]>
Commit | Line | Data |
---|---|---|
1bac305b AC |
1 | /* GDB-specific functions for operating on agent expressions. |
2 | ||
3666a048 | 3 | Copyright (C) 1998-2021 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 19 | |
c906108c | 20 | #include "defs.h" |
4de283e4 TT |
21 | #include "symtab.h" |
22 | #include "symfile.h" | |
23 | #include "gdbtypes.h" | |
24 | #include "language.h" | |
25 | #include "value.h" | |
26 | #include "expression.h" | |
27 | #include "command.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "frame.h" | |
30 | #include "target.h" | |
d55e5aa6 | 31 | #include "ax.h" |
4de283e4 | 32 | #include "ax-gdb.h" |
fe898f56 | 33 | #include "block.h" |
4de283e4 TT |
34 | #include "regcache.h" |
35 | #include "user-regs.h" | |
36 | #include "dictionary.h" | |
00bf0b85 | 37 | #include "breakpoint.h" |
4de283e4 | 38 | #include "tracepoint.h" |
d55e5aa6 | 39 | #include "cp-support.h" |
4de283e4 TT |
40 | #include "arch-utils.h" |
41 | #include "cli/cli-utils.h" | |
34b536a8 | 42 | #include "linespec.h" |
f00aae0f | 43 | #include "location.h" |
77e371c0 | 44 | #include "objfiles.h" |
46a4882b | 45 | #include "typeprint.h" |
3065dfb6 | 46 | #include "valprint.h" |
4de283e4 | 47 | #include "c-lang.h" |
75f9892d | 48 | #include "expop.h" |
4de283e4 | 49 | |
268a13a5 | 50 | #include "gdbsupport/format.h" |
d3ce09f5 | 51 | |
6426a772 JM |
52 | /* To make sense of this file, you should read doc/agentexpr.texi. |
53 | Then look at the types and enums in ax-gdb.h. For the code itself, | |
54 | look at gen_expr, towards the bottom; that's the main function that | |
55 | looks at the GDB expressions and calls everything else to generate | |
56 | code. | |
c906108c SS |
57 | |
58 | I'm beginning to wonder whether it wouldn't be nicer to internally | |
59 | generate trees, with types, and then spit out the bytecode in | |
60 | linear form afterwards; we could generate fewer `swap', `ext', and | |
61 | `zero_ext' bytecodes that way; it would make good constant folding | |
62 | easier, too. But at the moment, I think we should be willing to | |
63 | pay for the simplicity of this code with less-than-optimal bytecode | |
64 | strings. | |
65 | ||
c5aa993b JM |
66 | Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */ |
67 | \f | |
c906108c SS |
68 | |
69 | ||
0e2de366 | 70 | /* Prototypes for local functions. */ |
c906108c SS |
71 | |
72 | /* There's a standard order to the arguments of these functions: | |
c906108c SS |
73 | struct agent_expr * --- agent expression buffer to generate code into |
74 | struct axs_value * --- describes value left on top of stack */ | |
c5aa993b | 75 | |
40f4af28 | 76 | static void gen_traced_pop (struct agent_expr *, struct axs_value *); |
a14ed312 KB |
77 | |
78 | static void gen_sign_extend (struct agent_expr *, struct type *); | |
79 | static void gen_extend (struct agent_expr *, struct type *); | |
80 | static void gen_fetch (struct agent_expr *, struct type *); | |
81 | static void gen_left_shift (struct agent_expr *, int); | |
82 | ||
83 | ||
40f4af28 SM |
84 | static void gen_frame_args_address (struct agent_expr *); |
85 | static void gen_frame_locals_address (struct agent_expr *); | |
a14ed312 KB |
86 | static void gen_offset (struct agent_expr *ax, int offset); |
87 | static void gen_sym_offset (struct agent_expr *, struct symbol *); | |
40f4af28 SM |
88 | static void gen_var_ref (struct agent_expr *ax, struct axs_value *value, |
89 | struct symbol *var); | |
a14ed312 KB |
90 | |
91 | ||
92 | static void gen_int_literal (struct agent_expr *ax, | |
93 | struct axs_value *value, | |
94 | LONGEST k, struct type *type); | |
95 | ||
6661ad48 | 96 | static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value); |
a14ed312 KB |
97 | static int type_wider_than (struct type *type1, struct type *type2); |
98 | static struct type *max_type (struct type *type1, struct type *type2); | |
99 | static void gen_conversion (struct agent_expr *ax, | |
100 | struct type *from, struct type *to); | |
101 | static int is_nontrivial_conversion (struct type *from, struct type *to); | |
6661ad48 | 102 | static void gen_usual_arithmetic (struct agent_expr *ax, |
a14ed312 KB |
103 | struct axs_value *value1, |
104 | struct axs_value *value2); | |
6661ad48 | 105 | static void gen_integral_promotions (struct agent_expr *ax, |
a14ed312 KB |
106 | struct axs_value *value); |
107 | static void gen_cast (struct agent_expr *ax, | |
108 | struct axs_value *value, struct type *type); | |
109 | static void gen_scale (struct agent_expr *ax, | |
110 | enum agent_op op, struct type *type); | |
f7c79c41 UW |
111 | static void gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
112 | struct axs_value *value1, struct axs_value *value2); | |
113 | static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
114 | struct axs_value *value1, struct axs_value *value2); | |
115 | static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, | |
116 | struct axs_value *value1, struct axs_value *value2, | |
117 | struct type *result_type); | |
a14ed312 KB |
118 | static void gen_binop (struct agent_expr *ax, |
119 | struct axs_value *value, | |
120 | struct axs_value *value1, | |
121 | struct axs_value *value2, | |
122 | enum agent_op op, | |
a121b7c1 PA |
123 | enum agent_op op_unsigned, int may_carry, |
124 | const char *name); | |
f7c79c41 UW |
125 | static void gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
126 | struct type *result_type); | |
a14ed312 | 127 | static void gen_complement (struct agent_expr *ax, struct axs_value *value); |
053f8057 SM |
128 | static void gen_deref (struct axs_value *); |
129 | static void gen_address_of (struct axs_value *); | |
6661ad48 | 130 | static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value, |
a14ed312 | 131 | struct type *type, int start, int end); |
6661ad48 | 132 | static void gen_primitive_field (struct agent_expr *ax, |
b6e7192f SS |
133 | struct axs_value *value, |
134 | int offset, int fieldno, struct type *type); | |
6661ad48 | 135 | static int gen_struct_ref_recursive (struct agent_expr *ax, |
b6e7192f | 136 | struct axs_value *value, |
a121b7c1 | 137 | const char *field, int offset, |
b6e7192f | 138 | struct type *type); |
6661ad48 | 139 | static void gen_struct_ref (struct agent_expr *ax, |
a14ed312 | 140 | struct axs_value *value, |
a121b7c1 PA |
141 | const char *field, |
142 | const char *operator_name, | |
143 | const char *operand_name); | |
40f4af28 | 144 | static void gen_static_field (struct agent_expr *ax, struct axs_value *value, |
b6e7192f | 145 | struct type *type, int fieldno); |
75f9892d TT |
146 | static void gen_expr_binop_rest (struct expression *exp, |
147 | enum exp_opcode op, | |
148 | struct agent_expr *ax, | |
149 | struct axs_value *value, | |
150 | struct axs_value *value1, | |
151 | struct axs_value *value2); | |
c906108c | 152 | |
c906108c | 153 | \f |
c5aa993b | 154 | |
c906108c SS |
155 | /* Generating bytecode from GDB expressions: general assumptions */ |
156 | ||
157 | /* Here are a few general assumptions made throughout the code; if you | |
158 | want to make a change that contradicts one of these, then you'd | |
159 | better scan things pretty thoroughly. | |
160 | ||
161 | - We assume that all values occupy one stack element. For example, | |
c5aa993b JM |
162 | sometimes we'll swap to get at the left argument to a binary |
163 | operator. If we decide that void values should occupy no stack | |
164 | elements, or that synthetic arrays (whose size is determined at | |
165 | run time, created by the `@' operator) should occupy two stack | |
166 | elements (address and length), then this will cause trouble. | |
c906108c SS |
167 | |
168 | - We assume the stack elements are infinitely wide, and that we | |
c5aa993b JM |
169 | don't have to worry what happens if the user requests an |
170 | operation that is wider than the actual interpreter's stack. | |
171 | That is, it's up to the interpreter to handle directly all the | |
172 | integer widths the user has access to. (Woe betide the language | |
173 | with bignums!) | |
c906108c SS |
174 | |
175 | - We don't support side effects. Thus, we don't have to worry about | |
c5aa993b | 176 | GCC's generalized lvalues, function calls, etc. |
c906108c SS |
177 | |
178 | - We don't support floating point. Many places where we switch on | |
c5aa993b JM |
179 | some type don't bother to include cases for floating point; there |
180 | may be even more subtle ways this assumption exists. For | |
181 | example, the arguments to % must be integers. | |
c906108c SS |
182 | |
183 | - We assume all subexpressions have a static, unchanging type. If | |
c5aa993b JM |
184 | we tried to support convenience variables, this would be a |
185 | problem. | |
c906108c SS |
186 | |
187 | - All values on the stack should always be fully zero- or | |
c5aa993b JM |
188 | sign-extended. |
189 | ||
190 | (I wasn't sure whether to choose this or its opposite --- that | |
191 | only addresses are assumed extended --- but it turns out that | |
192 | neither convention completely eliminates spurious extend | |
193 | operations (if everything is always extended, then you have to | |
194 | extend after add, because it could overflow; if nothing is | |
195 | extended, then you end up producing extends whenever you change | |
196 | sizes), and this is simpler.) */ | |
c906108c | 197 | \f |
c5aa993b | 198 | |
400c6af0 SS |
199 | /* Scan for all static fields in the given class, including any base |
200 | classes, and generate tracing bytecodes for each. */ | |
201 | ||
202 | static void | |
40f4af28 | 203 | gen_trace_static_fields (struct agent_expr *ax, |
400c6af0 SS |
204 | struct type *type) |
205 | { | |
206 | int i, nbases = TYPE_N_BASECLASSES (type); | |
207 | struct axs_value value; | |
208 | ||
f168693b | 209 | type = check_typedef (type); |
400c6af0 | 210 | |
1f704f76 | 211 | for (i = type->num_fields () - 1; i >= nbases; i--) |
400c6af0 | 212 | { |
ceacbf6e | 213 | if (field_is_static (&type->field (i))) |
400c6af0 | 214 | { |
40f4af28 | 215 | gen_static_field (ax, &value, type, i); |
400c6af0 SS |
216 | if (value.optimized_out) |
217 | continue; | |
218 | switch (value.kind) | |
219 | { | |
220 | case axs_lvalue_memory: | |
221 | { | |
dda83cd7 SM |
222 | /* Initialize the TYPE_LENGTH if it is a typedef. */ |
223 | check_typedef (value.type); | |
744a8059 | 224 | ax_const_l (ax, TYPE_LENGTH (value.type)); |
400c6af0 SS |
225 | ax_simple (ax, aop_trace); |
226 | } | |
227 | break; | |
228 | ||
229 | case axs_lvalue_register: | |
35c9c7ba SS |
230 | /* We don't actually need the register's value to be pushed, |
231 | just note that we need it to be collected. */ | |
232 | ax_reg_mask (ax, value.u.reg); | |
400c6af0 SS |
233 | |
234 | default: | |
235 | break; | |
236 | } | |
237 | } | |
238 | } | |
239 | ||
240 | /* Now scan through base classes recursively. */ | |
241 | for (i = 0; i < nbases; i++) | |
242 | { | |
243 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
244 | ||
40f4af28 | 245 | gen_trace_static_fields (ax, basetype); |
400c6af0 SS |
246 | } |
247 | } | |
248 | ||
c906108c SS |
249 | /* Trace the lvalue on the stack, if it needs it. In either case, pop |
250 | the value. Useful on the left side of a comma, and at the end of | |
251 | an expression being used for tracing. */ | |
252 | static void | |
40f4af28 | 253 | gen_traced_pop (struct agent_expr *ax, struct axs_value *value) |
c906108c | 254 | { |
3065dfb6 | 255 | int string_trace = 0; |
92bc6a20 | 256 | if (ax->trace_string |
78134374 | 257 | && value->type->code () == TYPE_CODE_PTR |
3065dfb6 SS |
258 | && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)), |
259 | 's')) | |
260 | string_trace = 1; | |
261 | ||
92bc6a20 | 262 | if (ax->tracing) |
c906108c SS |
263 | switch (value->kind) |
264 | { | |
265 | case axs_rvalue: | |
3065dfb6 SS |
266 | if (string_trace) |
267 | { | |
92bc6a20 | 268 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
269 | ax_simple (ax, aop_tracenz); |
270 | } | |
271 | else | |
272 | /* We don't trace rvalues, just the lvalues necessary to | |
273 | produce them. So just dispose of this value. */ | |
274 | ax_simple (ax, aop_pop); | |
c906108c SS |
275 | break; |
276 | ||
277 | case axs_lvalue_memory: | |
278 | { | |
744a8059 SP |
279 | /* Initialize the TYPE_LENGTH if it is a typedef. */ |
280 | check_typedef (value->type); | |
281 | ||
3065dfb6 SS |
282 | if (string_trace) |
283 | { | |
f906b857 | 284 | gen_fetch (ax, value->type); |
92bc6a20 | 285 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
286 | ax_simple (ax, aop_tracenz); |
287 | } | |
f906b857 MK |
288 | else |
289 | { | |
290 | /* There's no point in trying to use a trace_quick bytecode | |
dda83cd7 SM |
291 | here, since "trace_quick SIZE pop" is three bytes, whereas |
292 | "const8 SIZE trace" is also three bytes, does the same | |
293 | thing, and the simplest code which generates that will also | |
294 | work correctly for objects with large sizes. */ | |
f906b857 MK |
295 | ax_const_l (ax, TYPE_LENGTH (value->type)); |
296 | ax_simple (ax, aop_trace); | |
297 | } | |
c906108c | 298 | } |
c5aa993b | 299 | break; |
c906108c SS |
300 | |
301 | case axs_lvalue_register: | |
35c9c7ba SS |
302 | /* We don't actually need the register's value to be on the |
303 | stack, and the target will get heartburn if the register is | |
304 | larger than will fit in a stack, so just mark it for | |
305 | collection and be done with it. */ | |
306 | ax_reg_mask (ax, value->u.reg); | |
3065dfb6 SS |
307 | |
308 | /* But if the register points to a string, assume the value | |
309 | will fit on the stack and push it anyway. */ | |
310 | if (string_trace) | |
311 | { | |
312 | ax_reg (ax, value->u.reg); | |
92bc6a20 | 313 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
314 | ax_simple (ax, aop_tracenz); |
315 | } | |
c906108c SS |
316 | break; |
317 | } | |
318 | else | |
319 | /* If we're not tracing, just pop the value. */ | |
320 | ax_simple (ax, aop_pop); | |
400c6af0 SS |
321 | |
322 | /* To trace C++ classes with static fields stored elsewhere. */ | |
92bc6a20 | 323 | if (ax->tracing |
78134374 SM |
324 | && (value->type->code () == TYPE_CODE_STRUCT |
325 | || value->type->code () == TYPE_CODE_UNION)) | |
40f4af28 | 326 | gen_trace_static_fields (ax, value->type); |
c906108c | 327 | } |
c5aa993b | 328 | \f |
c906108c SS |
329 | |
330 | ||
c906108c SS |
331 | /* Generating bytecode from GDB expressions: helper functions */ |
332 | ||
333 | /* Assume that the lower bits of the top of the stack is a value of | |
334 | type TYPE, and the upper bits are zero. Sign-extend if necessary. */ | |
335 | static void | |
fba45db2 | 336 | gen_sign_extend (struct agent_expr *ax, struct type *type) |
c906108c SS |
337 | { |
338 | /* Do we need to sign-extend this? */ | |
c6d940a9 | 339 | if (!type->is_unsigned ()) |
0004e5a2 | 340 | ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT); |
c906108c SS |
341 | } |
342 | ||
343 | ||
344 | /* Assume the lower bits of the top of the stack hold a value of type | |
345 | TYPE, and the upper bits are garbage. Sign-extend or truncate as | |
346 | needed. */ | |
347 | static void | |
fba45db2 | 348 | gen_extend (struct agent_expr *ax, struct type *type) |
c906108c | 349 | { |
0004e5a2 | 350 | int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT; |
5b4ee69b | 351 | |
c906108c | 352 | /* I just had to. */ |
c6d940a9 | 353 | ((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, bits)); |
c906108c SS |
354 | } |
355 | ||
356 | ||
357 | /* Assume that the top of the stack contains a value of type "pointer | |
358 | to TYPE"; generate code to fetch its value. Note that TYPE is the | |
359 | target type, not the pointer type. */ | |
360 | static void | |
fba45db2 | 361 | gen_fetch (struct agent_expr *ax, struct type *type) |
c906108c | 362 | { |
92bc6a20 | 363 | if (ax->tracing) |
c906108c SS |
364 | { |
365 | /* Record the area of memory we're about to fetch. */ | |
366 | ax_trace_quick (ax, TYPE_LENGTH (type)); | |
367 | } | |
368 | ||
78134374 | 369 | if (type->code () == TYPE_CODE_RANGE) |
af381b8c JB |
370 | type = TYPE_TARGET_TYPE (type); |
371 | ||
78134374 | 372 | switch (type->code ()) |
c906108c SS |
373 | { |
374 | case TYPE_CODE_PTR: | |
b97aedf3 | 375 | case TYPE_CODE_REF: |
aa006118 | 376 | case TYPE_CODE_RVALUE_REF: |
c906108c SS |
377 | case TYPE_CODE_ENUM: |
378 | case TYPE_CODE_INT: | |
379 | case TYPE_CODE_CHAR: | |
3b11a015 | 380 | case TYPE_CODE_BOOL: |
c906108c | 381 | /* It's a scalar value, so we know how to dereference it. How |
dda83cd7 | 382 | many bytes long is it? */ |
0004e5a2 | 383 | switch (TYPE_LENGTH (type)) |
c906108c | 384 | { |
c5aa993b JM |
385 | case 8 / TARGET_CHAR_BIT: |
386 | ax_simple (ax, aop_ref8); | |
387 | break; | |
388 | case 16 / TARGET_CHAR_BIT: | |
389 | ax_simple (ax, aop_ref16); | |
390 | break; | |
391 | case 32 / TARGET_CHAR_BIT: | |
392 | ax_simple (ax, aop_ref32); | |
393 | break; | |
394 | case 64 / TARGET_CHAR_BIT: | |
395 | ax_simple (ax, aop_ref64); | |
396 | break; | |
c906108c SS |
397 | |
398 | /* Either our caller shouldn't have asked us to dereference | |
399 | that pointer (other code's fault), or we're not | |
400 | implementing something we should be (this code's fault). | |
401 | In any case, it's a bug the user shouldn't see. */ | |
402 | default: | |
8e65ff28 | 403 | internal_error (__FILE__, __LINE__, |
3d263c1d | 404 | _("gen_fetch: strange size")); |
c906108c SS |
405 | } |
406 | ||
407 | gen_sign_extend (ax, type); | |
408 | break; | |
409 | ||
410 | default: | |
52323be9 LM |
411 | /* Our caller requested us to dereference a pointer from an unsupported |
412 | type. Error out and give callers a chance to handle the failure | |
413 | gracefully. */ | |
414 | error (_("gen_fetch: Unsupported type code `%s'."), | |
7d93a1e0 | 415 | type->name ()); |
c906108c SS |
416 | } |
417 | } | |
418 | ||
419 | ||
420 | /* Generate code to left shift the top of the stack by DISTANCE bits, or | |
421 | right shift it by -DISTANCE bits if DISTANCE < 0. This generates | |
422 | unsigned (logical) right shifts. */ | |
423 | static void | |
fba45db2 | 424 | gen_left_shift (struct agent_expr *ax, int distance) |
c906108c SS |
425 | { |
426 | if (distance > 0) | |
427 | { | |
428 | ax_const_l (ax, distance); | |
429 | ax_simple (ax, aop_lsh); | |
430 | } | |
431 | else if (distance < 0) | |
432 | { | |
433 | ax_const_l (ax, -distance); | |
434 | ax_simple (ax, aop_rsh_unsigned); | |
435 | } | |
436 | } | |
c5aa993b | 437 | \f |
c906108c SS |
438 | |
439 | ||
c906108c SS |
440 | /* Generating bytecode from GDB expressions: symbol references */ |
441 | ||
442 | /* Generate code to push the base address of the argument portion of | |
443 | the top stack frame. */ | |
444 | static void | |
40f4af28 | 445 | gen_frame_args_address (struct agent_expr *ax) |
c906108c | 446 | { |
39d4ef09 AC |
447 | int frame_reg; |
448 | LONGEST frame_offset; | |
c906108c | 449 | |
40f4af28 | 450 | gdbarch_virtual_frame_pointer (ax->gdbarch, |
c7bb205c | 451 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 452 | ax_reg (ax, frame_reg); |
c906108c SS |
453 | gen_offset (ax, frame_offset); |
454 | } | |
455 | ||
456 | ||
457 | /* Generate code to push the base address of the locals portion of the | |
458 | top stack frame. */ | |
459 | static void | |
40f4af28 | 460 | gen_frame_locals_address (struct agent_expr *ax) |
c906108c | 461 | { |
39d4ef09 AC |
462 | int frame_reg; |
463 | LONGEST frame_offset; | |
c906108c | 464 | |
40f4af28 | 465 | gdbarch_virtual_frame_pointer (ax->gdbarch, |
c7bb205c | 466 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 467 | ax_reg (ax, frame_reg); |
c906108c SS |
468 | gen_offset (ax, frame_offset); |
469 | } | |
470 | ||
471 | ||
472 | /* Generate code to add OFFSET to the top of the stack. Try to | |
473 | generate short and readable code. We use this for getting to | |
474 | variables on the stack, and structure members. If we were | |
475 | programming in ML, it would be clearer why these are the same | |
476 | thing. */ | |
477 | static void | |
fba45db2 | 478 | gen_offset (struct agent_expr *ax, int offset) |
c906108c SS |
479 | { |
480 | /* It would suffice to simply push the offset and add it, but this | |
481 | makes it easier to read positive and negative offsets in the | |
482 | bytecode. */ | |
483 | if (offset > 0) | |
484 | { | |
485 | ax_const_l (ax, offset); | |
486 | ax_simple (ax, aop_add); | |
487 | } | |
488 | else if (offset < 0) | |
489 | { | |
490 | ax_const_l (ax, -offset); | |
491 | ax_simple (ax, aop_sub); | |
492 | } | |
493 | } | |
494 | ||
495 | ||
496 | /* In many cases, a symbol's value is the offset from some other | |
497 | address (stack frame, base register, etc.) Generate code to add | |
498 | VAR's value to the top of the stack. */ | |
499 | static void | |
fba45db2 | 500 | gen_sym_offset (struct agent_expr *ax, struct symbol *var) |
c906108c SS |
501 | { |
502 | gen_offset (ax, SYMBOL_VALUE (var)); | |
503 | } | |
504 | ||
505 | ||
506 | /* Generate code for a variable reference to AX. The variable is the | |
507 | symbol VAR. Set VALUE to describe the result. */ | |
508 | ||
509 | static void | |
40f4af28 | 510 | gen_var_ref (struct agent_expr *ax, struct axs_value *value, struct symbol *var) |
c906108c | 511 | { |
0e2de366 | 512 | /* Dereference any typedefs. */ |
c906108c | 513 | value->type = check_typedef (SYMBOL_TYPE (var)); |
400c6af0 | 514 | value->optimized_out = 0; |
c906108c | 515 | |
24d6c2a0 TT |
516 | if (SYMBOL_COMPUTED_OPS (var) != NULL) |
517 | { | |
40f4af28 | 518 | SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, ax, value); |
24d6c2a0 TT |
519 | return; |
520 | } | |
521 | ||
c906108c SS |
522 | /* I'm imitating the code in read_var_value. */ |
523 | switch (SYMBOL_CLASS (var)) | |
524 | { | |
525 | case LOC_CONST: /* A constant, like an enum value. */ | |
526 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var)); | |
527 | value->kind = axs_rvalue; | |
528 | break; | |
529 | ||
530 | case LOC_LABEL: /* A goto label, being used as a value. */ | |
531 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var)); | |
532 | value->kind = axs_rvalue; | |
533 | break; | |
534 | ||
535 | case LOC_CONST_BYTES: | |
8e65ff28 | 536 | internal_error (__FILE__, __LINE__, |
3e43a32a MS |
537 | _("gen_var_ref: LOC_CONST_BYTES " |
538 | "symbols are not supported")); | |
c906108c SS |
539 | |
540 | /* Variable at a fixed location in memory. Easy. */ | |
541 | case LOC_STATIC: | |
542 | /* Push the address of the variable. */ | |
543 | ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var)); | |
544 | value->kind = axs_lvalue_memory; | |
545 | break; | |
546 | ||
547 | case LOC_ARG: /* var lives in argument area of frame */ | |
40f4af28 | 548 | gen_frame_args_address (ax); |
c906108c SS |
549 | gen_sym_offset (ax, var); |
550 | value->kind = axs_lvalue_memory; | |
551 | break; | |
552 | ||
553 | case LOC_REF_ARG: /* As above, but the frame slot really | |
554 | holds the address of the variable. */ | |
40f4af28 | 555 | gen_frame_args_address (ax); |
c906108c SS |
556 | gen_sym_offset (ax, var); |
557 | /* Don't assume any particular pointer size. */ | |
40f4af28 | 558 | gen_fetch (ax, builtin_type (ax->gdbarch)->builtin_data_ptr); |
c906108c SS |
559 | value->kind = axs_lvalue_memory; |
560 | break; | |
561 | ||
562 | case LOC_LOCAL: /* var lives in locals area of frame */ | |
40f4af28 | 563 | gen_frame_locals_address (ax); |
c906108c SS |
564 | gen_sym_offset (ax, var); |
565 | value->kind = axs_lvalue_memory; | |
566 | break; | |
567 | ||
c906108c | 568 | case LOC_TYPEDEF: |
3d263c1d | 569 | error (_("Cannot compute value of typedef `%s'."), |
987012b8 | 570 | var->print_name ()); |
c906108c SS |
571 | break; |
572 | ||
573 | case LOC_BLOCK: | |
2b1ffcfd | 574 | ax_const_l (ax, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (var))); |
c906108c SS |
575 | value->kind = axs_rvalue; |
576 | break; | |
577 | ||
578 | case LOC_REGISTER: | |
c906108c | 579 | /* Don't generate any code at all; in the process of treating |
dda83cd7 SM |
580 | this as an lvalue or rvalue, the caller will generate the |
581 | right code. */ | |
c906108c | 582 | value->kind = axs_lvalue_register; |
40f4af28 SM |
583 | value->u.reg |
584 | = SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch); | |
c906108c SS |
585 | break; |
586 | ||
587 | /* A lot like LOC_REF_ARG, but the pointer lives directly in a | |
dda83cd7 SM |
588 | register, not on the stack. Simpler than LOC_REGISTER |
589 | because it's just like any other case where the thing | |
2a2d4dc3 | 590 | has a real address. */ |
c906108c | 591 | case LOC_REGPARM_ADDR: |
40f4af28 SM |
592 | ax_reg (ax, |
593 | SYMBOL_REGISTER_OPS (var)->register_number (var, ax->gdbarch)); | |
c906108c SS |
594 | value->kind = axs_lvalue_memory; |
595 | break; | |
596 | ||
597 | case LOC_UNRESOLVED: | |
598 | { | |
3b7344d5 | 599 | struct bound_minimal_symbol msym |
987012b8 | 600 | = lookup_minimal_symbol (var->linkage_name (), NULL, NULL); |
5b4ee69b | 601 | |
3b7344d5 | 602 | if (!msym.minsym) |
987012b8 | 603 | error (_("Couldn't resolve symbol `%s'."), var->print_name ()); |
c5aa993b | 604 | |
c906108c | 605 | /* Push the address of the variable. */ |
77e371c0 | 606 | ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
607 | value->kind = axs_lvalue_memory; |
608 | } | |
c5aa993b | 609 | break; |
c906108c | 610 | |
a55cc764 | 611 | case LOC_COMPUTED: |
24d6c2a0 | 612 | gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); |
a55cc764 | 613 | |
c906108c | 614 | case LOC_OPTIMIZED_OUT: |
400c6af0 SS |
615 | /* Flag this, but don't say anything; leave it up to callers to |
616 | warn the user. */ | |
617 | value->optimized_out = 1; | |
c906108c SS |
618 | break; |
619 | ||
620 | default: | |
3d263c1d | 621 | error (_("Cannot find value of botched symbol `%s'."), |
987012b8 | 622 | var->print_name ()); |
c906108c SS |
623 | break; |
624 | } | |
625 | } | |
74ea4be4 PA |
626 | |
627 | /* Generate code for a minimal symbol variable reference to AX. The | |
628 | variable is the symbol MINSYM, of OBJFILE. Set VALUE to describe | |
629 | the result. */ | |
630 | ||
631 | static void | |
632 | gen_msym_var_ref (agent_expr *ax, axs_value *value, | |
633 | minimal_symbol *msymbol, objfile *objf) | |
634 | { | |
635 | CORE_ADDR address; | |
636 | type *t = find_minsym_type_and_address (msymbol, objf, &address); | |
637 | value->type = t; | |
638 | value->optimized_out = false; | |
639 | ax_const_l (ax, address); | |
640 | value->kind = axs_lvalue_memory; | |
641 | } | |
642 | ||
c5aa993b | 643 | \f |
c906108c SS |
644 | |
645 | ||
c906108c SS |
646 | /* Generating bytecode from GDB expressions: literals */ |
647 | ||
648 | static void | |
fba45db2 KB |
649 | gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k, |
650 | struct type *type) | |
c906108c SS |
651 | { |
652 | ax_const_l (ax, k); | |
653 | value->kind = axs_rvalue; | |
648027cc | 654 | value->type = check_typedef (type); |
c906108c | 655 | } |
c5aa993b | 656 | \f |
c906108c SS |
657 | |
658 | ||
c906108c SS |
659 | /* Generating bytecode from GDB expressions: unary conversions, casts */ |
660 | ||
661 | /* Take what's on the top of the stack (as described by VALUE), and | |
662 | try to make an rvalue out of it. Signal an error if we can't do | |
663 | that. */ | |
55aa24fb | 664 | void |
fba45db2 | 665 | require_rvalue (struct agent_expr *ax, struct axs_value *value) |
c906108c | 666 | { |
3a96536b SS |
667 | /* Only deal with scalars, structs and such may be too large |
668 | to fit in a stack entry. */ | |
669 | value->type = check_typedef (value->type); | |
78134374 SM |
670 | if (value->type->code () == TYPE_CODE_ARRAY |
671 | || value->type->code () == TYPE_CODE_STRUCT | |
672 | || value->type->code () == TYPE_CODE_UNION | |
673 | || value->type->code () == TYPE_CODE_FUNC) | |
1c40aa62 | 674 | error (_("Value not scalar: cannot be an rvalue.")); |
3a96536b | 675 | |
c906108c SS |
676 | switch (value->kind) |
677 | { | |
678 | case axs_rvalue: | |
679 | /* It's already an rvalue. */ | |
680 | break; | |
681 | ||
682 | case axs_lvalue_memory: | |
683 | /* The top of stack is the address of the object. Dereference. */ | |
684 | gen_fetch (ax, value->type); | |
685 | break; | |
686 | ||
687 | case axs_lvalue_register: | |
688 | /* There's nothing on the stack, but value->u.reg is the | |
dda83cd7 | 689 | register number containing the value. |
c906108c | 690 | |
dda83cd7 SM |
691 | When we add floating-point support, this is going to have to |
692 | change. What about SPARC register pairs, for example? */ | |
c906108c SS |
693 | ax_reg (ax, value->u.reg); |
694 | gen_extend (ax, value->type); | |
695 | break; | |
696 | } | |
697 | ||
698 | value->kind = axs_rvalue; | |
699 | } | |
700 | ||
701 | ||
702 | /* Assume the top of the stack is described by VALUE, and perform the | |
703 | usual unary conversions. This is motivated by ANSI 6.2.2, but of | |
704 | course GDB expressions are not ANSI; they're the mishmash union of | |
705 | a bunch of languages. Rah. | |
706 | ||
707 | NOTE! This function promises to produce an rvalue only when the | |
708 | incoming value is of an appropriate type. In other words, the | |
709 | consumer of the value this function produces may assume the value | |
710 | is an rvalue only after checking its type. | |
711 | ||
712 | The immediate issue is that if the user tries to use a structure or | |
713 | union as an operand of, say, the `+' operator, we don't want to try | |
714 | to convert that structure to an rvalue; require_rvalue will bomb on | |
715 | structs and unions. Rather, we want to simply pass the struct | |
716 | lvalue through unchanged, and let `+' raise an error. */ | |
717 | ||
718 | static void | |
6661ad48 | 719 | gen_usual_unary (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
720 | { |
721 | /* We don't have to generate any code for the usual integral | |
722 | conversions, since values are always represented as full-width on | |
723 | the stack. Should we tweak the type? */ | |
724 | ||
725 | /* Some types require special handling. */ | |
78134374 | 726 | switch (value->type->code ()) |
c906108c SS |
727 | { |
728 | /* Functions get converted to a pointer to the function. */ | |
729 | case TYPE_CODE_FUNC: | |
730 | value->type = lookup_pointer_type (value->type); | |
731 | value->kind = axs_rvalue; /* Should always be true, but just in case. */ | |
732 | break; | |
733 | ||
734 | /* Arrays get converted to a pointer to their first element, and | |
dda83cd7 | 735 | are no longer an lvalue. */ |
c906108c SS |
736 | case TYPE_CODE_ARRAY: |
737 | { | |
738 | struct type *elements = TYPE_TARGET_TYPE (value->type); | |
5b4ee69b | 739 | |
c906108c SS |
740 | value->type = lookup_pointer_type (elements); |
741 | value->kind = axs_rvalue; | |
742 | /* We don't need to generate any code; the address of the array | |
743 | is also the address of its first element. */ | |
744 | } | |
c5aa993b | 745 | break; |
c906108c | 746 | |
c5aa993b | 747 | /* Don't try to convert structures and unions to rvalues. Let the |
dda83cd7 | 748 | consumer signal an error. */ |
c906108c SS |
749 | case TYPE_CODE_STRUCT: |
750 | case TYPE_CODE_UNION: | |
751 | return; | |
c906108c SS |
752 | } |
753 | ||
754 | /* If the value is an lvalue, dereference it. */ | |
755 | require_rvalue (ax, value); | |
756 | } | |
757 | ||
758 | ||
759 | /* Return non-zero iff the type TYPE1 is considered "wider" than the | |
760 | type TYPE2, according to the rules described in gen_usual_arithmetic. */ | |
761 | static int | |
fba45db2 | 762 | type_wider_than (struct type *type1, struct type *type2) |
c906108c SS |
763 | { |
764 | return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2) | |
765 | || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
c6d940a9 SM |
766 | && type1->is_unsigned () |
767 | && !type2->is_unsigned ())); | |
c906108c SS |
768 | } |
769 | ||
770 | ||
771 | /* Return the "wider" of the two types TYPE1 and TYPE2. */ | |
772 | static struct type * | |
fba45db2 | 773 | max_type (struct type *type1, struct type *type2) |
c906108c SS |
774 | { |
775 | return type_wider_than (type1, type2) ? type1 : type2; | |
776 | } | |
777 | ||
778 | ||
779 | /* Generate code to convert a scalar value of type FROM to type TO. */ | |
780 | static void | |
fba45db2 | 781 | gen_conversion (struct agent_expr *ax, struct type *from, struct type *to) |
c906108c SS |
782 | { |
783 | /* Perhaps there is a more graceful way to state these rules. */ | |
784 | ||
785 | /* If we're converting to a narrower type, then we need to clear out | |
786 | the upper bits. */ | |
787 | if (TYPE_LENGTH (to) < TYPE_LENGTH (from)) | |
bcf5c1d9 | 788 | gen_extend (ax, to); |
c906108c SS |
789 | |
790 | /* If the two values have equal width, but different signednesses, | |
791 | then we need to extend. */ | |
792 | else if (TYPE_LENGTH (to) == TYPE_LENGTH (from)) | |
793 | { | |
c6d940a9 | 794 | if (from->is_unsigned () != to->is_unsigned ()) |
c906108c SS |
795 | gen_extend (ax, to); |
796 | } | |
797 | ||
798 | /* If we're converting to a wider type, and becoming unsigned, then | |
799 | we need to zero out any possible sign bits. */ | |
800 | else if (TYPE_LENGTH (to) > TYPE_LENGTH (from)) | |
801 | { | |
c6d940a9 | 802 | if (to->is_unsigned ()) |
c906108c SS |
803 | gen_extend (ax, to); |
804 | } | |
805 | } | |
806 | ||
807 | ||
808 | /* Return non-zero iff the type FROM will require any bytecodes to be | |
809 | emitted to be converted to the type TO. */ | |
810 | static int | |
fba45db2 | 811 | is_nontrivial_conversion (struct type *from, struct type *to) |
c906108c | 812 | { |
833177a4 | 813 | agent_expr_up ax (new agent_expr (NULL, 0)); |
c906108c SS |
814 | int nontrivial; |
815 | ||
816 | /* Actually generate the code, and see if anything came out. At the | |
817 | moment, it would be trivial to replicate the code in | |
818 | gen_conversion here, but in the future, when we're supporting | |
819 | floating point and the like, it may not be. Doing things this | |
820 | way allows this function to be independent of the logic in | |
821 | gen_conversion. */ | |
833177a4 | 822 | gen_conversion (ax.get (), from, to); |
c906108c | 823 | nontrivial = ax->len > 0; |
c906108c SS |
824 | return nontrivial; |
825 | } | |
826 | ||
827 | ||
828 | /* Generate code to perform the "usual arithmetic conversions" (ANSI C | |
829 | 6.2.1.5) for the two operands of an arithmetic operator. This | |
830 | effectively finds a "least upper bound" type for the two arguments, | |
831 | and promotes each argument to that type. *VALUE1 and *VALUE2 | |
832 | describe the values as they are passed in, and as they are left. */ | |
833 | static void | |
6661ad48 SM |
834 | gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1, |
835 | struct axs_value *value2) | |
c906108c SS |
836 | { |
837 | /* Do the usual binary conversions. */ | |
78134374 SM |
838 | if (value1->type->code () == TYPE_CODE_INT |
839 | && value2->type->code () == TYPE_CODE_INT) | |
c906108c SS |
840 | { |
841 | /* The ANSI integral promotions seem to work this way: Order the | |
dda83cd7 SM |
842 | integer types by size, and then by signedness: an n-bit |
843 | unsigned type is considered "wider" than an n-bit signed | |
844 | type. Promote to the "wider" of the two types, and always | |
845 | promote at least to int. */ | |
6661ad48 | 846 | struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int, |
c906108c SS |
847 | max_type (value1->type, value2->type)); |
848 | ||
849 | /* Deal with value2, on the top of the stack. */ | |
850 | gen_conversion (ax, value2->type, target); | |
851 | ||
852 | /* Deal with value1, not on the top of the stack. Don't | |
dda83cd7 SM |
853 | generate the `swap' instructions if we're not actually going |
854 | to do anything. */ | |
c906108c SS |
855 | if (is_nontrivial_conversion (value1->type, target)) |
856 | { | |
857 | ax_simple (ax, aop_swap); | |
858 | gen_conversion (ax, value1->type, target); | |
859 | ax_simple (ax, aop_swap); | |
860 | } | |
861 | ||
648027cc | 862 | value1->type = value2->type = check_typedef (target); |
c906108c SS |
863 | } |
864 | } | |
865 | ||
866 | ||
867 | /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on | |
868 | the value on the top of the stack, as described by VALUE. Assume | |
869 | the value has integral type. */ | |
870 | static void | |
6661ad48 | 871 | gen_integral_promotions (struct agent_expr *ax, struct axs_value *value) |
c906108c | 872 | { |
6661ad48 | 873 | const struct builtin_type *builtin = builtin_type (ax->gdbarch); |
f7c79c41 UW |
874 | |
875 | if (!type_wider_than (value->type, builtin->builtin_int)) | |
c906108c | 876 | { |
f7c79c41 UW |
877 | gen_conversion (ax, value->type, builtin->builtin_int); |
878 | value->type = builtin->builtin_int; | |
c906108c | 879 | } |
f7c79c41 | 880 | else if (!type_wider_than (value->type, builtin->builtin_unsigned_int)) |
c906108c | 881 | { |
f7c79c41 UW |
882 | gen_conversion (ax, value->type, builtin->builtin_unsigned_int); |
883 | value->type = builtin->builtin_unsigned_int; | |
c906108c SS |
884 | } |
885 | } | |
886 | ||
887 | ||
888 | /* Generate code for a cast to TYPE. */ | |
889 | static void | |
fba45db2 | 890 | gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type) |
c906108c SS |
891 | { |
892 | /* GCC does allow casts to yield lvalues, so this should be fixed | |
893 | before merging these changes into the trunk. */ | |
894 | require_rvalue (ax, value); | |
0e2de366 | 895 | /* Dereference typedefs. */ |
c906108c SS |
896 | type = check_typedef (type); |
897 | ||
78134374 | 898 | switch (type->code ()) |
c906108c SS |
899 | { |
900 | case TYPE_CODE_PTR: | |
b97aedf3 | 901 | case TYPE_CODE_REF: |
aa006118 | 902 | case TYPE_CODE_RVALUE_REF: |
c906108c | 903 | /* It's implementation-defined, and I'll bet this is what GCC |
dda83cd7 | 904 | does. */ |
c906108c SS |
905 | break; |
906 | ||
907 | case TYPE_CODE_ARRAY: | |
908 | case TYPE_CODE_STRUCT: | |
909 | case TYPE_CODE_UNION: | |
910 | case TYPE_CODE_FUNC: | |
3d263c1d | 911 | error (_("Invalid type cast: intended type must be scalar.")); |
c906108c SS |
912 | |
913 | case TYPE_CODE_ENUM: | |
3b11a015 | 914 | case TYPE_CODE_BOOL: |
c906108c | 915 | /* We don't have to worry about the size of the value, because |
dda83cd7 SM |
916 | all our integral values are fully sign-extended, and when |
917 | casting pointers we can do anything we like. Is there any | |
918 | way for us to know what GCC actually does with a cast like | |
919 | this? */ | |
c906108c | 920 | break; |
c5aa993b | 921 | |
c906108c SS |
922 | case TYPE_CODE_INT: |
923 | gen_conversion (ax, value->type, type); | |
924 | break; | |
925 | ||
926 | case TYPE_CODE_VOID: | |
927 | /* We could pop the value, and rely on everyone else to check | |
dda83cd7 SM |
928 | the type and notice that this value doesn't occupy a stack |
929 | slot. But for now, leave the value on the stack, and | |
930 | preserve the "value == stack element" assumption. */ | |
c906108c SS |
931 | break; |
932 | ||
933 | default: | |
3d263c1d | 934 | error (_("Casts to requested type are not yet implemented.")); |
c906108c SS |
935 | } |
936 | ||
937 | value->type = type; | |
938 | } | |
c5aa993b | 939 | \f |
c906108c SS |
940 | |
941 | ||
c906108c SS |
942 | /* Generating bytecode from GDB expressions: arithmetic */ |
943 | ||
944 | /* Scale the integer on the top of the stack by the size of the target | |
945 | of the pointer type TYPE. */ | |
946 | static void | |
fba45db2 | 947 | gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type) |
c906108c SS |
948 | { |
949 | struct type *element = TYPE_TARGET_TYPE (type); | |
950 | ||
0004e5a2 | 951 | if (TYPE_LENGTH (element) != 1) |
c906108c | 952 | { |
0004e5a2 | 953 | ax_const_l (ax, TYPE_LENGTH (element)); |
c906108c SS |
954 | ax_simple (ax, op); |
955 | } | |
956 | } | |
957 | ||
958 | ||
f7c79c41 | 959 | /* Generate code for pointer arithmetic PTR + INT. */ |
c906108c | 960 | static void |
f7c79c41 UW |
961 | gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
962 | struct axs_value *value1, struct axs_value *value2) | |
c906108c | 963 | { |
b97aedf3 | 964 | gdb_assert (pointer_type (value1->type)); |
78134374 | 965 | gdb_assert (value2->type->code () == TYPE_CODE_INT); |
c906108c | 966 | |
f7c79c41 UW |
967 | gen_scale (ax, aop_mul, value1->type); |
968 | ax_simple (ax, aop_add); | |
969 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
970 | value->type = value1->type; | |
971 | value->kind = axs_rvalue; | |
972 | } | |
c906108c | 973 | |
c906108c | 974 | |
f7c79c41 UW |
975 | /* Generate code for pointer arithmetic PTR - INT. */ |
976 | static void | |
977 | gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
978 | struct axs_value *value1, struct axs_value *value2) | |
979 | { | |
b97aedf3 | 980 | gdb_assert (pointer_type (value1->type)); |
78134374 | 981 | gdb_assert (value2->type->code () == TYPE_CODE_INT); |
c906108c | 982 | |
f7c79c41 UW |
983 | gen_scale (ax, aop_mul, value1->type); |
984 | ax_simple (ax, aop_sub); | |
985 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
986 | value->type = value1->type; | |
c906108c SS |
987 | value->kind = axs_rvalue; |
988 | } | |
989 | ||
990 | ||
f7c79c41 | 991 | /* Generate code for pointer arithmetic PTR - PTR. */ |
c906108c | 992 | static void |
f7c79c41 UW |
993 | gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, |
994 | struct axs_value *value1, struct axs_value *value2, | |
995 | struct type *result_type) | |
c906108c | 996 | { |
b97aedf3 SS |
997 | gdb_assert (pointer_type (value1->type)); |
998 | gdb_assert (pointer_type (value2->type)); | |
c906108c | 999 | |
f7c79c41 UW |
1000 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type)) |
1001 | != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))) | |
ac74f770 MS |
1002 | error (_("\ |
1003 | First argument of `-' is a pointer, but second argument is neither\n\ | |
1004 | an integer nor a pointer of the same type.")); | |
c906108c | 1005 | |
f7c79c41 UW |
1006 | ax_simple (ax, aop_sub); |
1007 | gen_scale (ax, aop_div_unsigned, value1->type); | |
1008 | value->type = result_type; | |
c906108c SS |
1009 | value->kind = axs_rvalue; |
1010 | } | |
1011 | ||
3b11a015 SS |
1012 | static void |
1013 | gen_equal (struct agent_expr *ax, struct axs_value *value, | |
1014 | struct axs_value *value1, struct axs_value *value2, | |
1015 | struct type *result_type) | |
1016 | { | |
1017 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1018 | ax_simple (ax, aop_equal); | |
1019 | else | |
1020 | gen_binop (ax, value, value1, value2, | |
1021 | aop_equal, aop_equal, 0, "equal"); | |
1022 | value->type = result_type; | |
1023 | value->kind = axs_rvalue; | |
1024 | } | |
1025 | ||
1026 | static void | |
1027 | gen_less (struct agent_expr *ax, struct axs_value *value, | |
1028 | struct axs_value *value1, struct axs_value *value2, | |
1029 | struct type *result_type) | |
1030 | { | |
1031 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1032 | ax_simple (ax, aop_less_unsigned); | |
1033 | else | |
1034 | gen_binop (ax, value, value1, value2, | |
1035 | aop_less_signed, aop_less_unsigned, 0, "less than"); | |
1036 | value->type = result_type; | |
1037 | value->kind = axs_rvalue; | |
1038 | } | |
f7c79c41 | 1039 | |
c906108c SS |
1040 | /* Generate code for a binary operator that doesn't do pointer magic. |
1041 | We set VALUE to describe the result value; we assume VALUE1 and | |
1042 | VALUE2 describe the two operands, and that they've undergone the | |
1043 | usual binary conversions. MAY_CARRY should be non-zero iff the | |
1044 | result needs to be extended. NAME is the English name of the | |
1045 | operator, used in error messages */ | |
1046 | static void | |
fba45db2 | 1047 | gen_binop (struct agent_expr *ax, struct axs_value *value, |
3e43a32a MS |
1048 | struct axs_value *value1, struct axs_value *value2, |
1049 | enum agent_op op, enum agent_op op_unsigned, | |
a121b7c1 | 1050 | int may_carry, const char *name) |
c906108c SS |
1051 | { |
1052 | /* We only handle INT op INT. */ | |
78134374 SM |
1053 | if ((value1->type->code () != TYPE_CODE_INT) |
1054 | || (value2->type->code () != TYPE_CODE_INT)) | |
3d263c1d | 1055 | error (_("Invalid combination of types in %s."), name); |
c5aa993b | 1056 | |
c6d940a9 | 1057 | ax_simple (ax, value1->type->is_unsigned () ? op_unsigned : op); |
c906108c | 1058 | if (may_carry) |
c5aa993b | 1059 | gen_extend (ax, value1->type); /* catch overflow */ |
c906108c SS |
1060 | value->type = value1->type; |
1061 | value->kind = axs_rvalue; | |
1062 | } | |
1063 | ||
1064 | ||
1065 | static void | |
f7c79c41 UW |
1066 | gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
1067 | struct type *result_type) | |
c906108c | 1068 | { |
78134374 SM |
1069 | if (value->type->code () != TYPE_CODE_INT |
1070 | && value->type->code () != TYPE_CODE_PTR) | |
3d263c1d | 1071 | error (_("Invalid type of operand to `!'.")); |
c906108c | 1072 | |
c906108c | 1073 | ax_simple (ax, aop_log_not); |
f7c79c41 | 1074 | value->type = result_type; |
c906108c SS |
1075 | } |
1076 | ||
1077 | ||
1078 | static void | |
fba45db2 | 1079 | gen_complement (struct agent_expr *ax, struct axs_value *value) |
c906108c | 1080 | { |
78134374 | 1081 | if (value->type->code () != TYPE_CODE_INT) |
3d263c1d | 1082 | error (_("Invalid type of operand to `~'.")); |
c906108c | 1083 | |
c906108c SS |
1084 | ax_simple (ax, aop_bit_not); |
1085 | gen_extend (ax, value->type); | |
1086 | } | |
c5aa993b | 1087 | \f |
c906108c SS |
1088 | |
1089 | ||
c906108c SS |
1090 | /* Generating bytecode from GDB expressions: * & . -> @ sizeof */ |
1091 | ||
1092 | /* Dereference the value on the top of the stack. */ | |
1093 | static void | |
053f8057 | 1094 | gen_deref (struct axs_value *value) |
c906108c SS |
1095 | { |
1096 | /* The caller should check the type, because several operators use | |
1097 | this, and we don't know what error message to generate. */ | |
b97aedf3 | 1098 | if (!pointer_type (value->type)) |
8e65ff28 | 1099 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1100 | _("gen_deref: expected a pointer")); |
c906108c SS |
1101 | |
1102 | /* We've got an rvalue now, which is a pointer. We want to yield an | |
1103 | lvalue, whose address is exactly that pointer. So we don't | |
1104 | actually emit any code; we just change the type from "Pointer to | |
1105 | T" to "T", and mark the value as an lvalue in memory. Leave it | |
1106 | to the consumer to actually dereference it. */ | |
1107 | value->type = check_typedef (TYPE_TARGET_TYPE (value->type)); | |
78134374 | 1108 | if (value->type->code () == TYPE_CODE_VOID) |
b1028c8e | 1109 | error (_("Attempt to dereference a generic pointer.")); |
78134374 | 1110 | value->kind = ((value->type->code () == TYPE_CODE_FUNC) |
c906108c SS |
1111 | ? axs_rvalue : axs_lvalue_memory); |
1112 | } | |
1113 | ||
1114 | ||
1115 | /* Produce the address of the lvalue on the top of the stack. */ | |
1116 | static void | |
053f8057 | 1117 | gen_address_of (struct axs_value *value) |
c906108c SS |
1118 | { |
1119 | /* Special case for taking the address of a function. The ANSI | |
1120 | standard describes this as a special case, too, so this | |
1121 | arrangement is not without motivation. */ | |
78134374 | 1122 | if (value->type->code () == TYPE_CODE_FUNC) |
c906108c SS |
1123 | /* The value's already an rvalue on the stack, so we just need to |
1124 | change the type. */ | |
1125 | value->type = lookup_pointer_type (value->type); | |
1126 | else | |
1127 | switch (value->kind) | |
1128 | { | |
1129 | case axs_rvalue: | |
3d263c1d | 1130 | error (_("Operand of `&' is an rvalue, which has no address.")); |
c906108c SS |
1131 | |
1132 | case axs_lvalue_register: | |
3d263c1d | 1133 | error (_("Operand of `&' is in a register, and has no address.")); |
c906108c SS |
1134 | |
1135 | case axs_lvalue_memory: | |
1136 | value->kind = axs_rvalue; | |
1137 | value->type = lookup_pointer_type (value->type); | |
1138 | break; | |
1139 | } | |
1140 | } | |
1141 | ||
c906108c SS |
1142 | /* Generate code to push the value of a bitfield of a structure whose |
1143 | address is on the top of the stack. START and END give the | |
1144 | starting and one-past-ending *bit* numbers of the field within the | |
1145 | structure. */ | |
1146 | static void | |
6661ad48 SM |
1147 | gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value, |
1148 | struct type *type, int start, int end) | |
c906108c SS |
1149 | { |
1150 | /* Note that ops[i] fetches 8 << i bits. */ | |
1151 | static enum agent_op ops[] | |
5b4ee69b | 1152 | = {aop_ref8, aop_ref16, aop_ref32, aop_ref64}; |
c906108c SS |
1153 | static int num_ops = (sizeof (ops) / sizeof (ops[0])); |
1154 | ||
1155 | /* We don't want to touch any byte that the bitfield doesn't | |
1156 | actually occupy; we shouldn't make any accesses we're not | |
1157 | explicitly permitted to. We rely here on the fact that the | |
1158 | bytecode `ref' operators work on unaligned addresses. | |
1159 | ||
1160 | It takes some fancy footwork to get the stack to work the way | |
1161 | we'd like. Say we're retrieving a bitfield that requires three | |
1162 | fetches. Initially, the stack just contains the address: | |
c5aa993b | 1163 | addr |
c906108c | 1164 | For the first fetch, we duplicate the address |
c5aa993b | 1165 | addr addr |
c906108c SS |
1166 | then add the byte offset, do the fetch, and shift and mask as |
1167 | needed, yielding a fragment of the value, properly aligned for | |
1168 | the final bitwise or: | |
c5aa993b | 1169 | addr frag1 |
c906108c | 1170 | then we swap, and repeat the process: |
c5aa993b JM |
1171 | frag1 addr --- address on top |
1172 | frag1 addr addr --- duplicate it | |
1173 | frag1 addr frag2 --- get second fragment | |
1174 | frag1 frag2 addr --- swap again | |
1175 | frag1 frag2 frag3 --- get third fragment | |
c906108c SS |
1176 | Notice that, since the third fragment is the last one, we don't |
1177 | bother duplicating the address this time. Now we have all the | |
1178 | fragments on the stack, and we can simply `or' them together, | |
1179 | yielding the final value of the bitfield. */ | |
1180 | ||
1181 | /* The first and one-after-last bits in the field, but rounded down | |
1182 | and up to byte boundaries. */ | |
1183 | int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT; | |
c5aa993b JM |
1184 | int bound_end = (((end + TARGET_CHAR_BIT - 1) |
1185 | / TARGET_CHAR_BIT) | |
1186 | * TARGET_CHAR_BIT); | |
c906108c SS |
1187 | |
1188 | /* current bit offset within the structure */ | |
1189 | int offset; | |
1190 | ||
1191 | /* The index in ops of the opcode we're considering. */ | |
1192 | int op; | |
1193 | ||
1194 | /* The number of fragments we generated in the process. Probably | |
1195 | equal to the number of `one' bits in bytesize, but who cares? */ | |
1196 | int fragment_count; | |
1197 | ||
0e2de366 | 1198 | /* Dereference any typedefs. */ |
c906108c SS |
1199 | type = check_typedef (type); |
1200 | ||
1201 | /* Can we fetch the number of bits requested at all? */ | |
1202 | if ((end - start) > ((1 << num_ops) * 8)) | |
8e65ff28 | 1203 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1204 | _("gen_bitfield_ref: bitfield too wide")); |
c906108c SS |
1205 | |
1206 | /* Note that we know here that we only need to try each opcode once. | |
1207 | That may not be true on machines with weird byte sizes. */ | |
1208 | offset = bound_start; | |
1209 | fragment_count = 0; | |
1210 | for (op = num_ops - 1; op >= 0; op--) | |
1211 | { | |
1212 | /* number of bits that ops[op] would fetch */ | |
1213 | int op_size = 8 << op; | |
1214 | ||
1215 | /* The stack at this point, from bottom to top, contains zero or | |
dda83cd7 | 1216 | more fragments, then the address. */ |
c5aa993b | 1217 | |
c906108c SS |
1218 | /* Does this fetch fit within the bitfield? */ |
1219 | if (offset + op_size <= bound_end) | |
1220 | { | |
1221 | /* Is this the last fragment? */ | |
1222 | int last_frag = (offset + op_size == bound_end); | |
1223 | ||
c5aa993b JM |
1224 | if (!last_frag) |
1225 | ax_simple (ax, aop_dup); /* keep a copy of the address */ | |
1226 | ||
c906108c SS |
1227 | /* Add the offset. */ |
1228 | gen_offset (ax, offset / TARGET_CHAR_BIT); | |
1229 | ||
92bc6a20 | 1230 | if (ax->tracing) |
c906108c SS |
1231 | { |
1232 | /* Record the area of memory we're about to fetch. */ | |
1233 | ax_trace_quick (ax, op_size / TARGET_CHAR_BIT); | |
1234 | } | |
1235 | ||
1236 | /* Perform the fetch. */ | |
1237 | ax_simple (ax, ops[op]); | |
c5aa993b JM |
1238 | |
1239 | /* Shift the bits we have to their proper position. | |
c906108c SS |
1240 | gen_left_shift will generate right shifts when the operand |
1241 | is negative. | |
1242 | ||
c5aa993b JM |
1243 | A big-endian field diagram to ponder: |
1244 | byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 | |
1245 | +------++------++------++------++------++------++------++------+ | |
1246 | xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx | |
1247 | ^ ^ ^ ^ | |
1248 | bit number 16 32 48 53 | |
c906108c SS |
1249 | These are bit numbers as supplied by GDB. Note that the |
1250 | bit numbers run from right to left once you've fetched the | |
1251 | value! | |
1252 | ||
c5aa993b JM |
1253 | A little-endian field diagram to ponder: |
1254 | byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 | |
1255 | +------++------++------++------++------++------++------++------+ | |
1256 | xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx | |
1257 | ^ ^ ^ ^ ^ | |
1258 | bit number 48 32 16 4 0 | |
1259 | ||
1260 | In both cases, the most significant end is on the left | |
1261 | (i.e. normal numeric writing order), which means that you | |
1262 | don't go crazy thinking about `left' and `right' shifts. | |
1263 | ||
1264 | We don't have to worry about masking yet: | |
1265 | - If they contain garbage off the least significant end, then we | |
1266 | must be looking at the low end of the field, and the right | |
1267 | shift will wipe them out. | |
1268 | - If they contain garbage off the most significant end, then we | |
1269 | must be looking at the most significant end of the word, and | |
1270 | the sign/zero extension will wipe them out. | |
1271 | - If we're in the interior of the word, then there is no garbage | |
1272 | on either end, because the ref operators zero-extend. */ | |
6661ad48 | 1273 | if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG) |
c906108c | 1274 | gen_left_shift (ax, end - (offset + op_size)); |
c5aa993b | 1275 | else |
c906108c SS |
1276 | gen_left_shift (ax, offset - start); |
1277 | ||
c5aa993b | 1278 | if (!last_frag) |
c906108c SS |
1279 | /* Bring the copy of the address up to the top. */ |
1280 | ax_simple (ax, aop_swap); | |
1281 | ||
1282 | offset += op_size; | |
1283 | fragment_count++; | |
1284 | } | |
1285 | } | |
1286 | ||
1287 | /* Generate enough bitwise `or' operations to combine all the | |
1288 | fragments we left on the stack. */ | |
1289 | while (fragment_count-- > 1) | |
1290 | ax_simple (ax, aop_bit_or); | |
1291 | ||
1292 | /* Sign- or zero-extend the value as appropriate. */ | |
c6d940a9 | 1293 | ((type->is_unsigned () ? ax_zero_ext : ax_ext) (ax, end - start)); |
c906108c SS |
1294 | |
1295 | /* This is *not* an lvalue. Ugh. */ | |
1296 | value->kind = axs_rvalue; | |
1297 | value->type = type; | |
1298 | } | |
1299 | ||
b6e7192f SS |
1300 | /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET |
1301 | is an accumulated offset (in bytes), will be nonzero for objects | |
1302 | embedded in other objects, like C++ base classes. Behavior should | |
1303 | generally follow value_primitive_field. */ | |
1304 | ||
1305 | static void | |
6661ad48 | 1306 | gen_primitive_field (struct agent_expr *ax, struct axs_value *value, |
b6e7192f SS |
1307 | int offset, int fieldno, struct type *type) |
1308 | { | |
1309 | /* Is this a bitfield? */ | |
1310 | if (TYPE_FIELD_PACKED (type, fieldno)) | |
940da03e | 1311 | gen_bitfield_ref (ax, value, type->field (fieldno).type (), |
b6e7192f SS |
1312 | (offset * TARGET_CHAR_BIT |
1313 | + TYPE_FIELD_BITPOS (type, fieldno)), | |
1314 | (offset * TARGET_CHAR_BIT | |
1315 | + TYPE_FIELD_BITPOS (type, fieldno) | |
1316 | + TYPE_FIELD_BITSIZE (type, fieldno))); | |
1317 | else | |
1318 | { | |
1319 | gen_offset (ax, offset | |
1320 | + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT); | |
1321 | value->kind = axs_lvalue_memory; | |
940da03e | 1322 | value->type = type->field (fieldno).type (); |
b6e7192f SS |
1323 | } |
1324 | } | |
1325 | ||
1326 | /* Search for the given field in either the given type or one of its | |
1327 | base classes. Return 1 if found, 0 if not. */ | |
1328 | ||
1329 | static int | |
6661ad48 | 1330 | gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value, |
a121b7c1 | 1331 | const char *field, int offset, struct type *type) |
b6e7192f SS |
1332 | { |
1333 | int i, rslt; | |
1334 | int nbases = TYPE_N_BASECLASSES (type); | |
1335 | ||
f168693b | 1336 | type = check_typedef (type); |
b6e7192f | 1337 | |
1f704f76 | 1338 | for (i = type->num_fields () - 1; i >= nbases; i--) |
b6e7192f | 1339 | { |
0d5cff50 | 1340 | const char *this_name = TYPE_FIELD_NAME (type, i); |
b6e7192f SS |
1341 | |
1342 | if (this_name) | |
1343 | { | |
1344 | if (strcmp (field, this_name) == 0) | |
1345 | { | |
1346 | /* Note that bytecodes for the struct's base (aka | |
1347 | "this") will have been generated already, which will | |
1348 | be unnecessary but not harmful if the static field is | |
1349 | being handled as a global. */ | |
ceacbf6e | 1350 | if (field_is_static (&type->field (i))) |
b6e7192f | 1351 | { |
40f4af28 | 1352 | gen_static_field (ax, value, type, i); |
400c6af0 | 1353 | if (value->optimized_out) |
3e43a32a MS |
1354 | error (_("static field `%s' has been " |
1355 | "optimized out, cannot use"), | |
400c6af0 | 1356 | field); |
b6e7192f SS |
1357 | return 1; |
1358 | } | |
1359 | ||
6661ad48 | 1360 | gen_primitive_field (ax, value, offset, i, type); |
b6e7192f SS |
1361 | return 1; |
1362 | } | |
1363 | #if 0 /* is this right? */ | |
1364 | if (this_name[0] == '\0') | |
1365 | internal_error (__FILE__, __LINE__, | |
1366 | _("find_field: anonymous unions not supported")); | |
1367 | #endif | |
1368 | } | |
1369 | } | |
1370 | ||
1371 | /* Now scan through base classes recursively. */ | |
1372 | for (i = 0; i < nbases; i++) | |
1373 | { | |
1374 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
1375 | ||
6661ad48 | 1376 | rslt = gen_struct_ref_recursive (ax, value, field, |
3e43a32a MS |
1377 | offset + TYPE_BASECLASS_BITPOS (type, i) |
1378 | / TARGET_CHAR_BIT, | |
b6e7192f SS |
1379 | basetype); |
1380 | if (rslt) | |
1381 | return 1; | |
1382 | } | |
1383 | ||
1384 | /* Not found anywhere, flag so caller can complain. */ | |
1385 | return 0; | |
1386 | } | |
c906108c SS |
1387 | |
1388 | /* Generate code to reference the member named FIELD of a structure or | |
1389 | union. The top of the stack, as described by VALUE, should have | |
1390 | type (pointer to a)* struct/union. OPERATOR_NAME is the name of | |
1391 | the operator being compiled, and OPERAND_NAME is the kind of thing | |
1392 | it operates on; we use them in error messages. */ | |
1393 | static void | |
6661ad48 SM |
1394 | gen_struct_ref (struct agent_expr *ax, struct axs_value *value, |
1395 | const char *field, const char *operator_name, | |
1396 | const char *operand_name) | |
c906108c SS |
1397 | { |
1398 | struct type *type; | |
b6e7192f | 1399 | int found; |
c906108c SS |
1400 | |
1401 | /* Follow pointers until we reach a non-pointer. These aren't the C | |
1402 | semantics, but they're what the normal GDB evaluator does, so we | |
1403 | should at least be consistent. */ | |
b97aedf3 | 1404 | while (pointer_type (value->type)) |
c906108c | 1405 | { |
f7c79c41 | 1406 | require_rvalue (ax, value); |
053f8057 | 1407 | gen_deref (value); |
c906108c | 1408 | } |
e8860ec2 | 1409 | type = check_typedef (value->type); |
c906108c SS |
1410 | |
1411 | /* This must yield a structure or a union. */ | |
78134374 SM |
1412 | if (type->code () != TYPE_CODE_STRUCT |
1413 | && type->code () != TYPE_CODE_UNION) | |
3d263c1d | 1414 | error (_("The left operand of `%s' is not a %s."), |
c906108c SS |
1415 | operator_name, operand_name); |
1416 | ||
1417 | /* And it must be in memory; we don't deal with structure rvalues, | |
1418 | or structures living in registers. */ | |
1419 | if (value->kind != axs_lvalue_memory) | |
3d263c1d | 1420 | error (_("Structure does not live in memory.")); |
c906108c | 1421 | |
b6e7192f | 1422 | /* Search through fields and base classes recursively. */ |
6661ad48 | 1423 | found = gen_struct_ref_recursive (ax, value, field, 0, type); |
b6e7192f SS |
1424 | |
1425 | if (!found) | |
1426 | error (_("Couldn't find member named `%s' in struct/union/class `%s'"), | |
7d93a1e0 | 1427 | field, type->name ()); |
b6e7192f | 1428 | } |
c5aa993b | 1429 | |
b6e7192f | 1430 | static int |
6661ad48 | 1431 | gen_namespace_elt (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1432 | const struct type *curtype, const char *name); |
b6e7192f | 1433 | static int |
6661ad48 | 1434 | gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1435 | const struct type *curtype, const char *name); |
b6e7192f SS |
1436 | |
1437 | static void | |
40f4af28 | 1438 | gen_static_field (struct agent_expr *ax, struct axs_value *value, |
b6e7192f SS |
1439 | struct type *type, int fieldno) |
1440 | { | |
1441 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) | |
c906108c | 1442 | { |
b6e7192f | 1443 | ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c | 1444 | value->kind = axs_lvalue_memory; |
940da03e | 1445 | value->type = type->field (fieldno).type (); |
400c6af0 | 1446 | value->optimized_out = 0; |
b6e7192f SS |
1447 | } |
1448 | else | |
1449 | { | |
ff355380 | 1450 | const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); |
d12307c1 | 1451 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol; |
b6e7192f | 1452 | |
400c6af0 SS |
1453 | if (sym) |
1454 | { | |
40f4af28 | 1455 | gen_var_ref (ax, value, sym); |
400c6af0 SS |
1456 | |
1457 | /* Don't error if the value was optimized out, we may be | |
1458 | scanning all static fields and just want to pass over this | |
1459 | and continue with the rest. */ | |
1460 | } | |
1461 | else | |
1462 | { | |
1463 | /* Silently assume this was optimized out; class printing | |
1464 | will let the user know why the data is missing. */ | |
1465 | value->optimized_out = 1; | |
1466 | } | |
b6e7192f SS |
1467 | } |
1468 | } | |
1469 | ||
1470 | static int | |
6661ad48 | 1471 | gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1472 | struct type *type, const char *fieldname) |
b6e7192f SS |
1473 | { |
1474 | struct type *t = type; | |
1475 | int i; | |
b6e7192f | 1476 | |
78134374 SM |
1477 | if (t->code () != TYPE_CODE_STRUCT |
1478 | && t->code () != TYPE_CODE_UNION) | |
b6e7192f SS |
1479 | internal_error (__FILE__, __LINE__, |
1480 | _("non-aggregate type to gen_struct_elt_for_reference")); | |
1481 | ||
1f704f76 | 1482 | for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--) |
b6e7192f | 1483 | { |
0d5cff50 | 1484 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
b6e7192f SS |
1485 | |
1486 | if (t_field_name && strcmp (t_field_name, fieldname) == 0) | |
1487 | { | |
ceacbf6e | 1488 | if (field_is_static (&t->field (i))) |
b6e7192f | 1489 | { |
40f4af28 | 1490 | gen_static_field (ax, value, t, i); |
400c6af0 | 1491 | if (value->optimized_out) |
3e43a32a MS |
1492 | error (_("static field `%s' has been " |
1493 | "optimized out, cannot use"), | |
400c6af0 | 1494 | fieldname); |
b6e7192f SS |
1495 | return 1; |
1496 | } | |
1497 | if (TYPE_FIELD_PACKED (t, i)) | |
1498 | error (_("pointers to bitfield members not allowed")); | |
1499 | ||
1500 | /* FIXME we need a way to do "want_address" equivalent */ | |
1501 | ||
1502 | error (_("Cannot reference non-static field \"%s\""), fieldname); | |
1503 | } | |
c906108c | 1504 | } |
b6e7192f SS |
1505 | |
1506 | /* FIXME add other scoped-reference cases here */ | |
1507 | ||
1508 | /* Do a last-ditch lookup. */ | |
6661ad48 | 1509 | return gen_maybe_namespace_elt (ax, value, type, fieldname); |
c906108c SS |
1510 | } |
1511 | ||
b6e7192f SS |
1512 | /* C++: Return the member NAME of the namespace given by the type |
1513 | CURTYPE. */ | |
1514 | ||
1515 | static int | |
6661ad48 | 1516 | gen_namespace_elt (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1517 | const struct type *curtype, const char *name) |
b6e7192f | 1518 | { |
6661ad48 | 1519 | int found = gen_maybe_namespace_elt (ax, value, curtype, name); |
b6e7192f SS |
1520 | |
1521 | if (!found) | |
1522 | error (_("No symbol \"%s\" in namespace \"%s\"."), | |
7d93a1e0 | 1523 | name, curtype->name ()); |
b6e7192f SS |
1524 | |
1525 | return found; | |
1526 | } | |
1527 | ||
1528 | /* A helper function used by value_namespace_elt and | |
1529 | value_struct_elt_for_reference. It looks up NAME inside the | |
1530 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
1531 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
1532 | to, say, some base class of CURTYPE). */ | |
1533 | ||
1534 | static int | |
6661ad48 | 1535 | gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1536 | const struct type *curtype, const char *name) |
b6e7192f | 1537 | { |
7d93a1e0 | 1538 | const char *namespace_name = curtype->name (); |
d12307c1 | 1539 | struct block_symbol sym; |
b6e7192f SS |
1540 | |
1541 | sym = cp_lookup_symbol_namespace (namespace_name, name, | |
1542 | block_for_pc (ax->scope), | |
ac0cd78b | 1543 | VAR_DOMAIN); |
b6e7192f | 1544 | |
d12307c1 | 1545 | if (sym.symbol == NULL) |
b6e7192f SS |
1546 | return 0; |
1547 | ||
40f4af28 | 1548 | gen_var_ref (ax, value, sym.symbol); |
b6e7192f | 1549 | |
400c6af0 SS |
1550 | if (value->optimized_out) |
1551 | error (_("`%s' has been optimized out, cannot use"), | |
987012b8 | 1552 | sym.symbol->print_name ()); |
400c6af0 | 1553 | |
b6e7192f SS |
1554 | return 1; |
1555 | } | |
1556 | ||
1557 | ||
1558 | static int | |
6661ad48 | 1559 | gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value, |
caaece0e | 1560 | struct type *type, const char *field) |
b6e7192f | 1561 | { |
78134374 | 1562 | switch (type->code ()) |
b6e7192f SS |
1563 | { |
1564 | case TYPE_CODE_STRUCT: | |
1565 | case TYPE_CODE_UNION: | |
6661ad48 | 1566 | return gen_struct_elt_for_reference (ax, value, type, field); |
b6e7192f SS |
1567 | break; |
1568 | case TYPE_CODE_NAMESPACE: | |
6661ad48 | 1569 | return gen_namespace_elt (ax, value, type, field); |
b6e7192f SS |
1570 | break; |
1571 | default: | |
1572 | internal_error (__FILE__, __LINE__, | |
1573 | _("non-aggregate type in gen_aggregate_elt_ref")); | |
1574 | } | |
1575 | ||
1576 | return 0; | |
1577 | } | |
c906108c | 1578 | |
c906108c | 1579 | \f |
c5aa993b | 1580 | |
e2803273 TT |
1581 | namespace expr |
1582 | { | |
1583 | ||
1584 | void | |
1585 | operation::generate_ax (struct expression *exp, | |
1586 | struct agent_expr *ax, | |
1587 | struct axs_value *value, | |
1588 | struct type *cast_type) | |
1589 | { | |
1590 | if (constant_p ()) | |
1591 | { | |
1592 | struct value *v = evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS); | |
1593 | ax_const_l (ax, value_as_long (v)); | |
1594 | value->kind = axs_rvalue; | |
1595 | value->type = check_typedef (value_type (v)); | |
1596 | } | |
1597 | else | |
1598 | { | |
1599 | do_generate_ax (exp, ax, value, cast_type); | |
1600 | if (cast_type != nullptr) | |
1601 | gen_cast (ax, value, cast_type); | |
1602 | } | |
1603 | } | |
1604 | ||
d5ab122c TT |
1605 | void |
1606 | scope_operation::do_generate_ax (struct expression *exp, | |
1607 | struct agent_expr *ax, | |
1608 | struct axs_value *value, | |
1609 | struct type *cast_type) | |
1610 | { | |
1611 | struct type *type = std::get<0> (m_storage); | |
1612 | const std::string &name = std::get<1> (m_storage); | |
1613 | int found = gen_aggregate_elt_ref (ax, value, type, name.c_str ()); | |
1614 | if (!found) | |
1615 | error (_("There is no field named %s"), name.c_str ()); | |
1616 | } | |
1617 | ||
d336c29e TT |
1618 | void |
1619 | long_const_operation::do_generate_ax (struct expression *exp, | |
1620 | struct agent_expr *ax, | |
1621 | struct axs_value *value, | |
1622 | struct type *cast_type) | |
1623 | { | |
1624 | gen_int_literal (ax, value, std::get<1> (m_storage), | |
1625 | std::get<0> (m_storage)); | |
1626 | } | |
1627 | ||
0c8effa3 TT |
1628 | void |
1629 | var_msym_value_operation::do_generate_ax (struct expression *exp, | |
1630 | struct agent_expr *ax, | |
1631 | struct axs_value *value, | |
1632 | struct type *cast_type) | |
1633 | { | |
9c79936b TT |
1634 | const bound_minimal_symbol &b = std::get<0> (m_storage); |
1635 | gen_msym_var_ref (ax, value, b.minsym, b.objfile); | |
0c8effa3 TT |
1636 | |
1637 | if (value->type->code () == TYPE_CODE_ERROR) | |
1638 | { | |
1639 | if (cast_type == nullptr) | |
9c79936b | 1640 | error_unknown_type (b.minsym->linkage_name ()); |
0c8effa3 TT |
1641 | value->type = cast_type; |
1642 | } | |
1643 | } | |
1644 | ||
55bdbff8 TT |
1645 | void |
1646 | register_operation::do_generate_ax (struct expression *exp, | |
1647 | struct agent_expr *ax, | |
1648 | struct axs_value *value, | |
1649 | struct type *cast_type) | |
1650 | { | |
1651 | const char *name = std::get<0> (m_storage).c_str (); | |
1652 | int len = std::get<0> (m_storage).size (); | |
1653 | int reg; | |
1654 | ||
1655 | reg = user_reg_map_name_to_regnum (ax->gdbarch, name, len); | |
1656 | if (reg == -1) | |
1657 | internal_error (__FILE__, __LINE__, | |
1658 | _("Register $%s not available"), name); | |
1659 | /* No support for tracing user registers yet. */ | |
1660 | if (reg >= gdbarch_num_cooked_regs (ax->gdbarch)) | |
1661 | error (_("'%s' is a user-register; " | |
1662 | "GDB cannot yet trace user-register contents."), | |
1663 | name); | |
1664 | value->kind = axs_lvalue_register; | |
1665 | value->u.reg = reg; | |
1666 | value->type = register_type (ax->gdbarch, reg); | |
1667 | } | |
1668 | ||
e6e01e16 TT |
1669 | void |
1670 | internalvar_operation::do_generate_ax (struct expression *exp, | |
1671 | struct agent_expr *ax, | |
1672 | struct axs_value *value, | |
1673 | struct type *cast_type) | |
1674 | { | |
1675 | struct internalvar *var = std::get<0> (m_storage); | |
1676 | const char *name = internalvar_name (var); | |
1677 | struct trace_state_variable *tsv; | |
1678 | ||
1679 | tsv = find_trace_state_variable (name); | |
1680 | if (tsv) | |
1681 | { | |
1682 | ax_tsv (ax, aop_getv, tsv->number); | |
1683 | if (ax->tracing) | |
1684 | ax_tsv (ax, aop_tracev, tsv->number); | |
1685 | /* Trace state variables are always 64-bit integers. */ | |
1686 | value->kind = axs_rvalue; | |
1687 | value->type = builtin_type (ax->gdbarch)->builtin_long_long; | |
1688 | } | |
1689 | else if (! compile_internalvar_to_ax (var, ax, value)) | |
1690 | error (_("$%s is not a trace state variable; GDB agent " | |
1691 | "expressions cannot use convenience variables."), name); | |
1692 | } | |
1693 | ||
9186293f TT |
1694 | void |
1695 | ternop_cond_operation::do_generate_ax (struct expression *exp, | |
1696 | struct agent_expr *ax, | |
1697 | struct axs_value *value, | |
1698 | struct type *cast_type) | |
1699 | { | |
1700 | struct axs_value value1, value2, value3; | |
1701 | int if1, end; | |
1702 | ||
1703 | std::get<0> (m_storage)->generate_ax (exp, ax, &value1); | |
1704 | gen_usual_unary (ax, &value1); | |
1705 | /* For (A ? B : C), it's easiest to generate subexpression | |
1706 | bytecodes in order, but if_goto jumps on true, so we invert | |
1707 | the sense of A. Then we can do B by dropping through, and | |
1708 | jump to do C. */ | |
1709 | gen_logical_not (ax, &value1, builtin_type (ax->gdbarch)->builtin_int); | |
1710 | if1 = ax_goto (ax, aop_if_goto); | |
1711 | std::get<1> (m_storage)->generate_ax (exp, ax, &value2); | |
1712 | gen_usual_unary (ax, &value2); | |
1713 | end = ax_goto (ax, aop_goto); | |
1714 | ax_label (ax, if1, ax->len); | |
1715 | std::get<2> (m_storage)->generate_ax (exp, ax, &value3); | |
1716 | gen_usual_unary (ax, &value3); | |
1717 | ax_label (ax, end, ax->len); | |
1718 | /* This is arbitrary - what if B and C are incompatible types? */ | |
1719 | value->type = value2.type; | |
1720 | value->kind = value2.kind; | |
1721 | } | |
1722 | ||
d4eff4c1 TT |
1723 | /* Generate code for GDB's magical `repeat' operator. |
1724 | LVALUE @ INT creates an array INT elements long, and whose elements | |
1725 | have the same type as LVALUE, located in memory so that LVALUE is | |
1726 | its first element. For example, argv[0]@argc gives you the array | |
1727 | of command-line arguments. | |
1728 | ||
1729 | Unfortunately, because we have to know the types before we actually | |
1730 | have a value for the expression, we can't implement this perfectly | |
1731 | without changing the type system, having values that occupy two | |
1732 | stack slots, doing weird things with sizeof, etc. So we require | |
1733 | the right operand to be a constant expression. */ | |
1734 | void | |
1735 | repeat_operation::do_generate_ax (struct expression *exp, | |
1736 | struct agent_expr *ax, | |
1737 | struct axs_value *value, | |
1738 | struct type *cast_type) | |
1739 | { | |
1740 | struct axs_value value1; | |
1741 | ||
1742 | /* We don't want to turn this into an rvalue, so no conversions | |
1743 | here. */ | |
1744 | std::get<0> (m_storage)->generate_ax (exp, ax, &value1); | |
1745 | if (value1.kind != axs_lvalue_memory) | |
1746 | error (_("Left operand of `@' must be an object in memory.")); | |
1747 | ||
1748 | /* Evaluate the length; it had better be a constant. */ | |
1749 | if (!std::get<1> (m_storage)->constant_p ()) | |
1750 | error (_("Right operand of `@' must be a " | |
1751 | "constant, in agent expressions.")); | |
1752 | ||
1753 | struct value *v | |
1754 | = std::get<1> (m_storage)->evaluate (nullptr, exp, | |
1755 | EVAL_AVOID_SIDE_EFFECTS); | |
1756 | if (value_type (v)->code () != TYPE_CODE_INT) | |
1757 | error (_("Right operand of `@' must be an integer.")); | |
1758 | int length = value_as_long (v); | |
1759 | if (length <= 0) | |
1760 | error (_("Right operand of `@' must be positive.")); | |
1761 | ||
1762 | /* The top of the stack is already the address of the object, so | |
1763 | all we need to do is frob the type of the lvalue. */ | |
1764 | /* FIXME-type-allocation: need a way to free this type when we are | |
1765 | done with it. */ | |
1766 | struct type *array | |
1767 | = lookup_array_range_type (value1.type, 0, length - 1); | |
1768 | ||
1769 | value->kind = axs_lvalue_memory; | |
1770 | value->type = array; | |
1771 | } | |
1772 | ||
ae64ba58 TT |
1773 | void |
1774 | comma_operation::do_generate_ax (struct expression *exp, | |
1775 | struct agent_expr *ax, | |
1776 | struct axs_value *value, | |
1777 | struct type *cast_type) | |
1778 | { | |
1779 | /* Note that we need to be a little subtle about generating code | |
1780 | for comma. In C, we can do some optimizations here because | |
1781 | we know the left operand is only being evaluated for effect. | |
1782 | However, if the tracing kludge is in effect, then we always | |
1783 | need to evaluate the left hand side fully, so that all the | |
1784 | variables it mentions get traced. */ | |
1785 | struct axs_value value1; | |
1786 | std::get<0> (m_storage)->generate_ax (exp, ax, &value1); | |
1787 | /* Don't just dispose of the left operand. We might be tracing, | |
1788 | in which case we want to emit code to trace it if it's an | |
1789 | lvalue. */ | |
1790 | gen_traced_pop (ax, &value1); | |
1791 | std::get<1> (m_storage)->generate_ax (exp, ax, value); | |
1792 | /* It's the consumer's responsibility to trace the right operand. */ | |
1793 | } | |
1794 | ||
85d23bda TT |
1795 | void |
1796 | unop_sizeof_operation::do_generate_ax (struct expression *exp, | |
1797 | struct agent_expr *ax, | |
1798 | struct axs_value *value, | |
1799 | struct type *cast_type) | |
1800 | { | |
1801 | /* We don't care about the value of the operand expression; we only | |
1802 | care about its type. However, in the current arrangement, the | |
1803 | only way to find an expression's type is to generate code for it. | |
1804 | So we generate code for the operand, and then throw it away, | |
1805 | replacing it with code that simply pushes its size. */ | |
1806 | int start = ax->len; | |
1807 | ||
1808 | std::get<0> (m_storage)->generate_ax (exp, ax, value); | |
1809 | ||
1810 | /* Throw away the code we just generated. */ | |
1811 | ax->len = start; | |
1812 | ||
1813 | ax_const_l (ax, TYPE_LENGTH (value->type)); | |
1814 | value->kind = axs_rvalue; | |
1815 | value->type = builtin_type (ax->gdbarch)->builtin_int; | |
1816 | } | |
1817 | ||
cbc18219 | 1818 | void |
165a813a TT |
1819 | unop_cast_operation::do_generate_ax (struct expression *exp, |
1820 | struct agent_expr *ax, | |
1821 | struct axs_value *value, | |
1822 | struct type *cast_type) | |
1823 | { | |
1824 | std::get<0> (m_storage)->generate_ax (exp, ax, value, | |
1825 | std::get<1> (m_storage)); | |
1826 | } | |
1827 | ||
1828 | void | |
cbc18219 TT |
1829 | unop_memval_operation::do_generate_ax (struct expression *exp, |
1830 | struct agent_expr *ax, | |
1831 | struct axs_value *value, | |
1832 | struct type *cast_type) | |
1833 | { | |
1834 | std::get<0> (m_storage)->generate_ax (exp, ax, value); | |
1835 | /* If we have an axs_rvalue or an axs_lvalue_memory, then we | |
1836 | already have the right value on the stack. For | |
1837 | axs_lvalue_register, we must convert. */ | |
1838 | if (value->kind == axs_lvalue_register) | |
1839 | require_rvalue (ax, value); | |
1840 | ||
1841 | value->type = std::get<1> (m_storage); | |
1842 | value->kind = axs_lvalue_memory; | |
1843 | } | |
1844 | ||
1845 | void | |
1846 | unop_memval_type_operation::do_generate_ax (struct expression *exp, | |
1847 | struct agent_expr *ax, | |
1848 | struct axs_value *value, | |
1849 | struct type *cast_type) | |
1850 | { | |
1851 | struct value *val | |
1852 | = std::get<0> (m_storage)->evaluate (nullptr, exp, | |
1853 | EVAL_AVOID_SIDE_EFFECTS); | |
1854 | struct type *type = value_type (val); | |
1855 | ||
1856 | std::get<1> (m_storage)->generate_ax (exp, ax, value); | |
1857 | ||
1858 | /* If we have an axs_rvalue or an axs_lvalue_memory, then we | |
1859 | already have the right value on the stack. For | |
1860 | axs_lvalue_register, we must convert. */ | |
1861 | if (value->kind == axs_lvalue_register) | |
1862 | require_rvalue (ax, value); | |
1863 | ||
1864 | value->type = type; | |
1865 | value->kind = axs_lvalue_memory; | |
1866 | } | |
1867 | ||
f6b42326 TT |
1868 | void |
1869 | op_this_operation::do_generate_ax (struct expression *exp, | |
1870 | struct agent_expr *ax, | |
1871 | struct axs_value *value, | |
1872 | struct type *cast_type) | |
1873 | { | |
1874 | struct symbol *sym, *func; | |
1875 | const struct block *b; | |
1876 | const struct language_defn *lang; | |
1877 | ||
1878 | b = block_for_pc (ax->scope); | |
1879 | func = block_linkage_function (b); | |
1880 | lang = language_def (func->language ()); | |
1881 | ||
1882 | sym = lookup_language_this (lang, b).symbol; | |
1883 | if (!sym) | |
1884 | error (_("no `%s' found"), lang->name_of_this ()); | |
1885 | ||
1886 | gen_var_ref (ax, value, sym); | |
1887 | ||
1888 | if (value->optimized_out) | |
1889 | error (_("`%s' has been optimized out, cannot use"), | |
1890 | sym->print_name ()); | |
1891 | } | |
1892 | ||
40786782 TT |
1893 | void |
1894 | assign_operation::do_generate_ax (struct expression *exp, | |
1895 | struct agent_expr *ax, | |
1896 | struct axs_value *value, | |
1897 | struct type *cast_type) | |
1898 | { | |
1899 | operation *subop = std::get<0> (m_storage).get (); | |
1900 | if (subop->opcode () != OP_INTERNALVAR) | |
1901 | error (_("May only assign to trace state variables")); | |
1902 | ||
1903 | internalvar_operation *ivarop | |
1904 | = dynamic_cast<internalvar_operation *> (subop); | |
1905 | gdb_assert (ivarop != nullptr); | |
1906 | ||
1907 | const char *name = internalvar_name (ivarop->get_internalvar ()); | |
1908 | struct trace_state_variable *tsv; | |
1909 | ||
1910 | std::get<1> (m_storage)->generate_ax (exp, ax, value); | |
1911 | tsv = find_trace_state_variable (name); | |
1912 | if (tsv) | |
1913 | { | |
1914 | ax_tsv (ax, aop_setv, tsv->number); | |
1915 | if (ax->tracing) | |
1916 | ax_tsv (ax, aop_tracev, tsv->number); | |
1917 | } | |
e5946e16 TT |
1918 | else |
1919 | error (_("$%s is not a trace state variable, " | |
1920 | "may not assign to it"), name); | |
1921 | } | |
1922 | ||
1923 | void | |
1924 | assign_modify_operation::do_generate_ax (struct expression *exp, | |
1925 | struct agent_expr *ax, | |
1926 | struct axs_value *value, | |
1927 | struct type *cast_type) | |
1928 | { | |
1929 | operation *subop = std::get<1> (m_storage).get (); | |
1930 | if (subop->opcode () != OP_INTERNALVAR) | |
1931 | error (_("May only assign to trace state variables")); | |
1932 | ||
1933 | internalvar_operation *ivarop | |
1934 | = dynamic_cast<internalvar_operation *> (subop); | |
1935 | gdb_assert (ivarop != nullptr); | |
1936 | ||
1937 | const char *name = internalvar_name (ivarop->get_internalvar ()); | |
1938 | struct trace_state_variable *tsv; | |
1939 | ||
1940 | tsv = find_trace_state_variable (name); | |
1941 | if (tsv) | |
1942 | { | |
1943 | /* The tsv will be the left half of the binary operation. */ | |
1944 | ax_tsv (ax, aop_getv, tsv->number); | |
1945 | if (ax->tracing) | |
1946 | ax_tsv (ax, aop_tracev, tsv->number); | |
1947 | /* Trace state variables are always 64-bit integers. */ | |
1948 | struct axs_value value1, value2; | |
1949 | value1.kind = axs_rvalue; | |
1950 | value1.type = builtin_type (ax->gdbarch)->builtin_long_long; | |
1951 | /* Now do right half of expression. */ | |
1952 | std::get<2> (m_storage)->generate_ax (exp, ax, &value2); | |
1953 | gen_expr_binop_rest (exp, std::get<0> (m_storage), ax, | |
1954 | value, &value1, &value2); | |
1955 | /* We have a result of the binary op, set the tsv. */ | |
1956 | ax_tsv (ax, aop_setv, tsv->number); | |
1957 | if (ax->tracing) | |
1958 | ax_tsv (ax, aop_tracev, tsv->number); | |
1959 | } | |
40786782 TT |
1960 | else |
1961 | error (_("$%s is not a trace state variable, " | |
1962 | "may not assign to it"), name); | |
1963 | } | |
1964 | ||
292382f4 TT |
1965 | void |
1966 | unop_cast_type_operation::do_generate_ax (struct expression *exp, | |
1967 | struct agent_expr *ax, | |
1968 | struct axs_value *value, | |
1969 | struct type *cast_type) | |
1970 | { | |
1971 | struct value *val | |
1972 | = std::get<0> (m_storage)->evaluate (nullptr, exp, | |
1973 | EVAL_AVOID_SIDE_EFFECTS); | |
1974 | std::get<1> (m_storage)->generate_ax (exp, ax, value, value_type (val)); | |
1975 | } | |
1976 | ||
e82a5afc TT |
1977 | void |
1978 | var_value_operation::do_generate_ax (struct expression *exp, | |
1979 | struct agent_expr *ax, | |
1980 | struct axs_value *value, | |
1981 | struct type *cast_type) | |
1982 | { | |
1983 | gen_var_ref (ax, value, std::get<0> (m_storage)); | |
1984 | ||
1985 | if (value->optimized_out) | |
1986 | error (_("`%s' has been optimized out, cannot use"), | |
1987 | std::get<0> (m_storage)->print_name ()); | |
1988 | ||
1989 | if (value->type->code () == TYPE_CODE_ERROR) | |
1990 | { | |
1991 | if (cast_type == nullptr) | |
1992 | error_unknown_type (std::get<0> (m_storage)->print_name ()); | |
1993 | value->type = cast_type; | |
1994 | } | |
1995 | } | |
1996 | ||
5019124b TT |
1997 | void |
1998 | logical_and_operation::do_generate_ax (struct expression *exp, | |
1999 | struct agent_expr *ax, | |
2000 | struct axs_value *value, | |
2001 | struct type *cast_type) | |
2002 | { | |
2003 | struct axs_value value1, value2; | |
2004 | int if1, go1, if2, go2, end; | |
2005 | ||
2006 | /* Generate the obvious sequence of tests and jumps. */ | |
2007 | std::get<0> (m_storage)->generate_ax (exp, ax, &value1); | |
2008 | gen_usual_unary (ax, &value1); | |
2009 | if1 = ax_goto (ax, aop_if_goto); | |
2010 | go1 = ax_goto (ax, aop_goto); | |
2011 | ax_label (ax, if1, ax->len); | |
2012 | std::get<1> (m_storage)->generate_ax (exp, ax, &value2); | |
2013 | gen_usual_unary (ax, &value2); | |
2014 | if2 = ax_goto (ax, aop_if_goto); | |
2015 | go2 = ax_goto (ax, aop_goto); | |
2016 | ax_label (ax, if2, ax->len); | |
2017 | ax_const_l (ax, 1); | |
2018 | end = ax_goto (ax, aop_goto); | |
2019 | ax_label (ax, go1, ax->len); | |
2020 | ax_label (ax, go2, ax->len); | |
2021 | ax_const_l (ax, 0); | |
2022 | ax_label (ax, end, ax->len); | |
2023 | value->kind = axs_rvalue; | |
2024 | value->type = builtin_type (ax->gdbarch)->builtin_int; | |
2025 | } | |
2026 | ||
2027 | void | |
2028 | logical_or_operation::do_generate_ax (struct expression *exp, | |
2029 | struct agent_expr *ax, | |
2030 | struct axs_value *value, | |
2031 | struct type *cast_type) | |
2032 | { | |
2033 | struct axs_value value1, value2; | |
2034 | int if1, if2, end; | |
2035 | ||
2036 | /* Generate the obvious sequence of tests and jumps. */ | |
2037 | std::get<0> (m_storage)->generate_ax (exp, ax, &value1); | |
2038 | gen_usual_unary (ax, &value1); | |
2039 | if1 = ax_goto (ax, aop_if_goto); | |
2040 | std::get<1> (m_storage)->generate_ax (exp, ax, &value2); | |
2041 | gen_usual_unary (ax, &value2); | |
2042 | if2 = ax_goto (ax, aop_if_goto); | |
2043 | ax_const_l (ax, 0); | |
2044 | end = ax_goto (ax, aop_goto); | |
2045 | ax_label (ax, if1, ax->len); | |
2046 | ax_label (ax, if2, ax->len); | |
2047 | ax_const_l (ax, 1); | |
2048 | ax_label (ax, end, ax->len); | |
2049 | value->kind = axs_rvalue; | |
2050 | value->type = builtin_type (ax->gdbarch)->builtin_int; | |
2051 | } | |
2052 | ||
e2803273 TT |
2053 | } |
2054 | ||
f61e138d SS |
2055 | /* This handles the middle-to-right-side of code generation for binary |
2056 | expressions, which is shared between regular binary operations and | |
2057 | assign-modify (+= and friends) expressions. */ | |
2058 | ||
2059 | static void | |
2060 | gen_expr_binop_rest (struct expression *exp, | |
e18c58f2 | 2061 | enum exp_opcode op, |
f61e138d SS |
2062 | struct agent_expr *ax, struct axs_value *value, |
2063 | struct axs_value *value1, struct axs_value *value2) | |
2064 | { | |
6661ad48 | 2065 | struct type *int_type = builtin_type (ax->gdbarch)->builtin_int; |
3b11a015 | 2066 | |
6661ad48 SM |
2067 | gen_usual_unary (ax, value2); |
2068 | gen_usual_arithmetic (ax, value1, value2); | |
f61e138d SS |
2069 | switch (op) |
2070 | { | |
2071 | case BINOP_ADD: | |
78134374 | 2072 | if (value1->type->code () == TYPE_CODE_INT |
b97aedf3 | 2073 | && pointer_type (value2->type)) |
f61e138d SS |
2074 | { |
2075 | /* Swap the values and proceed normally. */ | |
2076 | ax_simple (ax, aop_swap); | |
2077 | gen_ptradd (ax, value, value2, value1); | |
2078 | } | |
b97aedf3 | 2079 | else if (pointer_type (value1->type) |
78134374 | 2080 | && value2->type->code () == TYPE_CODE_INT) |
f61e138d SS |
2081 | gen_ptradd (ax, value, value1, value2); |
2082 | else | |
2083 | gen_binop (ax, value, value1, value2, | |
2084 | aop_add, aop_add, 1, "addition"); | |
2085 | break; | |
2086 | case BINOP_SUB: | |
b97aedf3 | 2087 | if (pointer_type (value1->type) |
78134374 | 2088 | && value2->type->code () == TYPE_CODE_INT) |
f61e138d | 2089 | gen_ptrsub (ax,value, value1, value2); |
b97aedf3 SS |
2090 | else if (pointer_type (value1->type) |
2091 | && pointer_type (value2->type)) | |
f61e138d SS |
2092 | /* FIXME --- result type should be ptrdiff_t */ |
2093 | gen_ptrdiff (ax, value, value1, value2, | |
6661ad48 | 2094 | builtin_type (ax->gdbarch)->builtin_long); |
f61e138d SS |
2095 | else |
2096 | gen_binop (ax, value, value1, value2, | |
2097 | aop_sub, aop_sub, 1, "subtraction"); | |
2098 | break; | |
2099 | case BINOP_MUL: | |
2100 | gen_binop (ax, value, value1, value2, | |
2101 | aop_mul, aop_mul, 1, "multiplication"); | |
2102 | break; | |
2103 | case BINOP_DIV: | |
2104 | gen_binop (ax, value, value1, value2, | |
2105 | aop_div_signed, aop_div_unsigned, 1, "division"); | |
2106 | break; | |
2107 | case BINOP_REM: | |
2108 | gen_binop (ax, value, value1, value2, | |
2109 | aop_rem_signed, aop_rem_unsigned, 1, "remainder"); | |
2110 | break; | |
948103cf SS |
2111 | case BINOP_LSH: |
2112 | gen_binop (ax, value, value1, value2, | |
2113 | aop_lsh, aop_lsh, 1, "left shift"); | |
2114 | break; | |
2115 | case BINOP_RSH: | |
2116 | gen_binop (ax, value, value1, value2, | |
2117 | aop_rsh_signed, aop_rsh_unsigned, 1, "right shift"); | |
2118 | break; | |
f61e138d | 2119 | case BINOP_SUBSCRIPT: |
be636754 PA |
2120 | { |
2121 | struct type *type; | |
2122 | ||
2123 | if (binop_types_user_defined_p (op, value1->type, value2->type)) | |
2124 | { | |
3e43a32a MS |
2125 | error (_("cannot subscript requested type: " |
2126 | "cannot call user defined functions")); | |
be636754 PA |
2127 | } |
2128 | else | |
2129 | { | |
2130 | /* If the user attempts to subscript something that is not | |
2131 | an array or pointer type (like a plain int variable for | |
2132 | example), then report this as an error. */ | |
2133 | type = check_typedef (value1->type); | |
78134374 SM |
2134 | if (type->code () != TYPE_CODE_ARRAY |
2135 | && type->code () != TYPE_CODE_PTR) | |
be636754 | 2136 | { |
7d93a1e0 | 2137 | if (type->name ()) |
be636754 | 2138 | error (_("cannot subscript something of type `%s'"), |
7d93a1e0 | 2139 | type->name ()); |
be636754 PA |
2140 | else |
2141 | error (_("cannot subscript requested type")); | |
2142 | } | |
2143 | } | |
2144 | ||
5d5b640e | 2145 | if (!is_integral_type (value2->type)) |
3e43a32a MS |
2146 | error (_("Argument to arithmetic operation " |
2147 | "not a number or boolean.")); | |
5d5b640e | 2148 | |
be636754 | 2149 | gen_ptradd (ax, value, value1, value2); |
053f8057 | 2150 | gen_deref (value); |
be636754 PA |
2151 | break; |
2152 | } | |
f61e138d SS |
2153 | case BINOP_BITWISE_AND: |
2154 | gen_binop (ax, value, value1, value2, | |
2155 | aop_bit_and, aop_bit_and, 0, "bitwise and"); | |
2156 | break; | |
2157 | ||
2158 | case BINOP_BITWISE_IOR: | |
2159 | gen_binop (ax, value, value1, value2, | |
2160 | aop_bit_or, aop_bit_or, 0, "bitwise or"); | |
2161 | break; | |
2162 | ||
2163 | case BINOP_BITWISE_XOR: | |
2164 | gen_binop (ax, value, value1, value2, | |
2165 | aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or"); | |
2166 | break; | |
2167 | ||
2168 | case BINOP_EQUAL: | |
3b11a015 | 2169 | gen_equal (ax, value, value1, value2, int_type); |
f61e138d SS |
2170 | break; |
2171 | ||
2172 | case BINOP_NOTEQUAL: | |
3b11a015 SS |
2173 | gen_equal (ax, value, value1, value2, int_type); |
2174 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2175 | break; |
2176 | ||
2177 | case BINOP_LESS: | |
3b11a015 | 2178 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2179 | break; |
2180 | ||
2181 | case BINOP_GTR: | |
2182 | ax_simple (ax, aop_swap); | |
3b11a015 | 2183 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2184 | break; |
2185 | ||
2186 | case BINOP_LEQ: | |
2187 | ax_simple (ax, aop_swap); | |
3b11a015 SS |
2188 | gen_less (ax, value, value1, value2, int_type); |
2189 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2190 | break; |
2191 | ||
2192 | case BINOP_GEQ: | |
3b11a015 SS |
2193 | gen_less (ax, value, value1, value2, int_type); |
2194 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2195 | break; |
2196 | ||
2197 | default: | |
2198 | /* We should only list operators in the outer case statement | |
2199 | that we actually handle in the inner case statement. */ | |
2200 | internal_error (__FILE__, __LINE__, | |
2201 | _("gen_expr: op case sets don't match")); | |
2202 | } | |
2203 | } | |
e18c58f2 | 2204 | |
75f9892d TT |
2205 | /* A helper function that emits a binop based on two operations. */ |
2206 | ||
2207 | void | |
2208 | gen_expr_binop (struct expression *exp, | |
2209 | enum exp_opcode op, | |
2210 | expr::operation *lhs, expr::operation *rhs, | |
2211 | struct agent_expr *ax, struct axs_value *value) | |
2212 | { | |
2213 | struct axs_value value1, value2; | |
2214 | ||
2215 | lhs->generate_ax (exp, ax, &value1); | |
2216 | gen_usual_unary (ax, &value1); | |
2217 | rhs->generate_ax (exp, ax, &value2); | |
2218 | gen_expr_binop_rest (exp, op, ax, value, &value1, &value2); | |
2219 | } | |
2220 | ||
2221 | /* A helper function that emits a structop based on an operation and a | |
2222 | member name. */ | |
2223 | ||
2224 | void | |
2225 | gen_expr_structop (struct expression *exp, | |
2226 | enum exp_opcode op, | |
2227 | expr::operation *lhs, | |
2228 | const char *name, | |
2229 | struct agent_expr *ax, struct axs_value *value) | |
2230 | { | |
2231 | lhs->generate_ax (exp, ax, value); | |
2232 | if (op == STRUCTOP_STRUCT) | |
2233 | gen_struct_ref (ax, value, name, ".", "structure or union"); | |
2234 | else if (op == STRUCTOP_PTR) | |
2235 | gen_struct_ref (ax, value, name, "->", | |
2236 | "pointer to a structure or union"); | |
2237 | else | |
2238 | /* If this `if' chain doesn't handle it, then the case list | |
2239 | shouldn't mention it, and we shouldn't be here. */ | |
2240 | internal_error (__FILE__, __LINE__, | |
2241 | _("gen_expr: unhandled struct case")); | |
2242 | } | |
9307d17b TT |
2243 | |
2244 | /* A helper function that emits a unary operation. */ | |
2245 | ||
2246 | void | |
2247 | gen_expr_unop (struct expression *exp, | |
2248 | enum exp_opcode op, | |
2249 | expr::operation *lhs, | |
2250 | struct agent_expr *ax, struct axs_value *value) | |
2251 | { | |
2252 | struct axs_value value1, value2; | |
2253 | ||
2254 | switch (op) | |
2255 | { | |
2256 | case UNOP_NEG: | |
2257 | gen_int_literal (ax, &value1, 0, | |
2258 | builtin_type (ax->gdbarch)->builtin_int); | |
2259 | gen_usual_unary (ax, &value1); /* shouldn't do much */ | |
2260 | lhs->generate_ax (exp, ax, &value2); | |
2261 | gen_usual_unary (ax, &value2); | |
2262 | gen_usual_arithmetic (ax, &value1, &value2); | |
2263 | gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation"); | |
2264 | break; | |
2265 | ||
2266 | case UNOP_PLUS: | |
2267 | /* + FOO is equivalent to 0 + FOO, which can be optimized. */ | |
2268 | lhs->generate_ax (exp, ax, value); | |
2269 | gen_usual_unary (ax, value); | |
2270 | break; | |
2271 | ||
2272 | case UNOP_LOGICAL_NOT: | |
2273 | lhs->generate_ax (exp, ax, value); | |
2274 | gen_usual_unary (ax, value); | |
2275 | gen_logical_not (ax, value, builtin_type (ax->gdbarch)->builtin_int); | |
2276 | break; | |
2277 | ||
2278 | case UNOP_COMPLEMENT: | |
2279 | lhs->generate_ax (exp, ax, value); | |
2280 | gen_usual_unary (ax, value); | |
2281 | gen_integral_promotions (ax, value); | |
2282 | gen_complement (ax, value); | |
2283 | break; | |
2284 | ||
876469ff TT |
2285 | case UNOP_IND: |
2286 | lhs->generate_ax (exp, ax, value); | |
2287 | gen_usual_unary (ax, value); | |
2288 | if (!pointer_type (value->type)) | |
2289 | error (_("Argument of unary `*' is not a pointer.")); | |
2290 | gen_deref (value); | |
2291 | break; | |
2292 | ||
14aff815 TT |
2293 | case UNOP_ADDR: |
2294 | lhs->generate_ax (exp, ax, value); | |
2295 | gen_address_of (value); | |
2296 | break; | |
2297 | ||
9307d17b TT |
2298 | default: |
2299 | gdb_assert_not_reached ("invalid case in gen_expr_unop"); | |
2300 | } | |
2301 | } | |
2302 | ||
c906108c | 2303 | \f |
c5aa993b | 2304 | |
0936ad1d SS |
2305 | /* Given a single variable and a scope, generate bytecodes to trace |
2306 | its value. This is for use in situations where we have only a | |
2307 | variable's name, and no parsed expression; for instance, when the | |
2308 | name comes from a list of local variables of a function. */ | |
2309 | ||
833177a4 | 2310 | agent_expr_up |
400c6af0 | 2311 | gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch, |
92bc6a20 | 2312 | struct symbol *var, int trace_string) |
0936ad1d | 2313 | { |
833177a4 | 2314 | agent_expr_up ax (new agent_expr (gdbarch, scope)); |
0936ad1d SS |
2315 | struct axs_value value; |
2316 | ||
92bc6a20 TT |
2317 | ax->tracing = 1; |
2318 | ax->trace_string = trace_string; | |
40f4af28 | 2319 | gen_var_ref (ax.get (), &value, var); |
400c6af0 SS |
2320 | |
2321 | /* If there is no actual variable to trace, flag it by returning | |
2322 | an empty agent expression. */ | |
2323 | if (value.optimized_out) | |
833177a4 | 2324 | return agent_expr_up (); |
0936ad1d SS |
2325 | |
2326 | /* Make sure we record the final object, and get rid of it. */ | |
40f4af28 | 2327 | gen_traced_pop (ax.get (), &value); |
0936ad1d SS |
2328 | |
2329 | /* Oh, and terminate. */ | |
833177a4 | 2330 | ax_simple (ax.get (), aop_end); |
0936ad1d | 2331 | |
0936ad1d SS |
2332 | return ax; |
2333 | } | |
c5aa993b | 2334 | |
c906108c SS |
2335 | /* Generating bytecode from GDB expressions: driver */ |
2336 | ||
c906108c SS |
2337 | /* Given a GDB expression EXPR, return bytecode to trace its value. |
2338 | The result will use the `trace' and `trace_quick' bytecodes to | |
2339 | record the value of all memory touched by the expression. The | |
2340 | caller can then use the ax_reqs function to discover which | |
2341 | registers it relies upon. */ | |
833177a4 PA |
2342 | |
2343 | agent_expr_up | |
92bc6a20 TT |
2344 | gen_trace_for_expr (CORE_ADDR scope, struct expression *expr, |
2345 | int trace_string) | |
c906108c | 2346 | { |
833177a4 | 2347 | agent_expr_up ax (new agent_expr (expr->gdbarch, scope)); |
c906108c SS |
2348 | struct axs_value value; |
2349 | ||
92bc6a20 TT |
2350 | ax->tracing = 1; |
2351 | ax->trace_string = trace_string; | |
35c9c7ba | 2352 | value.optimized_out = 0; |
1eaebe02 | 2353 | expr->op->generate_ax (expr, ax.get (), &value); |
c906108c SS |
2354 | |
2355 | /* Make sure we record the final object, and get rid of it. */ | |
40f4af28 | 2356 | gen_traced_pop (ax.get (), &value); |
c906108c SS |
2357 | |
2358 | /* Oh, and terminate. */ | |
833177a4 | 2359 | ax_simple (ax.get (), aop_end); |
c906108c | 2360 | |
c906108c SS |
2361 | return ax; |
2362 | } | |
c906108c | 2363 | |
782b2b07 SS |
2364 | /* Given a GDB expression EXPR, return a bytecode sequence that will |
2365 | evaluate and return a result. The bytecodes will do a direct | |
2366 | evaluation, using the current data on the target, rather than | |
2367 | recording blocks of memory and registers for later use, as | |
2368 | gen_trace_for_expr does. The generated bytecode sequence leaves | |
2369 | the result of expression evaluation on the top of the stack. */ | |
2370 | ||
833177a4 | 2371 | agent_expr_up |
782b2b07 SS |
2372 | gen_eval_for_expr (CORE_ADDR scope, struct expression *expr) |
2373 | { | |
833177a4 | 2374 | agent_expr_up ax (new agent_expr (expr->gdbarch, scope)); |
782b2b07 SS |
2375 | struct axs_value value; |
2376 | ||
92bc6a20 | 2377 | ax->tracing = 0; |
35c9c7ba | 2378 | value.optimized_out = 0; |
1eaebe02 | 2379 | expr->op->generate_ax (expr, ax.get (), &value); |
782b2b07 | 2380 | |
833177a4 | 2381 | require_rvalue (ax.get (), &value); |
35c9c7ba | 2382 | |
782b2b07 | 2383 | /* Oh, and terminate. */ |
833177a4 | 2384 | ax_simple (ax.get (), aop_end); |
782b2b07 | 2385 | |
782b2b07 SS |
2386 | return ax; |
2387 | } | |
2388 | ||
833177a4 | 2389 | agent_expr_up |
92bc6a20 TT |
2390 | gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch, |
2391 | int trace_string) | |
6710bf39 | 2392 | { |
833177a4 | 2393 | agent_expr_up ax (new agent_expr (gdbarch, scope)); |
6710bf39 SS |
2394 | struct axs_value value; |
2395 | ||
92bc6a20 TT |
2396 | ax->tracing = 1; |
2397 | ax->trace_string = trace_string; | |
6710bf39 | 2398 | |
833177a4 | 2399 | gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope); |
6710bf39 SS |
2400 | |
2401 | /* Make sure we record the final object, and get rid of it. */ | |
40f4af28 | 2402 | gen_traced_pop (ax.get (), &value); |
6710bf39 SS |
2403 | |
2404 | /* Oh, and terminate. */ | |
833177a4 | 2405 | ax_simple (ax.get (), aop_end); |
6710bf39 | 2406 | |
6710bf39 SS |
2407 | return ax; |
2408 | } | |
2409 | ||
d3ce09f5 SS |
2410 | /* Given a collection of printf-style arguments, generate code to |
2411 | evaluate the arguments and pass everything to a special | |
2412 | bytecode. */ | |
2413 | ||
833177a4 | 2414 | agent_expr_up |
d3ce09f5 SS |
2415 | gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch, |
2416 | CORE_ADDR function, LONGEST channel, | |
741d92cf | 2417 | const char *format, int fmtlen, |
d3ce09f5 SS |
2418 | int nargs, struct expression **exprs) |
2419 | { | |
833177a4 | 2420 | agent_expr_up ax (new agent_expr (gdbarch, scope)); |
d3ce09f5 | 2421 | struct axs_value value; |
0e43993a | 2422 | int tem; |
d3ce09f5 | 2423 | |
92bc6a20 TT |
2424 | /* We're computing values, not doing side effects. */ |
2425 | ax->tracing = 0; | |
2426 | ||
d3ce09f5 SS |
2427 | /* Evaluate and push the args on the stack in reverse order, |
2428 | for simplicity of collecting them on the target side. */ | |
2429 | for (tem = nargs - 1; tem >= 0; --tem) | |
2430 | { | |
d3ce09f5 | 2431 | value.optimized_out = 0; |
1eaebe02 | 2432 | exprs[tem]->op->generate_ax (exprs[tem], ax.get (), &value); |
833177a4 | 2433 | require_rvalue (ax.get (), &value); |
d3ce09f5 SS |
2434 | } |
2435 | ||
2436 | /* Push function and channel. */ | |
833177a4 PA |
2437 | ax_const_l (ax.get (), channel); |
2438 | ax_const_l (ax.get (), function); | |
d3ce09f5 SS |
2439 | |
2440 | /* Issue the printf bytecode proper. */ | |
833177a4 PA |
2441 | ax_simple (ax.get (), aop_printf); |
2442 | ax_raw_byte (ax.get (), nargs); | |
2443 | ax_string (ax.get (), format, fmtlen); | |
d3ce09f5 SS |
2444 | |
2445 | /* And terminate. */ | |
833177a4 | 2446 | ax_simple (ax.get (), aop_end); |
d3ce09f5 SS |
2447 | |
2448 | return ax; | |
2449 | } | |
2450 | ||
c906108c | 2451 | static void |
6f937416 | 2452 | agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc) |
c906108c | 2453 | { |
bbc13ae3 | 2454 | const char *arg; |
92bc6a20 | 2455 | int trace_string = 0; |
c906108c | 2456 | |
34b536a8 HZ |
2457 | if (!eval) |
2458 | { | |
34b536a8 | 2459 | if (*exp == '/') |
dda83cd7 | 2460 | exp = decode_agent_options (exp, &trace_string); |
34b536a8 | 2461 | } |
3065dfb6 | 2462 | |
833177a4 PA |
2463 | agent_expr_up agent; |
2464 | ||
bbc13ae3 KS |
2465 | arg = exp; |
2466 | if (!eval && strcmp (arg, "$_ret") == 0) | |
6710bf39 | 2467 | { |
036e657b JB |
2468 | agent = gen_trace_for_return_address (pc, get_current_arch (), |
2469 | trace_string); | |
6710bf39 SS |
2470 | } |
2471 | else | |
2472 | { | |
4d01a485 | 2473 | expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0); |
833177a4 | 2474 | |
34b536a8 | 2475 | if (eval) |
92bc6a20 TT |
2476 | { |
2477 | gdb_assert (trace_string == 0); | |
036e657b | 2478 | agent = gen_eval_for_expr (pc, expr.get ()); |
92bc6a20 | 2479 | } |
34b536a8 | 2480 | else |
036e657b | 2481 | agent = gen_trace_for_expr (pc, expr.get (), trace_string); |
6710bf39 SS |
2482 | } |
2483 | ||
833177a4 PA |
2484 | ax_reqs (agent.get ()); |
2485 | ax_print (gdb_stdout, agent.get ()); | |
085dd6e6 JM |
2486 | |
2487 | /* It would be nice to call ax_reqs here to gather some general info | |
2488 | about the expression, and then print out the result. */ | |
c906108c | 2489 | |
c906108c SS |
2490 | dont_repeat (); |
2491 | } | |
782b2b07 | 2492 | |
782b2b07 | 2493 | static void |
f2fc3015 | 2494 | agent_command_1 (const char *exp, int eval) |
782b2b07 | 2495 | { |
782b2b07 SS |
2496 | /* We don't deal with overlay debugging at the moment. We need to |
2497 | think more carefully about this. If you copy this code into | |
2498 | another command, change the error message; the user shouldn't | |
2499 | have to know anything about agent expressions. */ | |
2500 | if (overlay_debugging) | |
2501 | error (_("GDB can't do agent expression translation with overlays.")); | |
2502 | ||
2503 | if (exp == 0) | |
2504 | error_no_arg (_("expression to translate")); | |
2505 | ||
34b536a8 HZ |
2506 | if (check_for_argument (&exp, "-at", sizeof ("-at") - 1)) |
2507 | { | |
2508 | struct linespec_result canonical; | |
34b536a8 | 2509 | |
a20714ff PA |
2510 | event_location_up location |
2511 | = new_linespec_location (&exp, symbol_name_match_type::WILD); | |
ffc2605c | 2512 | decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL, |
cafb3438 | 2513 | NULL, 0, &canonical, |
34b536a8 | 2514 | NULL, NULL); |
34b536a8 HZ |
2515 | exp = skip_spaces (exp); |
2516 | if (exp[0] == ',') | |
dda83cd7 | 2517 | { |
34b536a8 HZ |
2518 | exp++; |
2519 | exp = skip_spaces (exp); | |
2520 | } | |
6c5b2ebe PA |
2521 | for (const auto &lsal : canonical.lsals) |
2522 | for (const auto &sal : lsal.sals) | |
2523 | agent_eval_command_one (exp, eval, sal.pc); | |
34b536a8 HZ |
2524 | } |
2525 | else | |
2526 | agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ())); | |
782b2b07 | 2527 | |
782b2b07 SS |
2528 | dont_repeat (); |
2529 | } | |
34b536a8 HZ |
2530 | |
2531 | static void | |
4fd41b24 | 2532 | agent_command (const char *exp, int from_tty) |
34b536a8 HZ |
2533 | { |
2534 | agent_command_1 (exp, 0); | |
2535 | } | |
2536 | ||
2537 | /* Parse the given expression, compile it into an agent expression | |
2538 | that does direct evaluation, and display the resulting | |
2539 | expression. */ | |
2540 | ||
2541 | static void | |
4fd41b24 | 2542 | agent_eval_command (const char *exp, int from_tty) |
34b536a8 HZ |
2543 | { |
2544 | agent_command_1 (exp, 1); | |
2545 | } | |
2546 | ||
d3ce09f5 SS |
2547 | /* Parse the given expression, compile it into an agent expression |
2548 | that does a printf, and display the resulting expression. */ | |
2549 | ||
2550 | static void | |
4fd41b24 | 2551 | maint_agent_printf_command (const char *cmdrest, int from_tty) |
d3ce09f5 | 2552 | { |
d3ce09f5 | 2553 | struct frame_info *fi = get_current_frame (); /* need current scope */ |
bbc13ae3 | 2554 | const char *format_start, *format_end; |
d3ce09f5 SS |
2555 | |
2556 | /* We don't deal with overlay debugging at the moment. We need to | |
2557 | think more carefully about this. If you copy this code into | |
2558 | another command, change the error message; the user shouldn't | |
2559 | have to know anything about agent expressions. */ | |
2560 | if (overlay_debugging) | |
2561 | error (_("GDB can't do agent expression translation with overlays.")); | |
2562 | ||
4fd41b24 | 2563 | if (cmdrest == 0) |
d3ce09f5 SS |
2564 | error_no_arg (_("expression to translate")); |
2565 | ||
f1735a53 | 2566 | cmdrest = skip_spaces (cmdrest); |
d3ce09f5 SS |
2567 | |
2568 | if (*cmdrest++ != '"') | |
2569 | error (_("Must start with a format string.")); | |
2570 | ||
2571 | format_start = cmdrest; | |
2572 | ||
8e481c3b | 2573 | format_pieces fpieces (&cmdrest); |
d3ce09f5 SS |
2574 | |
2575 | format_end = cmdrest; | |
2576 | ||
2577 | if (*cmdrest++ != '"') | |
2578 | error (_("Bad format string, non-terminated '\"'.")); | |
2579 | ||
f1735a53 | 2580 | cmdrest = skip_spaces (cmdrest); |
d3ce09f5 SS |
2581 | |
2582 | if (*cmdrest != ',' && *cmdrest != 0) | |
2583 | error (_("Invalid argument syntax")); | |
2584 | ||
2585 | if (*cmdrest == ',') | |
2586 | cmdrest++; | |
f1735a53 | 2587 | cmdrest = skip_spaces (cmdrest); |
d3ce09f5 | 2588 | |
8e481c3b | 2589 | std::vector<struct expression *> argvec; |
d3ce09f5 SS |
2590 | while (*cmdrest != '\0') |
2591 | { | |
bbc13ae3 | 2592 | const char *cmd1; |
d3ce09f5 SS |
2593 | |
2594 | cmd1 = cmdrest; | |
4d01a485 | 2595 | expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1); |
8e481c3b | 2596 | argvec.push_back (expr.release ()); |
d3ce09f5 SS |
2597 | cmdrest = cmd1; |
2598 | if (*cmdrest == ',') | |
2599 | ++cmdrest; | |
2600 | /* else complain? */ | |
2601 | } | |
2602 | ||
2603 | ||
833177a4 PA |
2604 | agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (), |
2605 | 0, 0, | |
2606 | format_start, format_end - format_start, | |
8e481c3b | 2607 | argvec.size (), argvec.data ()); |
833177a4 PA |
2608 | ax_reqs (agent.get ()); |
2609 | ax_print (gdb_stdout, agent.get ()); | |
d3ce09f5 SS |
2610 | |
2611 | /* It would be nice to call ax_reqs here to gather some general info | |
2612 | about the expression, and then print out the result. */ | |
2613 | ||
d3ce09f5 SS |
2614 | dont_repeat (); |
2615 | } | |
c5aa993b | 2616 | |
c906108c SS |
2617 | /* Initialization code. */ |
2618 | ||
6c265988 | 2619 | void _initialize_ax_gdb (); |
c906108c | 2620 | void |
6c265988 | 2621 | _initialize_ax_gdb () |
c906108c | 2622 | { |
c906108c | 2623 | add_cmd ("agent", class_maintenance, agent_command, |
34b536a8 HZ |
2624 | _("\ |
2625 | Translate an expression into remote agent bytecode for tracing.\n\ | |
48c5e7e2 | 2626 | Usage: maint agent [-at LOCATION,] EXPRESSION\n\ |
34b536a8 HZ |
2627 | If -at is given, generate remote agent bytecode for this location.\n\ |
2628 | If not, generate remote agent bytecode for current frame pc address."), | |
782b2b07 SS |
2629 | &maintenancelist); |
2630 | ||
2631 | add_cmd ("agent-eval", class_maintenance, agent_eval_command, | |
34b536a8 HZ |
2632 | _("\ |
2633 | Translate an expression into remote agent bytecode for evaluation.\n\ | |
48c5e7e2 | 2634 | Usage: maint agent-eval [-at LOCATION,] EXPRESSION\n\ |
34b536a8 HZ |
2635 | If -at is given, generate remote agent bytecode for this location.\n\ |
2636 | If not, generate remote agent bytecode for current frame pc address."), | |
c906108c | 2637 | &maintenancelist); |
d3ce09f5 SS |
2638 | |
2639 | add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command, | |
2640 | _("Translate an expression into remote " | |
2641 | "agent bytecode for evaluation and display the bytecodes."), | |
2642 | &maintenancelist); | |
c906108c | 2643 | } |