]>
Commit | Line | Data |
---|---|---|
1bac305b AC |
1 | /* GDB-specific functions for operating on agent expressions. |
2 | ||
0b302171 JB |
3 | Copyright (C) 1998-2001, 2003, 2007-2012 Free Software Foundation, |
4 | Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 20 | |
c906108c SS |
21 | #include "defs.h" |
22 | #include "symtab.h" | |
23 | #include "symfile.h" | |
24 | #include "gdbtypes.h" | |
b97aedf3 | 25 | #include "language.h" |
c906108c SS |
26 | #include "value.h" |
27 | #include "expression.h" | |
28 | #include "command.h" | |
29 | #include "gdbcmd.h" | |
30 | #include "frame.h" | |
31 | #include "target.h" | |
32 | #include "ax.h" | |
33 | #include "ax-gdb.h" | |
309367d4 | 34 | #include "gdb_string.h" |
fe898f56 | 35 | #include "block.h" |
7b83296f | 36 | #include "regcache.h" |
029a67e4 | 37 | #include "user-regs.h" |
f7c79c41 | 38 | #include "language.h" |
6c228b9c | 39 | #include "dictionary.h" |
00bf0b85 | 40 | #include "breakpoint.h" |
f61e138d | 41 | #include "tracepoint.h" |
b6e7192f | 42 | #include "cp-support.h" |
6710bf39 | 43 | #include "arch-utils.h" |
c906108c | 44 | |
3065dfb6 SS |
45 | #include "valprint.h" |
46 | #include "c-lang.h" | |
47 | ||
6426a772 JM |
48 | /* To make sense of this file, you should read doc/agentexpr.texi. |
49 | Then look at the types and enums in ax-gdb.h. For the code itself, | |
50 | look at gen_expr, towards the bottom; that's the main function that | |
51 | looks at the GDB expressions and calls everything else to generate | |
52 | code. | |
c906108c SS |
53 | |
54 | I'm beginning to wonder whether it wouldn't be nicer to internally | |
55 | generate trees, with types, and then spit out the bytecode in | |
56 | linear form afterwards; we could generate fewer `swap', `ext', and | |
57 | `zero_ext' bytecodes that way; it would make good constant folding | |
58 | easier, too. But at the moment, I think we should be willing to | |
59 | pay for the simplicity of this code with less-than-optimal bytecode | |
60 | strings. | |
61 | ||
c5aa993b JM |
62 | Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */ |
63 | \f | |
c906108c SS |
64 | |
65 | ||
0e2de366 | 66 | /* Prototypes for local functions. */ |
c906108c SS |
67 | |
68 | /* There's a standard order to the arguments of these functions: | |
69 | union exp_element ** --- pointer into expression | |
70 | struct agent_expr * --- agent expression buffer to generate code into | |
71 | struct axs_value * --- describes value left on top of stack */ | |
c5aa993b | 72 | |
a14ed312 KB |
73 | static struct value *const_var_ref (struct symbol *var); |
74 | static struct value *const_expr (union exp_element **pc); | |
75 | static struct value *maybe_const_expr (union exp_element **pc); | |
76 | ||
3e43a32a MS |
77 | static void gen_traced_pop (struct gdbarch *, struct agent_expr *, |
78 | struct axs_value *); | |
a14ed312 KB |
79 | |
80 | static void gen_sign_extend (struct agent_expr *, struct type *); | |
81 | static void gen_extend (struct agent_expr *, struct type *); | |
82 | static void gen_fetch (struct agent_expr *, struct type *); | |
83 | static void gen_left_shift (struct agent_expr *, int); | |
84 | ||
85 | ||
f7c79c41 UW |
86 | static void gen_frame_args_address (struct gdbarch *, struct agent_expr *); |
87 | static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *); | |
a14ed312 KB |
88 | static void gen_offset (struct agent_expr *ax, int offset); |
89 | static void gen_sym_offset (struct agent_expr *, struct symbol *); | |
f7c79c41 | 90 | static void gen_var_ref (struct gdbarch *, struct agent_expr *ax, |
a14ed312 KB |
91 | struct axs_value *value, struct symbol *var); |
92 | ||
93 | ||
94 | static void gen_int_literal (struct agent_expr *ax, | |
95 | struct axs_value *value, | |
96 | LONGEST k, struct type *type); | |
97 | ||
f7c79c41 UW |
98 | static void gen_usual_unary (struct expression *exp, struct agent_expr *ax, |
99 | struct axs_value *value); | |
a14ed312 KB |
100 | static int type_wider_than (struct type *type1, struct type *type2); |
101 | static struct type *max_type (struct type *type1, struct type *type2); | |
102 | static void gen_conversion (struct agent_expr *ax, | |
103 | struct type *from, struct type *to); | |
104 | static int is_nontrivial_conversion (struct type *from, struct type *to); | |
f7c79c41 UW |
105 | static void gen_usual_arithmetic (struct expression *exp, |
106 | struct agent_expr *ax, | |
a14ed312 KB |
107 | struct axs_value *value1, |
108 | struct axs_value *value2); | |
f7c79c41 UW |
109 | static void gen_integral_promotions (struct expression *exp, |
110 | struct agent_expr *ax, | |
a14ed312 KB |
111 | struct axs_value *value); |
112 | static void gen_cast (struct agent_expr *ax, | |
113 | struct axs_value *value, struct type *type); | |
114 | static void gen_scale (struct agent_expr *ax, | |
115 | enum agent_op op, struct type *type); | |
f7c79c41 UW |
116 | static void gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
117 | struct axs_value *value1, struct axs_value *value2); | |
118 | static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
119 | struct axs_value *value1, struct axs_value *value2); | |
120 | static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, | |
121 | struct axs_value *value1, struct axs_value *value2, | |
122 | struct type *result_type); | |
a14ed312 KB |
123 | static void gen_binop (struct agent_expr *ax, |
124 | struct axs_value *value, | |
125 | struct axs_value *value1, | |
126 | struct axs_value *value2, | |
127 | enum agent_op op, | |
128 | enum agent_op op_unsigned, int may_carry, char *name); | |
f7c79c41 UW |
129 | static void gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
130 | struct type *result_type); | |
a14ed312 KB |
131 | static void gen_complement (struct agent_expr *ax, struct axs_value *value); |
132 | static void gen_deref (struct agent_expr *, struct axs_value *); | |
133 | static void gen_address_of (struct agent_expr *, struct axs_value *); | |
505e835d | 134 | static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, |
a14ed312 KB |
135 | struct axs_value *value, |
136 | struct type *type, int start, int end); | |
b6e7192f SS |
137 | static void gen_primitive_field (struct expression *exp, |
138 | struct agent_expr *ax, | |
139 | struct axs_value *value, | |
140 | int offset, int fieldno, struct type *type); | |
141 | static int gen_struct_ref_recursive (struct expression *exp, | |
142 | struct agent_expr *ax, | |
143 | struct axs_value *value, | |
144 | char *field, int offset, | |
145 | struct type *type); | |
505e835d | 146 | static void gen_struct_ref (struct expression *exp, struct agent_expr *ax, |
a14ed312 KB |
147 | struct axs_value *value, |
148 | char *field, | |
149 | char *operator_name, char *operand_name); | |
400c6af0 | 150 | static void gen_static_field (struct gdbarch *gdbarch, |
b6e7192f SS |
151 | struct agent_expr *ax, struct axs_value *value, |
152 | struct type *type, int fieldno); | |
f7c79c41 | 153 | static void gen_repeat (struct expression *exp, union exp_element **pc, |
a14ed312 | 154 | struct agent_expr *ax, struct axs_value *value); |
f7c79c41 UW |
155 | static void gen_sizeof (struct expression *exp, union exp_element **pc, |
156 | struct agent_expr *ax, struct axs_value *value, | |
157 | struct type *size_type); | |
f61e138d SS |
158 | static void gen_expr_binop_rest (struct expression *exp, |
159 | enum exp_opcode op, union exp_element **pc, | |
160 | struct agent_expr *ax, | |
161 | struct axs_value *value, | |
162 | struct axs_value *value1, | |
163 | struct axs_value *value2); | |
c5aa993b | 164 | |
a14ed312 | 165 | static void agent_command (char *exp, int from_tty); |
c906108c | 166 | \f |
c5aa993b | 167 | |
c906108c SS |
168 | /* Detecting constant expressions. */ |
169 | ||
170 | /* If the variable reference at *PC is a constant, return its value. | |
171 | Otherwise, return zero. | |
172 | ||
173 | Hey, Wally! How can a variable reference be a constant? | |
174 | ||
175 | Well, Beav, this function really handles the OP_VAR_VALUE operator, | |
176 | not specifically variable references. GDB uses OP_VAR_VALUE to | |
177 | refer to any kind of symbolic reference: function names, enum | |
178 | elements, and goto labels are all handled through the OP_VAR_VALUE | |
179 | operator, even though they're constants. It makes sense given the | |
180 | situation. | |
181 | ||
182 | Gee, Wally, don'cha wonder sometimes if data representations that | |
183 | subvert commonly accepted definitions of terms in favor of heavily | |
184 | context-specific interpretations are really just a tool of the | |
185 | programming hegemony to preserve their power and exclude the | |
186 | proletariat? */ | |
187 | ||
188 | static struct value * | |
fba45db2 | 189 | const_var_ref (struct symbol *var) |
c906108c SS |
190 | { |
191 | struct type *type = SYMBOL_TYPE (var); | |
192 | ||
193 | switch (SYMBOL_CLASS (var)) | |
194 | { | |
195 | case LOC_CONST: | |
196 | return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var)); | |
197 | ||
198 | case LOC_LABEL: | |
4478b372 | 199 | return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var)); |
c906108c SS |
200 | |
201 | default: | |
202 | return 0; | |
203 | } | |
204 | } | |
205 | ||
206 | ||
207 | /* If the expression starting at *PC has a constant value, return it. | |
208 | Otherwise, return zero. If we return a value, then *PC will be | |
209 | advanced to the end of it. If we return zero, *PC could be | |
210 | anywhere. */ | |
211 | static struct value * | |
fba45db2 | 212 | const_expr (union exp_element **pc) |
c906108c SS |
213 | { |
214 | enum exp_opcode op = (*pc)->opcode; | |
215 | struct value *v1; | |
216 | ||
217 | switch (op) | |
218 | { | |
219 | case OP_LONG: | |
220 | { | |
221 | struct type *type = (*pc)[1].type; | |
222 | LONGEST k = (*pc)[2].longconst; | |
5b4ee69b | 223 | |
c906108c SS |
224 | (*pc) += 4; |
225 | return value_from_longest (type, k); | |
226 | } | |
227 | ||
228 | case OP_VAR_VALUE: | |
229 | { | |
230 | struct value *v = const_var_ref ((*pc)[2].symbol); | |
5b4ee69b | 231 | |
c906108c SS |
232 | (*pc) += 4; |
233 | return v; | |
234 | } | |
235 | ||
c5aa993b | 236 | /* We could add more operators in here. */ |
c906108c SS |
237 | |
238 | case UNOP_NEG: | |
239 | (*pc)++; | |
240 | v1 = const_expr (pc); | |
241 | if (v1) | |
242 | return value_neg (v1); | |
243 | else | |
244 | return 0; | |
245 | ||
246 | default: | |
247 | return 0; | |
248 | } | |
249 | } | |
250 | ||
251 | ||
252 | /* Like const_expr, but guarantee also that *PC is undisturbed if the | |
253 | expression is not constant. */ | |
254 | static struct value * | |
fba45db2 | 255 | maybe_const_expr (union exp_element **pc) |
c906108c SS |
256 | { |
257 | union exp_element *tentative_pc = *pc; | |
258 | struct value *v = const_expr (&tentative_pc); | |
259 | ||
260 | /* If we got a value, then update the real PC. */ | |
261 | if (v) | |
262 | *pc = tentative_pc; | |
c5aa993b | 263 | |
c906108c SS |
264 | return v; |
265 | } | |
c906108c | 266 | \f |
c5aa993b | 267 | |
c906108c SS |
268 | /* Generating bytecode from GDB expressions: general assumptions */ |
269 | ||
270 | /* Here are a few general assumptions made throughout the code; if you | |
271 | want to make a change that contradicts one of these, then you'd | |
272 | better scan things pretty thoroughly. | |
273 | ||
274 | - We assume that all values occupy one stack element. For example, | |
c5aa993b JM |
275 | sometimes we'll swap to get at the left argument to a binary |
276 | operator. If we decide that void values should occupy no stack | |
277 | elements, or that synthetic arrays (whose size is determined at | |
278 | run time, created by the `@' operator) should occupy two stack | |
279 | elements (address and length), then this will cause trouble. | |
c906108c SS |
280 | |
281 | - We assume the stack elements are infinitely wide, and that we | |
c5aa993b JM |
282 | don't have to worry what happens if the user requests an |
283 | operation that is wider than the actual interpreter's stack. | |
284 | That is, it's up to the interpreter to handle directly all the | |
285 | integer widths the user has access to. (Woe betide the language | |
286 | with bignums!) | |
c906108c SS |
287 | |
288 | - We don't support side effects. Thus, we don't have to worry about | |
c5aa993b | 289 | GCC's generalized lvalues, function calls, etc. |
c906108c SS |
290 | |
291 | - We don't support floating point. Many places where we switch on | |
c5aa993b JM |
292 | some type don't bother to include cases for floating point; there |
293 | may be even more subtle ways this assumption exists. For | |
294 | example, the arguments to % must be integers. | |
c906108c SS |
295 | |
296 | - We assume all subexpressions have a static, unchanging type. If | |
c5aa993b JM |
297 | we tried to support convenience variables, this would be a |
298 | problem. | |
c906108c SS |
299 | |
300 | - All values on the stack should always be fully zero- or | |
c5aa993b JM |
301 | sign-extended. |
302 | ||
303 | (I wasn't sure whether to choose this or its opposite --- that | |
304 | only addresses are assumed extended --- but it turns out that | |
305 | neither convention completely eliminates spurious extend | |
306 | operations (if everything is always extended, then you have to | |
307 | extend after add, because it could overflow; if nothing is | |
308 | extended, then you end up producing extends whenever you change | |
309 | sizes), and this is simpler.) */ | |
c906108c | 310 | \f |
c5aa993b | 311 | |
c906108c SS |
312 | /* Generating bytecode from GDB expressions: the `trace' kludge */ |
313 | ||
314 | /* The compiler in this file is a general-purpose mechanism for | |
315 | translating GDB expressions into bytecode. One ought to be able to | |
316 | find a million and one uses for it. | |
317 | ||
318 | However, at the moment it is HOPELESSLY BRAIN-DAMAGED for the sake | |
319 | of expediency. Let he who is without sin cast the first stone. | |
320 | ||
321 | For the data tracing facility, we need to insert `trace' bytecodes | |
322 | before each data fetch; this records all the memory that the | |
323 | expression touches in the course of evaluation, so that memory will | |
324 | be available when the user later tries to evaluate the expression | |
325 | in GDB. | |
326 | ||
327 | This should be done (I think) in a post-processing pass, that walks | |
328 | an arbitrary agent expression and inserts `trace' operations at the | |
329 | appropriate points. But it's much faster to just hack them | |
330 | directly into the code. And since we're in a crunch, that's what | |
331 | I've done. | |
332 | ||
333 | Setting the flag trace_kludge to non-zero enables the code that | |
334 | emits the trace bytecodes at the appropriate points. */ | |
08922a10 | 335 | int trace_kludge; |
c906108c | 336 | |
3065dfb6 SS |
337 | /* Inspired by trace_kludge, this indicates that pointers to chars |
338 | should get an added tracenz bytecode to record nonzero bytes, up to | |
339 | a length that is the value of trace_string_kludge. */ | |
340 | int trace_string_kludge; | |
341 | ||
400c6af0 SS |
342 | /* Scan for all static fields in the given class, including any base |
343 | classes, and generate tracing bytecodes for each. */ | |
344 | ||
345 | static void | |
346 | gen_trace_static_fields (struct gdbarch *gdbarch, | |
347 | struct agent_expr *ax, | |
348 | struct type *type) | |
349 | { | |
350 | int i, nbases = TYPE_N_BASECLASSES (type); | |
351 | struct axs_value value; | |
352 | ||
353 | CHECK_TYPEDEF (type); | |
354 | ||
355 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) | |
356 | { | |
357 | if (field_is_static (&TYPE_FIELD (type, i))) | |
358 | { | |
359 | gen_static_field (gdbarch, ax, &value, type, i); | |
360 | if (value.optimized_out) | |
361 | continue; | |
362 | switch (value.kind) | |
363 | { | |
364 | case axs_lvalue_memory: | |
365 | { | |
366 | int length = TYPE_LENGTH (check_typedef (value.type)); | |
367 | ||
368 | ax_const_l (ax, length); | |
369 | ax_simple (ax, aop_trace); | |
370 | } | |
371 | break; | |
372 | ||
373 | case axs_lvalue_register: | |
35c9c7ba SS |
374 | /* We don't actually need the register's value to be pushed, |
375 | just note that we need it to be collected. */ | |
376 | ax_reg_mask (ax, value.u.reg); | |
400c6af0 SS |
377 | |
378 | default: | |
379 | break; | |
380 | } | |
381 | } | |
382 | } | |
383 | ||
384 | /* Now scan through base classes recursively. */ | |
385 | for (i = 0; i < nbases; i++) | |
386 | { | |
387 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
388 | ||
389 | gen_trace_static_fields (gdbarch, ax, basetype); | |
390 | } | |
391 | } | |
392 | ||
c906108c SS |
393 | /* Trace the lvalue on the stack, if it needs it. In either case, pop |
394 | the value. Useful on the left side of a comma, and at the end of | |
395 | an expression being used for tracing. */ | |
396 | static void | |
400c6af0 SS |
397 | gen_traced_pop (struct gdbarch *gdbarch, |
398 | struct agent_expr *ax, struct axs_value *value) | |
c906108c | 399 | { |
3065dfb6 SS |
400 | int string_trace = 0; |
401 | if (trace_string_kludge | |
402 | && TYPE_CODE (value->type) == TYPE_CODE_PTR | |
403 | && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)), | |
404 | 's')) | |
405 | string_trace = 1; | |
406 | ||
c906108c SS |
407 | if (trace_kludge) |
408 | switch (value->kind) | |
409 | { | |
410 | case axs_rvalue: | |
3065dfb6 SS |
411 | if (string_trace) |
412 | { | |
413 | ax_const_l (ax, trace_string_kludge); | |
414 | ax_simple (ax, aop_tracenz); | |
415 | } | |
416 | else | |
417 | /* We don't trace rvalues, just the lvalues necessary to | |
418 | produce them. So just dispose of this value. */ | |
419 | ax_simple (ax, aop_pop); | |
c906108c SS |
420 | break; |
421 | ||
422 | case axs_lvalue_memory: | |
423 | { | |
648027cc | 424 | int length = TYPE_LENGTH (check_typedef (value->type)); |
c906108c | 425 | |
3065dfb6 SS |
426 | if (string_trace) |
427 | ax_simple (ax, aop_dup); | |
428 | ||
c906108c SS |
429 | /* There's no point in trying to use a trace_quick bytecode |
430 | here, since "trace_quick SIZE pop" is three bytes, whereas | |
431 | "const8 SIZE trace" is also three bytes, does the same | |
432 | thing, and the simplest code which generates that will also | |
433 | work correctly for objects with large sizes. */ | |
434 | ax_const_l (ax, length); | |
435 | ax_simple (ax, aop_trace); | |
3065dfb6 SS |
436 | |
437 | if (string_trace) | |
438 | { | |
439 | ax_simple (ax, aop_ref32); | |
440 | ax_const_l (ax, trace_string_kludge); | |
441 | ax_simple (ax, aop_tracenz); | |
442 | } | |
c906108c | 443 | } |
c5aa993b | 444 | break; |
c906108c SS |
445 | |
446 | case axs_lvalue_register: | |
35c9c7ba SS |
447 | /* We don't actually need the register's value to be on the |
448 | stack, and the target will get heartburn if the register is | |
449 | larger than will fit in a stack, so just mark it for | |
450 | collection and be done with it. */ | |
451 | ax_reg_mask (ax, value->u.reg); | |
3065dfb6 SS |
452 | |
453 | /* But if the register points to a string, assume the value | |
454 | will fit on the stack and push it anyway. */ | |
455 | if (string_trace) | |
456 | { | |
457 | ax_reg (ax, value->u.reg); | |
458 | ax_const_l (ax, trace_string_kludge); | |
459 | ax_simple (ax, aop_tracenz); | |
460 | } | |
c906108c SS |
461 | break; |
462 | } | |
463 | else | |
464 | /* If we're not tracing, just pop the value. */ | |
465 | ax_simple (ax, aop_pop); | |
400c6af0 SS |
466 | |
467 | /* To trace C++ classes with static fields stored elsewhere. */ | |
468 | if (trace_kludge | |
469 | && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT | |
470 | || TYPE_CODE (value->type) == TYPE_CODE_UNION)) | |
471 | gen_trace_static_fields (gdbarch, ax, value->type); | |
c906108c | 472 | } |
c5aa993b | 473 | \f |
c906108c SS |
474 | |
475 | ||
c906108c SS |
476 | /* Generating bytecode from GDB expressions: helper functions */ |
477 | ||
478 | /* Assume that the lower bits of the top of the stack is a value of | |
479 | type TYPE, and the upper bits are zero. Sign-extend if necessary. */ | |
480 | static void | |
fba45db2 | 481 | gen_sign_extend (struct agent_expr *ax, struct type *type) |
c906108c SS |
482 | { |
483 | /* Do we need to sign-extend this? */ | |
c5aa993b | 484 | if (!TYPE_UNSIGNED (type)) |
0004e5a2 | 485 | ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT); |
c906108c SS |
486 | } |
487 | ||
488 | ||
489 | /* Assume the lower bits of the top of the stack hold a value of type | |
490 | TYPE, and the upper bits are garbage. Sign-extend or truncate as | |
491 | needed. */ | |
492 | static void | |
fba45db2 | 493 | gen_extend (struct agent_expr *ax, struct type *type) |
c906108c | 494 | { |
0004e5a2 | 495 | int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT; |
5b4ee69b | 496 | |
c906108c SS |
497 | /* I just had to. */ |
498 | ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits)); | |
499 | } | |
500 | ||
501 | ||
502 | /* Assume that the top of the stack contains a value of type "pointer | |
503 | to TYPE"; generate code to fetch its value. Note that TYPE is the | |
504 | target type, not the pointer type. */ | |
505 | static void | |
fba45db2 | 506 | gen_fetch (struct agent_expr *ax, struct type *type) |
c906108c SS |
507 | { |
508 | if (trace_kludge) | |
509 | { | |
510 | /* Record the area of memory we're about to fetch. */ | |
511 | ax_trace_quick (ax, TYPE_LENGTH (type)); | |
512 | } | |
513 | ||
af381b8c JB |
514 | if (TYPE_CODE (type) == TYPE_CODE_RANGE) |
515 | type = TYPE_TARGET_TYPE (type); | |
516 | ||
0004e5a2 | 517 | switch (TYPE_CODE (type)) |
c906108c SS |
518 | { |
519 | case TYPE_CODE_PTR: | |
b97aedf3 | 520 | case TYPE_CODE_REF: |
c906108c SS |
521 | case TYPE_CODE_ENUM: |
522 | case TYPE_CODE_INT: | |
523 | case TYPE_CODE_CHAR: | |
3b11a015 | 524 | case TYPE_CODE_BOOL: |
c906108c SS |
525 | /* It's a scalar value, so we know how to dereference it. How |
526 | many bytes long is it? */ | |
0004e5a2 | 527 | switch (TYPE_LENGTH (type)) |
c906108c | 528 | { |
c5aa993b JM |
529 | case 8 / TARGET_CHAR_BIT: |
530 | ax_simple (ax, aop_ref8); | |
531 | break; | |
532 | case 16 / TARGET_CHAR_BIT: | |
533 | ax_simple (ax, aop_ref16); | |
534 | break; | |
535 | case 32 / TARGET_CHAR_BIT: | |
536 | ax_simple (ax, aop_ref32); | |
537 | break; | |
538 | case 64 / TARGET_CHAR_BIT: | |
539 | ax_simple (ax, aop_ref64); | |
540 | break; | |
c906108c SS |
541 | |
542 | /* Either our caller shouldn't have asked us to dereference | |
543 | that pointer (other code's fault), or we're not | |
544 | implementing something we should be (this code's fault). | |
545 | In any case, it's a bug the user shouldn't see. */ | |
546 | default: | |
8e65ff28 | 547 | internal_error (__FILE__, __LINE__, |
3d263c1d | 548 | _("gen_fetch: strange size")); |
c906108c SS |
549 | } |
550 | ||
551 | gen_sign_extend (ax, type); | |
552 | break; | |
553 | ||
554 | default: | |
52323be9 LM |
555 | /* Our caller requested us to dereference a pointer from an unsupported |
556 | type. Error out and give callers a chance to handle the failure | |
557 | gracefully. */ | |
558 | error (_("gen_fetch: Unsupported type code `%s'."), | |
559 | TYPE_NAME (type)); | |
c906108c SS |
560 | } |
561 | } | |
562 | ||
563 | ||
564 | /* Generate code to left shift the top of the stack by DISTANCE bits, or | |
565 | right shift it by -DISTANCE bits if DISTANCE < 0. This generates | |
566 | unsigned (logical) right shifts. */ | |
567 | static void | |
fba45db2 | 568 | gen_left_shift (struct agent_expr *ax, int distance) |
c906108c SS |
569 | { |
570 | if (distance > 0) | |
571 | { | |
572 | ax_const_l (ax, distance); | |
573 | ax_simple (ax, aop_lsh); | |
574 | } | |
575 | else if (distance < 0) | |
576 | { | |
577 | ax_const_l (ax, -distance); | |
578 | ax_simple (ax, aop_rsh_unsigned); | |
579 | } | |
580 | } | |
c5aa993b | 581 | \f |
c906108c SS |
582 | |
583 | ||
c906108c SS |
584 | /* Generating bytecode from GDB expressions: symbol references */ |
585 | ||
586 | /* Generate code to push the base address of the argument portion of | |
587 | the top stack frame. */ | |
588 | static void | |
f7c79c41 | 589 | gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax) |
c906108c | 590 | { |
39d4ef09 AC |
591 | int frame_reg; |
592 | LONGEST frame_offset; | |
c906108c | 593 | |
f7c79c41 | 594 | gdbarch_virtual_frame_pointer (gdbarch, |
c7bb205c | 595 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 596 | ax_reg (ax, frame_reg); |
c906108c SS |
597 | gen_offset (ax, frame_offset); |
598 | } | |
599 | ||
600 | ||
601 | /* Generate code to push the base address of the locals portion of the | |
602 | top stack frame. */ | |
603 | static void | |
f7c79c41 | 604 | gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax) |
c906108c | 605 | { |
39d4ef09 AC |
606 | int frame_reg; |
607 | LONGEST frame_offset; | |
c906108c | 608 | |
f7c79c41 | 609 | gdbarch_virtual_frame_pointer (gdbarch, |
c7bb205c | 610 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 611 | ax_reg (ax, frame_reg); |
c906108c SS |
612 | gen_offset (ax, frame_offset); |
613 | } | |
614 | ||
615 | ||
616 | /* Generate code to add OFFSET to the top of the stack. Try to | |
617 | generate short and readable code. We use this for getting to | |
618 | variables on the stack, and structure members. If we were | |
619 | programming in ML, it would be clearer why these are the same | |
620 | thing. */ | |
621 | static void | |
fba45db2 | 622 | gen_offset (struct agent_expr *ax, int offset) |
c906108c SS |
623 | { |
624 | /* It would suffice to simply push the offset and add it, but this | |
625 | makes it easier to read positive and negative offsets in the | |
626 | bytecode. */ | |
627 | if (offset > 0) | |
628 | { | |
629 | ax_const_l (ax, offset); | |
630 | ax_simple (ax, aop_add); | |
631 | } | |
632 | else if (offset < 0) | |
633 | { | |
634 | ax_const_l (ax, -offset); | |
635 | ax_simple (ax, aop_sub); | |
636 | } | |
637 | } | |
638 | ||
639 | ||
640 | /* In many cases, a symbol's value is the offset from some other | |
641 | address (stack frame, base register, etc.) Generate code to add | |
642 | VAR's value to the top of the stack. */ | |
643 | static void | |
fba45db2 | 644 | gen_sym_offset (struct agent_expr *ax, struct symbol *var) |
c906108c SS |
645 | { |
646 | gen_offset (ax, SYMBOL_VALUE (var)); | |
647 | } | |
648 | ||
649 | ||
650 | /* Generate code for a variable reference to AX. The variable is the | |
651 | symbol VAR. Set VALUE to describe the result. */ | |
652 | ||
653 | static void | |
f7c79c41 UW |
654 | gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax, |
655 | struct axs_value *value, struct symbol *var) | |
c906108c | 656 | { |
0e2de366 | 657 | /* Dereference any typedefs. */ |
c906108c | 658 | value->type = check_typedef (SYMBOL_TYPE (var)); |
400c6af0 | 659 | value->optimized_out = 0; |
c906108c SS |
660 | |
661 | /* I'm imitating the code in read_var_value. */ | |
662 | switch (SYMBOL_CLASS (var)) | |
663 | { | |
664 | case LOC_CONST: /* A constant, like an enum value. */ | |
665 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var)); | |
666 | value->kind = axs_rvalue; | |
667 | break; | |
668 | ||
669 | case LOC_LABEL: /* A goto label, being used as a value. */ | |
670 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var)); | |
671 | value->kind = axs_rvalue; | |
672 | break; | |
673 | ||
674 | case LOC_CONST_BYTES: | |
8e65ff28 | 675 | internal_error (__FILE__, __LINE__, |
3e43a32a MS |
676 | _("gen_var_ref: LOC_CONST_BYTES " |
677 | "symbols are not supported")); | |
c906108c SS |
678 | |
679 | /* Variable at a fixed location in memory. Easy. */ | |
680 | case LOC_STATIC: | |
681 | /* Push the address of the variable. */ | |
682 | ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var)); | |
683 | value->kind = axs_lvalue_memory; | |
684 | break; | |
685 | ||
686 | case LOC_ARG: /* var lives in argument area of frame */ | |
f7c79c41 | 687 | gen_frame_args_address (gdbarch, ax); |
c906108c SS |
688 | gen_sym_offset (ax, var); |
689 | value->kind = axs_lvalue_memory; | |
690 | break; | |
691 | ||
692 | case LOC_REF_ARG: /* As above, but the frame slot really | |
693 | holds the address of the variable. */ | |
f7c79c41 | 694 | gen_frame_args_address (gdbarch, ax); |
c906108c SS |
695 | gen_sym_offset (ax, var); |
696 | /* Don't assume any particular pointer size. */ | |
f7c79c41 | 697 | gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr); |
c906108c SS |
698 | value->kind = axs_lvalue_memory; |
699 | break; | |
700 | ||
701 | case LOC_LOCAL: /* var lives in locals area of frame */ | |
f7c79c41 | 702 | gen_frame_locals_address (gdbarch, ax); |
c906108c SS |
703 | gen_sym_offset (ax, var); |
704 | value->kind = axs_lvalue_memory; | |
705 | break; | |
706 | ||
c906108c | 707 | case LOC_TYPEDEF: |
3d263c1d | 708 | error (_("Cannot compute value of typedef `%s'."), |
de5ad195 | 709 | SYMBOL_PRINT_NAME (var)); |
c906108c SS |
710 | break; |
711 | ||
712 | case LOC_BLOCK: | |
713 | ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var))); | |
714 | value->kind = axs_rvalue; | |
715 | break; | |
716 | ||
717 | case LOC_REGISTER: | |
c906108c SS |
718 | /* Don't generate any code at all; in the process of treating |
719 | this as an lvalue or rvalue, the caller will generate the | |
720 | right code. */ | |
721 | value->kind = axs_lvalue_register; | |
768a979c | 722 | value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch); |
c906108c SS |
723 | break; |
724 | ||
725 | /* A lot like LOC_REF_ARG, but the pointer lives directly in a | |
2a2d4dc3 AS |
726 | register, not on the stack. Simpler than LOC_REGISTER |
727 | because it's just like any other case where the thing | |
728 | has a real address. */ | |
c906108c | 729 | case LOC_REGPARM_ADDR: |
768a979c | 730 | ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch)); |
c906108c SS |
731 | value->kind = axs_lvalue_memory; |
732 | break; | |
733 | ||
734 | case LOC_UNRESOLVED: | |
735 | { | |
c5aa993b | 736 | struct minimal_symbol *msym |
3567439c | 737 | = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL); |
5b4ee69b | 738 | |
c5aa993b | 739 | if (!msym) |
3d263c1d | 740 | error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var)); |
c5aa993b | 741 | |
c906108c SS |
742 | /* Push the address of the variable. */ |
743 | ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym)); | |
744 | value->kind = axs_lvalue_memory; | |
745 | } | |
c5aa993b | 746 | break; |
c906108c | 747 | |
a55cc764 | 748 | case LOC_COMPUTED: |
a67af2b9 | 749 | /* FIXME: cagney/2004-01-26: It should be possible to |
768a979c | 750 | unconditionally call the SYMBOL_COMPUTED_OPS method when available. |
d3efc286 | 751 | Unfortunately DWARF 2 stores the frame-base (instead of the |
a67af2b9 AC |
752 | function) location in a function's symbol. Oops! For the |
753 | moment enable this when/where applicable. */ | |
505e835d | 754 | SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value); |
a55cc764 DJ |
755 | break; |
756 | ||
c906108c | 757 | case LOC_OPTIMIZED_OUT: |
400c6af0 SS |
758 | /* Flag this, but don't say anything; leave it up to callers to |
759 | warn the user. */ | |
760 | value->optimized_out = 1; | |
c906108c SS |
761 | break; |
762 | ||
763 | default: | |
3d263c1d | 764 | error (_("Cannot find value of botched symbol `%s'."), |
de5ad195 | 765 | SYMBOL_PRINT_NAME (var)); |
c906108c SS |
766 | break; |
767 | } | |
768 | } | |
c5aa993b | 769 | \f |
c906108c SS |
770 | |
771 | ||
c906108c SS |
772 | /* Generating bytecode from GDB expressions: literals */ |
773 | ||
774 | static void | |
fba45db2 KB |
775 | gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k, |
776 | struct type *type) | |
c906108c SS |
777 | { |
778 | ax_const_l (ax, k); | |
779 | value->kind = axs_rvalue; | |
648027cc | 780 | value->type = check_typedef (type); |
c906108c | 781 | } |
c5aa993b | 782 | \f |
c906108c SS |
783 | |
784 | ||
c906108c SS |
785 | /* Generating bytecode from GDB expressions: unary conversions, casts */ |
786 | ||
787 | /* Take what's on the top of the stack (as described by VALUE), and | |
788 | try to make an rvalue out of it. Signal an error if we can't do | |
789 | that. */ | |
55aa24fb | 790 | void |
fba45db2 | 791 | require_rvalue (struct agent_expr *ax, struct axs_value *value) |
c906108c | 792 | { |
3a96536b SS |
793 | /* Only deal with scalars, structs and such may be too large |
794 | to fit in a stack entry. */ | |
795 | value->type = check_typedef (value->type); | |
796 | if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY | |
797 | || TYPE_CODE (value->type) == TYPE_CODE_STRUCT | |
798 | || TYPE_CODE (value->type) == TYPE_CODE_UNION | |
799 | || TYPE_CODE (value->type) == TYPE_CODE_FUNC) | |
1c40aa62 | 800 | error (_("Value not scalar: cannot be an rvalue.")); |
3a96536b | 801 | |
c906108c SS |
802 | switch (value->kind) |
803 | { | |
804 | case axs_rvalue: | |
805 | /* It's already an rvalue. */ | |
806 | break; | |
807 | ||
808 | case axs_lvalue_memory: | |
809 | /* The top of stack is the address of the object. Dereference. */ | |
810 | gen_fetch (ax, value->type); | |
811 | break; | |
812 | ||
813 | case axs_lvalue_register: | |
814 | /* There's nothing on the stack, but value->u.reg is the | |
815 | register number containing the value. | |
816 | ||
c5aa993b JM |
817 | When we add floating-point support, this is going to have to |
818 | change. What about SPARC register pairs, for example? */ | |
c906108c SS |
819 | ax_reg (ax, value->u.reg); |
820 | gen_extend (ax, value->type); | |
821 | break; | |
822 | } | |
823 | ||
824 | value->kind = axs_rvalue; | |
825 | } | |
826 | ||
827 | ||
828 | /* Assume the top of the stack is described by VALUE, and perform the | |
829 | usual unary conversions. This is motivated by ANSI 6.2.2, but of | |
830 | course GDB expressions are not ANSI; they're the mishmash union of | |
831 | a bunch of languages. Rah. | |
832 | ||
833 | NOTE! This function promises to produce an rvalue only when the | |
834 | incoming value is of an appropriate type. In other words, the | |
835 | consumer of the value this function produces may assume the value | |
836 | is an rvalue only after checking its type. | |
837 | ||
838 | The immediate issue is that if the user tries to use a structure or | |
839 | union as an operand of, say, the `+' operator, we don't want to try | |
840 | to convert that structure to an rvalue; require_rvalue will bomb on | |
841 | structs and unions. Rather, we want to simply pass the struct | |
842 | lvalue through unchanged, and let `+' raise an error. */ | |
843 | ||
844 | static void | |
f7c79c41 UW |
845 | gen_usual_unary (struct expression *exp, struct agent_expr *ax, |
846 | struct axs_value *value) | |
c906108c SS |
847 | { |
848 | /* We don't have to generate any code for the usual integral | |
849 | conversions, since values are always represented as full-width on | |
850 | the stack. Should we tweak the type? */ | |
851 | ||
852 | /* Some types require special handling. */ | |
0004e5a2 | 853 | switch (TYPE_CODE (value->type)) |
c906108c SS |
854 | { |
855 | /* Functions get converted to a pointer to the function. */ | |
856 | case TYPE_CODE_FUNC: | |
857 | value->type = lookup_pointer_type (value->type); | |
858 | value->kind = axs_rvalue; /* Should always be true, but just in case. */ | |
859 | break; | |
860 | ||
861 | /* Arrays get converted to a pointer to their first element, and | |
c5aa993b | 862 | are no longer an lvalue. */ |
c906108c SS |
863 | case TYPE_CODE_ARRAY: |
864 | { | |
865 | struct type *elements = TYPE_TARGET_TYPE (value->type); | |
5b4ee69b | 866 | |
c906108c SS |
867 | value->type = lookup_pointer_type (elements); |
868 | value->kind = axs_rvalue; | |
869 | /* We don't need to generate any code; the address of the array | |
870 | is also the address of its first element. */ | |
871 | } | |
c5aa993b | 872 | break; |
c906108c | 873 | |
c5aa993b JM |
874 | /* Don't try to convert structures and unions to rvalues. Let the |
875 | consumer signal an error. */ | |
c906108c SS |
876 | case TYPE_CODE_STRUCT: |
877 | case TYPE_CODE_UNION: | |
878 | return; | |
c906108c SS |
879 | } |
880 | ||
881 | /* If the value is an lvalue, dereference it. */ | |
882 | require_rvalue (ax, value); | |
883 | } | |
884 | ||
885 | ||
886 | /* Return non-zero iff the type TYPE1 is considered "wider" than the | |
887 | type TYPE2, according to the rules described in gen_usual_arithmetic. */ | |
888 | static int | |
fba45db2 | 889 | type_wider_than (struct type *type1, struct type *type2) |
c906108c SS |
890 | { |
891 | return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2) | |
892 | || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
893 | && TYPE_UNSIGNED (type1) | |
c5aa993b | 894 | && !TYPE_UNSIGNED (type2))); |
c906108c SS |
895 | } |
896 | ||
897 | ||
898 | /* Return the "wider" of the two types TYPE1 and TYPE2. */ | |
899 | static struct type * | |
fba45db2 | 900 | max_type (struct type *type1, struct type *type2) |
c906108c SS |
901 | { |
902 | return type_wider_than (type1, type2) ? type1 : type2; | |
903 | } | |
904 | ||
905 | ||
906 | /* Generate code to convert a scalar value of type FROM to type TO. */ | |
907 | static void | |
fba45db2 | 908 | gen_conversion (struct agent_expr *ax, struct type *from, struct type *to) |
c906108c SS |
909 | { |
910 | /* Perhaps there is a more graceful way to state these rules. */ | |
911 | ||
912 | /* If we're converting to a narrower type, then we need to clear out | |
913 | the upper bits. */ | |
914 | if (TYPE_LENGTH (to) < TYPE_LENGTH (from)) | |
915 | gen_extend (ax, from); | |
916 | ||
917 | /* If the two values have equal width, but different signednesses, | |
918 | then we need to extend. */ | |
919 | else if (TYPE_LENGTH (to) == TYPE_LENGTH (from)) | |
920 | { | |
921 | if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to)) | |
922 | gen_extend (ax, to); | |
923 | } | |
924 | ||
925 | /* If we're converting to a wider type, and becoming unsigned, then | |
926 | we need to zero out any possible sign bits. */ | |
927 | else if (TYPE_LENGTH (to) > TYPE_LENGTH (from)) | |
928 | { | |
929 | if (TYPE_UNSIGNED (to)) | |
930 | gen_extend (ax, to); | |
931 | } | |
932 | } | |
933 | ||
934 | ||
935 | /* Return non-zero iff the type FROM will require any bytecodes to be | |
936 | emitted to be converted to the type TO. */ | |
937 | static int | |
fba45db2 | 938 | is_nontrivial_conversion (struct type *from, struct type *to) |
c906108c | 939 | { |
35c9c7ba | 940 | struct agent_expr *ax = new_agent_expr (NULL, 0); |
c906108c SS |
941 | int nontrivial; |
942 | ||
943 | /* Actually generate the code, and see if anything came out. At the | |
944 | moment, it would be trivial to replicate the code in | |
945 | gen_conversion here, but in the future, when we're supporting | |
946 | floating point and the like, it may not be. Doing things this | |
947 | way allows this function to be independent of the logic in | |
948 | gen_conversion. */ | |
949 | gen_conversion (ax, from, to); | |
950 | nontrivial = ax->len > 0; | |
951 | free_agent_expr (ax); | |
952 | return nontrivial; | |
953 | } | |
954 | ||
955 | ||
956 | /* Generate code to perform the "usual arithmetic conversions" (ANSI C | |
957 | 6.2.1.5) for the two operands of an arithmetic operator. This | |
958 | effectively finds a "least upper bound" type for the two arguments, | |
959 | and promotes each argument to that type. *VALUE1 and *VALUE2 | |
960 | describe the values as they are passed in, and as they are left. */ | |
961 | static void | |
f7c79c41 UW |
962 | gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax, |
963 | struct axs_value *value1, struct axs_value *value2) | |
c906108c SS |
964 | { |
965 | /* Do the usual binary conversions. */ | |
966 | if (TYPE_CODE (value1->type) == TYPE_CODE_INT | |
967 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) | |
968 | { | |
969 | /* The ANSI integral promotions seem to work this way: Order the | |
c5aa993b JM |
970 | integer types by size, and then by signedness: an n-bit |
971 | unsigned type is considered "wider" than an n-bit signed | |
972 | type. Promote to the "wider" of the two types, and always | |
973 | promote at least to int. */ | |
f7c79c41 | 974 | struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int, |
c906108c SS |
975 | max_type (value1->type, value2->type)); |
976 | ||
977 | /* Deal with value2, on the top of the stack. */ | |
978 | gen_conversion (ax, value2->type, target); | |
979 | ||
980 | /* Deal with value1, not on the top of the stack. Don't | |
981 | generate the `swap' instructions if we're not actually going | |
982 | to do anything. */ | |
983 | if (is_nontrivial_conversion (value1->type, target)) | |
984 | { | |
985 | ax_simple (ax, aop_swap); | |
986 | gen_conversion (ax, value1->type, target); | |
987 | ax_simple (ax, aop_swap); | |
988 | } | |
989 | ||
648027cc | 990 | value1->type = value2->type = check_typedef (target); |
c906108c SS |
991 | } |
992 | } | |
993 | ||
994 | ||
995 | /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on | |
996 | the value on the top of the stack, as described by VALUE. Assume | |
997 | the value has integral type. */ | |
998 | static void | |
f7c79c41 UW |
999 | gen_integral_promotions (struct expression *exp, struct agent_expr *ax, |
1000 | struct axs_value *value) | |
c906108c | 1001 | { |
f7c79c41 UW |
1002 | const struct builtin_type *builtin = builtin_type (exp->gdbarch); |
1003 | ||
1004 | if (!type_wider_than (value->type, builtin->builtin_int)) | |
c906108c | 1005 | { |
f7c79c41 UW |
1006 | gen_conversion (ax, value->type, builtin->builtin_int); |
1007 | value->type = builtin->builtin_int; | |
c906108c | 1008 | } |
f7c79c41 | 1009 | else if (!type_wider_than (value->type, builtin->builtin_unsigned_int)) |
c906108c | 1010 | { |
f7c79c41 UW |
1011 | gen_conversion (ax, value->type, builtin->builtin_unsigned_int); |
1012 | value->type = builtin->builtin_unsigned_int; | |
c906108c SS |
1013 | } |
1014 | } | |
1015 | ||
1016 | ||
1017 | /* Generate code for a cast to TYPE. */ | |
1018 | static void | |
fba45db2 | 1019 | gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type) |
c906108c SS |
1020 | { |
1021 | /* GCC does allow casts to yield lvalues, so this should be fixed | |
1022 | before merging these changes into the trunk. */ | |
1023 | require_rvalue (ax, value); | |
0e2de366 | 1024 | /* Dereference typedefs. */ |
c906108c SS |
1025 | type = check_typedef (type); |
1026 | ||
0004e5a2 | 1027 | switch (TYPE_CODE (type)) |
c906108c SS |
1028 | { |
1029 | case TYPE_CODE_PTR: | |
b97aedf3 | 1030 | case TYPE_CODE_REF: |
c906108c SS |
1031 | /* It's implementation-defined, and I'll bet this is what GCC |
1032 | does. */ | |
1033 | break; | |
1034 | ||
1035 | case TYPE_CODE_ARRAY: | |
1036 | case TYPE_CODE_STRUCT: | |
1037 | case TYPE_CODE_UNION: | |
1038 | case TYPE_CODE_FUNC: | |
3d263c1d | 1039 | error (_("Invalid type cast: intended type must be scalar.")); |
c906108c SS |
1040 | |
1041 | case TYPE_CODE_ENUM: | |
3b11a015 | 1042 | case TYPE_CODE_BOOL: |
c906108c SS |
1043 | /* We don't have to worry about the size of the value, because |
1044 | all our integral values are fully sign-extended, and when | |
1045 | casting pointers we can do anything we like. Is there any | |
74b35824 JB |
1046 | way for us to know what GCC actually does with a cast like |
1047 | this? */ | |
c906108c | 1048 | break; |
c5aa993b | 1049 | |
c906108c SS |
1050 | case TYPE_CODE_INT: |
1051 | gen_conversion (ax, value->type, type); | |
1052 | break; | |
1053 | ||
1054 | case TYPE_CODE_VOID: | |
1055 | /* We could pop the value, and rely on everyone else to check | |
c5aa993b JM |
1056 | the type and notice that this value doesn't occupy a stack |
1057 | slot. But for now, leave the value on the stack, and | |
1058 | preserve the "value == stack element" assumption. */ | |
c906108c SS |
1059 | break; |
1060 | ||
1061 | default: | |
3d263c1d | 1062 | error (_("Casts to requested type are not yet implemented.")); |
c906108c SS |
1063 | } |
1064 | ||
1065 | value->type = type; | |
1066 | } | |
c5aa993b | 1067 | \f |
c906108c SS |
1068 | |
1069 | ||
c906108c SS |
1070 | /* Generating bytecode from GDB expressions: arithmetic */ |
1071 | ||
1072 | /* Scale the integer on the top of the stack by the size of the target | |
1073 | of the pointer type TYPE. */ | |
1074 | static void | |
fba45db2 | 1075 | gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type) |
c906108c SS |
1076 | { |
1077 | struct type *element = TYPE_TARGET_TYPE (type); | |
1078 | ||
0004e5a2 | 1079 | if (TYPE_LENGTH (element) != 1) |
c906108c | 1080 | { |
0004e5a2 | 1081 | ax_const_l (ax, TYPE_LENGTH (element)); |
c906108c SS |
1082 | ax_simple (ax, op); |
1083 | } | |
1084 | } | |
1085 | ||
1086 | ||
f7c79c41 | 1087 | /* Generate code for pointer arithmetic PTR + INT. */ |
c906108c | 1088 | static void |
f7c79c41 UW |
1089 | gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
1090 | struct axs_value *value1, struct axs_value *value2) | |
c906108c | 1091 | { |
b97aedf3 | 1092 | gdb_assert (pointer_type (value1->type)); |
f7c79c41 | 1093 | gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); |
c906108c | 1094 | |
f7c79c41 UW |
1095 | gen_scale (ax, aop_mul, value1->type); |
1096 | ax_simple (ax, aop_add); | |
1097 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
1098 | value->type = value1->type; | |
1099 | value->kind = axs_rvalue; | |
1100 | } | |
c906108c | 1101 | |
c906108c | 1102 | |
f7c79c41 UW |
1103 | /* Generate code for pointer arithmetic PTR - INT. */ |
1104 | static void | |
1105 | gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
1106 | struct axs_value *value1, struct axs_value *value2) | |
1107 | { | |
b97aedf3 | 1108 | gdb_assert (pointer_type (value1->type)); |
f7c79c41 | 1109 | gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); |
c906108c | 1110 | |
f7c79c41 UW |
1111 | gen_scale (ax, aop_mul, value1->type); |
1112 | ax_simple (ax, aop_sub); | |
1113 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
1114 | value->type = value1->type; | |
c906108c SS |
1115 | value->kind = axs_rvalue; |
1116 | } | |
1117 | ||
1118 | ||
f7c79c41 | 1119 | /* Generate code for pointer arithmetic PTR - PTR. */ |
c906108c | 1120 | static void |
f7c79c41 UW |
1121 | gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, |
1122 | struct axs_value *value1, struct axs_value *value2, | |
1123 | struct type *result_type) | |
c906108c | 1124 | { |
b97aedf3 SS |
1125 | gdb_assert (pointer_type (value1->type)); |
1126 | gdb_assert (pointer_type (value2->type)); | |
c906108c | 1127 | |
f7c79c41 UW |
1128 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type)) |
1129 | != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))) | |
ac74f770 MS |
1130 | error (_("\ |
1131 | First argument of `-' is a pointer, but second argument is neither\n\ | |
1132 | an integer nor a pointer of the same type.")); | |
c906108c | 1133 | |
f7c79c41 UW |
1134 | ax_simple (ax, aop_sub); |
1135 | gen_scale (ax, aop_div_unsigned, value1->type); | |
1136 | value->type = result_type; | |
c906108c SS |
1137 | value->kind = axs_rvalue; |
1138 | } | |
1139 | ||
3b11a015 SS |
1140 | static void |
1141 | gen_equal (struct agent_expr *ax, struct axs_value *value, | |
1142 | struct axs_value *value1, struct axs_value *value2, | |
1143 | struct type *result_type) | |
1144 | { | |
1145 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1146 | ax_simple (ax, aop_equal); | |
1147 | else | |
1148 | gen_binop (ax, value, value1, value2, | |
1149 | aop_equal, aop_equal, 0, "equal"); | |
1150 | value->type = result_type; | |
1151 | value->kind = axs_rvalue; | |
1152 | } | |
1153 | ||
1154 | static void | |
1155 | gen_less (struct agent_expr *ax, struct axs_value *value, | |
1156 | struct axs_value *value1, struct axs_value *value2, | |
1157 | struct type *result_type) | |
1158 | { | |
1159 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1160 | ax_simple (ax, aop_less_unsigned); | |
1161 | else | |
1162 | gen_binop (ax, value, value1, value2, | |
1163 | aop_less_signed, aop_less_unsigned, 0, "less than"); | |
1164 | value->type = result_type; | |
1165 | value->kind = axs_rvalue; | |
1166 | } | |
f7c79c41 | 1167 | |
c906108c SS |
1168 | /* Generate code for a binary operator that doesn't do pointer magic. |
1169 | We set VALUE to describe the result value; we assume VALUE1 and | |
1170 | VALUE2 describe the two operands, and that they've undergone the | |
1171 | usual binary conversions. MAY_CARRY should be non-zero iff the | |
1172 | result needs to be extended. NAME is the English name of the | |
1173 | operator, used in error messages */ | |
1174 | static void | |
fba45db2 | 1175 | gen_binop (struct agent_expr *ax, struct axs_value *value, |
3e43a32a MS |
1176 | struct axs_value *value1, struct axs_value *value2, |
1177 | enum agent_op op, enum agent_op op_unsigned, | |
1178 | int may_carry, char *name) | |
c906108c SS |
1179 | { |
1180 | /* We only handle INT op INT. */ | |
0004e5a2 DJ |
1181 | if ((TYPE_CODE (value1->type) != TYPE_CODE_INT) |
1182 | || (TYPE_CODE (value2->type) != TYPE_CODE_INT)) | |
3d263c1d | 1183 | error (_("Invalid combination of types in %s."), name); |
c5aa993b | 1184 | |
c906108c SS |
1185 | ax_simple (ax, |
1186 | TYPE_UNSIGNED (value1->type) ? op_unsigned : op); | |
1187 | if (may_carry) | |
c5aa993b | 1188 | gen_extend (ax, value1->type); /* catch overflow */ |
c906108c SS |
1189 | value->type = value1->type; |
1190 | value->kind = axs_rvalue; | |
1191 | } | |
1192 | ||
1193 | ||
1194 | static void | |
f7c79c41 UW |
1195 | gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
1196 | struct type *result_type) | |
c906108c SS |
1197 | { |
1198 | if (TYPE_CODE (value->type) != TYPE_CODE_INT | |
1199 | && TYPE_CODE (value->type) != TYPE_CODE_PTR) | |
3d263c1d | 1200 | error (_("Invalid type of operand to `!'.")); |
c906108c | 1201 | |
c906108c | 1202 | ax_simple (ax, aop_log_not); |
f7c79c41 | 1203 | value->type = result_type; |
c906108c SS |
1204 | } |
1205 | ||
1206 | ||
1207 | static void | |
fba45db2 | 1208 | gen_complement (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1209 | { |
1210 | if (TYPE_CODE (value->type) != TYPE_CODE_INT) | |
3d263c1d | 1211 | error (_("Invalid type of operand to `~'.")); |
c906108c | 1212 | |
c906108c SS |
1213 | ax_simple (ax, aop_bit_not); |
1214 | gen_extend (ax, value->type); | |
1215 | } | |
c5aa993b | 1216 | \f |
c906108c SS |
1217 | |
1218 | ||
c906108c SS |
1219 | /* Generating bytecode from GDB expressions: * & . -> @ sizeof */ |
1220 | ||
1221 | /* Dereference the value on the top of the stack. */ | |
1222 | static void | |
fba45db2 | 1223 | gen_deref (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1224 | { |
1225 | /* The caller should check the type, because several operators use | |
1226 | this, and we don't know what error message to generate. */ | |
b97aedf3 | 1227 | if (!pointer_type (value->type)) |
8e65ff28 | 1228 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1229 | _("gen_deref: expected a pointer")); |
c906108c SS |
1230 | |
1231 | /* We've got an rvalue now, which is a pointer. We want to yield an | |
1232 | lvalue, whose address is exactly that pointer. So we don't | |
1233 | actually emit any code; we just change the type from "Pointer to | |
1234 | T" to "T", and mark the value as an lvalue in memory. Leave it | |
1235 | to the consumer to actually dereference it. */ | |
1236 | value->type = check_typedef (TYPE_TARGET_TYPE (value->type)); | |
b1028c8e PA |
1237 | if (TYPE_CODE (value->type) == TYPE_CODE_VOID) |
1238 | error (_("Attempt to dereference a generic pointer.")); | |
0004e5a2 | 1239 | value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC) |
c906108c SS |
1240 | ? axs_rvalue : axs_lvalue_memory); |
1241 | } | |
1242 | ||
1243 | ||
1244 | /* Produce the address of the lvalue on the top of the stack. */ | |
1245 | static void | |
fba45db2 | 1246 | gen_address_of (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1247 | { |
1248 | /* Special case for taking the address of a function. The ANSI | |
1249 | standard describes this as a special case, too, so this | |
1250 | arrangement is not without motivation. */ | |
0004e5a2 | 1251 | if (TYPE_CODE (value->type) == TYPE_CODE_FUNC) |
c906108c SS |
1252 | /* The value's already an rvalue on the stack, so we just need to |
1253 | change the type. */ | |
1254 | value->type = lookup_pointer_type (value->type); | |
1255 | else | |
1256 | switch (value->kind) | |
1257 | { | |
1258 | case axs_rvalue: | |
3d263c1d | 1259 | error (_("Operand of `&' is an rvalue, which has no address.")); |
c906108c SS |
1260 | |
1261 | case axs_lvalue_register: | |
3d263c1d | 1262 | error (_("Operand of `&' is in a register, and has no address.")); |
c906108c SS |
1263 | |
1264 | case axs_lvalue_memory: | |
1265 | value->kind = axs_rvalue; | |
1266 | value->type = lookup_pointer_type (value->type); | |
1267 | break; | |
1268 | } | |
1269 | } | |
1270 | ||
c906108c SS |
1271 | /* Generate code to push the value of a bitfield of a structure whose |
1272 | address is on the top of the stack. START and END give the | |
1273 | starting and one-past-ending *bit* numbers of the field within the | |
1274 | structure. */ | |
1275 | static void | |
505e835d UW |
1276 | gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, |
1277 | struct axs_value *value, struct type *type, | |
1278 | int start, int end) | |
c906108c SS |
1279 | { |
1280 | /* Note that ops[i] fetches 8 << i bits. */ | |
1281 | static enum agent_op ops[] | |
5b4ee69b | 1282 | = {aop_ref8, aop_ref16, aop_ref32, aop_ref64}; |
c906108c SS |
1283 | static int num_ops = (sizeof (ops) / sizeof (ops[0])); |
1284 | ||
1285 | /* We don't want to touch any byte that the bitfield doesn't | |
1286 | actually occupy; we shouldn't make any accesses we're not | |
1287 | explicitly permitted to. We rely here on the fact that the | |
1288 | bytecode `ref' operators work on unaligned addresses. | |
1289 | ||
1290 | It takes some fancy footwork to get the stack to work the way | |
1291 | we'd like. Say we're retrieving a bitfield that requires three | |
1292 | fetches. Initially, the stack just contains the address: | |
c5aa993b | 1293 | addr |
c906108c | 1294 | For the first fetch, we duplicate the address |
c5aa993b | 1295 | addr addr |
c906108c SS |
1296 | then add the byte offset, do the fetch, and shift and mask as |
1297 | needed, yielding a fragment of the value, properly aligned for | |
1298 | the final bitwise or: | |
c5aa993b | 1299 | addr frag1 |
c906108c | 1300 | then we swap, and repeat the process: |
c5aa993b JM |
1301 | frag1 addr --- address on top |
1302 | frag1 addr addr --- duplicate it | |
1303 | frag1 addr frag2 --- get second fragment | |
1304 | frag1 frag2 addr --- swap again | |
1305 | frag1 frag2 frag3 --- get third fragment | |
c906108c SS |
1306 | Notice that, since the third fragment is the last one, we don't |
1307 | bother duplicating the address this time. Now we have all the | |
1308 | fragments on the stack, and we can simply `or' them together, | |
1309 | yielding the final value of the bitfield. */ | |
1310 | ||
1311 | /* The first and one-after-last bits in the field, but rounded down | |
1312 | and up to byte boundaries. */ | |
1313 | int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT; | |
c5aa993b JM |
1314 | int bound_end = (((end + TARGET_CHAR_BIT - 1) |
1315 | / TARGET_CHAR_BIT) | |
1316 | * TARGET_CHAR_BIT); | |
c906108c SS |
1317 | |
1318 | /* current bit offset within the structure */ | |
1319 | int offset; | |
1320 | ||
1321 | /* The index in ops of the opcode we're considering. */ | |
1322 | int op; | |
1323 | ||
1324 | /* The number of fragments we generated in the process. Probably | |
1325 | equal to the number of `one' bits in bytesize, but who cares? */ | |
1326 | int fragment_count; | |
1327 | ||
0e2de366 | 1328 | /* Dereference any typedefs. */ |
c906108c SS |
1329 | type = check_typedef (type); |
1330 | ||
1331 | /* Can we fetch the number of bits requested at all? */ | |
1332 | if ((end - start) > ((1 << num_ops) * 8)) | |
8e65ff28 | 1333 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1334 | _("gen_bitfield_ref: bitfield too wide")); |
c906108c SS |
1335 | |
1336 | /* Note that we know here that we only need to try each opcode once. | |
1337 | That may not be true on machines with weird byte sizes. */ | |
1338 | offset = bound_start; | |
1339 | fragment_count = 0; | |
1340 | for (op = num_ops - 1; op >= 0; op--) | |
1341 | { | |
1342 | /* number of bits that ops[op] would fetch */ | |
1343 | int op_size = 8 << op; | |
1344 | ||
1345 | /* The stack at this point, from bottom to top, contains zero or | |
c5aa993b JM |
1346 | more fragments, then the address. */ |
1347 | ||
c906108c SS |
1348 | /* Does this fetch fit within the bitfield? */ |
1349 | if (offset + op_size <= bound_end) | |
1350 | { | |
1351 | /* Is this the last fragment? */ | |
1352 | int last_frag = (offset + op_size == bound_end); | |
1353 | ||
c5aa993b JM |
1354 | if (!last_frag) |
1355 | ax_simple (ax, aop_dup); /* keep a copy of the address */ | |
1356 | ||
c906108c SS |
1357 | /* Add the offset. */ |
1358 | gen_offset (ax, offset / TARGET_CHAR_BIT); | |
1359 | ||
1360 | if (trace_kludge) | |
1361 | { | |
1362 | /* Record the area of memory we're about to fetch. */ | |
1363 | ax_trace_quick (ax, op_size / TARGET_CHAR_BIT); | |
1364 | } | |
1365 | ||
1366 | /* Perform the fetch. */ | |
1367 | ax_simple (ax, ops[op]); | |
c5aa993b JM |
1368 | |
1369 | /* Shift the bits we have to their proper position. | |
c906108c SS |
1370 | gen_left_shift will generate right shifts when the operand |
1371 | is negative. | |
1372 | ||
c5aa993b JM |
1373 | A big-endian field diagram to ponder: |
1374 | byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 | |
1375 | +------++------++------++------++------++------++------++------+ | |
1376 | xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx | |
1377 | ^ ^ ^ ^ | |
1378 | bit number 16 32 48 53 | |
c906108c SS |
1379 | These are bit numbers as supplied by GDB. Note that the |
1380 | bit numbers run from right to left once you've fetched the | |
1381 | value! | |
1382 | ||
c5aa993b JM |
1383 | A little-endian field diagram to ponder: |
1384 | byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 | |
1385 | +------++------++------++------++------++------++------++------+ | |
1386 | xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx | |
1387 | ^ ^ ^ ^ ^ | |
1388 | bit number 48 32 16 4 0 | |
1389 | ||
1390 | In both cases, the most significant end is on the left | |
1391 | (i.e. normal numeric writing order), which means that you | |
1392 | don't go crazy thinking about `left' and `right' shifts. | |
1393 | ||
1394 | We don't have to worry about masking yet: | |
1395 | - If they contain garbage off the least significant end, then we | |
1396 | must be looking at the low end of the field, and the right | |
1397 | shift will wipe them out. | |
1398 | - If they contain garbage off the most significant end, then we | |
1399 | must be looking at the most significant end of the word, and | |
1400 | the sign/zero extension will wipe them out. | |
1401 | - If we're in the interior of the word, then there is no garbage | |
1402 | on either end, because the ref operators zero-extend. */ | |
505e835d | 1403 | if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG) |
c906108c | 1404 | gen_left_shift (ax, end - (offset + op_size)); |
c5aa993b | 1405 | else |
c906108c SS |
1406 | gen_left_shift (ax, offset - start); |
1407 | ||
c5aa993b | 1408 | if (!last_frag) |
c906108c SS |
1409 | /* Bring the copy of the address up to the top. */ |
1410 | ax_simple (ax, aop_swap); | |
1411 | ||
1412 | offset += op_size; | |
1413 | fragment_count++; | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | /* Generate enough bitwise `or' operations to combine all the | |
1418 | fragments we left on the stack. */ | |
1419 | while (fragment_count-- > 1) | |
1420 | ax_simple (ax, aop_bit_or); | |
1421 | ||
1422 | /* Sign- or zero-extend the value as appropriate. */ | |
1423 | ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start)); | |
1424 | ||
1425 | /* This is *not* an lvalue. Ugh. */ | |
1426 | value->kind = axs_rvalue; | |
1427 | value->type = type; | |
1428 | } | |
1429 | ||
b6e7192f SS |
1430 | /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET |
1431 | is an accumulated offset (in bytes), will be nonzero for objects | |
1432 | embedded in other objects, like C++ base classes. Behavior should | |
1433 | generally follow value_primitive_field. */ | |
1434 | ||
1435 | static void | |
1436 | gen_primitive_field (struct expression *exp, | |
1437 | struct agent_expr *ax, struct axs_value *value, | |
1438 | int offset, int fieldno, struct type *type) | |
1439 | { | |
1440 | /* Is this a bitfield? */ | |
1441 | if (TYPE_FIELD_PACKED (type, fieldno)) | |
1442 | gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno), | |
1443 | (offset * TARGET_CHAR_BIT | |
1444 | + TYPE_FIELD_BITPOS (type, fieldno)), | |
1445 | (offset * TARGET_CHAR_BIT | |
1446 | + TYPE_FIELD_BITPOS (type, fieldno) | |
1447 | + TYPE_FIELD_BITSIZE (type, fieldno))); | |
1448 | else | |
1449 | { | |
1450 | gen_offset (ax, offset | |
1451 | + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT); | |
1452 | value->kind = axs_lvalue_memory; | |
1453 | value->type = TYPE_FIELD_TYPE (type, fieldno); | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | /* Search for the given field in either the given type or one of its | |
1458 | base classes. Return 1 if found, 0 if not. */ | |
1459 | ||
1460 | static int | |
1461 | gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax, | |
1462 | struct axs_value *value, | |
1463 | char *field, int offset, struct type *type) | |
1464 | { | |
1465 | int i, rslt; | |
1466 | int nbases = TYPE_N_BASECLASSES (type); | |
1467 | ||
1468 | CHECK_TYPEDEF (type); | |
1469 | ||
1470 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) | |
1471 | { | |
0d5cff50 | 1472 | const char *this_name = TYPE_FIELD_NAME (type, i); |
b6e7192f SS |
1473 | |
1474 | if (this_name) | |
1475 | { | |
1476 | if (strcmp (field, this_name) == 0) | |
1477 | { | |
1478 | /* Note that bytecodes for the struct's base (aka | |
1479 | "this") will have been generated already, which will | |
1480 | be unnecessary but not harmful if the static field is | |
1481 | being handled as a global. */ | |
1482 | if (field_is_static (&TYPE_FIELD (type, i))) | |
1483 | { | |
400c6af0 SS |
1484 | gen_static_field (exp->gdbarch, ax, value, type, i); |
1485 | if (value->optimized_out) | |
3e43a32a MS |
1486 | error (_("static field `%s' has been " |
1487 | "optimized out, cannot use"), | |
400c6af0 | 1488 | field); |
b6e7192f SS |
1489 | return 1; |
1490 | } | |
1491 | ||
1492 | gen_primitive_field (exp, ax, value, offset, i, type); | |
1493 | return 1; | |
1494 | } | |
1495 | #if 0 /* is this right? */ | |
1496 | if (this_name[0] == '\0') | |
1497 | internal_error (__FILE__, __LINE__, | |
1498 | _("find_field: anonymous unions not supported")); | |
1499 | #endif | |
1500 | } | |
1501 | } | |
1502 | ||
1503 | /* Now scan through base classes recursively. */ | |
1504 | for (i = 0; i < nbases; i++) | |
1505 | { | |
1506 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
1507 | ||
1508 | rslt = gen_struct_ref_recursive (exp, ax, value, field, | |
3e43a32a MS |
1509 | offset + TYPE_BASECLASS_BITPOS (type, i) |
1510 | / TARGET_CHAR_BIT, | |
b6e7192f SS |
1511 | basetype); |
1512 | if (rslt) | |
1513 | return 1; | |
1514 | } | |
1515 | ||
1516 | /* Not found anywhere, flag so caller can complain. */ | |
1517 | return 0; | |
1518 | } | |
c906108c SS |
1519 | |
1520 | /* Generate code to reference the member named FIELD of a structure or | |
1521 | union. The top of the stack, as described by VALUE, should have | |
1522 | type (pointer to a)* struct/union. OPERATOR_NAME is the name of | |
1523 | the operator being compiled, and OPERAND_NAME is the kind of thing | |
1524 | it operates on; we use them in error messages. */ | |
1525 | static void | |
505e835d UW |
1526 | gen_struct_ref (struct expression *exp, struct agent_expr *ax, |
1527 | struct axs_value *value, char *field, | |
fba45db2 | 1528 | char *operator_name, char *operand_name) |
c906108c SS |
1529 | { |
1530 | struct type *type; | |
b6e7192f | 1531 | int found; |
c906108c SS |
1532 | |
1533 | /* Follow pointers until we reach a non-pointer. These aren't the C | |
1534 | semantics, but they're what the normal GDB evaluator does, so we | |
1535 | should at least be consistent. */ | |
b97aedf3 | 1536 | while (pointer_type (value->type)) |
c906108c | 1537 | { |
f7c79c41 | 1538 | require_rvalue (ax, value); |
c906108c SS |
1539 | gen_deref (ax, value); |
1540 | } | |
e8860ec2 | 1541 | type = check_typedef (value->type); |
c906108c SS |
1542 | |
1543 | /* This must yield a structure or a union. */ | |
1544 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
1545 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
3d263c1d | 1546 | error (_("The left operand of `%s' is not a %s."), |
c906108c SS |
1547 | operator_name, operand_name); |
1548 | ||
1549 | /* And it must be in memory; we don't deal with structure rvalues, | |
1550 | or structures living in registers. */ | |
1551 | if (value->kind != axs_lvalue_memory) | |
3d263c1d | 1552 | error (_("Structure does not live in memory.")); |
c906108c | 1553 | |
b6e7192f SS |
1554 | /* Search through fields and base classes recursively. */ |
1555 | found = gen_struct_ref_recursive (exp, ax, value, field, 0, type); | |
1556 | ||
1557 | if (!found) | |
1558 | error (_("Couldn't find member named `%s' in struct/union/class `%s'"), | |
1559 | field, TYPE_TAG_NAME (type)); | |
1560 | } | |
c5aa993b | 1561 | |
b6e7192f SS |
1562 | static int |
1563 | gen_namespace_elt (struct expression *exp, | |
1564 | struct agent_expr *ax, struct axs_value *value, | |
1565 | const struct type *curtype, char *name); | |
1566 | static int | |
1567 | gen_maybe_namespace_elt (struct expression *exp, | |
1568 | struct agent_expr *ax, struct axs_value *value, | |
1569 | const struct type *curtype, char *name); | |
1570 | ||
1571 | static void | |
400c6af0 | 1572 | gen_static_field (struct gdbarch *gdbarch, |
b6e7192f SS |
1573 | struct agent_expr *ax, struct axs_value *value, |
1574 | struct type *type, int fieldno) | |
1575 | { | |
1576 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) | |
c906108c | 1577 | { |
b6e7192f | 1578 | ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c | 1579 | value->kind = axs_lvalue_memory; |
b6e7192f | 1580 | value->type = TYPE_FIELD_TYPE (type, fieldno); |
400c6af0 | 1581 | value->optimized_out = 0; |
b6e7192f SS |
1582 | } |
1583 | else | |
1584 | { | |
ff355380 | 1585 | const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); |
b6e7192f | 1586 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
b6e7192f | 1587 | |
400c6af0 SS |
1588 | if (sym) |
1589 | { | |
1590 | gen_var_ref (gdbarch, ax, value, sym); | |
1591 | ||
1592 | /* Don't error if the value was optimized out, we may be | |
1593 | scanning all static fields and just want to pass over this | |
1594 | and continue with the rest. */ | |
1595 | } | |
1596 | else | |
1597 | { | |
1598 | /* Silently assume this was optimized out; class printing | |
1599 | will let the user know why the data is missing. */ | |
1600 | value->optimized_out = 1; | |
1601 | } | |
b6e7192f SS |
1602 | } |
1603 | } | |
1604 | ||
1605 | static int | |
1606 | gen_struct_elt_for_reference (struct expression *exp, | |
1607 | struct agent_expr *ax, struct axs_value *value, | |
1608 | struct type *type, char *fieldname) | |
1609 | { | |
1610 | struct type *t = type; | |
1611 | int i; | |
b6e7192f SS |
1612 | |
1613 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1614 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
1615 | internal_error (__FILE__, __LINE__, | |
1616 | _("non-aggregate type to gen_struct_elt_for_reference")); | |
1617 | ||
1618 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
1619 | { | |
0d5cff50 | 1620 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
b6e7192f SS |
1621 | |
1622 | if (t_field_name && strcmp (t_field_name, fieldname) == 0) | |
1623 | { | |
1624 | if (field_is_static (&TYPE_FIELD (t, i))) | |
1625 | { | |
400c6af0 SS |
1626 | gen_static_field (exp->gdbarch, ax, value, t, i); |
1627 | if (value->optimized_out) | |
3e43a32a MS |
1628 | error (_("static field `%s' has been " |
1629 | "optimized out, cannot use"), | |
400c6af0 | 1630 | fieldname); |
b6e7192f SS |
1631 | return 1; |
1632 | } | |
1633 | if (TYPE_FIELD_PACKED (t, i)) | |
1634 | error (_("pointers to bitfield members not allowed")); | |
1635 | ||
1636 | /* FIXME we need a way to do "want_address" equivalent */ | |
1637 | ||
1638 | error (_("Cannot reference non-static field \"%s\""), fieldname); | |
1639 | } | |
c906108c | 1640 | } |
b6e7192f SS |
1641 | |
1642 | /* FIXME add other scoped-reference cases here */ | |
1643 | ||
1644 | /* Do a last-ditch lookup. */ | |
1645 | return gen_maybe_namespace_elt (exp, ax, value, type, fieldname); | |
c906108c SS |
1646 | } |
1647 | ||
b6e7192f SS |
1648 | /* C++: Return the member NAME of the namespace given by the type |
1649 | CURTYPE. */ | |
1650 | ||
1651 | static int | |
1652 | gen_namespace_elt (struct expression *exp, | |
1653 | struct agent_expr *ax, struct axs_value *value, | |
1654 | const struct type *curtype, char *name) | |
1655 | { | |
1656 | int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name); | |
1657 | ||
1658 | if (!found) | |
1659 | error (_("No symbol \"%s\" in namespace \"%s\"."), | |
1660 | name, TYPE_TAG_NAME (curtype)); | |
1661 | ||
1662 | return found; | |
1663 | } | |
1664 | ||
1665 | /* A helper function used by value_namespace_elt and | |
1666 | value_struct_elt_for_reference. It looks up NAME inside the | |
1667 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
1668 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
1669 | to, say, some base class of CURTYPE). */ | |
1670 | ||
1671 | static int | |
1672 | gen_maybe_namespace_elt (struct expression *exp, | |
1673 | struct agent_expr *ax, struct axs_value *value, | |
1674 | const struct type *curtype, char *name) | |
1675 | { | |
1676 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
1677 | struct symbol *sym; | |
1678 | ||
1679 | sym = cp_lookup_symbol_namespace (namespace_name, name, | |
1680 | block_for_pc (ax->scope), | |
ac0cd78b | 1681 | VAR_DOMAIN); |
b6e7192f SS |
1682 | |
1683 | if (sym == NULL) | |
1684 | return 0; | |
1685 | ||
1686 | gen_var_ref (exp->gdbarch, ax, value, sym); | |
1687 | ||
400c6af0 SS |
1688 | if (value->optimized_out) |
1689 | error (_("`%s' has been optimized out, cannot use"), | |
1690 | SYMBOL_PRINT_NAME (sym)); | |
1691 | ||
b6e7192f SS |
1692 | return 1; |
1693 | } | |
1694 | ||
1695 | ||
1696 | static int | |
1697 | gen_aggregate_elt_ref (struct expression *exp, | |
1698 | struct agent_expr *ax, struct axs_value *value, | |
1699 | struct type *type, char *field, | |
1700 | char *operator_name, char *operand_name) | |
1701 | { | |
1702 | switch (TYPE_CODE (type)) | |
1703 | { | |
1704 | case TYPE_CODE_STRUCT: | |
1705 | case TYPE_CODE_UNION: | |
1706 | return gen_struct_elt_for_reference (exp, ax, value, type, field); | |
1707 | break; | |
1708 | case TYPE_CODE_NAMESPACE: | |
1709 | return gen_namespace_elt (exp, ax, value, type, field); | |
1710 | break; | |
1711 | default: | |
1712 | internal_error (__FILE__, __LINE__, | |
1713 | _("non-aggregate type in gen_aggregate_elt_ref")); | |
1714 | } | |
1715 | ||
1716 | return 0; | |
1717 | } | |
c906108c | 1718 | |
0e2de366 | 1719 | /* Generate code for GDB's magical `repeat' operator. |
c906108c SS |
1720 | LVALUE @ INT creates an array INT elements long, and whose elements |
1721 | have the same type as LVALUE, located in memory so that LVALUE is | |
1722 | its first element. For example, argv[0]@argc gives you the array | |
1723 | of command-line arguments. | |
1724 | ||
1725 | Unfortunately, because we have to know the types before we actually | |
1726 | have a value for the expression, we can't implement this perfectly | |
1727 | without changing the type system, having values that occupy two | |
1728 | stack slots, doing weird things with sizeof, etc. So we require | |
1729 | the right operand to be a constant expression. */ | |
1730 | static void | |
f7c79c41 UW |
1731 | gen_repeat (struct expression *exp, union exp_element **pc, |
1732 | struct agent_expr *ax, struct axs_value *value) | |
c906108c SS |
1733 | { |
1734 | struct axs_value value1; | |
5b4ee69b | 1735 | |
c906108c SS |
1736 | /* We don't want to turn this into an rvalue, so no conversions |
1737 | here. */ | |
f7c79c41 | 1738 | gen_expr (exp, pc, ax, &value1); |
c906108c | 1739 | if (value1.kind != axs_lvalue_memory) |
3d263c1d | 1740 | error (_("Left operand of `@' must be an object in memory.")); |
c906108c SS |
1741 | |
1742 | /* Evaluate the length; it had better be a constant. */ | |
1743 | { | |
1744 | struct value *v = const_expr (pc); | |
1745 | int length; | |
1746 | ||
c5aa993b | 1747 | if (!v) |
3e43a32a MS |
1748 | error (_("Right operand of `@' must be a " |
1749 | "constant, in agent expressions.")); | |
04624583 | 1750 | if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT) |
3d263c1d | 1751 | error (_("Right operand of `@' must be an integer.")); |
c906108c SS |
1752 | length = value_as_long (v); |
1753 | if (length <= 0) | |
3d263c1d | 1754 | error (_("Right operand of `@' must be positive.")); |
c906108c SS |
1755 | |
1756 | /* The top of the stack is already the address of the object, so | |
1757 | all we need to do is frob the type of the lvalue. */ | |
1758 | { | |
1759 | /* FIXME-type-allocation: need a way to free this type when we are | |
c5aa993b | 1760 | done with it. */ |
e3506a9f UW |
1761 | struct type *array |
1762 | = lookup_array_range_type (value1.type, 0, length - 1); | |
c906108c SS |
1763 | |
1764 | value->kind = axs_lvalue_memory; | |
1765 | value->type = array; | |
1766 | } | |
1767 | } | |
1768 | } | |
1769 | ||
1770 | ||
1771 | /* Emit code for the `sizeof' operator. | |
1772 | *PC should point at the start of the operand expression; we advance it | |
1773 | to the first instruction after the operand. */ | |
1774 | static void | |
f7c79c41 UW |
1775 | gen_sizeof (struct expression *exp, union exp_element **pc, |
1776 | struct agent_expr *ax, struct axs_value *value, | |
1777 | struct type *size_type) | |
c906108c SS |
1778 | { |
1779 | /* We don't care about the value of the operand expression; we only | |
1780 | care about its type. However, in the current arrangement, the | |
1781 | only way to find an expression's type is to generate code for it. | |
1782 | So we generate code for the operand, and then throw it away, | |
1783 | replacing it with code that simply pushes its size. */ | |
1784 | int start = ax->len; | |
5b4ee69b | 1785 | |
f7c79c41 | 1786 | gen_expr (exp, pc, ax, value); |
c906108c SS |
1787 | |
1788 | /* Throw away the code we just generated. */ | |
1789 | ax->len = start; | |
c5aa993b | 1790 | |
c906108c SS |
1791 | ax_const_l (ax, TYPE_LENGTH (value->type)); |
1792 | value->kind = axs_rvalue; | |
f7c79c41 | 1793 | value->type = size_type; |
c906108c | 1794 | } |
c906108c | 1795 | \f |
c5aa993b | 1796 | |
c906108c SS |
1797 | /* Generating bytecode from GDB expressions: general recursive thingy */ |
1798 | ||
3d263c1d | 1799 | /* XXX: i18n */ |
c906108c SS |
1800 | /* A gen_expr function written by a Gen-X'er guy. |
1801 | Append code for the subexpression of EXPR starting at *POS_P to AX. */ | |
55aa24fb | 1802 | void |
f7c79c41 UW |
1803 | gen_expr (struct expression *exp, union exp_element **pc, |
1804 | struct agent_expr *ax, struct axs_value *value) | |
c906108c SS |
1805 | { |
1806 | /* Used to hold the descriptions of operand expressions. */ | |
09d559e4 | 1807 | struct axs_value value1, value2, value3; |
f61e138d | 1808 | enum exp_opcode op = (*pc)[0].opcode, op2; |
09d559e4 | 1809 | int if1, go1, if2, go2, end; |
3b11a015 | 1810 | struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; |
c906108c SS |
1811 | |
1812 | /* If we're looking at a constant expression, just push its value. */ | |
1813 | { | |
1814 | struct value *v = maybe_const_expr (pc); | |
c5aa993b | 1815 | |
c906108c SS |
1816 | if (v) |
1817 | { | |
1818 | ax_const_l (ax, value_as_long (v)); | |
1819 | value->kind = axs_rvalue; | |
df407dfe | 1820 | value->type = check_typedef (value_type (v)); |
c906108c SS |
1821 | return; |
1822 | } | |
1823 | } | |
1824 | ||
1825 | /* Otherwise, go ahead and generate code for it. */ | |
1826 | switch (op) | |
1827 | { | |
1828 | /* Binary arithmetic operators. */ | |
1829 | case BINOP_ADD: | |
1830 | case BINOP_SUB: | |
1831 | case BINOP_MUL: | |
1832 | case BINOP_DIV: | |
1833 | case BINOP_REM: | |
948103cf SS |
1834 | case BINOP_LSH: |
1835 | case BINOP_RSH: | |
c906108c SS |
1836 | case BINOP_SUBSCRIPT: |
1837 | case BINOP_BITWISE_AND: | |
1838 | case BINOP_BITWISE_IOR: | |
1839 | case BINOP_BITWISE_XOR: | |
782b2b07 SS |
1840 | case BINOP_EQUAL: |
1841 | case BINOP_NOTEQUAL: | |
1842 | case BINOP_LESS: | |
1843 | case BINOP_GTR: | |
1844 | case BINOP_LEQ: | |
1845 | case BINOP_GEQ: | |
c906108c | 1846 | (*pc)++; |
f7c79c41 UW |
1847 | gen_expr (exp, pc, ax, &value1); |
1848 | gen_usual_unary (exp, ax, &value1); | |
f61e138d SS |
1849 | gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2); |
1850 | break; | |
1851 | ||
09d559e4 SS |
1852 | case BINOP_LOGICAL_AND: |
1853 | (*pc)++; | |
1854 | /* Generate the obvious sequence of tests and jumps. */ | |
1855 | gen_expr (exp, pc, ax, &value1); | |
1856 | gen_usual_unary (exp, ax, &value1); | |
1857 | if1 = ax_goto (ax, aop_if_goto); | |
1858 | go1 = ax_goto (ax, aop_goto); | |
1859 | ax_label (ax, if1, ax->len); | |
1860 | gen_expr (exp, pc, ax, &value2); | |
1861 | gen_usual_unary (exp, ax, &value2); | |
1862 | if2 = ax_goto (ax, aop_if_goto); | |
1863 | go2 = ax_goto (ax, aop_goto); | |
1864 | ax_label (ax, if2, ax->len); | |
1865 | ax_const_l (ax, 1); | |
1866 | end = ax_goto (ax, aop_goto); | |
1867 | ax_label (ax, go1, ax->len); | |
1868 | ax_label (ax, go2, ax->len); | |
1869 | ax_const_l (ax, 0); | |
1870 | ax_label (ax, end, ax->len); | |
1871 | value->kind = axs_rvalue; | |
3b11a015 | 1872 | value->type = int_type; |
09d559e4 SS |
1873 | break; |
1874 | ||
1875 | case BINOP_LOGICAL_OR: | |
1876 | (*pc)++; | |
1877 | /* Generate the obvious sequence of tests and jumps. */ | |
1878 | gen_expr (exp, pc, ax, &value1); | |
1879 | gen_usual_unary (exp, ax, &value1); | |
1880 | if1 = ax_goto (ax, aop_if_goto); | |
1881 | gen_expr (exp, pc, ax, &value2); | |
1882 | gen_usual_unary (exp, ax, &value2); | |
1883 | if2 = ax_goto (ax, aop_if_goto); | |
1884 | ax_const_l (ax, 0); | |
1885 | end = ax_goto (ax, aop_goto); | |
1886 | ax_label (ax, if1, ax->len); | |
1887 | ax_label (ax, if2, ax->len); | |
1888 | ax_const_l (ax, 1); | |
1889 | ax_label (ax, end, ax->len); | |
1890 | value->kind = axs_rvalue; | |
3b11a015 | 1891 | value->type = int_type; |
09d559e4 SS |
1892 | break; |
1893 | ||
1894 | case TERNOP_COND: | |
1895 | (*pc)++; | |
1896 | gen_expr (exp, pc, ax, &value1); | |
1897 | gen_usual_unary (exp, ax, &value1); | |
1898 | /* For (A ? B : C), it's easiest to generate subexpression | |
1899 | bytecodes in order, but if_goto jumps on true, so we invert | |
1900 | the sense of A. Then we can do B by dropping through, and | |
1901 | jump to do C. */ | |
3b11a015 | 1902 | gen_logical_not (ax, &value1, int_type); |
09d559e4 SS |
1903 | if1 = ax_goto (ax, aop_if_goto); |
1904 | gen_expr (exp, pc, ax, &value2); | |
1905 | gen_usual_unary (exp, ax, &value2); | |
1906 | end = ax_goto (ax, aop_goto); | |
1907 | ax_label (ax, if1, ax->len); | |
1908 | gen_expr (exp, pc, ax, &value3); | |
1909 | gen_usual_unary (exp, ax, &value3); | |
1910 | ax_label (ax, end, ax->len); | |
1911 | /* This is arbitary - what if B and C are incompatible types? */ | |
1912 | value->type = value2.type; | |
1913 | value->kind = value2.kind; | |
1914 | break; | |
1915 | ||
f61e138d SS |
1916 | case BINOP_ASSIGN: |
1917 | (*pc)++; | |
1918 | if ((*pc)[0].opcode == OP_INTERNALVAR) | |
c906108c | 1919 | { |
f61e138d SS |
1920 | char *name = internalvar_name ((*pc)[1].internalvar); |
1921 | struct trace_state_variable *tsv; | |
5b4ee69b | 1922 | |
f61e138d SS |
1923 | (*pc) += 3; |
1924 | gen_expr (exp, pc, ax, value); | |
1925 | tsv = find_trace_state_variable (name); | |
1926 | if (tsv) | |
f7c79c41 | 1927 | { |
f61e138d SS |
1928 | ax_tsv (ax, aop_setv, tsv->number); |
1929 | if (trace_kludge) | |
1930 | ax_tsv (ax, aop_tracev, tsv->number); | |
f7c79c41 | 1931 | } |
f7c79c41 | 1932 | else |
3e43a32a MS |
1933 | error (_("$%s is not a trace state variable, " |
1934 | "may not assign to it"), name); | |
f61e138d SS |
1935 | } |
1936 | else | |
1937 | error (_("May only assign to trace state variables")); | |
1938 | break; | |
782b2b07 | 1939 | |
f61e138d SS |
1940 | case BINOP_ASSIGN_MODIFY: |
1941 | (*pc)++; | |
1942 | op2 = (*pc)[0].opcode; | |
1943 | (*pc)++; | |
1944 | (*pc)++; | |
1945 | if ((*pc)[0].opcode == OP_INTERNALVAR) | |
1946 | { | |
1947 | char *name = internalvar_name ((*pc)[1].internalvar); | |
1948 | struct trace_state_variable *tsv; | |
5b4ee69b | 1949 | |
f61e138d SS |
1950 | (*pc) += 3; |
1951 | tsv = find_trace_state_variable (name); | |
1952 | if (tsv) | |
1953 | { | |
1954 | /* The tsv will be the left half of the binary operation. */ | |
1955 | ax_tsv (ax, aop_getv, tsv->number); | |
1956 | if (trace_kludge) | |
1957 | ax_tsv (ax, aop_tracev, tsv->number); | |
1958 | /* Trace state variables are always 64-bit integers. */ | |
1959 | value1.kind = axs_rvalue; | |
1960 | value1.type = builtin_type (exp->gdbarch)->builtin_long_long; | |
1961 | /* Now do right half of expression. */ | |
1962 | gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2); | |
1963 | /* We have a result of the binary op, set the tsv. */ | |
1964 | ax_tsv (ax, aop_setv, tsv->number); | |
1965 | if (trace_kludge) | |
1966 | ax_tsv (ax, aop_tracev, tsv->number); | |
1967 | } | |
1968 | else | |
3e43a32a MS |
1969 | error (_("$%s is not a trace state variable, " |
1970 | "may not assign to it"), name); | |
c906108c | 1971 | } |
f61e138d SS |
1972 | else |
1973 | error (_("May only assign to trace state variables")); | |
c906108c SS |
1974 | break; |
1975 | ||
1976 | /* Note that we need to be a little subtle about generating code | |
c5aa993b JM |
1977 | for comma. In C, we can do some optimizations here because |
1978 | we know the left operand is only being evaluated for effect. | |
1979 | However, if the tracing kludge is in effect, then we always | |
1980 | need to evaluate the left hand side fully, so that all the | |
1981 | variables it mentions get traced. */ | |
c906108c SS |
1982 | case BINOP_COMMA: |
1983 | (*pc)++; | |
f7c79c41 | 1984 | gen_expr (exp, pc, ax, &value1); |
c906108c | 1985 | /* Don't just dispose of the left operand. We might be tracing, |
c5aa993b JM |
1986 | in which case we want to emit code to trace it if it's an |
1987 | lvalue. */ | |
400c6af0 | 1988 | gen_traced_pop (exp->gdbarch, ax, &value1); |
f7c79c41 | 1989 | gen_expr (exp, pc, ax, value); |
c906108c SS |
1990 | /* It's the consumer's responsibility to trace the right operand. */ |
1991 | break; | |
c5aa993b | 1992 | |
c906108c SS |
1993 | case OP_LONG: /* some integer constant */ |
1994 | { | |
1995 | struct type *type = (*pc)[1].type; | |
1996 | LONGEST k = (*pc)[2].longconst; | |
5b4ee69b | 1997 | |
c906108c SS |
1998 | (*pc) += 4; |
1999 | gen_int_literal (ax, value, k, type); | |
2000 | } | |
c5aa993b | 2001 | break; |
c906108c SS |
2002 | |
2003 | case OP_VAR_VALUE: | |
f7c79c41 | 2004 | gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol); |
400c6af0 SS |
2005 | |
2006 | if (value->optimized_out) | |
2007 | error (_("`%s' has been optimized out, cannot use"), | |
2008 | SYMBOL_PRINT_NAME ((*pc)[2].symbol)); | |
2009 | ||
c906108c SS |
2010 | (*pc) += 4; |
2011 | break; | |
2012 | ||
2013 | case OP_REGISTER: | |
2014 | { | |
67f3407f DJ |
2015 | const char *name = &(*pc)[2].string; |
2016 | int reg; | |
5b4ee69b | 2017 | |
67f3407f | 2018 | (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1); |
f7c79c41 | 2019 | reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name)); |
67f3407f DJ |
2020 | if (reg == -1) |
2021 | internal_error (__FILE__, __LINE__, | |
2022 | _("Register $%s not available"), name); | |
6ab12e0f PA |
2023 | /* No support for tracing user registers yet. */ |
2024 | if (reg >= gdbarch_num_regs (exp->gdbarch) | |
2025 | + gdbarch_num_pseudo_regs (exp->gdbarch)) | |
abc1f4cd HZ |
2026 | error (_("'%s' is a user-register; " |
2027 | "GDB cannot yet trace user-register contents."), | |
6ab12e0f | 2028 | name); |
c906108c SS |
2029 | value->kind = axs_lvalue_register; |
2030 | value->u.reg = reg; | |
f7c79c41 | 2031 | value->type = register_type (exp->gdbarch, reg); |
c906108c | 2032 | } |
c5aa993b | 2033 | break; |
c906108c SS |
2034 | |
2035 | case OP_INTERNALVAR: | |
f61e138d | 2036 | { |
22d2b532 SDJ |
2037 | struct internalvar *var = (*pc)[1].internalvar; |
2038 | const char *name = internalvar_name (var); | |
f61e138d | 2039 | struct trace_state_variable *tsv; |
5b4ee69b | 2040 | |
f61e138d SS |
2041 | (*pc) += 3; |
2042 | tsv = find_trace_state_variable (name); | |
2043 | if (tsv) | |
2044 | { | |
2045 | ax_tsv (ax, aop_getv, tsv->number); | |
2046 | if (trace_kludge) | |
2047 | ax_tsv (ax, aop_tracev, tsv->number); | |
2048 | /* Trace state variables are always 64-bit integers. */ | |
2049 | value->kind = axs_rvalue; | |
2050 | value->type = builtin_type (exp->gdbarch)->builtin_long_long; | |
2051 | } | |
22d2b532 | 2052 | else if (! compile_internalvar_to_ax (var, ax, value)) |
3e43a32a MS |
2053 | error (_("$%s is not a trace state variable; GDB agent " |
2054 | "expressions cannot use convenience variables."), name); | |
f61e138d SS |
2055 | } |
2056 | break; | |
c906108c | 2057 | |
c5aa993b | 2058 | /* Weirdo operator: see comments for gen_repeat for details. */ |
c906108c SS |
2059 | case BINOP_REPEAT: |
2060 | /* Note that gen_repeat handles its own argument evaluation. */ | |
2061 | (*pc)++; | |
f7c79c41 | 2062 | gen_repeat (exp, pc, ax, value); |
c906108c SS |
2063 | break; |
2064 | ||
2065 | case UNOP_CAST: | |
2066 | { | |
2067 | struct type *type = (*pc)[1].type; | |
5b4ee69b | 2068 | |
c906108c | 2069 | (*pc) += 3; |
f7c79c41 | 2070 | gen_expr (exp, pc, ax, value); |
c906108c SS |
2071 | gen_cast (ax, value, type); |
2072 | } | |
c5aa993b | 2073 | break; |
c906108c SS |
2074 | |
2075 | case UNOP_MEMVAL: | |
2076 | { | |
2077 | struct type *type = check_typedef ((*pc)[1].type); | |
5b4ee69b | 2078 | |
c906108c | 2079 | (*pc) += 3; |
f7c79c41 | 2080 | gen_expr (exp, pc, ax, value); |
a0c78a73 PA |
2081 | |
2082 | /* If we have an axs_rvalue or an axs_lvalue_memory, then we | |
2083 | already have the right value on the stack. For | |
2084 | axs_lvalue_register, we must convert. */ | |
2085 | if (value->kind == axs_lvalue_register) | |
2086 | require_rvalue (ax, value); | |
2087 | ||
c906108c SS |
2088 | value->type = type; |
2089 | value->kind = axs_lvalue_memory; | |
2090 | } | |
c5aa993b | 2091 | break; |
c906108c | 2092 | |
36e9969c NS |
2093 | case UNOP_PLUS: |
2094 | (*pc)++; | |
0e2de366 | 2095 | /* + FOO is equivalent to 0 + FOO, which can be optimized. */ |
f7c79c41 UW |
2096 | gen_expr (exp, pc, ax, value); |
2097 | gen_usual_unary (exp, ax, value); | |
36e9969c NS |
2098 | break; |
2099 | ||
c906108c SS |
2100 | case UNOP_NEG: |
2101 | (*pc)++; | |
2102 | /* -FOO is equivalent to 0 - FOO. */ | |
22601c15 UW |
2103 | gen_int_literal (ax, &value1, 0, |
2104 | builtin_type (exp->gdbarch)->builtin_int); | |
f7c79c41 UW |
2105 | gen_usual_unary (exp, ax, &value1); /* shouldn't do much */ |
2106 | gen_expr (exp, pc, ax, &value2); | |
2107 | gen_usual_unary (exp, ax, &value2); | |
2108 | gen_usual_arithmetic (exp, ax, &value1, &value2); | |
2109 | gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation"); | |
c906108c SS |
2110 | break; |
2111 | ||
2112 | case UNOP_LOGICAL_NOT: | |
2113 | (*pc)++; | |
f7c79c41 UW |
2114 | gen_expr (exp, pc, ax, value); |
2115 | gen_usual_unary (exp, ax, value); | |
3b11a015 | 2116 | gen_logical_not (ax, value, int_type); |
c906108c SS |
2117 | break; |
2118 | ||
2119 | case UNOP_COMPLEMENT: | |
2120 | (*pc)++; | |
f7c79c41 UW |
2121 | gen_expr (exp, pc, ax, value); |
2122 | gen_usual_unary (exp, ax, value); | |
2123 | gen_integral_promotions (exp, ax, value); | |
c906108c SS |
2124 | gen_complement (ax, value); |
2125 | break; | |
2126 | ||
2127 | case UNOP_IND: | |
2128 | (*pc)++; | |
f7c79c41 UW |
2129 | gen_expr (exp, pc, ax, value); |
2130 | gen_usual_unary (exp, ax, value); | |
b97aedf3 | 2131 | if (!pointer_type (value->type)) |
3d263c1d | 2132 | error (_("Argument of unary `*' is not a pointer.")); |
c906108c SS |
2133 | gen_deref (ax, value); |
2134 | break; | |
2135 | ||
2136 | case UNOP_ADDR: | |
2137 | (*pc)++; | |
f7c79c41 | 2138 | gen_expr (exp, pc, ax, value); |
c906108c SS |
2139 | gen_address_of (ax, value); |
2140 | break; | |
2141 | ||
2142 | case UNOP_SIZEOF: | |
2143 | (*pc)++; | |
2144 | /* Notice that gen_sizeof handles its own operand, unlike most | |
c5aa993b JM |
2145 | of the other unary operator functions. This is because we |
2146 | have to throw away the code we generate. */ | |
f7c79c41 UW |
2147 | gen_sizeof (exp, pc, ax, value, |
2148 | builtin_type (exp->gdbarch)->builtin_int); | |
c906108c SS |
2149 | break; |
2150 | ||
2151 | case STRUCTOP_STRUCT: | |
2152 | case STRUCTOP_PTR: | |
2153 | { | |
2154 | int length = (*pc)[1].longconst; | |
2155 | char *name = &(*pc)[2].string; | |
2156 | ||
2157 | (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1); | |
f7c79c41 | 2158 | gen_expr (exp, pc, ax, value); |
c906108c | 2159 | if (op == STRUCTOP_STRUCT) |
505e835d | 2160 | gen_struct_ref (exp, ax, value, name, ".", "structure or union"); |
c906108c | 2161 | else if (op == STRUCTOP_PTR) |
505e835d | 2162 | gen_struct_ref (exp, ax, value, name, "->", |
c906108c SS |
2163 | "pointer to a structure or union"); |
2164 | else | |
2165 | /* If this `if' chain doesn't handle it, then the case list | |
c5aa993b | 2166 | shouldn't mention it, and we shouldn't be here. */ |
8e65ff28 | 2167 | internal_error (__FILE__, __LINE__, |
3d263c1d | 2168 | _("gen_expr: unhandled struct case")); |
c906108c | 2169 | } |
c5aa993b | 2170 | break; |
c906108c | 2171 | |
6c228b9c SS |
2172 | case OP_THIS: |
2173 | { | |
66a17cb6 | 2174 | struct symbol *sym, *func; |
6c228b9c | 2175 | struct block *b; |
66a17cb6 | 2176 | const struct language_defn *lang; |
6c228b9c | 2177 | |
66a17cb6 TT |
2178 | b = block_for_pc (ax->scope); |
2179 | func = block_linkage_function (b); | |
2180 | lang = language_def (SYMBOL_LANGUAGE (func)); | |
6c228b9c | 2181 | |
66a17cb6 | 2182 | sym = lookup_language_this (lang, b); |
6c228b9c | 2183 | if (!sym) |
66a17cb6 | 2184 | error (_("no `%s' found"), lang->la_name_of_this); |
6c228b9c SS |
2185 | |
2186 | gen_var_ref (exp->gdbarch, ax, value, sym); | |
400c6af0 SS |
2187 | |
2188 | if (value->optimized_out) | |
2189 | error (_("`%s' has been optimized out, cannot use"), | |
2190 | SYMBOL_PRINT_NAME (sym)); | |
2191 | ||
6c228b9c SS |
2192 | (*pc) += 2; |
2193 | } | |
2194 | break; | |
2195 | ||
b6e7192f SS |
2196 | case OP_SCOPE: |
2197 | { | |
2198 | struct type *type = (*pc)[1].type; | |
2199 | int length = longest_to_int ((*pc)[2].longconst); | |
2200 | char *name = &(*pc)[3].string; | |
2201 | int found; | |
2202 | ||
2203 | found = gen_aggregate_elt_ref (exp, ax, value, type, name, | |
2204 | "?", "??"); | |
2205 | if (!found) | |
2206 | error (_("There is no field named %s"), name); | |
2207 | (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1); | |
2208 | } | |
2209 | break; | |
2210 | ||
c906108c | 2211 | case OP_TYPE: |
3d263c1d | 2212 | error (_("Attempt to use a type name as an expression.")); |
c906108c SS |
2213 | |
2214 | default: | |
b6e7192f | 2215 | error (_("Unsupported operator %s (%d) in expression."), |
bd0b9f9e | 2216 | op_name (exp, op), op); |
c906108c SS |
2217 | } |
2218 | } | |
f61e138d SS |
2219 | |
2220 | /* This handles the middle-to-right-side of code generation for binary | |
2221 | expressions, which is shared between regular binary operations and | |
2222 | assign-modify (+= and friends) expressions. */ | |
2223 | ||
2224 | static void | |
2225 | gen_expr_binop_rest (struct expression *exp, | |
2226 | enum exp_opcode op, union exp_element **pc, | |
2227 | struct agent_expr *ax, struct axs_value *value, | |
2228 | struct axs_value *value1, struct axs_value *value2) | |
2229 | { | |
3b11a015 SS |
2230 | struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; |
2231 | ||
f61e138d SS |
2232 | gen_expr (exp, pc, ax, value2); |
2233 | gen_usual_unary (exp, ax, value2); | |
2234 | gen_usual_arithmetic (exp, ax, value1, value2); | |
2235 | switch (op) | |
2236 | { | |
2237 | case BINOP_ADD: | |
2238 | if (TYPE_CODE (value1->type) == TYPE_CODE_INT | |
b97aedf3 | 2239 | && pointer_type (value2->type)) |
f61e138d SS |
2240 | { |
2241 | /* Swap the values and proceed normally. */ | |
2242 | ax_simple (ax, aop_swap); | |
2243 | gen_ptradd (ax, value, value2, value1); | |
2244 | } | |
b97aedf3 | 2245 | else if (pointer_type (value1->type) |
f61e138d SS |
2246 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) |
2247 | gen_ptradd (ax, value, value1, value2); | |
2248 | else | |
2249 | gen_binop (ax, value, value1, value2, | |
2250 | aop_add, aop_add, 1, "addition"); | |
2251 | break; | |
2252 | case BINOP_SUB: | |
b97aedf3 | 2253 | if (pointer_type (value1->type) |
f61e138d SS |
2254 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) |
2255 | gen_ptrsub (ax,value, value1, value2); | |
b97aedf3 SS |
2256 | else if (pointer_type (value1->type) |
2257 | && pointer_type (value2->type)) | |
f61e138d SS |
2258 | /* FIXME --- result type should be ptrdiff_t */ |
2259 | gen_ptrdiff (ax, value, value1, value2, | |
2260 | builtin_type (exp->gdbarch)->builtin_long); | |
2261 | else | |
2262 | gen_binop (ax, value, value1, value2, | |
2263 | aop_sub, aop_sub, 1, "subtraction"); | |
2264 | break; | |
2265 | case BINOP_MUL: | |
2266 | gen_binop (ax, value, value1, value2, | |
2267 | aop_mul, aop_mul, 1, "multiplication"); | |
2268 | break; | |
2269 | case BINOP_DIV: | |
2270 | gen_binop (ax, value, value1, value2, | |
2271 | aop_div_signed, aop_div_unsigned, 1, "division"); | |
2272 | break; | |
2273 | case BINOP_REM: | |
2274 | gen_binop (ax, value, value1, value2, | |
2275 | aop_rem_signed, aop_rem_unsigned, 1, "remainder"); | |
2276 | break; | |
948103cf SS |
2277 | case BINOP_LSH: |
2278 | gen_binop (ax, value, value1, value2, | |
2279 | aop_lsh, aop_lsh, 1, "left shift"); | |
2280 | break; | |
2281 | case BINOP_RSH: | |
2282 | gen_binop (ax, value, value1, value2, | |
2283 | aop_rsh_signed, aop_rsh_unsigned, 1, "right shift"); | |
2284 | break; | |
f61e138d | 2285 | case BINOP_SUBSCRIPT: |
be636754 PA |
2286 | { |
2287 | struct type *type; | |
2288 | ||
2289 | if (binop_types_user_defined_p (op, value1->type, value2->type)) | |
2290 | { | |
3e43a32a MS |
2291 | error (_("cannot subscript requested type: " |
2292 | "cannot call user defined functions")); | |
be636754 PA |
2293 | } |
2294 | else | |
2295 | { | |
2296 | /* If the user attempts to subscript something that is not | |
2297 | an array or pointer type (like a plain int variable for | |
2298 | example), then report this as an error. */ | |
2299 | type = check_typedef (value1->type); | |
2300 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY | |
2301 | && TYPE_CODE (type) != TYPE_CODE_PTR) | |
2302 | { | |
2303 | if (TYPE_NAME (type)) | |
2304 | error (_("cannot subscript something of type `%s'"), | |
2305 | TYPE_NAME (type)); | |
2306 | else | |
2307 | error (_("cannot subscript requested type")); | |
2308 | } | |
2309 | } | |
2310 | ||
5d5b640e | 2311 | if (!is_integral_type (value2->type)) |
3e43a32a MS |
2312 | error (_("Argument to arithmetic operation " |
2313 | "not a number or boolean.")); | |
5d5b640e | 2314 | |
be636754 PA |
2315 | gen_ptradd (ax, value, value1, value2); |
2316 | gen_deref (ax, value); | |
2317 | break; | |
2318 | } | |
f61e138d SS |
2319 | case BINOP_BITWISE_AND: |
2320 | gen_binop (ax, value, value1, value2, | |
2321 | aop_bit_and, aop_bit_and, 0, "bitwise and"); | |
2322 | break; | |
2323 | ||
2324 | case BINOP_BITWISE_IOR: | |
2325 | gen_binop (ax, value, value1, value2, | |
2326 | aop_bit_or, aop_bit_or, 0, "bitwise or"); | |
2327 | break; | |
2328 | ||
2329 | case BINOP_BITWISE_XOR: | |
2330 | gen_binop (ax, value, value1, value2, | |
2331 | aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or"); | |
2332 | break; | |
2333 | ||
2334 | case BINOP_EQUAL: | |
3b11a015 | 2335 | gen_equal (ax, value, value1, value2, int_type); |
f61e138d SS |
2336 | break; |
2337 | ||
2338 | case BINOP_NOTEQUAL: | |
3b11a015 SS |
2339 | gen_equal (ax, value, value1, value2, int_type); |
2340 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2341 | break; |
2342 | ||
2343 | case BINOP_LESS: | |
3b11a015 | 2344 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2345 | break; |
2346 | ||
2347 | case BINOP_GTR: | |
2348 | ax_simple (ax, aop_swap); | |
3b11a015 | 2349 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2350 | break; |
2351 | ||
2352 | case BINOP_LEQ: | |
2353 | ax_simple (ax, aop_swap); | |
3b11a015 SS |
2354 | gen_less (ax, value, value1, value2, int_type); |
2355 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2356 | break; |
2357 | ||
2358 | case BINOP_GEQ: | |
3b11a015 SS |
2359 | gen_less (ax, value, value1, value2, int_type); |
2360 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2361 | break; |
2362 | ||
2363 | default: | |
2364 | /* We should only list operators in the outer case statement | |
2365 | that we actually handle in the inner case statement. */ | |
2366 | internal_error (__FILE__, __LINE__, | |
2367 | _("gen_expr: op case sets don't match")); | |
2368 | } | |
2369 | } | |
c906108c | 2370 | \f |
c5aa993b | 2371 | |
0936ad1d SS |
2372 | /* Given a single variable and a scope, generate bytecodes to trace |
2373 | its value. This is for use in situations where we have only a | |
2374 | variable's name, and no parsed expression; for instance, when the | |
2375 | name comes from a list of local variables of a function. */ | |
2376 | ||
2377 | struct agent_expr * | |
400c6af0 SS |
2378 | gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch, |
2379 | struct symbol *var) | |
0936ad1d SS |
2380 | { |
2381 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2382 | struct agent_expr *ax = new_agent_expr (gdbarch, scope); |
0936ad1d SS |
2383 | struct axs_value value; |
2384 | ||
2385 | old_chain = make_cleanup_free_agent_expr (ax); | |
2386 | ||
2387 | trace_kludge = 1; | |
400c6af0 SS |
2388 | gen_var_ref (gdbarch, ax, &value, var); |
2389 | ||
2390 | /* If there is no actual variable to trace, flag it by returning | |
2391 | an empty agent expression. */ | |
2392 | if (value.optimized_out) | |
2393 | { | |
2394 | do_cleanups (old_chain); | |
2395 | return NULL; | |
2396 | } | |
0936ad1d SS |
2397 | |
2398 | /* Make sure we record the final object, and get rid of it. */ | |
400c6af0 | 2399 | gen_traced_pop (gdbarch, ax, &value); |
0936ad1d SS |
2400 | |
2401 | /* Oh, and terminate. */ | |
2402 | ax_simple (ax, aop_end); | |
2403 | ||
2404 | /* We have successfully built the agent expr, so cancel the cleanup | |
2405 | request. If we add more cleanups that we always want done, this | |
2406 | will have to get more complicated. */ | |
2407 | discard_cleanups (old_chain); | |
2408 | return ax; | |
2409 | } | |
c5aa993b | 2410 | |
c906108c SS |
2411 | /* Generating bytecode from GDB expressions: driver */ |
2412 | ||
c906108c SS |
2413 | /* Given a GDB expression EXPR, return bytecode to trace its value. |
2414 | The result will use the `trace' and `trace_quick' bytecodes to | |
2415 | record the value of all memory touched by the expression. The | |
2416 | caller can then use the ax_reqs function to discover which | |
2417 | registers it relies upon. */ | |
2418 | struct agent_expr * | |
fba45db2 | 2419 | gen_trace_for_expr (CORE_ADDR scope, struct expression *expr) |
c906108c SS |
2420 | { |
2421 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2422 | struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); |
c906108c SS |
2423 | union exp_element *pc; |
2424 | struct axs_value value; | |
2425 | ||
f23d52e0 | 2426 | old_chain = make_cleanup_free_agent_expr (ax); |
c906108c SS |
2427 | |
2428 | pc = expr->elts; | |
2429 | trace_kludge = 1; | |
35c9c7ba | 2430 | value.optimized_out = 0; |
f7c79c41 | 2431 | gen_expr (expr, &pc, ax, &value); |
c906108c SS |
2432 | |
2433 | /* Make sure we record the final object, and get rid of it. */ | |
400c6af0 | 2434 | gen_traced_pop (expr->gdbarch, ax, &value); |
c906108c SS |
2435 | |
2436 | /* Oh, and terminate. */ | |
2437 | ax_simple (ax, aop_end); | |
2438 | ||
2439 | /* We have successfully built the agent expr, so cancel the cleanup | |
2440 | request. If we add more cleanups that we always want done, this | |
2441 | will have to get more complicated. */ | |
2442 | discard_cleanups (old_chain); | |
2443 | return ax; | |
2444 | } | |
c906108c | 2445 | |
782b2b07 SS |
2446 | /* Given a GDB expression EXPR, return a bytecode sequence that will |
2447 | evaluate and return a result. The bytecodes will do a direct | |
2448 | evaluation, using the current data on the target, rather than | |
2449 | recording blocks of memory and registers for later use, as | |
2450 | gen_trace_for_expr does. The generated bytecode sequence leaves | |
2451 | the result of expression evaluation on the top of the stack. */ | |
2452 | ||
2453 | struct agent_expr * | |
2454 | gen_eval_for_expr (CORE_ADDR scope, struct expression *expr) | |
2455 | { | |
2456 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2457 | struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); |
782b2b07 SS |
2458 | union exp_element *pc; |
2459 | struct axs_value value; | |
2460 | ||
2461 | old_chain = make_cleanup_free_agent_expr (ax); | |
2462 | ||
2463 | pc = expr->elts; | |
2464 | trace_kludge = 0; | |
35c9c7ba | 2465 | value.optimized_out = 0; |
782b2b07 SS |
2466 | gen_expr (expr, &pc, ax, &value); |
2467 | ||
35c9c7ba SS |
2468 | require_rvalue (ax, &value); |
2469 | ||
782b2b07 SS |
2470 | /* Oh, and terminate. */ |
2471 | ax_simple (ax, aop_end); | |
2472 | ||
2473 | /* We have successfully built the agent expr, so cancel the cleanup | |
2474 | request. If we add more cleanups that we always want done, this | |
2475 | will have to get more complicated. */ | |
2476 | discard_cleanups (old_chain); | |
2477 | return ax; | |
2478 | } | |
2479 | ||
6710bf39 SS |
2480 | struct agent_expr * |
2481 | gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch) | |
2482 | { | |
2483 | struct cleanup *old_chain = 0; | |
2484 | struct agent_expr *ax = new_agent_expr (gdbarch, scope); | |
2485 | struct axs_value value; | |
2486 | ||
2487 | old_chain = make_cleanup_free_agent_expr (ax); | |
2488 | ||
2489 | trace_kludge = 1; | |
2490 | ||
2491 | gdbarch_gen_return_address (gdbarch, ax, &value, scope); | |
2492 | ||
2493 | /* Make sure we record the final object, and get rid of it. */ | |
2494 | gen_traced_pop (gdbarch, ax, &value); | |
2495 | ||
2496 | /* Oh, and terminate. */ | |
2497 | ax_simple (ax, aop_end); | |
2498 | ||
2499 | /* We have successfully built the agent expr, so cancel the cleanup | |
2500 | request. If we add more cleanups that we always want done, this | |
2501 | will have to get more complicated. */ | |
2502 | discard_cleanups (old_chain); | |
2503 | return ax; | |
2504 | } | |
2505 | ||
c906108c | 2506 | static void |
fba45db2 | 2507 | agent_command (char *exp, int from_tty) |
c906108c SS |
2508 | { |
2509 | struct cleanup *old_chain = 0; | |
2510 | struct expression *expr; | |
2511 | struct agent_expr *agent; | |
6426a772 | 2512 | struct frame_info *fi = get_current_frame (); /* need current scope */ |
c906108c SS |
2513 | |
2514 | /* We don't deal with overlay debugging at the moment. We need to | |
2515 | think more carefully about this. If you copy this code into | |
2516 | another command, change the error message; the user shouldn't | |
2517 | have to know anything about agent expressions. */ | |
2518 | if (overlay_debugging) | |
3d263c1d | 2519 | error (_("GDB can't do agent expression translation with overlays.")); |
c906108c SS |
2520 | |
2521 | if (exp == 0) | |
3d263c1d | 2522 | error_no_arg (_("expression to translate")); |
c5aa993b | 2523 | |
3065dfb6 SS |
2524 | trace_string_kludge = 0; |
2525 | if (*exp == '/') | |
2526 | exp = decode_agent_options (exp); | |
2527 | ||
6710bf39 SS |
2528 | /* Recognize the return address collection directive specially. Note |
2529 | that it is not really an expression of any sort. */ | |
2530 | if (strcmp (exp, "$_ret") == 0) | |
2531 | { | |
2532 | agent = gen_trace_for_return_address (get_frame_pc (fi), | |
2533 | get_current_arch ()); | |
2534 | old_chain = make_cleanup_free_agent_expr (agent); | |
2535 | } | |
2536 | else | |
2537 | { | |
2538 | expr = parse_expression (exp); | |
2539 | old_chain = make_cleanup (free_current_contents, &expr); | |
2540 | agent = gen_trace_for_expr (get_frame_pc (fi), expr); | |
2541 | make_cleanup_free_agent_expr (agent); | |
2542 | } | |
2543 | ||
35c9c7ba | 2544 | ax_reqs (agent); |
c906108c | 2545 | ax_print (gdb_stdout, agent); |
085dd6e6 JM |
2546 | |
2547 | /* It would be nice to call ax_reqs here to gather some general info | |
2548 | about the expression, and then print out the result. */ | |
c906108c SS |
2549 | |
2550 | do_cleanups (old_chain); | |
2551 | dont_repeat (); | |
2552 | } | |
782b2b07 SS |
2553 | |
2554 | /* Parse the given expression, compile it into an agent expression | |
2555 | that does direct evaluation, and display the resulting | |
2556 | expression. */ | |
2557 | ||
2558 | static void | |
2559 | agent_eval_command (char *exp, int from_tty) | |
2560 | { | |
2561 | struct cleanup *old_chain = 0; | |
2562 | struct expression *expr; | |
2563 | struct agent_expr *agent; | |
2564 | struct frame_info *fi = get_current_frame (); /* need current scope */ | |
2565 | ||
2566 | /* We don't deal with overlay debugging at the moment. We need to | |
2567 | think more carefully about this. If you copy this code into | |
2568 | another command, change the error message; the user shouldn't | |
2569 | have to know anything about agent expressions. */ | |
2570 | if (overlay_debugging) | |
2571 | error (_("GDB can't do agent expression translation with overlays.")); | |
2572 | ||
2573 | if (exp == 0) | |
2574 | error_no_arg (_("expression to translate")); | |
2575 | ||
2576 | expr = parse_expression (exp); | |
2577 | old_chain = make_cleanup (free_current_contents, &expr); | |
2578 | agent = gen_eval_for_expr (get_frame_pc (fi), expr); | |
2579 | make_cleanup_free_agent_expr (agent); | |
35c9c7ba | 2580 | ax_reqs (agent); |
782b2b07 SS |
2581 | ax_print (gdb_stdout, agent); |
2582 | ||
2583 | /* It would be nice to call ax_reqs here to gather some general info | |
2584 | about the expression, and then print out the result. */ | |
2585 | ||
2586 | do_cleanups (old_chain); | |
2587 | dont_repeat (); | |
2588 | } | |
c906108c | 2589 | \f |
c5aa993b | 2590 | |
c906108c SS |
2591 | /* Initialization code. */ |
2592 | ||
a14ed312 | 2593 | void _initialize_ax_gdb (void); |
c906108c | 2594 | void |
fba45db2 | 2595 | _initialize_ax_gdb (void) |
c906108c | 2596 | { |
c906108c | 2597 | add_cmd ("agent", class_maintenance, agent_command, |
3e43a32a MS |
2598 | _("Translate an expression into " |
2599 | "remote agent bytecode for tracing."), | |
782b2b07 SS |
2600 | &maintenancelist); |
2601 | ||
2602 | add_cmd ("agent-eval", class_maintenance, agent_eval_command, | |
3e43a32a MS |
2603 | _("Translate an expression into remote " |
2604 | "agent bytecode for evaluation."), | |
c906108c SS |
2605 | &maintenancelist); |
2606 | } |