]>
Commit | Line | Data |
---|---|---|
e2eaf477 | 1 | /* An expandable hash tables datatype. |
219a461e | 2 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2009, 2010 |
bb6a587d | 3 | Free Software Foundation, Inc. |
e2eaf477 ILT |
4 | Contributed by Vladimir Makarov ([email protected]). |
5 | ||
6 | This file is part of the libiberty library. | |
7 | Libiberty is free software; you can redistribute it and/or | |
8 | modify it under the terms of the GNU Library General Public | |
9 | License as published by the Free Software Foundation; either | |
10 | version 2 of the License, or (at your option) any later version. | |
11 | ||
12 | Libiberty is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
15 | Library General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU Library General Public | |
18 | License along with libiberty; see the file COPYING.LIB. If | |
979c05d3 NC |
19 | not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, |
20 | Boston, MA 02110-1301, USA. */ | |
e2eaf477 ILT |
21 | |
22 | /* This package implements basic hash table functionality. It is possible | |
23 | to search for an entry, create an entry and destroy an entry. | |
24 | ||
25 | Elements in the table are generic pointers. | |
26 | ||
27 | The size of the table is not fixed; if the occupancy of the table | |
28 | grows too high the hash table will be expanded. | |
29 | ||
30 | The abstract data implementation is based on generalized Algorithm D | |
31 | from Knuth's book "The art of computer programming". Hash table is | |
32 | expanded by creation of new hash table and transferring elements from | |
33 | the old table to the new table. */ | |
34 | ||
35 | #ifdef HAVE_CONFIG_H | |
36 | #include "config.h" | |
37 | #endif | |
38 | ||
39 | #include <sys/types.h> | |
40 | ||
41 | #ifdef HAVE_STDLIB_H | |
42 | #include <stdlib.h> | |
43 | #endif | |
5c82d20a ZW |
44 | #ifdef HAVE_STRING_H |
45 | #include <string.h> | |
46 | #endif | |
5f73c378 DD |
47 | #ifdef HAVE_MALLOC_H |
48 | #include <malloc.h> | |
49 | #endif | |
bb6a587d DD |
50 | #ifdef HAVE_LIMITS_H |
51 | #include <limits.h> | |
52 | #endif | |
a17fcd19 DD |
53 | #ifdef HAVE_INTTYPES_H |
54 | #include <inttypes.h> | |
55 | #endif | |
bb6a587d DD |
56 | #ifdef HAVE_STDINT_H |
57 | #include <stdint.h> | |
58 | #endif | |
5f73c378 | 59 | |
e2eaf477 ILT |
60 | #include <stdio.h> |
61 | ||
62 | #include "libiberty.h" | |
bb6a587d | 63 | #include "ansidecl.h" |
e2eaf477 ILT |
64 | #include "hashtab.h" |
65 | ||
bb6a587d DD |
66 | #ifndef CHAR_BIT |
67 | #define CHAR_BIT 8 | |
68 | #endif | |
69 | ||
49b1fae4 DD |
70 | static unsigned int higher_prime_index (unsigned long); |
71 | static hashval_t htab_mod_1 (hashval_t, hashval_t, hashval_t, int); | |
72 | static hashval_t htab_mod (hashval_t, htab_t); | |
73 | static hashval_t htab_mod_m2 (hashval_t, htab_t); | |
74 | static hashval_t hash_pointer (const void *); | |
75 | static int eq_pointer (const void *, const void *); | |
76 | static int htab_expand (htab_t); | |
77 | static PTR *find_empty_slot_for_expand (htab_t, hashval_t); | |
eb383413 L |
78 | |
79 | /* At some point, we could make these be NULL, and modify the | |
80 | hash-table routines to handle NULL specially; that would avoid | |
81 | function-call overhead for the common case of hashing pointers. */ | |
82 | htab_hash htab_hash_pointer = hash_pointer; | |
83 | htab_eq htab_eq_pointer = eq_pointer; | |
84 | ||
bb6a587d DD |
85 | /* Table of primes and multiplicative inverses. |
86 | ||
87 | Note that these are not minimally reduced inverses. Unlike when generating | |
88 | code to divide by a constant, we want to be able to use the same algorithm | |
89 | all the time. All of these inverses (are implied to) have bit 32 set. | |
90 | ||
91 | For the record, here's the function that computed the table; it's a | |
92 | vastly simplified version of the function of the same name from gcc. */ | |
93 | ||
94 | #if 0 | |
95 | unsigned int | |
96 | ceil_log2 (unsigned int x) | |
97 | { | |
98 | int i; | |
99 | for (i = 31; i >= 0 ; --i) | |
100 | if (x > (1u << i)) | |
101 | return i+1; | |
102 | abort (); | |
103 | } | |
e2eaf477 | 104 | |
bb6a587d DD |
105 | unsigned int |
106 | choose_multiplier (unsigned int d, unsigned int *mlp, unsigned char *shiftp) | |
107 | { | |
108 | unsigned long long mhigh; | |
109 | double nx; | |
110 | int lgup, post_shift; | |
111 | int pow, pow2; | |
112 | int n = 32, precision = 32; | |
113 | ||
114 | lgup = ceil_log2 (d); | |
115 | pow = n + lgup; | |
116 | pow2 = n + lgup - precision; | |
117 | ||
118 | nx = ldexp (1.0, pow) + ldexp (1.0, pow2); | |
119 | mhigh = nx / d; | |
120 | ||
121 | *shiftp = lgup - 1; | |
122 | *mlp = mhigh; | |
123 | return mhigh >> 32; | |
124 | } | |
125 | #endif | |
126 | ||
127 | struct prime_ent | |
128 | { | |
129 | hashval_t prime; | |
130 | hashval_t inv; | |
131 | hashval_t inv_m2; /* inverse of prime-2 */ | |
132 | hashval_t shift; | |
133 | }; | |
134 | ||
135 | static struct prime_ent const prime_tab[] = { | |
136 | { 7, 0x24924925, 0x9999999b, 2 }, | |
137 | { 13, 0x3b13b13c, 0x745d1747, 3 }, | |
138 | { 31, 0x08421085, 0x1a7b9612, 4 }, | |
139 | { 61, 0x0c9714fc, 0x15b1e5f8, 5 }, | |
140 | { 127, 0x02040811, 0x0624dd30, 6 }, | |
141 | { 251, 0x05197f7e, 0x073260a5, 7 }, | |
142 | { 509, 0x01824366, 0x02864fc8, 8 }, | |
143 | { 1021, 0x00c0906d, 0x014191f7, 9 }, | |
144 | { 2039, 0x0121456f, 0x0161e69e, 10 }, | |
145 | { 4093, 0x00300902, 0x00501908, 11 }, | |
146 | { 8191, 0x00080041, 0x00180241, 12 }, | |
147 | { 16381, 0x000c0091, 0x00140191, 13 }, | |
148 | { 32749, 0x002605a5, 0x002a06e6, 14 }, | |
149 | { 65521, 0x000f00e2, 0x00110122, 15 }, | |
150 | { 131071, 0x00008001, 0x00018003, 16 }, | |
151 | { 262139, 0x00014002, 0x0001c004, 17 }, | |
152 | { 524287, 0x00002001, 0x00006001, 18 }, | |
153 | { 1048573, 0x00003001, 0x00005001, 19 }, | |
154 | { 2097143, 0x00004801, 0x00005801, 20 }, | |
155 | { 4194301, 0x00000c01, 0x00001401, 21 }, | |
156 | { 8388593, 0x00001e01, 0x00002201, 22 }, | |
157 | { 16777213, 0x00000301, 0x00000501, 23 }, | |
158 | { 33554393, 0x00001381, 0x00001481, 24 }, | |
159 | { 67108859, 0x00000141, 0x000001c1, 25 }, | |
160 | { 134217689, 0x000004e1, 0x00000521, 26 }, | |
161 | { 268435399, 0x00000391, 0x000003b1, 27 }, | |
162 | { 536870909, 0x00000019, 0x00000029, 28 }, | |
163 | { 1073741789, 0x0000008d, 0x00000095, 29 }, | |
164 | { 2147483647, 0x00000003, 0x00000007, 30 }, | |
165 | /* Avoid "decimal constant so large it is unsigned" for 4294967291. */ | |
166 | { 0xfffffffb, 0x00000006, 0x00000008, 31 } | |
167 | }; | |
168 | ||
169 | /* The following function returns an index into the above table of the | |
170 | nearest prime number which is greater than N, and near a power of two. */ | |
171 | ||
172 | static unsigned int | |
49b1fae4 | 173 | higher_prime_index (unsigned long n) |
e2eaf477 | 174 | { |
bb6a587d DD |
175 | unsigned int low = 0; |
176 | unsigned int high = sizeof(prime_tab) / sizeof(prime_tab[0]); | |
5ca0f83d DD |
177 | |
178 | while (low != high) | |
179 | { | |
bb6a587d DD |
180 | unsigned int mid = low + (high - low) / 2; |
181 | if (n > prime_tab[mid].prime) | |
5ca0f83d DD |
182 | low = mid + 1; |
183 | else | |
184 | high = mid; | |
185 | } | |
186 | ||
187 | /* If we've run out of primes, abort. */ | |
bb6a587d | 188 | if (n > prime_tab[low].prime) |
5ca0f83d DD |
189 | { |
190 | fprintf (stderr, "Cannot find prime bigger than %lu\n", n); | |
191 | abort (); | |
192 | } | |
193 | ||
bb6a587d | 194 | return low; |
e2eaf477 ILT |
195 | } |
196 | ||
eb383413 L |
197 | /* Returns a hash code for P. */ |
198 | ||
199 | static hashval_t | |
49b1fae4 | 200 | hash_pointer (const PTR p) |
eb383413 | 201 | { |
fca6a796 | 202 | return (hashval_t) ((intptr_t)p >> 3); |
eb383413 L |
203 | } |
204 | ||
205 | /* Returns non-zero if P1 and P2 are equal. */ | |
206 | ||
207 | static int | |
49b1fae4 | 208 | eq_pointer (const PTR p1, const PTR p2) |
eb383413 L |
209 | { |
210 | return p1 == p2; | |
211 | } | |
212 | ||
fe046a17 | 213 | |
abf6a75b DD |
214 | /* The parens around the function names in the next two definitions |
215 | are essential in order to prevent macro expansions of the name. | |
216 | The bodies, however, are expanded as expected, so they are not | |
217 | recursive definitions. */ | |
218 | ||
219 | /* Return the current size of given hash table. */ | |
220 | ||
221 | #define htab_size(htab) ((htab)->size) | |
222 | ||
223 | size_t | |
224 | (htab_size) (htab_t htab) | |
fe046a17 | 225 | { |
abf6a75b | 226 | return htab_size (htab); |
fe046a17 DD |
227 | } |
228 | ||
229 | /* Return the current number of elements in given hash table. */ | |
230 | ||
abf6a75b DD |
231 | #define htab_elements(htab) ((htab)->n_elements - (htab)->n_deleted) |
232 | ||
233 | size_t | |
234 | (htab_elements) (htab_t htab) | |
fe046a17 | 235 | { |
abf6a75b | 236 | return htab_elements (htab); |
fe046a17 DD |
237 | } |
238 | ||
bb6a587d DD |
239 | /* Return X % Y. */ |
240 | ||
241 | static inline hashval_t | |
49b1fae4 | 242 | htab_mod_1 (hashval_t x, hashval_t y, hashval_t inv, int shift) |
bb6a587d DD |
243 | { |
244 | /* The multiplicative inverses computed above are for 32-bit types, and | |
245 | requires that we be able to compute a highpart multiply. */ | |
246 | #ifdef UNSIGNED_64BIT_TYPE | |
247 | __extension__ typedef UNSIGNED_64BIT_TYPE ull; | |
248 | if (sizeof (hashval_t) * CHAR_BIT <= 32) | |
249 | { | |
250 | hashval_t t1, t2, t3, t4, q, r; | |
251 | ||
252 | t1 = ((ull)x * inv) >> 32; | |
253 | t2 = x - t1; | |
254 | t3 = t2 >> 1; | |
255 | t4 = t1 + t3; | |
256 | q = t4 >> shift; | |
257 | r = x - (q * y); | |
258 | ||
259 | return r; | |
260 | } | |
261 | #endif | |
262 | ||
263 | /* Otherwise just use the native division routines. */ | |
264 | return x % y; | |
265 | } | |
266 | ||
fe046a17 DD |
267 | /* Compute the primary hash for HASH given HTAB's current size. */ |
268 | ||
269 | static inline hashval_t | |
49b1fae4 | 270 | htab_mod (hashval_t hash, htab_t htab) |
fe046a17 | 271 | { |
bb6a587d DD |
272 | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
273 | return htab_mod_1 (hash, p->prime, p->inv, p->shift); | |
fe046a17 DD |
274 | } |
275 | ||
276 | /* Compute the secondary hash for HASH given HTAB's current size. */ | |
277 | ||
278 | static inline hashval_t | |
49b1fae4 | 279 | htab_mod_m2 (hashval_t hash, htab_t htab) |
fe046a17 | 280 | { |
bb6a587d DD |
281 | const struct prime_ent *p = &prime_tab[htab->size_prime_index]; |
282 | return 1 + htab_mod_1 (hash, p->prime - 2, p->inv_m2, p->shift); | |
fe046a17 DD |
283 | } |
284 | ||
e2eaf477 ILT |
285 | /* This function creates table with length slightly longer than given |
286 | source length. Created hash table is initiated as empty (all the | |
c3cca4c9 | 287 | hash table entries are HTAB_EMPTY_ENTRY). The function returns the |
18893690 | 288 | created hash table, or NULL if memory allocation fails. */ |
e2eaf477 | 289 | |
b4fe2683 | 290 | htab_t |
49b1fae4 DD |
291 | htab_create_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, |
292 | htab_del del_f, htab_alloc alloc_f, htab_free free_f) | |
219a461e DD |
293 | { |
294 | return htab_create_typed_alloc (size, hash_f, eq_f, del_f, alloc_f, alloc_f, | |
295 | free_f); | |
296 | } | |
297 | ||
298 | /* As above, but uses the variants of ALLOC_F and FREE_F which accept | |
299 | an extra argument. */ | |
300 | ||
301 | htab_t | |
302 | htab_create_alloc_ex (size_t size, htab_hash hash_f, htab_eq eq_f, | |
303 | htab_del del_f, void *alloc_arg, | |
304 | htab_alloc_with_arg alloc_f, | |
305 | htab_free_with_arg free_f) | |
e2eaf477 | 306 | { |
b4fe2683 | 307 | htab_t result; |
bb6a587d DD |
308 | unsigned int size_prime_index; |
309 | ||
310 | size_prime_index = higher_prime_index (size); | |
311 | size = prime_tab[size_prime_index].prime; | |
e2eaf477 | 312 | |
219a461e | 313 | result = (htab_t) (*alloc_f) (alloc_arg, 1, sizeof (struct htab)); |
18893690 DD |
314 | if (result == NULL) |
315 | return NULL; | |
219a461e | 316 | result->entries = (PTR *) (*alloc_f) (alloc_arg, size, sizeof (PTR)); |
18893690 DD |
317 | if (result->entries == NULL) |
318 | { | |
319 | if (free_f != NULL) | |
219a461e | 320 | (*free_f) (alloc_arg, result); |
18893690 DD |
321 | return NULL; |
322 | } | |
e2eaf477 | 323 | result->size = size; |
bb6a587d | 324 | result->size_prime_index = size_prime_index; |
b4fe2683 JM |
325 | result->hash_f = hash_f; |
326 | result->eq_f = eq_f; | |
327 | result->del_f = del_f; | |
219a461e DD |
328 | result->alloc_arg = alloc_arg; |
329 | result->alloc_with_arg_f = alloc_f; | |
330 | result->free_with_arg_f = free_f; | |
99a4c1bd HPN |
331 | return result; |
332 | } | |
333 | ||
219a461e DD |
334 | /* |
335 | ||
d4d868a2 RW |
336 | @deftypefn Supplemental htab_t htab_create_typed_alloc (size_t @var{size}, @ |
337 | htab_hash @var{hash_f}, htab_eq @var{eq_f}, htab_del @var{del_f}, @ | |
338 | htab_alloc @var{alloc_tab_f}, htab_alloc @var{alloc_f}, @ | |
219a461e DD |
339 | htab_free @var{free_f}) |
340 | ||
341 | This function creates a hash table that uses two different allocators | |
342 | @var{alloc_tab_f} and @var{alloc_f} to use for allocating the table itself | |
343 | and its entries respectively. This is useful when variables of different | |
344 | types need to be allocated with different allocators. | |
345 | ||
346 | The created hash table is slightly larger than @var{size} and it is | |
347 | initially empty (all the hash table entries are @code{HTAB_EMPTY_ENTRY}). | |
348 | The function returns the created hash table, or @code{NULL} if memory | |
349 | allocation fails. | |
350 | ||
351 | @end deftypefn | |
352 | ||
353 | */ | |
5f9624e3 DJ |
354 | |
355 | htab_t | |
219a461e DD |
356 | htab_create_typed_alloc (size_t size, htab_hash hash_f, htab_eq eq_f, |
357 | htab_del del_f, htab_alloc alloc_tab_f, | |
358 | htab_alloc alloc_f, htab_free free_f) | |
5f9624e3 DJ |
359 | { |
360 | htab_t result; | |
bb6a587d DD |
361 | unsigned int size_prime_index; |
362 | ||
363 | size_prime_index = higher_prime_index (size); | |
364 | size = prime_tab[size_prime_index].prime; | |
5f9624e3 | 365 | |
219a461e | 366 | result = (htab_t) (*alloc_tab_f) (1, sizeof (struct htab)); |
5f9624e3 DJ |
367 | if (result == NULL) |
368 | return NULL; | |
219a461e | 369 | result->entries = (PTR *) (*alloc_f) (size, sizeof (PTR)); |
5f9624e3 DJ |
370 | if (result->entries == NULL) |
371 | { | |
372 | if (free_f != NULL) | |
219a461e | 373 | (*free_f) (result); |
5f9624e3 DJ |
374 | return NULL; |
375 | } | |
376 | result->size = size; | |
bb6a587d | 377 | result->size_prime_index = size_prime_index; |
5f9624e3 DJ |
378 | result->hash_f = hash_f; |
379 | result->eq_f = eq_f; | |
380 | result->del_f = del_f; | |
219a461e DD |
381 | result->alloc_f = alloc_f; |
382 | result->free_f = free_f; | |
5f9624e3 DJ |
383 | return result; |
384 | } | |
385 | ||
219a461e | 386 | |
5f9624e3 DJ |
387 | /* Update the function pointers and allocation parameter in the htab_t. */ |
388 | ||
389 | void | |
49b1fae4 DD |
390 | htab_set_functions_ex (htab_t htab, htab_hash hash_f, htab_eq eq_f, |
391 | htab_del del_f, PTR alloc_arg, | |
392 | htab_alloc_with_arg alloc_f, htab_free_with_arg free_f) | |
5f9624e3 DJ |
393 | { |
394 | htab->hash_f = hash_f; | |
395 | htab->eq_f = eq_f; | |
396 | htab->del_f = del_f; | |
397 | htab->alloc_arg = alloc_arg; | |
398 | htab->alloc_with_arg_f = alloc_f; | |
399 | htab->free_with_arg_f = free_f; | |
400 | } | |
401 | ||
18893690 | 402 | /* These functions exist solely for backward compatibility. */ |
99a4c1bd | 403 | |
18893690 | 404 | #undef htab_create |
99a4c1bd | 405 | htab_t |
49b1fae4 | 406 | htab_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
99a4c1bd | 407 | { |
18893690 DD |
408 | return htab_create_alloc (size, hash_f, eq_f, del_f, xcalloc, free); |
409 | } | |
99a4c1bd | 410 | |
18893690 | 411 | htab_t |
49b1fae4 | 412 | htab_try_create (size_t size, htab_hash hash_f, htab_eq eq_f, htab_del del_f) |
18893690 DD |
413 | { |
414 | return htab_create_alloc (size, hash_f, eq_f, del_f, calloc, free); | |
e2eaf477 ILT |
415 | } |
416 | ||
417 | /* This function frees all memory allocated for given hash table. | |
418 | Naturally the hash table must already exist. */ | |
419 | ||
420 | void | |
49b1fae4 | 421 | htab_delete (htab_t htab) |
e2eaf477 | 422 | { |
fe046a17 DD |
423 | size_t size = htab_size (htab); |
424 | PTR *entries = htab->entries; | |
b4fe2683 | 425 | int i; |
eb383413 | 426 | |
b4fe2683 | 427 | if (htab->del_f) |
fe046a17 | 428 | for (i = size - 1; i >= 0; i--) |
c3cca4c9 | 429 | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
fe046a17 | 430 | (*htab->del_f) (entries[i]); |
b4fe2683 | 431 | |
18893690 DD |
432 | if (htab->free_f != NULL) |
433 | { | |
fe046a17 | 434 | (*htab->free_f) (entries); |
18893690 DD |
435 | (*htab->free_f) (htab); |
436 | } | |
5f9624e3 DJ |
437 | else if (htab->free_with_arg_f != NULL) |
438 | { | |
fe046a17 | 439 | (*htab->free_with_arg_f) (htab->alloc_arg, entries); |
5f9624e3 DJ |
440 | (*htab->free_with_arg_f) (htab->alloc_arg, htab); |
441 | } | |
e2eaf477 ILT |
442 | } |
443 | ||
444 | /* This function clears all entries in the given hash table. */ | |
445 | ||
446 | void | |
49b1fae4 | 447 | htab_empty (htab_t htab) |
b4fe2683 | 448 | { |
fe046a17 DD |
449 | size_t size = htab_size (htab); |
450 | PTR *entries = htab->entries; | |
b4fe2683 | 451 | int i; |
eb383413 | 452 | |
b4fe2683 | 453 | if (htab->del_f) |
fe046a17 | 454 | for (i = size - 1; i >= 0; i--) |
c3cca4c9 | 455 | if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY) |
fe046a17 | 456 | (*htab->del_f) (entries[i]); |
b4fe2683 | 457 | |
a7d421b8 DD |
458 | /* Instead of clearing megabyte, downsize the table. */ |
459 | if (size > 1024*1024 / sizeof (PTR)) | |
460 | { | |
461 | int nindex = higher_prime_index (1024 / sizeof (PTR)); | |
462 | int nsize = prime_tab[nindex].prime; | |
463 | ||
464 | if (htab->free_f != NULL) | |
465 | (*htab->free_f) (htab->entries); | |
466 | else if (htab->free_with_arg_f != NULL) | |
467 | (*htab->free_with_arg_f) (htab->alloc_arg, htab->entries); | |
468 | if (htab->alloc_with_arg_f != NULL) | |
469 | htab->entries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | |
470 | sizeof (PTR *)); | |
471 | else | |
472 | htab->entries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); | |
473 | htab->size = nsize; | |
474 | htab->size_prime_index = nindex; | |
475 | } | |
476 | else | |
477 | memset (entries, 0, size * sizeof (PTR)); | |
478 | htab->n_deleted = 0; | |
479 | htab->n_elements = 0; | |
b4fe2683 JM |
480 | } |
481 | ||
482 | /* Similar to htab_find_slot, but without several unwanted side effects: | |
483 | - Does not call htab->eq_f when it finds an existing entry. | |
484 | - Does not change the count of elements/searches/collisions in the | |
485 | hash table. | |
486 | This function also assumes there are no deleted entries in the table. | |
487 | HASH is the hash value for the element to be inserted. */ | |
eb383413 | 488 | |
e0f3df8f | 489 | static PTR * |
49b1fae4 | 490 | find_empty_slot_for_expand (htab_t htab, hashval_t hash) |
e2eaf477 | 491 | { |
fe046a17 DD |
492 | hashval_t index = htab_mod (hash, htab); |
493 | size_t size = htab_size (htab); | |
b1c933fc RH |
494 | PTR *slot = htab->entries + index; |
495 | hashval_t hash2; | |
496 | ||
c3cca4c9 | 497 | if (*slot == HTAB_EMPTY_ENTRY) |
b1c933fc | 498 | return slot; |
c3cca4c9 | 499 | else if (*slot == HTAB_DELETED_ENTRY) |
b1c933fc | 500 | abort (); |
b4fe2683 | 501 | |
fe046a17 | 502 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 JM |
503 | for (;;) |
504 | { | |
b1c933fc RH |
505 | index += hash2; |
506 | if (index >= size) | |
507 | index -= size; | |
eb383413 | 508 | |
b1c933fc | 509 | slot = htab->entries + index; |
c3cca4c9 | 510 | if (*slot == HTAB_EMPTY_ENTRY) |
b4fe2683 | 511 | return slot; |
c3cca4c9 | 512 | else if (*slot == HTAB_DELETED_ENTRY) |
b4fe2683 | 513 | abort (); |
b4fe2683 | 514 | } |
e2eaf477 ILT |
515 | } |
516 | ||
517 | /* The following function changes size of memory allocated for the | |
518 | entries and repeatedly inserts the table elements. The occupancy | |
519 | of the table after the call will be about 50%. Naturally the hash | |
520 | table must already exist. Remember also that the place of the | |
99a4c1bd HPN |
521 | table entries is changed. If memory allocation failures are allowed, |
522 | this function will return zero, indicating that the table could not be | |
523 | expanded. If all goes well, it will return a non-zero value. */ | |
e2eaf477 | 524 | |
99a4c1bd | 525 | static int |
49b1fae4 | 526 | htab_expand (htab_t htab) |
e2eaf477 | 527 | { |
e0f3df8f HPN |
528 | PTR *oentries; |
529 | PTR *olimit; | |
530 | PTR *p; | |
18893690 | 531 | PTR *nentries; |
bb6a587d DD |
532 | size_t nsize, osize, elts; |
533 | unsigned int oindex, nindex; | |
b4fe2683 JM |
534 | |
535 | oentries = htab->entries; | |
bb6a587d DD |
536 | oindex = htab->size_prime_index; |
537 | osize = htab->size; | |
538 | olimit = oentries + osize; | |
539 | elts = htab_elements (htab); | |
b4fe2683 | 540 | |
c4d8feb2 DD |
541 | /* Resize only when table after removal of unused elements is either |
542 | too full or too empty. */ | |
bb6a587d DD |
543 | if (elts * 2 > osize || (elts * 8 < osize && osize > 32)) |
544 | { | |
545 | nindex = higher_prime_index (elts * 2); | |
546 | nsize = prime_tab[nindex].prime; | |
547 | } | |
c4d8feb2 | 548 | else |
bb6a587d DD |
549 | { |
550 | nindex = oindex; | |
551 | nsize = osize; | |
552 | } | |
99a4c1bd | 553 | |
5f9624e3 DJ |
554 | if (htab->alloc_with_arg_f != NULL) |
555 | nentries = (PTR *) (*htab->alloc_with_arg_f) (htab->alloc_arg, nsize, | |
556 | sizeof (PTR *)); | |
557 | else | |
558 | nentries = (PTR *) (*htab->alloc_f) (nsize, sizeof (PTR *)); | |
18893690 DD |
559 | if (nentries == NULL) |
560 | return 0; | |
561 | htab->entries = nentries; | |
eed2b28c | 562 | htab->size = nsize; |
bb6a587d | 563 | htab->size_prime_index = nindex; |
b4fe2683 JM |
564 | htab->n_elements -= htab->n_deleted; |
565 | htab->n_deleted = 0; | |
566 | ||
567 | p = oentries; | |
568 | do | |
569 | { | |
e0f3df8f | 570 | PTR x = *p; |
eb383413 | 571 | |
c3cca4c9 | 572 | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
b4fe2683 | 573 | { |
e0f3df8f | 574 | PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x)); |
eb383413 | 575 | |
b4fe2683 JM |
576 | *q = x; |
577 | } | |
eb383413 | 578 | |
b4fe2683 JM |
579 | p++; |
580 | } | |
581 | while (p < olimit); | |
eb383413 | 582 | |
18893690 DD |
583 | if (htab->free_f != NULL) |
584 | (*htab->free_f) (oentries); | |
5f9624e3 DJ |
585 | else if (htab->free_with_arg_f != NULL) |
586 | (*htab->free_with_arg_f) (htab->alloc_arg, oentries); | |
99a4c1bd | 587 | return 1; |
e2eaf477 ILT |
588 | } |
589 | ||
b4fe2683 JM |
590 | /* This function searches for a hash table entry equal to the given |
591 | element. It cannot be used to insert or delete an element. */ | |
592 | ||
e0f3df8f | 593 | PTR |
49b1fae4 | 594 | htab_find_with_hash (htab_t htab, const PTR element, hashval_t hash) |
e2eaf477 | 595 | { |
fe046a17 | 596 | hashval_t index, hash2; |
b4fe2683 | 597 | size_t size; |
e0f3df8f | 598 | PTR entry; |
e2eaf477 | 599 | |
b4fe2683 | 600 | htab->searches++; |
fe046a17 DD |
601 | size = htab_size (htab); |
602 | index = htab_mod (hash, htab); | |
b4fe2683 | 603 | |
eb383413 | 604 | entry = htab->entries[index]; |
c3cca4c9 DD |
605 | if (entry == HTAB_EMPTY_ENTRY |
606 | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | |
eb383413 L |
607 | return entry; |
608 | ||
fe046a17 | 609 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 | 610 | for (;;) |
e2eaf477 | 611 | { |
b4fe2683 JM |
612 | htab->collisions++; |
613 | index += hash2; | |
614 | if (index >= size) | |
615 | index -= size; | |
eb383413 L |
616 | |
617 | entry = htab->entries[index]; | |
c3cca4c9 DD |
618 | if (entry == HTAB_EMPTY_ENTRY |
619 | || (entry != HTAB_DELETED_ENTRY && (*htab->eq_f) (entry, element))) | |
eb383413 | 620 | return entry; |
e2eaf477 | 621 | } |
b4fe2683 JM |
622 | } |
623 | ||
624 | /* Like htab_find_slot_with_hash, but compute the hash value from the | |
625 | element. */ | |
eb383413 | 626 | |
e0f3df8f | 627 | PTR |
49b1fae4 | 628 | htab_find (htab_t htab, const PTR element) |
b4fe2683 JM |
629 | { |
630 | return htab_find_with_hash (htab, element, (*htab->hash_f) (element)); | |
631 | } | |
632 | ||
633 | /* This function searches for a hash table slot containing an entry | |
634 | equal to the given element. To delete an entry, call this with | |
bac7199c DD |
635 | insert=NO_INSERT, then call htab_clear_slot on the slot returned |
636 | (possibly after doing some checks). To insert an entry, call this | |
637 | with insert=INSERT, then write the value you want into the returned | |
638 | slot. When inserting an entry, NULL may be returned if memory | |
639 | allocation fails. */ | |
b4fe2683 | 640 | |
e0f3df8f | 641 | PTR * |
49b1fae4 DD |
642 | htab_find_slot_with_hash (htab_t htab, const PTR element, |
643 | hashval_t hash, enum insert_option insert) | |
b4fe2683 | 644 | { |
e0f3df8f | 645 | PTR *first_deleted_slot; |
fe046a17 | 646 | hashval_t index, hash2; |
b4fe2683 | 647 | size_t size; |
b1c933fc | 648 | PTR entry; |
b4fe2683 | 649 | |
fe046a17 DD |
650 | size = htab_size (htab); |
651 | if (insert == INSERT && size * 3 <= htab->n_elements * 4) | |
652 | { | |
653 | if (htab_expand (htab) == 0) | |
654 | return NULL; | |
655 | size = htab_size (htab); | |
656 | } | |
b4fe2683 | 657 | |
fe046a17 | 658 | index = htab_mod (hash, htab); |
b4fe2683 | 659 | |
e2eaf477 | 660 | htab->searches++; |
b4fe2683 JM |
661 | first_deleted_slot = NULL; |
662 | ||
b1c933fc | 663 | entry = htab->entries[index]; |
c3cca4c9 | 664 | if (entry == HTAB_EMPTY_ENTRY) |
b1c933fc | 665 | goto empty_entry; |
c3cca4c9 | 666 | else if (entry == HTAB_DELETED_ENTRY) |
b1c933fc RH |
667 | first_deleted_slot = &htab->entries[index]; |
668 | else if ((*htab->eq_f) (entry, element)) | |
669 | return &htab->entries[index]; | |
670 | ||
fe046a17 | 671 | hash2 = htab_mod_m2 (hash, htab); |
b4fe2683 | 672 | for (;;) |
e2eaf477 | 673 | { |
b1c933fc RH |
674 | htab->collisions++; |
675 | index += hash2; | |
676 | if (index >= size) | |
677 | index -= size; | |
678 | ||
679 | entry = htab->entries[index]; | |
c3cca4c9 | 680 | if (entry == HTAB_EMPTY_ENTRY) |
b1c933fc | 681 | goto empty_entry; |
c3cca4c9 | 682 | else if (entry == HTAB_DELETED_ENTRY) |
b4fe2683 JM |
683 | { |
684 | if (!first_deleted_slot) | |
685 | first_deleted_slot = &htab->entries[index]; | |
686 | } | |
b1c933fc | 687 | else if ((*htab->eq_f) (entry, element)) |
eb383413 | 688 | return &htab->entries[index]; |
e2eaf477 | 689 | } |
b1c933fc RH |
690 | |
691 | empty_entry: | |
692 | if (insert == NO_INSERT) | |
693 | return NULL; | |
694 | ||
b1c933fc RH |
695 | if (first_deleted_slot) |
696 | { | |
686e72d7 | 697 | htab->n_deleted--; |
c3cca4c9 | 698 | *first_deleted_slot = HTAB_EMPTY_ENTRY; |
b1c933fc RH |
699 | return first_deleted_slot; |
700 | } | |
701 | ||
686e72d7 | 702 | htab->n_elements++; |
b1c933fc | 703 | return &htab->entries[index]; |
e2eaf477 ILT |
704 | } |
705 | ||
b4fe2683 JM |
706 | /* Like htab_find_slot_with_hash, but compute the hash value from the |
707 | element. */ | |
eb383413 | 708 | |
e0f3df8f | 709 | PTR * |
49b1fae4 | 710 | htab_find_slot (htab_t htab, const PTR element, enum insert_option insert) |
b4fe2683 JM |
711 | { |
712 | return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element), | |
713 | insert); | |
714 | } | |
715 | ||
d6ea4e80 DD |
716 | /* This function deletes an element with the given value from hash |
717 | table (the hash is computed from the element). If there is no matching | |
718 | element in the hash table, this function does nothing. */ | |
719 | ||
720 | void | |
49b1fae4 | 721 | htab_remove_elt (htab_t htab, PTR element) |
d6ea4e80 DD |
722 | { |
723 | htab_remove_elt_with_hash (htab, element, (*htab->hash_f) (element)); | |
724 | } | |
725 | ||
726 | ||
b4fe2683 JM |
727 | /* This function deletes an element with the given value from hash |
728 | table. If there is no matching element in the hash table, this | |
729 | function does nothing. */ | |
e2eaf477 ILT |
730 | |
731 | void | |
49b1fae4 | 732 | htab_remove_elt_with_hash (htab_t htab, PTR element, hashval_t hash) |
e2eaf477 | 733 | { |
e0f3df8f | 734 | PTR *slot; |
b4fe2683 | 735 | |
d6ea4e80 | 736 | slot = htab_find_slot_with_hash (htab, element, hash, NO_INSERT); |
c3cca4c9 | 737 | if (*slot == HTAB_EMPTY_ENTRY) |
b4fe2683 JM |
738 | return; |
739 | ||
740 | if (htab->del_f) | |
741 | (*htab->del_f) (*slot); | |
e2eaf477 | 742 | |
c3cca4c9 | 743 | *slot = HTAB_DELETED_ENTRY; |
b4fe2683 | 744 | htab->n_deleted++; |
e2eaf477 ILT |
745 | } |
746 | ||
b4fe2683 JM |
747 | /* This function clears a specified slot in a hash table. It is |
748 | useful when you've already done the lookup and don't want to do it | |
749 | again. */ | |
e2eaf477 ILT |
750 | |
751 | void | |
49b1fae4 | 752 | htab_clear_slot (htab_t htab, PTR *slot) |
e2eaf477 | 753 | { |
fe046a17 | 754 | if (slot < htab->entries || slot >= htab->entries + htab_size (htab) |
c3cca4c9 | 755 | || *slot == HTAB_EMPTY_ENTRY || *slot == HTAB_DELETED_ENTRY) |
e2eaf477 | 756 | abort (); |
eb383413 | 757 | |
b4fe2683 JM |
758 | if (htab->del_f) |
759 | (*htab->del_f) (*slot); | |
eb383413 | 760 | |
c3cca4c9 | 761 | *slot = HTAB_DELETED_ENTRY; |
b4fe2683 | 762 | htab->n_deleted++; |
e2eaf477 ILT |
763 | } |
764 | ||
765 | /* This function scans over the entire hash table calling | |
766 | CALLBACK for each live entry. If CALLBACK returns false, | |
767 | the iteration stops. INFO is passed as CALLBACK's second | |
768 | argument. */ | |
769 | ||
770 | void | |
49b1fae4 | 771 | htab_traverse_noresize (htab_t htab, htab_trav callback, PTR info) |
e2eaf477 | 772 | { |
c4d8feb2 DD |
773 | PTR *slot; |
774 | PTR *limit; | |
c3cca4c9 | 775 | |
c4d8feb2 | 776 | slot = htab->entries; |
fe046a17 | 777 | limit = slot + htab_size (htab); |
eb383413 | 778 | |
b4fe2683 JM |
779 | do |
780 | { | |
e0f3df8f | 781 | PTR x = *slot; |
eb383413 | 782 | |
c3cca4c9 | 783 | if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY) |
b4fe2683 JM |
784 | if (!(*callback) (slot, info)) |
785 | break; | |
786 | } | |
787 | while (++slot < limit); | |
e2eaf477 ILT |
788 | } |
789 | ||
f77ed96c DD |
790 | /* Like htab_traverse_noresize, but does resize the table when it is |
791 | too empty to improve effectivity of subsequent calls. */ | |
792 | ||
793 | void | |
49b1fae4 | 794 | htab_traverse (htab_t htab, htab_trav callback, PTR info) |
f77ed96c | 795 | { |
483d7cf4 DD |
796 | size_t size = htab_size (htab); |
797 | if (htab_elements (htab) * 8 < size && size > 32) | |
f77ed96c DD |
798 | htab_expand (htab); |
799 | ||
800 | htab_traverse_noresize (htab, callback, info); | |
801 | } | |
802 | ||
eb383413 L |
803 | /* Return the fraction of fixed collisions during all work with given |
804 | hash table. */ | |
e2eaf477 | 805 | |
b4fe2683 | 806 | double |
49b1fae4 | 807 | htab_collisions (htab_t htab) |
e2eaf477 | 808 | { |
eb383413 | 809 | if (htab->searches == 0) |
b4fe2683 | 810 | return 0.0; |
eb383413 L |
811 | |
812 | return (double) htab->collisions / (double) htab->searches; | |
e2eaf477 | 813 | } |
8fc34799 | 814 | |
68a41de7 DD |
815 | /* Hash P as a null-terminated string. |
816 | ||
817 | Copied from gcc/hashtable.c. Zack had the following to say with respect | |
818 | to applicability, though note that unlike hashtable.c, this hash table | |
819 | implementation re-hashes rather than chain buckets. | |
820 | ||
821 | http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html | |
822 | From: Zack Weinberg <[email protected]> | |
823 | Date: Fri, 17 Aug 2001 02:15:56 -0400 | |
824 | ||
825 | I got it by extracting all the identifiers from all the source code | |
826 | I had lying around in mid-1999, and testing many recurrences of | |
827 | the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either | |
828 | prime numbers or the appropriate identity. This was the best one. | |
829 | I don't remember exactly what constituted "best", except I was | |
830 | looking at bucket-length distributions mostly. | |
831 | ||
832 | So it should be very good at hashing identifiers, but might not be | |
833 | as good at arbitrary strings. | |
834 | ||
835 | I'll add that it thoroughly trounces the hash functions recommended | |
836 | for this use at http://burtleburtle.net/bob/hash/index.html, both | |
837 | on speed and bucket distribution. I haven't tried it against the | |
838 | function they just started using for Perl's hashes. */ | |
8fc34799 DD |
839 | |
840 | hashval_t | |
49b1fae4 | 841 | htab_hash_string (const PTR p) |
8fc34799 DD |
842 | { |
843 | const unsigned char *str = (const unsigned char *) p; | |
844 | hashval_t r = 0; | |
845 | unsigned char c; | |
846 | ||
847 | while ((c = *str++) != 0) | |
848 | r = r * 67 + c - 113; | |
849 | ||
850 | return r; | |
851 | } | |
7108c5dc JM |
852 | |
853 | /* DERIVED FROM: | |
854 | -------------------------------------------------------------------- | |
855 | lookup2.c, by Bob Jenkins, December 1996, Public Domain. | |
856 | hash(), hash2(), hash3, and mix() are externally useful functions. | |
857 | Routines to test the hash are included if SELF_TEST is defined. | |
858 | You can use this free for any purpose. It has no warranty. | |
859 | -------------------------------------------------------------------- | |
860 | */ | |
861 | ||
862 | /* | |
863 | -------------------------------------------------------------------- | |
864 | mix -- mix 3 32-bit values reversibly. | |
865 | For every delta with one or two bit set, and the deltas of all three | |
866 | high bits or all three low bits, whether the original value of a,b,c | |
867 | is almost all zero or is uniformly distributed, | |
868 | * If mix() is run forward or backward, at least 32 bits in a,b,c | |
869 | have at least 1/4 probability of changing. | |
870 | * If mix() is run forward, every bit of c will change between 1/3 and | |
871 | 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.) | |
872 | mix() was built out of 36 single-cycle latency instructions in a | |
873 | structure that could supported 2x parallelism, like so: | |
874 | a -= b; | |
875 | a -= c; x = (c>>13); | |
876 | b -= c; a ^= x; | |
877 | b -= a; x = (a<<8); | |
878 | c -= a; b ^= x; | |
879 | c -= b; x = (b>>13); | |
880 | ... | |
881 | Unfortunately, superscalar Pentiums and Sparcs can't take advantage | |
882 | of that parallelism. They've also turned some of those single-cycle | |
883 | latency instructions into multi-cycle latency instructions. Still, | |
884 | this is the fastest good hash I could find. There were about 2^^68 | |
885 | to choose from. I only looked at a billion or so. | |
886 | -------------------------------------------------------------------- | |
887 | */ | |
888 | /* same, but slower, works on systems that might have 8 byte hashval_t's */ | |
889 | #define mix(a,b,c) \ | |
890 | { \ | |
891 | a -= b; a -= c; a ^= (c>>13); \ | |
892 | b -= c; b -= a; b ^= (a<< 8); \ | |
893 | c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \ | |
894 | a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \ | |
895 | b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \ | |
896 | c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \ | |
897 | a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \ | |
898 | b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \ | |
899 | c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \ | |
900 | } | |
901 | ||
902 | /* | |
903 | -------------------------------------------------------------------- | |
904 | hash() -- hash a variable-length key into a 32-bit value | |
905 | k : the key (the unaligned variable-length array of bytes) | |
906 | len : the length of the key, counting by bytes | |
907 | level : can be any 4-byte value | |
908 | Returns a 32-bit value. Every bit of the key affects every bit of | |
909 | the return value. Every 1-bit and 2-bit delta achieves avalanche. | |
910 | About 36+6len instructions. | |
911 | ||
912 | The best hash table sizes are powers of 2. There is no need to do | |
913 | mod a prime (mod is sooo slow!). If you need less than 32 bits, | |
914 | use a bitmask. For example, if you need only 10 bits, do | |
915 | h = (h & hashmask(10)); | |
916 | In which case, the hash table should have hashsize(10) elements. | |
917 | ||
918 | If you are hashing n strings (ub1 **)k, do it like this: | |
919 | for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h); | |
920 | ||
921 | By Bob Jenkins, 1996. [email protected]. You may use this | |
922 | code any way you wish, private, educational, or commercial. It's free. | |
923 | ||
924 | See http://burtleburtle.net/bob/hash/evahash.html | |
925 | Use for hash table lookup, or anything where one collision in 2^32 is | |
926 | acceptable. Do NOT use for cryptographic purposes. | |
927 | -------------------------------------------------------------------- | |
928 | */ | |
929 | ||
49b1fae4 DD |
930 | hashval_t |
931 | iterative_hash (const PTR k_in /* the key */, | |
932 | register size_t length /* the length of the key */, | |
933 | register hashval_t initval /* the previous hash, or | |
934 | an arbitrary value */) | |
7108c5dc JM |
935 | { |
936 | register const unsigned char *k = (const unsigned char *)k_in; | |
937 | register hashval_t a,b,c,len; | |
938 | ||
939 | /* Set up the internal state */ | |
940 | len = length; | |
941 | a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ | |
942 | c = initval; /* the previous hash value */ | |
943 | ||
944 | /*---------------------------------------- handle most of the key */ | |
945 | #ifndef WORDS_BIGENDIAN | |
946 | /* On a little-endian machine, if the data is 4-byte aligned we can hash | |
947 | by word for better speed. This gives nondeterministic results on | |
948 | big-endian machines. */ | |
949 | if (sizeof (hashval_t) == 4 && (((size_t)k)&3) == 0) | |
950 | while (len >= 12) /* aligned */ | |
951 | { | |
952 | a += *(hashval_t *)(k+0); | |
953 | b += *(hashval_t *)(k+4); | |
954 | c += *(hashval_t *)(k+8); | |
955 | mix(a,b,c); | |
956 | k += 12; len -= 12; | |
957 | } | |
958 | else /* unaligned */ | |
959 | #endif | |
960 | while (len >= 12) | |
961 | { | |
962 | a += (k[0] +((hashval_t)k[1]<<8) +((hashval_t)k[2]<<16) +((hashval_t)k[3]<<24)); | |
963 | b += (k[4] +((hashval_t)k[5]<<8) +((hashval_t)k[6]<<16) +((hashval_t)k[7]<<24)); | |
964 | c += (k[8] +((hashval_t)k[9]<<8) +((hashval_t)k[10]<<16)+((hashval_t)k[11]<<24)); | |
965 | mix(a,b,c); | |
966 | k += 12; len -= 12; | |
967 | } | |
968 | ||
969 | /*------------------------------------- handle the last 11 bytes */ | |
970 | c += length; | |
971 | switch(len) /* all the case statements fall through */ | |
972 | { | |
973 | case 11: c+=((hashval_t)k[10]<<24); | |
974 | case 10: c+=((hashval_t)k[9]<<16); | |
975 | case 9 : c+=((hashval_t)k[8]<<8); | |
976 | /* the first byte of c is reserved for the length */ | |
977 | case 8 : b+=((hashval_t)k[7]<<24); | |
978 | case 7 : b+=((hashval_t)k[6]<<16); | |
979 | case 6 : b+=((hashval_t)k[5]<<8); | |
980 | case 5 : b+=k[4]; | |
981 | case 4 : a+=((hashval_t)k[3]<<24); | |
982 | case 3 : a+=((hashval_t)k[2]<<16); | |
983 | case 2 : a+=((hashval_t)k[1]<<8); | |
984 | case 1 : a+=k[0]; | |
985 | /* case 0: nothing left to add */ | |
986 | } | |
987 | mix(a,b,c); | |
988 | /*-------------------------------------------- report the result */ | |
989 | return c; | |
990 | } |