43cd72b9 BW |
4281 | const source_reloc *a = (const source_reloc *) ap; |
4282 | const source_reloc *b = (const source_reloc *) bp; | |
e0001a05 | 4283 | |
43cd72b9 BW |
4284 | if (a->r_rel.target_offset != b->r_rel.target_offset) |
4285 | return (a->r_rel.target_offset - b->r_rel.target_offset); | |
e0001a05 | 4286 | |
43cd72b9 BW |
4287 | /* We don't need to sort on these criteria for correctness, |
4288 | but enforcing a more strict ordering prevents unstable qsort | |
4289 | from behaving differently with different implementations. | |
4290 | Without the code below we get correct but different results | |
4291 | on Solaris 2.7 and 2.8. We would like to always produce the | |
4292 | same results no matter the host. */ | |
4293 | ||
4294 | if ((!a->is_null) - (!b->is_null)) | |
4295 | return ((!a->is_null) - (!b->is_null)); | |
4296 | return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); | |
e0001a05 NC |
4297 | } |
4298 | ||
43cd72b9 BW |
4299 | \f |
4300 | /* Literal values and value hash tables. */ | |
e0001a05 | 4301 | |
43cd72b9 BW |
4302 | /* Literals with the same value can be coalesced. The literal_value |
4303 | structure records the value of a literal: the "r_rel" field holds the | |
4304 | information from the relocation on the literal (if there is one) and | |
4305 | the "value" field holds the contents of the literal word itself. | |
e0001a05 | 4306 | |
43cd72b9 BW |
4307 | The value_map structure records a literal value along with the |
4308 | location of a literal holding that value. The value_map hash table | |
4309 | is indexed by the literal value, so that we can quickly check if a | |
4310 | particular literal value has been seen before and is thus a candidate | |
4311 | for coalescing. */ | |
e0001a05 | 4312 | |
43cd72b9 BW |
4313 | typedef struct literal_value_struct literal_value; |
4314 | typedef struct value_map_struct value_map; | |
4315 | typedef struct value_map_hash_table_struct value_map_hash_table; | |
e0001a05 | 4316 | |
43cd72b9 | 4317 | struct literal_value_struct |
e0001a05 | 4318 | { |
43cd72b9 BW |
4319 | r_reloc r_rel; |
4320 | unsigned long value; | |
4321 | bfd_boolean is_abs_literal; | |
4322 | }; | |
4323 | ||
4324 | struct value_map_struct | |
4325 | { | |
4326 | literal_value val; /* The literal value. */ | |
4327 | r_reloc loc; /* Location of the literal. */ | |
4328 | value_map *next; | |
4329 | }; | |
4330 | ||
4331 | struct value_map_hash_table_struct | |
4332 | { | |
4333 | unsigned bucket_count; | |
4334 | value_map **buckets; | |
4335 | unsigned count; | |
4336 | bfd_boolean has_last_loc; | |
4337 | r_reloc last_loc; | |
4338 | }; | |
4339 | ||
4340 | ||
e0001a05 | 4341 | static void |
7fa3d080 BW |
4342 | init_literal_value (literal_value *lit, |
4343 | const r_reloc *r_rel, | |
4344 | unsigned long value, | |
4345 | bfd_boolean is_abs_literal) | |
e0001a05 | 4346 | { |
43cd72b9 BW |
4347 | lit->r_rel = *r_rel; |
4348 | lit->value = value; | |
4349 | lit->is_abs_literal = is_abs_literal; | |
e0001a05 NC |
4350 | } |
4351 | ||
4352 | ||
43cd72b9 | 4353 | static bfd_boolean |
7fa3d080 BW |
4354 | literal_value_equal (const literal_value *src1, |
4355 | const literal_value *src2, | |
4356 | bfd_boolean final_static_link) | |
e0001a05 | 4357 | { |
43cd72b9 | 4358 | struct elf_link_hash_entry *h1, *h2; |
e0001a05 | 4359 | |
43cd72b9 BW |
4360 | if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) |
4361 | return FALSE; | |
e0001a05 | 4362 | |
43cd72b9 BW |
4363 | if (r_reloc_is_const (&src1->r_rel)) |
4364 | return (src1->value == src2->value); | |
e0001a05 | 4365 | |
43cd72b9 BW |
4366 | if (ELF32_R_TYPE (src1->r_rel.rela.r_info) |
4367 | != ELF32_R_TYPE (src2->r_rel.rela.r_info)) | |
4368 | return FALSE; | |
e0001a05 | 4369 | |
43cd72b9 BW |
4370 | if (src1->r_rel.target_offset != src2->r_rel.target_offset) |
4371 | return FALSE; | |
4372 | ||
4373 | if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) | |
4374 | return FALSE; | |
4375 | ||
4376 | if (src1->value != src2->value) | |
4377 | return FALSE; | |
4378 | ||
4379 | /* Now check for the same section (if defined) or the same elf_hash | |
4380 | (if undefined or weak). */ | |
4381 | h1 = r_reloc_get_hash_entry (&src1->r_rel); | |
4382 | h2 = r_reloc_get_hash_entry (&src2->r_rel); | |
4383 | if (r_reloc_is_defined (&src1->r_rel) | |
4384 | && (final_static_link | |
4385 | || ((!h1 || h1->root.type != bfd_link_hash_defweak) | |
4386 | && (!h2 || h2->root.type != bfd_link_hash_defweak)))) | |
4387 | { | |
4388 | if (r_reloc_get_section (&src1->r_rel) | |
4389 | != r_reloc_get_section (&src2->r_rel)) | |
4390 | return FALSE; | |
4391 | } | |
4392 | else | |
4393 | { | |
4394 | /* Require that the hash entries (i.e., symbols) be identical. */ | |
4395 | if (h1 != h2 || h1 == 0) | |
4396 | return FALSE; | |
4397 | } | |
4398 | ||
4399 | if (src1->is_abs_literal != src2->is_abs_literal) | |
4400 | return FALSE; | |
4401 | ||
4402 | return TRUE; | |
e0001a05 NC |
4403 | } |
4404 | ||
e0001a05 | 4405 | |
43cd72b9 BW |
4406 | /* Must be power of 2. */ |
4407 | #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 | |
e0001a05 | 4408 | |
43cd72b9 | 4409 | static value_map_hash_table * |
7fa3d080 | 4410 | value_map_hash_table_init (void) |
43cd72b9 BW |
4411 | { |
4412 | value_map_hash_table *values; | |
e0001a05 | 4413 | |
43cd72b9 BW |
4414 | values = (value_map_hash_table *) |
4415 | bfd_zmalloc (sizeof (value_map_hash_table)); | |
4416 | values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; | |
4417 | values->count = 0; | |
4418 | values->buckets = (value_map **) | |
4419 | bfd_zmalloc (sizeof (value_map *) * values->bucket_count); | |
4420 | if (values->buckets == NULL) | |
4421 | { | |
4422 | free (values); | |
4423 | return NULL; | |
4424 | } | |
4425 | values->has_last_loc = FALSE; | |
4426 | ||
4427 | return values; | |
4428 | } | |
4429 | ||
4430 | ||
4431 | static void | |
7fa3d080 | 4432 | value_map_hash_table_delete (value_map_hash_table *table) |
e0001a05 | 4433 | { |
43cd72b9 BW |
4434 | free (table->buckets); |
4435 | free (table); | |
4436 | } | |
4437 | ||
4438 | ||
4439 | static unsigned | |
7fa3d080 | 4440 | hash_bfd_vma (bfd_vma val) |
43cd72b9 BW |
4441 | { |
4442 | return (val >> 2) + (val >> 10); | |
4443 | } | |
4444 | ||
4445 | ||
4446 | static unsigned | |
7fa3d080 | 4447 | literal_value_hash (const literal_value *src) |
43cd72b9 BW |
4448 | { |
4449 | unsigned hash_val; | |
e0001a05 | 4450 | |
43cd72b9 BW |
4451 | hash_val = hash_bfd_vma (src->value); |
4452 | if (!r_reloc_is_const (&src->r_rel)) | |
e0001a05 | 4453 | { |
43cd72b9 BW |
4454 | void *sec_or_hash; |
4455 | ||
4456 | hash_val += hash_bfd_vma (src->is_abs_literal * 1000); | |
4457 | hash_val += hash_bfd_vma (src->r_rel.target_offset); | |
4458 | hash_val += hash_bfd_vma (src->r_rel.virtual_offset); | |
4459 | ||
4460 | /* Now check for the same section and the same elf_hash. */ | |
4461 | if (r_reloc_is_defined (&src->r_rel)) | |
4462 | sec_or_hash = r_reloc_get_section (&src->r_rel); | |
4463 | else | |
4464 | sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); | |
f60ca5e3 | 4465 | hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); |
e0001a05 | 4466 | } |
43cd72b9 BW |
4467 | return hash_val; |
4468 | } | |
e0001a05 | 4469 | |
e0001a05 | 4470 | |
43cd72b9 | 4471 | /* Check if the specified literal_value has been seen before. */ |
e0001a05 | 4472 | |
43cd72b9 | 4473 | static value_map * |
7fa3d080 BW |
4474 | value_map_get_cached_value (value_map_hash_table *map, |
4475 | const literal_value *val, | |
4476 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4477 | { |
4478 | value_map *map_e; | |
4479 | value_map *bucket; | |
4480 | unsigned idx; | |
4481 | ||
4482 | idx = literal_value_hash (val); | |
4483 | idx = idx & (map->bucket_count - 1); | |
4484 | bucket = map->buckets[idx]; | |
4485 | for (map_e = bucket; map_e; map_e = map_e->next) | |
e0001a05 | 4486 | { |
43cd72b9 BW |
4487 | if (literal_value_equal (&map_e->val, val, final_static_link)) |
4488 | return map_e; | |
4489 | } | |
4490 | return NULL; | |
4491 | } | |
e0001a05 | 4492 | |
e0001a05 | 4493 | |
43cd72b9 BW |
4494 | /* Record a new literal value. It is illegal to call this if VALUE |
4495 | already has an entry here. */ | |
4496 | ||
4497 | static value_map * | |
7fa3d080 BW |
4498 | add_value_map (value_map_hash_table *map, |
4499 | const literal_value *val, | |
4500 | const r_reloc *loc, | |
4501 | bfd_boolean final_static_link) | |
43cd72b9 BW |
4502 | { |
4503 | value_map **bucket_p; | |
4504 | unsigned idx; | |
4505 | ||
4506 | value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); | |
4507 | if (val_e == NULL) | |
4508 | { | |
4509 | bfd_set_error (bfd_error_no_memory); | |
4510 | return NULL; | |
e0001a05 NC |
4511 | } |
4512 | ||
43cd72b9 BW |
4513 | BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); |
4514 | val_e->val = *val; | |
4515 | val_e->loc = *loc; | |
4516 | ||
4517 | idx = literal_value_hash (val); | |
4518 | idx = idx & (map->bucket_count - 1); | |
4519 | bucket_p = &map->buckets[idx]; | |
4520 | ||
4521 | val_e->next = *bucket_p; | |
4522 | *bucket_p = val_e; | |
4523 | map->count++; | |
4524 | /* FIXME: Consider resizing the hash table if we get too many entries. */ | |
4525 | ||
4526 | return val_e; | |
e0001a05 NC |
4527 | } |
4528 | ||
43cd72b9 BW |
4529 | \f |
4530 | /* Lists of text actions (ta_) for narrowing, widening, longcall | |
4531 | conversion, space fill, code & literal removal, etc. */ | |
4532 | ||
4533 | /* The following text actions are generated: | |
4534 | ||
4535 | "ta_remove_insn" remove an instruction or instructions | |
4536 | "ta_remove_longcall" convert longcall to call | |
4537 | "ta_convert_longcall" convert longcall to nop/call | |
4538 | "ta_narrow_insn" narrow a wide instruction | |
4539 | "ta_widen" widen a narrow instruction | |
4540 | "ta_fill" add fill or remove fill | |
4541 | removed < 0 is a fill; branches to the fill address will be | |
4542 | changed to address + fill size (e.g., address - removed) | |
4543 | removed >= 0 branches to the fill address will stay unchanged | |
4544 | "ta_remove_literal" remove a literal; this action is | |
4545 | indicated when a literal is removed | |
4546 | or replaced. | |
4547 | "ta_add_literal" insert a new literal; this action is | |
4548 | indicated when a literal has been moved. | |
4549 | It may use a virtual_offset because | |
4550 | multiple literals can be placed at the | |
4551 | same location. | |
4552 | ||
4553 | For each of these text actions, we also record the number of bytes | |
4554 | removed by performing the text action. In the case of a "ta_widen" | |
4555 | or a "ta_fill" that adds space, the removed_bytes will be negative. */ | |
4556 | ||
4557 | typedef struct text_action_struct text_action; | |
4558 | typedef struct text_action_list_struct text_action_list; | |
4559 | typedef enum text_action_enum_t text_action_t; | |
4560 | ||
4561 | enum text_action_enum_t | |
4562 | { | |
4563 | ta_none, | |
4564 | ta_remove_insn, /* removed = -size */ | |
4565 | ta_remove_longcall, /* removed = -size */ | |
4566 | ta_convert_longcall, /* removed = 0 */ | |
4567 | ta_narrow_insn, /* removed = -1 */ | |
4568 | ta_widen_insn, /* removed = +1 */ | |
4569 | ta_fill, /* removed = +size */ | |
4570 | ta_remove_literal, | |
4571 | ta_add_literal | |
4572 | }; | |
e0001a05 | 4573 | |
e0001a05 | 4574 | |
43cd72b9 BW |
4575 | /* Structure for a text action record. */ |
4576 | struct text_action_struct | |
e0001a05 | 4577 | { |
43cd72b9 BW |
4578 | text_action_t action; |
4579 | asection *sec; /* Optional */ | |
4580 | bfd_vma offset; | |
4581 | bfd_vma virtual_offset; /* Zero except for adding literals. */ | |
4582 | int removed_bytes; | |
4583 | literal_value value; /* Only valid when adding literals. */ | |
e0001a05 | 4584 | |
43cd72b9 BW |
4585 | text_action *next; |
4586 | }; | |
e0001a05 | 4587 | |
e0001a05 | 4588 | |
43cd72b9 BW |
4589 | /* List of all of the actions taken on a text section. */ |
4590 | struct text_action_list_struct | |
4591 | { | |
4592 | text_action *head; | |
4593 | }; | |
e0001a05 | 4594 | |
e0001a05 | 4595 | |
7fa3d080 BW |
4596 | static text_action * |
4597 | find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) | |
43cd72b9 BW |
4598 | { |
4599 | text_action **m_p; | |
4600 | ||
4601 | /* It is not necessary to fill at the end of a section. */ | |
4602 | if (sec->size == offset) | |
4603 | return NULL; | |
4604 | ||
7fa3d080 | 4605 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4606 | { |
4607 | text_action *t = *m_p; | |
4608 | /* When the action is another fill at the same address, | |
4609 | just increase the size. */ | |
4610 | if (t->offset == offset && t->action == ta_fill) | |
4611 | return t; | |
4612 | } | |
4613 | return NULL; | |
4614 | } | |
4615 | ||
4616 | ||
4617 | static int | |
7fa3d080 BW |
4618 | compute_removed_action_diff (const text_action *ta, |
4619 | asection *sec, | |
4620 | bfd_vma offset, | |
4621 | int removed, | |
4622 | int removable_space) | |
43cd72b9 BW |
4623 | { |
4624 | int new_removed; | |
4625 | int current_removed = 0; | |
4626 | ||
7fa3d080 | 4627 | if (ta) |
43cd72b9 BW |
4628 | current_removed = ta->removed_bytes; |
4629 | ||
4630 | BFD_ASSERT (ta == NULL || ta->offset == offset); | |
4631 | BFD_ASSERT (ta == NULL || ta->action == ta_fill); | |
4632 | ||
4633 | /* It is not necessary to fill at the end of a section. Clean this up. */ | |
4634 | if (sec->size == offset) | |
4635 | new_removed = removable_space - 0; | |
4636 | else | |
4637 | { | |
4638 | int space; | |
4639 | int added = -removed - current_removed; | |
4640 | /* Ignore multiples of the section alignment. */ | |
4641 | added = ((1 << sec->alignment_power) - 1) & added; | |
4642 | new_removed = (-added); | |
4643 | ||
4644 | /* Modify for removable. */ | |
4645 | space = removable_space - new_removed; | |
4646 | new_removed = (removable_space | |
4647 | - (((1 << sec->alignment_power) - 1) & space)); | |
4648 | } | |
4649 | return (new_removed - current_removed); | |
4650 | } | |
4651 | ||
4652 | ||
7fa3d080 BW |
4653 | static void |
4654 | adjust_fill_action (text_action *ta, int fill_diff) | |
43cd72b9 BW |
4655 | { |
4656 | ta->removed_bytes += fill_diff; | |
4657 | } | |
4658 | ||
4659 | ||
4660 | /* Add a modification action to the text. For the case of adding or | |
4661 | removing space, modify any current fill and assume that | |
4662 | "unreachable_space" bytes can be freely contracted. Note that a | |
4663 | negative removed value is a fill. */ | |
4664 | ||
4665 | static void | |
7fa3d080 BW |
4666 | text_action_add (text_action_list *l, |
4667 | text_action_t action, | |
4668 | asection *sec, | |
4669 | bfd_vma offset, | |
4670 | int removed) | |
43cd72b9 BW |
4671 | { |
4672 | text_action **m_p; | |
4673 | text_action *ta; | |
4674 | ||
4675 | /* It is not necessary to fill at the end of a section. */ | |
4676 | if (action == ta_fill && sec->size == offset) | |
4677 | return; | |
4678 | ||
4679 | /* It is not necessary to fill 0 bytes. */ | |
4680 | if (action == ta_fill && removed == 0) | |
4681 | return; | |
4682 | ||
7fa3d080 | 4683 | for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) |
43cd72b9 BW |
4684 | { |
4685 | text_action *t = *m_p; | |
4686 | /* When the action is another fill at the same address, | |
4687 | just increase the size. */ | |
4688 | if (t->offset == offset && t->action == ta_fill && action == ta_fill) | |
4689 | { | |
4690 | t->removed_bytes += removed; | |
4691 | return; | |
4692 | } | |
4693 | } | |
4694 | ||
4695 | /* Create a new record and fill it up. */ | |
4696 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4697 | ta->action = action; | |
4698 | ta->sec = sec; | |
4699 | ta->offset = offset; | |
4700 | ta->removed_bytes = removed; | |
4701 | ta->next = (*m_p); | |
4702 | *m_p = ta; | |
4703 | } | |
4704 | ||
4705 | ||
4706 | static void | |
7fa3d080 BW |
4707 | text_action_add_literal (text_action_list *l, |
4708 | text_action_t action, | |
4709 | const r_reloc *loc, | |
4710 | const literal_value *value, | |
4711 | int removed) | |
43cd72b9 BW |
4712 | { |
4713 | text_action **m_p; | |
4714 | text_action *ta; | |
4715 | asection *sec = r_reloc_get_section (loc); | |
4716 | bfd_vma offset = loc->target_offset; | |
4717 | bfd_vma virtual_offset = loc->virtual_offset; | |
4718 | ||
4719 | BFD_ASSERT (action == ta_add_literal); | |
4720 | ||
4721 | for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) | |
4722 | { | |
4723 | if ((*m_p)->offset > offset | |
4724 | && ((*m_p)->offset != offset | |
4725 | || (*m_p)->virtual_offset > virtual_offset)) | |
4726 | break; | |
4727 | } | |
4728 | ||
4729 | /* Create a new record and fill it up. */ | |
4730 | ta = (text_action *) bfd_zmalloc (sizeof (text_action)); | |
4731 | ta->action = action; | |
4732 | ta->sec = sec; | |
4733 | ta->offset = offset; | |
4734 | ta->virtual_offset = virtual_offset; | |
4735 | ta->value = *value; | |
4736 | ta->removed_bytes = removed; | |
4737 | ta->next = (*m_p); | |
4738 | *m_p = ta; | |
4739 | } | |
4740 | ||
4741 | ||
7fa3d080 BW |
4742 | static bfd_vma |
4743 | offset_with_removed_text (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
4744 | { |
4745 | text_action *r; | |
4746 | int removed = 0; | |
4747 | ||
4748 | for (r = action_list->head; r && r->offset <= offset; r = r->next) | |
4749 | { | |
4750 | if (r->offset < offset | |
4751 | || (r->action == ta_fill && r->removed_bytes < 0)) | |
4752 | removed += r->removed_bytes; | |
4753 | } | |
4754 | ||
4755 | return (offset - removed); | |
4756 | } | |
4757 | ||
4758 | ||
7fa3d080 BW |
4759 | static bfd_vma |
4760 | offset_with_removed_text_before_fill (text_action_list *action_list, | |
4761 | bfd_vma offset) | |
43cd72b9 BW |
4762 | { |
4763 | text_action *r; | |
4764 | int removed = 0; | |
4765 | ||
4766 | for (r = action_list->head; r && r->offset < offset; r = r->next) | |
4767 | removed += r->removed_bytes; | |
4768 | ||
4769 | return (offset - removed); | |
4770 | } | |
4771 | ||
4772 | ||
4773 | /* The find_insn_action routine will only find non-fill actions. */ | |
4774 | ||
7fa3d080 BW |
4775 | static text_action * |
4776 | find_insn_action (text_action_list *action_list, bfd_vma offset) | |
43cd72b9 BW |
4777 | { |
4778 | text_action *t; | |
4779 | for (t = action_list->head; t; t = t->next) | |
4780 | { | |
4781 | if (t->offset == offset) | |
4782 | { | |
4783 | switch (t->action) | |
4784 | { | |
4785 | case ta_none: | |
4786 | case ta_fill: | |
4787 | break; | |
4788 | case ta_remove_insn: | |
4789 | case ta_remove_longcall: | |
4790 | case ta_convert_longcall: | |
4791 | case ta_narrow_insn: | |
4792 | case ta_widen_insn: | |
4793 | return t; | |
4794 | case ta_remove_literal: | |
4795 | case ta_add_literal: | |
4796 | BFD_ASSERT (0); | |
4797 | break; | |
4798 | } | |
4799 | } | |
4800 | } | |
4801 | return NULL; | |
4802 | } | |
4803 | ||
4804 | ||
4805 | #if DEBUG | |
4806 | ||
4807 | static void | |
7fa3d080 | 4808 | print_action_list (FILE *fp, text_action_list *action_list) |
43cd72b9 BW |
4809 | { |
4810 | text_action *r; | |
4811 | ||
4812 | fprintf (fp, "Text Action\n"); | |
4813 | for (r = action_list->head; r != NULL; r = r->next) | |
4814 | { | |
4815 | const char *t = "unknown"; | |
4816 | switch (r->action) | |
4817 | { | |
4818 | case ta_remove_insn: | |
4819 | t = "remove_insn"; break; | |
4820 | case ta_remove_longcall: | |
4821 | t = "remove_longcall"; break; | |
4822 | case ta_convert_longcall: | |
4823 | t = "remove_longcall"; break; | |
4824 | case ta_narrow_insn: | |
4825 | t = "narrow_insn"; break; | |
4826 | case ta_widen_insn: | |
4827 | t = "widen_insn"; break; | |
4828 | case ta_fill: | |
4829 | t = "fill"; break; | |
4830 | case ta_none: | |
4831 | t = "none"; break; | |
4832 | case ta_remove_literal: | |
4833 | t = "remove_literal"; break; | |
4834 | case ta_add_literal: | |
4835 | t = "add_literal"; break; | |
4836 | } | |
4837 | ||
4838 | fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", | |
4839 | r->sec->owner->filename, | |
4840 | r->sec->name, r->offset, t, r->removed_bytes); | |
4841 | } | |
4842 | } | |
4843 | ||
4844 | #endif /* DEBUG */ | |
4845 | ||
4846 | \f | |
4847 | /* Lists of literals being coalesced or removed. */ | |
4848 | ||
4849 | /* In the usual case, the literal identified by "from" is being | |
4850 | coalesced with another literal identified by "to". If the literal is | |
4851 | unused and is being removed altogether, "to.abfd" will be NULL. | |
4852 | The removed_literal entries are kept on a per-section list, sorted | |
4853 | by the "from" offset field. */ | |
4854 | ||
4855 | typedef struct removed_literal_struct removed_literal; | |
4856 | typedef struct removed_literal_list_struct removed_literal_list; | |
4857 | ||
4858 | struct removed_literal_struct | |
4859 | { | |
4860 | r_reloc from; | |
4861 | r_reloc to; | |
4862 | removed_literal *next; | |
4863 | }; | |
4864 | ||
4865 | struct removed_literal_list_struct | |
4866 | { | |
4867 | removed_literal *head; | |
4868 | removed_literal *tail; | |
4869 | }; | |
4870 | ||
4871 | ||
43cd72b9 BW |
4872 | /* Record that the literal at "from" is being removed. If "to" is not |
4873 | NULL, the "from" literal is being coalesced with the "to" literal. */ | |
4874 | ||
4875 | static void | |
7fa3d080 BW |
4876 | add_removed_literal (removed_literal_list *removed_list, |
4877 | const r_reloc *from, | |
4878 | const r_reloc *to) | |
43cd72b9 BW |
4879 | { |
4880 | removed_literal *r, *new_r, *next_r; | |
4881 | ||
4882 | new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); | |
4883 | ||
4884 | new_r->from = *from; | |
4885 | if (to) | |
4886 | new_r->to = *to; | |
4887 | else | |
4888 | new_r->to.abfd = NULL; | |
4889 | new_r->next = NULL; | |
4890 | ||
4891 | r = removed_list->head; | |
4892 | if (r == NULL) | |
4893 | { | |
4894 | removed_list->head = new_r; | |
4895 | removed_list->tail = new_r; | |
4896 | } | |
4897 | /* Special check for common case of append. */ | |
4898 | else if (removed_list->tail->from.target_offset < from->target_offset) | |
4899 | { | |
4900 | removed_list->tail->next = new_r; | |
4901 | removed_list->tail = new_r; | |
4902 | } | |
4903 | else | |
4904 | { | |
7fa3d080 | 4905 | while (r->from.target_offset < from->target_offset && r->next) |
43cd72b9 BW |
4906 | { |
4907 | r = r->next; | |
4908 | } | |
4909 | next_r = r->next; | |
4910 | r->next = new_r; | |
4911 | new_r->next = next_r; | |
4912 | if (next_r == NULL) | |
4913 | removed_list->tail = new_r; | |
4914 | } | |
4915 | } | |
4916 | ||
4917 | ||
4918 | /* Check if the list of removed literals contains an entry for the | |
4919 | given address. Return the entry if found. */ | |
4920 | ||
4921 | static removed_literal * | |
7fa3d080 | 4922 | find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) |
43cd72b9 BW |
4923 | { |
4924 | removed_literal *r = removed_list->head; | |
4925 | while (r && r->from.target_offset < addr) | |
4926 | r = r->next; | |
4927 | if (r && r->from.target_offset == addr) | |
4928 | return r; | |
4929 | return NULL; | |
4930 | } | |
4931 | ||
4932 | ||
4933 | #if DEBUG | |
4934 | ||
4935 | static void | |
7fa3d080 | 4936 | print_removed_literals (FILE *fp, removed_literal_list *removed_list) |
43cd72b9 BW |
4937 | { |
4938 | removed_literal *r; | |
4939 | r = removed_list->head; | |
4940 | if (r) | |
4941 | fprintf (fp, "Removed Literals\n"); | |
4942 | for (; r != NULL; r = r->next) | |
4943 | { | |
4944 | print_r_reloc (fp, &r->from); | |
4945 | fprintf (fp, " => "); | |
4946 | if (r->to.abfd == NULL) | |
4947 | fprintf (fp, "REMOVED"); | |
4948 | else | |
4949 | print_r_reloc (fp, &r->to); | |
4950 | fprintf (fp, "\n"); | |
4951 | } | |
4952 | } | |
4953 | ||
4954 | #endif /* DEBUG */ | |
4955 | ||
4956 | \f | |
4957 | /* Per-section data for relaxation. */ | |
4958 | ||
4959 | typedef struct reloc_bfd_fix_struct reloc_bfd_fix; | |
4960 | ||
4961 | struct xtensa_relax_info_struct | |
4962 | { | |
4963 | bfd_boolean is_relaxable_literal_section; | |
4964 | bfd_boolean is_relaxable_asm_section; | |
4965 | int visited; /* Number of times visited. */ | |
4966 | ||
4967 | source_reloc *src_relocs; /* Array[src_count]. */ | |
4968 | int src_count; | |
4969 | int src_next; /* Next src_relocs entry to assign. */ | |
4970 | ||
4971 | removed_literal_list removed_list; | |
4972 | text_action_list action_list; | |
4973 | ||
4974 | reloc_bfd_fix *fix_list; | |
4975 | reloc_bfd_fix *fix_array; | |
4976 | unsigned fix_array_count; | |
4977 | ||
4978 | /* Support for expanding the reloc array that is stored | |
4979 | in the section structure. If the relocations have been | |
4980 | reallocated, the newly allocated relocations will be referenced | |
4981 | here along with the actual size allocated. The relocation | |
4982 | count will always be found in the section structure. */ | |
4983 | Elf_Internal_Rela *allocated_relocs; | |
4984 | unsigned relocs_count; | |
4985 | unsigned allocated_relocs_count; | |
4986 | }; | |
4987 | ||
4988 | struct elf_xtensa_section_data | |
4989 | { | |
4990 | struct bfd_elf_section_data elf; | |
4991 | xtensa_relax_info relax_info; | |
4992 | }; | |
4993 | ||
43cd72b9 BW |
4994 | |
4995 | static bfd_boolean | |
7fa3d080 | 4996 | elf_xtensa_new_section_hook (bfd *abfd, asection *sec) |
43cd72b9 BW |
4997 | { |
4998 | struct elf_xtensa_section_data *sdata; | |
4999 | bfd_size_type amt = sizeof (*sdata); | |
5000 | ||
5001 | sdata = (struct elf_xtensa_section_data *) bfd_zalloc (abfd, amt); | |
5002 | if (sdata == NULL) | |
5003 | return FALSE; | |
7fa3d080 | 5004 | sec->used_by_bfd = (void *) sdata; |
43cd72b9 BW |
5005 | |
5006 | return _bfd_elf_new_section_hook (abfd, sec); | |
5007 | } | |
5008 | ||
5009 | ||
7fa3d080 BW |
5010 | static xtensa_relax_info * |
5011 | get_xtensa_relax_info (asection *sec) | |
5012 | { | |
5013 | struct elf_xtensa_section_data *section_data; | |
5014 | ||
5015 | /* No info available if no section or if it is an output section. */ | |
5016 | if (!sec || sec == sec->output_section) | |
5017 | return NULL; | |
5018 | ||
5019 | section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); | |
5020 | return §ion_data->relax_info; | |
5021 | } | |
5022 | ||
5023 | ||
43cd72b9 | 5024 | static void |
7fa3d080 | 5025 | init_xtensa_relax_info (asection *sec) |
43cd72b9 BW |
5026 | { |
5027 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5028 | ||
5029 | relax_info->is_relaxable_literal_section = FALSE; | |
5030 | relax_info->is_relaxable_asm_section = FALSE; | |
5031 | relax_info->visited = 0; | |
5032 | ||
5033 | relax_info->src_relocs = NULL; | |
5034 | relax_info->src_count = 0; | |
5035 | relax_info->src_next = 0; | |
5036 | ||
5037 | relax_info->removed_list.head = NULL; | |
5038 | relax_info->removed_list.tail = NULL; | |
5039 | ||
5040 | relax_info->action_list.head = NULL; | |
5041 | ||
5042 | relax_info->fix_list = NULL; | |
5043 | relax_info->fix_array = NULL; | |
5044 | relax_info->fix_array_count = 0; | |
5045 | ||
5046 | relax_info->allocated_relocs = NULL; | |
5047 | relax_info->relocs_count = 0; | |
5048 | relax_info->allocated_relocs_count = 0; | |
5049 | } | |
5050 | ||
43cd72b9 BW |
5051 | \f |
5052 | /* Coalescing literals may require a relocation to refer to a section in | |
5053 | a different input file, but the standard relocation information | |
5054 | cannot express that. Instead, the reloc_bfd_fix structures are used | |
5055 | to "fix" the relocations that refer to sections in other input files. | |
5056 | These structures are kept on per-section lists. The "src_type" field | |
5057 | records the relocation type in case there are multiple relocations on | |
5058 | the same location. FIXME: This is ugly; an alternative might be to | |
5059 | add new symbols with the "owner" field to some other input file. */ | |
5060 | ||
5061 | struct reloc_bfd_fix_struct | |
5062 | { | |
5063 | asection *src_sec; | |
5064 | bfd_vma src_offset; | |
5065 | unsigned src_type; /* Relocation type. */ | |
5066 | ||
5067 | bfd *target_abfd; | |
5068 | asection *target_sec; | |
5069 | bfd_vma target_offset; | |
5070 | bfd_boolean translated; | |
5071 | ||
5072 | reloc_bfd_fix *next; | |
5073 | }; | |
5074 | ||
5075 | ||
43cd72b9 | 5076 | static reloc_bfd_fix * |
7fa3d080 BW |
5077 | reloc_bfd_fix_init (asection *src_sec, |
5078 | bfd_vma src_offset, | |
5079 | unsigned src_type, | |
5080 | bfd *target_abfd, | |
5081 | asection *target_sec, | |
5082 | bfd_vma target_offset, | |
5083 | bfd_boolean translated) | |
43cd72b9 BW |
5084 | { |
5085 | reloc_bfd_fix *fix; | |
5086 | ||
5087 | fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); | |
5088 | fix->src_sec = src_sec; | |
5089 | fix->src_offset = src_offset; | |
5090 | fix->src_type = src_type; | |
5091 | fix->target_abfd = target_abfd; | |
5092 | fix->target_sec = target_sec; | |
5093 | fix->target_offset = target_offset; | |
5094 | fix->translated = translated; | |
5095 | ||
5096 | return fix; | |
5097 | } | |
5098 | ||
5099 | ||
5100 | static void | |
7fa3d080 | 5101 | add_fix (asection *src_sec, reloc_bfd_fix *fix) |
43cd72b9 BW |
5102 | { |
5103 | xtensa_relax_info *relax_info; | |
5104 | ||
5105 | relax_info = get_xtensa_relax_info (src_sec); | |
5106 | fix->next = relax_info->fix_list; | |
5107 | relax_info->fix_list = fix; | |
5108 | } | |
5109 | ||
5110 | ||
5111 | static int | |
7fa3d080 | 5112 | fix_compare (const void *ap, const void *bp) |
43cd72b9 BW |
5113 | { |
5114 | const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; | |
5115 | const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; | |
5116 | ||
5117 | if (a->src_offset != b->src_offset) | |
5118 | return (a->src_offset - b->src_offset); | |
5119 | return (a->src_type - b->src_type); | |
5120 | } | |
5121 | ||
5122 | ||
5123 | static void | |
7fa3d080 | 5124 | cache_fix_array (asection *sec) |
43cd72b9 BW |
5125 | { |
5126 | unsigned i, count = 0; | |
5127 | reloc_bfd_fix *r; | |
5128 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5129 | ||
5130 | if (relax_info == NULL) | |
5131 | return; | |
5132 | if (relax_info->fix_list == NULL) | |
5133 | return; | |
5134 | ||
5135 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
5136 | count++; | |
5137 | ||
5138 | relax_info->fix_array = | |
5139 | (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); | |
5140 | relax_info->fix_array_count = count; | |
5141 | ||
5142 | r = relax_info->fix_list; | |
5143 | for (i = 0; i < count; i++, r = r->next) | |
5144 | { | |
5145 | relax_info->fix_array[count - 1 - i] = *r; | |
5146 | relax_info->fix_array[count - 1 - i].next = NULL; | |
5147 | } | |
5148 | ||
5149 | qsort (relax_info->fix_array, relax_info->fix_array_count, | |
5150 | sizeof (reloc_bfd_fix), fix_compare); | |
5151 | } | |
5152 | ||
5153 | ||
5154 | static reloc_bfd_fix * | |
7fa3d080 | 5155 | get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) |
43cd72b9 BW |
5156 | { |
5157 | xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); | |
5158 | reloc_bfd_fix *rv; | |
5159 | reloc_bfd_fix key; | |
5160 | ||
5161 | if (relax_info == NULL) | |
5162 | return NULL; | |
5163 | if (relax_info->fix_list == NULL) | |
5164 | return NULL; | |
5165 | ||
5166 | if (relax_info->fix_array == NULL) | |
5167 | cache_fix_array (sec); | |
5168 | ||
5169 | key.src_offset = offset; | |
5170 | key.src_type = type; | |
5171 | rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, | |
5172 | sizeof (reloc_bfd_fix), fix_compare); | |
5173 | return rv; | |
5174 | } | |
5175 | ||
5176 | \f | |
5177 | /* Section caching. */ | |
5178 | ||
5179 | typedef struct section_cache_struct section_cache_t; | |
5180 | ||
5181 | struct section_cache_struct | |
5182 | { | |
5183 | asection *sec; | |
5184 | ||
5185 | bfd_byte *contents; /* Cache of the section contents. */ | |
5186 | bfd_size_type content_length; | |
5187 | ||
5188 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5189 | unsigned pte_count; | |
5190 | ||
5191 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5192 | unsigned reloc_count; | |
5193 | }; | |
5194 | ||
5195 | ||
7fa3d080 BW |
5196 | static void |
5197 | init_section_cache (section_cache_t *sec_cache) | |
5198 | { | |
5199 | memset (sec_cache, 0, sizeof (*sec_cache)); | |
5200 | } | |
43cd72b9 BW |
5201 | |
5202 | ||
5203 | static void | |
7fa3d080 | 5204 | clear_section_cache (section_cache_t *sec_cache) |
43cd72b9 | 5205 | { |
7fa3d080 BW |
5206 | if (sec_cache->sec) |
5207 | { | |
5208 | release_contents (sec_cache->sec, sec_cache->contents); | |
5209 | release_internal_relocs (sec_cache->sec, sec_cache->relocs); | |
5210 | if (sec_cache->ptbl) | |
5211 | free (sec_cache->ptbl); | |
5212 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5213 | } | |
43cd72b9 BW |
5214 | } |
5215 | ||
5216 | ||
5217 | static bfd_boolean | |
7fa3d080 BW |
5218 | section_cache_section (section_cache_t *sec_cache, |
5219 | asection *sec, | |
5220 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
5221 | { |
5222 | bfd *abfd; | |
5223 | property_table_entry *prop_table = NULL; | |
5224 | int ptblsize = 0; | |
5225 | bfd_byte *contents = NULL; | |
5226 | Elf_Internal_Rela *internal_relocs = NULL; | |
5227 | bfd_size_type sec_size; | |
5228 | ||
5229 | if (sec == NULL) | |
5230 | return FALSE; | |
5231 | if (sec == sec_cache->sec) | |
5232 | return TRUE; | |
5233 | ||
5234 | abfd = sec->owner; | |
5235 | sec_size = bfd_get_section_limit (abfd, sec); | |
5236 | ||
5237 | /* Get the contents. */ | |
5238 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5239 | if (contents == NULL && sec_size != 0) | |
5240 | goto err; | |
5241 | ||
5242 | /* Get the relocations. */ | |
5243 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5244 | link_info->keep_memory); | |
5245 | ||
5246 | /* Get the entry table. */ | |
5247 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, | |
5248 | XTENSA_PROP_SEC_NAME, FALSE); | |
5249 | if (ptblsize < 0) | |
5250 | goto err; | |
5251 | ||
5252 | /* Fill in the new section cache. */ | |
5253 | clear_section_cache (sec_cache); | |
5254 | memset (sec_cache, 0, sizeof (sec_cache)); | |
5255 | ||
5256 | sec_cache->sec = sec; | |
5257 | sec_cache->contents = contents; | |
5258 | sec_cache->content_length = sec_size; | |
5259 | sec_cache->relocs = internal_relocs; | |
5260 | sec_cache->reloc_count = sec->reloc_count; | |
5261 | sec_cache->pte_count = ptblsize; | |
5262 | sec_cache->ptbl = prop_table; | |
5263 | ||
5264 | return TRUE; | |
5265 | ||
5266 | err: | |
5267 | release_contents (sec, contents); | |
5268 | release_internal_relocs (sec, internal_relocs); | |
5269 | if (prop_table) | |
5270 | free (prop_table); | |
5271 | return FALSE; | |
5272 | } | |
5273 | ||
43cd72b9 BW |
5274 | \f |
5275 | /* Extended basic blocks. */ | |
5276 | ||
5277 | /* An ebb_struct represents an Extended Basic Block. Within this | |
5278 | range, we guarantee that all instructions are decodable, the | |
5279 | property table entries are contiguous, and no property table | |
5280 | specifies a segment that cannot have instructions moved. This | |
5281 | structure contains caches of the contents, property table and | |
5282 | relocations for the specified section for easy use. The range is | |
5283 | specified by ranges of indices for the byte offset, property table | |
5284 | offsets and relocation offsets. These must be consistent. */ | |
5285 | ||
5286 | typedef struct ebb_struct ebb_t; | |
5287 | ||
5288 | struct ebb_struct | |
5289 | { | |
5290 | asection *sec; | |
5291 | ||
5292 | bfd_byte *contents; /* Cache of the section contents. */ | |
5293 | bfd_size_type content_length; | |
5294 | ||
5295 | property_table_entry *ptbl; /* Cache of the section property table. */ | |
5296 | unsigned pte_count; | |
5297 | ||
5298 | Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ | |
5299 | unsigned reloc_count; | |
5300 | ||
5301 | bfd_vma start_offset; /* Offset in section. */ | |
5302 | unsigned start_ptbl_idx; /* Offset in the property table. */ | |
5303 | unsigned start_reloc_idx; /* Offset in the relocations. */ | |
5304 | ||
5305 | bfd_vma end_offset; | |
5306 | unsigned end_ptbl_idx; | |
5307 | unsigned end_reloc_idx; | |
5308 | ||
5309 | bfd_boolean ends_section; /* Is this the last ebb in a section? */ | |
5310 | ||
5311 | /* The unreachable property table at the end of this set of blocks; | |
5312 | NULL if the end is not an unreachable block. */ | |
5313 | property_table_entry *ends_unreachable; | |
5314 | }; | |
5315 | ||
5316 | ||
5317 | enum ebb_target_enum | |
5318 | { | |
5319 | EBB_NO_ALIGN = 0, | |
5320 | EBB_DESIRE_TGT_ALIGN, | |
5321 | EBB_REQUIRE_TGT_ALIGN, | |
5322 | EBB_REQUIRE_LOOP_ALIGN, | |
5323 | EBB_REQUIRE_ALIGN | |
5324 | }; | |
5325 | ||
5326 | ||
5327 | /* proposed_action_struct is similar to the text_action_struct except | |
5328 | that is represents a potential transformation, not one that will | |
5329 | occur. We build a list of these for an extended basic block | |
5330 | and use them to compute the actual actions desired. We must be | |
5331 | careful that the entire set of actual actions we perform do not | |
5332 | break any relocations that would fit if the actions were not | |
5333 | performed. */ | |
5334 | ||
5335 | typedef struct proposed_action_struct proposed_action; | |
5336 | ||
5337 | struct proposed_action_struct | |
5338 | { | |
5339 | enum ebb_target_enum align_type; /* for the target alignment */ | |
5340 | bfd_vma alignment_pow; | |
5341 | text_action_t action; | |
5342 | bfd_vma offset; | |
5343 | int removed_bytes; | |
5344 | bfd_boolean do_action; /* If false, then we will not perform the action. */ | |
5345 | }; | |
5346 | ||
5347 | ||
5348 | /* The ebb_constraint_struct keeps a set of proposed actions for an | |
5349 | extended basic block. */ | |
5350 | ||
5351 | typedef struct ebb_constraint_struct ebb_constraint; | |
5352 | ||
5353 | struct ebb_constraint_struct | |
5354 | { | |
5355 | ebb_t ebb; | |
5356 | bfd_boolean start_movable; | |
5357 | ||
5358 | /* Bytes of extra space at the beginning if movable. */ | |
5359 | int start_extra_space; | |
5360 | ||
5361 | enum ebb_target_enum start_align; | |
5362 | ||
5363 | bfd_boolean end_movable; | |
5364 | ||
5365 | /* Bytes of extra space at the end if movable. */ | |
5366 | int end_extra_space; | |
5367 | ||
5368 | unsigned action_count; | |
5369 | unsigned action_allocated; | |
5370 | ||
5371 | /* Array of proposed actions. */ | |
5372 | proposed_action *actions; | |
5373 | ||
5374 | /* Action alignments -- one for each proposed action. */ | |
5375 | enum ebb_target_enum *action_aligns; | |
5376 | }; | |
5377 | ||
5378 | ||
43cd72b9 | 5379 | static void |
7fa3d080 | 5380 | init_ebb_constraint (ebb_constraint *c) |
43cd72b9 BW |
5381 | { |
5382 | memset (c, 0, sizeof (ebb_constraint)); | |
5383 | } | |
5384 | ||
5385 | ||
5386 | static void | |
7fa3d080 | 5387 | free_ebb_constraint (ebb_constraint *c) |
43cd72b9 | 5388 | { |
7fa3d080 | 5389 | if (c->actions) |
43cd72b9 BW |
5390 | free (c->actions); |
5391 | } | |
5392 | ||
5393 | ||
5394 | static void | |
7fa3d080 BW |
5395 | init_ebb (ebb_t *ebb, |
5396 | asection *sec, | |
5397 | bfd_byte *contents, | |
5398 | bfd_size_type content_length, | |
5399 | property_table_entry *prop_table, | |
5400 | unsigned ptblsize, | |
5401 | Elf_Internal_Rela *internal_relocs, | |
5402 | unsigned reloc_count) | |
43cd72b9 BW |
5403 | { |
5404 | memset (ebb, 0, sizeof (ebb_t)); | |
5405 | ebb->sec = sec; | |
5406 | ebb->contents = contents; | |
5407 | ebb->content_length = content_length; | |
5408 | ebb->ptbl = prop_table; | |
5409 | ebb->pte_count = ptblsize; | |
5410 | ebb->relocs = internal_relocs; | |
5411 | ebb->reloc_count = reloc_count; | |
5412 | ebb->start_offset = 0; | |
5413 | ebb->end_offset = ebb->content_length - 1; | |
5414 | ebb->start_ptbl_idx = 0; | |
5415 | ebb->end_ptbl_idx = ptblsize; | |
5416 | ebb->start_reloc_idx = 0; | |
5417 | ebb->end_reloc_idx = reloc_count; | |
5418 | } | |
5419 | ||
5420 | ||
5421 | /* Extend the ebb to all decodable contiguous sections. The algorithm | |
5422 | for building a basic block around an instruction is to push it | |
5423 | forward until we hit the end of a section, an unreachable block or | |
5424 | a block that cannot be transformed. Then we push it backwards | |
5425 | searching for similar conditions. */ | |
5426 | ||
7fa3d080 BW |
5427 | static bfd_boolean extend_ebb_bounds_forward (ebb_t *); |
5428 | static bfd_boolean extend_ebb_bounds_backward (ebb_t *); | |
5429 | static bfd_size_type insn_block_decodable_len | |
5430 | (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); | |
5431 | ||
43cd72b9 | 5432 | static bfd_boolean |
7fa3d080 | 5433 | extend_ebb_bounds (ebb_t *ebb) |
43cd72b9 BW |
5434 | { |
5435 | if (!extend_ebb_bounds_forward (ebb)) | |
5436 | return FALSE; | |
5437 | if (!extend_ebb_bounds_backward (ebb)) | |
5438 | return FALSE; | |
5439 | return TRUE; | |
5440 | } | |
5441 | ||
5442 | ||
5443 | static bfd_boolean | |
7fa3d080 | 5444 | extend_ebb_bounds_forward (ebb_t *ebb) |
43cd72b9 BW |
5445 | { |
5446 | property_table_entry *the_entry, *new_entry; | |
5447 | ||
5448 | the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
5449 | ||
5450 | /* Stop when (1) we cannot decode an instruction, (2) we are at | |
5451 | the end of the property tables, (3) we hit a non-contiguous property | |
5452 | table entry, (4) we hit a NO_TRANSFORM region. */ | |
5453 | ||
5454 | while (1) | |
5455 | { | |
5456 | bfd_vma entry_end; | |
5457 | bfd_size_type insn_block_len; | |
5458 | ||
5459 | entry_end = the_entry->address - ebb->sec->vma + the_entry->size; | |
5460 | insn_block_len = | |
5461 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5462 | ebb->end_offset, | |
5463 | entry_end - ebb->end_offset); | |
5464 | if (insn_block_len != (entry_end - ebb->end_offset)) | |
5465 | { | |
5466 | (*_bfd_error_handler) | |
5467 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5468 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5469 | return FALSE; | |
5470 | } | |
5471 | ebb->end_offset += insn_block_len; | |
5472 | ||
5473 | if (ebb->end_offset == ebb->sec->size) | |
5474 | ebb->ends_section = TRUE; | |
5475 | ||
5476 | /* Update the reloc counter. */ | |
5477 | while (ebb->end_reloc_idx + 1 < ebb->reloc_count | |
5478 | && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset | |
5479 | < ebb->end_offset)) | |
5480 | { | |
5481 | ebb->end_reloc_idx++; | |
5482 | } | |
5483 | ||
5484 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5485 | return TRUE; | |
5486 | ||
5487 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5488 | if (((new_entry->flags & XTENSA_PROP_INSN) == 0) | |
5489 | || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0) | |
5490 | || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) | |
5491 | break; | |
5492 | ||
5493 | if (the_entry->address + the_entry->size != new_entry->address) | |
5494 | break; | |
5495 | ||
5496 | the_entry = new_entry; | |
5497 | ebb->end_ptbl_idx++; | |
5498 | } | |
5499 | ||
5500 | /* Quick check for an unreachable or end of file just at the end. */ | |
5501 | if (ebb->end_ptbl_idx + 1 == ebb->pte_count) | |
5502 | { | |
5503 | if (ebb->end_offset == ebb->content_length) | |
5504 | ebb->ends_section = TRUE; | |
5505 | } | |
5506 | else | |
5507 | { | |
5508 | new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; | |
5509 | if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 | |
5510 | && the_entry->address + the_entry->size == new_entry->address) | |
5511 | ebb->ends_unreachable = new_entry; | |
5512 | } | |
5513 | ||
5514 | /* Any other ending requires exact alignment. */ | |
5515 | return TRUE; | |
5516 | } | |
5517 | ||
5518 | ||
5519 | static bfd_boolean | |
7fa3d080 | 5520 | extend_ebb_bounds_backward (ebb_t *ebb) |
43cd72b9 BW |
5521 | { |
5522 | property_table_entry *the_entry, *new_entry; | |
5523 | ||
5524 | the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; | |
5525 | ||
5526 | /* Stop when (1) we cannot decode the instructions in the current entry. | |
5527 | (2) we are at the beginning of the property tables, (3) we hit a | |
5528 | non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ | |
5529 | ||
5530 | while (1) | |
5531 | { | |
5532 | bfd_vma block_begin; | |
5533 | bfd_size_type insn_block_len; | |
5534 | ||
5535 | block_begin = the_entry->address - ebb->sec->vma; | |
5536 | insn_block_len = | |
5537 | insn_block_decodable_len (ebb->contents, ebb->content_length, | |
5538 | block_begin, | |
5539 | ebb->start_offset - block_begin); | |
5540 | if (insn_block_len != ebb->start_offset - block_begin) | |
5541 | { | |
5542 | (*_bfd_error_handler) | |
5543 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
5544 | ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); | |
5545 | return FALSE; | |
5546 | } | |
5547 | ebb->start_offset -= insn_block_len; | |
5548 | ||
5549 | /* Update the reloc counter. */ | |
5550 | while (ebb->start_reloc_idx > 0 | |
5551 | && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset | |
5552 | >= ebb->start_offset)) | |
5553 | { | |
5554 | ebb->start_reloc_idx--; | |
5555 | } | |
5556 | ||
5557 | if (ebb->start_ptbl_idx == 0) | |
5558 | return TRUE; | |
5559 | ||
5560 | new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; | |
5561 | if ((new_entry->flags & XTENSA_PROP_INSN) == 0 | |
5562 | || ((new_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) != 0) | |
5563 | || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) | |
5564 | return TRUE; | |
5565 | if (new_entry->address + new_entry->size != the_entry->address) | |
5566 | return TRUE; | |
5567 | ||
5568 | the_entry = new_entry; | |
5569 | ebb->start_ptbl_idx--; | |
5570 | } | |
5571 | return TRUE; | |
5572 | } | |
5573 | ||
5574 | ||
5575 | static bfd_size_type | |
7fa3d080 BW |
5576 | insn_block_decodable_len (bfd_byte *contents, |
5577 | bfd_size_type content_len, | |
5578 | bfd_vma block_offset, | |
5579 | bfd_size_type block_len) | |
43cd72b9 BW |
5580 | { |
5581 | bfd_vma offset = block_offset; | |
5582 | ||
5583 | while (offset < block_offset + block_len) | |
5584 | { | |
5585 | bfd_size_type insn_len = 0; | |
5586 | ||
5587 | insn_len = insn_decode_len (contents, content_len, offset); | |
5588 | if (insn_len == 0) | |
5589 | return (offset - block_offset); | |
5590 | offset += insn_len; | |
5591 | } | |
5592 | return (offset - block_offset); | |
5593 | } | |
5594 | ||
5595 | ||
5596 | static void | |
7fa3d080 | 5597 | ebb_propose_action (ebb_constraint *c, |
7fa3d080 | 5598 | enum ebb_target_enum align_type, |
288f74fa | 5599 | bfd_vma alignment_pow, |
7fa3d080 BW |
5600 | text_action_t action, |
5601 | bfd_vma offset, | |
5602 | int removed_bytes, | |
5603 | bfd_boolean do_action) | |
43cd72b9 | 5604 | { |
b08b5071 | 5605 | proposed_action *act; |
43cd72b9 | 5606 | |
43cd72b9 BW |
5607 | if (c->action_allocated <= c->action_count) |
5608 | { | |
b08b5071 | 5609 | unsigned new_allocated, i; |
823fc61f | 5610 | proposed_action *new_actions; |
b08b5071 BW |
5611 | |
5612 | new_allocated = (c->action_count + 2) * 2; | |
823fc61f | 5613 | new_actions = (proposed_action *) |
43cd72b9 BW |
5614 | bfd_zmalloc (sizeof (proposed_action) * new_allocated); |
5615 | ||
5616 | for (i = 0; i < c->action_count; i++) | |
5617 | new_actions[i] = c->actions[i]; | |
7fa3d080 | 5618 | if (c->actions) |
43cd72b9 BW |
5619 | free (c->actions); |
5620 | c->actions = new_actions; | |
5621 | c->action_allocated = new_allocated; | |
5622 | } | |
b08b5071 BW |
5623 | |
5624 | act = &c->actions[c->action_count]; | |
5625 | act->align_type = align_type; | |
5626 | act->alignment_pow = alignment_pow; | |
5627 | act->action = action; | |
5628 | act->offset = offset; | |
5629 | act->removed_bytes = removed_bytes; | |
5630 | act->do_action = do_action; | |
5631 | ||
43cd72b9 BW |
5632 | c->action_count++; |
5633 | } | |
5634 | ||
5635 | \f | |
5636 | /* Access to internal relocations, section contents and symbols. */ | |
5637 | ||
5638 | /* During relaxation, we need to modify relocations, section contents, | |
5639 | and symbol definitions, and we need to keep the original values from | |
5640 | being reloaded from the input files, i.e., we need to "pin" the | |
5641 | modified values in memory. We also want to continue to observe the | |
5642 | setting of the "keep-memory" flag. The following functions wrap the | |
5643 | standard BFD functions to take care of this for us. */ | |
5644 | ||
5645 | static Elf_Internal_Rela * | |
7fa3d080 | 5646 | retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5647 | { |
5648 | Elf_Internal_Rela *internal_relocs; | |
5649 | ||
5650 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5651 | return NULL; | |
5652 | ||
5653 | internal_relocs = elf_section_data (sec)->relocs; | |
5654 | if (internal_relocs == NULL) | |
5655 | internal_relocs = (_bfd_elf_link_read_relocs | |
7fa3d080 | 5656 | (abfd, sec, NULL, NULL, keep_memory)); |
43cd72b9 BW |
5657 | return internal_relocs; |
5658 | } | |
5659 | ||
5660 | ||
5661 | static void | |
7fa3d080 | 5662 | pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5663 | { |
5664 | elf_section_data (sec)->relocs = internal_relocs; | |
5665 | } | |
5666 | ||
5667 | ||
5668 | static void | |
7fa3d080 | 5669 | release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) |
43cd72b9 BW |
5670 | { |
5671 | if (internal_relocs | |
5672 | && elf_section_data (sec)->relocs != internal_relocs) | |
5673 | free (internal_relocs); | |
5674 | } | |
5675 | ||
5676 | ||
5677 | static bfd_byte * | |
7fa3d080 | 5678 | retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) |
43cd72b9 BW |
5679 | { |
5680 | bfd_byte *contents; | |
5681 | bfd_size_type sec_size; | |
5682 | ||
5683 | sec_size = bfd_get_section_limit (abfd, sec); | |
5684 | contents = elf_section_data (sec)->this_hdr.contents; | |
5685 | ||
5686 | if (contents == NULL && sec_size != 0) | |
5687 | { | |
5688 | if (!bfd_malloc_and_get_section (abfd, sec, &contents)) | |
5689 | { | |
7fa3d080 | 5690 | if (contents) |
43cd72b9 BW |
5691 | free (contents); |
5692 | return NULL; | |
5693 | } | |
5694 | if (keep_memory) | |
5695 | elf_section_data (sec)->this_hdr.contents = contents; | |
5696 | } | |
5697 | return contents; | |
5698 | } | |
5699 | ||
5700 | ||
5701 | static void | |
7fa3d080 | 5702 | pin_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5703 | { |
5704 | elf_section_data (sec)->this_hdr.contents = contents; | |
5705 | } | |
5706 | ||
5707 | ||
5708 | static void | |
7fa3d080 | 5709 | release_contents (asection *sec, bfd_byte *contents) |
43cd72b9 BW |
5710 | { |
5711 | if (contents && elf_section_data (sec)->this_hdr.contents != contents) | |
5712 | free (contents); | |
5713 | } | |
5714 | ||
5715 | ||
5716 | static Elf_Internal_Sym * | |
7fa3d080 | 5717 | retrieve_local_syms (bfd *input_bfd) |
43cd72b9 BW |
5718 | { |
5719 | Elf_Internal_Shdr *symtab_hdr; | |
5720 | Elf_Internal_Sym *isymbuf; | |
5721 | size_t locsymcount; | |
5722 | ||
5723 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
5724 | locsymcount = symtab_hdr->sh_info; | |
5725 | ||
5726 | isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | |
5727 | if (isymbuf == NULL && locsymcount != 0) | |
5728 | isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | |
5729 | NULL, NULL, NULL); | |
5730 | ||
5731 | /* Save the symbols for this input file so they won't be read again. */ | |
5732 | if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) | |
5733 | symtab_hdr->contents = (unsigned char *) isymbuf; | |
5734 | ||
5735 | return isymbuf; | |
5736 | } | |
5737 | ||
5738 | \f | |
5739 | /* Code for link-time relaxation. */ | |
5740 | ||
5741 | /* Initialization for relaxation: */ | |
7fa3d080 | 5742 | static bfd_boolean analyze_relocations (struct bfd_link_info *); |
43cd72b9 | 5743 | static bfd_boolean find_relaxable_sections |
7fa3d080 | 5744 | (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); |
43cd72b9 | 5745 | static bfd_boolean collect_source_relocs |
7fa3d080 | 5746 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 | 5747 | static bfd_boolean is_resolvable_asm_expansion |
7fa3d080 BW |
5748 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, |
5749 | bfd_boolean *); | |
43cd72b9 | 5750 | static Elf_Internal_Rela *find_associated_l32r_irel |
7fa3d080 | 5751 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); |
43cd72b9 | 5752 | static bfd_boolean compute_text_actions |
7fa3d080 BW |
5753 | (bfd *, asection *, struct bfd_link_info *); |
5754 | static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); | |
5755 | static bfd_boolean compute_ebb_actions (ebb_constraint *); | |
43cd72b9 | 5756 | static bfd_boolean check_section_ebb_pcrels_fit |
7fa3d080 BW |
5757 | (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *); |
5758 | static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); | |
43cd72b9 | 5759 | static void text_action_add_proposed |
7fa3d080 BW |
5760 | (text_action_list *, const ebb_constraint *, asection *); |
5761 | static int compute_fill_extra_space (property_table_entry *); | |
43cd72b9 BW |
5762 | |
5763 | /* First pass: */ | |
5764 | static bfd_boolean compute_removed_literals | |
7fa3d080 | 5765 | (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); |
43cd72b9 | 5766 | static Elf_Internal_Rela *get_irel_at_offset |
7fa3d080 | 5767 | (asection *, Elf_Internal_Rela *, bfd_vma); |
43cd72b9 | 5768 | static bfd_boolean is_removable_literal |
7fa3d080 | 5769 | (const source_reloc *, int, const source_reloc *, int); |
43cd72b9 | 5770 | static bfd_boolean remove_dead_literal |
7fa3d080 BW |
5771 | (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, |
5772 | Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); | |
5773 | static bfd_boolean identify_literal_placement | |
5774 | (bfd *, asection *, bfd_byte *, struct bfd_link_info *, | |
5775 | value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, | |
5776 | source_reloc *, property_table_entry *, int, section_cache_t *, | |
5777 | bfd_boolean); | |
5778 | static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); | |
43cd72b9 | 5779 | static bfd_boolean coalesce_shared_literal |
7fa3d080 | 5780 | (asection *, source_reloc *, property_table_entry *, int, value_map *); |
43cd72b9 | 5781 | static bfd_boolean move_shared_literal |
7fa3d080 BW |
5782 | (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, |
5783 | int, const r_reloc *, const literal_value *, section_cache_t *); | |
43cd72b9 BW |
5784 | |
5785 | /* Second pass: */ | |
7fa3d080 BW |
5786 | static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); |
5787 | static bfd_boolean translate_section_fixes (asection *); | |
5788 | static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); | |
5789 | static void translate_reloc (const r_reloc *, r_reloc *); | |
43cd72b9 | 5790 | static void shrink_dynamic_reloc_sections |
7fa3d080 | 5791 | (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); |
43cd72b9 | 5792 | static bfd_boolean move_literal |
7fa3d080 BW |
5793 | (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, |
5794 | xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); | |
43cd72b9 | 5795 | static bfd_boolean relax_property_section |
7fa3d080 | 5796 | (bfd *, asection *, struct bfd_link_info *); |
43cd72b9 BW |
5797 | |
5798 | /* Third pass: */ | |
7fa3d080 | 5799 | static bfd_boolean relax_section_symbols (bfd *, asection *); |
43cd72b9 BW |
5800 | |
5801 | ||
5802 | static bfd_boolean | |
7fa3d080 BW |
5803 | elf_xtensa_relax_section (bfd *abfd, |
5804 | asection *sec, | |
5805 | struct bfd_link_info *link_info, | |
5806 | bfd_boolean *again) | |
43cd72b9 BW |
5807 | { |
5808 | static value_map_hash_table *values = NULL; | |
5809 | static bfd_boolean relocations_analyzed = FALSE; | |
5810 | xtensa_relax_info *relax_info; | |
5811 | ||
5812 | if (!relocations_analyzed) | |
5813 | { | |
5814 | /* Do some overall initialization for relaxation. */ | |
5815 | values = value_map_hash_table_init (); | |
5816 | if (values == NULL) | |
5817 | return FALSE; | |
5818 | relaxing_section = TRUE; | |
5819 | if (!analyze_relocations (link_info)) | |
5820 | return FALSE; | |
5821 | relocations_analyzed = TRUE; | |
5822 | } | |
5823 | *again = FALSE; | |
5824 | ||
5825 | /* Don't mess with linker-created sections. */ | |
5826 | if ((sec->flags & SEC_LINKER_CREATED) != 0) | |
5827 | return TRUE; | |
5828 | ||
5829 | relax_info = get_xtensa_relax_info (sec); | |
5830 | BFD_ASSERT (relax_info != NULL); | |
5831 | ||
5832 | switch (relax_info->visited) | |
5833 | { | |
5834 | case 0: | |
5835 | /* Note: It would be nice to fold this pass into | |
5836 | analyze_relocations, but it is important for this step that the | |
5837 | sections be examined in link order. */ | |
5838 | if (!compute_removed_literals (abfd, sec, link_info, values)) | |
5839 | return FALSE; | |
5840 | *again = TRUE; | |
5841 | break; | |
5842 | ||
5843 | case 1: | |
5844 | if (values) | |
5845 | value_map_hash_table_delete (values); | |
5846 | values = NULL; | |
5847 | if (!relax_section (abfd, sec, link_info)) | |
5848 | return FALSE; | |
5849 | *again = TRUE; | |
5850 | break; | |
5851 | ||
5852 | case 2: | |
5853 | if (!relax_section_symbols (abfd, sec)) | |
5854 | return FALSE; | |
5855 | break; | |
5856 | } | |
5857 | ||
5858 | relax_info->visited++; | |
5859 | return TRUE; | |
5860 | } | |
5861 | ||
5862 | \f | |
5863 | /* Initialization for relaxation. */ | |
5864 | ||
5865 | /* This function is called once at the start of relaxation. It scans | |
5866 | all the input sections and marks the ones that are relaxable (i.e., | |
5867 | literal sections with L32R relocations against them), and then | |
5868 | collects source_reloc information for all the relocations against | |
5869 | those relaxable sections. During this process, it also detects | |
5870 | longcalls, i.e., calls relaxed by the assembler into indirect | |
5871 | calls, that can be optimized back into direct calls. Within each | |
5872 | extended basic block (ebb) containing an optimized longcall, it | |
5873 | computes a set of "text actions" that can be performed to remove | |
5874 | the L32R associated with the longcall while optionally preserving | |
5875 | branch target alignments. */ | |
5876 | ||
5877 | static bfd_boolean | |
7fa3d080 | 5878 | analyze_relocations (struct bfd_link_info *link_info) |
43cd72b9 BW |
5879 | { |
5880 | bfd *abfd; | |
5881 | asection *sec; | |
5882 | bfd_boolean is_relaxable = FALSE; | |
5883 | ||
5884 | /* Initialize the per-section relaxation info. */ | |
5885 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5886 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5887 | { | |
5888 | init_xtensa_relax_info (sec); | |
5889 | } | |
5890 | ||
5891 | /* Mark relaxable sections (and count relocations against each one). */ | |
5892 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5893 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5894 | { | |
5895 | if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) | |
5896 | return FALSE; | |
5897 | } | |
5898 | ||
5899 | /* Bail out if there are no relaxable sections. */ | |
5900 | if (!is_relaxable) | |
5901 | return TRUE; | |
5902 | ||
5903 | /* Allocate space for source_relocs. */ | |
5904 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5905 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5906 | { | |
5907 | xtensa_relax_info *relax_info; | |
5908 | ||
5909 | relax_info = get_xtensa_relax_info (sec); | |
5910 | if (relax_info->is_relaxable_literal_section | |
5911 | || relax_info->is_relaxable_asm_section) | |
5912 | { | |
5913 | relax_info->src_relocs = (source_reloc *) | |
5914 | bfd_malloc (relax_info->src_count * sizeof (source_reloc)); | |
5915 | } | |
5916 | } | |
5917 | ||
5918 | /* Collect info on relocations against each relaxable section. */ | |
5919 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5920 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5921 | { | |
5922 | if (!collect_source_relocs (abfd, sec, link_info)) | |
5923 | return FALSE; | |
5924 | } | |
5925 | ||
5926 | /* Compute the text actions. */ | |
5927 | for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link_next) | |
5928 | for (sec = abfd->sections; sec != NULL; sec = sec->next) | |
5929 | { | |
5930 | if (!compute_text_actions (abfd, sec, link_info)) | |
5931 | return FALSE; | |
5932 | } | |
5933 | ||
5934 | return TRUE; | |
5935 | } | |
5936 | ||
5937 | ||
5938 | /* Find all the sections that might be relaxed. The motivation for | |
5939 | this pass is that collect_source_relocs() needs to record _all_ the | |
5940 | relocations that target each relaxable section. That is expensive | |
5941 | and unnecessary unless the target section is actually going to be | |
5942 | relaxed. This pass identifies all such sections by checking if | |
5943 | they have L32Rs pointing to them. In the process, the total number | |
5944 | of relocations targeting each section is also counted so that we | |
5945 | know how much space to allocate for source_relocs against each | |
5946 | relaxable literal section. */ | |
5947 | ||
5948 | static bfd_boolean | |
7fa3d080 BW |
5949 | find_relaxable_sections (bfd *abfd, |
5950 | asection *sec, | |
5951 | struct bfd_link_info *link_info, | |
5952 | bfd_boolean *is_relaxable_p) | |
43cd72b9 BW |
5953 | { |
5954 | Elf_Internal_Rela *internal_relocs; | |
5955 | bfd_byte *contents; | |
5956 | bfd_boolean ok = TRUE; | |
5957 | unsigned i; | |
5958 | xtensa_relax_info *source_relax_info; | |
5959 | ||
5960 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
5961 | link_info->keep_memory); | |
5962 | if (internal_relocs == NULL) | |
5963 | return ok; | |
5964 | ||
5965 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
5966 | if (contents == NULL && sec->size != 0) | |
5967 | { | |
5968 | ok = FALSE; | |
5969 | goto error_return; | |
5970 | } | |
5971 | ||
5972 | source_relax_info = get_xtensa_relax_info (sec); | |
5973 | for (i = 0; i < sec->reloc_count; i++) | |
5974 | { | |
5975 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
5976 | r_reloc r_rel; | |
5977 | asection *target_sec; | |
5978 | xtensa_relax_info *target_relax_info; | |
5979 | ||
5980 | /* If this section has not already been marked as "relaxable", and | |
5981 | if it contains any ASM_EXPAND relocations (marking expanded | |
5982 | longcalls) that can be optimized into direct calls, then mark | |
5983 | the section as "relaxable". */ | |
5984 | if (source_relax_info | |
5985 | && !source_relax_info->is_relaxable_asm_section | |
5986 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) | |
5987 | { | |
5988 | bfd_boolean is_reachable = FALSE; | |
5989 | if (is_resolvable_asm_expansion (abfd, sec, contents, irel, | |
5990 | link_info, &is_reachable) | |
5991 | && is_reachable) | |
5992 | { | |
5993 | source_relax_info->is_relaxable_asm_section = TRUE; | |
5994 | *is_relaxable_p = TRUE; | |
5995 | } | |
5996 | } | |
5997 | ||
5998 | r_reloc_init (&r_rel, abfd, irel, contents, | |
5999 | bfd_get_section_limit (abfd, sec)); | |
6000 | ||
6001 | target_sec = r_reloc_get_section (&r_rel); | |
6002 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6003 | if (!target_relax_info) | |
6004 | continue; | |
6005 | ||
6006 | /* Count PC-relative operand relocations against the target section. | |
6007 | Note: The conditions tested here must match the conditions under | |
6008 | which init_source_reloc is called in collect_source_relocs(). */ | |
6009 | if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)) | |
6010 | && (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) | |
6011 | || is_l32r_relocation (abfd, sec, contents, irel))) | |
6012 | target_relax_info->src_count++; | |
6013 | ||
6014 | if (is_l32r_relocation (abfd, sec, contents, irel) | |
6015 | && r_reloc_is_defined (&r_rel)) | |
6016 | { | |
6017 | /* Mark the target section as relaxable. */ | |
6018 | target_relax_info->is_relaxable_literal_section = TRUE; | |
6019 | *is_relaxable_p = TRUE; | |
6020 | } | |
6021 | } | |
6022 | ||
6023 | error_return: | |
6024 | release_contents (sec, contents); | |
6025 | release_internal_relocs (sec, internal_relocs); | |
6026 | return ok; | |
6027 | } | |
6028 | ||
6029 | ||
6030 | /* Record _all_ the relocations that point to relaxable sections, and | |
6031 | get rid of ASM_EXPAND relocs by either converting them to | |
6032 | ASM_SIMPLIFY or by removing them. */ | |
6033 | ||
6034 | static bfd_boolean | |
7fa3d080 BW |
6035 | collect_source_relocs (bfd *abfd, |
6036 | asection *sec, | |
6037 | struct bfd_link_info *link_info) | |
43cd72b9 BW |
6038 | { |
6039 | Elf_Internal_Rela *internal_relocs; | |
6040 | bfd_byte *contents; | |
6041 | bfd_boolean ok = TRUE; | |
6042 | unsigned i; | |
6043 | bfd_size_type sec_size; | |
6044 | ||
6045 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6046 | link_info->keep_memory); | |
6047 | if (internal_relocs == NULL) | |
6048 | return ok; | |
6049 | ||
6050 | sec_size = bfd_get_section_limit (abfd, sec); | |
6051 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
6052 | if (contents == NULL && sec_size != 0) | |
6053 | { | |
6054 | ok = FALSE; | |
6055 | goto error_return; | |
6056 | } | |
6057 | ||
6058 | /* Record relocations against relaxable literal sections. */ | |
6059 | for (i = 0; i < sec->reloc_count; i++) | |
6060 | { | |
6061 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6062 | r_reloc r_rel; | |
6063 | asection *target_sec; | |
6064 | xtensa_relax_info *target_relax_info; | |
6065 | ||
6066 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6067 | ||
6068 | target_sec = r_reloc_get_section (&r_rel); | |
6069 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6070 | ||
6071 | if (target_relax_info | |
6072 | && (target_relax_info->is_relaxable_literal_section | |
6073 | || target_relax_info->is_relaxable_asm_section)) | |
6074 | { | |
6075 | xtensa_opcode opcode = XTENSA_UNDEFINED; | |
6076 | int opnd = -1; | |
6077 | bfd_boolean is_abs_literal = FALSE; | |
6078 | ||
6079 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6080 | { | |
6081 | /* None of the current alternate relocs are PC-relative, | |
6082 | and only PC-relative relocs matter here. However, we | |
6083 | still need to record the opcode for literal | |
6084 | coalescing. */ | |
6085 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6086 | if (opcode == get_l32r_opcode ()) | |
6087 | { | |
6088 | is_abs_literal = TRUE; | |
6089 | opnd = 1; | |
6090 | } | |
6091 | else | |
6092 | opcode = XTENSA_UNDEFINED; | |
6093 | } | |
6094 | else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) | |
6095 | { | |
6096 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6097 | opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6098 | } | |
6099 | ||
6100 | if (opcode != XTENSA_UNDEFINED) | |
6101 | { | |
6102 | int src_next = target_relax_info->src_next++; | |
6103 | source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; | |
6104 | ||
6105 | init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, | |
6106 | is_abs_literal); | |
6107 | } | |
6108 | } | |
6109 | } | |
6110 | ||
6111 | /* Now get rid of ASM_EXPAND relocations. At this point, the | |
6112 | src_relocs array for the target literal section may still be | |
6113 | incomplete, but it must at least contain the entries for the L32R | |
6114 | relocations associated with ASM_EXPANDs because they were just | |
6115 | added in the preceding loop over the relocations. */ | |
6116 | ||
6117 | for (i = 0; i < sec->reloc_count; i++) | |
6118 | { | |
6119 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
6120 | bfd_boolean is_reachable; | |
6121 | ||
6122 | if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, | |
6123 | &is_reachable)) | |
6124 | continue; | |
6125 | ||
6126 | if (is_reachable) | |
6127 | { | |
6128 | Elf_Internal_Rela *l32r_irel; | |
6129 | r_reloc r_rel; | |
6130 | asection *target_sec; | |
6131 | xtensa_relax_info *target_relax_info; | |
6132 | ||
6133 | /* Mark the source_reloc for the L32R so that it will be | |
6134 | removed in compute_removed_literals(), along with the | |
6135 | associated literal. */ | |
6136 | l32r_irel = find_associated_l32r_irel (abfd, sec, contents, | |
6137 | irel, internal_relocs); | |
6138 | if (l32r_irel == NULL) | |
6139 | continue; | |
6140 | ||
6141 | r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); | |
6142 | ||
6143 | target_sec = r_reloc_get_section (&r_rel); | |
6144 | target_relax_info = get_xtensa_relax_info (target_sec); | |
6145 | ||
6146 | if (target_relax_info | |
6147 | && (target_relax_info->is_relaxable_literal_section | |
6148 | || target_relax_info->is_relaxable_asm_section)) | |
6149 | { | |
6150 | source_reloc *s_reloc; | |
6151 | ||
6152 | /* Search the source_relocs for the entry corresponding to | |
6153 | the l32r_irel. Note: The src_relocs array is not yet | |
6154 | sorted, but it wouldn't matter anyway because we're | |
6155 | searching by source offset instead of target offset. */ | |
6156 | s_reloc = find_source_reloc (target_relax_info->src_relocs, | |
6157 | target_relax_info->src_next, | |
6158 | sec, l32r_irel); | |
6159 | BFD_ASSERT (s_reloc); | |
6160 | s_reloc->is_null = TRUE; | |
6161 | } | |
6162 | ||
6163 | /* Convert this reloc to ASM_SIMPLIFY. */ | |
6164 | irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), | |
6165 | R_XTENSA_ASM_SIMPLIFY); | |
6166 | l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6167 | ||
6168 | pin_internal_relocs (sec, internal_relocs); | |
6169 | } | |
6170 | else | |
6171 | { | |
6172 | /* It is resolvable but doesn't reach. We resolve now | |
6173 | by eliminating the relocation -- the call will remain | |
6174 | expanded into L32R/CALLX. */ | |
6175 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
6176 | pin_internal_relocs (sec, internal_relocs); | |
6177 | } | |
6178 | } | |
6179 | ||
6180 | error_return: | |
6181 | release_contents (sec, contents); | |
6182 | release_internal_relocs (sec, internal_relocs); | |
6183 | return ok; | |
6184 | } | |
6185 | ||
6186 | ||
6187 | /* Return TRUE if the asm expansion can be resolved. Generally it can | |
6188 | be resolved on a final link or when a partial link locates it in the | |
6189 | same section as the target. Set "is_reachable" flag if the target of | |
6190 | the call is within the range of a direct call, given the current VMA | |
6191 | for this section and the target section. */ | |
6192 | ||
6193 | bfd_boolean | |
7fa3d080 BW |
6194 | is_resolvable_asm_expansion (bfd *abfd, |
6195 | asection *sec, | |
6196 | bfd_byte *contents, | |
6197 | Elf_Internal_Rela *irel, | |
6198 | struct bfd_link_info *link_info, | |
6199 | bfd_boolean *is_reachable_p) | |
43cd72b9 BW |
6200 | { |
6201 | asection *target_sec; | |
6202 | bfd_vma target_offset; | |
6203 | r_reloc r_rel; | |
6204 | xtensa_opcode opcode, direct_call_opcode; | |
6205 | bfd_vma self_address; | |
6206 | bfd_vma dest_address; | |
6207 | bfd_boolean uses_l32r; | |
6208 | bfd_size_type sec_size; | |
6209 | ||
6210 | *is_reachable_p = FALSE; | |
6211 | ||
6212 | if (contents == NULL) | |
6213 | return FALSE; | |
6214 | ||
6215 | if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) | |
6216 | return FALSE; | |
6217 | ||
6218 | sec_size = bfd_get_section_limit (abfd, sec); | |
6219 | opcode = get_expanded_call_opcode (contents + irel->r_offset, | |
6220 | sec_size - irel->r_offset, &uses_l32r); | |
6221 | /* Optimization of longcalls that use CONST16 is not yet implemented. */ | |
6222 | if (!uses_l32r) | |
6223 | return FALSE; | |
6224 | ||
6225 | direct_call_opcode = swap_callx_for_call_opcode (opcode); | |
6226 | if (direct_call_opcode == XTENSA_UNDEFINED) | |
6227 | return FALSE; | |
6228 | ||
6229 | /* Check and see that the target resolves. */ | |
6230 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
6231 | if (!r_reloc_is_defined (&r_rel)) | |
6232 | return FALSE; | |
6233 | ||
6234 | target_sec = r_reloc_get_section (&r_rel); | |
6235 | target_offset = r_rel.target_offset; | |
6236 | ||
6237 | /* If the target is in a shared library, then it doesn't reach. This | |
6238 | isn't supposed to come up because the compiler should never generate | |
6239 | non-PIC calls on systems that use shared libraries, but the linker | |
6240 | shouldn't crash regardless. */ | |
6241 | if (!target_sec->output_section) | |
6242 | return FALSE; | |
6243 | ||
6244 | /* For relocatable sections, we can only simplify when the output | |
6245 | section of the target is the same as the output section of the | |
6246 | source. */ | |
6247 | if (link_info->relocatable | |
6248 | && (target_sec->output_section != sec->output_section | |
6249 | || is_reloc_sym_weak (abfd, irel))) | |
6250 | return FALSE; | |
6251 | ||
6252 | self_address = (sec->output_section->vma | |
6253 | + sec->output_offset + irel->r_offset + 3); | |
6254 | dest_address = (target_sec->output_section->vma | |
6255 | + target_sec->output_offset + target_offset); | |
6256 | ||
6257 | *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, | |
6258 | self_address, dest_address); | |
6259 | ||
6260 | if ((self_address >> CALL_SEGMENT_BITS) != | |
6261 | (dest_address >> CALL_SEGMENT_BITS)) | |
6262 | return FALSE; | |
6263 | ||
6264 | return TRUE; | |
6265 | } | |
6266 | ||
6267 | ||
6268 | static Elf_Internal_Rela * | |
7fa3d080 BW |
6269 | find_associated_l32r_irel (bfd *abfd, |
6270 | asection *sec, | |
6271 | bfd_byte *contents, | |
6272 | Elf_Internal_Rela *other_irel, | |
6273 | Elf_Internal_Rela *internal_relocs) | |
43cd72b9 BW |
6274 | { |
6275 | unsigned i; | |
e0001a05 | 6276 | |
43cd72b9 BW |
6277 | for (i = 0; i < sec->reloc_count; i++) |
6278 | { | |
6279 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
e0001a05 | 6280 | |
43cd72b9 BW |
6281 | if (irel == other_irel) |
6282 | continue; | |
6283 | if (irel->r_offset != other_irel->r_offset) | |
6284 | continue; | |
6285 | if (is_l32r_relocation (abfd, sec, contents, irel)) | |
6286 | return irel; | |
6287 | } | |
6288 | ||
6289 | return NULL; | |
e0001a05 NC |
6290 | } |
6291 | ||
6292 | ||
43cd72b9 BW |
6293 | /* The compute_text_actions function will build a list of potential |
6294 | transformation actions for code in the extended basic block of each | |
6295 | longcall that is optimized to a direct call. From this list we | |
6296 | generate a set of actions to actually perform that optimizes for | |
6297 | space and, if not using size_opt, maintains branch target | |
6298 | alignments. | |
e0001a05 | 6299 | |
43cd72b9 BW |
6300 | These actions to be performed are placed on a per-section list. |
6301 | The actual changes are performed by relax_section() in the second | |
6302 | pass. */ | |
6303 | ||
6304 | bfd_boolean | |
7fa3d080 BW |
6305 | compute_text_actions (bfd *abfd, |
6306 | asection *sec, | |
6307 | struct bfd_link_info *link_info) | |
e0001a05 | 6308 | { |
43cd72b9 | 6309 | xtensa_relax_info *relax_info; |
e0001a05 | 6310 | bfd_byte *contents; |
43cd72b9 | 6311 | Elf_Internal_Rela *internal_relocs; |
e0001a05 NC |
6312 | bfd_boolean ok = TRUE; |
6313 | unsigned i; | |
43cd72b9 BW |
6314 | property_table_entry *prop_table = 0; |
6315 | int ptblsize = 0; | |
6316 | bfd_size_type sec_size; | |
6317 | static bfd_boolean no_insn_move = FALSE; | |
6318 | ||
6319 | if (no_insn_move) | |
6320 | return ok; | |
6321 | ||
6322 | /* Do nothing if the section contains no optimized longcalls. */ | |
6323 | relax_info = get_xtensa_relax_info (sec); | |
6324 | BFD_ASSERT (relax_info); | |
6325 | if (!relax_info->is_relaxable_asm_section) | |
6326 | return ok; | |
e0001a05 NC |
6327 | |
6328 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
6329 | link_info->keep_memory); | |
e0001a05 | 6330 | |
43cd72b9 BW |
6331 | if (internal_relocs) |
6332 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
6333 | internal_reloc_compare); | |
6334 | ||
6335 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 | 6336 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 6337 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
6338 | { |
6339 | ok = FALSE; | |
6340 | goto error_return; | |
6341 | } | |
6342 | ||
43cd72b9 BW |
6343 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
6344 | XTENSA_PROP_SEC_NAME, FALSE); | |
6345 | if (ptblsize < 0) | |
6346 | { | |
6347 | ok = FALSE; | |
6348 | goto error_return; | |
6349 | } | |
6350 | ||
6351 | for (i = 0; i < sec->reloc_count; i++) | |
e0001a05 NC |
6352 | { |
6353 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 BW |
6354 | bfd_vma r_offset; |
6355 | property_table_entry *the_entry; | |
6356 | int ptbl_idx; | |
6357 | ebb_t *ebb; | |
6358 | ebb_constraint ebb_table; | |
6359 | bfd_size_type simplify_size; | |
6360 | ||
6361 | if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) | |
6362 | continue; | |
6363 | r_offset = irel->r_offset; | |
e0001a05 | 6364 | |
43cd72b9 BW |
6365 | simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); |
6366 | if (simplify_size == 0) | |
6367 | { | |
6368 | (*_bfd_error_handler) | |
6369 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
6370 | sec->owner, sec, r_offset); | |
6371 | continue; | |
6372 | } | |
e0001a05 | 6373 | |
43cd72b9 BW |
6374 | /* If the instruction table is not around, then don't do this |
6375 | relaxation. */ | |
6376 | the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
6377 | sec->vma + irel->r_offset); | |
6378 | if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) | |
6379 | { | |
6380 | text_action_add (&relax_info->action_list, | |
6381 | ta_convert_longcall, sec, r_offset, | |
6382 | 0); | |
6383 | continue; | |
6384 | } | |
6385 | ||
6386 | /* If the next longcall happens to be at the same address as an | |
6387 | unreachable section of size 0, then skip forward. */ | |
6388 | ptbl_idx = the_entry - prop_table; | |
6389 | while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) | |
6390 | && the_entry->size == 0 | |
6391 | && ptbl_idx + 1 < ptblsize | |
6392 | && (prop_table[ptbl_idx + 1].address | |
6393 | == prop_table[ptbl_idx].address)) | |
6394 | { | |
6395 | ptbl_idx++; | |
6396 | the_entry++; | |
6397 | } | |
e0001a05 | 6398 | |
43cd72b9 BW |
6399 | if (the_entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) |
6400 | /* NO_REORDER is OK */ | |
6401 | continue; | |
e0001a05 | 6402 | |
43cd72b9 BW |
6403 | init_ebb_constraint (&ebb_table); |
6404 | ebb = &ebb_table.ebb; | |
6405 | init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, | |
6406 | internal_relocs, sec->reloc_count); | |
6407 | ebb->start_offset = r_offset + simplify_size; | |
6408 | ebb->end_offset = r_offset + simplify_size; | |
6409 | ebb->start_ptbl_idx = ptbl_idx; | |
6410 | ebb->end_ptbl_idx = ptbl_idx; | |
6411 | ebb->start_reloc_idx = i; | |
6412 | ebb->end_reloc_idx = i; | |
6413 | ||
6414 | if (!extend_ebb_bounds (ebb) | |
6415 | || !compute_ebb_proposed_actions (&ebb_table) | |
6416 | || !compute_ebb_actions (&ebb_table) | |
6417 | || !check_section_ebb_pcrels_fit (abfd, sec, contents, | |
6418 | internal_relocs, &ebb_table) | |
6419 | || !check_section_ebb_reduces (&ebb_table)) | |
e0001a05 | 6420 | { |
43cd72b9 BW |
6421 | /* If anything goes wrong or we get unlucky and something does |
6422 | not fit, with our plan because of expansion between | |
6423 | critical branches, just convert to a NOP. */ | |
6424 | ||
6425 | text_action_add (&relax_info->action_list, | |
6426 | ta_convert_longcall, sec, r_offset, 0); | |
6427 | i = ebb_table.ebb.end_reloc_idx; | |
6428 | free_ebb_constraint (&ebb_table); | |
6429 | continue; | |
e0001a05 | 6430 | } |
43cd72b9 BW |
6431 | |
6432 | text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); | |
6433 | ||
6434 | /* Update the index so we do not go looking at the relocations | |
6435 | we have already processed. */ | |
6436 | i = ebb_table.ebb.end_reloc_idx; | |
6437 | free_ebb_constraint (&ebb_table); | |
e0001a05 NC |
6438 | } |
6439 | ||
43cd72b9 | 6440 | #if DEBUG |
7fa3d080 | 6441 | if (relax_info->action_list.head) |
43cd72b9 BW |
6442 | print_action_list (stderr, &relax_info->action_list); |
6443 | #endif | |
6444 | ||
6445 | error_return: | |
e0001a05 NC |
6446 | release_contents (sec, contents); |
6447 | release_internal_relocs (sec, internal_relocs); | |
43cd72b9 BW |
6448 | if (prop_table) |
6449 | free (prop_table); | |
6450 | ||
e0001a05 NC |
6451 | return ok; |
6452 | } | |
6453 | ||
6454 | ||
43cd72b9 | 6455 | /* Find all of the possible actions for an extended basic block. */ |
e0001a05 | 6456 | |
43cd72b9 | 6457 | bfd_boolean |
7fa3d080 | 6458 | compute_ebb_proposed_actions (ebb_constraint *ebb_table) |
e0001a05 | 6459 | { |
43cd72b9 BW |
6460 | const ebb_t *ebb = &ebb_table->ebb; |
6461 | unsigned rel_idx = ebb->start_reloc_idx; | |
6462 | property_table_entry *entry, *start_entry, *end_entry; | |
e0001a05 | 6463 | |
43cd72b9 BW |
6464 | start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; |
6465 | end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; | |
e0001a05 | 6466 | |
43cd72b9 | 6467 | for (entry = start_entry; entry <= end_entry; entry++) |
e0001a05 | 6468 | { |
43cd72b9 BW |
6469 | bfd_vma offset, start_offset, end_offset; |
6470 | bfd_size_type insn_len; | |
e0001a05 | 6471 | |
43cd72b9 BW |
6472 | start_offset = entry->address - ebb->sec->vma; |
6473 | end_offset = entry->address + entry->size - ebb->sec->vma; | |
e0001a05 | 6474 | |
43cd72b9 BW |
6475 | if (entry == start_entry) |
6476 | start_offset = ebb->start_offset; | |
6477 | if (entry == end_entry) | |
6478 | end_offset = ebb->end_offset; | |
6479 | offset = start_offset; | |
e0001a05 | 6480 | |
43cd72b9 BW |
6481 | if (offset == entry->address - ebb->sec->vma |
6482 | && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) | |
6483 | { | |
6484 | enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; | |
6485 | BFD_ASSERT (offset != end_offset); | |
6486 | if (offset == end_offset) | |
6487 | return FALSE; | |
e0001a05 | 6488 | |
43cd72b9 BW |
6489 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
6490 | offset); | |
6491 | ||
6492 | /* Propose no actions for a section with an undecodable offset. */ | |
6493 | if (insn_len == 0) | |
6494 | { | |
6495 | (*_bfd_error_handler) | |
6496 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6497 | ebb->sec->owner, ebb->sec, offset); | |
6498 | return FALSE; | |
6499 | } | |
6500 | if (check_branch_target_aligned_address (offset, insn_len)) | |
6501 | align_type = EBB_REQUIRE_TGT_ALIGN; | |
6502 | ||
6503 | ebb_propose_action (ebb_table, align_type, 0, | |
6504 | ta_none, offset, 0, TRUE); | |
6505 | } | |
6506 | ||
6507 | while (offset != end_offset) | |
e0001a05 | 6508 | { |
43cd72b9 | 6509 | Elf_Internal_Rela *irel; |
e0001a05 | 6510 | xtensa_opcode opcode; |
e0001a05 | 6511 | |
43cd72b9 BW |
6512 | while (rel_idx < ebb->end_reloc_idx |
6513 | && (ebb->relocs[rel_idx].r_offset < offset | |
6514 | || (ebb->relocs[rel_idx].r_offset == offset | |
6515 | && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) | |
6516 | != R_XTENSA_ASM_SIMPLIFY)))) | |
6517 | rel_idx++; | |
6518 | ||
6519 | /* Check for longcall. */ | |
6520 | irel = &ebb->relocs[rel_idx]; | |
6521 | if (irel->r_offset == offset | |
6522 | && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) | |
6523 | { | |
6524 | bfd_size_type simplify_size; | |
e0001a05 | 6525 | |
43cd72b9 BW |
6526 | simplify_size = get_asm_simplify_size (ebb->contents, |
6527 | ebb->content_length, | |
6528 | irel->r_offset); | |
6529 | if (simplify_size == 0) | |
6530 | { | |
6531 | (*_bfd_error_handler) | |
6532 | (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), | |
6533 | ebb->sec->owner, ebb->sec, offset); | |
6534 | return FALSE; | |
6535 | } | |
6536 | ||
6537 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6538 | ta_convert_longcall, offset, 0, TRUE); | |
6539 | ||
6540 | offset += simplify_size; | |
6541 | continue; | |
6542 | } | |
e0001a05 | 6543 | |
43cd72b9 BW |
6544 | insn_len = insn_decode_len (ebb->contents, ebb->content_length, |
6545 | offset); | |
6546 | /* If the instruction is undecodable, then report an error. */ | |
6547 | if (insn_len == 0) | |
6548 | { | |
6549 | (*_bfd_error_handler) | |
6550 | (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), | |
6551 | ebb->sec->owner, ebb->sec, offset); | |
6552 | return FALSE; | |
6553 | } | |
6554 | ||
6555 | if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 | |
6556 | && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0 | |
6557 | && narrow_instruction (ebb->contents, ebb->content_length, | |
6558 | offset, FALSE)) | |
6559 | { | |
6560 | /* Add an instruction narrow action. */ | |
6561 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6562 | ta_narrow_insn, offset, 0, FALSE); | |
6563 | offset += insn_len; | |
6564 | continue; | |
6565 | } | |
6566 | if ((entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM) == 0 | |
6567 | && widen_instruction (ebb->contents, ebb->content_length, | |
6568 | offset, FALSE)) | |
6569 | { | |
6570 | /* Add an instruction widen action. */ | |
6571 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6572 | ta_widen_insn, offset, 0, FALSE); | |
6573 | offset += insn_len; | |
6574 | continue; | |
6575 | } | |
6576 | opcode = insn_decode_opcode (ebb->contents, ebb->content_length, | |
6577 | offset, 0); | |
6578 | if (xtensa_opcode_is_loop (xtensa_default_isa, opcode)) | |
6579 | { | |
6580 | /* Check for branch targets. */ | |
6581 | ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, | |
6582 | ta_none, offset, 0, TRUE); | |
6583 | offset += insn_len; | |
6584 | continue; | |
6585 | } | |
6586 | ||
6587 | offset += insn_len; | |
e0001a05 NC |
6588 | } |
6589 | } | |
6590 | ||
43cd72b9 BW |
6591 | if (ebb->ends_unreachable) |
6592 | { | |
6593 | ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, | |
6594 | ta_fill, ebb->end_offset, 0, TRUE); | |
6595 | } | |
e0001a05 | 6596 | |
43cd72b9 BW |
6597 | return TRUE; |
6598 | } | |
6599 | ||
6600 | ||
6601 | /* After all of the information has collected about the | |
6602 | transformations possible in an EBB, compute the appropriate actions | |
6603 | here in compute_ebb_actions. We still must check later to make | |
6604 | sure that the actions do not break any relocations. The algorithm | |
6605 | used here is pretty greedy. Basically, it removes as many no-ops | |
6606 | as possible so that the end of the EBB has the same alignment | |
6607 | characteristics as the original. First, it uses narrowing, then | |
6608 | fill space at the end of the EBB, and finally widenings. If that | |
6609 | does not work, it tries again with one fewer no-op removed. The | |
6610 | optimization will only be performed if all of the branch targets | |
6611 | that were aligned before transformation are also aligned after the | |
6612 | transformation. | |
6613 | ||
6614 | When the size_opt flag is set, ignore the branch target alignments, | |
6615 | narrow all wide instructions, and remove all no-ops unless the end | |
6616 | of the EBB prevents it. */ | |
6617 | ||
6618 | bfd_boolean | |
7fa3d080 | 6619 | compute_ebb_actions (ebb_constraint *ebb_table) |
43cd72b9 BW |
6620 | { |
6621 | unsigned i = 0; | |
6622 | unsigned j; | |
6623 | int removed_bytes = 0; | |
6624 | ebb_t *ebb = &ebb_table->ebb; | |
6625 | unsigned seg_idx_start = 0; | |
6626 | unsigned seg_idx_end = 0; | |
6627 | ||
6628 | /* We perform this like the assembler relaxation algorithm: Start by | |
6629 | assuming all instructions are narrow and all no-ops removed; then | |
6630 | walk through.... */ | |
6631 | ||
6632 | /* For each segment of this that has a solid constraint, check to | |
6633 | see if there are any combinations that will keep the constraint. | |
6634 | If so, use it. */ | |
6635 | for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) | |
e0001a05 | 6636 | { |
43cd72b9 BW |
6637 | bfd_boolean requires_text_end_align = FALSE; |
6638 | unsigned longcall_count = 0; | |
6639 | unsigned longcall_convert_count = 0; | |
6640 | unsigned narrowable_count = 0; | |
6641 | unsigned narrowable_convert_count = 0; | |
6642 | unsigned widenable_count = 0; | |
6643 | unsigned widenable_convert_count = 0; | |
e0001a05 | 6644 | |
43cd72b9 BW |
6645 | proposed_action *action = NULL; |
6646 | int align = (1 << ebb_table->ebb.sec->alignment_power); | |
e0001a05 | 6647 | |
43cd72b9 | 6648 | seg_idx_start = seg_idx_end; |
e0001a05 | 6649 | |
43cd72b9 BW |
6650 | for (i = seg_idx_start; i < ebb_table->action_count; i++) |
6651 | { | |
6652 | action = &ebb_table->actions[i]; | |
6653 | if (action->action == ta_convert_longcall) | |
6654 | longcall_count++; | |
6655 | if (action->action == ta_narrow_insn) | |
6656 | narrowable_count++; | |
6657 | if (action->action == ta_widen_insn) | |
6658 | widenable_count++; | |
6659 | if (action->action == ta_fill) | |
6660 | break; | |
6661 | if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6662 | break; | |
6663 | if (action->align_type == EBB_REQUIRE_TGT_ALIGN | |
6664 | && !elf32xtensa_size_opt) | |
6665 | break; | |
6666 | } | |
6667 | seg_idx_end = i; | |
e0001a05 | 6668 | |
43cd72b9 BW |
6669 | if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) |
6670 | requires_text_end_align = TRUE; | |
e0001a05 | 6671 | |
43cd72b9 BW |
6672 | if (elf32xtensa_size_opt && !requires_text_end_align |
6673 | && action->align_type != EBB_REQUIRE_LOOP_ALIGN | |
6674 | && action->align_type != EBB_REQUIRE_TGT_ALIGN) | |
6675 | { | |
6676 | longcall_convert_count = longcall_count; | |
6677 | narrowable_convert_count = narrowable_count; | |
6678 | widenable_convert_count = 0; | |
6679 | } | |
6680 | else | |
6681 | { | |
6682 | /* There is a constraint. Convert the max number of longcalls. */ | |
6683 | narrowable_convert_count = 0; | |
6684 | longcall_convert_count = 0; | |
6685 | widenable_convert_count = 0; | |
e0001a05 | 6686 | |
43cd72b9 | 6687 | for (j = 0; j < longcall_count; j++) |
e0001a05 | 6688 | { |
43cd72b9 BW |
6689 | int removed = (longcall_count - j) * 3 & (align - 1); |
6690 | unsigned desire_narrow = (align - removed) & (align - 1); | |
6691 | unsigned desire_widen = removed; | |
6692 | if (desire_narrow <= narrowable_count) | |
6693 | { | |
6694 | narrowable_convert_count = desire_narrow; | |
6695 | narrowable_convert_count += | |
6696 | (align * ((narrowable_count - narrowable_convert_count) | |
6697 | / align)); | |
6698 | longcall_convert_count = (longcall_count - j); | |
6699 | widenable_convert_count = 0; | |
6700 | break; | |
6701 | } | |
6702 | if (desire_widen <= widenable_count && !elf32xtensa_size_opt) | |
6703 | { | |
6704 | narrowable_convert_count = 0; | |
6705 | longcall_convert_count = longcall_count - j; | |
6706 | widenable_convert_count = desire_widen; | |
6707 | break; | |
6708 | } | |
6709 | } | |
6710 | } | |
e0001a05 | 6711 | |
43cd72b9 BW |
6712 | /* Now the number of conversions are saved. Do them. */ |
6713 | for (i = seg_idx_start; i < seg_idx_end; i++) | |
6714 | { | |
6715 | action = &ebb_table->actions[i]; | |
6716 | switch (action->action) | |
6717 | { | |
6718 | case ta_convert_longcall: | |
6719 | if (longcall_convert_count != 0) | |
6720 | { | |
6721 | action->action = ta_remove_longcall; | |
6722 | action->do_action = TRUE; | |
6723 | action->removed_bytes += 3; | |
6724 | longcall_convert_count--; | |
6725 | } | |
6726 | break; | |
6727 | case ta_narrow_insn: | |
6728 | if (narrowable_convert_count != 0) | |
6729 | { | |
6730 | action->do_action = TRUE; | |
6731 | action->removed_bytes += 1; | |
6732 | narrowable_convert_count--; | |
6733 | } | |
6734 | break; | |
6735 | case ta_widen_insn: | |
6736 | if (widenable_convert_count != 0) | |
6737 | { | |
6738 | action->do_action = TRUE; | |
6739 | action->removed_bytes -= 1; | |
6740 | widenable_convert_count--; | |
6741 | } | |
6742 | break; | |
6743 | default: | |
6744 | break; | |
e0001a05 | 6745 | } |
43cd72b9 BW |
6746 | } |
6747 | } | |
e0001a05 | 6748 | |
43cd72b9 BW |
6749 | /* Now we move on to some local opts. Try to remove each of the |
6750 | remaining longcalls. */ | |
e0001a05 | 6751 | |
43cd72b9 BW |
6752 | if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) |
6753 | { | |
6754 | removed_bytes = 0; | |
6755 | for (i = 0; i < ebb_table->action_count; i++) | |
e0001a05 | 6756 | { |
43cd72b9 BW |
6757 | int old_removed_bytes = removed_bytes; |
6758 | proposed_action *action = &ebb_table->actions[i]; | |
6759 | ||
6760 | if (action->do_action && action->action == ta_convert_longcall) | |
6761 | { | |
6762 | bfd_boolean bad_alignment = FALSE; | |
6763 | removed_bytes += 3; | |
6764 | for (j = i + 1; j < ebb_table->action_count; j++) | |
6765 | { | |
6766 | proposed_action *new_action = &ebb_table->actions[j]; | |
6767 | bfd_vma offset = new_action->offset; | |
6768 | if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) | |
6769 | { | |
6770 | if (!check_branch_target_aligned | |
6771 | (ebb_table->ebb.contents, | |
6772 | ebb_table->ebb.content_length, | |
6773 | offset, offset - removed_bytes)) | |
6774 | { | |
6775 | bad_alignment = TRUE; | |
6776 | break; | |
6777 | } | |
6778 | } | |
6779 | if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) | |
6780 | { | |
6781 | if (!check_loop_aligned (ebb_table->ebb.contents, | |
6782 | ebb_table->ebb.content_length, | |
6783 | offset, | |
6784 | offset - removed_bytes)) | |
6785 | { | |
6786 | bad_alignment = TRUE; | |
6787 | break; | |
6788 | } | |
6789 | } | |
6790 | if (new_action->action == ta_narrow_insn | |
6791 | && !new_action->do_action | |
6792 | && ebb_table->ebb.sec->alignment_power == 2) | |
6793 | { | |
6794 | /* Narrow an instruction and we are done. */ | |
6795 | new_action->do_action = TRUE; | |
6796 | new_action->removed_bytes += 1; | |
6797 | bad_alignment = FALSE; | |
6798 | break; | |
6799 | } | |
6800 | if (new_action->action == ta_widen_insn | |
6801 | && new_action->do_action | |
6802 | && ebb_table->ebb.sec->alignment_power == 2) | |
6803 | { | |
6804 | /* Narrow an instruction and we are done. */ | |
6805 | new_action->do_action = FALSE; | |
6806 | new_action->removed_bytes += 1; | |
6807 | bad_alignment = FALSE; | |
6808 | break; | |
6809 | } | |
6810 | } | |
6811 | if (!bad_alignment) | |
6812 | { | |
6813 | action->removed_bytes += 3; | |
6814 | action->action = ta_remove_longcall; | |
6815 | action->do_action = TRUE; | |
6816 | } | |
6817 | } | |
6818 | removed_bytes = old_removed_bytes; | |
6819 | if (action->do_action) | |
6820 | removed_bytes += action->removed_bytes; | |
e0001a05 NC |
6821 | } |
6822 | } | |
6823 | ||
43cd72b9 BW |
6824 | removed_bytes = 0; |
6825 | for (i = 0; i < ebb_table->action_count; ++i) | |
6826 | { | |
6827 | proposed_action *action = &ebb_table->actions[i]; | |
6828 | if (action->do_action) | |
6829 | removed_bytes += action->removed_bytes; | |
6830 | } | |
6831 | ||
6832 | if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 | |
6833 | && ebb->ends_unreachable) | |
6834 | { | |
6835 | proposed_action *action; | |
6836 | int br; | |
6837 | int extra_space; | |
6838 | ||
6839 | BFD_ASSERT (ebb_table->action_count != 0); | |
6840 | action = &ebb_table->actions[ebb_table->action_count - 1]; | |
6841 | BFD_ASSERT (action->action == ta_fill); | |
6842 | BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); | |
6843 | ||
6844 | extra_space = compute_fill_extra_space (ebb->ends_unreachable); | |
6845 | br = action->removed_bytes + removed_bytes + extra_space; | |
6846 | br = br & ((1 << ebb->sec->alignment_power ) - 1); | |
6847 | ||
6848 | action->removed_bytes = extra_space - br; | |
6849 | } | |
6850 | return TRUE; | |
e0001a05 NC |
6851 | } |
6852 | ||
6853 | ||
43cd72b9 BW |
6854 | /* Use check_section_ebb_pcrels_fit to make sure that all of the |
6855 | relocations in a section will fit if a proposed set of actions | |
6856 | are performed. */ | |
e0001a05 | 6857 | |
43cd72b9 | 6858 | static bfd_boolean |
7fa3d080 BW |
6859 | check_section_ebb_pcrels_fit (bfd *abfd, |
6860 | asection *sec, | |
6861 | bfd_byte *contents, | |
6862 | Elf_Internal_Rela *internal_relocs, | |
6863 | const ebb_constraint *constraint) | |
e0001a05 | 6864 | { |
43cd72b9 BW |
6865 | unsigned i, j; |
6866 | Elf_Internal_Rela *irel; | |
6867 | xtensa_relax_info *relax_info; | |
e0001a05 | 6868 | |
43cd72b9 | 6869 | relax_info = get_xtensa_relax_info (sec); |
e0001a05 | 6870 | |
43cd72b9 BW |
6871 | for (i = 0; i < sec->reloc_count; i++) |
6872 | { | |
6873 | r_reloc r_rel; | |
6874 | bfd_vma orig_self_offset, orig_target_offset; | |
6875 | bfd_vma self_offset, target_offset; | |
6876 | int r_type; | |
6877 | reloc_howto_type *howto; | |
6878 | int self_removed_bytes, target_removed_bytes; | |
e0001a05 | 6879 | |
43cd72b9 BW |
6880 | irel = &internal_relocs[i]; |
6881 | r_type = ELF32_R_TYPE (irel->r_info); | |
e0001a05 | 6882 | |
43cd72b9 BW |
6883 | howto = &elf_howto_table[r_type]; |
6884 | /* We maintain the required invariant: PC-relative relocations | |
6885 | that fit before linking must fit after linking. Thus we only | |
6886 | need to deal with relocations to the same section that are | |
6887 | PC-relative. */ | |
6888 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY | |
6889 | || !howto->pc_relative) | |
6890 | continue; | |
e0001a05 | 6891 | |
43cd72b9 BW |
6892 | r_reloc_init (&r_rel, abfd, irel, contents, |
6893 | bfd_get_section_limit (abfd, sec)); | |
e0001a05 | 6894 | |
43cd72b9 BW |
6895 | if (r_reloc_get_section (&r_rel) != sec) |
6896 | continue; | |
e0001a05 | 6897 | |
43cd72b9 BW |
6898 | orig_self_offset = irel->r_offset; |
6899 | orig_target_offset = r_rel.target_offset; | |
e0001a05 | 6900 | |
43cd72b9 BW |
6901 | self_offset = orig_self_offset; |
6902 | target_offset = orig_target_offset; | |
6903 | ||
6904 | if (relax_info) | |
6905 | { | |
6906 | self_offset = offset_with_removed_text (&relax_info->action_list, | |
6907 | orig_self_offset); | |
6908 | target_offset = offset_with_removed_text (&relax_info->action_list, | |
6909 | orig_target_offset); | |
6910 | } | |
6911 | ||
6912 | self_removed_bytes = 0; | |
6913 | target_removed_bytes = 0; | |
6914 | ||
6915 | for (j = 0; j < constraint->action_count; ++j) | |
6916 | { | |
6917 | proposed_action *action = &constraint->actions[j]; | |
6918 | bfd_vma offset = action->offset; | |
6919 | int removed_bytes = action->removed_bytes; | |
6920 | if (offset < orig_self_offset | |
6921 | || (offset == orig_self_offset && action->action == ta_fill | |
6922 | && action->removed_bytes < 0)) | |
6923 | self_removed_bytes += removed_bytes; | |
6924 | if (offset < orig_target_offset | |
6925 | || (offset == orig_target_offset && action->action == ta_fill | |
6926 | && action->removed_bytes < 0)) | |
6927 | target_removed_bytes += removed_bytes; | |
6928 | } | |
6929 | self_offset -= self_removed_bytes; | |
6930 | target_offset -= target_removed_bytes; | |
6931 | ||
6932 | /* Try to encode it. Get the operand and check. */ | |
6933 | if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) | |
6934 | { | |
6935 | /* None of the current alternate relocs are PC-relative, | |
6936 | and only PC-relative relocs matter here. */ | |
6937 | } | |
6938 | else | |
6939 | { | |
6940 | xtensa_opcode opcode; | |
6941 | int opnum; | |
6942 | ||
6943 | opcode = get_relocation_opcode (abfd, sec, contents, irel); | |
6944 | if (opcode == XTENSA_UNDEFINED) | |
6945 | return FALSE; | |
6946 | ||
6947 | opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); | |
6948 | if (opnum == XTENSA_UNDEFINED) | |
6949 | return FALSE; | |
6950 | ||
6951 | if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) | |
6952 | return FALSE; | |
6953 | } | |
6954 | } | |
6955 | ||
6956 | return TRUE; | |
6957 | } | |
6958 | ||
6959 | ||
6960 | static bfd_boolean | |
7fa3d080 | 6961 | check_section_ebb_reduces (const ebb_constraint *constraint) |
43cd72b9 BW |
6962 | { |
6963 | int removed = 0; | |
6964 | unsigned i; | |
6965 | ||
6966 | for (i = 0; i < constraint->action_count; i++) | |
6967 | { | |
6968 | const proposed_action *action = &constraint->actions[i]; | |
6969 | if (action->do_action) | |
6970 | removed += action->removed_bytes; | |
6971 | } | |
6972 | if (removed < 0) | |
e0001a05 NC |
6973 | return FALSE; |
6974 | ||
6975 | return TRUE; | |
6976 | } | |
6977 | ||
6978 | ||
43cd72b9 | 6979 | void |
7fa3d080 BW |
6980 | text_action_add_proposed (text_action_list *l, |
6981 | const ebb_constraint *ebb_table, | |
6982 | asection *sec) | |
e0001a05 NC |
6983 | { |
6984 | unsigned i; | |
6985 | ||
43cd72b9 | 6986 | for (i = 0; i < ebb_table->action_count; i++) |
e0001a05 | 6987 | { |
43cd72b9 | 6988 | proposed_action *action = &ebb_table->actions[i]; |
e0001a05 | 6989 | |
43cd72b9 | 6990 | if (!action->do_action) |
e0001a05 | 6991 | continue; |
43cd72b9 BW |
6992 | switch (action->action) |
6993 | { | |
6994 | case ta_remove_insn: | |
6995 | case ta_remove_longcall: | |
6996 | case ta_convert_longcall: | |
6997 | case ta_narrow_insn: | |
6998 | case ta_widen_insn: | |
6999 | case ta_fill: | |
7000 | case ta_remove_literal: | |
7001 | text_action_add (l, action->action, sec, action->offset, | |
7002 | action->removed_bytes); | |
7003 | break; | |
7004 | case ta_none: | |
7005 | break; | |
7006 | default: | |
7007 | BFD_ASSERT (0); | |
7008 | break; | |
7009 | } | |
e0001a05 | 7010 | } |
43cd72b9 | 7011 | } |
e0001a05 | 7012 | |
43cd72b9 BW |
7013 | |
7014 | int | |
7fa3d080 | 7015 | compute_fill_extra_space (property_table_entry *entry) |
43cd72b9 BW |
7016 | { |
7017 | int fill_extra_space; | |
7018 | ||
7019 | if (!entry) | |
7020 | return 0; | |
7021 | ||
7022 | if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) | |
7023 | return 0; | |
7024 | ||
7025 | fill_extra_space = entry->size; | |
7026 | if ((entry->flags & XTENSA_PROP_ALIGN) != 0) | |
7027 | { | |
7028 | /* Fill bytes for alignment: | |
7029 | (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ | |
7030 | int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); | |
7031 | int nsm = (1 << pow) - 1; | |
7032 | bfd_vma addr = entry->address + entry->size; | |
7033 | bfd_vma align_fill = nsm - ((addr + nsm) & nsm); | |
7034 | fill_extra_space += align_fill; | |
7035 | } | |
7036 | return fill_extra_space; | |
e0001a05 NC |
7037 | } |
7038 | ||
43cd72b9 | 7039 | \f |
e0001a05 NC |
7040 | /* First relaxation pass. */ |
7041 | ||
43cd72b9 BW |
7042 | /* If the section contains relaxable literals, check each literal to |
7043 | see if it has the same value as another literal that has already | |
7044 | been seen, either in the current section or a previous one. If so, | |
7045 | add an entry to the per-section list of removed literals. The | |
e0001a05 NC |
7046 | actual changes are deferred until the next pass. */ |
7047 | ||
7048 | static bfd_boolean | |
7fa3d080 BW |
7049 | compute_removed_literals (bfd *abfd, |
7050 | asection *sec, | |
7051 | struct bfd_link_info *link_info, | |
7052 | value_map_hash_table *values) | |
e0001a05 NC |
7053 | { |
7054 | xtensa_relax_info *relax_info; | |
7055 | bfd_byte *contents; | |
7056 | Elf_Internal_Rela *internal_relocs; | |
43cd72b9 | 7057 | source_reloc *src_relocs, *rel; |
e0001a05 | 7058 | bfd_boolean ok = TRUE; |
43cd72b9 BW |
7059 | property_table_entry *prop_table = NULL; |
7060 | int ptblsize; | |
7061 | int i, prev_i; | |
7062 | bfd_boolean last_loc_is_prev = FALSE; | |
7063 | bfd_vma last_target_offset = 0; | |
7064 | section_cache_t target_sec_cache; | |
7065 | bfd_size_type sec_size; | |
7066 | ||
7067 | init_section_cache (&target_sec_cache); | |
e0001a05 NC |
7068 | |
7069 | /* Do nothing if it is not a relaxable literal section. */ | |
7070 | relax_info = get_xtensa_relax_info (sec); | |
7071 | BFD_ASSERT (relax_info); | |
e0001a05 NC |
7072 | if (!relax_info->is_relaxable_literal_section) |
7073 | return ok; | |
7074 | ||
7075 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
7076 | link_info->keep_memory); | |
7077 | ||
43cd72b9 | 7078 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 | 7079 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); |
43cd72b9 | 7080 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
7081 | { |
7082 | ok = FALSE; | |
7083 | goto error_return; | |
7084 | } | |
7085 | ||
7086 | /* Sort the source_relocs by target offset. */ | |
7087 | src_relocs = relax_info->src_relocs; | |
7088 | qsort (src_relocs, relax_info->src_count, | |
7089 | sizeof (source_reloc), source_reloc_compare); | |
43cd72b9 BW |
7090 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), |
7091 | internal_reloc_compare); | |
e0001a05 | 7092 | |
43cd72b9 BW |
7093 | ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, |
7094 | XTENSA_PROP_SEC_NAME, FALSE); | |
7095 | if (ptblsize < 0) | |
7096 | { | |
7097 | ok = FALSE; | |
7098 | goto error_return; | |
7099 | } | |
7100 | ||
7101 | prev_i = -1; | |
e0001a05 NC |
7102 | for (i = 0; i < relax_info->src_count; i++) |
7103 | { | |
e0001a05 | 7104 | Elf_Internal_Rela *irel = NULL; |
e0001a05 NC |
7105 | |
7106 | rel = &src_relocs[i]; | |
43cd72b9 BW |
7107 | if (get_l32r_opcode () != rel->opcode) |
7108 | continue; | |
e0001a05 NC |
7109 | irel = get_irel_at_offset (sec, internal_relocs, |
7110 | rel->r_rel.target_offset); | |
7111 | ||
43cd72b9 BW |
7112 | /* If the relocation on this is not a simple R_XTENSA_32 or |
7113 | R_XTENSA_PLT then do not consider it. This may happen when | |
7114 | the difference of two symbols is used in a literal. */ | |
7115 | if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 | |
7116 | && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) | |
7117 | continue; | |
7118 | ||
e0001a05 NC |
7119 | /* If the target_offset for this relocation is the same as the |
7120 | previous relocation, then we've already considered whether the | |
7121 | literal can be coalesced. Skip to the next one.... */ | |
43cd72b9 BW |
7122 | if (i != 0 && prev_i != -1 |
7123 | && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) | |
e0001a05 | 7124 | continue; |
43cd72b9 BW |
7125 | prev_i = i; |
7126 | ||
7127 | if (last_loc_is_prev && | |
7128 | last_target_offset + 4 != rel->r_rel.target_offset) | |
7129 | last_loc_is_prev = FALSE; | |
e0001a05 NC |
7130 | |
7131 | /* Check if the relocation was from an L32R that is being removed | |
7132 | because a CALLX was converted to a direct CALL, and check if | |
7133 | there are no other relocations to the literal. */ | |
43cd72b9 | 7134 | if (is_removable_literal (rel, i, src_relocs, relax_info->src_count)) |
e0001a05 | 7135 | { |
43cd72b9 BW |
7136 | if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, |
7137 | irel, rel, prop_table, ptblsize)) | |
e0001a05 | 7138 | { |
43cd72b9 BW |
7139 | ok = FALSE; |
7140 | goto error_return; | |
e0001a05 | 7141 | } |
43cd72b9 | 7142 | last_target_offset = rel->r_rel.target_offset; |
e0001a05 NC |
7143 | continue; |
7144 | } | |
7145 | ||
43cd72b9 BW |
7146 | if (!identify_literal_placement (abfd, sec, contents, link_info, |
7147 | values, | |
7148 | &last_loc_is_prev, irel, | |
7149 | relax_info->src_count - i, rel, | |
7150 | prop_table, ptblsize, | |
7151 | &target_sec_cache, rel->is_abs_literal)) | |
e0001a05 | 7152 | { |
43cd72b9 BW |
7153 | ok = FALSE; |
7154 | goto error_return; | |
7155 | } | |
7156 | last_target_offset = rel->r_rel.target_offset; | |
7157 | } | |
e0001a05 | 7158 | |
43cd72b9 BW |
7159 | #if DEBUG |
7160 | print_removed_literals (stderr, &relax_info->removed_list); | |
7161 | print_action_list (stderr, &relax_info->action_list); | |
7162 | #endif /* DEBUG */ | |
7163 | ||
7164 | error_return: | |
7165 | if (prop_table) free (prop_table); | |
7166 | clear_section_cache (&target_sec_cache); | |
7167 | ||
7168 | release_contents (sec, contents); | |
7169 | release_internal_relocs (sec, internal_relocs); | |
7170 | return ok; | |
7171 | } | |
7172 | ||
7173 | ||
7174 | static Elf_Internal_Rela * | |
7fa3d080 BW |
7175 | get_irel_at_offset (asection *sec, |
7176 | Elf_Internal_Rela *internal_relocs, | |
7177 | bfd_vma offset) | |
43cd72b9 BW |
7178 | { |
7179 | unsigned i; | |
7180 | Elf_Internal_Rela *irel; | |
7181 | unsigned r_type; | |
7182 | Elf_Internal_Rela key; | |
7183 | ||
7184 | if (!internal_relocs) | |
7185 | return NULL; | |
7186 | ||
7187 | key.r_offset = offset; | |
7188 | irel = bsearch (&key, internal_relocs, sec->reloc_count, | |
7189 | sizeof (Elf_Internal_Rela), internal_reloc_matches); | |
7190 | if (!irel) | |
7191 | return NULL; | |
7192 | ||
7193 | /* bsearch does not guarantee which will be returned if there are | |
7194 | multiple matches. We need the first that is not an alignment. */ | |
7195 | i = irel - internal_relocs; | |
7196 | while (i > 0) | |
7197 | { | |
7198 | if (internal_relocs[i-1].r_offset != offset) | |
7199 | break; | |
7200 | i--; | |
7201 | } | |
7202 | for ( ; i < sec->reloc_count; i++) | |
7203 | { | |
7204 | irel = &internal_relocs[i]; | |
7205 | r_type = ELF32_R_TYPE (irel->r_info); | |
7206 | if (irel->r_offset == offset && r_type != R_XTENSA_NONE) | |
7207 | return irel; | |
7208 | } | |
7209 | ||
7210 | return NULL; | |
7211 | } | |
7212 | ||
7213 | ||
7214 | bfd_boolean | |
7fa3d080 BW |
7215 | is_removable_literal (const source_reloc *rel, |
7216 | int i, | |
7217 | const source_reloc *src_relocs, | |
7218 | int src_count) | |
43cd72b9 BW |
7219 | { |
7220 | const source_reloc *curr_rel; | |
7221 | if (!rel->is_null) | |
7222 | return FALSE; | |
7223 | ||
7224 | for (++i; i < src_count; ++i) | |
7225 | { | |
7226 | curr_rel = &src_relocs[i]; | |
7227 | /* If all others have the same target offset.... */ | |
7228 | if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) | |
7229 | return TRUE; | |
7230 | ||
7231 | if (!curr_rel->is_null | |
7232 | && !xtensa_is_property_section (curr_rel->source_sec) | |
7233 | && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) | |
7234 | return FALSE; | |
7235 | } | |
7236 | return TRUE; | |
7237 | } | |
7238 | ||
7239 | ||
7240 | bfd_boolean | |
7fa3d080 BW |
7241 | remove_dead_literal (bfd *abfd, |
7242 | asection *sec, | |
7243 | struct bfd_link_info *link_info, | |
7244 | Elf_Internal_Rela *internal_relocs, | |
7245 | Elf_Internal_Rela *irel, | |
7246 | source_reloc *rel, | |
7247 | property_table_entry *prop_table, | |
7248 | int ptblsize) | |
43cd72b9 BW |
7249 | { |
7250 | property_table_entry *entry; | |
7251 | xtensa_relax_info *relax_info; | |
7252 | ||
7253 | relax_info = get_xtensa_relax_info (sec); | |
7254 | if (!relax_info) | |
7255 | return FALSE; | |
7256 | ||
7257 | entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7258 | sec->vma + rel->r_rel.target_offset); | |
7259 | ||
7260 | /* Mark the unused literal so that it will be removed. */ | |
7261 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); | |
7262 | ||
7263 | text_action_add (&relax_info->action_list, | |
7264 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7265 | ||
7266 | /* If the section is 4-byte aligned, do not add fill. */ | |
7267 | if (sec->alignment_power > 2) | |
7268 | { | |
7269 | int fill_extra_space; | |
7270 | bfd_vma entry_sec_offset; | |
7271 | text_action *fa; | |
7272 | property_table_entry *the_add_entry; | |
7273 | int removed_diff; | |
7274 | ||
7275 | if (entry) | |
7276 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7277 | else | |
7278 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7279 | ||
7280 | /* If the literal range is at the end of the section, | |
7281 | do not add fill. */ | |
7282 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7283 | entry_sec_offset); | |
7284 | fill_extra_space = compute_fill_extra_space (the_add_entry); | |
7285 | ||
7286 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7287 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7288 | -4, fill_extra_space); | |
7289 | if (fa) | |
7290 | adjust_fill_action (fa, removed_diff); | |
7291 | else | |
7292 | text_action_add (&relax_info->action_list, | |
7293 | ta_fill, sec, entry_sec_offset, removed_diff); | |
7294 | } | |
7295 | ||
7296 | /* Zero out the relocation on this literal location. */ | |
7297 | if (irel) | |
7298 | { | |
7299 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
7300 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
7301 | ||
7302 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7303 | pin_internal_relocs (sec, internal_relocs); | |
7304 | } | |
7305 | ||
7306 | /* Do not modify "last_loc_is_prev". */ | |
7307 | return TRUE; | |
7308 | } | |
7309 | ||
7310 | ||
7311 | bfd_boolean | |
7fa3d080 BW |
7312 | identify_literal_placement (bfd *abfd, |
7313 | asection *sec, | |
7314 | bfd_byte *contents, | |
7315 | struct bfd_link_info *link_info, | |
7316 | value_map_hash_table *values, | |
7317 | bfd_boolean *last_loc_is_prev_p, | |
7318 | Elf_Internal_Rela *irel, | |
7319 | int remaining_src_rels, | |
7320 | source_reloc *rel, | |
7321 | property_table_entry *prop_table, | |
7322 | int ptblsize, | |
7323 | section_cache_t *target_sec_cache, | |
7324 | bfd_boolean is_abs_literal) | |
43cd72b9 BW |
7325 | { |
7326 | literal_value val; | |
7327 | value_map *val_map; | |
7328 | xtensa_relax_info *relax_info; | |
7329 | bfd_boolean literal_placed = FALSE; | |
7330 | r_reloc r_rel; | |
7331 | unsigned long value; | |
7332 | bfd_boolean final_static_link; | |
7333 | bfd_size_type sec_size; | |
7334 | ||
7335 | relax_info = get_xtensa_relax_info (sec); | |
7336 | if (!relax_info) | |
7337 | return FALSE; | |
7338 | ||
7339 | sec_size = bfd_get_section_limit (abfd, sec); | |
7340 | ||
7341 | final_static_link = | |
7342 | (!link_info->relocatable | |
7343 | && !elf_hash_table (link_info)->dynamic_sections_created); | |
7344 | ||
7345 | /* The placement algorithm first checks to see if the literal is | |
7346 | already in the value map. If so and the value map is reachable | |
7347 | from all uses, then the literal is moved to that location. If | |
7348 | not, then we identify the last location where a fresh literal was | |
7349 | placed. If the literal can be safely moved there, then we do so. | |
7350 | If not, then we assume that the literal is not to move and leave | |
7351 | the literal where it is, marking it as the last literal | |
7352 | location. */ | |
7353 | ||
7354 | /* Find the literal value. */ | |
7355 | value = 0; | |
7356 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7357 | if (!irel) | |
7358 | { | |
7359 | BFD_ASSERT (rel->r_rel.target_offset < sec_size); | |
7360 | value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); | |
7361 | } | |
7362 | init_literal_value (&val, &r_rel, value, is_abs_literal); | |
7363 | ||
7364 | /* Check if we've seen another literal with the same value that | |
7365 | is in the same output section. */ | |
7366 | val_map = value_map_get_cached_value (values, &val, final_static_link); | |
7367 | ||
7368 | if (val_map | |
7369 | && (r_reloc_get_section (&val_map->loc)->output_section | |
7370 | == sec->output_section) | |
7371 | && relocations_reach (rel, remaining_src_rels, &val_map->loc) | |
7372 | && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) | |
7373 | { | |
7374 | /* No change to last_loc_is_prev. */ | |
7375 | literal_placed = TRUE; | |
7376 | } | |
7377 | ||
7378 | /* For relocatable links, do not try to move literals. To do it | |
7379 | correctly might increase the number of relocations in an input | |
7380 | section making the default relocatable linking fail. */ | |
7381 | if (!link_info->relocatable && !literal_placed | |
7382 | && values->has_last_loc && !(*last_loc_is_prev_p)) | |
7383 | { | |
7384 | asection *target_sec = r_reloc_get_section (&values->last_loc); | |
7385 | if (target_sec && target_sec->output_section == sec->output_section) | |
7386 | { | |
7387 | /* Increment the virtual offset. */ | |
7388 | r_reloc try_loc = values->last_loc; | |
7389 | try_loc.virtual_offset += 4; | |
7390 | ||
7391 | /* There is a last loc that was in the same output section. */ | |
7392 | if (relocations_reach (rel, remaining_src_rels, &try_loc) | |
7393 | && move_shared_literal (sec, link_info, rel, | |
7394 | prop_table, ptblsize, | |
7395 | &try_loc, &val, target_sec_cache)) | |
e0001a05 | 7396 | { |
43cd72b9 BW |
7397 | values->last_loc.virtual_offset += 4; |
7398 | literal_placed = TRUE; | |
7399 | if (!val_map) | |
7400 | val_map = add_value_map (values, &val, &try_loc, | |
7401 | final_static_link); | |
7402 | else | |
7403 | val_map->loc = try_loc; | |
e0001a05 NC |
7404 | } |
7405 | } | |
43cd72b9 BW |
7406 | } |
7407 | ||
7408 | if (!literal_placed) | |
7409 | { | |
7410 | /* Nothing worked, leave the literal alone but update the last loc. */ | |
7411 | values->has_last_loc = TRUE; | |
7412 | values->last_loc = rel->r_rel; | |
7413 | if (!val_map) | |
7414 | val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); | |
e0001a05 | 7415 | else |
43cd72b9 BW |
7416 | val_map->loc = rel->r_rel; |
7417 | *last_loc_is_prev_p = TRUE; | |
e0001a05 NC |
7418 | } |
7419 | ||
43cd72b9 | 7420 | return TRUE; |
e0001a05 NC |
7421 | } |
7422 | ||
7423 | ||
7424 | /* Check if the original relocations (presumably on L32R instructions) | |
7425 | identified by reloc[0..N] can be changed to reference the literal | |
7426 | identified by r_rel. If r_rel is out of range for any of the | |
7427 | original relocations, then we don't want to coalesce the original | |
7428 | literal with the one at r_rel. We only check reloc[0..N], where the | |
7429 | offsets are all the same as for reloc[0] (i.e., they're all | |
7430 | referencing the same literal) and where N is also bounded by the | |
7431 | number of remaining entries in the "reloc" array. The "reloc" array | |
7432 | is sorted by target offset so we know all the entries for the same | |
7433 | literal will be contiguous. */ | |
7434 | ||
7435 | static bfd_boolean | |
7fa3d080 BW |
7436 | relocations_reach (source_reloc *reloc, |
7437 | int remaining_relocs, | |
7438 | const r_reloc *r_rel) | |
e0001a05 NC |
7439 | { |
7440 | bfd_vma from_offset, source_address, dest_address; | |
7441 | asection *sec; | |
7442 | int i; | |
7443 | ||
7444 | if (!r_reloc_is_defined (r_rel)) | |
7445 | return FALSE; | |
7446 | ||
7447 | sec = r_reloc_get_section (r_rel); | |
7448 | from_offset = reloc[0].r_rel.target_offset; | |
7449 | ||
7450 | for (i = 0; i < remaining_relocs; i++) | |
7451 | { | |
7452 | if (reloc[i].r_rel.target_offset != from_offset) | |
7453 | break; | |
7454 | ||
7455 | /* Ignore relocations that have been removed. */ | |
7456 | if (reloc[i].is_null) | |
7457 | continue; | |
7458 | ||
7459 | /* The original and new output section for these must be the same | |
7460 | in order to coalesce. */ | |
7461 | if (r_reloc_get_section (&reloc[i].r_rel)->output_section | |
7462 | != sec->output_section) | |
7463 | return FALSE; | |
7464 | ||
d638e0ac BW |
7465 | /* Absolute literals in the same output section can always be |
7466 | combined. */ | |
7467 | if (reloc[i].is_abs_literal) | |
7468 | continue; | |
7469 | ||
43cd72b9 BW |
7470 | /* A literal with no PC-relative relocations can be moved anywhere. */ |
7471 | if (reloc[i].opnd != -1) | |
e0001a05 NC |
7472 | { |
7473 | /* Otherwise, check to see that it fits. */ | |
7474 | source_address = (reloc[i].source_sec->output_section->vma | |
7475 | + reloc[i].source_sec->output_offset | |
7476 | + reloc[i].r_rel.rela.r_offset); | |
7477 | dest_address = (sec->output_section->vma | |
7478 | + sec->output_offset | |
7479 | + r_rel->target_offset); | |
7480 | ||
43cd72b9 BW |
7481 | if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, |
7482 | source_address, dest_address)) | |
e0001a05 NC |
7483 | return FALSE; |
7484 | } | |
7485 | } | |
7486 | ||
7487 | return TRUE; | |
7488 | } | |
7489 | ||
7490 | ||
43cd72b9 BW |
7491 | /* Move a literal to another literal location because it is |
7492 | the same as the other literal value. */ | |
e0001a05 | 7493 | |
43cd72b9 | 7494 | static bfd_boolean |
7fa3d080 BW |
7495 | coalesce_shared_literal (asection *sec, |
7496 | source_reloc *rel, | |
7497 | property_table_entry *prop_table, | |
7498 | int ptblsize, | |
7499 | value_map *val_map) | |
e0001a05 | 7500 | { |
43cd72b9 BW |
7501 | property_table_entry *entry; |
7502 | text_action *fa; | |
7503 | property_table_entry *the_add_entry; | |
7504 | int removed_diff; | |
7505 | xtensa_relax_info *relax_info; | |
7506 | ||
7507 | relax_info = get_xtensa_relax_info (sec); | |
7508 | if (!relax_info) | |
7509 | return FALSE; | |
7510 | ||
7511 | entry = elf_xtensa_find_property_entry | |
7512 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
7513 | if (entry && (entry->flags & XTENSA_PROP_INSN_NO_TRANSFORM)) | |
7514 | return TRUE; | |
7515 | ||
7516 | /* Mark that the literal will be coalesced. */ | |
7517 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); | |
7518 | ||
7519 | text_action_add (&relax_info->action_list, | |
7520 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7521 | ||
7522 | /* If the section is 4-byte aligned, do not add fill. */ | |
7523 | if (sec->alignment_power > 2) | |
e0001a05 | 7524 | { |
43cd72b9 BW |
7525 | int fill_extra_space; |
7526 | bfd_vma entry_sec_offset; | |
7527 | ||
7528 | if (entry) | |
7529 | entry_sec_offset = entry->address - sec->vma + entry->size; | |
7530 | else | |
7531 | entry_sec_offset = rel->r_rel.target_offset + 4; | |
7532 | ||
7533 | /* If the literal range is at the end of the section, | |
7534 | do not add fill. */ | |
7535 | fill_extra_space = 0; | |
7536 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7537 | entry_sec_offset); | |
7538 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7539 | fill_extra_space = the_add_entry->size; | |
7540 | ||
7541 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7542 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7543 | -4, fill_extra_space); | |
7544 | if (fa) | |
7545 | adjust_fill_action (fa, removed_diff); | |
7546 | else | |
7547 | text_action_add (&relax_info->action_list, | |
7548 | ta_fill, sec, entry_sec_offset, removed_diff); | |
e0001a05 | 7549 | } |
43cd72b9 BW |
7550 | |
7551 | return TRUE; | |
7552 | } | |
7553 | ||
7554 | ||
7555 | /* Move a literal to another location. This may actually increase the | |
7556 | total amount of space used because of alignments so we need to do | |
7557 | this carefully. Also, it may make a branch go out of range. */ | |
7558 | ||
7559 | static bfd_boolean | |
7fa3d080 BW |
7560 | move_shared_literal (asection *sec, |
7561 | struct bfd_link_info *link_info, | |
7562 | source_reloc *rel, | |
7563 | property_table_entry *prop_table, | |
7564 | int ptblsize, | |
7565 | const r_reloc *target_loc, | |
7566 | const literal_value *lit_value, | |
7567 | section_cache_t *target_sec_cache) | |
43cd72b9 BW |
7568 | { |
7569 | property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; | |
7570 | text_action *fa, *target_fa; | |
7571 | int removed_diff; | |
7572 | xtensa_relax_info *relax_info, *target_relax_info; | |
7573 | asection *target_sec; | |
7574 | ebb_t *ebb; | |
7575 | ebb_constraint ebb_table; | |
7576 | bfd_boolean relocs_fit; | |
7577 | ||
7578 | /* If this routine always returns FALSE, the literals that cannot be | |
7579 | coalesced will not be moved. */ | |
7580 | if (elf32xtensa_no_literal_movement) | |
7581 | return FALSE; | |
7582 | ||
7583 | relax_info = get_xtensa_relax_info (sec); | |
7584 | if (!relax_info) | |
7585 | return FALSE; | |
7586 | ||
7587 | target_sec = r_reloc_get_section (target_loc); | |
7588 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7589 | ||
7590 | /* Literals to undefined sections may not be moved because they | |
7591 | must report an error. */ | |
7592 | if (bfd_is_und_section (target_sec)) | |
7593 | return FALSE; | |
7594 | ||
7595 | src_entry = elf_xtensa_find_property_entry | |
7596 | (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); | |
7597 | ||
7598 | if (!section_cache_section (target_sec_cache, target_sec, link_info)) | |
7599 | return FALSE; | |
7600 | ||
7601 | target_entry = elf_xtensa_find_property_entry | |
7602 | (target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7603 | target_sec->vma + target_loc->target_offset); | |
7604 | ||
7605 | if (!target_entry) | |
7606 | return FALSE; | |
7607 | ||
7608 | /* Make sure that we have not broken any branches. */ | |
7609 | relocs_fit = FALSE; | |
7610 | ||
7611 | init_ebb_constraint (&ebb_table); | |
7612 | ebb = &ebb_table.ebb; | |
7613 | init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, | |
7614 | target_sec_cache->content_length, | |
7615 | target_sec_cache->ptbl, target_sec_cache->pte_count, | |
7616 | target_sec_cache->relocs, target_sec_cache->reloc_count); | |
7617 | ||
7618 | /* Propose to add 4 bytes + worst-case alignment size increase to | |
7619 | destination. */ | |
7620 | ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, | |
7621 | ta_fill, target_loc->target_offset, | |
7622 | -4 - (1 << target_sec->alignment_power), TRUE); | |
7623 | ||
7624 | /* Check all of the PC-relative relocations to make sure they still fit. */ | |
7625 | relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, | |
7626 | target_sec_cache->contents, | |
7627 | target_sec_cache->relocs, | |
7628 | &ebb_table); | |
7629 | ||
7630 | if (!relocs_fit) | |
7631 | return FALSE; | |
7632 | ||
7633 | text_action_add_literal (&target_relax_info->action_list, | |
7634 | ta_add_literal, target_loc, lit_value, -4); | |
7635 | ||
7636 | if (target_sec->alignment_power > 2 && target_entry != src_entry) | |
7637 | { | |
7638 | /* May need to add or remove some fill to maintain alignment. */ | |
7639 | int fill_extra_space; | |
7640 | bfd_vma entry_sec_offset; | |
7641 | ||
7642 | entry_sec_offset = | |
7643 | target_entry->address - target_sec->vma + target_entry->size; | |
7644 | ||
7645 | /* If the literal range is at the end of the section, | |
7646 | do not add fill. */ | |
7647 | fill_extra_space = 0; | |
7648 | the_add_entry = | |
7649 | elf_xtensa_find_property_entry (target_sec_cache->ptbl, | |
7650 | target_sec_cache->pte_count, | |
7651 | entry_sec_offset); | |
7652 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7653 | fill_extra_space = the_add_entry->size; | |
7654 | ||
7655 | target_fa = find_fill_action (&target_relax_info->action_list, | |
7656 | target_sec, entry_sec_offset); | |
7657 | removed_diff = compute_removed_action_diff (target_fa, target_sec, | |
7658 | entry_sec_offset, 4, | |
7659 | fill_extra_space); | |
7660 | if (target_fa) | |
7661 | adjust_fill_action (target_fa, removed_diff); | |
7662 | else | |
7663 | text_action_add (&target_relax_info->action_list, | |
7664 | ta_fill, target_sec, entry_sec_offset, removed_diff); | |
7665 | } | |
7666 | ||
7667 | /* Mark that the literal will be moved to the new location. */ | |
7668 | add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); | |
7669 | ||
7670 | /* Remove the literal. */ | |
7671 | text_action_add (&relax_info->action_list, | |
7672 | ta_remove_literal, sec, rel->r_rel.target_offset, 4); | |
7673 | ||
7674 | /* If the section is 4-byte aligned, do not add fill. */ | |
7675 | if (sec->alignment_power > 2 && target_entry != src_entry) | |
7676 | { | |
7677 | int fill_extra_space; | |
7678 | bfd_vma entry_sec_offset; | |
7679 | ||
7680 | if (src_entry) | |
7681 | entry_sec_offset = src_entry->address - sec->vma + src_entry->size; | |
7682 | else | |
7683 | entry_sec_offset = rel->r_rel.target_offset+4; | |
7684 | ||
7685 | /* If the literal range is at the end of the section, | |
7686 | do not add fill. */ | |
7687 | fill_extra_space = 0; | |
7688 | the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, | |
7689 | entry_sec_offset); | |
7690 | if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) | |
7691 | fill_extra_space = the_add_entry->size; | |
7692 | ||
7693 | fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); | |
7694 | removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, | |
7695 | -4, fill_extra_space); | |
7696 | if (fa) | |
7697 | adjust_fill_action (fa, removed_diff); | |
7698 | else | |
7699 | text_action_add (&relax_info->action_list, | |
7700 | ta_fill, sec, entry_sec_offset, removed_diff); | |
7701 | } | |
7702 | ||
7703 | return TRUE; | |
e0001a05 NC |
7704 | } |
7705 | ||
7706 | \f | |
7707 | /* Second relaxation pass. */ | |
7708 | ||
7709 | /* Modify all of the relocations to point to the right spot, and if this | |
7710 | is a relaxable section, delete the unwanted literals and fix the | |
43cd72b9 | 7711 | section size. */ |
e0001a05 | 7712 | |
43cd72b9 | 7713 | bfd_boolean |
7fa3d080 | 7714 | relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) |
e0001a05 NC |
7715 | { |
7716 | Elf_Internal_Rela *internal_relocs; | |
7717 | xtensa_relax_info *relax_info; | |
7718 | bfd_byte *contents; | |
7719 | bfd_boolean ok = TRUE; | |
7720 | unsigned i; | |
43cd72b9 BW |
7721 | bfd_boolean rv = FALSE; |
7722 | bfd_boolean virtual_action; | |
7723 | bfd_size_type sec_size; | |
e0001a05 | 7724 | |
43cd72b9 | 7725 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
7726 | relax_info = get_xtensa_relax_info (sec); |
7727 | BFD_ASSERT (relax_info); | |
7728 | ||
43cd72b9 BW |
7729 | /* First translate any of the fixes that have been added already. */ |
7730 | translate_section_fixes (sec); | |
7731 | ||
e0001a05 NC |
7732 | /* Handle property sections (e.g., literal tables) specially. */ |
7733 | if (xtensa_is_property_section (sec)) | |
7734 | { | |
7735 | BFD_ASSERT (!relax_info->is_relaxable_literal_section); | |
7736 | return relax_property_section (abfd, sec, link_info); | |
7737 | } | |
7738 | ||
43cd72b9 BW |
7739 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
7740 | link_info->keep_memory); | |
7741 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
7742 | if (contents == NULL && sec_size != 0) | |
7743 | { | |
7744 | ok = FALSE; | |
7745 | goto error_return; | |
7746 | } | |
7747 | ||
7748 | if (internal_relocs) | |
7749 | { | |
7750 | for (i = 0; i < sec->reloc_count; i++) | |
7751 | { | |
7752 | Elf_Internal_Rela *irel; | |
7753 | xtensa_relax_info *target_relax_info; | |
7754 | bfd_vma source_offset, old_source_offset; | |
7755 | r_reloc r_rel; | |
7756 | unsigned r_type; | |
7757 | asection *target_sec; | |
7758 | ||
7759 | /* Locally change the source address. | |
7760 | Translate the target to the new target address. | |
7761 | If it points to this section and has been removed, | |
7762 | NULLify it. | |
7763 | Write it back. */ | |
7764 | ||
7765 | irel = &internal_relocs[i]; | |
7766 | source_offset = irel->r_offset; | |
7767 | old_source_offset = source_offset; | |
7768 | ||
7769 | r_type = ELF32_R_TYPE (irel->r_info); | |
7770 | r_reloc_init (&r_rel, abfd, irel, contents, | |
7771 | bfd_get_section_limit (abfd, sec)); | |
7772 | ||
7773 | /* If this section could have changed then we may need to | |
7774 | change the relocation's offset. */ | |
7775 | ||
7776 | if (relax_info->is_relaxable_literal_section | |
7777 | || relax_info->is_relaxable_asm_section) | |
7778 | { | |
7779 | if (r_type != R_XTENSA_NONE | |
7780 | && find_removed_literal (&relax_info->removed_list, | |
7781 | irel->r_offset)) | |
7782 | { | |
7783 | /* Remove this relocation. */ | |
7784 | if (elf_hash_table (link_info)->dynamic_sections_created) | |
7785 | shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); | |
7786 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
7787 | irel->r_offset = offset_with_removed_text | |
7788 | (&relax_info->action_list, irel->r_offset); | |
7789 | pin_internal_relocs (sec, internal_relocs); | |
7790 | continue; | |
7791 | } | |
7792 | ||
7793 | if (r_type == R_XTENSA_ASM_SIMPLIFY) | |
7794 | { | |
7795 | text_action *action = | |
7796 | find_insn_action (&relax_info->action_list, | |
7797 | irel->r_offset); | |
7798 | if (action && (action->action == ta_convert_longcall | |
7799 | || action->action == ta_remove_longcall)) | |
7800 | { | |
7801 | bfd_reloc_status_type retval; | |
7802 | char *error_message = NULL; | |
7803 | ||
7804 | retval = contract_asm_expansion (contents, sec_size, | |
7805 | irel, &error_message); | |
7806 | if (retval != bfd_reloc_ok) | |
7807 | { | |
7808 | (*link_info->callbacks->reloc_dangerous) | |
7809 | (link_info, error_message, abfd, sec, | |
7810 | irel->r_offset); | |
7811 | goto error_return; | |
7812 | } | |
7813 | /* Update the action so that the code that moves | |
7814 | the contents will do the right thing. */ | |
7815 | if (action->action == ta_remove_longcall) | |
7816 | action->action = ta_remove_insn; | |
7817 | else | |
7818 | action->action = ta_none; | |
7819 | /* Refresh the info in the r_rel. */ | |
7820 | r_reloc_init (&r_rel, abfd, irel, contents, sec_size); | |
7821 | r_type = ELF32_R_TYPE (irel->r_info); | |
7822 | } | |
7823 | } | |
7824 | ||
7825 | source_offset = offset_with_removed_text | |
7826 | (&relax_info->action_list, irel->r_offset); | |
7827 | irel->r_offset = source_offset; | |
7828 | } | |
7829 | ||
7830 | /* If the target section could have changed then | |
7831 | we may need to change the relocation's target offset. */ | |
7832 | ||
7833 | target_sec = r_reloc_get_section (&r_rel); | |
7834 | target_relax_info = get_xtensa_relax_info (target_sec); | |
7835 | ||
7836 | if (target_relax_info | |
7837 | && (target_relax_info->is_relaxable_literal_section | |
7838 | || target_relax_info->is_relaxable_asm_section)) | |
7839 | { | |
7840 | r_reloc new_reloc; | |
7841 | reloc_bfd_fix *fix; | |
7842 | bfd_vma addend_displacement; | |
7843 | ||
7844 | translate_reloc (&r_rel, &new_reloc); | |
7845 | ||
7846 | if (r_type == R_XTENSA_DIFF8 | |
7847 | || r_type == R_XTENSA_DIFF16 | |
7848 | || r_type == R_XTENSA_DIFF32) | |
7849 | { | |
7850 | bfd_vma diff_value = 0, new_end_offset, diff_mask = 0; | |
7851 | ||
7852 | if (bfd_get_section_limit (abfd, sec) < old_source_offset) | |
7853 | { | |
7854 | (*link_info->callbacks->reloc_dangerous) | |
7855 | (link_info, _("invalid relocation address"), | |
7856 | abfd, sec, old_source_offset); | |
7857 | goto error_return; | |
7858 | } | |
7859 | ||
7860 | switch (r_type) | |
7861 | { | |
7862 | case R_XTENSA_DIFF8: | |
7863 | diff_value = | |
7864 | bfd_get_8 (abfd, &contents[old_source_offset]); | |
7865 | break; | |
7866 | case R_XTENSA_DIFF16: | |
7867 | diff_value = | |
7868 | bfd_get_16 (abfd, &contents[old_source_offset]); | |
7869 | break; | |
7870 | case R_XTENSA_DIFF32: | |
7871 | diff_value = | |
7872 | bfd_get_32 (abfd, &contents[old_source_offset]); | |
7873 | break; | |
7874 | } | |
7875 | ||
7876 | new_end_offset = offset_with_removed_text | |
7877 | (&target_relax_info->action_list, | |
7878 | r_rel.target_offset + diff_value); | |
7879 | diff_value = new_end_offset - new_reloc.target_offset; | |
7880 | ||
7881 | switch (r_type) | |
7882 | { | |
7883 | case R_XTENSA_DIFF8: | |
7884 | diff_mask = 0xff; | |
7885 | bfd_put_8 (abfd, diff_value, | |
7886 | &contents[old_source_offset]); | |
7887 | break; | |
7888 | case R_XTENSA_DIFF16: | |
7889 | diff_mask = 0xffff; | |
7890 | bfd_put_16 (abfd, diff_value, | |
7891 | &contents[old_source_offset]); | |
7892 | break; | |
7893 | case R_XTENSA_DIFF32: | |
7894 | diff_mask = 0xffffffff; | |
7895 | bfd_put_32 (abfd, diff_value, | |
7896 | &contents[old_source_offset]); | |
7897 | break; | |
7898 | } | |
7899 | ||
7900 | /* Check for overflow. */ | |
7901 | if ((diff_value & ~diff_mask) != 0) | |
7902 | { | |
7903 | (*link_info->callbacks->reloc_dangerous) | |
7904 | (link_info, _("overflow after relaxation"), | |
7905 | abfd, sec, old_source_offset); | |
7906 | goto error_return; | |
7907 | } | |
7908 | ||
7909 | pin_contents (sec, contents); | |
7910 | } | |
7911 | ||
7912 | /* FIXME: If the relocation still references a section in | |
7913 | the same input file, the relocation should be modified | |
7914 | directly instead of adding a "fix" record. */ | |
7915 | ||
7916 | addend_displacement = | |
7917 | new_reloc.target_offset + new_reloc.virtual_offset; | |
7918 | ||
7919 | fix = reloc_bfd_fix_init (sec, source_offset, r_type, 0, | |
7920 | r_reloc_get_section (&new_reloc), | |
7921 | addend_displacement, TRUE); | |
7922 | add_fix (sec, fix); | |
7923 | } | |
7924 | ||
7925 | pin_internal_relocs (sec, internal_relocs); | |
7926 | } | |
7927 | } | |
7928 | ||
7929 | if ((relax_info->is_relaxable_literal_section | |
7930 | || relax_info->is_relaxable_asm_section) | |
7931 | && relax_info->action_list.head) | |
7932 | { | |
7933 | /* Walk through the planned actions and build up a table | |
7934 | of move, copy and fill records. Use the move, copy and | |
7935 | fill records to perform the actions once. */ | |
7936 | ||
7937 | bfd_size_type size = sec->size; | |
7938 | int removed = 0; | |
7939 | bfd_size_type final_size, copy_size, orig_insn_size; | |
7940 | bfd_byte *scratch = NULL; | |
7941 | bfd_byte *dup_contents = NULL; | |
7942 | bfd_size_type orig_size = size; | |
7943 | bfd_vma orig_dot = 0; | |
7944 | bfd_vma orig_dot_copied = 0; /* Byte copied already from | |
7945 | orig dot in physical memory. */ | |
7946 | bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ | |
7947 | bfd_vma dup_dot = 0; | |
7948 | ||
7949 | text_action *action = relax_info->action_list.head; | |
7950 | ||
7951 | final_size = sec->size; | |
7952 | for (action = relax_info->action_list.head; action; | |
7953 | action = action->next) | |
7954 | { | |
7955 | final_size -= action->removed_bytes; | |
7956 | } | |
7957 | ||
7958 | scratch = (bfd_byte *) bfd_zmalloc (final_size); | |
7959 | dup_contents = (bfd_byte *) bfd_zmalloc (final_size); | |
7960 | ||
7961 | /* The dot is the current fill location. */ | |
7962 | #if DEBUG | |
7963 | print_action_list (stderr, &relax_info->action_list); | |
7964 | #endif | |
7965 | ||
7966 | for (action = relax_info->action_list.head; action; | |
7967 | action = action->next) | |
7968 | { | |
7969 | virtual_action = FALSE; | |
7970 | if (action->offset > orig_dot) | |
7971 | { | |
7972 | orig_dot += orig_dot_copied; | |
7973 | orig_dot_copied = 0; | |
7974 | orig_dot_vo = 0; | |
7975 | /* Out of the virtual world. */ | |
7976 | } | |
7977 | ||
7978 | if (action->offset > orig_dot) | |
7979 | { | |
7980 | copy_size = action->offset - orig_dot; | |
7981 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
7982 | orig_dot += copy_size; | |
7983 | dup_dot += copy_size; | |
7984 | BFD_ASSERT (action->offset == orig_dot); | |
7985 | } | |
7986 | else if (action->offset < orig_dot) | |
7987 | { | |
7988 | if (action->action == ta_fill | |
7989 | && action->offset - action->removed_bytes == orig_dot) | |
7990 | { | |
7991 | /* This is OK because the fill only effects the dup_dot. */ | |
7992 | } | |
7993 | else if (action->action == ta_add_literal) | |
7994 | { | |
7995 | /* TBD. Might need to handle this. */ | |
7996 | } | |
7997 | } | |
7998 | if (action->offset == orig_dot) | |
7999 | { | |
8000 | if (action->virtual_offset > orig_dot_vo) | |
8001 | { | |
8002 | if (orig_dot_vo == 0) | |
8003 | { | |
8004 | /* Need to copy virtual_offset bytes. Probably four. */ | |
8005 | copy_size = action->virtual_offset - orig_dot_vo; | |
8006 | memmove (&dup_contents[dup_dot], | |
8007 | &contents[orig_dot], copy_size); | |
8008 | orig_dot_copied = copy_size; | |
8009 | dup_dot += copy_size; | |
8010 | } | |
8011 | virtual_action = TRUE; | |
8012 | } | |
8013 | else | |
8014 | BFD_ASSERT (action->virtual_offset <= orig_dot_vo); | |
8015 | } | |
8016 | switch (action->action) | |
8017 | { | |
8018 | case ta_remove_literal: | |
8019 | case ta_remove_insn: | |
8020 | BFD_ASSERT (action->removed_bytes >= 0); | |
8021 | orig_dot += action->removed_bytes; | |
8022 | break; | |
8023 | ||
8024 | case ta_narrow_insn: | |
8025 | orig_insn_size = 3; | |
8026 | copy_size = 2; | |
8027 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8028 | BFD_ASSERT (action->removed_bytes == 1); | |
8029 | rv = narrow_instruction (scratch, final_size, 0, TRUE); | |
8030 | BFD_ASSERT (rv); | |
8031 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8032 | orig_dot += orig_insn_size; | |
8033 | dup_dot += copy_size; | |
8034 | break; | |
8035 | ||
8036 | case ta_fill: | |
8037 | if (action->removed_bytes >= 0) | |
8038 | orig_dot += action->removed_bytes; | |
8039 | else | |
8040 | { | |
8041 | /* Already zeroed in dup_contents. Just bump the | |
8042 | counters. */ | |
8043 | dup_dot += (-action->removed_bytes); | |
8044 | } | |
8045 | break; | |
8046 | ||
8047 | case ta_none: | |
8048 | BFD_ASSERT (action->removed_bytes == 0); | |
8049 | break; | |
8050 | ||
8051 | case ta_convert_longcall: | |
8052 | case ta_remove_longcall: | |
8053 | /* These will be removed or converted before we get here. */ | |
8054 | BFD_ASSERT (0); | |
8055 | break; | |
8056 | ||
8057 | case ta_widen_insn: | |
8058 | orig_insn_size = 2; | |
8059 | copy_size = 3; | |
8060 | memmove (scratch, &contents[orig_dot], orig_insn_size); | |
8061 | BFD_ASSERT (action->removed_bytes == -1); | |
8062 | rv = widen_instruction (scratch, final_size, 0, TRUE); | |
8063 | BFD_ASSERT (rv); | |
8064 | memmove (&dup_contents[dup_dot], scratch, copy_size); | |
8065 | orig_dot += orig_insn_size; | |
8066 | dup_dot += copy_size; | |
8067 | break; | |
8068 | ||
8069 | case ta_add_literal: | |
8070 | orig_insn_size = 0; | |
8071 | copy_size = 4; | |
8072 | BFD_ASSERT (action->removed_bytes == -4); | |
8073 | /* TBD -- place the literal value here and insert | |
8074 | into the table. */ | |
8075 | memset (&dup_contents[dup_dot], 0, 4); | |
8076 | pin_internal_relocs (sec, internal_relocs); | |
8077 | pin_contents (sec, contents); | |
8078 | ||
8079 | if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, | |
8080 | relax_info, &internal_relocs, &action->value)) | |
8081 | goto error_return; | |
8082 | ||
8083 | if (virtual_action) | |
8084 | orig_dot_vo += copy_size; | |
8085 | ||
8086 | orig_dot += orig_insn_size; | |
8087 | dup_dot += copy_size; | |
8088 | break; | |
8089 | ||
8090 | default: | |
8091 | /* Not implemented yet. */ | |
8092 | BFD_ASSERT (0); | |
8093 | break; | |
8094 | } | |
8095 | ||
8096 | size -= action->removed_bytes; | |
8097 | removed += action->removed_bytes; | |
8098 | BFD_ASSERT (dup_dot <= final_size); | |
8099 | BFD_ASSERT (orig_dot <= orig_size); | |
8100 | } | |
8101 | ||
8102 | orig_dot += orig_dot_copied; | |
8103 | orig_dot_copied = 0; | |
8104 | ||
8105 | if (orig_dot != orig_size) | |
8106 | { | |
8107 | copy_size = orig_size - orig_dot; | |
8108 | BFD_ASSERT (orig_size > orig_dot); | |
8109 | BFD_ASSERT (dup_dot + copy_size == final_size); | |
8110 | memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); | |
8111 | orig_dot += copy_size; | |
8112 | dup_dot += copy_size; | |
8113 | } | |
8114 | BFD_ASSERT (orig_size == orig_dot); | |
8115 | BFD_ASSERT (final_size == dup_dot); | |
8116 | ||
8117 | /* Move the dup_contents back. */ | |
8118 | if (final_size > orig_size) | |
8119 | { | |
8120 | /* Contents need to be reallocated. Swap the dup_contents into | |
8121 | contents. */ | |
8122 | sec->contents = dup_contents; | |
8123 | free (contents); | |
8124 | contents = dup_contents; | |
8125 | pin_contents (sec, contents); | |
8126 | } | |
8127 | else | |
8128 | { | |
8129 | BFD_ASSERT (final_size <= orig_size); | |
8130 | memset (contents, 0, orig_size); | |
8131 | memcpy (contents, dup_contents, final_size); | |
8132 | free (dup_contents); | |
8133 | } | |
8134 | free (scratch); | |
8135 | pin_contents (sec, contents); | |
8136 | ||
8137 | sec->size = final_size; | |
8138 | } | |
8139 | ||
8140 | error_return: | |
8141 | release_internal_relocs (sec, internal_relocs); | |
8142 | release_contents (sec, contents); | |
8143 | return ok; | |
8144 | } | |
8145 | ||
8146 | ||
8147 | static bfd_boolean | |
7fa3d080 | 8148 | translate_section_fixes (asection *sec) |
43cd72b9 BW |
8149 | { |
8150 | xtensa_relax_info *relax_info; | |
8151 | reloc_bfd_fix *r; | |
8152 | ||
8153 | relax_info = get_xtensa_relax_info (sec); | |
8154 | if (!relax_info) | |
8155 | return TRUE; | |
8156 | ||
8157 | for (r = relax_info->fix_list; r != NULL; r = r->next) | |
8158 | if (!translate_reloc_bfd_fix (r)) | |
8159 | return FALSE; | |
e0001a05 | 8160 | |
43cd72b9 BW |
8161 | return TRUE; |
8162 | } | |
e0001a05 | 8163 | |
e0001a05 | 8164 | |
43cd72b9 BW |
8165 | /* Translate a fix given the mapping in the relax info for the target |
8166 | section. If it has already been translated, no work is required. */ | |
e0001a05 | 8167 | |
43cd72b9 | 8168 | static bfd_boolean |
7fa3d080 | 8169 | translate_reloc_bfd_fix (reloc_bfd_fix *fix) |
43cd72b9 BW |
8170 | { |
8171 | reloc_bfd_fix new_fix; | |
8172 | asection *sec; | |
8173 | xtensa_relax_info *relax_info; | |
8174 | removed_literal *removed; | |
8175 | bfd_vma new_offset, target_offset; | |
e0001a05 | 8176 | |
43cd72b9 BW |
8177 | if (fix->translated) |
8178 | return TRUE; | |
e0001a05 | 8179 | |
43cd72b9 BW |
8180 | sec = fix->target_sec; |
8181 | target_offset = fix->target_offset; | |
e0001a05 | 8182 | |
43cd72b9 BW |
8183 | relax_info = get_xtensa_relax_info (sec); |
8184 | if (!relax_info) | |
8185 | { | |
8186 | fix->translated = TRUE; | |
8187 | return TRUE; | |
8188 | } | |
e0001a05 | 8189 | |
43cd72b9 | 8190 | new_fix = *fix; |
e0001a05 | 8191 | |
43cd72b9 BW |
8192 | /* The fix does not need to be translated if the section cannot change. */ |
8193 | if (!relax_info->is_relaxable_literal_section | |
8194 | && !relax_info->is_relaxable_asm_section) | |
8195 | { | |
8196 | fix->translated = TRUE; | |
8197 | return TRUE; | |
8198 | } | |
e0001a05 | 8199 | |
43cd72b9 BW |
8200 | /* If the literal has been moved and this relocation was on an |
8201 | opcode, then the relocation should move to the new literal | |
8202 | location. Otherwise, the relocation should move within the | |
8203 | section. */ | |
8204 | ||
8205 | removed = FALSE; | |
8206 | if (is_operand_relocation (fix->src_type)) | |
8207 | { | |
8208 | /* Check if the original relocation is against a literal being | |
8209 | removed. */ | |
8210 | removed = find_removed_literal (&relax_info->removed_list, | |
8211 | target_offset); | |
e0001a05 NC |
8212 | } |
8213 | ||
43cd72b9 | 8214 | if (removed) |
e0001a05 | 8215 | { |
43cd72b9 | 8216 | asection *new_sec; |
e0001a05 | 8217 | |
43cd72b9 BW |
8218 | /* The fact that there is still a relocation to this literal indicates |
8219 | that the literal is being coalesced, not simply removed. */ | |
8220 | BFD_ASSERT (removed->to.abfd != NULL); | |
e0001a05 | 8221 | |
43cd72b9 BW |
8222 | /* This was moved to some other address (possibly another section). */ |
8223 | new_sec = r_reloc_get_section (&removed->to); | |
8224 | if (new_sec != sec) | |
e0001a05 | 8225 | { |
43cd72b9 BW |
8226 | sec = new_sec; |
8227 | relax_info = get_xtensa_relax_info (sec); | |
8228 | if (!relax_info || | |
8229 | (!relax_info->is_relaxable_literal_section | |
8230 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 | 8231 | { |
43cd72b9 BW |
8232 | target_offset = removed->to.target_offset; |
8233 | new_fix.target_sec = new_sec; | |
8234 | new_fix.target_offset = target_offset; | |
8235 | new_fix.translated = TRUE; | |
8236 | *fix = new_fix; | |
8237 | return TRUE; | |
e0001a05 | 8238 | } |
e0001a05 | 8239 | } |
43cd72b9 BW |
8240 | target_offset = removed->to.target_offset; |
8241 | new_fix.target_sec = new_sec; | |
e0001a05 | 8242 | } |
43cd72b9 BW |
8243 | |
8244 | /* The target address may have been moved within its section. */ | |
8245 | new_offset = offset_with_removed_text (&relax_info->action_list, | |
8246 | target_offset); | |
8247 | ||
8248 | new_fix.target_offset = new_offset; | |
8249 | new_fix.target_offset = new_offset; | |
8250 | new_fix.translated = TRUE; | |
8251 | *fix = new_fix; | |
8252 | return TRUE; | |
e0001a05 NC |
8253 | } |
8254 | ||
8255 | ||
8256 | /* Fix up a relocation to take account of removed literals. */ | |
8257 | ||
8258 | static void | |
7fa3d080 | 8259 | translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel) |
e0001a05 NC |
8260 | { |
8261 | asection *sec; | |
8262 | xtensa_relax_info *relax_info; | |
8263 | removed_literal *removed; | |
43cd72b9 | 8264 | bfd_vma new_offset, target_offset, removed_bytes; |
e0001a05 NC |
8265 | |
8266 | *new_rel = *orig_rel; | |
8267 | ||
8268 | if (!r_reloc_is_defined (orig_rel)) | |
8269 | return; | |
8270 | sec = r_reloc_get_section (orig_rel); | |
8271 | ||
8272 | relax_info = get_xtensa_relax_info (sec); | |
8273 | BFD_ASSERT (relax_info); | |
8274 | ||
43cd72b9 BW |
8275 | if (!relax_info->is_relaxable_literal_section |
8276 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
8277 | return; |
8278 | ||
43cd72b9 BW |
8279 | target_offset = orig_rel->target_offset; |
8280 | ||
8281 | removed = FALSE; | |
8282 | if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) | |
8283 | { | |
8284 | /* Check if the original relocation is against a literal being | |
8285 | removed. */ | |
8286 | removed = find_removed_literal (&relax_info->removed_list, | |
8287 | target_offset); | |
8288 | } | |
8289 | if (removed && removed->to.abfd) | |
e0001a05 NC |
8290 | { |
8291 | asection *new_sec; | |
8292 | ||
8293 | /* The fact that there is still a relocation to this literal indicates | |
8294 | that the literal is being coalesced, not simply removed. */ | |
8295 | BFD_ASSERT (removed->to.abfd != NULL); | |
8296 | ||
43cd72b9 BW |
8297 | /* This was moved to some other address |
8298 | (possibly in another section). */ | |
e0001a05 NC |
8299 | *new_rel = removed->to; |
8300 | new_sec = r_reloc_get_section (new_rel); | |
43cd72b9 | 8301 | if (new_sec != sec) |
e0001a05 NC |
8302 | { |
8303 | sec = new_sec; | |
8304 | relax_info = get_xtensa_relax_info (sec); | |
43cd72b9 BW |
8305 | if (!relax_info |
8306 | || (!relax_info->is_relaxable_literal_section | |
8307 | && !relax_info->is_relaxable_asm_section)) | |
e0001a05 NC |
8308 | return; |
8309 | } | |
43cd72b9 | 8310 | target_offset = new_rel->target_offset; |
e0001a05 NC |
8311 | } |
8312 | ||
8313 | /* ...and the target address may have been moved within its section. */ | |
43cd72b9 BW |
8314 | new_offset = offset_with_removed_text (&relax_info->action_list, |
8315 | target_offset); | |
e0001a05 NC |
8316 | |
8317 | /* Modify the offset and addend. */ | |
43cd72b9 | 8318 | removed_bytes = target_offset - new_offset; |
e0001a05 | 8319 | new_rel->target_offset = new_offset; |
43cd72b9 | 8320 | new_rel->rela.r_addend -= removed_bytes; |
e0001a05 NC |
8321 | } |
8322 | ||
8323 | ||
8324 | /* For dynamic links, there may be a dynamic relocation for each | |
8325 | literal. The number of dynamic relocations must be computed in | |
8326 | size_dynamic_sections, which occurs before relaxation. When a | |
8327 | literal is removed, this function checks if there is a corresponding | |
8328 | dynamic relocation and shrinks the size of the appropriate dynamic | |
8329 | relocation section accordingly. At this point, the contents of the | |
8330 | dynamic relocation sections have not yet been filled in, so there's | |
8331 | nothing else that needs to be done. */ | |
8332 | ||
8333 | static void | |
7fa3d080 BW |
8334 | shrink_dynamic_reloc_sections (struct bfd_link_info *info, |
8335 | bfd *abfd, | |
8336 | asection *input_section, | |
8337 | Elf_Internal_Rela *rel) | |
e0001a05 NC |
8338 | { |
8339 | Elf_Internal_Shdr *symtab_hdr; | |
8340 | struct elf_link_hash_entry **sym_hashes; | |
8341 | unsigned long r_symndx; | |
8342 | int r_type; | |
8343 | struct elf_link_hash_entry *h; | |
8344 | bfd_boolean dynamic_symbol; | |
8345 | ||
8346 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8347 | sym_hashes = elf_sym_hashes (abfd); | |
8348 | ||
8349 | r_type = ELF32_R_TYPE (rel->r_info); | |
8350 | r_symndx = ELF32_R_SYM (rel->r_info); | |
8351 | ||
8352 | if (r_symndx < symtab_hdr->sh_info) | |
8353 | h = NULL; | |
8354 | else | |
8355 | h = sym_hashes[r_symndx - symtab_hdr->sh_info]; | |
8356 | ||
571b5725 | 8357 | dynamic_symbol = xtensa_elf_dynamic_symbol_p (h, info); |
e0001a05 NC |
8358 | |
8359 | if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) | |
8360 | && (input_section->flags & SEC_ALLOC) != 0 | |
8361 | && (dynamic_symbol || info->shared)) | |
8362 | { | |
8363 | bfd *dynobj; | |
8364 | const char *srel_name; | |
8365 | asection *srel; | |
8366 | bfd_boolean is_plt = FALSE; | |
8367 | ||
8368 | dynobj = elf_hash_table (info)->dynobj; | |
8369 | BFD_ASSERT (dynobj != NULL); | |
8370 | ||
8371 | if (dynamic_symbol && r_type == R_XTENSA_PLT) | |
8372 | { | |
8373 | srel_name = ".rela.plt"; | |
8374 | is_plt = TRUE; | |
8375 | } | |
8376 | else | |
8377 | srel_name = ".rela.got"; | |
8378 | ||
8379 | /* Reduce size of the .rela.* section by one reloc. */ | |
8380 | srel = bfd_get_section_by_name (dynobj, srel_name); | |
8381 | BFD_ASSERT (srel != NULL); | |
eea6121a AM |
8382 | BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); |
8383 | srel->size -= sizeof (Elf32_External_Rela); | |
e0001a05 NC |
8384 | |
8385 | if (is_plt) | |
8386 | { | |
8387 | asection *splt, *sgotplt, *srelgot; | |
8388 | int reloc_index, chunk; | |
8389 | ||
8390 | /* Find the PLT reloc index of the entry being removed. This | |
8391 | is computed from the size of ".rela.plt". It is needed to | |
8392 | figure out which PLT chunk to resize. Usually "last index | |
8393 | = size - 1" since the index starts at zero, but in this | |
8394 | context, the size has just been decremented so there's no | |
8395 | need to subtract one. */ | |
eea6121a | 8396 | reloc_index = srel->size / sizeof (Elf32_External_Rela); |
e0001a05 NC |
8397 | |
8398 | chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; | |
8399 | splt = elf_xtensa_get_plt_section (dynobj, chunk); | |
8400 | sgotplt = elf_xtensa_get_gotplt_section (dynobj, chunk); | |
8401 | BFD_ASSERT (splt != NULL && sgotplt != NULL); | |
8402 | ||
8403 | /* Check if an entire PLT chunk has just been eliminated. */ | |
8404 | if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) | |
8405 | { | |
8406 | /* The two magic GOT entries for that chunk can go away. */ | |
8407 | srelgot = bfd_get_section_by_name (dynobj, ".rela.got"); | |
8408 | BFD_ASSERT (srelgot != NULL); | |
8409 | srelgot->reloc_count -= 2; | |
eea6121a AM |
8410 | srelgot->size -= 2 * sizeof (Elf32_External_Rela); |
8411 | sgotplt->size -= 8; | |
e0001a05 NC |
8412 | |
8413 | /* There should be only one entry left (and it will be | |
8414 | removed below). */ | |
eea6121a AM |
8415 | BFD_ASSERT (sgotplt->size == 4); |
8416 | BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); | |
e0001a05 NC |
8417 | } |
8418 | ||
eea6121a AM |
8419 | BFD_ASSERT (sgotplt->size >= 4); |
8420 | BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); | |
e0001a05 | 8421 | |
eea6121a AM |
8422 | sgotplt->size -= 4; |
8423 | splt->size -= PLT_ENTRY_SIZE; | |
e0001a05 NC |
8424 | } |
8425 | } | |
8426 | } | |
8427 | ||
8428 | ||
43cd72b9 BW |
8429 | /* Take an r_rel and move it to another section. This usually |
8430 | requires extending the interal_relocation array and pinning it. If | |
8431 | the original r_rel is from the same BFD, we can complete this here. | |
8432 | Otherwise, we add a fix record to let the final link fix the | |
8433 | appropriate address. Contents and internal relocations for the | |
8434 | section must be pinned after calling this routine. */ | |
8435 | ||
8436 | static bfd_boolean | |
7fa3d080 BW |
8437 | move_literal (bfd *abfd, |
8438 | struct bfd_link_info *link_info, | |
8439 | asection *sec, | |
8440 | bfd_vma offset, | |
8441 | bfd_byte *contents, | |
8442 | xtensa_relax_info *relax_info, | |
8443 | Elf_Internal_Rela **internal_relocs_p, | |
8444 | const literal_value *lit) | |
43cd72b9 BW |
8445 | { |
8446 | Elf_Internal_Rela *new_relocs = NULL; | |
8447 | size_t new_relocs_count = 0; | |
8448 | Elf_Internal_Rela this_rela; | |
8449 | const r_reloc *r_rel; | |
8450 | ||
8451 | r_rel = &lit->r_rel; | |
8452 | BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); | |
8453 | ||
8454 | if (r_reloc_is_const (r_rel)) | |
8455 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8456 | else | |
8457 | { | |
8458 | int r_type; | |
8459 | unsigned i; | |
8460 | asection *target_sec; | |
8461 | reloc_bfd_fix *fix; | |
8462 | unsigned insert_at; | |
8463 | ||
8464 | r_type = ELF32_R_TYPE (r_rel->rela.r_info); | |
8465 | target_sec = r_reloc_get_section (r_rel); | |
8466 | ||
8467 | /* This is the difficult case. We have to create a fix up. */ | |
8468 | this_rela.r_offset = offset; | |
8469 | this_rela.r_info = ELF32_R_INFO (0, r_type); | |
8470 | this_rela.r_addend = | |
8471 | r_rel->target_offset - r_reloc_get_target_offset (r_rel); | |
8472 | bfd_put_32 (abfd, lit->value, contents + offset); | |
8473 | ||
8474 | /* Currently, we cannot move relocations during a relocatable link. */ | |
8475 | BFD_ASSERT (!link_info->relocatable); | |
8476 | fix = reloc_bfd_fix_init (sec, offset, r_type, r_rel->abfd, | |
8477 | r_reloc_get_section (r_rel), | |
8478 | r_rel->target_offset + r_rel->virtual_offset, | |
8479 | FALSE); | |
8480 | /* We also need to mark that relocations are needed here. */ | |
8481 | sec->flags |= SEC_RELOC; | |
8482 | ||
8483 | translate_reloc_bfd_fix (fix); | |
8484 | /* This fix has not yet been translated. */ | |
8485 | add_fix (sec, fix); | |
8486 | ||
8487 | /* Add the relocation. If we have already allocated our own | |
8488 | space for the relocations and we have room for more, then use | |
8489 | it. Otherwise, allocate new space and move the literals. */ | |
8490 | insert_at = sec->reloc_count; | |
8491 | for (i = 0; i < sec->reloc_count; ++i) | |
8492 | { | |
8493 | if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) | |
8494 | { | |
8495 | insert_at = i; | |
8496 | break; | |
8497 | } | |
8498 | } | |
8499 | ||
8500 | if (*internal_relocs_p != relax_info->allocated_relocs | |
8501 | || sec->reloc_count + 1 > relax_info->allocated_relocs_count) | |
8502 | { | |
8503 | BFD_ASSERT (relax_info->allocated_relocs == NULL | |
8504 | || sec->reloc_count == relax_info->relocs_count); | |
8505 | ||
8506 | if (relax_info->allocated_relocs_count == 0) | |
8507 | new_relocs_count = (sec->reloc_count + 2) * 2; | |
8508 | else | |
8509 | new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; | |
8510 | ||
8511 | new_relocs = (Elf_Internal_Rela *) | |
8512 | bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); | |
8513 | if (!new_relocs) | |
8514 | return FALSE; | |
8515 | ||
8516 | /* We could handle this more quickly by finding the split point. */ | |
8517 | if (insert_at != 0) | |
8518 | memcpy (new_relocs, *internal_relocs_p, | |
8519 | insert_at * sizeof (Elf_Internal_Rela)); | |
8520 | ||
8521 | new_relocs[insert_at] = this_rela; | |
8522 | ||
8523 | if (insert_at != sec->reloc_count) | |
8524 | memcpy (new_relocs + insert_at + 1, | |
8525 | (*internal_relocs_p) + insert_at, | |
8526 | (sec->reloc_count - insert_at) | |
8527 | * sizeof (Elf_Internal_Rela)); | |
8528 | ||
8529 | if (*internal_relocs_p != relax_info->allocated_relocs) | |
8530 | { | |
8531 | /* The first time we re-allocate, we can only free the | |
8532 | old relocs if they were allocated with bfd_malloc. | |
8533 | This is not true when keep_memory is in effect. */ | |
8534 | if (!link_info->keep_memory) | |
8535 | free (*internal_relocs_p); | |
8536 | } | |
8537 | else | |
8538 | free (*internal_relocs_p); | |
8539 | relax_info->allocated_relocs = new_relocs; | |
8540 | relax_info->allocated_relocs_count = new_relocs_count; | |
8541 | elf_section_data (sec)->relocs = new_relocs; | |
8542 | sec->reloc_count++; | |
8543 | relax_info->relocs_count = sec->reloc_count; | |
8544 | *internal_relocs_p = new_relocs; | |
8545 | } | |
8546 | else | |
8547 | { | |
8548 | if (insert_at != sec->reloc_count) | |
8549 | { | |
8550 | unsigned idx; | |
8551 | for (idx = sec->reloc_count; idx > insert_at; idx--) | |
8552 | (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; | |
8553 | } | |
8554 | (*internal_relocs_p)[insert_at] = this_rela; | |
8555 | sec->reloc_count++; | |
8556 | if (relax_info->allocated_relocs) | |
8557 | relax_info->relocs_count = sec->reloc_count; | |
8558 | } | |
8559 | } | |
8560 | return TRUE; | |
8561 | } | |
8562 | ||
8563 | ||
e0001a05 NC |
8564 | /* This is similar to relax_section except that when a target is moved, |
8565 | we shift addresses up. We also need to modify the size. This | |
8566 | algorithm does NOT allow for relocations into the middle of the | |
8567 | property sections. */ | |
8568 | ||
43cd72b9 | 8569 | static bfd_boolean |
7fa3d080 BW |
8570 | relax_property_section (bfd *abfd, |
8571 | asection *sec, | |
8572 | struct bfd_link_info *link_info) | |
e0001a05 NC |
8573 | { |
8574 | Elf_Internal_Rela *internal_relocs; | |
8575 | bfd_byte *contents; | |
8576 | unsigned i, nexti; | |
8577 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
8578 | bfd_boolean is_full_prop_section; |
8579 | size_t last_zfill_target_offset = 0; | |
8580 | asection *last_zfill_target_sec = NULL; | |
8581 | bfd_size_type sec_size; | |
e0001a05 | 8582 | |
43cd72b9 | 8583 | sec_size = bfd_get_section_limit (abfd, sec); |
e0001a05 NC |
8584 | internal_relocs = retrieve_internal_relocs (abfd, sec, |
8585 | link_info->keep_memory); | |
8586 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 8587 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
8588 | { |
8589 | ok = FALSE; | |
8590 | goto error_return; | |
8591 | } | |
8592 | ||
43cd72b9 BW |
8593 | is_full_prop_section = |
8594 | ((strcmp (sec->name, XTENSA_PROP_SEC_NAME) == 0) | |
8595 | || (strncmp (sec->name, ".gnu.linkonce.prop.", | |
8596 | sizeof ".gnu.linkonce.prop." - 1) == 0)); | |
8597 | ||
8598 | if (internal_relocs) | |
e0001a05 | 8599 | { |
43cd72b9 | 8600 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
8601 | { |
8602 | Elf_Internal_Rela *irel; | |
8603 | xtensa_relax_info *target_relax_info; | |
e0001a05 NC |
8604 | unsigned r_type; |
8605 | asection *target_sec; | |
43cd72b9 BW |
8606 | literal_value val; |
8607 | bfd_byte *size_p, *flags_p; | |
e0001a05 NC |
8608 | |
8609 | /* Locally change the source address. | |
8610 | Translate the target to the new target address. | |
8611 | If it points to this section and has been removed, MOVE IT. | |
8612 | Also, don't forget to modify the associated SIZE at | |
8613 | (offset + 4). */ | |
8614 | ||
8615 | irel = &internal_relocs[i]; | |
8616 | r_type = ELF32_R_TYPE (irel->r_info); | |
8617 | if (r_type == R_XTENSA_NONE) | |
8618 | continue; | |
8619 | ||
43cd72b9 BW |
8620 | /* Find the literal value. */ |
8621 | r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); | |
8622 | size_p = &contents[irel->r_offset + 4]; | |
8623 | flags_p = NULL; | |
8624 | if (is_full_prop_section) | |
8625 | { | |
8626 | flags_p = &contents[irel->r_offset + 8]; | |
8627 | BFD_ASSERT (irel->r_offset + 12 <= sec_size); | |
8628 | } | |
8629 | else | |
8630 | BFD_ASSERT (irel->r_offset + 8 <= sec_size); | |
e0001a05 | 8631 | |
43cd72b9 | 8632 | target_sec = r_reloc_get_section (&val.r_rel); |
e0001a05 NC |
8633 | target_relax_info = get_xtensa_relax_info (target_sec); |
8634 | ||
8635 | if (target_relax_info | |
43cd72b9 BW |
8636 | && (target_relax_info->is_relaxable_literal_section |
8637 | || target_relax_info->is_relaxable_asm_section )) | |
e0001a05 NC |
8638 | { |
8639 | /* Translate the relocation's destination. */ | |
43cd72b9 | 8640 | bfd_vma new_offset, new_end_offset; |
e0001a05 NC |
8641 | long old_size, new_size; |
8642 | ||
43cd72b9 BW |
8643 | new_offset = offset_with_removed_text |
8644 | (&target_relax_info->action_list, val.r_rel.target_offset); | |
e0001a05 NC |
8645 | |
8646 | /* Assert that we are not out of bounds. */ | |
43cd72b9 BW |
8647 | old_size = bfd_get_32 (abfd, size_p); |
8648 | ||
8649 | if (old_size == 0) | |
8650 | { | |
8651 | /* Only the first zero-sized unreachable entry is | |
8652 | allowed to expand. In this case the new offset | |
8653 | should be the offset before the fill and the new | |
8654 | size is the expansion size. For other zero-sized | |
8655 | entries the resulting size should be zero with an | |
8656 | offset before or after the fill address depending | |
8657 | on whether the expanding unreachable entry | |
8658 | preceeds it. */ | |
8659 | if (last_zfill_target_sec | |
8660 | && last_zfill_target_sec == target_sec | |
8661 | && last_zfill_target_offset == val.r_rel.target_offset) | |
8662 | new_end_offset = new_offset; | |
8663 | else | |
8664 | { | |
8665 | new_end_offset = new_offset; | |
8666 | new_offset = offset_with_removed_text_before_fill | |
8667 | (&target_relax_info->action_list, | |
8668 | val.r_rel.target_offset); | |
8669 | ||
8670 | /* If it is not unreachable and we have not yet | |
8671 | seen an unreachable at this address, place it | |
8672 | before the fill address. */ | |
8673 | if (!flags_p | |
8674 | || (bfd_get_32 (abfd, flags_p) | |
8675 | & XTENSA_PROP_UNREACHABLE) == 0) | |
8676 | new_end_offset = new_offset; | |
8677 | else | |
8678 | { | |
8679 | last_zfill_target_sec = target_sec; | |
8680 | last_zfill_target_offset = val.r_rel.target_offset; | |
8681 | } | |
8682 | } | |
8683 | } | |
8684 | else | |
8685 | { | |
8686 | new_end_offset = offset_with_removed_text_before_fill | |
8687 | (&target_relax_info->action_list, | |
8688 | val.r_rel.target_offset + old_size); | |
8689 | } | |
e0001a05 | 8690 | |
e0001a05 | 8691 | new_size = new_end_offset - new_offset; |
43cd72b9 | 8692 | |
e0001a05 NC |
8693 | if (new_size != old_size) |
8694 | { | |
8695 | bfd_put_32 (abfd, new_size, size_p); | |
8696 | pin_contents (sec, contents); | |
8697 | } | |
43cd72b9 BW |
8698 | |
8699 | if (new_offset != val.r_rel.target_offset) | |
e0001a05 | 8700 | { |
43cd72b9 | 8701 | bfd_vma diff = new_offset - val.r_rel.target_offset; |
e0001a05 NC |
8702 | irel->r_addend += diff; |
8703 | pin_internal_relocs (sec, internal_relocs); | |
8704 | } | |
8705 | } | |
8706 | } | |
8707 | } | |
8708 | ||
8709 | /* Combine adjacent property table entries. This is also done in | |
8710 | finish_dynamic_sections() but at that point it's too late to | |
8711 | reclaim the space in the output section, so we do this twice. */ | |
8712 | ||
43cd72b9 BW |
8713 | if (internal_relocs && (!link_info->relocatable |
8714 | || strcmp (sec->name, XTENSA_LIT_SEC_NAME) == 0)) | |
e0001a05 NC |
8715 | { |
8716 | Elf_Internal_Rela *last_irel = NULL; | |
8717 | int removed_bytes = 0; | |
8718 | bfd_vma offset, last_irel_offset; | |
8719 | bfd_vma section_size; | |
43cd72b9 BW |
8720 | bfd_size_type entry_size; |
8721 | flagword predef_flags; | |
8722 | ||
8723 | if (is_full_prop_section) | |
8724 | entry_size = 12; | |
8725 | else | |
8726 | entry_size = 8; | |
8727 | ||
8728 | predef_flags = xtensa_get_property_predef_flags (sec); | |
e0001a05 NC |
8729 | |
8730 | /* Walk over memory and irels at the same time. | |
8731 | This REQUIRES that the internal_relocs be sorted by offset. */ | |
8732 | qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), | |
8733 | internal_reloc_compare); | |
8734 | nexti = 0; /* Index into internal_relocs. */ | |
8735 | ||
8736 | pin_internal_relocs (sec, internal_relocs); | |
8737 | pin_contents (sec, contents); | |
8738 | ||
8739 | last_irel_offset = (bfd_vma) -1; | |
eea6121a | 8740 | section_size = sec->size; |
43cd72b9 | 8741 | BFD_ASSERT (section_size % entry_size == 0); |
e0001a05 | 8742 | |
43cd72b9 | 8743 | for (offset = 0; offset < section_size; offset += entry_size) |
e0001a05 NC |
8744 | { |
8745 | Elf_Internal_Rela *irel, *next_irel; | |
8746 | bfd_vma bytes_to_remove, size, actual_offset; | |
8747 | bfd_boolean remove_this_irel; | |
43cd72b9 | 8748 | flagword flags; |
e0001a05 NC |
8749 | |
8750 | irel = NULL; | |
8751 | next_irel = NULL; | |
8752 | ||
8753 | /* Find the next two relocations (if there are that many left), | |
8754 | skipping over any R_XTENSA_NONE relocs. On entry, "nexti" is | |
8755 | the starting reloc index. After these two loops, "i" | |
8756 | is the index of the first non-NONE reloc past that starting | |
8757 | index, and "nexti" is the index for the next non-NONE reloc | |
8758 | after "i". */ | |
8759 | ||
8760 | for (i = nexti; i < sec->reloc_count; i++) | |
8761 | { | |
8762 | if (ELF32_R_TYPE (internal_relocs[i].r_info) != R_XTENSA_NONE) | |
8763 | { | |
8764 | irel = &internal_relocs[i]; | |
8765 | break; | |
8766 | } | |
8767 | internal_relocs[i].r_offset -= removed_bytes; | |
8768 | } | |
8769 | ||
8770 | for (nexti = i + 1; nexti < sec->reloc_count; nexti++) | |
8771 | { | |
8772 | if (ELF32_R_TYPE (internal_relocs[nexti].r_info) | |
8773 | != R_XTENSA_NONE) | |
8774 | { | |
8775 | next_irel = &internal_relocs[nexti]; | |
8776 | break; | |
8777 | } | |
8778 | internal_relocs[nexti].r_offset -= removed_bytes; | |
8779 | } | |
8780 | ||
8781 | remove_this_irel = FALSE; | |
8782 | bytes_to_remove = 0; | |
8783 | actual_offset = offset - removed_bytes; | |
8784 | size = bfd_get_32 (abfd, &contents[actual_offset + 4]); | |
8785 | ||
43cd72b9 BW |
8786 | if (is_full_prop_section) |
8787 | flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); | |
8788 | else | |
8789 | flags = predef_flags; | |
8790 | ||
e0001a05 NC |
8791 | /* Check that the irels are sorted by offset, |
8792 | with only one per address. */ | |
8793 | BFD_ASSERT (!irel || (int) irel->r_offset > (int) last_irel_offset); | |
8794 | BFD_ASSERT (!next_irel || next_irel->r_offset > irel->r_offset); | |
8795 | ||
43cd72b9 BW |
8796 | /* Make sure there aren't relocs on the size or flag fields. */ |
8797 | if ((irel && irel->r_offset == offset + 4) | |
8798 | || (is_full_prop_section | |
8799 | && irel && irel->r_offset == offset + 8)) | |
e0001a05 NC |
8800 | { |
8801 | irel->r_offset -= removed_bytes; | |
8802 | last_irel_offset = irel->r_offset; | |
8803 | } | |
43cd72b9 BW |
8804 | else if (next_irel && (next_irel->r_offset == offset + 4 |
8805 | || (is_full_prop_section | |
8806 | && next_irel->r_offset == offset + 8))) | |
e0001a05 NC |
8807 | { |
8808 | nexti += 1; | |
8809 | irel->r_offset -= removed_bytes; | |
8810 | next_irel->r_offset -= removed_bytes; | |
8811 | last_irel_offset = next_irel->r_offset; | |
8812 | } | |
43cd72b9 BW |
8813 | else if (size == 0 && (flags & XTENSA_PROP_ALIGN) == 0 |
8814 | && (flags & XTENSA_PROP_UNREACHABLE) == 0) | |
e0001a05 | 8815 | { |
43cd72b9 BW |
8816 | /* Always remove entries with zero size and no alignment. */ |
8817 | bytes_to_remove = entry_size; | |
e0001a05 NC |
8818 | if (irel && irel->r_offset == offset) |
8819 | { | |
8820 | remove_this_irel = TRUE; | |
8821 | ||
8822 | irel->r_offset -= removed_bytes; | |
8823 | last_irel_offset = irel->r_offset; | |
8824 | } | |
8825 | } | |
8826 | else if (irel && irel->r_offset == offset) | |
8827 | { | |
8828 | if (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32) | |
8829 | { | |
8830 | if (last_irel) | |
8831 | { | |
43cd72b9 BW |
8832 | flagword old_flags; |
8833 | bfd_vma old_size = | |
e0001a05 | 8834 | bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); |
43cd72b9 BW |
8835 | bfd_vma old_address = |
8836 | (last_irel->r_addend | |
e0001a05 | 8837 | + bfd_get_32 (abfd, &contents[last_irel->r_offset])); |
43cd72b9 BW |
8838 | bfd_vma new_address = |
8839 | (irel->r_addend | |
e0001a05 | 8840 | + bfd_get_32 (abfd, &contents[actual_offset])); |
43cd72b9 BW |
8841 | if (is_full_prop_section) |
8842 | old_flags = bfd_get_32 | |
8843 | (abfd, &contents[last_irel->r_offset + 8]); | |
8844 | else | |
8845 | old_flags = predef_flags; | |
8846 | ||
8847 | if ((ELF32_R_SYM (irel->r_info) | |
8848 | == ELF32_R_SYM (last_irel->r_info)) | |
8849 | && old_address + old_size == new_address | |
8850 | && old_flags == flags | |
8851 | && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 | |
8852 | && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) | |
e0001a05 | 8853 | { |
43cd72b9 | 8854 | /* Fix the old size. */ |
e0001a05 NC |
8855 | bfd_put_32 (abfd, old_size + size, |
8856 | &contents[last_irel->r_offset + 4]); | |
43cd72b9 | 8857 | bytes_to_remove = entry_size; |
e0001a05 NC |
8858 | remove_this_irel = TRUE; |
8859 | } | |
8860 | else | |
8861 | last_irel = irel; | |
8862 | } | |
8863 | else | |
8864 | last_irel = irel; | |
8865 | } | |
8866 | ||
8867 | irel->r_offset -= removed_bytes; | |
8868 | last_irel_offset = irel->r_offset; | |
8869 | } | |
8870 | ||
8871 | if (remove_this_irel) | |
8872 | { | |
8873 | irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); | |
8874 | irel->r_offset -= bytes_to_remove; | |
8875 | } | |
8876 | ||
8877 | if (bytes_to_remove != 0) | |
8878 | { | |
8879 | removed_bytes += bytes_to_remove; | |
43cd72b9 | 8880 | if (offset + bytes_to_remove < section_size) |
e0001a05 | 8881 | memmove (&contents[actual_offset], |
43cd72b9 BW |
8882 | &contents[actual_offset + bytes_to_remove], |
8883 | section_size - offset - bytes_to_remove); | |
e0001a05 NC |
8884 | } |
8885 | } | |
8886 | ||
43cd72b9 | 8887 | if (removed_bytes) |
e0001a05 NC |
8888 | { |
8889 | /* Clear the removed bytes. */ | |
8890 | memset (&contents[section_size - removed_bytes], 0, removed_bytes); | |
8891 | ||
eea6121a | 8892 | sec->size = section_size - removed_bytes; |
e901de89 BW |
8893 | |
8894 | if (xtensa_is_littable_section (sec)) | |
8895 | { | |
8896 | bfd *dynobj = elf_hash_table (link_info)->dynobj; | |
8897 | if (dynobj) | |
8898 | { | |
8899 | asection *sgotloc = | |
8900 | bfd_get_section_by_name (dynobj, ".got.loc"); | |
8901 | if (sgotloc) | |
eea6121a | 8902 | sgotloc->size -= removed_bytes; |
e901de89 BW |
8903 | } |
8904 | } | |
e0001a05 NC |
8905 | } |
8906 | } | |
e901de89 | 8907 | |
e0001a05 NC |
8908 | error_return: |
8909 | release_internal_relocs (sec, internal_relocs); | |
8910 | release_contents (sec, contents); | |
8911 | return ok; | |
8912 | } | |
8913 | ||
8914 | \f | |
8915 | /* Third relaxation pass. */ | |
8916 | ||
8917 | /* Change symbol values to account for removed literals. */ | |
8918 | ||
43cd72b9 | 8919 | bfd_boolean |
7fa3d080 | 8920 | relax_section_symbols (bfd *abfd, asection *sec) |
e0001a05 NC |
8921 | { |
8922 | xtensa_relax_info *relax_info; | |
8923 | unsigned int sec_shndx; | |
8924 | Elf_Internal_Shdr *symtab_hdr; | |
8925 | Elf_Internal_Sym *isymbuf; | |
8926 | unsigned i, num_syms, num_locals; | |
8927 | ||
8928 | relax_info = get_xtensa_relax_info (sec); | |
8929 | BFD_ASSERT (relax_info); | |
8930 | ||
43cd72b9 BW |
8931 | if (!relax_info->is_relaxable_literal_section |
8932 | && !relax_info->is_relaxable_asm_section) | |
e0001a05 NC |
8933 | return TRUE; |
8934 | ||
8935 | sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | |
8936 | ||
8937 | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
8938 | isymbuf = retrieve_local_syms (abfd); | |
8939 | ||
8940 | num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); | |
8941 | num_locals = symtab_hdr->sh_info; | |
8942 | ||
8943 | /* Adjust the local symbols defined in this section. */ | |
8944 | for (i = 0; i < num_locals; i++) | |
8945 | { | |
8946 | Elf_Internal_Sym *isym = &isymbuf[i]; | |
8947 | ||
8948 | if (isym->st_shndx == sec_shndx) | |
8949 | { | |
43cd72b9 BW |
8950 | bfd_vma new_address = offset_with_removed_text |
8951 | (&relax_info->action_list, isym->st_value); | |
8952 | bfd_vma new_size = isym->st_size; | |
8953 | ||
8954 | if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) | |
8955 | { | |
8956 | bfd_vma new_end = offset_with_removed_text | |
8957 | (&relax_info->action_list, isym->st_value + isym->st_size); | |
8958 | new_size = new_end - new_address; | |
8959 | } | |
8960 | ||
8961 | isym->st_value = new_address; | |
8962 | isym->st_size = new_size; | |
e0001a05 NC |
8963 | } |
8964 | } | |
8965 | ||
8966 | /* Now adjust the global symbols defined in this section. */ | |
8967 | for (i = 0; i < (num_syms - num_locals); i++) | |
8968 | { | |
8969 | struct elf_link_hash_entry *sym_hash; | |
8970 | ||
8971 | sym_hash = elf_sym_hashes (abfd)[i]; | |
8972 | ||
8973 | if (sym_hash->root.type == bfd_link_hash_warning) | |
8974 | sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; | |
8975 | ||
8976 | if ((sym_hash->root.type == bfd_link_hash_defined | |
8977 | || sym_hash->root.type == bfd_link_hash_defweak) | |
8978 | && sym_hash->root.u.def.section == sec) | |
8979 | { | |
43cd72b9 BW |
8980 | bfd_vma new_address = offset_with_removed_text |
8981 | (&relax_info->action_list, sym_hash->root.u.def.value); | |
8982 | bfd_vma new_size = sym_hash->size; | |
8983 | ||
8984 | if (sym_hash->type == STT_FUNC) | |
8985 | { | |
8986 | bfd_vma new_end = offset_with_removed_text | |
8987 | (&relax_info->action_list, | |
8988 | sym_hash->root.u.def.value + sym_hash->size); | |
8989 | new_size = new_end - new_address; | |
8990 | } | |
8991 | ||
8992 | sym_hash->root.u.def.value = new_address; | |
8993 | sym_hash->size = new_size; | |
e0001a05 NC |
8994 | } |
8995 | } | |
8996 | ||
8997 | return TRUE; | |
8998 | } | |
8999 | ||
9000 | \f | |
9001 | /* "Fix" handling functions, called while performing relocations. */ | |
9002 | ||
43cd72b9 | 9003 | static bfd_boolean |
7fa3d080 BW |
9004 | do_fix_for_relocatable_link (Elf_Internal_Rela *rel, |
9005 | bfd *input_bfd, | |
9006 | asection *input_section, | |
9007 | bfd_byte *contents) | |
e0001a05 NC |
9008 | { |
9009 | r_reloc r_rel; | |
9010 | asection *sec, *old_sec; | |
9011 | bfd_vma old_offset; | |
9012 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 NC |
9013 | reloc_bfd_fix *fix; |
9014 | ||
9015 | if (r_type == R_XTENSA_NONE) | |
43cd72b9 | 9016 | return TRUE; |
e0001a05 | 9017 | |
43cd72b9 BW |
9018 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9019 | if (!fix) | |
9020 | return TRUE; | |
e0001a05 | 9021 | |
43cd72b9 BW |
9022 | r_reloc_init (&r_rel, input_bfd, rel, contents, |
9023 | bfd_get_section_limit (input_bfd, input_section)); | |
e0001a05 | 9024 | old_sec = r_reloc_get_section (&r_rel); |
43cd72b9 BW |
9025 | old_offset = r_rel.target_offset; |
9026 | ||
9027 | if (!old_sec || !r_reloc_is_defined (&r_rel)) | |
e0001a05 | 9028 | { |
43cd72b9 BW |
9029 | if (r_type != R_XTENSA_ASM_EXPAND) |
9030 | { | |
9031 | (*_bfd_error_handler) | |
9032 | (_("%B(%A+0x%lx): unexpected fix for %s relocation"), | |
9033 | input_bfd, input_section, rel->r_offset, | |
9034 | elf_howto_table[r_type].name); | |
9035 | return FALSE; | |
9036 | } | |
e0001a05 NC |
9037 | /* Leave it be. Resolution will happen in a later stage. */ |
9038 | } | |
9039 | else | |
9040 | { | |
9041 | sec = fix->target_sec; | |
9042 | rel->r_addend += ((sec->output_offset + fix->target_offset) | |
9043 | - (old_sec->output_offset + old_offset)); | |
9044 | } | |
43cd72b9 | 9045 | return TRUE; |
e0001a05 NC |
9046 | } |
9047 | ||
9048 | ||
9049 | static void | |
7fa3d080 BW |
9050 | do_fix_for_final_link (Elf_Internal_Rela *rel, |
9051 | bfd *input_bfd, | |
9052 | asection *input_section, | |
9053 | bfd_byte *contents, | |
9054 | bfd_vma *relocationp) | |
e0001a05 NC |
9055 | { |
9056 | asection *sec; | |
9057 | int r_type = ELF32_R_TYPE (rel->r_info); | |
e0001a05 | 9058 | reloc_bfd_fix *fix; |
43cd72b9 | 9059 | bfd_vma fixup_diff; |
e0001a05 NC |
9060 | |
9061 | if (r_type == R_XTENSA_NONE) | |
9062 | return; | |
9063 | ||
43cd72b9 BW |
9064 | fix = get_bfd_fix (input_section, rel->r_offset, r_type); |
9065 | if (!fix) | |
e0001a05 NC |
9066 | return; |
9067 | ||
9068 | sec = fix->target_sec; | |
43cd72b9 BW |
9069 | |
9070 | fixup_diff = rel->r_addend; | |
9071 | if (elf_howto_table[fix->src_type].partial_inplace) | |
9072 | { | |
9073 | bfd_vma inplace_val; | |
9074 | BFD_ASSERT (fix->src_offset | |
9075 | < bfd_get_section_limit (input_bfd, input_section)); | |
9076 | inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); | |
9077 | fixup_diff += inplace_val; | |
9078 | } | |
9079 | ||
e0001a05 NC |
9080 | *relocationp = (sec->output_section->vma |
9081 | + sec->output_offset | |
43cd72b9 | 9082 | + fix->target_offset - fixup_diff); |
e0001a05 NC |
9083 | } |
9084 | ||
9085 | \f | |
9086 | /* Miscellaneous utility functions.... */ | |
9087 | ||
9088 | static asection * | |
7fa3d080 | 9089 | elf_xtensa_get_plt_section (bfd *dynobj, int chunk) |
e0001a05 NC |
9090 | { |
9091 | char plt_name[10]; | |
9092 | ||
9093 | if (chunk == 0) | |
9094 | return bfd_get_section_by_name (dynobj, ".plt"); | |
9095 | ||
9096 | sprintf (plt_name, ".plt.%u", chunk); | |
9097 | return bfd_get_section_by_name (dynobj, plt_name); | |
9098 | } | |
9099 | ||
9100 | ||
9101 | static asection * | |
7fa3d080 | 9102 | elf_xtensa_get_gotplt_section (bfd *dynobj, int chunk) |
e0001a05 NC |
9103 | { |
9104 | char got_name[14]; | |
9105 | ||
9106 | if (chunk == 0) | |
9107 | return bfd_get_section_by_name (dynobj, ".got.plt"); | |
9108 | ||
9109 | sprintf (got_name, ".got.plt.%u", chunk); | |
9110 | return bfd_get_section_by_name (dynobj, got_name); | |
9111 | } | |
9112 | ||
9113 | ||
9114 | /* Get the input section for a given symbol index. | |
9115 | If the symbol is: | |
9116 | . a section symbol, return the section; | |
9117 | . a common symbol, return the common section; | |
9118 | . an undefined symbol, return the undefined section; | |
9119 | . an indirect symbol, follow the links; | |
9120 | . an absolute value, return the absolute section. */ | |
9121 | ||
9122 | static asection * | |
7fa3d080 | 9123 | get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9124 | { |
9125 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9126 | asection *target_sec = NULL; | |
43cd72b9 | 9127 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9128 | { |
9129 | Elf_Internal_Sym *isymbuf; | |
9130 | unsigned int section_index; | |
9131 | ||
9132 | isymbuf = retrieve_local_syms (abfd); | |
9133 | section_index = isymbuf[r_symndx].st_shndx; | |
9134 | ||
9135 | if (section_index == SHN_UNDEF) | |
9136 | target_sec = bfd_und_section_ptr; | |
9137 | else if (section_index > 0 && section_index < SHN_LORESERVE) | |
9138 | target_sec = bfd_section_from_elf_index (abfd, section_index); | |
9139 | else if (section_index == SHN_ABS) | |
9140 | target_sec = bfd_abs_section_ptr; | |
9141 | else if (section_index == SHN_COMMON) | |
9142 | target_sec = bfd_com_section_ptr; | |
43cd72b9 | 9143 | else |
e0001a05 NC |
9144 | /* Who knows? */ |
9145 | target_sec = NULL; | |
9146 | } | |
9147 | else | |
9148 | { | |
9149 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9150 | struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; | |
9151 | ||
9152 | while (h->root.type == bfd_link_hash_indirect | |
9153 | || h->root.type == bfd_link_hash_warning) | |
9154 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9155 | ||
9156 | switch (h->root.type) | |
9157 | { | |
9158 | case bfd_link_hash_defined: | |
9159 | case bfd_link_hash_defweak: | |
9160 | target_sec = h->root.u.def.section; | |
9161 | break; | |
9162 | case bfd_link_hash_common: | |
9163 | target_sec = bfd_com_section_ptr; | |
9164 | break; | |
9165 | case bfd_link_hash_undefined: | |
9166 | case bfd_link_hash_undefweak: | |
9167 | target_sec = bfd_und_section_ptr; | |
9168 | break; | |
9169 | default: /* New indirect warning. */ | |
9170 | target_sec = bfd_und_section_ptr; | |
9171 | break; | |
9172 | } | |
9173 | } | |
9174 | return target_sec; | |
9175 | } | |
9176 | ||
9177 | ||
9178 | static struct elf_link_hash_entry * | |
7fa3d080 | 9179 | get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9180 | { |
9181 | unsigned long indx; | |
9182 | struct elf_link_hash_entry *h; | |
9183 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9184 | ||
9185 | if (r_symndx < symtab_hdr->sh_info) | |
9186 | return NULL; | |
43cd72b9 | 9187 | |
e0001a05 NC |
9188 | indx = r_symndx - symtab_hdr->sh_info; |
9189 | h = elf_sym_hashes (abfd)[indx]; | |
9190 | while (h->root.type == bfd_link_hash_indirect | |
9191 | || h->root.type == bfd_link_hash_warning) | |
9192 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9193 | return h; | |
9194 | } | |
9195 | ||
9196 | ||
9197 | /* Get the section-relative offset for a symbol number. */ | |
9198 | ||
9199 | static bfd_vma | |
7fa3d080 | 9200 | get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) |
e0001a05 NC |
9201 | { |
9202 | Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | |
9203 | bfd_vma offset = 0; | |
9204 | ||
43cd72b9 | 9205 | if (r_symndx < symtab_hdr->sh_info) |
e0001a05 NC |
9206 | { |
9207 | Elf_Internal_Sym *isymbuf; | |
9208 | isymbuf = retrieve_local_syms (abfd); | |
9209 | offset = isymbuf[r_symndx].st_value; | |
9210 | } | |
9211 | else | |
9212 | { | |
9213 | unsigned long indx = r_symndx - symtab_hdr->sh_info; | |
9214 | struct elf_link_hash_entry *h = | |
9215 | elf_sym_hashes (abfd)[indx]; | |
9216 | ||
9217 | while (h->root.type == bfd_link_hash_indirect | |
9218 | || h->root.type == bfd_link_hash_warning) | |
9219 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
9220 | if (h->root.type == bfd_link_hash_defined | |
9221 | || h->root.type == bfd_link_hash_defweak) | |
9222 | offset = h->root.u.def.value; | |
9223 | } | |
9224 | return offset; | |
9225 | } | |
9226 | ||
9227 | ||
9228 | static bfd_boolean | |
7fa3d080 | 9229 | is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) |
43cd72b9 BW |
9230 | { |
9231 | unsigned long r_symndx = ELF32_R_SYM (rel->r_info); | |
9232 | struct elf_link_hash_entry *h; | |
9233 | ||
9234 | h = get_elf_r_symndx_hash_entry (abfd, r_symndx); | |
9235 | if (h && h->root.type == bfd_link_hash_defweak) | |
9236 | return TRUE; | |
9237 | return FALSE; | |
9238 | } | |
9239 | ||
9240 | ||
9241 | static bfd_boolean | |
7fa3d080 BW |
9242 | pcrel_reloc_fits (xtensa_opcode opc, |
9243 | int opnd, | |
9244 | bfd_vma self_address, | |
9245 | bfd_vma dest_address) | |
e0001a05 | 9246 | { |
43cd72b9 BW |
9247 | xtensa_isa isa = xtensa_default_isa; |
9248 | uint32 valp = dest_address; | |
9249 | if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) | |
9250 | || xtensa_operand_encode (isa, opc, opnd, &valp)) | |
9251 | return FALSE; | |
9252 | return TRUE; | |
e0001a05 NC |
9253 | } |
9254 | ||
9255 | ||
b614a702 BW |
9256 | static int linkonce_len = sizeof (".gnu.linkonce.") - 1; |
9257 | static int insn_sec_len = sizeof (XTENSA_INSN_SEC_NAME) - 1; | |
9258 | static int lit_sec_len = sizeof (XTENSA_LIT_SEC_NAME) - 1; | |
43cd72b9 | 9259 | static int prop_sec_len = sizeof (XTENSA_PROP_SEC_NAME) - 1; |
b614a702 BW |
9260 | |
9261 | ||
e0001a05 | 9262 | static bfd_boolean |
7fa3d080 | 9263 | xtensa_is_property_section (asection *sec) |
e0001a05 | 9264 | { |
b614a702 | 9265 | if (strncmp (XTENSA_INSN_SEC_NAME, sec->name, insn_sec_len) == 0 |
43cd72b9 BW |
9266 | || strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0 |
9267 | || strncmp (XTENSA_PROP_SEC_NAME, sec->name, prop_sec_len) == 0) | |
b614a702 | 9268 | return TRUE; |
e901de89 | 9269 | |
b614a702 | 9270 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
43cd72b9 BW |
9271 | && (strncmp (&sec->name[linkonce_len], "x.", 2) == 0 |
9272 | || strncmp (&sec->name[linkonce_len], "p.", 2) == 0 | |
9273 | || strncmp (&sec->name[linkonce_len], "prop.", 5) == 0)) | |
e901de89 BW |
9274 | return TRUE; |
9275 | ||
e901de89 BW |
9276 | return FALSE; |
9277 | } | |
9278 | ||
9279 | ||
9280 | static bfd_boolean | |
7fa3d080 | 9281 | xtensa_is_littable_section (asection *sec) |
e901de89 | 9282 | { |
b614a702 BW |
9283 | if (strncmp (XTENSA_LIT_SEC_NAME, sec->name, lit_sec_len) == 0) |
9284 | return TRUE; | |
e901de89 | 9285 | |
b614a702 BW |
9286 | if (strncmp (".gnu.linkonce.", sec->name, linkonce_len) == 0 |
9287 | && sec->name[linkonce_len] == 'p' | |
9288 | && sec->name[linkonce_len + 1] == '.') | |
e901de89 | 9289 | return TRUE; |
e0001a05 | 9290 | |
e901de89 | 9291 | return FALSE; |
e0001a05 NC |
9292 | } |
9293 | ||
9294 | ||
43cd72b9 | 9295 | static int |
7fa3d080 | 9296 | internal_reloc_compare (const void *ap, const void *bp) |
e0001a05 | 9297 | { |
43cd72b9 BW |
9298 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; |
9299 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9300 | ||
9301 | if (a->r_offset != b->r_offset) | |
9302 | return (a->r_offset - b->r_offset); | |
9303 | ||
9304 | /* We don't need to sort on these criteria for correctness, | |
9305 | but enforcing a more strict ordering prevents unstable qsort | |
9306 | from behaving differently with different implementations. | |
9307 | Without the code below we get correct but different results | |
9308 | on Solaris 2.7 and 2.8. We would like to always produce the | |
9309 | same results no matter the host. */ | |
9310 | ||
9311 | if (a->r_info != b->r_info) | |
9312 | return (a->r_info - b->r_info); | |
9313 | ||
9314 | return (a->r_addend - b->r_addend); | |
e0001a05 NC |
9315 | } |
9316 | ||
9317 | ||
9318 | static int | |
7fa3d080 | 9319 | internal_reloc_matches (const void *ap, const void *bp) |
e0001a05 NC |
9320 | { |
9321 | const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; | |
9322 | const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; | |
9323 | ||
43cd72b9 BW |
9324 | /* Check if one entry overlaps with the other; this shouldn't happen |
9325 | except when searching for a match. */ | |
e0001a05 NC |
9326 | return (a->r_offset - b->r_offset); |
9327 | } | |
9328 | ||
9329 | ||
e0001a05 | 9330 | char * |
7fa3d080 | 9331 | xtensa_get_property_section_name (asection *sec, const char *base_name) |
e0001a05 | 9332 | { |
b614a702 | 9333 | if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) |
e0001a05 | 9334 | { |
b614a702 BW |
9335 | char *prop_sec_name; |
9336 | const char *suffix; | |
43cd72b9 | 9337 | char *linkonce_kind = 0; |
b614a702 BW |
9338 | |
9339 | if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) | |
7db48a12 | 9340 | linkonce_kind = "x."; |
b614a702 | 9341 | else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) |
7db48a12 | 9342 | linkonce_kind = "p."; |
43cd72b9 BW |
9343 | else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) |
9344 | linkonce_kind = "prop."; | |
e0001a05 | 9345 | else |
b614a702 BW |
9346 | abort (); |
9347 | ||
43cd72b9 BW |
9348 | prop_sec_name = (char *) bfd_malloc (strlen (sec->name) |
9349 | + strlen (linkonce_kind) + 1); | |
b614a702 | 9350 | memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); |
43cd72b9 | 9351 | strcpy (prop_sec_name + linkonce_len, linkonce_kind); |
b614a702 BW |
9352 | |
9353 | suffix = sec->name + linkonce_len; | |
096c35a7 | 9354 | /* For backward compatibility, replace "t." instead of inserting |
43cd72b9 BW |
9355 | the new linkonce_kind (but not for "prop" sections). */ |
9356 | if (strncmp (suffix, "t.", 2) == 0 && linkonce_kind[1] == '.') | |
9357 | suffix += 2; | |
9358 | strcat (prop_sec_name + linkonce_len, suffix); | |
b614a702 BW |
9359 | |
9360 | return prop_sec_name; | |
e0001a05 NC |
9361 | } |
9362 | ||
b614a702 | 9363 | return strdup (base_name); |
e0001a05 NC |
9364 | } |
9365 | ||
43cd72b9 BW |
9366 | |
9367 | flagword | |
7fa3d080 | 9368 | xtensa_get_property_predef_flags (asection *sec) |
43cd72b9 BW |
9369 | { |
9370 | if (strcmp (sec->name, XTENSA_INSN_SEC_NAME) == 0 | |
9371 | || strncmp (sec->name, ".gnu.linkonce.x.", | |
9372 | sizeof ".gnu.linkonce.x." - 1) == 0) | |
9373 | return (XTENSA_PROP_INSN | |
9374 | | XTENSA_PROP_INSN_NO_TRANSFORM | |
9375 | | XTENSA_PROP_INSN_NO_REORDER); | |
9376 | ||
9377 | if (xtensa_is_littable_section (sec)) | |
9378 | return (XTENSA_PROP_LITERAL | |
9379 | | XTENSA_PROP_INSN_NO_TRANSFORM | |
9380 | | XTENSA_PROP_INSN_NO_REORDER); | |
9381 | ||
9382 | return 0; | |
9383 | } | |
9384 | ||
e0001a05 NC |
9385 | \f |
9386 | /* Other functions called directly by the linker. */ | |
9387 | ||
9388 | bfd_boolean | |
7fa3d080 BW |
9389 | xtensa_callback_required_dependence (bfd *abfd, |
9390 | asection *sec, | |
9391 | struct bfd_link_info *link_info, | |
9392 | deps_callback_t callback, | |
9393 | void *closure) | |
e0001a05 NC |
9394 | { |
9395 | Elf_Internal_Rela *internal_relocs; | |
9396 | bfd_byte *contents; | |
9397 | unsigned i; | |
9398 | bfd_boolean ok = TRUE; | |
43cd72b9 BW |
9399 | bfd_size_type sec_size; |
9400 | ||
9401 | sec_size = bfd_get_section_limit (abfd, sec); | |
e0001a05 NC |
9402 | |
9403 | /* ".plt*" sections have no explicit relocations but they contain L32R | |
9404 | instructions that reference the corresponding ".got.plt*" sections. */ | |
9405 | if ((sec->flags & SEC_LINKER_CREATED) != 0 | |
9406 | && strncmp (sec->name, ".plt", 4) == 0) | |
9407 | { | |
9408 | asection *sgotplt; | |
9409 | ||
9410 | /* Find the corresponding ".got.plt*" section. */ | |
9411 | if (sec->name[4] == '\0') | |
9412 | sgotplt = bfd_get_section_by_name (sec->owner, ".got.plt"); | |
9413 | else | |
9414 | { | |
9415 | char got_name[14]; | |
9416 | int chunk = 0; | |
9417 | ||
9418 | BFD_ASSERT (sec->name[4] == '.'); | |
9419 | chunk = strtol (&sec->name[5], NULL, 10); | |
9420 | ||
9421 | sprintf (got_name, ".got.plt.%u", chunk); | |
9422 | sgotplt = bfd_get_section_by_name (sec->owner, got_name); | |
9423 | } | |
9424 | BFD_ASSERT (sgotplt); | |
9425 | ||
9426 | /* Assume worst-case offsets: L32R at the very end of the ".plt" | |
9427 | section referencing a literal at the very beginning of | |
9428 | ".got.plt". This is very close to the real dependence, anyway. */ | |
43cd72b9 | 9429 | (*callback) (sec, sec_size, sgotplt, 0, closure); |
e0001a05 NC |
9430 | } |
9431 | ||
9432 | internal_relocs = retrieve_internal_relocs (abfd, sec, | |
9433 | link_info->keep_memory); | |
9434 | if (internal_relocs == NULL | |
43cd72b9 | 9435 | || sec->reloc_count == 0) |
e0001a05 NC |
9436 | return ok; |
9437 | ||
9438 | /* Cache the contents for the duration of this scan. */ | |
9439 | contents = retrieve_contents (abfd, sec, link_info->keep_memory); | |
43cd72b9 | 9440 | if (contents == NULL && sec_size != 0) |
e0001a05 NC |
9441 | { |
9442 | ok = FALSE; | |
9443 | goto error_return; | |
9444 | } | |
9445 | ||
43cd72b9 BW |
9446 | if (!xtensa_default_isa) |
9447 | xtensa_default_isa = xtensa_isa_init (0, 0); | |
e0001a05 | 9448 | |
43cd72b9 | 9449 | for (i = 0; i < sec->reloc_count; i++) |
e0001a05 NC |
9450 | { |
9451 | Elf_Internal_Rela *irel = &internal_relocs[i]; | |
43cd72b9 | 9452 | if (is_l32r_relocation (abfd, sec, contents, irel)) |
e0001a05 NC |
9453 | { |
9454 | r_reloc l32r_rel; | |
9455 | asection *target_sec; | |
9456 | bfd_vma target_offset; | |
43cd72b9 BW |
9457 | |
9458 | r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); | |
e0001a05 NC |
9459 | target_sec = NULL; |
9460 | target_offset = 0; | |
9461 | /* L32Rs must be local to the input file. */ | |
9462 | if (r_reloc_is_defined (&l32r_rel)) | |
9463 | { | |
9464 | target_sec = r_reloc_get_section (&l32r_rel); | |
43cd72b9 | 9465 | target_offset = l32r_rel.target_offset; |
e0001a05 NC |
9466 | } |
9467 | (*callback) (sec, irel->r_offset, target_sec, target_offset, | |
9468 | closure); | |
9469 | } | |
9470 | } | |
9471 | ||
9472 | error_return: | |
9473 | release_internal_relocs (sec, internal_relocs); | |
9474 | release_contents (sec, contents); | |
9475 | return ok; | |
9476 | } | |
9477 | ||
2f89ff8d L |
9478 | /* The default literal sections should always be marked as "code" (i.e., |
9479 | SHF_EXECINSTR). This is particularly important for the Linux kernel | |
9480 | module loader so that the literals are not placed after the text. */ | |
b35d266b | 9481 | static const struct bfd_elf_special_section elf_xtensa_special_sections[] = |
2f89ff8d | 9482 | { |
7dcb9820 | 9483 | { ".fini.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
7f4d3958 | 9484 | { ".init.literal", 13, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
7f4d3958 L |
9485 | { ".literal", 8, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
9486 | { NULL, 0, 0, 0, 0 } | |
9487 | }; | |
e0001a05 NC |
9488 | \f |
9489 | #ifndef ELF_ARCH | |
9490 | #define TARGET_LITTLE_SYM bfd_elf32_xtensa_le_vec | |
9491 | #define TARGET_LITTLE_NAME "elf32-xtensa-le" | |
9492 | #define TARGET_BIG_SYM bfd_elf32_xtensa_be_vec | |
9493 | #define TARGET_BIG_NAME "elf32-xtensa-be" | |
9494 | #define ELF_ARCH bfd_arch_xtensa | |
9495 | ||
4af0a1d8 BW |
9496 | #define ELF_MACHINE_CODE EM_XTENSA |
9497 | #define ELF_MACHINE_ALT1 EM_XTENSA_OLD | |
e0001a05 NC |
9498 | |
9499 | #if XCHAL_HAVE_MMU | |
9500 | #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) | |
9501 | #else /* !XCHAL_HAVE_MMU */ | |
9502 | #define ELF_MAXPAGESIZE 1 | |
9503 | #endif /* !XCHAL_HAVE_MMU */ | |
9504 | #endif /* ELF_ARCH */ | |
9505 | ||
9506 | #define elf_backend_can_gc_sections 1 | |
9507 | #define elf_backend_can_refcount 1 | |
9508 | #define elf_backend_plt_readonly 1 | |
9509 | #define elf_backend_got_header_size 4 | |
9510 | #define elf_backend_want_dynbss 0 | |
9511 | #define elf_backend_want_got_plt 1 | |
9512 | ||
9513 | #define elf_info_to_howto elf_xtensa_info_to_howto_rela | |
9514 | ||
e0001a05 NC |
9515 | #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data |
9516 | #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook | |
9517 | #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data | |
9518 | #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section | |
9519 | #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup | |
9520 | #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags | |
9521 | ||
9522 | #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol | |
9523 | #define elf_backend_check_relocs elf_xtensa_check_relocs | |
e0001a05 NC |
9524 | #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections |
9525 | #define elf_backend_discard_info elf_xtensa_discard_info | |
9526 | #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs | |
9527 | #define elf_backend_final_write_processing elf_xtensa_final_write_processing | |
9528 | #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections | |
9529 | #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol | |
9530 | #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook | |
9531 | #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook | |
9532 | #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus | |
9533 | #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo | |
9534 | #define elf_backend_hide_symbol elf_xtensa_hide_symbol | |
9535 | #define elf_backend_modify_segment_map elf_xtensa_modify_segment_map | |
9536 | #define elf_backend_object_p elf_xtensa_object_p | |
9537 | #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class | |
9538 | #define elf_backend_relocate_section elf_xtensa_relocate_section | |
9539 | #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections | |
29ef7005 | 9540 | #define elf_backend_special_sections elf_xtensa_special_sections |
e0001a05 NC |
9541 | |
9542 | #include "elf32-target.h" |