]>
Commit | Line | Data |
---|---|---|
5769d3cd | 1 | /* Target-dependent code for GDB, the GNU debugger. |
ca557f44 AC |
2 | |
3 | Copyright 2001, 2002 Free Software Foundation, Inc. | |
4 | ||
5769d3cd AC |
5 | Contributed by D.J. Barrow ([email protected],[email protected]) |
6 | for IBM Deutschland Entwicklung GmbH, IBM Corporation. | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
22 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | |
23 | 02111-1307, USA. */ | |
24 | ||
25 | #define S390_TDEP /* for special macros in tm-s390.h */ | |
26 | #include <defs.h> | |
27 | #include "arch-utils.h" | |
28 | #include "frame.h" | |
29 | #include "inferior.h" | |
30 | #include "symtab.h" | |
31 | #include "target.h" | |
32 | #include "gdbcore.h" | |
33 | #include "gdbcmd.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
36 | #include "tm.h" | |
37 | #include "../bfd/bfd.h" | |
38 | #include "floatformat.h" | |
39 | #include "regcache.h" | |
fd0407d6 | 40 | #include "value.h" |
78f8b424 | 41 | #include "gdb_assert.h" |
5769d3cd AC |
42 | |
43 | ||
44 | ||
60e6cc42 | 45 | |
5769d3cd | 46 | /* Number of bytes of storage in the actual machine representation |
23b7362f | 47 | for register N. */ |
5769d3cd AC |
48 | int |
49 | s390_register_raw_size (int reg_nr) | |
50 | { | |
23b7362f JB |
51 | if (S390_FP0_REGNUM <= reg_nr |
52 | && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS) | |
53 | return S390_FPR_SIZE; | |
54 | else | |
55 | return 4; | |
5769d3cd AC |
56 | } |
57 | ||
58 | int | |
59 | s390x_register_raw_size (int reg_nr) | |
60 | { | |
61 | return (reg_nr == S390_FPC_REGNUM) | |
62 | || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8; | |
63 | } | |
64 | ||
65 | int | |
66 | s390_cannot_fetch_register (int regno) | |
67 | { | |
68 | return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) || | |
69 | (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR); | |
70 | } | |
71 | ||
72 | int | |
73 | s390_register_byte (int reg_nr) | |
74 | { | |
75 | if (reg_nr <= S390_GP_LAST_REGNUM) | |
76 | return reg_nr * S390_GPR_SIZE; | |
77 | if (reg_nr <= S390_LAST_ACR) | |
78 | return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE); | |
79 | if (reg_nr <= S390_LAST_CR) | |
80 | return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE); | |
81 | if (reg_nr == S390_FPC_REGNUM) | |
82 | return S390_FPC_OFFSET; | |
83 | else | |
84 | return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE); | |
85 | } | |
86 | ||
87 | #ifndef GDBSERVER | |
88 | #define S390_MAX_INSTR_SIZE (6) | |
89 | #define S390_SYSCALL_OPCODE (0x0a) | |
90 | #define S390_SYSCALL_SIZE (2) | |
91 | #define S390_SIGCONTEXT_SREGS_OFFSET (8) | |
92 | #define S390X_SIGCONTEXT_SREGS_OFFSET (8) | |
93 | #define S390_SIGREGS_FP0_OFFSET (144) | |
94 | #define S390X_SIGREGS_FP0_OFFSET (216) | |
95 | #define S390_UC_MCONTEXT_OFFSET (256) | |
96 | #define S390X_UC_MCONTEXT_OFFSET (344) | |
97 | #define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96) | |
98 | #define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96) | |
99 | #define s390_NR_sigreturn 119 | |
100 | #define s390_NR_rt_sigreturn 173 | |
101 | ||
102 | ||
103 | ||
104 | struct frame_extra_info | |
105 | { | |
106 | int initialised; | |
107 | int good_prologue; | |
108 | CORE_ADDR function_start; | |
109 | CORE_ADDR skip_prologue_function_start; | |
110 | CORE_ADDR saved_pc_valid; | |
111 | CORE_ADDR saved_pc; | |
112 | CORE_ADDR sig_fixed_saved_pc_valid; | |
113 | CORE_ADDR sig_fixed_saved_pc; | |
114 | CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */ | |
115 | CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */ | |
116 | CORE_ADDR sigcontext; | |
117 | }; | |
118 | ||
119 | ||
120 | static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi); | |
121 | ||
122 | int | |
123 | s390_readinstruction (bfd_byte instr[], CORE_ADDR at, | |
124 | struct disassemble_info *info) | |
125 | { | |
126 | int instrlen; | |
127 | ||
128 | static int s390_instrlen[] = { | |
129 | 2, | |
130 | 4, | |
131 | 4, | |
132 | 6 | |
133 | }; | |
134 | if ((*info->read_memory_func) (at, &instr[0], 2, info)) | |
135 | return -1; | |
136 | instrlen = s390_instrlen[instr[0] >> 6]; | |
c5e243bb JB |
137 | if (instrlen > 2) |
138 | { | |
139 | if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info)) | |
140 | return -1; | |
141 | } | |
5769d3cd AC |
142 | return instrlen; |
143 | } | |
144 | ||
145 | static void | |
146 | s390_memset_extra_info (struct frame_extra_info *fextra_info) | |
147 | { | |
148 | memset (fextra_info, 0, sizeof (struct frame_extra_info)); | |
149 | } | |
150 | ||
151 | ||
152 | ||
153 | char * | |
154 | s390_register_name (int reg_nr) | |
155 | { | |
156 | static char *register_names[] = { | |
157 | "pswm", "pswa", | |
4ed90530 JB |
158 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
159 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
5769d3cd AC |
160 | "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7", |
161 | "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15", | |
162 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
163 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15", | |
164 | "fpc", | |
4ed90530 JB |
165 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", |
166 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15" | |
5769d3cd AC |
167 | }; |
168 | ||
b09677dc JB |
169 | if (reg_nr <= S390_LAST_REGNUM) |
170 | return register_names[reg_nr]; | |
171 | else | |
5769d3cd | 172 | return NULL; |
5769d3cd AC |
173 | } |
174 | ||
175 | ||
176 | ||
177 | ||
178 | int | |
179 | s390_stab_reg_to_regnum (int regno) | |
180 | { | |
181 | return regno >= 64 ? S390_PSWM_REGNUM - 64 : | |
182 | regno >= 48 ? S390_FIRST_ACR - 48 : | |
183 | regno >= 32 ? S390_FIRST_CR - 32 : | |
184 | regno <= 15 ? (regno + 2) : | |
185 | S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) + | |
186 | (((regno - 16) & 4) >> 2); | |
187 | } | |
188 | ||
189 | ||
12bffad7 JB |
190 | /* Return true if REGIDX is the number of a register used to pass |
191 | arguments, false otherwise. */ | |
192 | static int | |
193 | is_arg_reg (int regidx) | |
194 | { | |
195 | return 2 <= regidx && regidx <= 6; | |
196 | } | |
197 | ||
5769d3cd AC |
198 | |
199 | /* s390_get_frame_info based on Hartmuts | |
200 | prologue definition in | |
201 | gcc-2.8.1/config/l390/linux.c | |
202 | ||
203 | It reads one instruction at a time & based on whether | |
204 | it looks like prologue code or not it makes a decision on | |
205 | whether the prologue is over, there are various state machines | |
206 | in the code to determine if the prologue code is possilby valid. | |
207 | ||
208 | This is done to hopefully allow the code survive minor revs of | |
209 | calling conventions. | |
210 | ||
211 | */ | |
212 | ||
213 | int | |
214 | s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info, | |
215 | struct frame_info *fi, int init_extra_info) | |
216 | { | |
217 | #define CONST_POOL_REGIDX 13 | |
218 | #define GOT_REGIDX 12 | |
219 | bfd_byte instr[S390_MAX_INSTR_SIZE]; | |
220 | CORE_ADDR test_pc = pc, test_pc2; | |
221 | CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL; | |
222 | int valid_prologue, good_prologue = 0; | |
223 | int gprs_saved[S390_NUM_GPRS]; | |
224 | int fprs_saved[S390_NUM_FPRS]; | |
225 | int regidx, instrlen; | |
6df29de2 | 226 | int const_pool_state; |
7286245e | 227 | int varargs_state; |
5769d3cd | 228 | int loop_cnt, gdb_gpr_store, gdb_fpr_store; |
5769d3cd AC |
229 | int offset, expected_offset; |
230 | int err = 0; | |
231 | disassemble_info info; | |
8ac0e65a | 232 | |
7286245e JB |
233 | /* Have we seen an instruction initializing the frame pointer yet? |
234 | If we've seen an `lr %r11, %r15', then frame_pointer_found is | |
235 | non-zero, and frame_pointer_regidx == 11. Otherwise, | |
236 | frame_pointer_found is zero and frame_pointer_regidx is 15, | |
237 | indicating that we're using the stack pointer as our frame | |
238 | pointer. */ | |
239 | int frame_pointer_found = 0; | |
240 | int frame_pointer_regidx = 0xf; | |
241 | ||
6df29de2 JB |
242 | /* What we've seen so far regarding saving the back chain link: |
243 | 0 -- nothing yet; sp still has the same value it had at the entry | |
244 | point. Since not all functions allocate frames, this is a | |
245 | valid state for the prologue to finish in. | |
246 | 1 -- We've saved the original sp in some register other than the | |
247 | frame pointer (hard-coded to be %r11, yuck). | |
248 | save_link_regidx is the register we saved it in. | |
249 | 2 -- We've seen the initial `bras' instruction of the sequence for | |
250 | reserving more than 32k of stack: | |
251 | bras %rX, .+8 | |
252 | .long N | |
253 | s %r15, 0(%rX) | |
254 | where %rX is not the constant pool register. | |
255 | subtract_sp_regidx is %rX, and fextra_info->stack_bought is N. | |
256 | 3 -- We've reserved space for a new stack frame. This means we | |
257 | either saw a simple `ahi %r15,-N' in state 1, or the final | |
258 | `s %r15, ...' in state 2. | |
259 | 4 -- The frame and link are now fully initialized. We've | |
260 | reserved space for the new stack frame, and stored the old | |
261 | stack pointer captured in the back chain pointer field. */ | |
7286245e | 262 | int save_link_state = 0; |
6df29de2 JB |
263 | int save_link_regidx, subtract_sp_regidx; |
264 | ||
8ac0e65a JB |
265 | /* What we've seen so far regarding r12 --- the GOT (Global Offset |
266 | Table) pointer. We expect to see `l %r12, N(%r13)', which loads | |
267 | r12 with the offset from the constant pool to the GOT, and then | |
268 | an `ar %r12, %r13', which adds the constant pool address, | |
269 | yielding the GOT's address. Here's what got_state means: | |
270 | 0 -- seen nothing | |
271 | 1 -- seen `l %r12, N(%r13)', but no `ar' | |
272 | 2 -- seen load and add, so GOT pointer is totally initialized | |
273 | When got_state is 1, then got_load_addr is the address of the | |
274 | load instruction, and got_load_len is the length of that | |
275 | instruction. */ | |
7286245e | 276 | int got_state= 0; |
64f9bb98 | 277 | CORE_ADDR got_load_addr = 0, got_load_len = 0; |
8ac0e65a | 278 | |
7286245e JB |
279 | const_pool_state = varargs_state = 0; |
280 | ||
5769d3cd AC |
281 | memset (gprs_saved, 0, sizeof (gprs_saved)); |
282 | memset (fprs_saved, 0, sizeof (fprs_saved)); | |
283 | info.read_memory_func = dis_asm_read_memory; | |
284 | ||
285 | save_link_regidx = subtract_sp_regidx = 0; | |
286 | if (fextra_info) | |
287 | { | |
288 | if (fi && fi->frame) | |
289 | { | |
76cc2cf0 | 290 | orig_sp = fi->frame; |
386e4208 | 291 | if (! init_extra_info && fextra_info->initialised) |
76cc2cf0 | 292 | orig_sp += fextra_info->stack_bought; |
5769d3cd AC |
293 | saved_regs = fi->saved_regs; |
294 | } | |
295 | if (init_extra_info || !fextra_info->initialised) | |
296 | { | |
297 | s390_memset_extra_info (fextra_info); | |
298 | fextra_info->function_start = pc; | |
299 | fextra_info->initialised = 1; | |
300 | } | |
301 | } | |
302 | instrlen = 0; | |
303 | do | |
304 | { | |
305 | valid_prologue = 0; | |
306 | test_pc += instrlen; | |
307 | /* add the previous instruction len */ | |
308 | instrlen = s390_readinstruction (instr, test_pc, &info); | |
309 | if (instrlen < 0) | |
310 | { | |
311 | good_prologue = 0; | |
312 | err = -1; | |
313 | break; | |
314 | } | |
315 | /* We probably are in a glibc syscall */ | |
316 | if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc) | |
317 | { | |
318 | good_prologue = 1; | |
319 | if (saved_regs && fextra_info && fi->next && fi->next->extra_info | |
320 | && fi->next->extra_info->sigcontext) | |
321 | { | |
322 | /* We are backtracing from a signal handler */ | |
323 | save_reg_addr = fi->next->extra_info->sigcontext + | |
324 | REGISTER_BYTE (S390_GP0_REGNUM); | |
325 | for (regidx = 0; regidx < S390_NUM_GPRS; regidx++) | |
326 | { | |
327 | saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; | |
328 | save_reg_addr += S390_GPR_SIZE; | |
329 | } | |
330 | save_reg_addr = fi->next->extra_info->sigcontext + | |
331 | (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET : | |
332 | S390_SIGREGS_FP0_OFFSET); | |
333 | for (regidx = 0; regidx < S390_NUM_FPRS; regidx++) | |
334 | { | |
335 | saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr; | |
336 | save_reg_addr += S390_FPR_SIZE; | |
337 | } | |
338 | } | |
339 | break; | |
340 | } | |
341 | if (save_link_state == 0) | |
342 | { | |
343 | /* check for a stack relative STMG or STM */ | |
344 | if (((GDB_TARGET_IS_ESAME && | |
345 | ((instr[0] == 0xeb) && (instr[5] == 0x24))) || | |
346 | (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf)) | |
347 | { | |
348 | regidx = (instr[1] >> 4); | |
349 | if (regidx < 6) | |
350 | varargs_state = 1; | |
351 | offset = ((instr[2] & 0xf) << 8) + instr[3]; | |
352 | expected_offset = | |
353 | S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6)); | |
354 | if (offset != expected_offset) | |
355 | { | |
356 | good_prologue = 0; | |
357 | break; | |
358 | } | |
359 | if (saved_regs) | |
360 | save_reg_addr = orig_sp + offset; | |
361 | for (; regidx <= (instr[1] & 0xf); regidx++) | |
362 | { | |
363 | if (gprs_saved[regidx]) | |
364 | { | |
365 | good_prologue = 0; | |
366 | break; | |
367 | } | |
368 | good_prologue = 1; | |
369 | gprs_saved[regidx] = 1; | |
370 | if (saved_regs) | |
371 | { | |
372 | saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; | |
373 | save_reg_addr += S390_GPR_SIZE; | |
374 | } | |
375 | } | |
376 | valid_prologue = 1; | |
377 | continue; | |
378 | } | |
379 | } | |
380 | /* check for a stack relative STG or ST */ | |
381 | if ((save_link_state == 0 || save_link_state == 3) && | |
382 | ((GDB_TARGET_IS_ESAME && | |
383 | ((instr[0] == 0xe3) && (instr[5] == 0x24))) || | |
384 | (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf)) | |
385 | { | |
386 | regidx = instr[1] >> 4; | |
387 | offset = ((instr[2] & 0xf) << 8) + instr[3]; | |
388 | if (offset == 0) | |
389 | { | |
390 | if (save_link_state == 3 && regidx == save_link_regidx) | |
391 | { | |
392 | save_link_state = 4; | |
393 | valid_prologue = 1; | |
394 | continue; | |
395 | } | |
396 | else | |
397 | break; | |
398 | } | |
399 | if (regidx < 6) | |
400 | varargs_state = 1; | |
401 | expected_offset = | |
402 | S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6)); | |
403 | if (offset != expected_offset) | |
404 | { | |
405 | good_prologue = 0; | |
406 | break; | |
407 | } | |
408 | if (gprs_saved[regidx]) | |
409 | { | |
410 | good_prologue = 0; | |
411 | break; | |
412 | } | |
413 | good_prologue = 1; | |
414 | gprs_saved[regidx] = 1; | |
415 | if (saved_regs) | |
416 | { | |
417 | save_reg_addr = orig_sp + offset; | |
418 | saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr; | |
419 | } | |
420 | valid_prologue = 1; | |
421 | continue; | |
422 | } | |
423 | ||
12bffad7 | 424 | /* Check for an fp-relative STG, ST, or STM. This is probably |
7666f43c JB |
425 | spilling an argument from a register out into a stack slot. |
426 | This could be a user instruction, but if we haven't included | |
427 | any other suspicious instructions in the prologue, this | |
428 | could only be an initializing store, which isn't too bad to | |
429 | skip. The consequences of not including arg-to-stack spills | |
430 | are more serious, though --- you don't see the proper values | |
431 | of the arguments. */ | |
432 | if ((save_link_state == 3 || save_link_state == 4) | |
12bffad7 JB |
433 | && ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */ |
434 | && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */ | |
435 | && is_arg_reg ((instr[1] >> 4) & 0xf) | |
436 | && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx) | |
437 | || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */ | |
438 | && is_arg_reg ((instr[1] >> 4) & 0xf) | |
439 | && is_arg_reg (instr[1] & 0xf) | |
440 | && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx))) | |
7666f43c JB |
441 | { |
442 | valid_prologue = 1; | |
443 | continue; | |
444 | } | |
445 | ||
5769d3cd AC |
446 | /* check for STD */ |
447 | if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf) | |
448 | { | |
449 | regidx = instr[1] >> 4; | |
450 | if (regidx == 0 || regidx == 2) | |
451 | varargs_state = 1; | |
452 | if (fprs_saved[regidx]) | |
453 | { | |
454 | good_prologue = 0; | |
455 | break; | |
456 | } | |
457 | fprs_saved[regidx] = 1; | |
458 | if (saved_regs) | |
459 | { | |
460 | save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]); | |
461 | saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr; | |
462 | } | |
463 | valid_prologue = 1; | |
464 | continue; | |
465 | } | |
466 | ||
467 | ||
468 | if (const_pool_state == 0) | |
469 | { | |
470 | ||
471 | if (GDB_TARGET_IS_ESAME) | |
472 | { | |
473 | /* Check for larl CONST_POOL_REGIDX,offset on ESAME */ | |
474 | if ((instr[0] == 0xc0) | |
475 | && (instr[1] == (CONST_POOL_REGIDX << 4))) | |
476 | { | |
477 | const_pool_state = 2; | |
478 | valid_prologue = 1; | |
479 | continue; | |
480 | } | |
481 | } | |
482 | else | |
483 | { | |
484 | /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */ | |
485 | if (instr[0] == 0xd && (instr[1] & 0xf) == 0 | |
486 | && ((instr[1] >> 4) == CONST_POOL_REGIDX)) | |
487 | { | |
488 | const_pool_state = 1; | |
489 | valid_prologue = 1; | |
490 | continue; | |
491 | } | |
492 | } | |
493 | /* Check for new fangled bras %r13,newpc to load new constant pool */ | |
494 | /* embedded in code, older pre abi compilers also emitted this stuff. */ | |
495 | if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) && | |
496 | ((instr[1] >> 4) == CONST_POOL_REGIDX) | |
497 | && ((instr[2] & 0x80) == 0)) | |
498 | { | |
499 | const_pool_state = 2; | |
500 | test_pc += | |
501 | (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen); | |
502 | valid_prologue = 1; | |
503 | continue; | |
504 | } | |
505 | } | |
506 | /* Check for AGHI or AHI CONST_POOL_REGIDX,val */ | |
507 | if (const_pool_state == 1 && (instr[0] == 0xa7) && | |
508 | ((GDB_TARGET_IS_ESAME && | |
509 | (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) || | |
510 | (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa)))) | |
511 | { | |
512 | const_pool_state = 2; | |
513 | valid_prologue = 1; | |
514 | continue; | |
515 | } | |
516 | /* Check for LGR or LR gprx,15 */ | |
517 | if ((GDB_TARGET_IS_ESAME && | |
518 | instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) || | |
519 | (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf)) | |
520 | { | |
521 | if (GDB_TARGET_IS_ESAME) | |
522 | regidx = instr[3] >> 4; | |
523 | else | |
524 | regidx = instr[1] >> 4; | |
525 | if (save_link_state == 0 && regidx != 0xb) | |
526 | { | |
527 | /* Almost defintely code for | |
528 | decrementing the stack pointer | |
529 | ( i.e. a non leaf function | |
530 | or else leaf with locals ) */ | |
531 | save_link_regidx = regidx; | |
532 | save_link_state = 1; | |
533 | valid_prologue = 1; | |
534 | continue; | |
535 | } | |
536 | /* We use this frame pointer for alloca | |
537 | unfortunately we need to assume its gpr11 | |
538 | otherwise we would need a smarter prologue | |
539 | walker. */ | |
540 | if (!frame_pointer_found && regidx == 0xb) | |
541 | { | |
542 | frame_pointer_regidx = 0xb; | |
543 | frame_pointer_found = 1; | |
544 | if (fextra_info) | |
545 | fextra_info->frame_pointer_saved_pc = test_pc; | |
546 | valid_prologue = 1; | |
547 | continue; | |
548 | } | |
549 | } | |
550 | /* Check for AHI or AGHI gpr15,val */ | |
551 | if (save_link_state == 1 && (instr[0] == 0xa7) && | |
552 | ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa))) | |
553 | { | |
554 | if (fextra_info) | |
555 | fextra_info->stack_bought = | |
556 | -extract_signed_integer (&instr[2], 2); | |
557 | save_link_state = 3; | |
558 | valid_prologue = 1; | |
559 | continue; | |
560 | } | |
561 | /* Alternatively check for the complex construction for | |
562 | buying more than 32k of stack | |
563 | BRAS gprx,.+8 | |
6df29de2 JB |
564 | long val |
565 | s %r15,0(%gprx) gprx currently r1 */ | |
5769d3cd AC |
566 | if ((save_link_state == 1) && (instr[0] == 0xa7) |
567 | && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0) | |
568 | && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX)) | |
569 | { | |
570 | subtract_sp_regidx = instr[1] >> 4; | |
571 | save_link_state = 2; | |
572 | if (fextra_info) | |
573 | target_read_memory (test_pc + instrlen, | |
574 | (char *) &fextra_info->stack_bought, | |
575 | sizeof (fextra_info->stack_bought)); | |
576 | test_pc += 4; | |
577 | valid_prologue = 1; | |
578 | continue; | |
579 | } | |
580 | if (save_link_state == 2 && instr[0] == 0x5b | |
581 | && instr[1] == 0xf0 && | |
582 | instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0) | |
583 | { | |
584 | save_link_state = 3; | |
585 | valid_prologue = 1; | |
586 | continue; | |
587 | } | |
588 | /* check for LA gprx,offset(15) used for varargs */ | |
589 | if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) && | |
590 | ((instr[1] & 0xf) == 0)) | |
591 | { | |
592 | /* some code uses gpr7 to point to outgoing args */ | |
593 | if (((instr[1] >> 4) == 7) && (save_link_state == 0) && | |
594 | ((instr[2] & 0xf) == 0) | |
595 | && (instr[3] == S390_STACK_FRAME_OVERHEAD)) | |
596 | { | |
597 | valid_prologue = 1; | |
598 | continue; | |
599 | } | |
600 | if (varargs_state == 1) | |
601 | { | |
602 | varargs_state = 2; | |
603 | valid_prologue = 1; | |
604 | continue; | |
605 | } | |
606 | } | |
607 | /* Check for a GOT load */ | |
608 | ||
609 | if (GDB_TARGET_IS_ESAME) | |
610 | { | |
611 | /* Check for larl GOT_REGIDX, on ESAME */ | |
612 | if ((got_state == 0) && (instr[0] == 0xc0) | |
613 | && (instr[1] == (GOT_REGIDX << 4))) | |
614 | { | |
615 | got_state = 2; | |
616 | valid_prologue = 1; | |
617 | continue; | |
618 | } | |
619 | } | |
620 | else | |
621 | { | |
622 | /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */ | |
623 | if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58 | |
624 | && (instr[2] == (CONST_POOL_REGIDX << 4)) | |
625 | && ((instr[1] >> 4) == GOT_REGIDX)) | |
626 | { | |
8ac0e65a JB |
627 | got_state = 1; |
628 | got_load_addr = test_pc; | |
629 | got_load_len = instrlen; | |
5769d3cd AC |
630 | valid_prologue = 1; |
631 | continue; | |
632 | } | |
633 | /* Check for subsequent ar got_regidx,basr_regidx */ | |
634 | if (got_state == 1 && instr[0] == 0x1a && | |
635 | instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX)) | |
636 | { | |
637 | got_state = 2; | |
638 | valid_prologue = 1; | |
639 | continue; | |
640 | } | |
641 | } | |
642 | } | |
643 | while (valid_prologue && good_prologue); | |
644 | if (good_prologue) | |
645 | { | |
8ac0e65a JB |
646 | /* If this function doesn't reference the global offset table, |
647 | then the compiler may use r12 for other things. If the last | |
648 | instruction we saw was a load of r12 from the constant pool, | |
649 | with no subsequent add to make the address PC-relative, then | |
650 | the load was probably a genuine body instruction; don't treat | |
651 | it as part of the prologue. */ | |
652 | if (got_state == 1 | |
653 | && got_load_addr + got_load_len == test_pc) | |
654 | { | |
655 | test_pc = got_load_addr; | |
656 | instrlen = got_load_len; | |
657 | } | |
658 | ||
659 | good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) && | |
5769d3cd AC |
660 | ((save_link_state == 0) || (save_link_state == 4)) && |
661 | ((varargs_state == 0) || (varargs_state == 2))); | |
662 | } | |
663 | if (fextra_info) | |
664 | { | |
665 | fextra_info->good_prologue = good_prologue; | |
666 | fextra_info->skip_prologue_function_start = | |
667 | (good_prologue ? test_pc : pc); | |
668 | } | |
09025237 JB |
669 | if (saved_regs) |
670 | /* The SP's element of the saved_regs array holds the old SP, | |
671 | not the address at which it is saved. */ | |
672 | saved_regs[S390_SP_REGNUM] = orig_sp; | |
5769d3cd AC |
673 | return err; |
674 | } | |
675 | ||
676 | ||
677 | int | |
678 | s390_check_function_end (CORE_ADDR pc) | |
679 | { | |
680 | bfd_byte instr[S390_MAX_INSTR_SIZE]; | |
681 | disassemble_info info; | |
682 | int regidx, instrlen; | |
683 | ||
684 | info.read_memory_func = dis_asm_read_memory; | |
685 | instrlen = s390_readinstruction (instr, pc, &info); | |
686 | if (instrlen < 0) | |
687 | return -1; | |
688 | /* check for BR */ | |
689 | if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf) | |
690 | return 0; | |
691 | regidx = instr[1] & 0xf; | |
692 | /* Check for LMG or LG */ | |
693 | instrlen = | |
694 | s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info); | |
695 | if (instrlen < 0) | |
696 | return -1; | |
697 | if (GDB_TARGET_IS_ESAME) | |
698 | { | |
699 | ||
700 | if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4) | |
701 | return 0; | |
702 | } | |
703 | else if (instrlen != 4 || instr[0] != 0x98) | |
704 | { | |
705 | return 0; | |
706 | } | |
707 | if ((instr[2] >> 4) != 0xf) | |
708 | return 0; | |
709 | if (regidx == 14) | |
710 | return 1; | |
711 | instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8), | |
712 | &info); | |
713 | if (instrlen < 0) | |
714 | return -1; | |
715 | if (GDB_TARGET_IS_ESAME) | |
716 | { | |
717 | /* Check for LG */ | |
718 | if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4) | |
719 | return 0; | |
720 | } | |
721 | else | |
722 | { | |
723 | /* Check for L */ | |
724 | if (instrlen != 4 || instr[0] != 0x58) | |
725 | return 0; | |
726 | } | |
727 | if (instr[2] >> 4 != 0xf) | |
728 | return 0; | |
729 | if (instr[1] >> 4 != regidx) | |
730 | return 0; | |
731 | return 1; | |
732 | } | |
733 | ||
734 | static CORE_ADDR | |
735 | s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi) | |
736 | { | |
737 | CORE_ADDR function_start, test_function_start; | |
738 | int loop_cnt, err, function_end; | |
739 | struct frame_extra_info fextra_info; | |
740 | function_start = get_pc_function_start (pc); | |
741 | ||
742 | if (function_start == 0) | |
743 | { | |
744 | test_function_start = pc; | |
745 | if (test_function_start & 1) | |
746 | return 0; /* This has to be bogus */ | |
747 | loop_cnt = 0; | |
748 | do | |
749 | { | |
750 | ||
751 | err = | |
752 | s390_get_frame_info (test_function_start, &fextra_info, fi, 1); | |
753 | loop_cnt++; | |
754 | test_function_start -= 2; | |
755 | function_end = s390_check_function_end (test_function_start); | |
756 | } | |
757 | while (!(function_end == 1 || err || loop_cnt >= 4096 || | |
758 | (fextra_info.good_prologue))); | |
759 | if (fextra_info.good_prologue) | |
760 | function_start = fextra_info.function_start; | |
761 | else if (function_end == 1) | |
762 | function_start = test_function_start; | |
763 | } | |
764 | return function_start; | |
765 | } | |
766 | ||
767 | ||
768 | ||
769 | CORE_ADDR | |
770 | s390_function_start (struct frame_info *fi) | |
771 | { | |
772 | CORE_ADDR function_start = 0; | |
773 | ||
774 | if (fi->extra_info && fi->extra_info->initialised) | |
775 | function_start = fi->extra_info->function_start; | |
776 | else if (fi->pc) | |
777 | function_start = get_pc_function_start (fi->pc); | |
778 | return function_start; | |
779 | } | |
780 | ||
781 | ||
782 | ||
783 | ||
784 | int | |
785 | s390_frameless_function_invocation (struct frame_info *fi) | |
786 | { | |
787 | struct frame_extra_info fextra_info, *fextra_info_ptr; | |
788 | int frameless = 0; | |
789 | ||
790 | if (fi->next == NULL) /* no may be frameless */ | |
791 | { | |
792 | if (fi->extra_info) | |
793 | fextra_info_ptr = fi->extra_info; | |
794 | else | |
795 | { | |
796 | fextra_info_ptr = &fextra_info; | |
797 | s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi), | |
798 | fextra_info_ptr, fi, 1); | |
799 | } | |
800 | frameless = ((fextra_info_ptr->stack_bought == 0)); | |
801 | } | |
802 | return frameless; | |
803 | ||
804 | } | |
805 | ||
806 | ||
807 | static int | |
808 | s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi, | |
809 | CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc) | |
810 | { | |
811 | bfd_byte instr[S390_MAX_INSTR_SIZE]; | |
812 | disassemble_info info; | |
813 | int instrlen; | |
814 | CORE_ADDR scontext; | |
815 | int retval = 0; | |
816 | CORE_ADDR orig_sp; | |
817 | CORE_ADDR temp_sregs; | |
818 | ||
819 | scontext = temp_sregs = 0; | |
820 | ||
821 | info.read_memory_func = dis_asm_read_memory; | |
822 | instrlen = s390_readinstruction (instr, pc, &info); | |
823 | if (sigcaller_pc) | |
824 | *sigcaller_pc = 0; | |
825 | if (((instrlen == S390_SYSCALL_SIZE) && | |
826 | (instr[0] == S390_SYSCALL_OPCODE)) && | |
827 | ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn))) | |
828 | { | |
829 | if (sighandler_fi) | |
830 | { | |
831 | if (s390_frameless_function_invocation (sighandler_fi)) | |
832 | orig_sp = sighandler_fi->frame; | |
833 | else | |
834 | orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR) | |
835 | read_memory_integer (sighandler_fi-> | |
836 | frame, | |
837 | S390_GPR_SIZE)); | |
838 | if (orig_sp && sigcaller_pc) | |
839 | { | |
840 | scontext = orig_sp + S390_SIGNAL_FRAMESIZE; | |
841 | if (pc == scontext && instr[1] == s390_NR_rt_sigreturn) | |
842 | { | |
843 | /* We got a new style rt_signal */ | |
844 | /* get address of read ucontext->uc_mcontext */ | |
845 | temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ? | |
846 | S390X_UC_MCONTEXT_OFFSET : | |
847 | S390_UC_MCONTEXT_OFFSET); | |
848 | } | |
849 | else | |
850 | { | |
851 | /* read sigcontext->sregs */ | |
852 | temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR) | |
853 | read_memory_integer (scontext | |
854 | + | |
855 | (GDB_TARGET_IS_ESAME | |
856 | ? | |
857 | S390X_SIGCONTEXT_SREGS_OFFSET | |
858 | : | |
859 | S390_SIGCONTEXT_SREGS_OFFSET), | |
860 | S390_GPR_SIZE)); | |
861 | ||
862 | } | |
863 | /* read sigregs->psw.addr */ | |
864 | *sigcaller_pc = | |
865 | ADDR_BITS_REMOVE ((CORE_ADDR) | |
866 | read_memory_integer (temp_sregs + | |
867 | REGISTER_BYTE | |
868 | (S390_PC_REGNUM), | |
869 | S390_PSW_ADDR_SIZE)); | |
870 | } | |
871 | } | |
872 | retval = 1; | |
873 | } | |
874 | if (sregs) | |
875 | *sregs = temp_sregs; | |
876 | return retval; | |
877 | } | |
878 | ||
879 | /* | |
880 | We need to do something better here but this will keep us out of trouble | |
881 | for the moment. | |
882 | For some reason the blockframe.c calls us with fi->next->fromleaf | |
883 | so this seems of little use to us. */ | |
884 | void | |
885 | s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi) | |
886 | { | |
887 | CORE_ADDR sigcaller_pc; | |
888 | ||
889 | fi->pc = 0; | |
890 | if (next_fromleaf) | |
891 | { | |
892 | fi->pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); | |
893 | /* fix signal handlers */ | |
894 | } | |
895 | else if (fi->next && fi->next->pc) | |
896 | fi->pc = s390_frame_saved_pc_nofix (fi->next); | |
897 | if (fi->pc && fi->next && fi->next->frame && | |
898 | s390_is_sigreturn (fi->pc, fi->next, NULL, &sigcaller_pc)) | |
899 | { | |
900 | fi->pc = sigcaller_pc; | |
901 | } | |
902 | ||
903 | } | |
904 | ||
905 | void | |
906 | s390_init_extra_frame_info (int fromleaf, struct frame_info *fi) | |
907 | { | |
908 | fi->extra_info = frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
909 | if (fi->pc) | |
910 | s390_get_frame_info (s390_sniff_pc_function_start (fi->pc, fi), | |
911 | fi->extra_info, fi, 1); | |
912 | else | |
913 | s390_memset_extra_info (fi->extra_info); | |
914 | } | |
915 | ||
916 | /* If saved registers of frame FI are not known yet, read and cache them. | |
917 | &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL, | |
918 | in which case the framedata are read. */ | |
919 | ||
920 | void | |
921 | s390_frame_init_saved_regs (struct frame_info *fi) | |
922 | { | |
923 | ||
924 | int quick; | |
925 | ||
926 | if (fi->saved_regs == NULL) | |
927 | { | |
928 | /* zalloc memsets the saved regs */ | |
929 | frame_saved_regs_zalloc (fi); | |
930 | if (fi->pc) | |
931 | { | |
932 | quick = (fi->extra_info && fi->extra_info->initialised | |
933 | && fi->extra_info->good_prologue); | |
934 | s390_get_frame_info (quick ? fi->extra_info->function_start : | |
935 | s390_sniff_pc_function_start (fi->pc, fi), | |
936 | fi->extra_info, fi, !quick); | |
937 | } | |
938 | } | |
939 | } | |
940 | ||
941 | ||
942 | ||
943 | CORE_ADDR | |
944 | s390_frame_args_address (struct frame_info *fi) | |
945 | { | |
946 | ||
947 | /* Apparently gdb already knows gdb_args_offset itself */ | |
948 | return fi->frame; | |
949 | } | |
950 | ||
951 | ||
952 | static CORE_ADDR | |
953 | s390_frame_saved_pc_nofix (struct frame_info *fi) | |
954 | { | |
955 | if (fi->extra_info && fi->extra_info->saved_pc_valid) | |
956 | return fi->extra_info->saved_pc; | |
5c3cf190 JB |
957 | |
958 | if (generic_find_dummy_frame (fi->pc, fi->frame)) | |
959 | return generic_read_register_dummy (fi->pc, fi->frame, S390_PC_REGNUM); | |
960 | ||
5769d3cd AC |
961 | s390_frame_init_saved_regs (fi); |
962 | if (fi->extra_info) | |
963 | { | |
964 | fi->extra_info->saved_pc_valid = 1; | |
529765f4 JB |
965 | if (fi->extra_info->good_prologue |
966 | && fi->saved_regs[S390_RETADDR_REGNUM]) | |
967 | fi->extra_info->saved_pc | |
968 | = ADDR_BITS_REMOVE (read_memory_integer | |
969 | (fi->saved_regs[S390_RETADDR_REGNUM], | |
970 | S390_GPR_SIZE)); | |
971 | else | |
972 | fi->extra_info->saved_pc | |
973 | = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); | |
974 | return fi->extra_info->saved_pc; | |
5769d3cd AC |
975 | } |
976 | return 0; | |
977 | } | |
978 | ||
979 | CORE_ADDR | |
980 | s390_frame_saved_pc (struct frame_info *fi) | |
981 | { | |
982 | CORE_ADDR saved_pc = 0, sig_pc; | |
983 | ||
984 | if (fi->extra_info && fi->extra_info->sig_fixed_saved_pc_valid) | |
985 | return fi->extra_info->sig_fixed_saved_pc; | |
986 | saved_pc = s390_frame_saved_pc_nofix (fi); | |
987 | ||
988 | if (fi->extra_info) | |
989 | { | |
990 | fi->extra_info->sig_fixed_saved_pc_valid = 1; | |
991 | if (saved_pc) | |
992 | { | |
993 | if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc)) | |
994 | saved_pc = sig_pc; | |
995 | } | |
996 | fi->extra_info->sig_fixed_saved_pc = saved_pc; | |
997 | } | |
998 | return saved_pc; | |
999 | } | |
1000 | ||
1001 | ||
1002 | ||
1003 | ||
1004 | /* We want backtraces out of signal handlers so we don't | |
1005 | set thisframe->signal_handler_caller to 1 */ | |
1006 | ||
1007 | CORE_ADDR | |
1008 | s390_frame_chain (struct frame_info *thisframe) | |
1009 | { | |
1010 | CORE_ADDR prev_fp = 0; | |
1011 | ||
1012 | if (thisframe->prev && thisframe->prev->frame) | |
1013 | prev_fp = thisframe->prev->frame; | |
5c3cf190 JB |
1014 | else if (generic_find_dummy_frame (thisframe->pc, thisframe->frame)) |
1015 | return generic_read_register_dummy (thisframe->pc, thisframe->frame, | |
1016 | S390_SP_REGNUM); | |
5769d3cd AC |
1017 | else |
1018 | { | |
1019 | int sigreturn = 0; | |
1020 | CORE_ADDR sregs = 0; | |
1021 | struct frame_extra_info prev_fextra_info; | |
1022 | ||
1023 | memset (&prev_fextra_info, 0, sizeof (prev_fextra_info)); | |
1024 | if (thisframe->pc) | |
1025 | { | |
1026 | CORE_ADDR saved_pc, sig_pc; | |
1027 | ||
1028 | saved_pc = s390_frame_saved_pc_nofix (thisframe); | |
1029 | if (saved_pc) | |
1030 | { | |
1031 | if ((sigreturn = | |
1032 | s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc))) | |
1033 | saved_pc = sig_pc; | |
1034 | s390_get_frame_info (s390_sniff_pc_function_start | |
1035 | (saved_pc, NULL), &prev_fextra_info, NULL, | |
1036 | 1); | |
1037 | } | |
1038 | } | |
1039 | if (sigreturn) | |
1040 | { | |
1041 | /* read sigregs,regs.gprs[11 or 15] */ | |
1042 | prev_fp = read_memory_integer (sregs + | |
1043 | REGISTER_BYTE (S390_GP0_REGNUM + | |
1044 | (prev_fextra_info. | |
1045 | frame_pointer_saved_pc | |
1046 | ? 11 : 15)), | |
1047 | S390_GPR_SIZE); | |
1048 | thisframe->extra_info->sigcontext = sregs; | |
1049 | } | |
1050 | else | |
1051 | { | |
1052 | if (thisframe->saved_regs) | |
1053 | { | |
5769d3cd AC |
1054 | int regno; |
1055 | ||
31c4d430 JB |
1056 | if (prev_fextra_info.frame_pointer_saved_pc |
1057 | && thisframe->saved_regs[S390_FRAME_REGNUM]) | |
1058 | regno = S390_FRAME_REGNUM; | |
1059 | else | |
1060 | regno = S390_SP_REGNUM; | |
1061 | ||
5769d3cd | 1062 | if (thisframe->saved_regs[regno]) |
31c4d430 JB |
1063 | { |
1064 | /* The SP's entry of `saved_regs' is special. */ | |
1065 | if (regno == S390_SP_REGNUM) | |
1066 | prev_fp = thisframe->saved_regs[regno]; | |
1067 | else | |
1068 | prev_fp = | |
1069 | read_memory_integer (thisframe->saved_regs[regno], | |
1070 | S390_GPR_SIZE); | |
1071 | } | |
5769d3cd AC |
1072 | } |
1073 | } | |
1074 | } | |
1075 | return ADDR_BITS_REMOVE (prev_fp); | |
1076 | } | |
1077 | ||
1078 | /* | |
1079 | Whether struct frame_extra_info is actually needed I'll have to figure | |
1080 | out as our frames are similar to rs6000 there is a possibility | |
1081 | i386 dosen't need it. */ | |
1082 | ||
1083 | ||
1084 | ||
1085 | /* a given return value in `regbuf' with a type `valtype', extract and copy its | |
1086 | value into `valbuf' */ | |
1087 | void | |
1088 | s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf) | |
1089 | { | |
1090 | /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes. | |
1091 | We need to truncate the return value into float size (4 byte) if | |
1092 | necessary. */ | |
1093 | int len = TYPE_LENGTH (valtype); | |
1094 | ||
1095 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) | |
f2c6cfba | 1096 | memcpy (valbuf, ®buf[REGISTER_BYTE (S390_FP0_REGNUM)], len); |
5769d3cd AC |
1097 | else |
1098 | { | |
1099 | int offset = 0; | |
1100 | /* return value is copied starting from r2. */ | |
1101 | if (TYPE_LENGTH (valtype) < S390_GPR_SIZE) | |
1102 | offset = S390_GPR_SIZE - TYPE_LENGTH (valtype); | |
1103 | memcpy (valbuf, | |
1104 | regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset, | |
1105 | TYPE_LENGTH (valtype)); | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | ||
1110 | static char * | |
1111 | s390_promote_integer_argument (struct type *valtype, char *valbuf, | |
1112 | char *reg_buff, int *arglen) | |
1113 | { | |
1114 | char *value = valbuf; | |
1115 | int len = TYPE_LENGTH (valtype); | |
1116 | ||
1117 | if (len < S390_GPR_SIZE) | |
1118 | { | |
1119 | /* We need to upgrade this value to a register to pass it correctly */ | |
1120 | int idx, diff = S390_GPR_SIZE - len, negative = | |
1121 | (!TYPE_UNSIGNED (valtype) && value[0] & 0x80); | |
1122 | for (idx = 0; idx < S390_GPR_SIZE; idx++) | |
1123 | { | |
1124 | reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) : | |
1125 | value[idx - diff]); | |
1126 | } | |
1127 | value = reg_buff; | |
1128 | *arglen = S390_GPR_SIZE; | |
1129 | } | |
1130 | else | |
1131 | { | |
1132 | if (len & (S390_GPR_SIZE - 1)) | |
1133 | { | |
1134 | fprintf_unfiltered (gdb_stderr, | |
1135 | "s390_promote_integer_argument detected an argument not " | |
1136 | "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE " | |
1137 | "we might not deal with this correctly.\n"); | |
1138 | } | |
1139 | *arglen = len; | |
1140 | } | |
1141 | ||
1142 | return (value); | |
1143 | } | |
1144 | ||
1145 | void | |
1146 | s390_store_return_value (struct type *valtype, char *valbuf) | |
1147 | { | |
1148 | int arglen; | |
1149 | char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value; | |
1150 | ||
1151 | if (TYPE_CODE (valtype) == TYPE_CODE_FLT) | |
1152 | { | |
03a013f4 JB |
1153 | if (TYPE_LENGTH (valtype) == 4 |
1154 | || TYPE_LENGTH (valtype) == 8) | |
1155 | write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM), valbuf, | |
1156 | TYPE_LENGTH (valtype)); | |
1157 | else | |
1158 | error ("GDB is unable to return `long double' values " | |
1159 | "on this architecture."); | |
5769d3cd AC |
1160 | } |
1161 | else | |
1162 | { | |
1163 | value = | |
1164 | s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen); | |
1165 | /* Everything else is returned in GPR2 and up. */ | |
1166 | write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2), value, | |
1167 | arglen); | |
1168 | } | |
1169 | } | |
1170 | static int | |
1171 | gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info) | |
1172 | { | |
1173 | bfd_byte instrbuff[S390_MAX_INSTR_SIZE]; | |
1174 | int instrlen, cnt; | |
1175 | ||
1176 | instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info); | |
1177 | if (instrlen < 0) | |
1178 | { | |
1179 | (*info->memory_error_func) (instrlen, memaddr, info); | |
1180 | return -1; | |
1181 | } | |
1182 | for (cnt = 0; cnt < instrlen; cnt++) | |
1183 | info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]); | |
1184 | for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++) | |
1185 | info->fprintf_func (info->stream, " "); | |
1186 | instrlen = print_insn_s390 (memaddr, info); | |
1187 | return instrlen; | |
1188 | } | |
1189 | ||
1190 | ||
1191 | ||
1192 | /* Not the most efficent code in the world */ | |
1193 | int | |
1194 | s390_fp_regnum () | |
1195 | { | |
1196 | int regno = S390_SP_REGNUM; | |
1197 | struct frame_extra_info fextra_info; | |
1198 | ||
1199 | CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM)); | |
1200 | ||
1201 | s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info, | |
1202 | NULL, 1); | |
1203 | if (fextra_info.frame_pointer_saved_pc) | |
1204 | regno = S390_FRAME_REGNUM; | |
1205 | return regno; | |
1206 | } | |
1207 | ||
1208 | CORE_ADDR | |
1209 | s390_read_fp () | |
1210 | { | |
1211 | return read_register (s390_fp_regnum ()); | |
1212 | } | |
1213 | ||
1214 | ||
1215 | void | |
1216 | s390_write_fp (CORE_ADDR val) | |
1217 | { | |
1218 | write_register (s390_fp_regnum (), val); | |
1219 | } | |
1220 | ||
1221 | ||
4c8287ac JB |
1222 | static void |
1223 | s390_pop_frame_regular (struct frame_info *frame) | |
5769d3cd | 1224 | { |
4c8287ac JB |
1225 | int regnum; |
1226 | ||
1227 | write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame)); | |
1228 | ||
1229 | /* Restore any saved registers. */ | |
1a889ea5 JB |
1230 | if (frame->saved_regs) |
1231 | { | |
1232 | for (regnum = 0; regnum < NUM_REGS; regnum++) | |
1233 | if (frame->saved_regs[regnum] != 0) | |
1234 | { | |
1235 | ULONGEST value; | |
1236 | ||
1237 | value = read_memory_unsigned_integer (frame->saved_regs[regnum], | |
1238 | REGISTER_RAW_SIZE (regnum)); | |
1239 | write_register (regnum, value); | |
1240 | } | |
1241 | ||
1242 | /* Actually cut back the stack. Remember that the SP's element of | |
1243 | saved_regs is the old SP itself, not the address at which it is | |
1244 | saved. */ | |
1245 | write_register (S390_SP_REGNUM, frame->saved_regs[S390_SP_REGNUM]); | |
1246 | } | |
5769d3cd | 1247 | |
4c8287ac JB |
1248 | /* Throw away any cached frame information. */ |
1249 | flush_cached_frames (); | |
5769d3cd AC |
1250 | } |
1251 | ||
4c8287ac JB |
1252 | |
1253 | /* Destroy the innermost (Top-Of-Stack) stack frame, restoring the | |
1254 | machine state that was in effect before the frame was created. | |
1255 | Used in the contexts of the "return" command, and of | |
1256 | target function calls from the debugger. */ | |
1257 | void | |
1258 | s390_pop_frame () | |
1259 | { | |
1260 | /* This function checks for and handles generic dummy frames, and | |
1261 | calls back to our function for ordinary frames. */ | |
1262 | generic_pop_current_frame (s390_pop_frame_regular); | |
1263 | } | |
1264 | ||
1265 | ||
78f8b424 JB |
1266 | /* Return non-zero if TYPE is an integer-like type, zero otherwise. |
1267 | "Integer-like" types are those that should be passed the way | |
1268 | integers are: integers, enums, ranges, characters, and booleans. */ | |
1269 | static int | |
1270 | is_integer_like (struct type *type) | |
1271 | { | |
1272 | enum type_code code = TYPE_CODE (type); | |
1273 | ||
1274 | return (code == TYPE_CODE_INT | |
1275 | || code == TYPE_CODE_ENUM | |
1276 | || code == TYPE_CODE_RANGE | |
1277 | || code == TYPE_CODE_CHAR | |
1278 | || code == TYPE_CODE_BOOL); | |
1279 | } | |
1280 | ||
1281 | ||
1282 | /* Return non-zero if TYPE is a pointer-like type, zero otherwise. | |
1283 | "Pointer-like" types are those that should be passed the way | |
1284 | pointers are: pointers and references. */ | |
1285 | static int | |
1286 | is_pointer_like (struct type *type) | |
1287 | { | |
1288 | enum type_code code = TYPE_CODE (type); | |
1289 | ||
1290 | return (code == TYPE_CODE_PTR | |
1291 | || code == TYPE_CODE_REF); | |
1292 | } | |
1293 | ||
1294 | ||
20a940cc JB |
1295 | /* Return non-zero if TYPE is a `float singleton' or `double |
1296 | singleton', zero otherwise. | |
1297 | ||
1298 | A `T singleton' is a struct type with one member, whose type is | |
1299 | either T or a `T singleton'. So, the following are all float | |
1300 | singletons: | |
1301 | ||
1302 | struct { float x }; | |
1303 | struct { struct { float x; } x; }; | |
1304 | struct { struct { struct { float x; } x; } x; }; | |
1305 | ||
1306 | ... and so on. | |
1307 | ||
1308 | WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC | |
1309 | passes all float singletons and double singletons as if they were | |
1310 | simply floats or doubles. This is *not* what the ABI says it | |
1311 | should do. */ | |
1312 | static int | |
1313 | is_float_singleton (struct type *type) | |
1314 | { | |
1315 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1316 | && TYPE_NFIELDS (type) == 1 | |
1317 | && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT | |
1318 | || is_float_singleton (TYPE_FIELD_TYPE (type, 0)))); | |
1319 | } | |
1320 | ||
1321 | ||
1322 | /* Return non-zero if TYPE is a struct-like type, zero otherwise. | |
1323 | "Struct-like" types are those that should be passed as structs are: | |
1324 | structs and unions. | |
1325 | ||
1326 | As an odd quirk, not mentioned in the ABI, GCC passes float and | |
1327 | double singletons as if they were a plain float, double, etc. (The | |
1328 | corresponding union types are handled normally.) So we exclude | |
1329 | those types here. *shrug* */ | |
1330 | static int | |
1331 | is_struct_like (struct type *type) | |
1332 | { | |
1333 | enum type_code code = TYPE_CODE (type); | |
1334 | ||
1335 | return (code == TYPE_CODE_UNION | |
1336 | || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type))); | |
1337 | } | |
1338 | ||
1339 | ||
1340 | /* Return non-zero if TYPE is a float-like type, zero otherwise. | |
1341 | "Float-like" types are those that should be passed as | |
1342 | floating-point values are. | |
1343 | ||
1344 | You'd think this would just be floats, doubles, long doubles, etc. | |
1345 | But as an odd quirk, not mentioned in the ABI, GCC passes float and | |
1346 | double singletons as if they were a plain float, double, etc. (The | |
1347 | corresponding union types are handled normally.) So we exclude | |
1348 | those types here. *shrug* */ | |
1349 | static int | |
1350 | is_float_like (struct type *type) | |
1351 | { | |
1352 | return (TYPE_CODE (type) == TYPE_CODE_FLT | |
1353 | || is_float_singleton (type)); | |
1354 | } | |
1355 | ||
1356 | ||
78f8b424 JB |
1357 | /* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as |
1358 | defined by the parameter passing conventions described in the | |
ca557f44 | 1359 | "GNU/Linux for S/390 ELF Application Binary Interface Supplement". |
78f8b424 JB |
1360 | Otherwise, return zero. */ |
1361 | static int | |
1362 | is_double_or_float (struct type *type) | |
1363 | { | |
20a940cc | 1364 | return (is_float_like (type) |
78f8b424 JB |
1365 | && (TYPE_LENGTH (type) == 4 |
1366 | || TYPE_LENGTH (type) == 8)); | |
1367 | } | |
1368 | ||
5769d3cd | 1369 | |
78f8b424 | 1370 | /* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by |
ca557f44 AC |
1371 | the parameter passing conventions described in the "GNU/Linux for |
1372 | S/390 ELF Application Binary Interface Supplement". Return zero | |
1373 | otherwise. */ | |
78f8b424 JB |
1374 | static int |
1375 | is_simple_arg (struct type *type) | |
1376 | { | |
78f8b424 JB |
1377 | unsigned length = TYPE_LENGTH (type); |
1378 | ||
a1677dfb JB |
1379 | /* This is almost a direct translation of the ABI's language, except |
1380 | that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */ | |
78f8b424 JB |
1381 | return ((is_integer_like (type) && length <= 4) |
1382 | || is_pointer_like (type) | |
20a940cc JB |
1383 | || (is_struct_like (type) && length != 8) |
1384 | || (is_float_like (type) && length == 16)); | |
78f8b424 JB |
1385 | } |
1386 | ||
1387 | ||
1388 | /* Return non-zero if TYPE should be passed as a pointer to a copy, | |
1389 | zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by | |
1390 | `is_simple_arg'. */ | |
1391 | static int | |
1392 | pass_by_copy_ref (struct type *type) | |
1393 | { | |
78f8b424 JB |
1394 | unsigned length = TYPE_LENGTH (type); |
1395 | ||
20a940cc JB |
1396 | return ((is_struct_like (type) && length != 1 && length != 2 && length != 4) |
1397 | || (is_float_like (type) && length == 16)); | |
78f8b424 JB |
1398 | } |
1399 | ||
1400 | ||
1401 | /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full | |
1402 | word as required for the ABI. */ | |
1403 | static LONGEST | |
1404 | extend_simple_arg (struct value *arg) | |
1405 | { | |
1406 | struct type *type = VALUE_TYPE (arg); | |
1407 | ||
1408 | /* Even structs get passed in the least significant bits of the | |
1409 | register / memory word. It's not really right to extract them as | |
1410 | an integer, but it does take care of the extension. */ | |
1411 | if (TYPE_UNSIGNED (type)) | |
1412 | return extract_unsigned_integer (VALUE_CONTENTS (arg), | |
1413 | TYPE_LENGTH (type)); | |
1414 | else | |
1415 | return extract_signed_integer (VALUE_CONTENTS (arg), | |
1416 | TYPE_LENGTH (type)); | |
1417 | } | |
1418 | ||
1419 | ||
1420 | /* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the | |
ca557f44 AC |
1421 | parameter passing conventions described in the "GNU/Linux for S/390 |
1422 | ELF Application Binary Interface Supplement". Return zero | |
1423 | otherwise. */ | |
78f8b424 JB |
1424 | static int |
1425 | is_double_arg (struct type *type) | |
1426 | { | |
78f8b424 JB |
1427 | unsigned length = TYPE_LENGTH (type); |
1428 | ||
1429 | return ((is_integer_like (type) | |
20a940cc | 1430 | || is_struct_like (type)) |
78f8b424 JB |
1431 | && length == 8); |
1432 | } | |
1433 | ||
1434 | ||
1435 | /* Round ADDR up to the next N-byte boundary. N must be a power of | |
1436 | two. */ | |
1437 | static CORE_ADDR | |
1438 | round_up (CORE_ADDR addr, int n) | |
1439 | { | |
1440 | /* Check that N is really a power of two. */ | |
1441 | gdb_assert (n && (n & (n-1)) == 0); | |
1442 | return ((addr + n - 1) & -n); | |
1443 | } | |
1444 | ||
1445 | ||
1446 | /* Round ADDR down to the next N-byte boundary. N must be a power of | |
1447 | two. */ | |
1448 | static CORE_ADDR | |
1449 | round_down (CORE_ADDR addr, int n) | |
1450 | { | |
1451 | /* Check that N is really a power of two. */ | |
1452 | gdb_assert (n && (n & (n-1)) == 0); | |
1453 | return (addr & -n); | |
1454 | } | |
1455 | ||
1456 | ||
1457 | /* Return the alignment required by TYPE. */ | |
1458 | static int | |
1459 | alignment_of (struct type *type) | |
1460 | { | |
1461 | int alignment; | |
1462 | ||
1463 | if (is_integer_like (type) | |
1464 | || is_pointer_like (type) | |
1465 | || TYPE_CODE (type) == TYPE_CODE_FLT) | |
1466 | alignment = TYPE_LENGTH (type); | |
1467 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1468 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
1469 | { | |
1470 | int i; | |
1471 | ||
1472 | alignment = 1; | |
1473 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
1474 | { | |
1475 | int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i)); | |
1476 | ||
1477 | if (field_alignment > alignment) | |
1478 | alignment = field_alignment; | |
1479 | } | |
1480 | } | |
1481 | else | |
1482 | alignment = 1; | |
1483 | ||
1484 | /* Check that everything we ever return is a power of two. Lots of | |
1485 | code doesn't want to deal with aligning things to arbitrary | |
1486 | boundaries. */ | |
1487 | gdb_assert ((alignment & (alignment - 1)) == 0); | |
1488 | ||
1489 | return alignment; | |
1490 | } | |
1491 | ||
1492 | ||
1493 | /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in | |
ca557f44 AC |
1494 | place to be passed to a function, as specified by the "GNU/Linux |
1495 | for S/390 ELF Application Binary Interface Supplement". | |
78f8b424 JB |
1496 | |
1497 | SP is the current stack pointer. We must put arguments, links, | |
1498 | padding, etc. whereever they belong, and return the new stack | |
1499 | pointer value. | |
1500 | ||
1501 | If STRUCT_RETURN is non-zero, then the function we're calling is | |
1502 | going to return a structure by value; STRUCT_ADDR is the address of | |
1503 | a block we've allocated for it on the stack. | |
1504 | ||
1505 | Our caller has taken care of any type promotions needed to satisfy | |
1506 | prototypes or the old K&R argument-passing rules. */ | |
5769d3cd | 1507 | CORE_ADDR |
d45fc520 | 1508 | s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
5769d3cd AC |
1509 | int struct_return, CORE_ADDR struct_addr) |
1510 | { | |
78f8b424 JB |
1511 | int i; |
1512 | int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT); | |
5769d3cd | 1513 | |
78f8b424 JB |
1514 | /* The number of arguments passed by reference-to-copy. */ |
1515 | int num_copies; | |
5769d3cd | 1516 | |
78f8b424 JB |
1517 | /* If the i'th argument is passed as a reference to a copy, then |
1518 | copy_addr[i] is the address of the copy we made. */ | |
1519 | CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR)); | |
5769d3cd | 1520 | |
78f8b424 JB |
1521 | /* Build the reference-to-copy area. */ |
1522 | num_copies = 0; | |
1523 | for (i = 0; i < nargs; i++) | |
1524 | { | |
1525 | struct value *arg = args[i]; | |
1526 | struct type *type = VALUE_TYPE (arg); | |
1527 | unsigned length = TYPE_LENGTH (type); | |
5769d3cd | 1528 | |
78f8b424 JB |
1529 | if (is_simple_arg (type) |
1530 | && pass_by_copy_ref (type)) | |
01c464e9 | 1531 | { |
78f8b424 JB |
1532 | sp -= length; |
1533 | sp = round_down (sp, alignment_of (type)); | |
1534 | write_memory (sp, VALUE_CONTENTS (arg), length); | |
1535 | copy_addr[i] = sp; | |
1536 | num_copies++; | |
01c464e9 | 1537 | } |
5769d3cd | 1538 | } |
5769d3cd | 1539 | |
78f8b424 JB |
1540 | /* Reserve space for the parameter area. As a conservative |
1541 | simplification, we assume that everything will be passed on the | |
1542 | stack. */ | |
1543 | { | |
1544 | int i; | |
1545 | ||
1546 | for (i = 0; i < nargs; i++) | |
1547 | { | |
1548 | struct value *arg = args[i]; | |
1549 | struct type *type = VALUE_TYPE (arg); | |
1550 | int length = TYPE_LENGTH (type); | |
1551 | ||
1552 | sp = round_down (sp, alignment_of (type)); | |
1553 | ||
1554 | /* SIMPLE_ARG values get extended to 32 bits. Assume every | |
1555 | argument is. */ | |
1556 | if (length < 4) length = 4; | |
1557 | sp -= length; | |
1558 | } | |
1559 | } | |
1560 | ||
1561 | /* Include space for any reference-to-copy pointers. */ | |
1562 | sp = round_down (sp, pointer_size); | |
1563 | sp -= num_copies * pointer_size; | |
1564 | ||
1565 | /* After all that, make sure it's still aligned on an eight-byte | |
1566 | boundary. */ | |
1567 | sp = round_down (sp, 8); | |
1568 | ||
1569 | /* Finally, place the actual parameters, working from SP towards | |
1570 | higher addresses. The code above is supposed to reserve enough | |
1571 | space for this. */ | |
1572 | { | |
1573 | int fr = 0; | |
1574 | int gr = 2; | |
1575 | CORE_ADDR starg = sp; | |
1576 | ||
1577 | for (i = 0; i < nargs; i++) | |
1578 | { | |
1579 | struct value *arg = args[i]; | |
1580 | struct type *type = VALUE_TYPE (arg); | |
1581 | ||
1582 | if (is_double_or_float (type) | |
1583 | && fr <= 2) | |
1584 | { | |
1585 | /* When we store a single-precision value in an FP register, | |
1586 | it occupies the leftmost bits. */ | |
1587 | write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr), | |
1588 | VALUE_CONTENTS (arg), | |
1589 | TYPE_LENGTH (type)); | |
1590 | fr += 2; | |
1591 | } | |
1592 | else if (is_simple_arg (type) | |
1593 | && gr <= 6) | |
1594 | { | |
1595 | /* Do we need to pass a pointer to our copy of this | |
1596 | argument? */ | |
1597 | if (pass_by_copy_ref (type)) | |
1598 | write_register (S390_GP0_REGNUM + gr, copy_addr[i]); | |
1599 | else | |
1600 | write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg)); | |
1601 | ||
1602 | gr++; | |
1603 | } | |
1604 | else if (is_double_arg (type) | |
1605 | && gr <= 5) | |
1606 | { | |
1607 | write_register_gen (S390_GP0_REGNUM + gr, | |
1608 | VALUE_CONTENTS (arg)); | |
1609 | write_register_gen (S390_GP0_REGNUM + gr + 1, | |
1610 | VALUE_CONTENTS (arg) + 4); | |
1611 | gr += 2; | |
1612 | } | |
1613 | else | |
1614 | { | |
1615 | /* The `OTHER' case. */ | |
1616 | enum type_code code = TYPE_CODE (type); | |
1617 | unsigned length = TYPE_LENGTH (type); | |
1618 | ||
1619 | /* If we skipped r6 because we couldn't fit a DOUBLE_ARG | |
1620 | in it, then don't go back and use it again later. */ | |
1621 | if (is_double_arg (type) && gr == 6) | |
1622 | gr = 7; | |
1623 | ||
1624 | if (is_simple_arg (type)) | |
1625 | { | |
1626 | /* Simple args are always either extended to 32 bits, | |
1627 | or pointers. */ | |
1628 | starg = round_up (starg, 4); | |
1629 | ||
1630 | /* Do we need to pass a pointer to our copy of this | |
1631 | argument? */ | |
1632 | if (pass_by_copy_ref (type)) | |
1633 | write_memory_signed_integer (starg, pointer_size, | |
1634 | copy_addr[i]); | |
1635 | else | |
1636 | /* Simple args are always extended to 32 bits. */ | |
1637 | write_memory_signed_integer (starg, 4, | |
1638 | extend_simple_arg (arg)); | |
1639 | starg += 4; | |
1640 | } | |
1641 | else | |
1642 | { | |
20a940cc JB |
1643 | /* You'd think we should say: |
1644 | starg = round_up (starg, alignment_of (type)); | |
1645 | Unfortunately, GCC seems to simply align the stack on | |
1646 | a four-byte boundary, even when passing doubles. */ | |
1647 | starg = round_up (starg, 4); | |
78f8b424 JB |
1648 | write_memory (starg, VALUE_CONTENTS (arg), length); |
1649 | starg += length; | |
1650 | } | |
1651 | } | |
1652 | } | |
1653 | } | |
1654 | ||
1655 | /* Allocate the standard frame areas: the register save area, the | |
1656 | word reserved for the compiler (which seems kind of meaningless), | |
1657 | and the back chain pointer. */ | |
1658 | sp -= 96; | |
1659 | ||
1660 | /* Write the back chain pointer into the first word of the stack | |
1661 | frame. This will help us get backtraces from within functions | |
1662 | called from GDB. */ | |
1663 | write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT), | |
1664 | read_fp ()); | |
1665 | ||
1666 | return sp; | |
5769d3cd AC |
1667 | } |
1668 | ||
c8f9d51c JB |
1669 | |
1670 | static int | |
1671 | s390_use_struct_convention (int gcc_p, struct type *value_type) | |
1672 | { | |
1673 | enum type_code code = TYPE_CODE (value_type); | |
1674 | ||
1675 | return (code == TYPE_CODE_STRUCT | |
1676 | || code == TYPE_CODE_UNION); | |
1677 | } | |
1678 | ||
1679 | ||
5769d3cd AC |
1680 | /* Return the GDB type object for the "standard" data type |
1681 | of data in register N. */ | |
1682 | struct type * | |
1683 | s390_register_virtual_type (int regno) | |
1684 | { | |
b09677dc JB |
1685 | if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS) |
1686 | return builtin_type_double; | |
1687 | else | |
1688 | return builtin_type_int; | |
5769d3cd AC |
1689 | } |
1690 | ||
1691 | ||
1692 | struct type * | |
1693 | s390x_register_virtual_type (int regno) | |
1694 | { | |
1695 | return (regno == S390_FPC_REGNUM) || | |
1696 | (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int : | |
1697 | (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long; | |
1698 | } | |
1699 | ||
1700 | ||
1701 | ||
1702 | void | |
1703 | s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1704 | { | |
1705 | write_register (S390_GP0_REGNUM + 2, addr); | |
1706 | } | |
1707 | ||
1708 | ||
1709 | ||
1710 | static unsigned char * | |
1711 | s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
1712 | { | |
1713 | static unsigned char breakpoint[] = { 0x0, 0x1 }; | |
1714 | ||
1715 | *lenptr = sizeof (breakpoint); | |
1716 | return breakpoint; | |
1717 | } | |
1718 | ||
1719 | /* Advance PC across any function entry prologue instructions to reach some | |
1720 | "real" code. */ | |
1721 | CORE_ADDR | |
1722 | s390_skip_prologue (CORE_ADDR pc) | |
1723 | { | |
1724 | struct frame_extra_info fextra_info; | |
1725 | ||
1726 | s390_get_frame_info (pc, &fextra_info, NULL, 1); | |
1727 | return fextra_info.skip_prologue_function_start; | |
1728 | } | |
1729 | ||
5769d3cd AC |
1730 | /* Immediately after a function call, return the saved pc. |
1731 | Can't go through the frames for this because on some machines | |
1732 | the new frame is not set up until the new function executes | |
1733 | some instructions. */ | |
1734 | CORE_ADDR | |
1735 | s390_saved_pc_after_call (struct frame_info *frame) | |
1736 | { | |
1737 | return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM)); | |
1738 | } | |
1739 | ||
1740 | static CORE_ADDR | |
1741 | s390_addr_bits_remove (CORE_ADDR addr) | |
1742 | { | |
1743 | return (addr) & 0x7fffffff; | |
1744 | } | |
1745 | ||
1746 | ||
1747 | static CORE_ADDR | |
1748 | s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
1749 | { | |
d4d0c21e | 1750 | write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ()); |
5769d3cd AC |
1751 | return sp; |
1752 | } | |
1753 | ||
1754 | struct gdbarch * | |
1755 | s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1756 | { | |
d4d0c21e | 1757 | static LONGEST s390_call_dummy_words[] = { 0 }; |
5769d3cd AC |
1758 | struct gdbarch *gdbarch; |
1759 | struct gdbarch_tdep *tdep; | |
1760 | int elf_flags; | |
1761 | ||
1762 | /* First see if there is already a gdbarch that can satisfy the request. */ | |
1763 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1764 | if (arches != NULL) | |
1765 | return arches->gdbarch; | |
1766 | ||
1767 | /* None found: is the request for a s390 architecture? */ | |
1768 | if (info.bfd_arch_info->arch != bfd_arch_s390) | |
1769 | return NULL; /* No; then it's not for us. */ | |
1770 | ||
1771 | /* Yes: create a new gdbarch for the specified machine type. */ | |
1772 | gdbarch = gdbarch_alloc (&info, NULL); | |
1773 | ||
1774 | set_gdbarch_believe_pcc_promotion (gdbarch, 0); | |
4e409299 | 1775 | set_gdbarch_char_signed (gdbarch, 0); |
5769d3cd | 1776 | |
5769d3cd AC |
1777 | set_gdbarch_frame_args_skip (gdbarch, 0); |
1778 | set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address); | |
1779 | set_gdbarch_frame_chain (gdbarch, s390_frame_chain); | |
1780 | set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs); | |
1781 | set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address); | |
1782 | /* We can't do this */ | |
1783 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
1784 | set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return); | |
1785 | set_gdbarch_extract_return_value (gdbarch, s390_extract_return_value); | |
1786 | set_gdbarch_store_return_value (gdbarch, s390_store_return_value); | |
1787 | /* Amount PC must be decremented by after a breakpoint. | |
1788 | This is often the number of bytes in BREAKPOINT | |
1789 | but not always. */ | |
1790 | set_gdbarch_decr_pc_after_break (gdbarch, 2); | |
1791 | set_gdbarch_pop_frame (gdbarch, s390_pop_frame); | |
5769d3cd AC |
1792 | /* Stack grows downward. */ |
1793 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1794 | /* Offset from address of function to start of its code. | |
1795 | Zero on most machines. */ | |
1796 | set_gdbarch_function_start_offset (gdbarch, 0); | |
1797 | set_gdbarch_max_register_raw_size (gdbarch, 8); | |
1798 | set_gdbarch_max_register_virtual_size (gdbarch, 8); | |
1799 | set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc); | |
1800 | set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); | |
1801 | set_gdbarch_init_extra_frame_info (gdbarch, s390_init_extra_frame_info); | |
1802 | set_gdbarch_init_frame_pc_first (gdbarch, s390_init_frame_pc_first); | |
1803 | set_gdbarch_read_fp (gdbarch, s390_read_fp); | |
1804 | set_gdbarch_write_fp (gdbarch, s390_write_fp); | |
1805 | /* This function that tells us whether the function invocation represented | |
1806 | by FI does not have a frame on the stack associated with it. If it | |
1807 | does not, FRAMELESS is set to 1, else 0. */ | |
1808 | set_gdbarch_frameless_function_invocation (gdbarch, | |
1809 | s390_frameless_function_invocation); | |
1810 | /* Return saved PC from a frame */ | |
1811 | set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc); | |
1812 | /* FRAME_CHAIN takes a frame's nominal address | |
1813 | and produces the frame's chain-pointer. */ | |
1814 | set_gdbarch_frame_chain (gdbarch, s390_frame_chain); | |
1815 | set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call); | |
1816 | set_gdbarch_register_byte (gdbarch, s390_register_byte); | |
1817 | set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM); | |
1818 | set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); | |
1819 | set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM); | |
1820 | set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM); | |
1821 | set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); | |
1822 | set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register); | |
1823 | set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register); | |
1824 | set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register); | |
c8f9d51c | 1825 | set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention); |
8001d1e4 | 1826 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); |
5769d3cd AC |
1827 | set_gdbarch_register_name (gdbarch, s390_register_name); |
1828 | set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); | |
1829 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); | |
1830 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum); | |
c8f9d51c JB |
1831 | set_gdbarch_extract_struct_value_address |
1832 | (gdbarch, generic_cannot_extract_struct_value_address); | |
5769d3cd | 1833 | |
d4d0c21e | 1834 | /* Parameters for inferior function calls. */ |
5769d3cd | 1835 | set_gdbarch_call_dummy_p (gdbarch, 1); |
d4d0c21e JB |
1836 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); |
1837 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
1838 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
1839 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
1840 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
1841 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); | |
1842 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
1843 | set_gdbarch_push_arguments (gdbarch, s390_push_arguments); | |
5c3cf190 | 1844 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); |
d4d0c21e JB |
1845 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); |
1846 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
5769d3cd | 1847 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); |
d4d0c21e | 1848 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); |
5769d3cd | 1849 | set_gdbarch_push_return_address (gdbarch, s390_push_return_address); |
d4d0c21e JB |
1850 | set_gdbarch_sizeof_call_dummy_words (gdbarch, |
1851 | sizeof (s390_call_dummy_words)); | |
1852 | set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words); | |
0adb2aba JB |
1853 | set_gdbarch_coerce_float_to_double (gdbarch, |
1854 | standard_coerce_float_to_double); | |
5769d3cd AC |
1855 | |
1856 | switch (info.bfd_arch_info->mach) | |
1857 | { | |
b8b8b047 | 1858 | case bfd_mach_s390_31: |
5769d3cd | 1859 | set_gdbarch_register_size (gdbarch, 4); |
5769d3cd AC |
1860 | set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size); |
1861 | set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size); | |
1862 | set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type); | |
1863 | ||
1864 | set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); | |
5769d3cd AC |
1865 | set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES); |
1866 | break; | |
b8b8b047 | 1867 | case bfd_mach_s390_64: |
5769d3cd | 1868 | set_gdbarch_register_size (gdbarch, 8); |
5769d3cd AC |
1869 | set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size); |
1870 | set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size); | |
1871 | set_gdbarch_register_virtual_type (gdbarch, | |
1872 | s390x_register_virtual_type); | |
1873 | ||
1874 | set_gdbarch_long_bit (gdbarch, 64); | |
1875 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1876 | set_gdbarch_ptr_bit (gdbarch, 64); | |
5769d3cd AC |
1877 | set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES); |
1878 | break; | |
1879 | } | |
1880 | ||
1881 | return gdbarch; | |
1882 | } | |
1883 | ||
1884 | ||
1885 | ||
1886 | void | |
1887 | _initialize_s390_tdep () | |
1888 | { | |
1889 | ||
1890 | /* Hook us into the gdbarch mechanism. */ | |
1891 | register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init); | |
1892 | if (!tm_print_insn) /* Someone may have already set it */ | |
1893 | tm_print_insn = gdb_print_insn_s390; | |
1894 | } | |
1895 | ||
1896 | #endif /* GDBSERVER */ |