]>
Commit | Line | Data |
---|---|---|
bd5635a1 | 1 | /* Perform non-arithmetic operations on values, for GDB. |
67e9b3b3 PS |
2 | Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994 |
3 | Free Software Foundation, Inc. | |
bd5635a1 RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
06b6c733 | 7 | This program is free software; you can redistribute it and/or modify |
bd5635a1 | 8 | it under the terms of the GNU General Public License as published by |
06b6c733 JG |
9 | the Free Software Foundation; either version 2 of the License, or |
10 | (at your option) any later version. | |
bd5635a1 | 11 | |
06b6c733 | 12 | This program is distributed in the hope that it will be useful, |
bd5635a1 RP |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
06b6c733 JG |
18 | along with this program; if not, write to the Free Software |
19 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
bd5635a1 | 20 | |
bd5635a1 | 21 | #include "defs.h" |
bd5635a1 | 22 | #include "symtab.h" |
01be6913 | 23 | #include "gdbtypes.h" |
bd5635a1 RP |
24 | #include "value.h" |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcore.h" | |
28 | #include "target.h" | |
2e4964ad | 29 | #include "demangle.h" |
54023465 | 30 | #include "language.h" |
bd5635a1 RP |
31 | |
32 | #include <errno.h> | |
33 | ||
34 | /* Local functions. */ | |
01be6913 | 35 | |
a91a6192 | 36 | static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[])); |
01be6913 | 37 | |
a91a6192 | 38 | static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **)); |
01be6913 | 39 | |
a91a6192 | 40 | static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr)); |
01be6913 | 41 | |
a91a6192 | 42 | static CORE_ADDR value_arg_push PARAMS ((CORE_ADDR, value_ptr)); |
01be6913 | 43 | |
a91a6192 SS |
44 | static value_ptr search_struct_field PARAMS ((char *, value_ptr, int, |
45 | struct type *, int)); | |
01be6913 | 46 | |
a91a6192 SS |
47 | static value_ptr search_struct_method PARAMS ((char *, value_ptr *, |
48 | value_ptr *, | |
49 | int, int *, struct type *)); | |
01be6913 | 50 | |
a91a6192 | 51 | static int check_field_in PARAMS ((struct type *, const char *)); |
a163ddec | 52 | |
a91a6192 | 53 | static CORE_ADDR allocate_space_in_inferior PARAMS ((int)); |
bd5635a1 | 54 | \f |
a163ddec MT |
55 | /* Allocate NBYTES of space in the inferior using the inferior's malloc |
56 | and return a value that is a pointer to the allocated space. */ | |
57 | ||
58 | static CORE_ADDR | |
59 | allocate_space_in_inferior (len) | |
60 | int len; | |
61 | { | |
a91a6192 | 62 | register value_ptr val; |
a163ddec MT |
63 | register struct symbol *sym; |
64 | struct minimal_symbol *msymbol; | |
65 | struct type *type; | |
a91a6192 | 66 | value_ptr blocklen; |
a163ddec MT |
67 | LONGEST maddr; |
68 | ||
69 | /* Find the address of malloc in the inferior. */ | |
70 | ||
71 | sym = lookup_symbol ("malloc", 0, VAR_NAMESPACE, 0, NULL); | |
72 | if (sym != NULL) | |
73 | { | |
74 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
75 | { | |
76 | error ("\"malloc\" exists in this program but is not a function."); | |
77 | } | |
479fdd26 | 78 | val = value_of_variable (sym, NULL); |
a163ddec MT |
79 | } |
80 | else | |
81 | { | |
82 | msymbol = lookup_minimal_symbol ("malloc", (struct objfile *) NULL); | |
83 | if (msymbol != NULL) | |
84 | { | |
85 | type = lookup_pointer_type (builtin_type_char); | |
86 | type = lookup_function_type (type); | |
87 | type = lookup_pointer_type (type); | |
88 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
89 | val = value_from_longest (type, maddr); | |
90 | } | |
91 | else | |
92 | { | |
93 | error ("evaluation of this expression requires the program to have a function \"malloc\"."); | |
94 | } | |
95 | } | |
96 | ||
97 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
98 | val = call_function_by_hand (val, 1, &blocklen); | |
99 | if (value_logical_not (val)) | |
100 | { | |
101 | error ("No memory available to program."); | |
102 | } | |
103 | return (value_as_long (val)); | |
104 | } | |
105 | ||
bd5635a1 RP |
106 | /* Cast value ARG2 to type TYPE and return as a value. |
107 | More general than a C cast: accepts any two types of the same length, | |
108 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
54023465 | 109 | /* In C++, casts may change pointer or object representations. */ |
bd5635a1 | 110 | |
a91a6192 | 111 | value_ptr |
bd5635a1 RP |
112 | value_cast (type, arg2) |
113 | struct type *type; | |
a91a6192 | 114 | register value_ptr arg2; |
bd5635a1 RP |
115 | { |
116 | register enum type_code code1; | |
117 | register enum type_code code2; | |
118 | register int scalar; | |
119 | ||
120 | /* Coerce arrays but not enums. Enums will work as-is | |
121 | and coercing them would cause an infinite recursion. */ | |
122 | if (TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_ENUM) | |
123 | COERCE_ARRAY (arg2); | |
124 | ||
125 | code1 = TYPE_CODE (type); | |
126 | code2 = TYPE_CODE (VALUE_TYPE (arg2)); | |
127 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
128 | || code2 == TYPE_CODE_ENUM); | |
129 | ||
54023465 JK |
130 | if ( code1 == TYPE_CODE_STRUCT |
131 | && code2 == TYPE_CODE_STRUCT | |
132 | && TYPE_NAME (type) != 0) | |
133 | { | |
134 | /* Look in the type of the source to see if it contains the | |
135 | type of the target as a superclass. If so, we'll need to | |
136 | offset the object in addition to changing its type. */ | |
a91a6192 SS |
137 | value_ptr v = search_struct_field (type_name_no_tag (type), |
138 | arg2, 0, VALUE_TYPE (arg2), 1); | |
54023465 JK |
139 | if (v) |
140 | { | |
141 | VALUE_TYPE (v) = type; | |
142 | return v; | |
143 | } | |
144 | } | |
bd5635a1 RP |
145 | if (code1 == TYPE_CODE_FLT && scalar) |
146 | return value_from_double (type, value_as_double (arg2)); | |
147 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM) | |
148 | && (scalar || code2 == TYPE_CODE_PTR)) | |
06b6c733 | 149 | return value_from_longest (type, value_as_long (arg2)); |
bd5635a1 RP |
150 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (VALUE_TYPE (arg2))) |
151 | { | |
152 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
153 | { | |
154 | /* Look in the type of the source to see if it contains the | |
155 | type of the target as a superclass. If so, we'll need to | |
156 | offset the pointer rather than just change its type. */ | |
157 | struct type *t1 = TYPE_TARGET_TYPE (type); | |
158 | struct type *t2 = TYPE_TARGET_TYPE (VALUE_TYPE (arg2)); | |
2a5ec41d | 159 | if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT |
bd5635a1 RP |
160 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
161 | && TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */ | |
162 | { | |
a91a6192 SS |
163 | value_ptr v = search_struct_field (type_name_no_tag (t1), |
164 | value_ind (arg2), 0, t2, 1); | |
bd5635a1 RP |
165 | if (v) |
166 | { | |
167 | v = value_addr (v); | |
168 | VALUE_TYPE (v) = type; | |
169 | return v; | |
170 | } | |
171 | } | |
172 | /* No superclass found, just fall through to change ptr type. */ | |
173 | } | |
174 | VALUE_TYPE (arg2) = type; | |
175 | return arg2; | |
176 | } | |
177 | else if (VALUE_LVAL (arg2) == lval_memory) | |
178 | { | |
179 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2)); | |
180 | } | |
d11c44f1 JG |
181 | else if (code1 == TYPE_CODE_VOID) |
182 | { | |
183 | return value_zero (builtin_type_void, not_lval); | |
184 | } | |
bd5635a1 RP |
185 | else |
186 | { | |
187 | error ("Invalid cast."); | |
188 | return 0; | |
189 | } | |
190 | } | |
191 | ||
192 | /* Create a value of type TYPE that is zero, and return it. */ | |
193 | ||
a91a6192 | 194 | value_ptr |
bd5635a1 RP |
195 | value_zero (type, lv) |
196 | struct type *type; | |
197 | enum lval_type lv; | |
198 | { | |
a91a6192 | 199 | register value_ptr val = allocate_value (type); |
bd5635a1 | 200 | |
4ed3a9ea | 201 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (type)); |
bd5635a1 RP |
202 | VALUE_LVAL (val) = lv; |
203 | ||
204 | return val; | |
205 | } | |
206 | ||
207 | /* Return a value with type TYPE located at ADDR. | |
208 | ||
209 | Call value_at only if the data needs to be fetched immediately; | |
210 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
211 | value_at_lazy instead. value_at_lazy simply records the address of | |
212 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
213 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
214 | the contents are actually required. */ | |
215 | ||
a91a6192 | 216 | value_ptr |
bd5635a1 RP |
217 | value_at (type, addr) |
218 | struct type *type; | |
219 | CORE_ADDR addr; | |
220 | { | |
a91a6192 SS |
221 | register value_ptr val; |
222 | ||
223 | if (TYPE_CODE (type) == TYPE_CODE_VOID) | |
224 | error ("Attempt to dereference a generic pointer."); | |
225 | ||
226 | val = allocate_value (type); | |
bd5635a1 RP |
227 | |
228 | read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type)); | |
229 | ||
230 | VALUE_LVAL (val) = lval_memory; | |
231 | VALUE_ADDRESS (val) = addr; | |
232 | ||
233 | return val; | |
234 | } | |
235 | ||
236 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
237 | ||
a91a6192 | 238 | value_ptr |
bd5635a1 RP |
239 | value_at_lazy (type, addr) |
240 | struct type *type; | |
241 | CORE_ADDR addr; | |
242 | { | |
a91a6192 SS |
243 | register value_ptr val; |
244 | ||
245 | if (TYPE_CODE (type) == TYPE_CODE_VOID) | |
246 | error ("Attempt to dereference a generic pointer."); | |
247 | ||
248 | val = allocate_value (type); | |
bd5635a1 RP |
249 | |
250 | VALUE_LVAL (val) = lval_memory; | |
251 | VALUE_ADDRESS (val) = addr; | |
252 | VALUE_LAZY (val) = 1; | |
253 | ||
254 | return val; | |
255 | } | |
256 | ||
257 | /* Called only from the VALUE_CONTENTS macro, if the current data for | |
258 | a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the | |
259 | data from the user's process, and clears the lazy flag to indicate | |
260 | that the data in the buffer is valid. | |
261 | ||
9cb602e1 JG |
262 | If the value is zero-length, we avoid calling read_memory, which would |
263 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
264 | ||
bd5635a1 RP |
265 | This function returns a value because it is used in the VALUE_CONTENTS |
266 | macro as part of an expression, where a void would not work. The | |
267 | value is ignored. */ | |
268 | ||
269 | int | |
270 | value_fetch_lazy (val) | |
a91a6192 | 271 | register value_ptr val; |
bd5635a1 RP |
272 | { |
273 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
274 | ||
9cb602e1 JG |
275 | if (TYPE_LENGTH (VALUE_TYPE (val))) |
276 | read_memory (addr, VALUE_CONTENTS_RAW (val), | |
277 | TYPE_LENGTH (VALUE_TYPE (val))); | |
bd5635a1 RP |
278 | VALUE_LAZY (val) = 0; |
279 | return 0; | |
280 | } | |
281 | ||
282 | ||
283 | /* Store the contents of FROMVAL into the location of TOVAL. | |
284 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
285 | ||
a91a6192 | 286 | value_ptr |
bd5635a1 | 287 | value_assign (toval, fromval) |
a91a6192 | 288 | register value_ptr toval, fromval; |
bd5635a1 | 289 | { |
67e9b3b3 | 290 | register struct type *type; |
a91a6192 | 291 | register value_ptr val; |
bd5635a1 | 292 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 RP |
293 | int use_buffer = 0; |
294 | ||
30974778 JK |
295 | if (!toval->modifiable) |
296 | error ("Left operand of assignment is not a modifiable lvalue."); | |
297 | ||
bd5635a1 | 298 | COERCE_ARRAY (fromval); |
8e9a3f3b | 299 | COERCE_REF (toval); |
bd5635a1 | 300 | |
67e9b3b3 | 301 | type = VALUE_TYPE (toval); |
bd5635a1 RP |
302 | if (VALUE_LVAL (toval) != lval_internalvar) |
303 | fromval = value_cast (type, fromval); | |
304 | ||
305 | /* If TOVAL is a special machine register requiring conversion | |
306 | of program values to a special raw format, | |
307 | convert FROMVAL's contents now, with result in `raw_buffer', | |
308 | and set USE_BUFFER to the number of bytes to write. */ | |
309 | ||
ad09cb2b | 310 | #ifdef REGISTER_CONVERTIBLE |
bd5635a1 RP |
311 | if (VALUE_REGNO (toval) >= 0 |
312 | && REGISTER_CONVERTIBLE (VALUE_REGNO (toval))) | |
313 | { | |
314 | int regno = VALUE_REGNO (toval); | |
ad09cb2b PS |
315 | if (REGISTER_CONVERTIBLE (regno)) |
316 | { | |
317 | REGISTER_CONVERT_TO_RAW (VALUE_TYPE (fromval), regno, | |
318 | VALUE_CONTENTS (fromval), raw_buffer); | |
319 | use_buffer = REGISTER_RAW_SIZE (regno); | |
320 | } | |
bd5635a1 | 321 | } |
ad09cb2b | 322 | #endif |
bd5635a1 RP |
323 | |
324 | switch (VALUE_LVAL (toval)) | |
325 | { | |
326 | case lval_internalvar: | |
327 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
328 | break; | |
329 | ||
330 | case lval_internalvar_component: | |
331 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
332 | VALUE_OFFSET (toval), | |
333 | VALUE_BITPOS (toval), | |
334 | VALUE_BITSIZE (toval), | |
335 | fromval); | |
336 | break; | |
337 | ||
338 | case lval_memory: | |
339 | if (VALUE_BITSIZE (toval)) | |
340 | { | |
4d52ec86 JK |
341 | char buffer[sizeof (LONGEST)]; |
342 | /* We assume that the argument to read_memory is in units of | |
343 | host chars. FIXME: Is that correct? */ | |
344 | int len = (VALUE_BITPOS (toval) | |
345 | + VALUE_BITSIZE (toval) | |
346 | + HOST_CHAR_BIT - 1) | |
347 | / HOST_CHAR_BIT; | |
ad09cb2b | 348 | |
4d52ec86 | 349 | if (len > sizeof (LONGEST)) |
ad09cb2b PS |
350 | error ("Can't handle bitfields which don't fit in a %d bit word.", |
351 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
4d52ec86 | 352 | |
bd5635a1 | 353 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
4d52ec86 JK |
354 | buffer, len); |
355 | modify_field (buffer, value_as_long (fromval), | |
bd5635a1 RP |
356 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
357 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
4d52ec86 | 358 | buffer, len); |
bd5635a1 RP |
359 | } |
360 | else if (use_buffer) | |
361 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
362 | raw_buffer, use_buffer); | |
363 | else | |
364 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
365 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
366 | break; | |
367 | ||
368 | case lval_register: | |
369 | if (VALUE_BITSIZE (toval)) | |
370 | { | |
ad09cb2b | 371 | char buffer[sizeof (LONGEST)]; |
4d52ec86 | 372 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
ad09cb2b PS |
373 | |
374 | if (len > sizeof (LONGEST)) | |
375 | error ("Can't handle bitfields in registers larger than %d bits.", | |
376 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
377 | ||
378 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
379 | > len * HOST_CHAR_BIT) | |
380 | /* Getting this right would involve being very careful about | |
381 | byte order. */ | |
382 | error ("\ | |
383 | Can't handle bitfield which doesn't fit in a single register."); | |
384 | ||
4d52ec86 JK |
385 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
386 | buffer, len); | |
387 | modify_field (buffer, value_as_long (fromval), | |
388 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
389 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
390 | buffer, len); | |
bd5635a1 RP |
391 | } |
392 | else if (use_buffer) | |
393 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
394 | raw_buffer, use_buffer); | |
395 | else | |
54023465 JK |
396 | { |
397 | /* Do any conversion necessary when storing this type to more | |
398 | than one register. */ | |
399 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
400 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
401 | REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer); | |
402 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
403 | raw_buffer, TYPE_LENGTH (type)); | |
404 | #else | |
405 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
406 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
407 | #endif | |
408 | } | |
79971d11 JK |
409 | /* Assigning to the stack pointer, frame pointer, and other |
410 | (architecture and calling convention specific) registers may | |
411 | cause the frame cache to be out of date. We just do this | |
412 | on all assignments to registers for simplicity; I doubt the slowdown | |
413 | matters. */ | |
414 | reinit_frame_cache (); | |
bd5635a1 RP |
415 | break; |
416 | ||
417 | case lval_reg_frame_relative: | |
418 | { | |
419 | /* value is stored in a series of registers in the frame | |
420 | specified by the structure. Copy that value out, modify | |
421 | it, and copy it back in. */ | |
422 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
423 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
424 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
425 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
426 | int amount_copied; | |
4d52ec86 JK |
427 | |
428 | /* Make the buffer large enough in all cases. */ | |
429 | char *buffer = (char *) alloca (amount_to_copy | |
430 | + sizeof (LONGEST) | |
431 | + MAX_REGISTER_RAW_SIZE); | |
432 | ||
bd5635a1 RP |
433 | int regno; |
434 | FRAME frame; | |
435 | ||
436 | /* Figure out which frame this is in currently. */ | |
437 | for (frame = get_current_frame (); | |
438 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
439 | frame = get_prev_frame (frame)) | |
440 | ; | |
441 | ||
442 | if (!frame) | |
443 | error ("Value being assigned to is no longer active."); | |
444 | ||
445 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
446 | ||
447 | /* Copy it out. */ | |
448 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
449 | amount_copied = 0); | |
450 | amount_copied < amount_to_copy; | |
451 | amount_copied += reg_size, regno++) | |
452 | { | |
453 | get_saved_register (buffer + amount_copied, | |
51b57ded | 454 | (int *)NULL, (CORE_ADDR *)NULL, |
bd5635a1 RP |
455 | frame, regno, (enum lval_type *)NULL); |
456 | } | |
457 | ||
458 | /* Modify what needs to be modified. */ | |
459 | if (VALUE_BITSIZE (toval)) | |
460 | modify_field (buffer + byte_offset, | |
479fdd26 | 461 | value_as_long (fromval), |
bd5635a1 RP |
462 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); |
463 | else if (use_buffer) | |
4ed3a9ea | 464 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); |
bd5635a1 | 465 | else |
4ed3a9ea FF |
466 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), |
467 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
468 | |
469 | /* Copy it back. */ | |
470 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
471 | amount_copied = 0); | |
472 | amount_copied < amount_to_copy; | |
473 | amount_copied += reg_size, regno++) | |
474 | { | |
475 | enum lval_type lval; | |
476 | CORE_ADDR addr; | |
477 | int optim; | |
478 | ||
479 | /* Just find out where to put it. */ | |
480 | get_saved_register ((char *)NULL, | |
481 | &optim, &addr, frame, regno, &lval); | |
482 | ||
483 | if (optim) | |
484 | error ("Attempt to assign to a value that was optimized out."); | |
485 | if (lval == lval_memory) | |
486 | write_memory (addr, buffer + amount_copied, reg_size); | |
487 | else if (lval == lval_register) | |
488 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
489 | else | |
490 | error ("Attempt to assign to an unmodifiable value."); | |
491 | } | |
492 | } | |
493 | break; | |
494 | ||
495 | ||
496 | default: | |
30974778 | 497 | error ("Left operand of assignment is not an lvalue."); |
bd5635a1 RP |
498 | } |
499 | ||
500 | /* Return a value just like TOVAL except with the contents of FROMVAL | |
501 | (except in the case of the type if TOVAL is an internalvar). */ | |
502 | ||
503 | if (VALUE_LVAL (toval) == lval_internalvar | |
504 | || VALUE_LVAL (toval) == lval_internalvar_component) | |
505 | { | |
506 | type = VALUE_TYPE (fromval); | |
507 | } | |
508 | ||
509 | val = allocate_value (type); | |
4ed3a9ea FF |
510 | memcpy (val, toval, VALUE_CONTENTS_RAW (val) - (char *) val); |
511 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
512 | TYPE_LENGTH (type)); | |
bd5635a1 RP |
513 | VALUE_TYPE (val) = type; |
514 | ||
515 | return val; | |
516 | } | |
517 | ||
518 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
519 | ||
a91a6192 | 520 | value_ptr |
bd5635a1 | 521 | value_repeat (arg1, count) |
a91a6192 | 522 | value_ptr arg1; |
bd5635a1 RP |
523 | int count; |
524 | { | |
a91a6192 | 525 | register value_ptr val; |
bd5635a1 RP |
526 | |
527 | if (VALUE_LVAL (arg1) != lval_memory) | |
528 | error ("Only values in memory can be extended with '@'."); | |
529 | if (count < 1) | |
530 | error ("Invalid number %d of repetitions.", count); | |
531 | ||
532 | val = allocate_repeat_value (VALUE_TYPE (arg1), count); | |
533 | ||
534 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
535 | VALUE_CONTENTS_RAW (val), | |
536 | TYPE_LENGTH (VALUE_TYPE (val)) * count); | |
537 | VALUE_LVAL (val) = lval_memory; | |
538 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
539 | ||
540 | return val; | |
541 | } | |
542 | ||
a91a6192 | 543 | value_ptr |
479fdd26 | 544 | value_of_variable (var, b) |
bd5635a1 | 545 | struct symbol *var; |
479fdd26 | 546 | struct block *b; |
bd5635a1 | 547 | { |
a91a6192 | 548 | value_ptr val; |
479fdd26 | 549 | FRAME fr; |
bd5635a1 | 550 | |
479fdd26 JK |
551 | if (b == NULL) |
552 | /* Use selected frame. */ | |
553 | fr = NULL; | |
554 | else | |
555 | { | |
556 | fr = block_innermost_frame (b); | |
443abae1 | 557 | if (fr == NULL && symbol_read_needs_frame (var)) |
479fdd26 JK |
558 | { |
559 | if (BLOCK_FUNCTION (b) != NULL | |
560 | && SYMBOL_NAME (BLOCK_FUNCTION (b)) != NULL) | |
561 | error ("No frame is currently executing in block %s.", | |
562 | SYMBOL_NAME (BLOCK_FUNCTION (b))); | |
563 | else | |
564 | error ("No frame is currently executing in specified block"); | |
565 | } | |
566 | } | |
567 | val = read_var_value (var, fr); | |
bd5635a1 | 568 | if (val == 0) |
2e4964ad | 569 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); |
bd5635a1 RP |
570 | return val; |
571 | } | |
572 | ||
a163ddec MT |
573 | /* Given a value which is an array, return a value which is a pointer to its |
574 | first element, regardless of whether or not the array has a nonzero lower | |
575 | bound. | |
576 | ||
577 | FIXME: A previous comment here indicated that this routine should be | |
578 | substracting the array's lower bound. It's not clear to me that this | |
579 | is correct. Given an array subscripting operation, it would certainly | |
580 | work to do the adjustment here, essentially computing: | |
581 | ||
582 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
583 | ||
584 | However I believe a more appropriate and logical place to account for | |
585 | the lower bound is to do so in value_subscript, essentially computing: | |
586 | ||
587 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
588 | ||
589 | As further evidence consider what would happen with operations other | |
590 | than array subscripting, where the caller would get back a value that | |
591 | had an address somewhere before the actual first element of the array, | |
592 | and the information about the lower bound would be lost because of | |
593 | the coercion to pointer type. | |
594 | */ | |
bd5635a1 | 595 | |
a91a6192 | 596 | value_ptr |
bd5635a1 | 597 | value_coerce_array (arg1) |
a91a6192 | 598 | value_ptr arg1; |
bd5635a1 RP |
599 | { |
600 | register struct type *type; | |
bd5635a1 RP |
601 | |
602 | if (VALUE_LVAL (arg1) != lval_memory) | |
603 | error ("Attempt to take address of value not located in memory."); | |
604 | ||
605 | /* Get type of elements. */ | |
852b3831 PB |
606 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_ARRAY |
607 | || TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRING) | |
bd5635a1 RP |
608 | type = TYPE_TARGET_TYPE (VALUE_TYPE (arg1)); |
609 | else | |
610 | /* A phony array made by value_repeat. | |
611 | Its type is the type of the elements, not an array type. */ | |
612 | type = VALUE_TYPE (arg1); | |
613 | ||
06b6c733 | 614 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 615 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
616 | } |
617 | ||
618 | /* Given a value which is a function, return a value which is a pointer | |
619 | to it. */ | |
620 | ||
a91a6192 | 621 | value_ptr |
bd5635a1 | 622 | value_coerce_function (arg1) |
a91a6192 | 623 | value_ptr arg1; |
bd5635a1 | 624 | { |
bd5635a1 RP |
625 | |
626 | if (VALUE_LVAL (arg1) != lval_memory) | |
627 | error ("Attempt to take address of value not located in memory."); | |
628 | ||
06b6c733 | 629 | return value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
bd5635a1 | 630 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
631 | } |
632 | ||
633 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
634 | ||
a91a6192 | 635 | value_ptr |
bd5635a1 | 636 | value_addr (arg1) |
a91a6192 | 637 | value_ptr arg1; |
bd5635a1 | 638 | { |
8e9a3f3b PB |
639 | struct type *type = VALUE_TYPE (arg1); |
640 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
641 | { | |
642 | /* Copy the value, but change the type from (T&) to (T*). | |
643 | We keep the same location information, which is efficient, | |
644 | and allows &(&X) to get the location containing the reference. */ | |
a91a6192 | 645 | value_ptr arg2 = value_copy (arg1); |
8e9a3f3b PB |
646 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); |
647 | return arg2; | |
648 | } | |
bd5635a1 | 649 | if (VALUE_REPEATED (arg1) |
8e9a3f3b | 650 | || TYPE_CODE (type) == TYPE_CODE_ARRAY) |
bd5635a1 | 651 | return value_coerce_array (arg1); |
8e9a3f3b | 652 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
bd5635a1 RP |
653 | return value_coerce_function (arg1); |
654 | ||
655 | if (VALUE_LVAL (arg1) != lval_memory) | |
656 | error ("Attempt to take address of value not located in memory."); | |
657 | ||
8e9a3f3b | 658 | return value_from_longest (lookup_pointer_type (type), |
bd5635a1 | 659 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
bd5635a1 RP |
660 | } |
661 | ||
662 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
663 | ||
a91a6192 | 664 | value_ptr |
bd5635a1 | 665 | value_ind (arg1) |
a91a6192 | 666 | value_ptr arg1; |
bd5635a1 RP |
667 | { |
668 | COERCE_ARRAY (arg1); | |
669 | ||
670 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_MEMBER) | |
671 | error ("not implemented: member types in value_ind"); | |
672 | ||
673 | /* Allow * on an integer so we can cast it to whatever we want. | |
674 | This returns an int, which seems like the most C-like thing | |
675 | to do. "long long" variables are rare enough that | |
676 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
677 | if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT) | |
678 | return value_at (builtin_type_int, | |
679 | (CORE_ADDR) value_as_long (arg1)); | |
680 | else if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR) | |
681 | return value_at_lazy (TYPE_TARGET_TYPE (VALUE_TYPE (arg1)), | |
d11c44f1 | 682 | value_as_pointer (arg1)); |
bd5635a1 RP |
683 | error ("Attempt to take contents of a non-pointer value."); |
684 | return 0; /* For lint -- never reached */ | |
685 | } | |
686 | \f | |
687 | /* Pushing small parts of stack frames. */ | |
688 | ||
689 | /* Push one word (the size of object that a register holds). */ | |
690 | ||
691 | CORE_ADDR | |
34df79fc | 692 | push_word (sp, word) |
bd5635a1 | 693 | CORE_ADDR sp; |
67e9b3b3 | 694 | unsigned LONGEST word; |
bd5635a1 | 695 | { |
67e9b3b3 | 696 | register int len = REGISTER_SIZE; |
479fdd26 | 697 | char buffer[MAX_REGISTER_RAW_SIZE]; |
bd5635a1 | 698 | |
479fdd26 | 699 | store_unsigned_integer (buffer, len, word); |
bd5635a1 RP |
700 | #if 1 INNER_THAN 2 |
701 | sp -= len; | |
479fdd26 | 702 | write_memory (sp, buffer, len); |
bd5635a1 | 703 | #else /* stack grows upward */ |
479fdd26 | 704 | write_memory (sp, buffer, len); |
bd5635a1 RP |
705 | sp += len; |
706 | #endif /* stack grows upward */ | |
707 | ||
708 | return sp; | |
709 | } | |
710 | ||
711 | /* Push LEN bytes with data at BUFFER. */ | |
712 | ||
713 | CORE_ADDR | |
714 | push_bytes (sp, buffer, len) | |
715 | CORE_ADDR sp; | |
716 | char *buffer; | |
717 | int len; | |
718 | { | |
719 | #if 1 INNER_THAN 2 | |
720 | sp -= len; | |
721 | write_memory (sp, buffer, len); | |
722 | #else /* stack grows upward */ | |
723 | write_memory (sp, buffer, len); | |
724 | sp += len; | |
725 | #endif /* stack grows upward */ | |
726 | ||
727 | return sp; | |
728 | } | |
729 | ||
730 | /* Push onto the stack the specified value VALUE. */ | |
731 | ||
01be6913 | 732 | static CORE_ADDR |
bd5635a1 RP |
733 | value_push (sp, arg) |
734 | register CORE_ADDR sp; | |
a91a6192 | 735 | value_ptr arg; |
bd5635a1 RP |
736 | { |
737 | register int len = TYPE_LENGTH (VALUE_TYPE (arg)); | |
738 | ||
739 | #if 1 INNER_THAN 2 | |
740 | sp -= len; | |
741 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
742 | #else /* stack grows upward */ | |
743 | write_memory (sp, VALUE_CONTENTS (arg), len); | |
744 | sp += len; | |
745 | #endif /* stack grows upward */ | |
746 | ||
747 | return sp; | |
748 | } | |
749 | ||
750 | /* Perform the standard coercions that are specified | |
751 | for arguments to be passed to C functions. */ | |
752 | ||
a91a6192 | 753 | value_ptr |
bd5635a1 | 754 | value_arg_coerce (arg) |
a91a6192 | 755 | value_ptr arg; |
bd5635a1 RP |
756 | { |
757 | register struct type *type; | |
758 | ||
479fdd26 JK |
759 | /* FIXME: We should coerce this according to the prototype (if we have |
760 | one). Right now we do a little bit of this in typecmp(), but that | |
761 | doesn't always get called. For example, if passing a ref to a function | |
762 | without a prototype, we probably should de-reference it. Currently | |
763 | we don't. */ | |
764 | ||
765 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ENUM) | |
766 | arg = value_cast (builtin_type_unsigned_int, arg); | |
767 | ||
b5728692 SG |
768 | #if 1 /* FIXME: This is only a temporary patch. -fnf */ |
769 | if (VALUE_REPEATED (arg) | |
770 | || TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_ARRAY) | |
771 | arg = value_coerce_array (arg); | |
772 | if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_FUNC) | |
773 | arg = value_coerce_function (arg); | |
774 | #endif | |
bd5635a1 RP |
775 | |
776 | type = VALUE_TYPE (arg); | |
777 | ||
778 | if (TYPE_CODE (type) == TYPE_CODE_INT | |
2a5ec41d | 779 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
bd5635a1 RP |
780 | return value_cast (builtin_type_int, arg); |
781 | ||
2a5ec41d JG |
782 | if (TYPE_CODE (type) == TYPE_CODE_FLT |
783 | && TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
bd5635a1 RP |
784 | return value_cast (builtin_type_double, arg); |
785 | ||
786 | return arg; | |
787 | } | |
788 | ||
789 | /* Push the value ARG, first coercing it as an argument | |
790 | to a C function. */ | |
791 | ||
01be6913 | 792 | static CORE_ADDR |
bd5635a1 RP |
793 | value_arg_push (sp, arg) |
794 | register CORE_ADDR sp; | |
a91a6192 | 795 | value_ptr arg; |
bd5635a1 RP |
796 | { |
797 | return value_push (sp, value_arg_coerce (arg)); | |
798 | } | |
799 | ||
800 | /* Determine a function's address and its return type from its value. | |
801 | Calls error() if the function is not valid for calling. */ | |
802 | ||
01be6913 | 803 | static CORE_ADDR |
bd5635a1 | 804 | find_function_addr (function, retval_type) |
a91a6192 | 805 | value_ptr function; |
bd5635a1 RP |
806 | struct type **retval_type; |
807 | { | |
808 | register struct type *ftype = VALUE_TYPE (function); | |
809 | register enum type_code code = TYPE_CODE (ftype); | |
810 | struct type *value_type; | |
811 | CORE_ADDR funaddr; | |
812 | ||
813 | /* If it's a member function, just look at the function | |
814 | part of it. */ | |
815 | ||
816 | /* Determine address to call. */ | |
817 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
818 | { | |
819 | funaddr = VALUE_ADDRESS (function); | |
820 | value_type = TYPE_TARGET_TYPE (ftype); | |
821 | } | |
822 | else if (code == TYPE_CODE_PTR) | |
823 | { | |
d11c44f1 | 824 | funaddr = value_as_pointer (function); |
bd5635a1 RP |
825 | if (TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_FUNC |
826 | || TYPE_CODE (TYPE_TARGET_TYPE (ftype)) == TYPE_CODE_METHOD) | |
827 | value_type = TYPE_TARGET_TYPE (TYPE_TARGET_TYPE (ftype)); | |
828 | else | |
829 | value_type = builtin_type_int; | |
830 | } | |
831 | else if (code == TYPE_CODE_INT) | |
832 | { | |
833 | /* Handle the case of functions lacking debugging info. | |
834 | Their values are characters since their addresses are char */ | |
835 | if (TYPE_LENGTH (ftype) == 1) | |
d11c44f1 | 836 | funaddr = value_as_pointer (value_addr (function)); |
bd5635a1 RP |
837 | else |
838 | /* Handle integer used as address of a function. */ | |
d11c44f1 | 839 | funaddr = (CORE_ADDR) value_as_long (function); |
bd5635a1 RP |
840 | |
841 | value_type = builtin_type_int; | |
842 | } | |
843 | else | |
844 | error ("Invalid data type for function to be called."); | |
845 | ||
846 | *retval_type = value_type; | |
847 | return funaddr; | |
848 | } | |
849 | ||
850 | #if defined (CALL_DUMMY) | |
851 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
852 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
853 | frame which looks just like a real frame is so that if you call a | |
854 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
855 | will look right. Whether the backtrace needs to actually show the | |
856 | stack at the time the inferior function was called is debatable, but | |
857 | it certainly needs to not display garbage. So if you are contemplating | |
858 | making dummy frames be different from normal frames, consider that. */ | |
859 | ||
860 | /* Perform a function call in the inferior. | |
861 | ARGS is a vector of values of arguments (NARGS of them). | |
862 | FUNCTION is a value, the function to be called. | |
863 | Returns a value representing what the function returned. | |
864 | May fail to return, if a breakpoint or signal is hit | |
865 | during the execution of the function. */ | |
866 | ||
a91a6192 | 867 | value_ptr |
bd5635a1 | 868 | call_function_by_hand (function, nargs, args) |
a91a6192 | 869 | value_ptr function; |
bd5635a1 | 870 | int nargs; |
a91a6192 | 871 | value_ptr *args; |
bd5635a1 RP |
872 | { |
873 | register CORE_ADDR sp; | |
874 | register int i; | |
875 | CORE_ADDR start_sp; | |
67e9b3b3 PS |
876 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word |
877 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
878 | and remove any extra bytes which might exist because unsigned LONGEST is | |
879 | bigger than REGISTER_SIZE. */ | |
880 | static unsigned LONGEST dummy[] = CALL_DUMMY; | |
881 | char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (unsigned LONGEST)]; | |
bd5635a1 RP |
882 | CORE_ADDR old_sp; |
883 | struct type *value_type; | |
884 | unsigned char struct_return; | |
885 | CORE_ADDR struct_addr; | |
886 | struct inferior_status inf_status; | |
887 | struct cleanup *old_chain; | |
888 | CORE_ADDR funaddr; | |
889 | int using_gcc; | |
9f739abd | 890 | CORE_ADDR real_pc; |
bd5635a1 | 891 | |
e17960fb JG |
892 | if (!target_has_execution) |
893 | noprocess(); | |
894 | ||
bd5635a1 RP |
895 | save_inferior_status (&inf_status, 1); |
896 | old_chain = make_cleanup (restore_inferior_status, &inf_status); | |
897 | ||
898 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
899 | (and POP_FRAME for restoring them). (At least on most machines) | |
900 | they are saved on the stack in the inferior. */ | |
901 | PUSH_DUMMY_FRAME; | |
902 | ||
54023465 | 903 | old_sp = sp = read_sp (); |
bd5635a1 RP |
904 | |
905 | #if 1 INNER_THAN 2 /* Stack grows down */ | |
906 | sp -= sizeof dummy; | |
907 | start_sp = sp; | |
908 | #else /* Stack grows up */ | |
909 | start_sp = sp; | |
910 | sp += sizeof dummy; | |
911 | #endif | |
912 | ||
913 | funaddr = find_function_addr (function, &value_type); | |
914 | ||
915 | { | |
916 | struct block *b = block_for_pc (funaddr); | |
917 | /* If compiled without -g, assume GCC. */ | |
918 | using_gcc = b == NULL || BLOCK_GCC_COMPILED (b); | |
919 | } | |
920 | ||
921 | /* Are we returning a value using a structure return or a normal | |
922 | value return? */ | |
923 | ||
924 | struct_return = using_struct_return (function, funaddr, value_type, | |
925 | using_gcc); | |
926 | ||
927 | /* Create a call sequence customized for this function | |
928 | and the number of arguments for it. */ | |
67e9b3b3 PS |
929 | for (i = 0; i < sizeof dummy / sizeof (dummy[0]); i++) |
930 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], | |
931 | REGISTER_SIZE, | |
34df79fc | 932 | (unsigned LONGEST)dummy[i]); |
9f739abd SG |
933 | |
934 | #ifdef GDB_TARGET_IS_HPPA | |
b5728692 SG |
935 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
936 | value_type, using_gcc); | |
9f739abd | 937 | #else |
bd5635a1 RP |
938 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, |
939 | value_type, using_gcc); | |
9f739abd SG |
940 | real_pc = start_sp; |
941 | #endif | |
bd5635a1 RP |
942 | |
943 | #if CALL_DUMMY_LOCATION == ON_STACK | |
944 | write_memory (start_sp, (char *)dummy1, sizeof dummy); | |
cef4c2e7 | 945 | #endif /* On stack. */ |
bd5635a1 | 946 | |
bd5635a1 RP |
947 | #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END |
948 | /* Convex Unix prohibits executing in the stack segment. */ | |
949 | /* Hope there is empty room at the top of the text segment. */ | |
950 | { | |
84d82b1c | 951 | extern CORE_ADDR text_end; |
bd5635a1 RP |
952 | static checked = 0; |
953 | if (!checked) | |
954 | for (start_sp = text_end - sizeof dummy; start_sp < text_end; ++start_sp) | |
955 | if (read_memory_integer (start_sp, 1) != 0) | |
956 | error ("text segment full -- no place to put call"); | |
957 | checked = 1; | |
958 | sp = old_sp; | |
30d20d15 PS |
959 | real_pc = text_end - sizeof dummy; |
960 | write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 | 961 | } |
cef4c2e7 PS |
962 | #endif /* Before text_end. */ |
963 | ||
964 | #if CALL_DUMMY_LOCATION == AFTER_TEXT_END | |
bd5635a1 | 965 | { |
84d82b1c | 966 | extern CORE_ADDR text_end; |
bd5635a1 RP |
967 | int errcode; |
968 | sp = old_sp; | |
30d20d15 PS |
969 | real_pc = text_end; |
970 | errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy); | |
bd5635a1 RP |
971 | if (errcode != 0) |
972 | error ("Cannot write text segment -- call_function failed"); | |
973 | } | |
974 | #endif /* After text_end. */ | |
cef4c2e7 PS |
975 | |
976 | #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT | |
977 | real_pc = funaddr; | |
978 | #endif /* At entry point. */ | |
bd5635a1 RP |
979 | |
980 | #ifdef lint | |
981 | sp = old_sp; /* It really is used, for some ifdef's... */ | |
982 | #endif | |
983 | ||
984 | #ifdef STACK_ALIGN | |
985 | /* If stack grows down, we must leave a hole at the top. */ | |
986 | { | |
987 | int len = 0; | |
988 | ||
989 | /* Reserve space for the return structure to be written on the | |
990 | stack, if necessary */ | |
991 | ||
992 | if (struct_return) | |
993 | len += TYPE_LENGTH (value_type); | |
994 | ||
995 | for (i = nargs - 1; i >= 0; i--) | |
996 | len += TYPE_LENGTH (VALUE_TYPE (value_arg_coerce (args[i]))); | |
997 | #ifdef CALL_DUMMY_STACK_ADJUST | |
998 | len += CALL_DUMMY_STACK_ADJUST; | |
999 | #endif | |
1000 | #if 1 INNER_THAN 2 | |
1001 | sp -= STACK_ALIGN (len) - len; | |
1002 | #else | |
1003 | sp += STACK_ALIGN (len) - len; | |
1004 | #endif | |
1005 | } | |
1006 | #endif /* STACK_ALIGN */ | |
1007 | ||
1008 | /* Reserve space for the return structure to be written on the | |
1009 | stack, if necessary */ | |
1010 | ||
1011 | if (struct_return) | |
1012 | { | |
1013 | #if 1 INNER_THAN 2 | |
1014 | sp -= TYPE_LENGTH (value_type); | |
1015 | struct_addr = sp; | |
1016 | #else | |
1017 | struct_addr = sp; | |
1018 | sp += TYPE_LENGTH (value_type); | |
1019 | #endif | |
1020 | } | |
1021 | ||
1022 | #if defined (REG_STRUCT_HAS_ADDR) | |
1023 | { | |
a91a6192 | 1024 | /* This is a machine like the sparc, where we may need to pass a pointer |
bd5635a1 | 1025 | to the structure, not the structure itself. */ |
a91a6192 SS |
1026 | for (i = nargs - 1; i >= 0; i--) |
1027 | if (TYPE_CODE (VALUE_TYPE (args[i])) == TYPE_CODE_STRUCT | |
1028 | && REG_STRUCT_HAS_ADDR (using_gcc, VALUE_TYPE (args[i]))) | |
1029 | { | |
1030 | CORE_ADDR addr; | |
bd5635a1 | 1031 | #if !(1 INNER_THAN 2) |
a91a6192 SS |
1032 | /* The stack grows up, so the address of the thing we push |
1033 | is the stack pointer before we push it. */ | |
1034 | addr = sp; | |
bd5635a1 | 1035 | #endif |
a91a6192 SS |
1036 | /* Push the structure. */ |
1037 | sp = value_push (sp, args[i]); | |
bd5635a1 | 1038 | #if 1 INNER_THAN 2 |
a91a6192 SS |
1039 | /* The stack grows down, so the address of the thing we push |
1040 | is the stack pointer after we push it. */ | |
1041 | addr = sp; | |
bd5635a1 | 1042 | #endif |
a91a6192 SS |
1043 | /* The value we're going to pass is the address of the thing |
1044 | we just pushed. */ | |
1045 | args[i] = value_from_longest (lookup_pointer_type (value_type), | |
1046 | (LONGEST) addr); | |
1047 | } | |
bd5635a1 RP |
1048 | } |
1049 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1050 | ||
1051 | #ifdef PUSH_ARGUMENTS | |
1052 | PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr); | |
1053 | #else /* !PUSH_ARGUMENTS */ | |
1054 | for (i = nargs - 1; i >= 0; i--) | |
1055 | sp = value_arg_push (sp, args[i]); | |
1056 | #endif /* !PUSH_ARGUMENTS */ | |
1057 | ||
1058 | #ifdef CALL_DUMMY_STACK_ADJUST | |
1059 | #if 1 INNER_THAN 2 | |
1060 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1061 | #else | |
1062 | sp += CALL_DUMMY_STACK_ADJUST; | |
1063 | #endif | |
1064 | #endif /* CALL_DUMMY_STACK_ADJUST */ | |
1065 | ||
1066 | /* Store the address at which the structure is supposed to be | |
1067 | written. Note that this (and the code which reserved the space | |
1068 | above) assumes that gcc was used to compile this function. Since | |
1069 | it doesn't cost us anything but space and if the function is pcc | |
1070 | it will ignore this value, we will make that assumption. | |
1071 | ||
1072 | Also note that on some machines (like the sparc) pcc uses a | |
1073 | convention like gcc's. */ | |
1074 | ||
1075 | if (struct_return) | |
1076 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1077 | ||
1078 | /* Write the stack pointer. This is here because the statements above | |
1079 | might fool with it. On SPARC, this write also stores the register | |
1080 | window into the right place in the new stack frame, which otherwise | |
5632cd56 | 1081 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ |
54023465 | 1082 | write_sp (sp); |
bd5635a1 | 1083 | |
bd5635a1 RP |
1084 | { |
1085 | char retbuf[REGISTER_BYTES]; | |
54023465 JK |
1086 | char *name; |
1087 | struct symbol *symbol; | |
1088 | ||
1089 | name = NULL; | |
1090 | symbol = find_pc_function (funaddr); | |
1091 | if (symbol) | |
1092 | { | |
1093 | name = SYMBOL_SOURCE_NAME (symbol); | |
1094 | } | |
1095 | else | |
1096 | { | |
1097 | /* Try the minimal symbols. */ | |
1098 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1099 | ||
1100 | if (msymbol) | |
1101 | { | |
1102 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1103 | } | |
1104 | } | |
1105 | if (name == NULL) | |
1106 | { | |
1107 | char format[80]; | |
1108 | sprintf (format, "at %s", local_hex_format ()); | |
1109 | name = alloca (80); | |
30974778 | 1110 | /* FIXME-32x64: assumes funaddr fits in a long. */ |
cef4c2e7 | 1111 | sprintf (name, format, (unsigned long) funaddr); |
54023465 | 1112 | } |
bd5635a1 RP |
1113 | |
1114 | /* Execute the stack dummy routine, calling FUNCTION. | |
1115 | When it is done, discard the empty frame | |
1116 | after storing the contents of all regs into retbuf. */ | |
860a1754 JK |
1117 | if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf)) |
1118 | { | |
1119 | /* We stopped somewhere besides the call dummy. */ | |
1120 | ||
1121 | /* If we did the cleanups, we would print a spurious error message | |
1122 | (Unable to restore previously selected frame), would write the | |
1123 | registers from the inf_status (which is wrong), and would do other | |
1124 | wrong things (like set stop_bpstat to the wrong thing). */ | |
1125 | discard_cleanups (old_chain); | |
1126 | /* Prevent memory leak. */ | |
30d20d15 | 1127 | bpstat_clear (&inf_status.stop_bpstat); |
860a1754 JK |
1128 | |
1129 | /* The following error message used to say "The expression | |
1130 | which contained the function call has been discarded." It | |
1131 | is a hard concept to explain in a few words. Ideally, GDB | |
1132 | would be able to resume evaluation of the expression when | |
1133 | the function finally is done executing. Perhaps someday | |
1134 | this will be implemented (it would not be easy). */ | |
1135 | ||
1136 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1137 | a C++ name with arguments and stuff. */ | |
1138 | error ("\ | |
1139 | The program being debugged stopped while in a function called from GDB.\n\ | |
1140 | When the function (%s) is done executing, GDB will silently\n\ | |
1141 | stop (instead of continuing to evaluate the expression containing\n\ | |
1142 | the function call).", name); | |
1143 | } | |
bd5635a1 RP |
1144 | |
1145 | do_cleanups (old_chain); | |
1146 | ||
860a1754 | 1147 | /* Figure out the value returned by the function. */ |
bd5635a1 RP |
1148 | return value_being_returned (value_type, retbuf, struct_return); |
1149 | } | |
1150 | } | |
1151 | #else /* no CALL_DUMMY. */ | |
a91a6192 | 1152 | value_ptr |
bd5635a1 | 1153 | call_function_by_hand (function, nargs, args) |
a91a6192 | 1154 | value_ptr function; |
bd5635a1 | 1155 | int nargs; |
a91a6192 | 1156 | value_ptr *args; |
bd5635a1 RP |
1157 | { |
1158 | error ("Cannot invoke functions on this machine."); | |
1159 | } | |
1160 | #endif /* no CALL_DUMMY. */ | |
a163ddec | 1161 | |
bd5635a1 | 1162 | \f |
a163ddec MT |
1163 | /* Create a value for an array by allocating space in the inferior, copying |
1164 | the data into that space, and then setting up an array value. | |
1165 | ||
1166 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1167 | populated from the values passed in ELEMVEC. | |
1168 | ||
1169 | The element type of the array is inherited from the type of the | |
1170 | first element, and all elements must have the same size (though we | |
1171 | don't currently enforce any restriction on their types). */ | |
bd5635a1 | 1172 | |
a91a6192 | 1173 | value_ptr |
a163ddec MT |
1174 | value_array (lowbound, highbound, elemvec) |
1175 | int lowbound; | |
1176 | int highbound; | |
a91a6192 | 1177 | value_ptr *elemvec; |
bd5635a1 | 1178 | { |
a163ddec MT |
1179 | int nelem; |
1180 | int idx; | |
1181 | int typelength; | |
a91a6192 | 1182 | value_ptr val; |
a163ddec MT |
1183 | struct type *rangetype; |
1184 | struct type *arraytype; | |
1185 | CORE_ADDR addr; | |
bd5635a1 | 1186 | |
a163ddec MT |
1187 | /* Validate that the bounds are reasonable and that each of the elements |
1188 | have the same size. */ | |
bd5635a1 | 1189 | |
a163ddec MT |
1190 | nelem = highbound - lowbound + 1; |
1191 | if (nelem <= 0) | |
bd5635a1 | 1192 | { |
a163ddec | 1193 | error ("bad array bounds (%d, %d)", lowbound, highbound); |
bd5635a1 | 1194 | } |
a163ddec MT |
1195 | typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0])); |
1196 | for (idx = 0; idx < nelem; idx++) | |
bd5635a1 | 1197 | { |
a163ddec MT |
1198 | if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength) |
1199 | { | |
1200 | error ("array elements must all be the same size"); | |
1201 | } | |
bd5635a1 RP |
1202 | } |
1203 | ||
a163ddec MT |
1204 | /* Allocate space to store the array in the inferior, and then initialize |
1205 | it by copying in each element. FIXME: Is it worth it to create a | |
1206 | local buffer in which to collect each value and then write all the | |
1207 | bytes in one operation? */ | |
1208 | ||
1209 | addr = allocate_space_in_inferior (nelem * typelength); | |
1210 | for (idx = 0; idx < nelem; idx++) | |
1211 | { | |
1212 | write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]), | |
1213 | typelength); | |
1214 | } | |
1215 | ||
1216 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1217 | ||
1218 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1219 | lowbound, highbound); | |
1220 | arraytype = create_array_type ((struct type *) NULL, | |
1221 | VALUE_TYPE (elemvec[0]), rangetype); | |
1222 | val = value_at_lazy (arraytype, addr); | |
1223 | return (val); | |
1224 | } | |
1225 | ||
1226 | /* Create a value for a string constant by allocating space in the inferior, | |
1227 | copying the data into that space, and returning the address with type | |
1228 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1229 | of characters. | |
1230 | Note that string types are like array of char types with a lower bound of | |
1231 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1232 | embedded null bytes. */ | |
1233 | ||
a91a6192 | 1234 | value_ptr |
a163ddec MT |
1235 | value_string (ptr, len) |
1236 | char *ptr; | |
1237 | int len; | |
1238 | { | |
a91a6192 | 1239 | value_ptr val; |
a163ddec MT |
1240 | struct type *rangetype; |
1241 | struct type *stringtype; | |
1242 | CORE_ADDR addr; | |
1243 | ||
1244 | /* Allocate space to store the string in the inferior, and then | |
1245 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1246 | ||
1247 | addr = allocate_space_in_inferior (len); | |
1248 | write_memory (addr, ptr, len); | |
1249 | ||
1250 | /* Create the string type and set up a string value to be evaluated | |
1251 | lazily. */ | |
1252 | ||
1253 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1254 | 0, len - 1); | |
1255 | stringtype = create_string_type ((struct type *) NULL, rangetype); | |
1256 | val = value_at_lazy (stringtype, addr); | |
1257 | return (val); | |
bd5635a1 RP |
1258 | } |
1259 | \f | |
479fdd26 JK |
1260 | /* See if we can pass arguments in T2 to a function which takes arguments |
1261 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1262 | arguments need coercion of some sort, then the coerced values are written | |
1263 | into T2. Return value is 0 if the arguments could be matched, or the | |
1264 | position at which they differ if not. | |
a163ddec MT |
1265 | |
1266 | STATICP is nonzero if the T1 argument list came from a | |
1267 | static member function. | |
1268 | ||
1269 | For non-static member functions, we ignore the first argument, | |
1270 | which is the type of the instance variable. This is because we want | |
1271 | to handle calls with objects from derived classes. This is not | |
1272 | entirely correct: we should actually check to make sure that a | |
1273 | requested operation is type secure, shouldn't we? FIXME. */ | |
1274 | ||
1275 | static int | |
1276 | typecmp (staticp, t1, t2) | |
1277 | int staticp; | |
1278 | struct type *t1[]; | |
a91a6192 | 1279 | value_ptr t2[]; |
a163ddec MT |
1280 | { |
1281 | int i; | |
1282 | ||
1283 | if (t2 == 0) | |
1284 | return 1; | |
1285 | if (staticp && t1 == 0) | |
1286 | return t2[1] != 0; | |
1287 | if (t1 == 0) | |
1288 | return 1; | |
1289 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0; | |
1290 | if (t1[!staticp] == 0) return 0; | |
1291 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) | |
1292 | { | |
40620258 | 1293 | struct type *tt1, *tt2; |
a163ddec MT |
1294 | if (! t2[i]) |
1295 | return i+1; | |
40620258 KH |
1296 | tt1 = t1[i]; |
1297 | tt2 = VALUE_TYPE(t2[i]); | |
1298 | if (TYPE_CODE (tt1) == TYPE_CODE_REF | |
479fdd26 | 1299 | /* We should be doing hairy argument matching, as below. */ |
40620258 | 1300 | && (TYPE_CODE (TYPE_TARGET_TYPE (tt1)) == TYPE_CODE (tt2))) |
479fdd26 JK |
1301 | { |
1302 | t2[i] = value_addr (t2[i]); | |
1303 | continue; | |
1304 | } | |
1305 | ||
40620258 KH |
1306 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR |
1307 | && (TYPE_CODE(tt2)==TYPE_CODE_ARRAY || TYPE_CODE(tt2)==TYPE_CODE_PTR)) | |
1308 | { | |
1309 | tt1 = TYPE_TARGET_TYPE(tt1); | |
1310 | tt2 = TYPE_TARGET_TYPE(tt2); | |
1311 | } | |
1312 | if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue; | |
1313 | /* Array to pointer is a `trivial conversion' according to the ARM. */ | |
479fdd26 JK |
1314 | |
1315 | /* We should be doing much hairier argument matching (see section 13.2 | |
1316 | of the ARM), but as a quick kludge, just check for the same type | |
1317 | code. */ | |
a163ddec MT |
1318 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
1319 | return i+1; | |
1320 | } | |
1321 | if (!t1[i]) return 0; | |
1322 | return t2[i] ? i+1 : 0; | |
1323 | } | |
1324 | ||
bd5635a1 RP |
1325 | /* Helper function used by value_struct_elt to recurse through baseclasses. |
1326 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1327 | and search in it assuming it has (class) type TYPE. |
d3bab255 JK |
1328 | If found, return value, else return NULL. |
1329 | ||
1330 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1331 | look for a baseclass named NAME. */ | |
bd5635a1 | 1332 | |
a91a6192 | 1333 | static value_ptr |
d3bab255 | 1334 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) |
bd5635a1 | 1335 | char *name; |
a91a6192 | 1336 | register value_ptr arg1; |
bd5635a1 RP |
1337 | int offset; |
1338 | register struct type *type; | |
d3bab255 | 1339 | int looking_for_baseclass; |
bd5635a1 RP |
1340 | { |
1341 | int i; | |
1342 | ||
1343 | check_stub_type (type); | |
1344 | ||
d3bab255 JK |
1345 | if (! looking_for_baseclass) |
1346 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1347 | { | |
1348 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
1349 | ||
2e4964ad | 1350 | if (t_field_name && STREQ (t_field_name, name)) |
d3bab255 | 1351 | { |
a91a6192 | 1352 | value_ptr v; |
01be6913 PB |
1353 | if (TYPE_FIELD_STATIC (type, i)) |
1354 | { | |
1355 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i); | |
1356 | struct symbol *sym = | |
2e4964ad FF |
1357 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); |
1358 | if (sym == NULL) | |
1359 | error ("Internal error: could not find physical static variable named %s", | |
1360 | phys_name); | |
01be6913 PB |
1361 | v = value_at (TYPE_FIELD_TYPE (type, i), |
1362 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
1363 | } | |
1364 | else | |
1365 | v = value_primitive_field (arg1, offset, i, type); | |
d3bab255 JK |
1366 | if (v == 0) |
1367 | error("there is no field named %s", name); | |
1368 | return v; | |
1369 | } | |
1370 | } | |
bd5635a1 RP |
1371 | |
1372 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1373 | { | |
a91a6192 | 1374 | value_ptr v; |
bd5635a1 | 1375 | /* If we are looking for baseclasses, this is what we get when we |
54023465 JK |
1376 | hit them. But it could happen that the base part's member name |
1377 | is not yet filled in. */ | |
d3bab255 | 1378 | int found_baseclass = (looking_for_baseclass |
54023465 | 1379 | && TYPE_BASECLASS_NAME (type, i) != NULL |
2e4964ad | 1380 | && STREQ (name, TYPE_BASECLASS_NAME (type, i))); |
bd5635a1 RP |
1381 | |
1382 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1383 | { | |
a91a6192 | 1384 | value_ptr v2; |
bac89d6c | 1385 | /* Fix to use baseclass_offset instead. FIXME */ |
d11c44f1 JG |
1386 | baseclass_addr (type, i, VALUE_CONTENTS (arg1) + offset, |
1387 | &v2, (int *)NULL); | |
bd5635a1 RP |
1388 | if (v2 == 0) |
1389 | error ("virtual baseclass botch"); | |
1390 | if (found_baseclass) | |
1391 | return v2; | |
d3bab255 JK |
1392 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), |
1393 | looking_for_baseclass); | |
bd5635a1 | 1394 | } |
01be6913 | 1395 | else if (found_baseclass) |
bd5635a1 RP |
1396 | v = value_primitive_field (arg1, offset, i, type); |
1397 | else | |
1398 | v = search_struct_field (name, arg1, | |
1399 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, | |
d3bab255 JK |
1400 | TYPE_BASECLASS (type, i), |
1401 | looking_for_baseclass); | |
bd5635a1 RP |
1402 | if (v) return v; |
1403 | } | |
1404 | return NULL; | |
1405 | } | |
1406 | ||
1407 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1408 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2a5ec41d | 1409 | and search in it assuming it has (class) type TYPE. |
cef4c2e7 | 1410 | If found, return value, else if name matched and args not return (value)-1, |
5b5c6d94 | 1411 | else return NULL. */ |
bd5635a1 | 1412 | |
a91a6192 | 1413 | static value_ptr |
bac89d6c | 1414 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) |
bd5635a1 | 1415 | char *name; |
a91a6192 | 1416 | register value_ptr *arg1p, *args; |
bd5635a1 RP |
1417 | int offset, *static_memfuncp; |
1418 | register struct type *type; | |
1419 | { | |
1420 | int i; | |
a91a6192 | 1421 | value_ptr v; |
67e9b3b3 | 1422 | int name_matched = 0; |
6ebc9cdd | 1423 | char dem_opname[64]; |
bd5635a1 RP |
1424 | |
1425 | check_stub_type (type); | |
1426 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
1427 | { | |
1428 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
6ebc9cdd KH |
1429 | if (strncmp(t_field_name, "__", 2)==0 || |
1430 | strncmp(t_field_name, "op", 2)==0 || | |
1431 | strncmp(t_field_name, "type", 4)==0 ) | |
1432 | { | |
1433 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1434 | t_field_name = dem_opname; | |
1435 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1436 | t_field_name = dem_opname; | |
1437 | } | |
2e4964ad | 1438 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1439 | { |
d3bab255 | 1440 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; |
bd5635a1 | 1441 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); |
5b5c6d94 | 1442 | name_matched = 1; |
bd5635a1 | 1443 | |
d3bab255 JK |
1444 | if (j > 0 && args == 0) |
1445 | error ("cannot resolve overloaded method `%s'", name); | |
1446 | while (j >= 0) | |
bd5635a1 | 1447 | { |
8e9a3f3b | 1448 | if (TYPE_FN_FIELD_STUB (f, j)) |
bd5635a1 RP |
1449 | check_stub_method (type, i, j); |
1450 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
1451 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
1452 | { | |
1453 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
a91a6192 | 1454 | return value_virtual_fn_field (arg1p, f, j, type, offset); |
bd5635a1 RP |
1455 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) |
1456 | *static_memfuncp = 1; | |
a91a6192 SS |
1457 | v = value_fn_field (arg1p, f, j, type, offset); |
1458 | if (v != NULL) return v; | |
bd5635a1 | 1459 | } |
d3bab255 | 1460 | j--; |
bd5635a1 RP |
1461 | } |
1462 | } | |
1463 | } | |
1464 | ||
1465 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1466 | { | |
01be6913 | 1467 | int base_offset; |
bd5635a1 RP |
1468 | |
1469 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
1470 | { | |
9f739abd | 1471 | base_offset = baseclass_offset (type, i, *arg1p, offset); |
bac89d6c | 1472 | if (base_offset == -1) |
bd5635a1 | 1473 | error ("virtual baseclass botch"); |
bd5635a1 | 1474 | } |
01be6913 PB |
1475 | else |
1476 | { | |
01be6913 PB |
1477 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; |
1478 | } | |
bac89d6c | 1479 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
bd5635a1 | 1480 | static_memfuncp, TYPE_BASECLASS (type, i)); |
a91a6192 | 1481 | if (v == (value_ptr) -1) |
5b5c6d94 KH |
1482 | { |
1483 | name_matched = 1; | |
1484 | } | |
1485 | else if (v) | |
bac89d6c FF |
1486 | { |
1487 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
1488 | /* *arg1p = arg1_tmp;*/ | |
1489 | return v; | |
1490 | } | |
bd5635a1 | 1491 | } |
a91a6192 | 1492 | if (name_matched) return (value_ptr) -1; |
5b5c6d94 | 1493 | else return NULL; |
bd5635a1 RP |
1494 | } |
1495 | ||
1496 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
1497 | extract the component named NAME from the ultimate target structure/union | |
1498 | and return it as a value with its appropriate type. | |
1499 | ERR is used in the error message if *ARGP's type is wrong. | |
1500 | ||
1501 | C++: ARGS is a list of argument types to aid in the selection of | |
1502 | an appropriate method. Also, handle derived types. | |
1503 | ||
1504 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
1505 | where the truthvalue of whether the function that was resolved was | |
1506 | a static member function or not is stored. | |
1507 | ||
1508 | ERR is an error message to be printed in case the field is not found. */ | |
1509 | ||
a91a6192 | 1510 | value_ptr |
bd5635a1 | 1511 | value_struct_elt (argp, args, name, static_memfuncp, err) |
a91a6192 | 1512 | register value_ptr *argp, *args; |
bd5635a1 RP |
1513 | char *name; |
1514 | int *static_memfuncp; | |
1515 | char *err; | |
1516 | { | |
1517 | register struct type *t; | |
a91a6192 | 1518 | value_ptr v; |
bd5635a1 RP |
1519 | |
1520 | COERCE_ARRAY (*argp); | |
1521 | ||
1522 | t = VALUE_TYPE (*argp); | |
1523 | ||
1524 | /* Follow pointers until we get to a non-pointer. */ | |
1525 | ||
1526 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1527 | { | |
bd5635a1 | 1528 | *argp = value_ind (*argp); |
f2ebc25f JK |
1529 | /* Don't coerce fn pointer to fn and then back again! */ |
1530 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
1531 | COERCE_ARRAY (*argp); | |
bd5635a1 RP |
1532 | t = VALUE_TYPE (*argp); |
1533 | } | |
1534 | ||
1535 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1536 | error ("not implemented: member type in value_struct_elt"); | |
1537 | ||
2a5ec41d | 1538 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1539 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1540 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
1541 | ||
1542 | /* Assume it's not, unless we see that it is. */ | |
1543 | if (static_memfuncp) | |
1544 | *static_memfuncp =0; | |
1545 | ||
1546 | if (!args) | |
1547 | { | |
1548 | /* if there are no arguments ...do this... */ | |
1549 | ||
d3bab255 | 1550 | /* Try as a field first, because if we succeed, there |
bd5635a1 | 1551 | is less work to be done. */ |
d3bab255 | 1552 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1553 | if (v) |
1554 | return v; | |
1555 | ||
1556 | /* C++: If it was not found as a data field, then try to | |
1557 | return it as a pointer to a method. */ | |
1558 | ||
1559 | if (destructor_name_p (name, t)) | |
1560 | error ("Cannot get value of destructor"); | |
1561 | ||
bac89d6c | 1562 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1563 | |
a91a6192 | 1564 | if (v == (value_ptr) -1) |
67e9b3b3 PS |
1565 | error ("Cannot take address of a method"); |
1566 | else if (v == 0) | |
bd5635a1 RP |
1567 | { |
1568 | if (TYPE_NFN_FIELDS (t)) | |
1569 | error ("There is no member or method named %s.", name); | |
1570 | else | |
1571 | error ("There is no member named %s.", name); | |
1572 | } | |
1573 | return v; | |
1574 | } | |
1575 | ||
1576 | if (destructor_name_p (name, t)) | |
1577 | { | |
1578 | if (!args[1]) | |
1579 | { | |
1580 | /* destructors are a special case. */ | |
a91a6192 SS |
1581 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, 0), |
1582 | TYPE_FN_FIELDLIST_LENGTH (t, 0), 0, 0); | |
40620258 KH |
1583 | if (!v) error("could not find destructor function named %s.", name); |
1584 | else return v; | |
bd5635a1 RP |
1585 | } |
1586 | else | |
1587 | { | |
1588 | error ("destructor should not have any argument"); | |
1589 | } | |
1590 | } | |
1591 | else | |
bac89d6c | 1592 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); |
bd5635a1 | 1593 | |
a91a6192 | 1594 | if (v == (value_ptr) -1) |
5b5c6d94 KH |
1595 | { |
1596 | error("Argument list of %s mismatch with component in the structure.", name); | |
1597 | } | |
1598 | else if (v == 0) | |
bd5635a1 RP |
1599 | { |
1600 | /* See if user tried to invoke data as function. If so, | |
1601 | hand it back. If it's not callable (i.e., a pointer to function), | |
1602 | gdb should give an error. */ | |
d3bab255 | 1603 | v = search_struct_field (name, *argp, 0, t, 0); |
bd5635a1 RP |
1604 | } |
1605 | ||
1606 | if (!v) | |
1607 | error ("Structure has no component named %s.", name); | |
1608 | return v; | |
1609 | } | |
1610 | ||
1611 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
1612 | of type TYPE. If TYPE does not have a destructor, or | |
1613 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
1614 | int | |
1615 | destructor_name_p (name, type) | |
7919c3ed JG |
1616 | const char *name; |
1617 | const struct type *type; | |
bd5635a1 RP |
1618 | { |
1619 | /* destructors are a special case. */ | |
1620 | ||
1621 | if (name[0] == '~') | |
1622 | { | |
1623 | char *dname = type_name_no_tag (type); | |
2e4964ad | 1624 | if (!STREQ (dname, name+1)) |
bd5635a1 RP |
1625 | error ("name of destructor must equal name of class"); |
1626 | else | |
1627 | return 1; | |
1628 | } | |
1629 | return 0; | |
1630 | } | |
1631 | ||
1632 | /* Helper function for check_field: Given TYPE, a structure/union, | |
1633 | return 1 if the component named NAME from the ultimate | |
1634 | target structure/union is defined, otherwise, return 0. */ | |
1635 | ||
1636 | static int | |
1637 | check_field_in (type, name) | |
1638 | register struct type *type; | |
01be6913 | 1639 | const char *name; |
bd5635a1 RP |
1640 | { |
1641 | register int i; | |
1642 | ||
1643 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
1644 | { | |
1645 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2e4964ad | 1646 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 RP |
1647 | return 1; |
1648 | } | |
1649 | ||
1650 | /* C++: If it was not found as a data field, then try to | |
1651 | return it as a pointer to a method. */ | |
1652 | ||
1653 | /* Destructors are a special case. */ | |
1654 | if (destructor_name_p (name, type)) | |
1655 | return 1; | |
1656 | ||
1657 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
1658 | { | |
2e4964ad | 1659 | if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name)) |
bd5635a1 RP |
1660 | return 1; |
1661 | } | |
1662 | ||
1663 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
1664 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
1665 | return 1; | |
1666 | ||
1667 | return 0; | |
1668 | } | |
1669 | ||
1670 | ||
1671 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
1672 | return 1 if the component named NAME from the ultimate | |
1673 | target structure/union is defined, otherwise, return 0. */ | |
1674 | ||
1675 | int | |
1676 | check_field (arg1, name) | |
a91a6192 | 1677 | register value_ptr arg1; |
7919c3ed | 1678 | const char *name; |
bd5635a1 RP |
1679 | { |
1680 | register struct type *t; | |
1681 | ||
1682 | COERCE_ARRAY (arg1); | |
1683 | ||
1684 | t = VALUE_TYPE (arg1); | |
1685 | ||
1686 | /* Follow pointers until we get to a non-pointer. */ | |
1687 | ||
1688 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
1689 | t = TYPE_TARGET_TYPE (t); | |
1690 | ||
1691 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
1692 | error ("not implemented: member type in check_field"); | |
1693 | ||
2a5ec41d | 1694 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 RP |
1695 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
1696 | error ("Internal error: `this' is not an aggregate"); | |
1697 | ||
1698 | return check_field_in (t, name); | |
1699 | } | |
1700 | ||
01be6913 | 1701 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, |
2a5ec41d | 1702 | return the address of this member as a "pointer to member" |
bd5635a1 RP |
1703 | type. If INTYPE is non-null, then it will be the type |
1704 | of the member we are looking for. This will help us resolve | |
01be6913 PB |
1705 | "pointers to member functions". This function is used |
1706 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
bd5635a1 | 1707 | |
a91a6192 | 1708 | value_ptr |
51b57ded | 1709 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) |
01be6913 | 1710 | struct type *domain, *curtype, *intype; |
51b57ded | 1711 | int offset; |
bd5635a1 RP |
1712 | char *name; |
1713 | { | |
01be6913 | 1714 | register struct type *t = curtype; |
bd5635a1 | 1715 | register int i; |
a91a6192 | 1716 | value_ptr v; |
bd5635a1 | 1717 | |
2a5ec41d | 1718 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT |
bd5635a1 | 1719 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
01be6913 | 1720 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); |
bd5635a1 | 1721 | |
01be6913 | 1722 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) |
bd5635a1 | 1723 | { |
01be6913 PB |
1724 | char *t_field_name = TYPE_FIELD_NAME (t, i); |
1725 | ||
2e4964ad | 1726 | if (t_field_name && STREQ (t_field_name, name)) |
bd5635a1 | 1727 | { |
01be6913 | 1728 | if (TYPE_FIELD_STATIC (t, i)) |
bd5635a1 | 1729 | { |
01be6913 PB |
1730 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i); |
1731 | struct symbol *sym = | |
1732 | lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL); | |
2e4964ad FF |
1733 | if (sym == NULL) |
1734 | error ("Internal error: could not find physical static variable named %s", | |
01be6913 PB |
1735 | phys_name); |
1736 | return value_at (SYMBOL_TYPE (sym), | |
1737 | (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym)); | |
bd5635a1 | 1738 | } |
01be6913 PB |
1739 | if (TYPE_FIELD_PACKED (t, i)) |
1740 | error ("pointers to bitfield members not allowed"); | |
1741 | ||
1742 | return value_from_longest | |
1743 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
1744 | domain)), | |
51b57ded | 1745 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); |
bd5635a1 | 1746 | } |
bd5635a1 RP |
1747 | } |
1748 | ||
1749 | /* C++: If it was not found as a data field, then try to | |
1750 | return it as a pointer to a method. */ | |
bd5635a1 RP |
1751 | |
1752 | /* Destructors are a special case. */ | |
1753 | if (destructor_name_p (name, t)) | |
1754 | { | |
2a5ec41d | 1755 | error ("member pointers to destructors not implemented yet"); |
bd5635a1 RP |
1756 | } |
1757 | ||
1758 | /* Perform all necessary dereferencing. */ | |
1759 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
1760 | intype = TYPE_TARGET_TYPE (intype); | |
1761 | ||
01be6913 | 1762 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) |
bd5635a1 | 1763 | { |
852b3831 PB |
1764 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); |
1765 | char dem_opname[64]; | |
1766 | ||
1767 | if (strncmp(t_field_name, "__", 2)==0 || | |
1768 | strncmp(t_field_name, "op", 2)==0 || | |
1769 | strncmp(t_field_name, "type", 4)==0 ) | |
1770 | { | |
1771 | if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI)) | |
1772 | t_field_name = dem_opname; | |
1773 | else if (cplus_demangle_opname(t_field_name, dem_opname, 0)) | |
1774 | t_field_name = dem_opname; | |
1775 | } | |
1776 | if (t_field_name && STREQ (t_field_name, name)) | |
bd5635a1 | 1777 | { |
01be6913 PB |
1778 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); |
1779 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
1780 | ||
1781 | if (intype == 0 && j > 1) | |
1782 | error ("non-unique member `%s' requires type instantiation", name); | |
1783 | if (intype) | |
bd5635a1 | 1784 | { |
01be6913 PB |
1785 | while (j--) |
1786 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
1787 | break; | |
1788 | if (j < 0) | |
1789 | error ("no member function matches that type instantiation"); | |
1790 | } | |
1791 | else | |
1792 | j = 0; | |
1793 | ||
1794 | if (TYPE_FN_FIELD_STUB (f, j)) | |
1795 | check_stub_method (t, i, j); | |
1796 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
1797 | { | |
1798 | return value_from_longest | |
1799 | (lookup_reference_type | |
1800 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1801 | domain)), | |
bac89d6c FF |
1802 | (LONGEST) METHOD_PTR_FROM_VOFFSET |
1803 | (TYPE_FN_FIELD_VOFFSET (f, j))); | |
01be6913 PB |
1804 | } |
1805 | else | |
1806 | { | |
1807 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
1808 | 0, VAR_NAMESPACE, 0, NULL); | |
35fcebce PB |
1809 | if (s == NULL) |
1810 | { | |
1811 | v = 0; | |
1812 | } | |
1813 | else | |
1814 | { | |
1815 | v = read_var_value (s, 0); | |
01be6913 | 1816 | #if 0 |
35fcebce PB |
1817 | VALUE_TYPE (v) = lookup_reference_type |
1818 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
1819 | domain)); | |
01be6913 | 1820 | #endif |
bd5635a1 | 1821 | } |
35fcebce | 1822 | return v; |
bd5635a1 RP |
1823 | } |
1824 | } | |
35fcebce | 1825 | } |
01be6913 PB |
1826 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) |
1827 | { | |
a91a6192 | 1828 | value_ptr v; |
51b57ded FF |
1829 | int base_offset; |
1830 | ||
1831 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
1832 | base_offset = 0; | |
1833 | else | |
1834 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
01be6913 | 1835 | v = value_struct_elt_for_reference (domain, |
51b57ded | 1836 | offset + base_offset, |
01be6913 PB |
1837 | TYPE_BASECLASS (t, i), |
1838 | name, | |
1839 | intype); | |
1840 | if (v) | |
1841 | return v; | |
bd5635a1 RP |
1842 | } |
1843 | return 0; | |
1844 | } | |
1845 | ||
bd5635a1 RP |
1846 | /* C++: return the value of the class instance variable, if one exists. |
1847 | Flag COMPLAIN signals an error if the request is made in an | |
1848 | inappropriate context. */ | |
a91a6192 | 1849 | value_ptr |
bd5635a1 RP |
1850 | value_of_this (complain) |
1851 | int complain; | |
1852 | { | |
1853 | extern FRAME selected_frame; | |
1854 | struct symbol *func, *sym; | |
1855 | struct block *b; | |
1856 | int i; | |
1857 | static const char funny_this[] = "this"; | |
a91a6192 | 1858 | value_ptr this; |
bd5635a1 RP |
1859 | |
1860 | if (selected_frame == 0) | |
1861 | if (complain) | |
1862 | error ("no frame selected"); | |
1863 | else return 0; | |
1864 | ||
1865 | func = get_frame_function (selected_frame); | |
1866 | if (!func) | |
1867 | { | |
1868 | if (complain) | |
1869 | error ("no `this' in nameless context"); | |
1870 | else return 0; | |
1871 | } | |
1872 | ||
1873 | b = SYMBOL_BLOCK_VALUE (func); | |
1874 | i = BLOCK_NSYMS (b); | |
1875 | if (i <= 0) | |
1876 | if (complain) | |
1877 | error ("no args, no `this'"); | |
1878 | else return 0; | |
1879 | ||
1880 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
1881 | symbol instead of the LOC_ARG one (if both exist). */ | |
1882 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
1883 | if (sym == NULL) | |
1884 | { | |
1885 | if (complain) | |
1886 | error ("current stack frame not in method"); | |
1887 | else | |
1888 | return NULL; | |
1889 | } | |
1890 | ||
1891 | this = read_var_value (sym, selected_frame); | |
1892 | if (this == 0 && complain) | |
1893 | error ("`this' argument at unknown address"); | |
1894 | return this; | |
1895 | } | |
a91a6192 SS |
1896 | |
1897 | /* Create a value for a literal string. We copy data into a local | |
1898 | (NOT inferior's memory) buffer, and then set up an array value. | |
1899 | ||
1900 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1901 | populated from the values passed in ELEMVEC. | |
1902 | ||
1903 | The element type of the array is inherited from the type of the | |
1904 | first element, and all elements must have the same size (though we | |
1905 | don't currently enforce any restriction on their types). */ | |
1906 | ||
1907 | value_ptr | |
1908 | f77_value_literal_string (lowbound, highbound, elemvec) | |
1909 | int lowbound; | |
1910 | int highbound; | |
1911 | value_ptr *elemvec; | |
1912 | { | |
1913 | int nelem; | |
1914 | int idx; | |
1915 | int typelength; | |
1916 | register value_ptr val; | |
1917 | struct type *rangetype; | |
1918 | struct type *arraytype; | |
1919 | CORE_ADDR addr; | |
1920 | ||
1921 | /* Validate that the bounds are reasonable and that each of the elements | |
1922 | have the same size. */ | |
1923 | ||
1924 | nelem = highbound - lowbound + 1; | |
1925 | if (nelem <= 0) | |
1926 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1927 | typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0])); | |
1928 | for (idx = 0; idx < nelem; idx++) | |
1929 | { | |
1930 | if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength) | |
1931 | error ("array elements must all be the same size"); | |
1932 | } | |
1933 | ||
1934 | /* Make sure we are dealing with characters */ | |
1935 | ||
1936 | if (typelength != 1) | |
1937 | error ("Found a non character type in a literal string "); | |
1938 | ||
1939 | /* Allocate space to store the array */ | |
1940 | ||
1941 | addr = malloc (nelem); | |
1942 | for (idx = 0; idx < nelem; idx++) | |
1943 | { | |
1944 | memcpy (addr + (idx), VALUE_CONTENTS (elemvec[idx]), 1); | |
1945 | } | |
1946 | ||
1947 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1948 | lowbound, highbound); | |
1949 | ||
1950 | arraytype = f77_create_literal_string_type ((struct type *) NULL, | |
1951 | rangetype); | |
1952 | ||
1953 | val = allocate_value (arraytype); | |
1954 | ||
1955 | /* Make sure that this the rest of the world knows that this is | |
1956 | a standard literal string, not one that is a substring of | |
1957 | some base */ | |
1958 | ||
1959 | VALUE_SUBSTRING_START (val) = NULL; | |
1960 | ||
1961 | VALUE_LAZY (val) = 0; | |
1962 | VALUE_LITERAL_DATA (val) = addr; | |
1963 | ||
1964 | /* Since this is a standard literal string with no real lval, | |
1965 | make sure that value_lval indicates this fact */ | |
1966 | ||
1967 | VALUE_LVAL (val) = not_lval; | |
1968 | return val; | |
1969 | } | |
1970 | ||
1971 | /* Create a value for a substring. We copy data into a local | |
1972 | (NOT inferior's memory) buffer, and then set up an array value. | |
1973 | ||
1974 | The array bounds for the string are (1:(to-from +1)) | |
1975 | The elements of the string are all characters. */ | |
1976 | ||
1977 | value_ptr | |
1978 | f77_value_substring (str, from, to) | |
1979 | value_ptr str; | |
1980 | int from; | |
1981 | int to; | |
1982 | { | |
1983 | int nelem; | |
1984 | register value_ptr val; | |
1985 | struct type *rangetype; | |
1986 | struct type *arraytype; | |
1987 | struct internalvar *var; | |
1988 | CORE_ADDR addr; | |
1989 | ||
1990 | /* Validate that the bounds are reasonable. */ | |
1991 | ||
1992 | nelem = to - from + 1; | |
1993 | if (nelem <= 0) | |
1994 | error ("bad substring bounds (%d, %d)", from, to); | |
1995 | ||
1996 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1997 | 1, nelem); | |
1998 | ||
1999 | arraytype = f77_create_literal_string_type ((struct type *) NULL, | |
2000 | rangetype); | |
2001 | ||
2002 | val = allocate_value (arraytype); | |
2003 | ||
2004 | /* Allocate space to store the substring array */ | |
2005 | ||
2006 | addr = malloc (nelem); | |
2007 | ||
2008 | /* Copy over the data */ | |
2009 | ||
2010 | /* In case we ever try to use this substring on the LHS of an assignment | |
2011 | remember where the SOURCE substring begins, for lval_memory | |
2012 | types this ptr is to a location in legal inferior memory, | |
2013 | for lval_internalvars it is a ptr. to superior memory. This | |
2014 | helps us out later when we do assigments like: | |
2015 | ||
2016 | set var ARR(2:3) = 'ab' | |
2017 | ||
2018 | */ | |
2019 | ||
2020 | ||
2021 | if (VALUE_LVAL (str) == lval_memory) | |
2022 | { | |
2023 | if (VALUE_SUBSTRING_START (str) == NULL) | |
2024 | { | |
2025 | /* This is a regular lval_memory string located in the | |
2026 | inferior */ | |
2027 | ||
2028 | VALUE_SUBSTRING_START (val) = VALUE_ADDRESS (str) + (from - 1); | |
2029 | target_read_memory (VALUE_SUBSTRING_START (val), addr, nelem); | |
2030 | } | |
2031 | else | |
2032 | { | |
2033 | ||
2034 | #if 0 | |
2035 | /* str is a substring allocated in the superior. Just | |
2036 | do a memcpy */ | |
2037 | ||
2038 | VALUE_SUBSTRING_START(val) = VALUE_LITERAL_DATA(str)+(from - 1); | |
2039 | memcpy(addr,VALUE_SUBSTRING_START(val),nelem); | |
2040 | #else | |
2041 | error ("Cannot get substrings of substrings"); | |
2042 | #endif | |
2043 | } | |
2044 | } | |
2045 | else | |
2046 | if (VALUE_LVAL(str) == lval_internalvar) | |
2047 | { | |
2048 | /* Internal variables of type TYPE_CODE_LITERAL_STRING | |
2049 | have their data located in the superior | |
2050 | process not the inferior */ | |
2051 | ||
2052 | var = VALUE_INTERNALVAR (str); | |
2053 | ||
2054 | if (VALUE_SUBSTRING_START (str) == NULL) | |
2055 | VALUE_SUBSTRING_START (val) = | |
2056 | VALUE_LITERAL_DATA (var->value) + (from - 1); | |
2057 | else | |
2058 | #if 0 | |
2059 | VALUE_SUBSTRING_START(val)=VALUE_LITERAL_DATA(str)+(from -1); | |
2060 | #else | |
2061 | error ("Cannot get substrings of substrings"); | |
2062 | #endif | |
2063 | memcpy (addr, VALUE_SUBSTRING_START (val), nelem); | |
2064 | } | |
2065 | else | |
2066 | error ("Substrings can not be applied to this data item"); | |
2067 | ||
2068 | VALUE_LAZY (val) = 0; | |
2069 | VALUE_LITERAL_DATA (val) = addr; | |
2070 | ||
2071 | /* This literal string's *data* is located in the superior BUT | |
2072 | we do need to know where it came from (i.e. was the source | |
2073 | string an internalvar or a regular lval_memory variable), so | |
2074 | we set the lval field to indicate this. This will be useful | |
2075 | when we use this value on the LHS of an expr. */ | |
2076 | ||
2077 | VALUE_LVAL (val) = VALUE_LVAL (str); | |
2078 | return val; | |
2079 | } | |
2080 | ||
2081 | /* Create a value for a FORTRAN complex number. Currently most of | |
2082 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
2083 | composed of 2 doubles. This really should be a smarter routine | |
2084 | that figures out precision inteligently as opposed to assuming | |
2085 | doubles. FIXME: fmb */ | |
2086 | ||
2087 | value_ptr | |
2088 | f77_value_literal_complex (arg1, arg2, size) | |
2089 | value_ptr arg1; | |
2090 | value_ptr arg2; | |
2091 | int size; | |
2092 | { | |
2093 | struct type *complex_type; | |
2094 | register value_ptr val; | |
2095 | char *addr; | |
2096 | ||
2097 | if (size != 8 && size != 16 && size != 32) | |
2098 | error ("Cannot create number of type 'complex*%d'", size); | |
2099 | ||
2100 | /* If either value comprising a complex number is a non-floating | |
2101 | type, cast to double. */ | |
2102 | ||
2103 | if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT) | |
2104 | arg1 = value_cast (builtin_type_f_real_s8, arg1); | |
2105 | ||
2106 | if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT) | |
2107 | arg2 = value_cast (builtin_type_f_real_s8, arg2); | |
2108 | ||
2109 | complex_type = f77_create_literal_complex_type (VALUE_TYPE (arg1), | |
2110 | VALUE_TYPE (arg2), | |
2111 | size); | |
2112 | ||
2113 | val = allocate_value (complex_type); | |
2114 | ||
2115 | /* Now create a pointer to enough memory to hold the the two args */ | |
2116 | ||
2117 | addr = malloc (TYPE_LENGTH (complex_type)); | |
2118 | ||
2119 | /* Copy over the two components */ | |
2120 | ||
2121 | memcpy (addr, VALUE_CONTENTS_RAW (arg1), TYPE_LENGTH (VALUE_TYPE (arg1))); | |
2122 | ||
2123 | memcpy (addr + TYPE_LENGTH (VALUE_TYPE (arg1)), VALUE_CONTENTS_RAW (arg2), | |
2124 | TYPE_LENGTH (VALUE_TYPE (arg2))); | |
2125 | ||
2126 | VALUE_ADDRESS (val) = 0; /* Not located in the inferior */ | |
2127 | VALUE_LAZY (val) = 0; | |
2128 | VALUE_LITERAL_DATA (val) = addr; | |
2129 | ||
2130 | /* Since this is a literal value, make sure that value_lval indicates | |
2131 | this fact */ | |
2132 | ||
2133 | VALUE_LVAL (val) = not_lval; | |
2134 | return val; | |
2135 | } |