]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* GDB routines for manipulating the minimal symbol tables. |
b6ba6518 KB |
2 | Copyright 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001 |
3 | Free Software Foundation, Inc. | |
c906108c SS |
4 | Contributed by Cygnus Support, using pieces from other GDB modules. |
5 | ||
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | ||
24 | /* This file contains support routines for creating, manipulating, and | |
25 | destroying minimal symbol tables. | |
26 | ||
27 | Minimal symbol tables are used to hold some very basic information about | |
28 | all defined global symbols (text, data, bss, abs, etc). The only two | |
29 | required pieces of information are the symbol's name and the address | |
30 | associated with that symbol. | |
31 | ||
32 | In many cases, even if a file was compiled with no special options for | |
33 | debugging at all, as long as was not stripped it will contain sufficient | |
34 | information to build useful minimal symbol tables using this structure. | |
c5aa993b | 35 | |
c906108c SS |
36 | Even when a file contains enough debugging information to build a full |
37 | symbol table, these minimal symbols are still useful for quickly mapping | |
38 | between names and addresses, and vice versa. They are also sometimes used | |
39 | to figure out what full symbol table entries need to be read in. */ | |
40 | ||
41 | ||
42 | #include "defs.h" | |
9227b5eb | 43 | #include <ctype.h> |
c906108c SS |
44 | #include "gdb_string.h" |
45 | #include "symtab.h" | |
46 | #include "bfd.h" | |
47 | #include "symfile.h" | |
48 | #include "objfiles.h" | |
49 | #include "demangle.h" | |
7ed49443 JB |
50 | #include "value.h" |
51 | #include "cp-abi.h" | |
c906108c SS |
52 | |
53 | /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE. | |
54 | At the end, copy them all into one newly allocated location on an objfile's | |
55 | symbol obstack. */ | |
56 | ||
57 | #define BUNCH_SIZE 127 | |
58 | ||
59 | struct msym_bunch | |
c5aa993b JM |
60 | { |
61 | struct msym_bunch *next; | |
62 | struct minimal_symbol contents[BUNCH_SIZE]; | |
63 | }; | |
c906108c SS |
64 | |
65 | /* Bunch currently being filled up. | |
66 | The next field points to chain of filled bunches. */ | |
67 | ||
68 | static struct msym_bunch *msym_bunch; | |
69 | ||
70 | /* Number of slots filled in current bunch. */ | |
71 | ||
72 | static int msym_bunch_index; | |
73 | ||
74 | /* Total number of minimal symbols recorded so far for the objfile. */ | |
75 | ||
76 | static int msym_count; | |
77 | ||
78 | /* Prototypes for local functions. */ | |
79 | ||
09d011c5 | 80 | static int compare_minimal_symbols (const PTR, const PTR); |
c906108c SS |
81 | |
82 | static int | |
a14ed312 | 83 | compact_minimal_symbols (struct minimal_symbol *, int, struct objfile *); |
9227b5eb | 84 | |
a960f249 AC |
85 | static void add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, |
86 | struct minimal_symbol **table); | |
87 | ||
9227b5eb JB |
88 | /* Compute a hash code based using the same criteria as `strcmp_iw'. */ |
89 | ||
90 | unsigned int | |
91 | msymbol_hash_iw (const char *string) | |
92 | { | |
93 | unsigned int hash = 0; | |
94 | while (*string && *string != '(') | |
95 | { | |
96 | while (isspace (*string)) | |
97 | ++string; | |
98 | if (*string && *string != '(') | |
375f3d86 DJ |
99 | { |
100 | hash = hash * 67 + *string - 113; | |
101 | ++string; | |
102 | } | |
9227b5eb JB |
103 | } |
104 | return hash % MINIMAL_SYMBOL_HASH_SIZE; | |
105 | } | |
106 | ||
107 | /* Compute a hash code for a string. */ | |
108 | ||
109 | unsigned int | |
110 | msymbol_hash (const char *string) | |
111 | { | |
112 | unsigned int hash = 0; | |
113 | for (; *string; ++string) | |
375f3d86 | 114 | hash = hash * 67 + *string - 113; |
9227b5eb JB |
115 | return hash % MINIMAL_SYMBOL_HASH_SIZE; |
116 | } | |
117 | ||
118 | /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */ | |
119 | void | |
120 | add_minsym_to_hash_table (struct minimal_symbol *sym, | |
121 | struct minimal_symbol **table) | |
122 | { | |
123 | if (sym->hash_next == NULL) | |
124 | { | |
125 | unsigned int hash = msymbol_hash (SYMBOL_NAME (sym)); | |
126 | sym->hash_next = table[hash]; | |
127 | table[hash] = sym; | |
128 | } | |
129 | } | |
130 | ||
0729fd50 DB |
131 | /* Add the minimal symbol SYM to an objfile's minsym demangled hash table, |
132 | TABLE. */ | |
133 | static void | |
134 | add_minsym_to_demangled_hash_table (struct minimal_symbol *sym, | |
135 | struct minimal_symbol **table) | |
136 | { | |
137 | if (sym->demangled_hash_next == NULL) | |
138 | { | |
139 | unsigned int hash = msymbol_hash_iw (SYMBOL_DEMANGLED_NAME (sym)); | |
140 | sym->demangled_hash_next = table[hash]; | |
141 | table[hash] = sym; | |
142 | } | |
143 | } | |
144 | ||
c906108c SS |
145 | |
146 | /* Look through all the current minimal symbol tables and find the | |
147 | first minimal symbol that matches NAME. If OBJF is non-NULL, limit | |
148 | the search to that objfile. If SFILE is non-NULL, limit the search | |
149 | to that source file. Returns a pointer to the minimal symbol that | |
150 | matches, or NULL if no match is found. | |
151 | ||
152 | Note: One instance where there may be duplicate minimal symbols with | |
153 | the same name is when the symbol tables for a shared library and the | |
154 | symbol tables for an executable contain global symbols with the same | |
155 | names (the dynamic linker deals with the duplication). */ | |
156 | ||
157 | struct minimal_symbol * | |
fba45db2 KB |
158 | lookup_minimal_symbol (register const char *name, const char *sfile, |
159 | struct objfile *objf) | |
c906108c SS |
160 | { |
161 | struct objfile *objfile; | |
162 | struct minimal_symbol *msymbol; | |
163 | struct minimal_symbol *found_symbol = NULL; | |
164 | struct minimal_symbol *found_file_symbol = NULL; | |
165 | struct minimal_symbol *trampoline_symbol = NULL; | |
166 | ||
9227b5eb JB |
167 | unsigned int hash = msymbol_hash (name); |
168 | unsigned int dem_hash = msymbol_hash_iw (name); | |
169 | ||
c906108c SS |
170 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
171 | if (sfile != NULL) | |
172 | { | |
173 | char *p = strrchr (sfile, '/'); | |
174 | if (p != NULL) | |
175 | sfile = p + 1; | |
176 | } | |
177 | #endif | |
178 | ||
179 | for (objfile = object_files; | |
180 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 181 | objfile = objfile->next) |
c906108c SS |
182 | { |
183 | if (objf == NULL || objf == objfile) | |
184 | { | |
9227b5eb JB |
185 | /* Do two passes: the first over the ordinary hash table, |
186 | and the second over the demangled hash table. */ | |
0729fd50 | 187 | int pass; |
9227b5eb | 188 | |
0729fd50 | 189 | for (pass = 1; pass <= 2 && found_symbol == NULL; pass++) |
c906108c | 190 | { |
0729fd50 DB |
191 | /* Select hash list according to pass. */ |
192 | if (pass == 1) | |
193 | msymbol = objfile->msymbol_hash[hash]; | |
194 | else | |
195 | msymbol = objfile->msymbol_demangled_hash[dem_hash]; | |
196 | ||
197 | while (msymbol != NULL && found_symbol == NULL) | |
c906108c | 198 | { |
0729fd50 | 199 | if (SYMBOL_MATCHES_NAME (msymbol, name)) |
c906108c | 200 | { |
0729fd50 DB |
201 | switch (MSYMBOL_TYPE (msymbol)) |
202 | { | |
203 | case mst_file_text: | |
204 | case mst_file_data: | |
205 | case mst_file_bss: | |
c906108c | 206 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING |
0729fd50 DB |
207 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) |
208 | found_file_symbol = msymbol; | |
c906108c | 209 | #else |
0729fd50 DB |
210 | /* We have neither the ability nor the need to |
211 | deal with the SFILE parameter. If we find | |
212 | more than one symbol, just return the latest | |
213 | one (the user can't expect useful behavior in | |
214 | that case). */ | |
215 | found_file_symbol = msymbol; | |
c906108c | 216 | #endif |
0729fd50 DB |
217 | break; |
218 | ||
219 | case mst_solib_trampoline: | |
220 | ||
221 | /* If a trampoline symbol is found, we prefer to | |
222 | keep looking for the *real* symbol. If the | |
223 | actual symbol is not found, then we'll use the | |
224 | trampoline entry. */ | |
225 | if (trampoline_symbol == NULL) | |
226 | trampoline_symbol = msymbol; | |
227 | break; | |
228 | ||
229 | case mst_unknown: | |
230 | default: | |
231 | found_symbol = msymbol; | |
232 | break; | |
233 | } | |
c906108c | 234 | } |
9227b5eb | 235 | |
0729fd50 DB |
236 | /* Find the next symbol on the hash chain. */ |
237 | if (pass == 1) | |
238 | msymbol = msymbol->hash_next; | |
239 | else | |
240 | msymbol = msymbol->demangled_hash_next; | |
9227b5eb | 241 | } |
c906108c SS |
242 | } |
243 | } | |
244 | } | |
245 | /* External symbols are best. */ | |
246 | if (found_symbol) | |
247 | return found_symbol; | |
248 | ||
249 | /* File-local symbols are next best. */ | |
250 | if (found_file_symbol) | |
251 | return found_file_symbol; | |
252 | ||
253 | /* Symbols for shared library trampolines are next best. */ | |
254 | if (trampoline_symbol) | |
255 | return trampoline_symbol; | |
256 | ||
257 | return NULL; | |
258 | } | |
259 | ||
260 | /* Look through all the current minimal symbol tables and find the | |
261 | first minimal symbol that matches NAME and of text type. | |
262 | If OBJF is non-NULL, limit | |
263 | the search to that objfile. If SFILE is non-NULL, limit the search | |
264 | to that source file. Returns a pointer to the minimal symbol that | |
265 | matches, or NULL if no match is found. | |
c5aa993b JM |
266 | */ |
267 | ||
c906108c | 268 | struct minimal_symbol * |
fba45db2 KB |
269 | lookup_minimal_symbol_text (register const char *name, const char *sfile, |
270 | struct objfile *objf) | |
c906108c SS |
271 | { |
272 | struct objfile *objfile; | |
273 | struct minimal_symbol *msymbol; | |
274 | struct minimal_symbol *found_symbol = NULL; | |
275 | struct minimal_symbol *found_file_symbol = NULL; | |
276 | ||
277 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
278 | if (sfile != NULL) | |
279 | { | |
280 | char *p = strrchr (sfile, '/'); | |
281 | if (p != NULL) | |
282 | sfile = p + 1; | |
283 | } | |
284 | #endif | |
285 | ||
286 | for (objfile = object_files; | |
287 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 288 | objfile = objfile->next) |
c906108c SS |
289 | { |
290 | if (objf == NULL || objf == objfile) | |
291 | { | |
c5aa993b | 292 | for (msymbol = objfile->msymbols; |
c906108c SS |
293 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
294 | found_symbol == NULL; | |
295 | msymbol++) | |
296 | { | |
c5aa993b | 297 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
298 | (MSYMBOL_TYPE (msymbol) == mst_text || |
299 | MSYMBOL_TYPE (msymbol) == mst_file_text)) | |
300 | { | |
301 | switch (MSYMBOL_TYPE (msymbol)) | |
302 | { | |
303 | case mst_file_text: | |
304 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
305 | if (sfile == NULL || STREQ (msymbol->filename, sfile)) | |
306 | found_file_symbol = msymbol; | |
307 | #else | |
308 | /* We have neither the ability nor the need to | |
c5aa993b JM |
309 | deal with the SFILE parameter. If we find |
310 | more than one symbol, just return the latest | |
311 | one (the user can't expect useful behavior in | |
312 | that case). */ | |
c906108c SS |
313 | found_file_symbol = msymbol; |
314 | #endif | |
315 | break; | |
316 | default: | |
317 | found_symbol = msymbol; | |
318 | break; | |
319 | } | |
320 | } | |
321 | } | |
322 | } | |
323 | } | |
324 | /* External symbols are best. */ | |
325 | if (found_symbol) | |
326 | return found_symbol; | |
327 | ||
328 | /* File-local symbols are next best. */ | |
329 | if (found_file_symbol) | |
330 | return found_file_symbol; | |
331 | ||
332 | return NULL; | |
333 | } | |
334 | ||
335 | /* Look through all the current minimal symbol tables and find the | |
336 | first minimal symbol that matches NAME and of solib trampoline type. | |
337 | If OBJF is non-NULL, limit | |
338 | the search to that objfile. If SFILE is non-NULL, limit the search | |
339 | to that source file. Returns a pointer to the minimal symbol that | |
340 | matches, or NULL if no match is found. | |
c5aa993b JM |
341 | */ |
342 | ||
c906108c | 343 | struct minimal_symbol * |
fba45db2 KB |
344 | lookup_minimal_symbol_solib_trampoline (register const char *name, |
345 | const char *sfile, struct objfile *objf) | |
c906108c SS |
346 | { |
347 | struct objfile *objfile; | |
348 | struct minimal_symbol *msymbol; | |
349 | struct minimal_symbol *found_symbol = NULL; | |
350 | ||
351 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
352 | if (sfile != NULL) | |
353 | { | |
354 | char *p = strrchr (sfile, '/'); | |
355 | if (p != NULL) | |
356 | sfile = p + 1; | |
357 | } | |
358 | #endif | |
359 | ||
360 | for (objfile = object_files; | |
361 | objfile != NULL && found_symbol == NULL; | |
c5aa993b | 362 | objfile = objfile->next) |
c906108c SS |
363 | { |
364 | if (objf == NULL || objf == objfile) | |
365 | { | |
c5aa993b | 366 | for (msymbol = objfile->msymbols; |
c906108c SS |
367 | msymbol != NULL && SYMBOL_NAME (msymbol) != NULL && |
368 | found_symbol == NULL; | |
369 | msymbol++) | |
370 | { | |
c5aa993b | 371 | if (SYMBOL_MATCHES_NAME (msymbol, name) && |
c906108c SS |
372 | MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) |
373 | return msymbol; | |
374 | } | |
375 | } | |
376 | } | |
377 | ||
378 | return NULL; | |
379 | } | |
380 | ||
381 | ||
382 | /* Search through the minimal symbol table for each objfile and find | |
383 | the symbol whose address is the largest address that is still less | |
384 | than or equal to PC, and matches SECTION (if non-null). Returns a | |
385 | pointer to the minimal symbol if such a symbol is found, or NULL if | |
386 | PC is not in a suitable range. Note that we need to look through | |
387 | ALL the minimal symbol tables before deciding on the symbol that | |
388 | comes closest to the specified PC. This is because objfiles can | |
389 | overlap, for example objfile A has .text at 0x100 and .data at | |
390 | 0x40000 and objfile B has .text at 0x234 and .data at 0x40048. */ | |
391 | ||
392 | struct minimal_symbol * | |
fba45db2 | 393 | lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, asection *section) |
c906108c SS |
394 | { |
395 | int lo; | |
396 | int hi; | |
397 | int new; | |
398 | struct objfile *objfile; | |
399 | struct minimal_symbol *msymbol; | |
400 | struct minimal_symbol *best_symbol = NULL; | |
401 | ||
402 | /* pc has to be in a known section. This ensures that anything beyond | |
403 | the end of the last segment doesn't appear to be part of the last | |
404 | function in the last segment. */ | |
405 | if (find_pc_section (pc) == NULL) | |
406 | return NULL; | |
407 | ||
408 | for (objfile = object_files; | |
409 | objfile != NULL; | |
c5aa993b | 410 | objfile = objfile->next) |
c906108c SS |
411 | { |
412 | /* If this objfile has a minimal symbol table, go search it using | |
c5aa993b JM |
413 | a binary search. Note that a minimal symbol table always consists |
414 | of at least two symbols, a "real" symbol and the terminating | |
415 | "null symbol". If there are no real symbols, then there is no | |
416 | minimal symbol table at all. */ | |
c906108c | 417 | |
c5aa993b | 418 | if ((msymbol = objfile->msymbols) != NULL) |
c906108c SS |
419 | { |
420 | lo = 0; | |
c5aa993b | 421 | hi = objfile->minimal_symbol_count - 1; |
c906108c SS |
422 | |
423 | /* This code assumes that the minimal symbols are sorted by | |
424 | ascending address values. If the pc value is greater than or | |
425 | equal to the first symbol's address, then some symbol in this | |
426 | minimal symbol table is a suitable candidate for being the | |
427 | "best" symbol. This includes the last real symbol, for cases | |
428 | where the pc value is larger than any address in this vector. | |
429 | ||
430 | By iterating until the address associated with the current | |
431 | hi index (the endpoint of the test interval) is less than | |
432 | or equal to the desired pc value, we accomplish two things: | |
433 | (1) the case where the pc value is larger than any minimal | |
434 | symbol address is trivially solved, (2) the address associated | |
435 | with the hi index is always the one we want when the interation | |
436 | terminates. In essence, we are iterating the test interval | |
437 | down until the pc value is pushed out of it from the high end. | |
438 | ||
439 | Warning: this code is trickier than it would appear at first. */ | |
440 | ||
441 | /* Should also require that pc is <= end of objfile. FIXME! */ | |
442 | if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo])) | |
443 | { | |
444 | while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc) | |
445 | { | |
446 | /* pc is still strictly less than highest address */ | |
447 | /* Note "new" will always be >= lo */ | |
448 | new = (lo + hi) / 2; | |
449 | if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) || | |
450 | (lo == new)) | |
451 | { | |
452 | hi = new; | |
453 | } | |
454 | else | |
455 | { | |
456 | lo = new; | |
457 | } | |
458 | } | |
459 | ||
460 | /* If we have multiple symbols at the same address, we want | |
c5aa993b JM |
461 | hi to point to the last one. That way we can find the |
462 | right symbol if it has an index greater than hi. */ | |
463 | while (hi < objfile->minimal_symbol_count - 1 | |
c906108c | 464 | && (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) |
c5aa993b | 465 | == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1]))) |
c906108c SS |
466 | hi++; |
467 | ||
468 | /* The minimal symbol indexed by hi now is the best one in this | |
c5aa993b JM |
469 | objfile's minimal symbol table. See if it is the best one |
470 | overall. */ | |
c906108c SS |
471 | |
472 | /* Skip any absolute symbols. This is apparently what adb | |
c5aa993b JM |
473 | and dbx do, and is needed for the CM-5. There are two |
474 | known possible problems: (1) on ELF, apparently end, edata, | |
475 | etc. are absolute. Not sure ignoring them here is a big | |
476 | deal, but if we want to use them, the fix would go in | |
477 | elfread.c. (2) I think shared library entry points on the | |
478 | NeXT are absolute. If we want special handling for this | |
479 | it probably should be triggered by a special | |
480 | mst_abs_or_lib or some such. */ | |
c906108c SS |
481 | while (hi >= 0 |
482 | && msymbol[hi].type == mst_abs) | |
483 | --hi; | |
484 | ||
485 | /* If "section" specified, skip any symbol from wrong section */ | |
486 | /* This is the new code that distinguishes it from the old function */ | |
487 | if (section) | |
488 | while (hi >= 0 | |
65d5a54a EZ |
489 | /* Some types of debug info, such as COFF, |
490 | don't fill the bfd_section member, so don't | |
491 | throw away symbols on those platforms. */ | |
492 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != NULL | |
c906108c SS |
493 | && SYMBOL_BFD_SECTION (&msymbol[hi]) != section) |
494 | --hi; | |
495 | ||
496 | if (hi >= 0 | |
497 | && ((best_symbol == NULL) || | |
c5aa993b | 498 | (SYMBOL_VALUE_ADDRESS (best_symbol) < |
c906108c SS |
499 | SYMBOL_VALUE_ADDRESS (&msymbol[hi])))) |
500 | { | |
501 | best_symbol = &msymbol[hi]; | |
502 | } | |
503 | } | |
504 | } | |
505 | } | |
506 | return (best_symbol); | |
507 | } | |
508 | ||
509 | /* Backward compatibility: search through the minimal symbol table | |
510 | for a matching PC (no section given) */ | |
511 | ||
512 | struct minimal_symbol * | |
fba45db2 | 513 | lookup_minimal_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
514 | { |
515 | return lookup_minimal_symbol_by_pc_section (pc, find_pc_mapped_section (pc)); | |
516 | } | |
517 | ||
518 | #ifdef SOFUN_ADDRESS_MAYBE_MISSING | |
519 | CORE_ADDR | |
fba45db2 KB |
520 | find_stab_function_addr (char *namestring, char *filename, |
521 | struct objfile *objfile) | |
c906108c SS |
522 | { |
523 | struct minimal_symbol *msym; | |
524 | char *p; | |
525 | int n; | |
526 | ||
527 | p = strchr (namestring, ':'); | |
528 | if (p == NULL) | |
529 | p = namestring; | |
530 | n = p - namestring; | |
531 | p = alloca (n + 2); | |
532 | strncpy (p, namestring, n); | |
533 | p[n] = 0; | |
534 | ||
c2c6d25f | 535 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c SS |
536 | if (msym == NULL) |
537 | { | |
538 | /* Sun Fortran appends an underscore to the minimal symbol name, | |
c5aa993b JM |
539 | try again with an appended underscore if the minimal symbol |
540 | was not found. */ | |
c906108c SS |
541 | p[n] = '_'; |
542 | p[n + 1] = 0; | |
c2c6d25f | 543 | msym = lookup_minimal_symbol (p, filename, objfile); |
c906108c | 544 | } |
c2c6d25f JM |
545 | |
546 | if (msym == NULL && filename != NULL) | |
547 | { | |
548 | /* Try again without the filename. */ | |
549 | p[n] = 0; | |
550 | msym = lookup_minimal_symbol (p, 0, objfile); | |
551 | } | |
552 | if (msym == NULL && filename != NULL) | |
553 | { | |
554 | /* And try again for Sun Fortran, but without the filename. */ | |
555 | p[n] = '_'; | |
556 | p[n + 1] = 0; | |
557 | msym = lookup_minimal_symbol (p, 0, objfile); | |
558 | } | |
559 | ||
c906108c SS |
560 | return msym == NULL ? 0 : SYMBOL_VALUE_ADDRESS (msym); |
561 | } | |
562 | #endif /* SOFUN_ADDRESS_MAYBE_MISSING */ | |
c906108c | 563 | \f |
c5aa993b | 564 | |
c906108c SS |
565 | /* Return leading symbol character for a BFD. If BFD is NULL, |
566 | return the leading symbol character from the main objfile. */ | |
567 | ||
a14ed312 | 568 | static int get_symbol_leading_char (bfd *); |
c906108c SS |
569 | |
570 | static int | |
fba45db2 | 571 | get_symbol_leading_char (bfd *abfd) |
c906108c SS |
572 | { |
573 | if (abfd != NULL) | |
574 | return bfd_get_symbol_leading_char (abfd); | |
575 | if (symfile_objfile != NULL && symfile_objfile->obfd != NULL) | |
576 | return bfd_get_symbol_leading_char (symfile_objfile->obfd); | |
577 | return 0; | |
578 | } | |
579 | ||
580 | /* Prepare to start collecting minimal symbols. Note that presetting | |
581 | msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal | |
582 | symbol to allocate the memory for the first bunch. */ | |
583 | ||
584 | void | |
fba45db2 | 585 | init_minimal_symbol_collection (void) |
c906108c SS |
586 | { |
587 | msym_count = 0; | |
588 | msym_bunch = NULL; | |
589 | msym_bunch_index = BUNCH_SIZE; | |
590 | } | |
591 | ||
592 | void | |
fba45db2 KB |
593 | prim_record_minimal_symbol (const char *name, CORE_ADDR address, |
594 | enum minimal_symbol_type ms_type, | |
595 | struct objfile *objfile) | |
c906108c SS |
596 | { |
597 | int section; | |
598 | ||
599 | switch (ms_type) | |
600 | { | |
601 | case mst_text: | |
602 | case mst_file_text: | |
603 | case mst_solib_trampoline: | |
b8fbeb18 | 604 | section = SECT_OFF_TEXT (objfile); |
c906108c SS |
605 | break; |
606 | case mst_data: | |
607 | case mst_file_data: | |
b8fbeb18 | 608 | section = SECT_OFF_DATA (objfile); |
c906108c SS |
609 | break; |
610 | case mst_bss: | |
611 | case mst_file_bss: | |
b8fbeb18 | 612 | section = SECT_OFF_BSS (objfile); |
c906108c SS |
613 | break; |
614 | default: | |
615 | section = -1; | |
616 | } | |
617 | ||
618 | prim_record_minimal_symbol_and_info (name, address, ms_type, | |
619 | NULL, section, NULL, objfile); | |
620 | } | |
621 | ||
622 | /* Record a minimal symbol in the msym bunches. Returns the symbol | |
623 | newly created. */ | |
624 | ||
625 | struct minimal_symbol * | |
fba45db2 KB |
626 | prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address, |
627 | enum minimal_symbol_type ms_type, | |
628 | char *info, int section, | |
629 | asection *bfd_section, | |
630 | struct objfile *objfile) | |
c906108c SS |
631 | { |
632 | register struct msym_bunch *new; | |
633 | register struct minimal_symbol *msymbol; | |
634 | ||
635 | if (ms_type == mst_file_text) | |
636 | { | |
637 | /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into | |
c5aa993b JM |
638 | the minimal symbols, because if there is also another symbol |
639 | at the same address (e.g. the first function of the file), | |
640 | lookup_minimal_symbol_by_pc would have no way of getting the | |
641 | right one. */ | |
c906108c SS |
642 | if (name[0] == 'g' |
643 | && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0 | |
644 | || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0)) | |
645 | return (NULL); | |
646 | ||
647 | { | |
648 | const char *tempstring = name; | |
649 | if (tempstring[0] == get_symbol_leading_char (objfile->obfd)) | |
650 | ++tempstring; | |
651 | if (STREQN (tempstring, "__gnu_compiled", 14)) | |
652 | return (NULL); | |
653 | } | |
654 | } | |
655 | ||
656 | if (msym_bunch_index == BUNCH_SIZE) | |
657 | { | |
658 | new = (struct msym_bunch *) xmalloc (sizeof (struct msym_bunch)); | |
659 | msym_bunch_index = 0; | |
c5aa993b | 660 | new->next = msym_bunch; |
c906108c SS |
661 | msym_bunch = new; |
662 | } | |
c5aa993b | 663 | msymbol = &msym_bunch->contents[msym_bunch_index]; |
c906108c SS |
664 | SYMBOL_NAME (msymbol) = obsavestring ((char *) name, strlen (name), |
665 | &objfile->symbol_obstack); | |
666 | SYMBOL_INIT_LANGUAGE_SPECIFIC (msymbol, language_unknown); | |
667 | SYMBOL_VALUE_ADDRESS (msymbol) = address; | |
668 | SYMBOL_SECTION (msymbol) = section; | |
669 | SYMBOL_BFD_SECTION (msymbol) = bfd_section; | |
670 | ||
671 | MSYMBOL_TYPE (msymbol) = ms_type; | |
672 | /* FIXME: This info, if it remains, needs its own field. */ | |
c5aa993b | 673 | MSYMBOL_INFO (msymbol) = info; /* FIXME! */ |
9227b5eb | 674 | |
a79dea61 | 675 | /* The hash pointers must be cleared! If they're not, |
72a0cf8f | 676 | add_minsym_to_hash_table will NOT add this msymbol to the hash table. */ |
9227b5eb JB |
677 | msymbol->hash_next = NULL; |
678 | msymbol->demangled_hash_next = NULL; | |
679 | ||
c906108c SS |
680 | msym_bunch_index++; |
681 | msym_count++; | |
682 | OBJSTAT (objfile, n_minsyms++); | |
683 | return msymbol; | |
684 | } | |
685 | ||
686 | /* Compare two minimal symbols by address and return a signed result based | |
687 | on unsigned comparisons, so that we sort into unsigned numeric order. | |
688 | Within groups with the same address, sort by name. */ | |
689 | ||
690 | static int | |
fba45db2 | 691 | compare_minimal_symbols (const PTR fn1p, const PTR fn2p) |
c906108c SS |
692 | { |
693 | register const struct minimal_symbol *fn1; | |
694 | register const struct minimal_symbol *fn2; | |
695 | ||
696 | fn1 = (const struct minimal_symbol *) fn1p; | |
697 | fn2 = (const struct minimal_symbol *) fn2p; | |
698 | ||
699 | if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2)) | |
700 | { | |
c5aa993b | 701 | return (-1); /* addr 1 is less than addr 2 */ |
c906108c SS |
702 | } |
703 | else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2)) | |
704 | { | |
c5aa993b | 705 | return (1); /* addr 1 is greater than addr 2 */ |
c906108c | 706 | } |
c5aa993b JM |
707 | else |
708 | /* addrs are equal: sort by name */ | |
c906108c SS |
709 | { |
710 | char *name1 = SYMBOL_NAME (fn1); | |
711 | char *name2 = SYMBOL_NAME (fn2); | |
712 | ||
713 | if (name1 && name2) /* both have names */ | |
714 | return strcmp (name1, name2); | |
715 | else if (name2) | |
c5aa993b JM |
716 | return 1; /* fn1 has no name, so it is "less" */ |
717 | else if (name1) /* fn2 has no name, so it is "less" */ | |
c906108c SS |
718 | return -1; |
719 | else | |
c5aa993b | 720 | return (0); /* neither has a name, so they're equal. */ |
c906108c SS |
721 | } |
722 | } | |
723 | ||
724 | /* Discard the currently collected minimal symbols, if any. If we wish | |
725 | to save them for later use, we must have already copied them somewhere | |
726 | else before calling this function. | |
727 | ||
728 | FIXME: We could allocate the minimal symbol bunches on their own | |
729 | obstack and then simply blow the obstack away when we are done with | |
730 | it. Is it worth the extra trouble though? */ | |
731 | ||
56e290f4 AC |
732 | static void |
733 | do_discard_minimal_symbols_cleanup (void *arg) | |
c906108c SS |
734 | { |
735 | register struct msym_bunch *next; | |
736 | ||
737 | while (msym_bunch != NULL) | |
738 | { | |
c5aa993b | 739 | next = msym_bunch->next; |
b8c9b27d | 740 | xfree (msym_bunch); |
c906108c SS |
741 | msym_bunch = next; |
742 | } | |
743 | } | |
744 | ||
56e290f4 AC |
745 | struct cleanup * |
746 | make_cleanup_discard_minimal_symbols (void) | |
747 | { | |
748 | return make_cleanup (do_discard_minimal_symbols_cleanup, 0); | |
749 | } | |
750 | ||
751 | ||
9227b5eb | 752 | |
c906108c SS |
753 | /* Compact duplicate entries out of a minimal symbol table by walking |
754 | through the table and compacting out entries with duplicate addresses | |
755 | and matching names. Return the number of entries remaining. | |
756 | ||
757 | On entry, the table resides between msymbol[0] and msymbol[mcount]. | |
758 | On exit, it resides between msymbol[0] and msymbol[result_count]. | |
759 | ||
760 | When files contain multiple sources of symbol information, it is | |
761 | possible for the minimal symbol table to contain many duplicate entries. | |
762 | As an example, SVR4 systems use ELF formatted object files, which | |
763 | usually contain at least two different types of symbol tables (a | |
764 | standard ELF one and a smaller dynamic linking table), as well as | |
765 | DWARF debugging information for files compiled with -g. | |
766 | ||
767 | Without compacting, the minimal symbol table for gdb itself contains | |
768 | over a 1000 duplicates, about a third of the total table size. Aside | |
769 | from the potential trap of not noticing that two successive entries | |
770 | identify the same location, this duplication impacts the time required | |
771 | to linearly scan the table, which is done in a number of places. So we | |
772 | just do one linear scan here and toss out the duplicates. | |
773 | ||
774 | Note that we are not concerned here about recovering the space that | |
775 | is potentially freed up, because the strings themselves are allocated | |
776 | on the symbol_obstack, and will get automatically freed when the symbol | |
777 | table is freed. The caller can free up the unused minimal symbols at | |
778 | the end of the compacted region if their allocation strategy allows it. | |
779 | ||
780 | Also note we only go up to the next to last entry within the loop | |
781 | and then copy the last entry explicitly after the loop terminates. | |
782 | ||
783 | Since the different sources of information for each symbol may | |
784 | have different levels of "completeness", we may have duplicates | |
785 | that have one entry with type "mst_unknown" and the other with a | |
786 | known type. So if the one we are leaving alone has type mst_unknown, | |
787 | overwrite its type with the type from the one we are compacting out. */ | |
788 | ||
789 | static int | |
fba45db2 KB |
790 | compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount, |
791 | struct objfile *objfile) | |
c906108c SS |
792 | { |
793 | struct minimal_symbol *copyfrom; | |
794 | struct minimal_symbol *copyto; | |
795 | ||
796 | if (mcount > 0) | |
797 | { | |
798 | copyfrom = copyto = msymbol; | |
799 | while (copyfrom < msymbol + mcount - 1) | |
800 | { | |
c5aa993b | 801 | if (SYMBOL_VALUE_ADDRESS (copyfrom) == |
c906108c SS |
802 | SYMBOL_VALUE_ADDRESS ((copyfrom + 1)) && |
803 | (STREQ (SYMBOL_NAME (copyfrom), SYMBOL_NAME ((copyfrom + 1))))) | |
804 | { | |
c5aa993b | 805 | if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown) |
c906108c SS |
806 | { |
807 | MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom); | |
808 | } | |
809 | copyfrom++; | |
810 | } | |
811 | else | |
afbb8d7a | 812 | *copyto++ = *copyfrom++; |
c906108c SS |
813 | } |
814 | *copyto++ = *copyfrom++; | |
815 | mcount = copyto - msymbol; | |
816 | } | |
817 | return (mcount); | |
818 | } | |
819 | ||
afbb8d7a KB |
820 | /* Build (or rebuild) the minimal symbol hash tables. This is necessary |
821 | after compacting or sorting the table since the entries move around | |
822 | thus causing the internal minimal_symbol pointers to become jumbled. */ | |
823 | ||
824 | static void | |
825 | build_minimal_symbol_hash_tables (struct objfile *objfile) | |
826 | { | |
827 | int i; | |
828 | struct minimal_symbol *msym; | |
829 | ||
830 | /* Clear the hash tables. */ | |
831 | for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++) | |
832 | { | |
833 | objfile->msymbol_hash[i] = 0; | |
834 | objfile->msymbol_demangled_hash[i] = 0; | |
835 | } | |
836 | ||
837 | /* Now, (re)insert the actual entries. */ | |
838 | for (i = objfile->minimal_symbol_count, msym = objfile->msymbols; | |
839 | i > 0; | |
840 | i--, msym++) | |
841 | { | |
842 | msym->hash_next = 0; | |
843 | add_minsym_to_hash_table (msym, objfile->msymbol_hash); | |
844 | ||
845 | msym->demangled_hash_next = 0; | |
846 | if (SYMBOL_DEMANGLED_NAME (msym) != NULL) | |
847 | add_minsym_to_demangled_hash_table (msym, | |
848 | objfile->msymbol_demangled_hash); | |
849 | } | |
850 | } | |
851 | ||
c906108c SS |
852 | /* Add the minimal symbols in the existing bunches to the objfile's official |
853 | minimal symbol table. In most cases there is no minimal symbol table yet | |
854 | for this objfile, and the existing bunches are used to create one. Once | |
855 | in a while (for shared libraries for example), we add symbols (e.g. common | |
856 | symbols) to an existing objfile. | |
857 | ||
858 | Because of the way minimal symbols are collected, we generally have no way | |
859 | of knowing what source language applies to any particular minimal symbol. | |
860 | Specifically, we have no way of knowing if the minimal symbol comes from a | |
861 | C++ compilation unit or not. So for the sake of supporting cached | |
862 | demangled C++ names, we have no choice but to try and demangle each new one | |
863 | that comes in. If the demangling succeeds, then we assume it is a C++ | |
864 | symbol and set the symbol's language and demangled name fields | |
865 | appropriately. Note that in order to avoid unnecessary demanglings, and | |
866 | allocating obstack space that subsequently can't be freed for the demangled | |
867 | names, we mark all newly added symbols with language_auto. After | |
868 | compaction of the minimal symbols, we go back and scan the entire minimal | |
869 | symbol table looking for these new symbols. For each new symbol we attempt | |
870 | to demangle it, and if successful, record it as a language_cplus symbol | |
871 | and cache the demangled form on the symbol obstack. Symbols which don't | |
872 | demangle are marked as language_unknown symbols, which inhibits future | |
873 | attempts to demangle them if we later add more minimal symbols. */ | |
874 | ||
875 | void | |
fba45db2 | 876 | install_minimal_symbols (struct objfile *objfile) |
c906108c SS |
877 | { |
878 | register int bindex; | |
879 | register int mcount; | |
880 | register struct msym_bunch *bunch; | |
881 | register struct minimal_symbol *msymbols; | |
882 | int alloc_count; | |
883 | register char leading_char; | |
884 | ||
885 | if (msym_count > 0) | |
886 | { | |
887 | /* Allocate enough space in the obstack, into which we will gather the | |
c5aa993b JM |
888 | bunches of new and existing minimal symbols, sort them, and then |
889 | compact out the duplicate entries. Once we have a final table, | |
890 | we will give back the excess space. */ | |
c906108c SS |
891 | |
892 | alloc_count = msym_count + objfile->minimal_symbol_count + 1; | |
893 | obstack_blank (&objfile->symbol_obstack, | |
894 | alloc_count * sizeof (struct minimal_symbol)); | |
895 | msymbols = (struct minimal_symbol *) | |
c5aa993b | 896 | obstack_base (&objfile->symbol_obstack); |
c906108c SS |
897 | |
898 | /* Copy in the existing minimal symbols, if there are any. */ | |
899 | ||
900 | if (objfile->minimal_symbol_count) | |
c5aa993b JM |
901 | memcpy ((char *) msymbols, (char *) objfile->msymbols, |
902 | objfile->minimal_symbol_count * sizeof (struct minimal_symbol)); | |
c906108c SS |
903 | |
904 | /* Walk through the list of minimal symbol bunches, adding each symbol | |
c5aa993b JM |
905 | to the new contiguous array of symbols. Note that we start with the |
906 | current, possibly partially filled bunch (thus we use the current | |
907 | msym_bunch_index for the first bunch we copy over), and thereafter | |
908 | each bunch is full. */ | |
909 | ||
c906108c SS |
910 | mcount = objfile->minimal_symbol_count; |
911 | leading_char = get_symbol_leading_char (objfile->obfd); | |
c5aa993b JM |
912 | |
913 | for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next) | |
c906108c SS |
914 | { |
915 | for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++) | |
916 | { | |
c5aa993b | 917 | msymbols[mcount] = bunch->contents[bindex]; |
c906108c SS |
918 | SYMBOL_LANGUAGE (&msymbols[mcount]) = language_auto; |
919 | if (SYMBOL_NAME (&msymbols[mcount])[0] == leading_char) | |
920 | { | |
c5aa993b | 921 | SYMBOL_NAME (&msymbols[mcount])++; |
c906108c SS |
922 | } |
923 | } | |
924 | msym_bunch_index = BUNCH_SIZE; | |
925 | } | |
926 | ||
927 | /* Sort the minimal symbols by address. */ | |
c5aa993b | 928 | |
c906108c SS |
929 | qsort (msymbols, mcount, sizeof (struct minimal_symbol), |
930 | compare_minimal_symbols); | |
c5aa993b | 931 | |
c906108c | 932 | /* Compact out any duplicates, and free up whatever space we are |
c5aa993b JM |
933 | no longer using. */ |
934 | ||
9227b5eb | 935 | mcount = compact_minimal_symbols (msymbols, mcount, objfile); |
c906108c SS |
936 | |
937 | obstack_blank (&objfile->symbol_obstack, | |
c5aa993b | 938 | (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol)); |
c906108c SS |
939 | msymbols = (struct minimal_symbol *) |
940 | obstack_finish (&objfile->symbol_obstack); | |
941 | ||
942 | /* We also terminate the minimal symbol table with a "null symbol", | |
c5aa993b JM |
943 | which is *not* included in the size of the table. This makes it |
944 | easier to find the end of the table when we are handed a pointer | |
945 | to some symbol in the middle of it. Zero out the fields in the | |
946 | "null symbol" allocated at the end of the array. Note that the | |
947 | symbol count does *not* include this null symbol, which is why it | |
948 | is indexed by mcount and not mcount-1. */ | |
c906108c SS |
949 | |
950 | SYMBOL_NAME (&msymbols[mcount]) = NULL; | |
951 | SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0; | |
952 | MSYMBOL_INFO (&msymbols[mcount]) = NULL; | |
953 | MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown; | |
954 | SYMBOL_INIT_LANGUAGE_SPECIFIC (&msymbols[mcount], language_unknown); | |
955 | ||
956 | /* Attach the minimal symbol table to the specified objfile. | |
c5aa993b JM |
957 | The strings themselves are also located in the symbol_obstack |
958 | of this objfile. */ | |
c906108c | 959 | |
c5aa993b JM |
960 | objfile->minimal_symbol_count = mcount; |
961 | objfile->msymbols = msymbols; | |
c906108c | 962 | |
7ed49443 JB |
963 | /* Try to guess the appropriate C++ ABI by looking at the names |
964 | of the minimal symbols in the table. */ | |
965 | { | |
966 | int i; | |
967 | ||
968 | for (i = 0; i < mcount; i++) | |
969 | { | |
970 | const char *name = SYMBOL_NAME (&objfile->msymbols[i]); | |
971 | if (name[0] == '_' && name[1] == 'Z') | |
972 | { | |
973 | switch_to_cp_abi ("gnu-v3"); | |
974 | break; | |
975 | } | |
976 | } | |
977 | } | |
978 | ||
c906108c | 979 | /* Now walk through all the minimal symbols, selecting the newly added |
c5aa993b | 980 | ones and attempting to cache their C++ demangled names. */ |
c5aa993b | 981 | for (; mcount-- > 0; msymbols++) |
afbb8d7a KB |
982 | SYMBOL_INIT_DEMANGLED_NAME (msymbols, &objfile->symbol_obstack); |
983 | ||
984 | /* Now build the hash tables; we can't do this incrementally | |
985 | at an earlier point since we weren't finished with the obstack | |
986 | yet. (And if the msymbol obstack gets moved, all the internal | |
987 | pointers to other msymbols need to be adjusted.) */ | |
988 | build_minimal_symbol_hash_tables (objfile); | |
c906108c SS |
989 | } |
990 | } | |
991 | ||
992 | /* Sort all the minimal symbols in OBJFILE. */ | |
993 | ||
994 | void | |
fba45db2 | 995 | msymbols_sort (struct objfile *objfile) |
c906108c SS |
996 | { |
997 | qsort (objfile->msymbols, objfile->minimal_symbol_count, | |
998 | sizeof (struct minimal_symbol), compare_minimal_symbols); | |
afbb8d7a | 999 | build_minimal_symbol_hash_tables (objfile); |
c906108c SS |
1000 | } |
1001 | ||
1002 | /* Check if PC is in a shared library trampoline code stub. | |
1003 | Return minimal symbol for the trampoline entry or NULL if PC is not | |
1004 | in a trampoline code stub. */ | |
1005 | ||
1006 | struct minimal_symbol * | |
fba45db2 | 1007 | lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc) |
c906108c SS |
1008 | { |
1009 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc); | |
1010 | ||
1011 | if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline) | |
1012 | return msymbol; | |
1013 | return NULL; | |
1014 | } | |
1015 | ||
1016 | /* If PC is in a shared library trampoline code stub, return the | |
1017 | address of the `real' function belonging to the stub. | |
1018 | Return 0 if PC is not in a trampoline code stub or if the real | |
1019 | function is not found in the minimal symbol table. | |
1020 | ||
1021 | We may fail to find the right function if a function with the | |
1022 | same name is defined in more than one shared library, but this | |
1023 | is considered bad programming style. We could return 0 if we find | |
1024 | a duplicate function in case this matters someday. */ | |
1025 | ||
1026 | CORE_ADDR | |
fba45db2 | 1027 | find_solib_trampoline_target (CORE_ADDR pc) |
c906108c SS |
1028 | { |
1029 | struct objfile *objfile; | |
1030 | struct minimal_symbol *msymbol; | |
1031 | struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc); | |
1032 | ||
1033 | if (tsymbol != NULL) | |
1034 | { | |
1035 | ALL_MSYMBOLS (objfile, msymbol) | |
c5aa993b JM |
1036 | { |
1037 | if (MSYMBOL_TYPE (msymbol) == mst_text | |
1038 | && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (tsymbol))) | |
1039 | return SYMBOL_VALUE_ADDRESS (msymbol); | |
1040 | } | |
c906108c SS |
1041 | } |
1042 | return 0; | |
1043 | } |