]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Perform non-arithmetic operations on values, for GDB. |
2 | Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "symtab.h" | |
24 | #include "gdbtypes.h" | |
25 | #include "value.h" | |
26 | #include "frame.h" | |
27 | #include "inferior.h" | |
28 | #include "gdbcore.h" | |
29 | #include "target.h" | |
30 | #include "demangle.h" | |
31 | #include "language.h" | |
32 | #include "gdbcmd.h" | |
33 | ||
34 | #include <errno.h> | |
35 | #include "gdb_string.h" | |
36 | ||
37 | /* Default to coercing float to double in function calls only when there is | |
38 | no prototype. Otherwise on targets where the debug information is incorrect | |
39 | for either the prototype or non-prototype case, we can force it by defining | |
40 | COERCE_FLOAT_TO_DOUBLE in the target configuration file. */ | |
41 | ||
42 | #ifndef COERCE_FLOAT_TO_DOUBLE | |
43 | #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL) | |
44 | #endif | |
45 | ||
46 | /* Flag indicating HP compilers were used; needed to correctly handle some | |
47 | value operations with HP aCC code/runtime. */ | |
48 | extern int hp_som_som_object_present; | |
49 | ||
50 | ||
51 | /* Local functions. */ | |
52 | ||
c5aa993b | 53 | static int typecmp PARAMS ((int staticp, struct type * t1[], value_ptr t2[])); |
c906108c | 54 | |
c906108c SS |
55 | static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **)); |
56 | static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int)); | |
c906108c SS |
57 | |
58 | ||
c906108c | 59 | static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr)); |
c906108c SS |
60 | |
61 | static value_ptr search_struct_field PARAMS ((char *, value_ptr, int, | |
62 | struct type *, int)); | |
63 | ||
c906108c SS |
64 | static value_ptr search_struct_method PARAMS ((char *, value_ptr *, |
65 | value_ptr *, | |
66 | int, int *, struct type *)); | |
67 | ||
68 | static int check_field_in PARAMS ((struct type *, const char *)); | |
69 | ||
70 | static CORE_ADDR allocate_space_in_inferior PARAMS ((int)); | |
71 | ||
72 | static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr)); | |
73 | ||
c5aa993b | 74 | static struct fn_field *find_method_list PARAMS ((value_ptr * argp, char *method, int offset, int *static_memfuncp, struct type * type, int *num_fns, struct type ** basetype, int *boffset)); |
7a292a7a | 75 | |
c906108c SS |
76 | void _initialize_valops PARAMS ((void)); |
77 | ||
78 | #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL) | |
79 | ||
80 | /* Flag for whether we want to abandon failed expression evals by default. */ | |
81 | ||
82 | #if 0 | |
83 | static int auto_abandon = 0; | |
84 | #endif | |
85 | ||
86 | int overload_resolution = 0; | |
c5aa993b | 87 | \f |
c906108c SS |
88 | |
89 | ||
c906108c SS |
90 | /* Find the address of function name NAME in the inferior. */ |
91 | ||
92 | value_ptr | |
93 | find_function_in_inferior (name) | |
94 | char *name; | |
95 | { | |
96 | register struct symbol *sym; | |
97 | sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL); | |
98 | if (sym != NULL) | |
99 | { | |
100 | if (SYMBOL_CLASS (sym) != LOC_BLOCK) | |
101 | { | |
102 | error ("\"%s\" exists in this program but is not a function.", | |
103 | name); | |
104 | } | |
105 | return value_of_variable (sym, NULL); | |
106 | } | |
107 | else | |
108 | { | |
c5aa993b | 109 | struct minimal_symbol *msymbol = lookup_minimal_symbol (name, NULL, NULL); |
c906108c SS |
110 | if (msymbol != NULL) |
111 | { | |
112 | struct type *type; | |
113 | LONGEST maddr; | |
114 | type = lookup_pointer_type (builtin_type_char); | |
115 | type = lookup_function_type (type); | |
116 | type = lookup_pointer_type (type); | |
117 | maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol); | |
118 | return value_from_longest (type, maddr); | |
119 | } | |
120 | else | |
121 | { | |
c5aa993b | 122 | if (!target_has_execution) |
c906108c | 123 | error ("evaluation of this expression requires the target program to be active"); |
c5aa993b | 124 | else |
c906108c SS |
125 | error ("evaluation of this expression requires the program to have a function \"%s\".", name); |
126 | } | |
127 | } | |
128 | } | |
129 | ||
130 | /* Allocate NBYTES of space in the inferior using the inferior's malloc | |
131 | and return a value that is a pointer to the allocated space. */ | |
132 | ||
133 | value_ptr | |
134 | value_allocate_space_in_inferior (len) | |
135 | int len; | |
136 | { | |
137 | value_ptr blocklen; | |
138 | register value_ptr val = find_function_in_inferior ("malloc"); | |
139 | ||
140 | blocklen = value_from_longest (builtin_type_int, (LONGEST) len); | |
141 | val = call_function_by_hand (val, 1, &blocklen); | |
142 | if (value_logical_not (val)) | |
143 | { | |
144 | if (!target_has_execution) | |
c5aa993b JM |
145 | error ("No memory available to program now: you need to start the target first"); |
146 | else | |
147 | error ("No memory available to program: call to malloc failed"); | |
c906108c SS |
148 | } |
149 | return val; | |
150 | } | |
151 | ||
152 | static CORE_ADDR | |
153 | allocate_space_in_inferior (len) | |
154 | int len; | |
155 | { | |
156 | return value_as_long (value_allocate_space_in_inferior (len)); | |
157 | } | |
158 | ||
159 | /* Cast value ARG2 to type TYPE and return as a value. | |
160 | More general than a C cast: accepts any two types of the same length, | |
161 | and if ARG2 is an lvalue it can be cast into anything at all. */ | |
162 | /* In C++, casts may change pointer or object representations. */ | |
163 | ||
164 | value_ptr | |
165 | value_cast (type, arg2) | |
166 | struct type *type; | |
167 | register value_ptr arg2; | |
168 | { | |
169 | register enum type_code code1; | |
170 | register enum type_code code2; | |
171 | register int scalar; | |
172 | struct type *type2; | |
173 | ||
174 | int convert_to_boolean = 0; | |
c5aa993b | 175 | |
c906108c SS |
176 | if (VALUE_TYPE (arg2) == type) |
177 | return arg2; | |
178 | ||
179 | CHECK_TYPEDEF (type); | |
180 | code1 = TYPE_CODE (type); | |
c5aa993b | 181 | COERCE_REF (arg2); |
c906108c SS |
182 | type2 = check_typedef (VALUE_TYPE (arg2)); |
183 | ||
184 | /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT, | |
185 | is treated like a cast to (TYPE [N])OBJECT, | |
186 | where N is sizeof(OBJECT)/sizeof(TYPE). */ | |
187 | if (code1 == TYPE_CODE_ARRAY) | |
188 | { | |
189 | struct type *element_type = TYPE_TARGET_TYPE (type); | |
190 | unsigned element_length = TYPE_LENGTH (check_typedef (element_type)); | |
191 | if (element_length > 0 | |
c5aa993b | 192 | && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED) |
c906108c SS |
193 | { |
194 | struct type *range_type = TYPE_INDEX_TYPE (type); | |
195 | int val_length = TYPE_LENGTH (type2); | |
196 | LONGEST low_bound, high_bound, new_length; | |
197 | if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0) | |
198 | low_bound = 0, high_bound = 0; | |
199 | new_length = val_length / element_length; | |
200 | if (val_length % element_length != 0) | |
c5aa993b | 201 | warning ("array element type size does not divide object size in cast"); |
c906108c SS |
202 | /* FIXME-type-allocation: need a way to free this type when we are |
203 | done with it. */ | |
204 | range_type = create_range_type ((struct type *) NULL, | |
205 | TYPE_TARGET_TYPE (range_type), | |
206 | low_bound, | |
207 | new_length + low_bound - 1); | |
208 | VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL, | |
209 | element_type, range_type); | |
210 | return arg2; | |
211 | } | |
212 | } | |
213 | ||
214 | if (current_language->c_style_arrays | |
215 | && TYPE_CODE (type2) == TYPE_CODE_ARRAY) | |
216 | arg2 = value_coerce_array (arg2); | |
217 | ||
218 | if (TYPE_CODE (type2) == TYPE_CODE_FUNC) | |
219 | arg2 = value_coerce_function (arg2); | |
220 | ||
221 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
222 | COERCE_VARYING_ARRAY (arg2, type2); | |
223 | code2 = TYPE_CODE (type2); | |
224 | ||
225 | if (code1 == TYPE_CODE_COMPLEX) | |
226 | return cast_into_complex (type, arg2); | |
227 | if (code1 == TYPE_CODE_BOOL) | |
228 | { | |
229 | code1 = TYPE_CODE_INT; | |
230 | convert_to_boolean = 1; | |
231 | } | |
232 | if (code1 == TYPE_CODE_CHAR) | |
233 | code1 = TYPE_CODE_INT; | |
234 | if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR) | |
235 | code2 = TYPE_CODE_INT; | |
236 | ||
237 | scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT | |
238 | || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE); | |
239 | ||
c5aa993b | 240 | if (code1 == TYPE_CODE_STRUCT |
c906108c SS |
241 | && code2 == TYPE_CODE_STRUCT |
242 | && TYPE_NAME (type) != 0) | |
243 | { | |
244 | /* Look in the type of the source to see if it contains the | |
c5aa993b JM |
245 | type of the target as a superclass. If so, we'll need to |
246 | offset the object in addition to changing its type. */ | |
c906108c SS |
247 | value_ptr v = search_struct_field (type_name_no_tag (type), |
248 | arg2, 0, type2, 1); | |
249 | if (v) | |
250 | { | |
251 | VALUE_TYPE (v) = type; | |
252 | return v; | |
253 | } | |
254 | } | |
255 | if (code1 == TYPE_CODE_FLT && scalar) | |
256 | return value_from_double (type, value_as_double (arg2)); | |
257 | else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM | |
258 | || code1 == TYPE_CODE_RANGE) | |
259 | && (scalar || code2 == TYPE_CODE_PTR)) | |
260 | { | |
261 | LONGEST longest; | |
c5aa993b JM |
262 | |
263 | if (hp_som_som_object_present && /* if target compiled by HP aCC */ | |
264 | (code2 == TYPE_CODE_PTR)) | |
265 | { | |
266 | unsigned int *ptr; | |
267 | value_ptr retvalp; | |
268 | ||
269 | switch (TYPE_CODE (TYPE_TARGET_TYPE (type2))) | |
270 | { | |
271 | /* With HP aCC, pointers to data members have a bias */ | |
272 | case TYPE_CODE_MEMBER: | |
273 | retvalp = value_from_longest (type, value_as_long (arg2)); | |
274 | ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */ | |
275 | *ptr &= ~0x20000000; /* zap 29th bit to remove bias */ | |
276 | return retvalp; | |
277 | ||
278 | /* While pointers to methods don't really point to a function */ | |
279 | case TYPE_CODE_METHOD: | |
280 | error ("Pointers to methods not supported with HP aCC"); | |
281 | ||
282 | default: | |
283 | break; /* fall out and go to normal handling */ | |
284 | } | |
285 | } | |
c906108c SS |
286 | longest = value_as_long (arg2); |
287 | return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest); | |
288 | } | |
289 | else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2)) | |
290 | { | |
291 | if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
292 | { | |
293 | struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type)); | |
294 | struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2)); | |
c5aa993b | 295 | if (TYPE_CODE (t1) == TYPE_CODE_STRUCT |
c906108c SS |
296 | && TYPE_CODE (t2) == TYPE_CODE_STRUCT |
297 | && !value_logical_not (arg2)) | |
298 | { | |
299 | value_ptr v; | |
300 | ||
301 | /* Look in the type of the source to see if it contains the | |
c5aa993b JM |
302 | type of the target as a superclass. If so, we'll need to |
303 | offset the pointer rather than just change its type. */ | |
c906108c SS |
304 | if (TYPE_NAME (t1) != NULL) |
305 | { | |
306 | v = search_struct_field (type_name_no_tag (t1), | |
307 | value_ind (arg2), 0, t2, 1); | |
308 | if (v) | |
309 | { | |
310 | v = value_addr (v); | |
311 | VALUE_TYPE (v) = type; | |
312 | return v; | |
313 | } | |
314 | } | |
315 | ||
316 | /* Look in the type of the target to see if it contains the | |
c5aa993b JM |
317 | type of the source as a superclass. If so, we'll need to |
318 | offset the pointer rather than just change its type. | |
319 | FIXME: This fails silently with virtual inheritance. */ | |
c906108c SS |
320 | if (TYPE_NAME (t2) != NULL) |
321 | { | |
322 | v = search_struct_field (type_name_no_tag (t2), | |
c5aa993b | 323 | value_zero (t1, not_lval), 0, t1, 1); |
c906108c SS |
324 | if (v) |
325 | { | |
326 | value_ptr v2 = value_ind (arg2); | |
327 | VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v) | |
c5aa993b | 328 | + VALUE_OFFSET (v); |
c906108c SS |
329 | v2 = value_addr (v2); |
330 | VALUE_TYPE (v2) = type; | |
331 | return v2; | |
332 | } | |
333 | } | |
334 | } | |
335 | /* No superclass found, just fall through to change ptr type. */ | |
336 | } | |
337 | VALUE_TYPE (arg2) = type; | |
c5aa993b JM |
338 | VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */ |
339 | VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */ | |
c906108c SS |
340 | return arg2; |
341 | } | |
342 | else if (chill_varying_type (type)) | |
343 | { | |
344 | struct type *range1, *range2, *eltype1, *eltype2; | |
345 | value_ptr val; | |
346 | int count1, count2; | |
347 | LONGEST low_bound, high_bound; | |
348 | char *valaddr, *valaddr_data; | |
349 | /* For lint warning about eltype2 possibly uninitialized: */ | |
350 | eltype2 = NULL; | |
351 | if (code2 == TYPE_CODE_BITSTRING) | |
352 | error ("not implemented: converting bitstring to varying type"); | |
353 | if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING) | |
354 | || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))), | |
355 | eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)), | |
356 | (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2) | |
c5aa993b | 357 | /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ ))) |
c906108c SS |
358 | error ("Invalid conversion to varying type"); |
359 | range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0); | |
360 | range2 = TYPE_FIELD_TYPE (type2, 0); | |
361 | if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0) | |
362 | count1 = -1; | |
363 | else | |
364 | count1 = high_bound - low_bound + 1; | |
365 | if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0) | |
c5aa993b | 366 | count1 = -1, count2 = 0; /* To force error before */ |
c906108c SS |
367 | else |
368 | count2 = high_bound - low_bound + 1; | |
369 | if (count2 > count1) | |
370 | error ("target varying type is too small"); | |
371 | val = allocate_value (type); | |
372 | valaddr = VALUE_CONTENTS_RAW (val); | |
373 | valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8; | |
374 | /* Set val's __var_length field to count2. */ | |
375 | store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)), | |
376 | count2); | |
377 | /* Set the __var_data field to count2 elements copied from arg2. */ | |
378 | memcpy (valaddr_data, VALUE_CONTENTS (arg2), | |
379 | count2 * TYPE_LENGTH (eltype2)); | |
380 | /* Zero the rest of the __var_data field of val. */ | |
381 | memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0', | |
382 | (count1 - count2) * TYPE_LENGTH (eltype2)); | |
383 | return val; | |
384 | } | |
385 | else if (VALUE_LVAL (arg2) == lval_memory) | |
386 | { | |
387 | return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2), | |
388 | VALUE_BFD_SECTION (arg2)); | |
389 | } | |
390 | else if (code1 == TYPE_CODE_VOID) | |
391 | { | |
392 | return value_zero (builtin_type_void, not_lval); | |
393 | } | |
394 | else | |
395 | { | |
396 | error ("Invalid cast."); | |
397 | return 0; | |
398 | } | |
399 | } | |
400 | ||
401 | /* Create a value of type TYPE that is zero, and return it. */ | |
402 | ||
403 | value_ptr | |
404 | value_zero (type, lv) | |
405 | struct type *type; | |
406 | enum lval_type lv; | |
407 | { | |
408 | register value_ptr val = allocate_value (type); | |
409 | ||
410 | memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type))); | |
411 | VALUE_LVAL (val) = lv; | |
412 | ||
413 | return val; | |
414 | } | |
415 | ||
416 | /* Return a value with type TYPE located at ADDR. | |
417 | ||
418 | Call value_at only if the data needs to be fetched immediately; | |
419 | if we can be 'lazy' and defer the fetch, perhaps indefinately, call | |
420 | value_at_lazy instead. value_at_lazy simply records the address of | |
421 | the data and sets the lazy-evaluation-required flag. The lazy flag | |
422 | is tested in the VALUE_CONTENTS macro, which is used if and when | |
423 | the contents are actually required. | |
424 | ||
425 | Note: value_at does *NOT* handle embedded offsets; perform such | |
426 | adjustments before or after calling it. */ | |
427 | ||
428 | value_ptr | |
429 | value_at (type, addr, sect) | |
430 | struct type *type; | |
431 | CORE_ADDR addr; | |
432 | asection *sect; | |
433 | { | |
434 | register value_ptr val; | |
435 | ||
436 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
437 | error ("Attempt to dereference a generic pointer."); | |
438 | ||
439 | val = allocate_value (type); | |
440 | ||
7a292a7a SS |
441 | if (GDB_TARGET_IS_D10V |
442 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
443 | && TYPE_TARGET_TYPE (type) |
444 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
445 | { | |
446 | /* pointer to function */ | |
447 | unsigned long num; | |
448 | unsigned short snum; | |
449 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a SS |
450 | num = D10V_MAKE_IADDR (snum); |
451 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 452 | } |
7a292a7a | 453 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 454 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
455 | { |
456 | /* pointer to data */ | |
457 | unsigned long num; | |
458 | unsigned short snum; | |
459 | snum = read_memory_unsigned_integer (addr, 2); | |
7a292a7a | 460 | num = D10V_MAKE_DADDR (snum); |
c5aa993b | 461 | store_address (VALUE_CONTENTS_RAW (val), 4, num); |
c906108c SS |
462 | } |
463 | else | |
c906108c SS |
464 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect); |
465 | ||
466 | VALUE_LVAL (val) = lval_memory; | |
467 | VALUE_ADDRESS (val) = addr; | |
468 | VALUE_BFD_SECTION (val) = sect; | |
469 | ||
470 | return val; | |
471 | } | |
472 | ||
473 | /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */ | |
474 | ||
475 | value_ptr | |
476 | value_at_lazy (type, addr, sect) | |
477 | struct type *type; | |
478 | CORE_ADDR addr; | |
479 | asection *sect; | |
480 | { | |
481 | register value_ptr val; | |
482 | ||
483 | if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID) | |
484 | error ("Attempt to dereference a generic pointer."); | |
485 | ||
486 | val = allocate_value (type); | |
487 | ||
488 | VALUE_LVAL (val) = lval_memory; | |
489 | VALUE_ADDRESS (val) = addr; | |
490 | VALUE_LAZY (val) = 1; | |
491 | VALUE_BFD_SECTION (val) = sect; | |
492 | ||
493 | return val; | |
494 | } | |
495 | ||
496 | /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros, | |
497 | if the current data for a variable needs to be loaded into | |
498 | VALUE_CONTENTS(VAL). Fetches the data from the user's process, and | |
499 | clears the lazy flag to indicate that the data in the buffer is valid. | |
500 | ||
501 | If the value is zero-length, we avoid calling read_memory, which would | |
502 | abort. We mark the value as fetched anyway -- all 0 bytes of it. | |
503 | ||
504 | This function returns a value because it is used in the VALUE_CONTENTS | |
505 | macro as part of an expression, where a void would not work. The | |
506 | value is ignored. */ | |
507 | ||
508 | int | |
509 | value_fetch_lazy (val) | |
510 | register value_ptr val; | |
511 | { | |
512 | CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val); | |
513 | int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)); | |
514 | ||
c5aa993b | 515 | struct type *type = VALUE_TYPE (val); |
7a292a7a SS |
516 | if (GDB_TARGET_IS_D10V |
517 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
c906108c SS |
518 | && TYPE_TARGET_TYPE (type) |
519 | && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)) | |
520 | { | |
521 | /* pointer to function */ | |
522 | unsigned long num; | |
523 | unsigned short snum; | |
524 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
525 | num = D10V_MAKE_IADDR (snum); |
526 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 527 | } |
7a292a7a | 528 | else if (GDB_TARGET_IS_D10V |
c5aa993b | 529 | && TYPE_CODE (type) == TYPE_CODE_PTR) |
c906108c SS |
530 | { |
531 | /* pointer to data */ | |
532 | unsigned long num; | |
533 | unsigned short snum; | |
534 | snum = read_memory_unsigned_integer (addr, 2); | |
c5aa993b JM |
535 | num = D10V_MAKE_DADDR (snum); |
536 | store_address (VALUE_CONTENTS_RAW (val), 4, num); | |
c906108c | 537 | } |
7a292a7a | 538 | else if (length) |
c906108c SS |
539 | read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length, |
540 | VALUE_BFD_SECTION (val)); | |
541 | VALUE_LAZY (val) = 0; | |
542 | return 0; | |
543 | } | |
544 | ||
545 | ||
546 | /* Store the contents of FROMVAL into the location of TOVAL. | |
547 | Return a new value with the location of TOVAL and contents of FROMVAL. */ | |
548 | ||
549 | value_ptr | |
550 | value_assign (toval, fromval) | |
551 | register value_ptr toval, fromval; | |
552 | { | |
553 | register struct type *type; | |
554 | register value_ptr val; | |
555 | char raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
556 | int use_buffer = 0; | |
557 | ||
558 | if (!toval->modifiable) | |
559 | error ("Left operand of assignment is not a modifiable lvalue."); | |
560 | ||
561 | COERCE_REF (toval); | |
562 | ||
563 | type = VALUE_TYPE (toval); | |
564 | if (VALUE_LVAL (toval) != lval_internalvar) | |
565 | fromval = value_cast (type, fromval); | |
566 | else | |
567 | COERCE_ARRAY (fromval); | |
568 | CHECK_TYPEDEF (type); | |
569 | ||
570 | /* If TOVAL is a special machine register requiring conversion | |
571 | of program values to a special raw format, | |
572 | convert FROMVAL's contents now, with result in `raw_buffer', | |
573 | and set USE_BUFFER to the number of bytes to write. */ | |
574 | ||
ac9a91a7 | 575 | if (VALUE_REGNO (toval) >= 0) |
c906108c SS |
576 | { |
577 | int regno = VALUE_REGNO (toval); | |
578 | if (REGISTER_CONVERTIBLE (regno)) | |
579 | { | |
580 | struct type *fromtype = check_typedef (VALUE_TYPE (fromval)); | |
581 | REGISTER_CONVERT_TO_RAW (fromtype, regno, | |
582 | VALUE_CONTENTS (fromval), raw_buffer); | |
583 | use_buffer = REGISTER_RAW_SIZE (regno); | |
584 | } | |
585 | } | |
c906108c SS |
586 | |
587 | switch (VALUE_LVAL (toval)) | |
588 | { | |
589 | case lval_internalvar: | |
590 | set_internalvar (VALUE_INTERNALVAR (toval), fromval); | |
591 | val = value_copy (VALUE_INTERNALVAR (toval)->value); | |
592 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
593 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
594 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
595 | return val; | |
596 | ||
597 | case lval_internalvar_component: | |
598 | set_internalvar_component (VALUE_INTERNALVAR (toval), | |
599 | VALUE_OFFSET (toval), | |
600 | VALUE_BITPOS (toval), | |
601 | VALUE_BITSIZE (toval), | |
602 | fromval); | |
603 | break; | |
604 | ||
605 | case lval_memory: | |
606 | { | |
607 | char *dest_buffer; | |
c5aa993b JM |
608 | CORE_ADDR changed_addr; |
609 | int changed_len; | |
c906108c | 610 | |
c5aa993b JM |
611 | if (VALUE_BITSIZE (toval)) |
612 | { | |
c906108c SS |
613 | char buffer[sizeof (LONGEST)]; |
614 | /* We assume that the argument to read_memory is in units of | |
615 | host chars. FIXME: Is that correct? */ | |
616 | changed_len = (VALUE_BITPOS (toval) | |
c5aa993b JM |
617 | + VALUE_BITSIZE (toval) |
618 | + HOST_CHAR_BIT - 1) | |
619 | / HOST_CHAR_BIT; | |
c906108c SS |
620 | |
621 | if (changed_len > (int) sizeof (LONGEST)) | |
622 | error ("Can't handle bitfields which don't fit in a %d bit word.", | |
623 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
624 | ||
625 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
626 | buffer, changed_len); | |
627 | modify_field (buffer, value_as_long (fromval), | |
628 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
629 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
630 | dest_buffer = buffer; | |
631 | } | |
632 | else if (use_buffer) | |
633 | { | |
634 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
635 | changed_len = use_buffer; | |
636 | dest_buffer = raw_buffer; | |
637 | } | |
638 | else | |
639 | { | |
640 | changed_addr = VALUE_ADDRESS (toval) + VALUE_OFFSET (toval); | |
641 | changed_len = TYPE_LENGTH (type); | |
642 | dest_buffer = VALUE_CONTENTS (fromval); | |
643 | } | |
644 | ||
645 | write_memory (changed_addr, dest_buffer, changed_len); | |
646 | if (memory_changed_hook) | |
647 | memory_changed_hook (changed_addr, changed_len); | |
648 | } | |
649 | break; | |
650 | ||
651 | case lval_register: | |
652 | if (VALUE_BITSIZE (toval)) | |
653 | { | |
654 | char buffer[sizeof (LONGEST)]; | |
c5aa993b | 655 | int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval)); |
c906108c SS |
656 | |
657 | if (len > (int) sizeof (LONGEST)) | |
658 | error ("Can't handle bitfields in registers larger than %d bits.", | |
659 | sizeof (LONGEST) * HOST_CHAR_BIT); | |
660 | ||
661 | if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval) | |
662 | > len * HOST_CHAR_BIT) | |
663 | /* Getting this right would involve being very careful about | |
664 | byte order. */ | |
c2d11a7d JM |
665 | error ("Can't assign to bitfields that cross register " |
666 | "boundaries."); | |
c906108c | 667 | |
c5aa993b JM |
668 | read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
669 | buffer, len); | |
670 | modify_field (buffer, value_as_long (fromval), | |
671 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
672 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
673 | buffer, len); | |
c906108c SS |
674 | } |
675 | else if (use_buffer) | |
676 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
677 | raw_buffer, use_buffer); | |
678 | else | |
c5aa993b | 679 | { |
c906108c SS |
680 | /* Do any conversion necessary when storing this type to more |
681 | than one register. */ | |
682 | #ifdef REGISTER_CONVERT_FROM_TYPE | |
683 | memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); | |
c5aa993b | 684 | REGISTER_CONVERT_FROM_TYPE (VALUE_REGNO (toval), type, raw_buffer); |
c906108c SS |
685 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), |
686 | raw_buffer, TYPE_LENGTH (type)); | |
687 | #else | |
688 | write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), | |
c5aa993b | 689 | VALUE_CONTENTS (fromval), TYPE_LENGTH (type)); |
c906108c SS |
690 | #endif |
691 | } | |
692 | /* Assigning to the stack pointer, frame pointer, and other | |
c5aa993b JM |
693 | (architecture and calling convention specific) registers may |
694 | cause the frame cache to be out of date. We just do this | |
695 | on all assignments to registers for simplicity; I doubt the slowdown | |
696 | matters. */ | |
c906108c SS |
697 | reinit_frame_cache (); |
698 | break; | |
699 | ||
700 | case lval_reg_frame_relative: | |
701 | { | |
702 | /* value is stored in a series of registers in the frame | |
703 | specified by the structure. Copy that value out, modify | |
704 | it, and copy it back in. */ | |
705 | int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type)); | |
706 | int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval)); | |
707 | int byte_offset = VALUE_OFFSET (toval) % reg_size; | |
708 | int reg_offset = VALUE_OFFSET (toval) / reg_size; | |
709 | int amount_copied; | |
710 | ||
711 | /* Make the buffer large enough in all cases. */ | |
712 | char *buffer = (char *) alloca (amount_to_copy | |
713 | + sizeof (LONGEST) | |
714 | + MAX_REGISTER_RAW_SIZE); | |
715 | ||
716 | int regno; | |
717 | struct frame_info *frame; | |
718 | ||
719 | /* Figure out which frame this is in currently. */ | |
720 | for (frame = get_current_frame (); | |
721 | frame && FRAME_FP (frame) != VALUE_FRAME (toval); | |
722 | frame = get_prev_frame (frame)) | |
723 | ; | |
724 | ||
725 | if (!frame) | |
726 | error ("Value being assigned to is no longer active."); | |
727 | ||
728 | amount_to_copy += (reg_size - amount_to_copy % reg_size); | |
729 | ||
730 | /* Copy it out. */ | |
731 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
732 | amount_copied = 0); | |
733 | amount_copied < amount_to_copy; | |
734 | amount_copied += reg_size, regno++) | |
735 | { | |
736 | get_saved_register (buffer + amount_copied, | |
c5aa993b JM |
737 | (int *) NULL, (CORE_ADDR *) NULL, |
738 | frame, regno, (enum lval_type *) NULL); | |
c906108c SS |
739 | } |
740 | ||
741 | /* Modify what needs to be modified. */ | |
742 | if (VALUE_BITSIZE (toval)) | |
743 | modify_field (buffer + byte_offset, | |
744 | value_as_long (fromval), | |
745 | VALUE_BITPOS (toval), VALUE_BITSIZE (toval)); | |
746 | else if (use_buffer) | |
747 | memcpy (buffer + byte_offset, raw_buffer, use_buffer); | |
748 | else | |
749 | memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval), | |
750 | TYPE_LENGTH (type)); | |
751 | ||
752 | /* Copy it back. */ | |
753 | for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset, | |
754 | amount_copied = 0); | |
755 | amount_copied < amount_to_copy; | |
756 | amount_copied += reg_size, regno++) | |
757 | { | |
758 | enum lval_type lval; | |
759 | CORE_ADDR addr; | |
760 | int optim; | |
761 | ||
762 | /* Just find out where to put it. */ | |
c5aa993b JM |
763 | get_saved_register ((char *) NULL, |
764 | &optim, &addr, frame, regno, &lval); | |
765 | ||
c906108c SS |
766 | if (optim) |
767 | error ("Attempt to assign to a value that was optimized out."); | |
768 | if (lval == lval_memory) | |
769 | write_memory (addr, buffer + amount_copied, reg_size); | |
770 | else if (lval == lval_register) | |
771 | write_register_bytes (addr, buffer + amount_copied, reg_size); | |
772 | else | |
773 | error ("Attempt to assign to an unmodifiable value."); | |
774 | } | |
775 | ||
776 | if (register_changed_hook) | |
777 | register_changed_hook (-1); | |
778 | } | |
779 | break; | |
c5aa993b | 780 | |
c906108c SS |
781 | |
782 | default: | |
783 | error ("Left operand of assignment is not an lvalue."); | |
784 | } | |
785 | ||
786 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
787 | If the field is signed, and is negative, then sign extend. */ | |
788 | if ((VALUE_BITSIZE (toval) > 0) | |
789 | && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST))) | |
790 | { | |
791 | LONGEST fieldval = value_as_long (fromval); | |
792 | LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1; | |
793 | ||
794 | fieldval &= valmask; | |
795 | if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1)))) | |
796 | fieldval |= ~valmask; | |
797 | ||
798 | fromval = value_from_longest (type, fieldval); | |
799 | } | |
800 | ||
801 | val = value_copy (toval); | |
802 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
803 | TYPE_LENGTH (type)); | |
804 | VALUE_TYPE (val) = type; | |
805 | VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval); | |
806 | VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval); | |
807 | VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval); | |
c5aa993b | 808 | |
c906108c SS |
809 | return val; |
810 | } | |
811 | ||
812 | /* Extend a value VAL to COUNT repetitions of its type. */ | |
813 | ||
814 | value_ptr | |
815 | value_repeat (arg1, count) | |
816 | value_ptr arg1; | |
817 | int count; | |
818 | { | |
819 | register value_ptr val; | |
820 | ||
821 | if (VALUE_LVAL (arg1) != lval_memory) | |
822 | error ("Only values in memory can be extended with '@'."); | |
823 | if (count < 1) | |
824 | error ("Invalid number %d of repetitions.", count); | |
825 | ||
826 | val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count); | |
827 | ||
828 | read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), | |
829 | VALUE_CONTENTS_ALL_RAW (val), | |
830 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val))); | |
831 | VALUE_LVAL (val) = lval_memory; | |
832 | VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1); | |
833 | ||
834 | return val; | |
835 | } | |
836 | ||
837 | value_ptr | |
838 | value_of_variable (var, b) | |
839 | struct symbol *var; | |
840 | struct block *b; | |
841 | { | |
842 | value_ptr val; | |
843 | struct frame_info *frame = NULL; | |
844 | ||
845 | if (!b) | |
846 | frame = NULL; /* Use selected frame. */ | |
847 | else if (symbol_read_needs_frame (var)) | |
848 | { | |
849 | frame = block_innermost_frame (b); | |
850 | if (!frame) | |
c5aa993b | 851 | { |
c906108c SS |
852 | if (BLOCK_FUNCTION (b) |
853 | && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))) | |
854 | error ("No frame is currently executing in block %s.", | |
855 | SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b))); | |
856 | else | |
857 | error ("No frame is currently executing in specified block"); | |
c5aa993b | 858 | } |
c906108c SS |
859 | } |
860 | ||
861 | val = read_var_value (var, frame); | |
862 | if (!val) | |
863 | error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var)); | |
864 | ||
865 | return val; | |
866 | } | |
867 | ||
868 | /* Given a value which is an array, return a value which is a pointer to its | |
869 | first element, regardless of whether or not the array has a nonzero lower | |
870 | bound. | |
871 | ||
872 | FIXME: A previous comment here indicated that this routine should be | |
873 | substracting the array's lower bound. It's not clear to me that this | |
874 | is correct. Given an array subscripting operation, it would certainly | |
875 | work to do the adjustment here, essentially computing: | |
876 | ||
877 | (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0]) | |
878 | ||
879 | However I believe a more appropriate and logical place to account for | |
880 | the lower bound is to do so in value_subscript, essentially computing: | |
881 | ||
882 | (&array[0] + ((index - lowerbound) * sizeof array[0])) | |
883 | ||
884 | As further evidence consider what would happen with operations other | |
885 | than array subscripting, where the caller would get back a value that | |
886 | had an address somewhere before the actual first element of the array, | |
887 | and the information about the lower bound would be lost because of | |
888 | the coercion to pointer type. | |
c5aa993b | 889 | */ |
c906108c SS |
890 | |
891 | value_ptr | |
892 | value_coerce_array (arg1) | |
893 | value_ptr arg1; | |
894 | { | |
895 | register struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
896 | ||
897 | if (VALUE_LVAL (arg1) != lval_memory) | |
898 | error ("Attempt to take address of value not located in memory."); | |
899 | ||
900 | return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)), | |
c5aa993b | 901 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
c906108c SS |
902 | } |
903 | ||
904 | /* Given a value which is a function, return a value which is a pointer | |
905 | to it. */ | |
906 | ||
907 | value_ptr | |
908 | value_coerce_function (arg1) | |
909 | value_ptr arg1; | |
910 | { | |
911 | value_ptr retval; | |
912 | ||
913 | if (VALUE_LVAL (arg1) != lval_memory) | |
914 | error ("Attempt to take address of value not located in memory."); | |
915 | ||
916 | retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), | |
c5aa993b | 917 | (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1))); |
c906108c SS |
918 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1); |
919 | return retval; | |
c5aa993b | 920 | } |
c906108c SS |
921 | |
922 | /* Return a pointer value for the object for which ARG1 is the contents. */ | |
923 | ||
924 | value_ptr | |
925 | value_addr (arg1) | |
926 | value_ptr arg1; | |
927 | { | |
928 | value_ptr arg2; | |
929 | ||
930 | struct type *type = check_typedef (VALUE_TYPE (arg1)); | |
931 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
932 | { | |
933 | /* Copy the value, but change the type from (T&) to (T*). | |
c5aa993b JM |
934 | We keep the same location information, which is efficient, |
935 | and allows &(&X) to get the location containing the reference. */ | |
c906108c SS |
936 | arg2 = value_copy (arg1); |
937 | VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
938 | return arg2; | |
939 | } | |
940 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) | |
941 | return value_coerce_function (arg1); | |
942 | ||
943 | if (VALUE_LVAL (arg1) != lval_memory) | |
944 | error ("Attempt to take address of value not located in memory."); | |
945 | ||
c5aa993b | 946 | /* Get target memory address */ |
c906108c | 947 | arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)), |
c5aa993b JM |
948 | (LONGEST) (VALUE_ADDRESS (arg1) |
949 | + VALUE_OFFSET (arg1) | |
950 | + VALUE_EMBEDDED_OFFSET (arg1))); | |
c906108c SS |
951 | |
952 | /* This may be a pointer to a base subobject; so remember the | |
c5aa993b | 953 | full derived object's type ... */ |
c906108c | 954 | VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1)); |
c5aa993b JM |
955 | /* ... and also the relative position of the subobject in the full object */ |
956 | VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1); | |
c906108c SS |
957 | VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1); |
958 | return arg2; | |
959 | } | |
960 | ||
961 | /* Given a value of a pointer type, apply the C unary * operator to it. */ | |
962 | ||
963 | value_ptr | |
964 | value_ind (arg1) | |
965 | value_ptr arg1; | |
966 | { | |
967 | struct type *base_type; | |
968 | value_ptr arg2; | |
c906108c SS |
969 | |
970 | COERCE_ARRAY (arg1); | |
971 | ||
972 | base_type = check_typedef (VALUE_TYPE (arg1)); | |
973 | ||
974 | if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER) | |
975 | error ("not implemented: member types in value_ind"); | |
976 | ||
977 | /* Allow * on an integer so we can cast it to whatever we want. | |
978 | This returns an int, which seems like the most C-like thing | |
979 | to do. "long long" variables are rare enough that | |
980 | BUILTIN_TYPE_LONGEST would seem to be a mistake. */ | |
981 | if (TYPE_CODE (base_type) == TYPE_CODE_INT) | |
982 | return value_at (builtin_type_int, | |
983 | (CORE_ADDR) value_as_long (arg1), | |
984 | VALUE_BFD_SECTION (arg1)); | |
985 | else if (TYPE_CODE (base_type) == TYPE_CODE_PTR) | |
986 | { | |
987 | struct type *enc_type; | |
988 | /* We may be pointing to something embedded in a larger object */ | |
c5aa993b | 989 | /* Get the real type of the enclosing object */ |
c906108c SS |
990 | enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1)); |
991 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
c5aa993b JM |
992 | /* Retrieve the enclosing object pointed to */ |
993 | arg2 = value_at_lazy (enc_type, | |
994 | value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1), | |
995 | VALUE_BFD_SECTION (arg1)); | |
996 | /* Re-adjust type */ | |
c906108c SS |
997 | VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type); |
998 | /* Add embedding info */ | |
999 | VALUE_ENCLOSING_TYPE (arg2) = enc_type; | |
1000 | VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1); | |
1001 | ||
1002 | /* We may be pointing to an object of some derived type */ | |
1003 | arg2 = value_full_object (arg2, NULL, 0, 0, 0); | |
1004 | return arg2; | |
1005 | } | |
1006 | ||
1007 | error ("Attempt to take contents of a non-pointer value."); | |
c5aa993b | 1008 | return 0; /* For lint -- never reached */ |
c906108c SS |
1009 | } |
1010 | \f | |
1011 | /* Pushing small parts of stack frames. */ | |
1012 | ||
1013 | /* Push one word (the size of object that a register holds). */ | |
1014 | ||
1015 | CORE_ADDR | |
1016 | push_word (sp, word) | |
1017 | CORE_ADDR sp; | |
1018 | ULONGEST word; | |
1019 | { | |
1020 | register int len = REGISTER_SIZE; | |
1021 | char buffer[MAX_REGISTER_RAW_SIZE]; | |
1022 | ||
1023 | store_unsigned_integer (buffer, len, word); | |
1024 | if (INNER_THAN (1, 2)) | |
1025 | { | |
1026 | /* stack grows downward */ | |
1027 | sp -= len; | |
1028 | write_memory (sp, buffer, len); | |
1029 | } | |
1030 | else | |
1031 | { | |
1032 | /* stack grows upward */ | |
1033 | write_memory (sp, buffer, len); | |
1034 | sp += len; | |
1035 | } | |
1036 | ||
1037 | return sp; | |
1038 | } | |
1039 | ||
1040 | /* Push LEN bytes with data at BUFFER. */ | |
1041 | ||
1042 | CORE_ADDR | |
1043 | push_bytes (sp, buffer, len) | |
1044 | CORE_ADDR sp; | |
1045 | char *buffer; | |
1046 | int len; | |
1047 | { | |
1048 | if (INNER_THAN (1, 2)) | |
1049 | { | |
1050 | /* stack grows downward */ | |
1051 | sp -= len; | |
1052 | write_memory (sp, buffer, len); | |
1053 | } | |
1054 | else | |
1055 | { | |
1056 | /* stack grows upward */ | |
1057 | write_memory (sp, buffer, len); | |
1058 | sp += len; | |
1059 | } | |
1060 | ||
1061 | return sp; | |
1062 | } | |
1063 | ||
2df3850c JM |
1064 | #ifndef PARM_BOUNDARY |
1065 | #define PARM_BOUNDARY (0) | |
1066 | #endif | |
1067 | ||
1068 | /* Push onto the stack the specified value VALUE. Pad it correctly for | |
1069 | it to be an argument to a function. */ | |
c906108c | 1070 | |
c906108c SS |
1071 | static CORE_ADDR |
1072 | value_push (sp, arg) | |
1073 | register CORE_ADDR sp; | |
1074 | value_ptr arg; | |
1075 | { | |
1076 | register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)); | |
917317f4 | 1077 | register int container_len = len; |
2df3850c JM |
1078 | register int offset; |
1079 | ||
1080 | /* How big is the container we're going to put this value in? */ | |
1081 | if (PARM_BOUNDARY) | |
1082 | container_len = ((len + PARM_BOUNDARY / TARGET_CHAR_BIT - 1) | |
1083 | & ~(PARM_BOUNDARY / TARGET_CHAR_BIT - 1)); | |
1084 | ||
1085 | /* Are we going to put it at the high or low end of the container? */ | |
1086 | if (TARGET_BYTE_ORDER == BIG_ENDIAN) | |
1087 | offset = container_len - len; | |
1088 | else | |
1089 | offset = 0; | |
c906108c SS |
1090 | |
1091 | if (INNER_THAN (1, 2)) | |
1092 | { | |
1093 | /* stack grows downward */ | |
2df3850c JM |
1094 | sp -= container_len; |
1095 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); | |
c906108c SS |
1096 | } |
1097 | else | |
1098 | { | |
1099 | /* stack grows upward */ | |
2df3850c JM |
1100 | write_memory (sp + offset, VALUE_CONTENTS_ALL (arg), len); |
1101 | sp += container_len; | |
c906108c SS |
1102 | } |
1103 | ||
1104 | return sp; | |
1105 | } | |
1106 | ||
392a587b JM |
1107 | #ifndef PUSH_ARGUMENTS |
1108 | #define PUSH_ARGUMENTS default_push_arguments | |
1109 | #endif | |
1110 | ||
1111 | CORE_ADDR | |
ac9a91a7 | 1112 | default_push_arguments (nargs, args, sp, struct_return, struct_addr) |
392a587b JM |
1113 | int nargs; |
1114 | value_ptr *args; | |
392a587b | 1115 | CORE_ADDR sp; |
ac9a91a7 | 1116 | int struct_return; |
392a587b JM |
1117 | CORE_ADDR struct_addr; |
1118 | { | |
1119 | /* ASSERT ( !struct_return); */ | |
1120 | int i; | |
1121 | for (i = nargs - 1; i >= 0; i--) | |
1122 | sp = value_push (sp, args[i]); | |
1123 | return sp; | |
1124 | } | |
1125 | ||
c906108c | 1126 | |
c906108c SS |
1127 | /* Perform the standard coercions that are specified |
1128 | for arguments to be passed to C functions. | |
1129 | ||
1130 | If PARAM_TYPE is non-NULL, it is the expected parameter type. | |
1131 | IS_PROTOTYPED is non-zero if the function declaration is prototyped. */ | |
1132 | ||
1133 | static value_ptr | |
1134 | value_arg_coerce (arg, param_type, is_prototyped) | |
1135 | value_ptr arg; | |
1136 | struct type *param_type; | |
1137 | int is_prototyped; | |
1138 | { | |
1139 | register struct type *arg_type = check_typedef (VALUE_TYPE (arg)); | |
1140 | register struct type *type | |
c5aa993b | 1141 | = param_type ? check_typedef (param_type) : arg_type; |
c906108c SS |
1142 | |
1143 | switch (TYPE_CODE (type)) | |
1144 | { | |
1145 | case TYPE_CODE_REF: | |
1146 | if (TYPE_CODE (arg_type) != TYPE_CODE_REF) | |
1147 | { | |
1148 | arg = value_addr (arg); | |
1149 | VALUE_TYPE (arg) = param_type; | |
1150 | return arg; | |
1151 | } | |
1152 | break; | |
1153 | case TYPE_CODE_INT: | |
1154 | case TYPE_CODE_CHAR: | |
1155 | case TYPE_CODE_BOOL: | |
1156 | case TYPE_CODE_ENUM: | |
1157 | /* If we don't have a prototype, coerce to integer type if necessary. */ | |
1158 | if (!is_prototyped) | |
1159 | { | |
1160 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1161 | type = builtin_type_int; | |
1162 | } | |
1163 | /* Currently all target ABIs require at least the width of an integer | |
c5aa993b JM |
1164 | type for an argument. We may have to conditionalize the following |
1165 | type coercion for future targets. */ | |
c906108c SS |
1166 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1167 | type = builtin_type_int; | |
1168 | break; | |
1169 | case TYPE_CODE_FLT: | |
1170 | /* FIXME: We should always convert floats to doubles in the | |
c5aa993b JM |
1171 | non-prototyped case. As many debugging formats include |
1172 | no information about prototyping, we have to live with | |
1173 | COERCE_FLOAT_TO_DOUBLE for now. */ | |
c906108c SS |
1174 | if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE) |
1175 | { | |
1176 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double)) | |
1177 | type = builtin_type_double; | |
1178 | else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double)) | |
1179 | type = builtin_type_long_double; | |
1180 | } | |
1181 | break; | |
1182 | case TYPE_CODE_FUNC: | |
1183 | type = lookup_pointer_type (type); | |
1184 | break; | |
1185 | case TYPE_CODE_ARRAY: | |
1186 | if (current_language->c_style_arrays) | |
1187 | type = lookup_pointer_type (TYPE_TARGET_TYPE (type)); | |
1188 | break; | |
1189 | case TYPE_CODE_UNDEF: | |
1190 | case TYPE_CODE_PTR: | |
1191 | case TYPE_CODE_STRUCT: | |
1192 | case TYPE_CODE_UNION: | |
1193 | case TYPE_CODE_VOID: | |
1194 | case TYPE_CODE_SET: | |
1195 | case TYPE_CODE_RANGE: | |
1196 | case TYPE_CODE_STRING: | |
1197 | case TYPE_CODE_BITSTRING: | |
1198 | case TYPE_CODE_ERROR: | |
1199 | case TYPE_CODE_MEMBER: | |
1200 | case TYPE_CODE_METHOD: | |
1201 | case TYPE_CODE_COMPLEX: | |
1202 | default: | |
1203 | break; | |
1204 | } | |
1205 | ||
1206 | return value_cast (type, arg); | |
1207 | } | |
1208 | ||
1209 | /* Determine a function's address and its return type from its value. | |
1210 | Calls error() if the function is not valid for calling. */ | |
1211 | ||
1212 | static CORE_ADDR | |
1213 | find_function_addr (function, retval_type) | |
1214 | value_ptr function; | |
1215 | struct type **retval_type; | |
1216 | { | |
1217 | register struct type *ftype = check_typedef (VALUE_TYPE (function)); | |
1218 | register enum type_code code = TYPE_CODE (ftype); | |
1219 | struct type *value_type; | |
1220 | CORE_ADDR funaddr; | |
1221 | ||
1222 | /* If it's a member function, just look at the function | |
1223 | part of it. */ | |
1224 | ||
1225 | /* Determine address to call. */ | |
1226 | if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD) | |
1227 | { | |
1228 | funaddr = VALUE_ADDRESS (function); | |
1229 | value_type = TYPE_TARGET_TYPE (ftype); | |
1230 | } | |
1231 | else if (code == TYPE_CODE_PTR) | |
1232 | { | |
1233 | funaddr = value_as_pointer (function); | |
1234 | ftype = check_typedef (TYPE_TARGET_TYPE (ftype)); | |
1235 | if (TYPE_CODE (ftype) == TYPE_CODE_FUNC | |
1236 | || TYPE_CODE (ftype) == TYPE_CODE_METHOD) | |
1237 | { | |
1238 | #ifdef CONVERT_FROM_FUNC_PTR_ADDR | |
1239 | /* FIXME: This is a workaround for the unusual function | |
1240 | pointer representation on the RS/6000, see comment | |
1241 | in config/rs6000/tm-rs6000.h */ | |
1242 | funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr); | |
1243 | #endif | |
1244 | value_type = TYPE_TARGET_TYPE (ftype); | |
1245 | } | |
1246 | else | |
1247 | value_type = builtin_type_int; | |
1248 | } | |
1249 | else if (code == TYPE_CODE_INT) | |
1250 | { | |
1251 | /* Handle the case of functions lacking debugging info. | |
c5aa993b | 1252 | Their values are characters since their addresses are char */ |
c906108c SS |
1253 | if (TYPE_LENGTH (ftype) == 1) |
1254 | funaddr = value_as_pointer (value_addr (function)); | |
1255 | else | |
1256 | /* Handle integer used as address of a function. */ | |
1257 | funaddr = (CORE_ADDR) value_as_long (function); | |
1258 | ||
1259 | value_type = builtin_type_int; | |
1260 | } | |
1261 | else | |
1262 | error ("Invalid data type for function to be called."); | |
1263 | ||
1264 | *retval_type = value_type; | |
1265 | return funaddr; | |
1266 | } | |
1267 | ||
1268 | /* All this stuff with a dummy frame may seem unnecessarily complicated | |
1269 | (why not just save registers in GDB?). The purpose of pushing a dummy | |
1270 | frame which looks just like a real frame is so that if you call a | |
1271 | function and then hit a breakpoint (get a signal, etc), "backtrace" | |
1272 | will look right. Whether the backtrace needs to actually show the | |
1273 | stack at the time the inferior function was called is debatable, but | |
1274 | it certainly needs to not display garbage. So if you are contemplating | |
1275 | making dummy frames be different from normal frames, consider that. */ | |
1276 | ||
1277 | /* Perform a function call in the inferior. | |
1278 | ARGS is a vector of values of arguments (NARGS of them). | |
1279 | FUNCTION is a value, the function to be called. | |
1280 | Returns a value representing what the function returned. | |
1281 | May fail to return, if a breakpoint or signal is hit | |
1282 | during the execution of the function. | |
1283 | ||
1284 | ARGS is modified to contain coerced values. */ | |
1285 | ||
c5aa993b | 1286 | static value_ptr hand_function_call PARAMS ((value_ptr function, int nargs, value_ptr * args)); |
7a292a7a SS |
1287 | static value_ptr |
1288 | hand_function_call (function, nargs, args) | |
c906108c SS |
1289 | value_ptr function; |
1290 | int nargs; | |
1291 | value_ptr *args; | |
1292 | { | |
1293 | register CORE_ADDR sp; | |
1294 | register int i; | |
da59e081 | 1295 | int rc; |
c906108c SS |
1296 | CORE_ADDR start_sp; |
1297 | /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word | |
1298 | is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it | |
1299 | and remove any extra bytes which might exist because ULONGEST is | |
1300 | bigger than REGISTER_SIZE. | |
1301 | ||
1302 | NOTE: This is pretty wierd, as the call dummy is actually a | |
c5aa993b JM |
1303 | sequence of instructions. But CISC machines will have |
1304 | to pack the instructions into REGISTER_SIZE units (and | |
1305 | so will RISC machines for which INSTRUCTION_SIZE is not | |
1306 | REGISTER_SIZE). | |
7a292a7a SS |
1307 | |
1308 | NOTE: This is pretty stupid. CALL_DUMMY should be in strict | |
c5aa993b | 1309 | target byte order. */ |
c906108c | 1310 | |
7a292a7a SS |
1311 | static ULONGEST *dummy; |
1312 | int sizeof_dummy1; | |
1313 | char *dummy1; | |
c906108c SS |
1314 | CORE_ADDR old_sp; |
1315 | struct type *value_type; | |
1316 | unsigned char struct_return; | |
1317 | CORE_ADDR struct_addr = 0; | |
7a292a7a | 1318 | struct inferior_status *inf_status; |
c906108c SS |
1319 | struct cleanup *old_chain; |
1320 | CORE_ADDR funaddr; | |
c5aa993b | 1321 | int using_gcc; /* Set to version of gcc in use, or zero if not gcc */ |
c906108c SS |
1322 | CORE_ADDR real_pc; |
1323 | struct type *param_type = NULL; | |
1324 | struct type *ftype = check_typedef (SYMBOL_TYPE (function)); | |
1325 | ||
7a292a7a SS |
1326 | dummy = alloca (SIZEOF_CALL_DUMMY_WORDS); |
1327 | sizeof_dummy1 = REGISTER_SIZE * SIZEOF_CALL_DUMMY_WORDS / sizeof (ULONGEST); | |
1328 | dummy1 = alloca (sizeof_dummy1); | |
1329 | memcpy (dummy, CALL_DUMMY_WORDS, SIZEOF_CALL_DUMMY_WORDS); | |
1330 | ||
c906108c | 1331 | if (!target_has_execution) |
c5aa993b | 1332 | noprocess (); |
c906108c | 1333 | |
7a292a7a | 1334 | inf_status = save_inferior_status (1); |
c5aa993b JM |
1335 | old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status, |
1336 | inf_status); | |
c906108c SS |
1337 | |
1338 | /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers | |
1339 | (and POP_FRAME for restoring them). (At least on most machines) | |
1340 | they are saved on the stack in the inferior. */ | |
1341 | PUSH_DUMMY_FRAME; | |
1342 | ||
1343 | old_sp = sp = read_sp (); | |
1344 | ||
1345 | if (INNER_THAN (1, 2)) | |
1346 | { | |
1347 | /* Stack grows down */ | |
7a292a7a | 1348 | sp -= sizeof_dummy1; |
c906108c SS |
1349 | start_sp = sp; |
1350 | } | |
1351 | else | |
1352 | { | |
1353 | /* Stack grows up */ | |
1354 | start_sp = sp; | |
7a292a7a | 1355 | sp += sizeof_dummy1; |
c906108c SS |
1356 | } |
1357 | ||
1358 | funaddr = find_function_addr (function, &value_type); | |
1359 | CHECK_TYPEDEF (value_type); | |
1360 | ||
1361 | { | |
1362 | struct block *b = block_for_pc (funaddr); | |
1363 | /* If compiled without -g, assume GCC 2. */ | |
1364 | using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b)); | |
1365 | } | |
1366 | ||
1367 | /* Are we returning a value using a structure return or a normal | |
1368 | value return? */ | |
1369 | ||
1370 | struct_return = using_struct_return (function, funaddr, value_type, | |
1371 | using_gcc); | |
1372 | ||
1373 | /* Create a call sequence customized for this function | |
1374 | and the number of arguments for it. */ | |
7a292a7a | 1375 | for (i = 0; i < (int) (SIZEOF_CALL_DUMMY_WORDS / sizeof (dummy[0])); i++) |
c906108c SS |
1376 | store_unsigned_integer (&dummy1[i * REGISTER_SIZE], |
1377 | REGISTER_SIZE, | |
c5aa993b | 1378 | (ULONGEST) dummy[i]); |
c906108c SS |
1379 | |
1380 | #ifdef GDB_TARGET_IS_HPPA | |
1381 | real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1382 | value_type, using_gcc); | |
1383 | #else | |
1384 | FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args, | |
1385 | value_type, using_gcc); | |
1386 | real_pc = start_sp; | |
1387 | #endif | |
1388 | ||
7a292a7a SS |
1389 | if (CALL_DUMMY_LOCATION == ON_STACK) |
1390 | { | |
c5aa993b | 1391 | write_memory (start_sp, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1392 | } |
c906108c | 1393 | |
7a292a7a SS |
1394 | if (CALL_DUMMY_LOCATION == BEFORE_TEXT_END) |
1395 | { | |
1396 | /* Convex Unix prohibits executing in the stack segment. */ | |
1397 | /* Hope there is empty room at the top of the text segment. */ | |
1398 | extern CORE_ADDR text_end; | |
392a587b | 1399 | static int checked = 0; |
7a292a7a SS |
1400 | if (!checked) |
1401 | for (start_sp = text_end - sizeof_dummy1; start_sp < text_end; ++start_sp) | |
1402 | if (read_memory_integer (start_sp, 1) != 0) | |
1403 | error ("text segment full -- no place to put call"); | |
1404 | checked = 1; | |
1405 | sp = old_sp; | |
1406 | real_pc = text_end - sizeof_dummy1; | |
c5aa993b | 1407 | write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a | 1408 | } |
c5aa993b | 1409 | |
7a292a7a SS |
1410 | if (CALL_DUMMY_LOCATION == AFTER_TEXT_END) |
1411 | { | |
1412 | extern CORE_ADDR text_end; | |
1413 | int errcode; | |
1414 | sp = old_sp; | |
1415 | real_pc = text_end; | |
c5aa993b | 1416 | errcode = target_write_memory (real_pc, (char *) dummy1, sizeof_dummy1); |
7a292a7a SS |
1417 | if (errcode != 0) |
1418 | error ("Cannot write text segment -- call_function failed"); | |
1419 | } | |
c906108c | 1420 | |
7a292a7a SS |
1421 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) |
1422 | { | |
1423 | real_pc = funaddr; | |
1424 | } | |
c906108c SS |
1425 | |
1426 | #ifdef lint | |
c5aa993b | 1427 | sp = old_sp; /* It really is used, for some ifdef's... */ |
c906108c SS |
1428 | #endif |
1429 | ||
1430 | if (nargs < TYPE_NFIELDS (ftype)) | |
1431 | error ("too few arguments in function call"); | |
1432 | ||
1433 | for (i = nargs - 1; i >= 0; i--) | |
1434 | { | |
1435 | /* If we're off the end of the known arguments, do the standard | |
c5aa993b JM |
1436 | promotions. FIXME: if we had a prototype, this should only |
1437 | be allowed if ... were present. */ | |
c906108c SS |
1438 | if (i >= TYPE_NFIELDS (ftype)) |
1439 | args[i] = value_arg_coerce (args[i], NULL, 0); | |
1440 | ||
c5aa993b | 1441 | else |
c906108c SS |
1442 | { |
1443 | int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED; | |
1444 | param_type = TYPE_FIELD_TYPE (ftype, i); | |
1445 | ||
1446 | args[i] = value_arg_coerce (args[i], param_type, is_prototyped); | |
1447 | } | |
1448 | ||
1449 | /*elz: this code is to handle the case in which the function to be called | |
c5aa993b JM |
1450 | has a pointer to function as parameter and the corresponding actual argument |
1451 | is the address of a function and not a pointer to function variable. | |
1452 | In aCC compiled code, the calls through pointers to functions (in the body | |
1453 | of the function called by hand) are made via $$dyncall_external which | |
1454 | requires some registers setting, this is taken care of if we call | |
1455 | via a function pointer variable, but not via a function address. | |
1456 | In cc this is not a problem. */ | |
c906108c SS |
1457 | |
1458 | if (using_gcc == 0) | |
1459 | if (param_type) | |
c5aa993b | 1460 | /* if this parameter is a pointer to function */ |
c906108c SS |
1461 | if (TYPE_CODE (param_type) == TYPE_CODE_PTR) |
1462 | if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC) | |
1463 | /* elz: FIXME here should go the test about the compiler used | |
c5aa993b JM |
1464 | to compile the target. We want to issue the error |
1465 | message only if the compiler used was HP's aCC. | |
1466 | If we used HP's cc, then there is no problem and no need | |
1467 | to return at this point */ | |
1468 | if (using_gcc == 0) /* && compiler == aCC */ | |
c906108c | 1469 | /* go see if the actual parameter is a variable of type |
c5aa993b | 1470 | pointer to function or just a function */ |
c906108c SS |
1471 | if (args[i]->lval == not_lval) |
1472 | { | |
1473 | char *arg_name; | |
c5aa993b JM |
1474 | if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL)) |
1475 | error ("\ | |
c906108c SS |
1476 | You cannot use function <%s> as argument. \n\ |
1477 | You must use a pointer to function type variable. Command ignored.", arg_name); | |
c5aa993b | 1478 | } |
c906108c SS |
1479 | } |
1480 | ||
1481 | #if defined (REG_STRUCT_HAS_ADDR) | |
1482 | { | |
1483 | /* This is a machine like the sparc, where we may need to pass a pointer | |
1484 | to the structure, not the structure itself. */ | |
1485 | for (i = nargs - 1; i >= 0; i--) | |
1486 | { | |
1487 | struct type *arg_type = check_typedef (VALUE_TYPE (args[i])); | |
1488 | if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT | |
1489 | || TYPE_CODE (arg_type) == TYPE_CODE_UNION | |
1490 | || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY | |
1491 | || TYPE_CODE (arg_type) == TYPE_CODE_STRING | |
1492 | || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING | |
1493 | || TYPE_CODE (arg_type) == TYPE_CODE_SET | |
1494 | || (TYPE_CODE (arg_type) == TYPE_CODE_FLT | |
1495 | && TYPE_LENGTH (arg_type) > 8) | |
c5aa993b JM |
1496 | ) |
1497 | && REG_STRUCT_HAS_ADDR (using_gcc, arg_type)) | |
c906108c SS |
1498 | { |
1499 | CORE_ADDR addr; | |
c5aa993b JM |
1500 | int len; /* = TYPE_LENGTH (arg_type); */ |
1501 | int aligned_len; | |
1502 | arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i])); | |
1503 | len = TYPE_LENGTH (arg_type); | |
c906108c SS |
1504 | |
1505 | #ifdef STACK_ALIGN | |
c5aa993b JM |
1506 | /* MVS 11/22/96: I think at least some of this stack_align code is |
1507 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1508 | a target-defined manner. */ | |
c906108c SS |
1509 | aligned_len = STACK_ALIGN (len); |
1510 | #else | |
1511 | aligned_len = len; | |
1512 | #endif | |
1513 | if (INNER_THAN (1, 2)) | |
1514 | { | |
1515 | /* stack grows downward */ | |
1516 | sp -= aligned_len; | |
1517 | } | |
1518 | else | |
1519 | { | |
1520 | /* The stack grows up, so the address of the thing we push | |
1521 | is the stack pointer before we push it. */ | |
1522 | addr = sp; | |
1523 | } | |
1524 | /* Push the structure. */ | |
1525 | write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len); | |
1526 | if (INNER_THAN (1, 2)) | |
1527 | { | |
1528 | /* The stack grows down, so the address of the thing we push | |
1529 | is the stack pointer after we push it. */ | |
1530 | addr = sp; | |
1531 | } | |
1532 | else | |
1533 | { | |
1534 | /* stack grows upward */ | |
1535 | sp += aligned_len; | |
1536 | } | |
1537 | /* The value we're going to pass is the address of the thing | |
1538 | we just pushed. */ | |
1539 | /*args[i] = value_from_longest (lookup_pointer_type (value_type), | |
c5aa993b JM |
1540 | (LONGEST) addr); */ |
1541 | args[i] = value_from_longest (lookup_pointer_type (arg_type), | |
c906108c SS |
1542 | (LONGEST) addr); |
1543 | } | |
1544 | } | |
1545 | } | |
1546 | #endif /* REG_STRUCT_HAS_ADDR. */ | |
1547 | ||
1548 | /* Reserve space for the return structure to be written on the | |
1549 | stack, if necessary */ | |
1550 | ||
1551 | if (struct_return) | |
1552 | { | |
1553 | int len = TYPE_LENGTH (value_type); | |
1554 | #ifdef STACK_ALIGN | |
c5aa993b JM |
1555 | /* MVS 11/22/96: I think at least some of this stack_align code is |
1556 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1557 | a target-defined manner. */ | |
c906108c SS |
1558 | len = STACK_ALIGN (len); |
1559 | #endif | |
1560 | if (INNER_THAN (1, 2)) | |
1561 | { | |
1562 | /* stack grows downward */ | |
1563 | sp -= len; | |
1564 | struct_addr = sp; | |
1565 | } | |
1566 | else | |
1567 | { | |
1568 | /* stack grows upward */ | |
1569 | struct_addr = sp; | |
1570 | sp += len; | |
1571 | } | |
1572 | } | |
1573 | ||
1574 | /* elz: on HPPA no need for this extra alignment, maybe it is needed | |
1575 | on other architectures. This is because all the alignment is taken care | |
1576 | of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in | |
c5aa993b | 1577 | hppa_push_arguments */ |
c906108c SS |
1578 | #ifndef NO_EXTRA_ALIGNMENT_NEEDED |
1579 | ||
1580 | #if defined(STACK_ALIGN) | |
1581 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1582 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1583 | a target-defined manner. */ | |
1584 | if (INNER_THAN (1, 2)) | |
1585 | { | |
1586 | /* If stack grows down, we must leave a hole at the top. */ | |
1587 | int len = 0; | |
1588 | ||
1589 | for (i = nargs - 1; i >= 0; i--) | |
1590 | len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i])); | |
7a292a7a SS |
1591 | if (CALL_DUMMY_STACK_ADJUST_P) |
1592 | len += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1593 | sp -= STACK_ALIGN (len) - len; |
1594 | } | |
1595 | #endif /* STACK_ALIGN */ | |
1596 | #endif /* NO_EXTRA_ALIGNMENT_NEEDED */ | |
1597 | ||
392a587b | 1598 | sp = PUSH_ARGUMENTS (nargs, args, sp, struct_return, struct_addr); |
c906108c SS |
1599 | |
1600 | #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */ | |
1601 | /* There are a number of targets now which actually don't write any | |
1602 | CALL_DUMMY instructions into the target, but instead just save the | |
1603 | machine state, push the arguments, and jump directly to the callee | |
1604 | function. Since this doesn't actually involve executing a JSR/BSR | |
1605 | instruction, the return address must be set up by hand, either by | |
1606 | pushing onto the stack or copying into a return-address register | |
1607 | as appropriate. Formerly this has been done in PUSH_ARGUMENTS, | |
1608 | but that's overloading its functionality a bit, so I'm making it | |
1609 | explicit to do it here. */ | |
c5aa993b JM |
1610 | sp = PUSH_RETURN_ADDRESS (real_pc, sp); |
1611 | #endif /* PUSH_RETURN_ADDRESS */ | |
c906108c SS |
1612 | |
1613 | #if defined(STACK_ALIGN) | |
c5aa993b | 1614 | if (!INNER_THAN (1, 2)) |
c906108c SS |
1615 | { |
1616 | /* If stack grows up, we must leave a hole at the bottom, note | |
c5aa993b | 1617 | that sp already has been advanced for the arguments! */ |
7a292a7a SS |
1618 | if (CALL_DUMMY_STACK_ADJUST_P) |
1619 | sp += CALL_DUMMY_STACK_ADJUST; | |
c906108c SS |
1620 | sp = STACK_ALIGN (sp); |
1621 | } | |
1622 | #endif /* STACK_ALIGN */ | |
1623 | ||
1624 | /* XXX This seems wrong. For stacks that grow down we shouldn't do | |
1625 | anything here! */ | |
1626 | /* MVS 11/22/96: I think at least some of this stack_align code is | |
1627 | really broken. Better to let PUSH_ARGUMENTS adjust the stack in | |
1628 | a target-defined manner. */ | |
7a292a7a SS |
1629 | if (CALL_DUMMY_STACK_ADJUST_P) |
1630 | if (INNER_THAN (1, 2)) | |
1631 | { | |
1632 | /* stack grows downward */ | |
1633 | sp -= CALL_DUMMY_STACK_ADJUST; | |
1634 | } | |
c906108c SS |
1635 | |
1636 | /* Store the address at which the structure is supposed to be | |
1637 | written. Note that this (and the code which reserved the space | |
1638 | above) assumes that gcc was used to compile this function. Since | |
1639 | it doesn't cost us anything but space and if the function is pcc | |
1640 | it will ignore this value, we will make that assumption. | |
1641 | ||
1642 | Also note that on some machines (like the sparc) pcc uses a | |
1643 | convention like gcc's. */ | |
1644 | ||
1645 | if (struct_return) | |
1646 | STORE_STRUCT_RETURN (struct_addr, sp); | |
1647 | ||
1648 | /* Write the stack pointer. This is here because the statements above | |
1649 | might fool with it. On SPARC, this write also stores the register | |
1650 | window into the right place in the new stack frame, which otherwise | |
1651 | wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */ | |
1652 | write_sp (sp); | |
1653 | ||
43ff13b4 JM |
1654 | #ifdef SAVE_DUMMY_FRAME_TOS |
1655 | SAVE_DUMMY_FRAME_TOS (sp); | |
1656 | #endif | |
1657 | ||
c906108c SS |
1658 | { |
1659 | char retbuf[REGISTER_BYTES]; | |
1660 | char *name; | |
1661 | struct symbol *symbol; | |
1662 | ||
1663 | name = NULL; | |
1664 | symbol = find_pc_function (funaddr); | |
1665 | if (symbol) | |
1666 | { | |
1667 | name = SYMBOL_SOURCE_NAME (symbol); | |
1668 | } | |
1669 | else | |
1670 | { | |
1671 | /* Try the minimal symbols. */ | |
1672 | struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr); | |
1673 | ||
1674 | if (msymbol) | |
1675 | { | |
1676 | name = SYMBOL_SOURCE_NAME (msymbol); | |
1677 | } | |
1678 | } | |
1679 | if (name == NULL) | |
1680 | { | |
1681 | char format[80]; | |
1682 | sprintf (format, "at %s", local_hex_format ()); | |
1683 | name = alloca (80); | |
1684 | /* FIXME-32x64: assumes funaddr fits in a long. */ | |
1685 | sprintf (name, format, (unsigned long) funaddr); | |
1686 | } | |
1687 | ||
1688 | /* Execute the stack dummy routine, calling FUNCTION. | |
1689 | When it is done, discard the empty frame | |
1690 | after storing the contents of all regs into retbuf. */ | |
da59e081 JM |
1691 | rc = run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf); |
1692 | ||
1693 | if (rc == 1) | |
1694 | { | |
1695 | /* We stopped inside the FUNCTION because of a random signal. | |
1696 | Further execution of the FUNCTION is not allowed. */ | |
1697 | ||
1698 | /* In this case, we must do the cleanups because we don't | |
1699 | want the dummy anymore (the dummy frame has been poped already. */ | |
1700 | do_cleanups (old_chain); | |
1701 | ||
1702 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1703 | a C++ name with arguments and stuff. */ | |
1704 | error ("\ | |
1705 | The program being debugged stopped while in a function called from GDB.\n\ | |
1706 | Evaluation of the expression containing the function (%s) will be abandoned.", | |
1707 | name); | |
1708 | } | |
1709 | ||
1710 | if (rc == 2) | |
c906108c | 1711 | { |
da59e081 | 1712 | /* We hit a breakpoint inside the FUNCTION. */ |
c906108c | 1713 | |
7a292a7a SS |
1714 | /* If we did the cleanups, we would print a spurious error |
1715 | message (Unable to restore previously selected frame), | |
1716 | would write the registers from the inf_status (which is | |
1717 | wrong), and would do other wrong things. */ | |
c906108c | 1718 | discard_cleanups (old_chain); |
7a292a7a | 1719 | discard_inferior_status (inf_status); |
c906108c SS |
1720 | |
1721 | /* The following error message used to say "The expression | |
1722 | which contained the function call has been discarded." It | |
1723 | is a hard concept to explain in a few words. Ideally, GDB | |
1724 | would be able to resume evaluation of the expression when | |
1725 | the function finally is done executing. Perhaps someday | |
1726 | this will be implemented (it would not be easy). */ | |
1727 | ||
1728 | /* FIXME: Insert a bunch of wrap_here; name can be very long if it's | |
1729 | a C++ name with arguments and stuff. */ | |
1730 | error ("\ | |
1731 | The program being debugged stopped while in a function called from GDB.\n\ | |
1732 | When the function (%s) is done executing, GDB will silently\n\ | |
1733 | stop (instead of continuing to evaluate the expression containing\n\ | |
1734 | the function call).", name); | |
1735 | } | |
1736 | ||
da59e081 | 1737 | /* If we get here the called FUNCTION run to completion. */ |
c906108c SS |
1738 | do_cleanups (old_chain); |
1739 | ||
1740 | /* Figure out the value returned by the function. */ | |
1741 | /* elz: I defined this new macro for the hppa architecture only. | |
1742 | this gives us a way to get the value returned by the function from the stack, | |
1743 | at the same address we told the function to put it. | |
1744 | We cannot assume on the pa that r28 still contains the address of the returned | |
1745 | structure. Usually this will be overwritten by the callee. | |
1746 | I don't know about other architectures, so I defined this macro | |
c5aa993b | 1747 | */ |
c906108c SS |
1748 | |
1749 | #ifdef VALUE_RETURNED_FROM_STACK | |
1750 | if (struct_return) | |
1751 | return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr); | |
1752 | #endif | |
1753 | ||
1754 | return value_being_returned (value_type, retbuf, struct_return); | |
1755 | } | |
1756 | } | |
7a292a7a | 1757 | |
c906108c SS |
1758 | value_ptr |
1759 | call_function_by_hand (function, nargs, args) | |
1760 | value_ptr function; | |
1761 | int nargs; | |
1762 | value_ptr *args; | |
1763 | { | |
7a292a7a SS |
1764 | if (CALL_DUMMY_P) |
1765 | { | |
1766 | return hand_function_call (function, nargs, args); | |
1767 | } | |
1768 | else | |
1769 | { | |
1770 | error ("Cannot invoke functions on this machine."); | |
1771 | } | |
c906108c | 1772 | } |
c5aa993b | 1773 | \f |
7a292a7a | 1774 | |
c906108c | 1775 | |
c906108c SS |
1776 | /* Create a value for an array by allocating space in the inferior, copying |
1777 | the data into that space, and then setting up an array value. | |
1778 | ||
1779 | The array bounds are set from LOWBOUND and HIGHBOUND, and the array is | |
1780 | populated from the values passed in ELEMVEC. | |
1781 | ||
1782 | The element type of the array is inherited from the type of the | |
1783 | first element, and all elements must have the same size (though we | |
1784 | don't currently enforce any restriction on their types). */ | |
1785 | ||
1786 | value_ptr | |
1787 | value_array (lowbound, highbound, elemvec) | |
1788 | int lowbound; | |
1789 | int highbound; | |
1790 | value_ptr *elemvec; | |
1791 | { | |
1792 | int nelem; | |
1793 | int idx; | |
1794 | unsigned int typelength; | |
1795 | value_ptr val; | |
1796 | struct type *rangetype; | |
1797 | struct type *arraytype; | |
1798 | CORE_ADDR addr; | |
1799 | ||
1800 | /* Validate that the bounds are reasonable and that each of the elements | |
1801 | have the same size. */ | |
1802 | ||
1803 | nelem = highbound - lowbound + 1; | |
1804 | if (nelem <= 0) | |
1805 | { | |
1806 | error ("bad array bounds (%d, %d)", lowbound, highbound); | |
1807 | } | |
1808 | typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0])); | |
1809 | for (idx = 1; idx < nelem; idx++) | |
1810 | { | |
1811 | if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength) | |
1812 | { | |
1813 | error ("array elements must all be the same size"); | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | rangetype = create_range_type ((struct type *) NULL, builtin_type_int, | |
1818 | lowbound, highbound); | |
c5aa993b JM |
1819 | arraytype = create_array_type ((struct type *) NULL, |
1820 | VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype); | |
c906108c SS |
1821 | |
1822 | if (!current_language->c_style_arrays) | |
1823 | { | |
1824 | val = allocate_value (arraytype); | |
1825 | for (idx = 0; idx < nelem; idx++) | |
1826 | { | |
1827 | memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength), | |
1828 | VALUE_CONTENTS_ALL (elemvec[idx]), | |
1829 | typelength); | |
1830 | } | |
1831 | VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]); | |
1832 | return val; | |
1833 | } | |
1834 | ||
1835 | /* Allocate space to store the array in the inferior, and then initialize | |
1836 | it by copying in each element. FIXME: Is it worth it to create a | |
1837 | local buffer in which to collect each value and then write all the | |
1838 | bytes in one operation? */ | |
1839 | ||
1840 | addr = allocate_space_in_inferior (nelem * typelength); | |
1841 | for (idx = 0; idx < nelem; idx++) | |
1842 | { | |
1843 | write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]), | |
1844 | typelength); | |
1845 | } | |
1846 | ||
1847 | /* Create the array type and set up an array value to be evaluated lazily. */ | |
1848 | ||
1849 | val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0])); | |
1850 | return (val); | |
1851 | } | |
1852 | ||
1853 | /* Create a value for a string constant by allocating space in the inferior, | |
1854 | copying the data into that space, and returning the address with type | |
1855 | TYPE_CODE_STRING. PTR points to the string constant data; LEN is number | |
1856 | of characters. | |
1857 | Note that string types are like array of char types with a lower bound of | |
1858 | zero and an upper bound of LEN - 1. Also note that the string may contain | |
1859 | embedded null bytes. */ | |
1860 | ||
1861 | value_ptr | |
1862 | value_string (ptr, len) | |
1863 | char *ptr; | |
1864 | int len; | |
1865 | { | |
1866 | value_ptr val; | |
1867 | int lowbound = current_language->string_lower_bound; | |
1868 | struct type *rangetype = create_range_type ((struct type *) NULL, | |
1869 | builtin_type_int, | |
1870 | lowbound, len + lowbound - 1); | |
1871 | struct type *stringtype | |
c5aa993b | 1872 | = create_string_type ((struct type *) NULL, rangetype); |
c906108c SS |
1873 | CORE_ADDR addr; |
1874 | ||
1875 | if (current_language->c_style_arrays == 0) | |
1876 | { | |
1877 | val = allocate_value (stringtype); | |
1878 | memcpy (VALUE_CONTENTS_RAW (val), ptr, len); | |
1879 | return val; | |
1880 | } | |
1881 | ||
1882 | ||
1883 | /* Allocate space to store the string in the inferior, and then | |
1884 | copy LEN bytes from PTR in gdb to that address in the inferior. */ | |
1885 | ||
1886 | addr = allocate_space_in_inferior (len); | |
1887 | write_memory (addr, ptr, len); | |
1888 | ||
1889 | val = value_at_lazy (stringtype, addr, NULL); | |
1890 | return (val); | |
1891 | } | |
1892 | ||
1893 | value_ptr | |
1894 | value_bitstring (ptr, len) | |
1895 | char *ptr; | |
1896 | int len; | |
1897 | { | |
1898 | value_ptr val; | |
1899 | struct type *domain_type = create_range_type (NULL, builtin_type_int, | |
1900 | 0, len - 1); | |
c5aa993b | 1901 | struct type *type = create_set_type ((struct type *) NULL, domain_type); |
c906108c SS |
1902 | TYPE_CODE (type) = TYPE_CODE_BITSTRING; |
1903 | val = allocate_value (type); | |
1904 | memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type)); | |
1905 | return val; | |
1906 | } | |
1907 | \f | |
1908 | /* See if we can pass arguments in T2 to a function which takes arguments | |
1909 | of types T1. Both t1 and t2 are NULL-terminated vectors. If some | |
1910 | arguments need coercion of some sort, then the coerced values are written | |
1911 | into T2. Return value is 0 if the arguments could be matched, or the | |
1912 | position at which they differ if not. | |
1913 | ||
1914 | STATICP is nonzero if the T1 argument list came from a | |
1915 | static member function. | |
1916 | ||
1917 | For non-static member functions, we ignore the first argument, | |
1918 | which is the type of the instance variable. This is because we want | |
1919 | to handle calls with objects from derived classes. This is not | |
1920 | entirely correct: we should actually check to make sure that a | |
1921 | requested operation is type secure, shouldn't we? FIXME. */ | |
1922 | ||
1923 | static int | |
1924 | typecmp (staticp, t1, t2) | |
1925 | int staticp; | |
1926 | struct type *t1[]; | |
1927 | value_ptr t2[]; | |
1928 | { | |
1929 | int i; | |
1930 | ||
1931 | if (t2 == 0) | |
1932 | return 1; | |
1933 | if (staticp && t1 == 0) | |
1934 | return t2[1] != 0; | |
1935 | if (t1 == 0) | |
1936 | return 1; | |
c5aa993b JM |
1937 | if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) |
1938 | return 0; | |
1939 | if (t1[!staticp] == 0) | |
1940 | return 0; | |
c906108c SS |
1941 | for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++) |
1942 | { | |
c5aa993b JM |
1943 | struct type *tt1, *tt2; |
1944 | if (!t2[i]) | |
1945 | return i + 1; | |
c906108c | 1946 | tt1 = check_typedef (t1[i]); |
c5aa993b | 1947 | tt2 = check_typedef (VALUE_TYPE (t2[i])); |
c906108c | 1948 | if (TYPE_CODE (tt1) == TYPE_CODE_REF |
c5aa993b | 1949 | /* We should be doing hairy argument matching, as below. */ |
c906108c SS |
1950 | && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2))) |
1951 | { | |
1952 | if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY) | |
1953 | t2[i] = value_coerce_array (t2[i]); | |
1954 | else | |
1955 | t2[i] = value_addr (t2[i]); | |
1956 | continue; | |
1957 | } | |
1958 | ||
1959 | while (TYPE_CODE (tt1) == TYPE_CODE_PTR | |
c5aa993b JM |
1960 | && (TYPE_CODE (tt2) == TYPE_CODE_ARRAY |
1961 | || TYPE_CODE (tt2) == TYPE_CODE_PTR)) | |
c906108c | 1962 | { |
c5aa993b JM |
1963 | tt1 = check_typedef (TYPE_TARGET_TYPE (tt1)); |
1964 | tt2 = check_typedef (TYPE_TARGET_TYPE (tt2)); | |
c906108c | 1965 | } |
c5aa993b JM |
1966 | if (TYPE_CODE (tt1) == TYPE_CODE (tt2)) |
1967 | continue; | |
c906108c SS |
1968 | /* Array to pointer is a `trivial conversion' according to the ARM. */ |
1969 | ||
1970 | /* We should be doing much hairier argument matching (see section 13.2 | |
c5aa993b JM |
1971 | of the ARM), but as a quick kludge, just check for the same type |
1972 | code. */ | |
c906108c | 1973 | if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i]))) |
c5aa993b | 1974 | return i + 1; |
c906108c | 1975 | } |
c5aa993b JM |
1976 | if (!t1[i]) |
1977 | return 0; | |
1978 | return t2[i] ? i + 1 : 0; | |
c906108c SS |
1979 | } |
1980 | ||
1981 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
1982 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
1983 | and search in it assuming it has (class) type TYPE. | |
1984 | If found, return value, else return NULL. | |
1985 | ||
1986 | If LOOKING_FOR_BASECLASS, then instead of looking for struct fields, | |
1987 | look for a baseclass named NAME. */ | |
1988 | ||
1989 | static value_ptr | |
1990 | search_struct_field (name, arg1, offset, type, looking_for_baseclass) | |
1991 | char *name; | |
1992 | register value_ptr arg1; | |
1993 | int offset; | |
1994 | register struct type *type; | |
1995 | int looking_for_baseclass; | |
1996 | { | |
1997 | int i; | |
1998 | int nbases = TYPE_N_BASECLASSES (type); | |
1999 | ||
2000 | CHECK_TYPEDEF (type); | |
2001 | ||
c5aa993b | 2002 | if (!looking_for_baseclass) |
c906108c SS |
2003 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) |
2004 | { | |
2005 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2006 | ||
2007 | if (t_field_name && STREQ (t_field_name, name)) | |
2008 | { | |
2009 | value_ptr v; | |
2010 | if (TYPE_FIELD_STATIC (type, i)) | |
2011 | v = value_static_field (type, i); | |
2012 | else | |
2013 | v = value_primitive_field (arg1, offset, i, type); | |
2014 | if (v == 0) | |
c5aa993b | 2015 | error ("there is no field named %s", name); |
c906108c SS |
2016 | return v; |
2017 | } | |
2018 | ||
2019 | if (t_field_name | |
2020 | && (t_field_name[0] == '\0' | |
2021 | || (TYPE_CODE (type) == TYPE_CODE_UNION | |
2022 | && STREQ (t_field_name, "else")))) | |
2023 | { | |
2024 | struct type *field_type = TYPE_FIELD_TYPE (type, i); | |
2025 | if (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
2026 | || TYPE_CODE (field_type) == TYPE_CODE_STRUCT) | |
2027 | { | |
2028 | /* Look for a match through the fields of an anonymous union, | |
2029 | or anonymous struct. C++ provides anonymous unions. | |
2030 | ||
2031 | In the GNU Chill implementation of variant record types, | |
2032 | each <alternative field> has an (anonymous) union type, | |
2033 | each member of the union represents a <variant alternative>. | |
2034 | Each <variant alternative> is represented as a struct, | |
2035 | with a member for each <variant field>. */ | |
c5aa993b | 2036 | |
c906108c SS |
2037 | value_ptr v; |
2038 | int new_offset = offset; | |
2039 | ||
2040 | /* This is pretty gross. In G++, the offset in an anonymous | |
2041 | union is relative to the beginning of the enclosing struct. | |
2042 | In the GNU Chill implementation of variant records, | |
2043 | the bitpos is zero in an anonymous union field, so we | |
2044 | have to add the offset of the union here. */ | |
2045 | if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT | |
2046 | || (TYPE_NFIELDS (field_type) > 0 | |
2047 | && TYPE_FIELD_BITPOS (field_type, 0) == 0)) | |
2048 | new_offset += TYPE_FIELD_BITPOS (type, i) / 8; | |
2049 | ||
2050 | v = search_struct_field (name, arg1, new_offset, field_type, | |
2051 | looking_for_baseclass); | |
2052 | if (v) | |
2053 | return v; | |
2054 | } | |
2055 | } | |
2056 | } | |
2057 | ||
c5aa993b | 2058 | for (i = 0; i < nbases; i++) |
c906108c SS |
2059 | { |
2060 | value_ptr v; | |
2061 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
2062 | /* If we are looking for baseclasses, this is what we get when we | |
c5aa993b JM |
2063 | hit them. But it could happen that the base part's member name |
2064 | is not yet filled in. */ | |
c906108c SS |
2065 | int found_baseclass = (looking_for_baseclass |
2066 | && TYPE_BASECLASS_NAME (type, i) != NULL | |
2067 | && STREQ (name, TYPE_BASECLASS_NAME (type, i))); | |
2068 | ||
2069 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2070 | { | |
2071 | int boffset; | |
2072 | value_ptr v2 = allocate_value (basetype); | |
2073 | ||
2074 | boffset = baseclass_offset (type, i, | |
2075 | VALUE_CONTENTS (arg1) + offset, | |
2076 | VALUE_ADDRESS (arg1) | |
c5aa993b | 2077 | + VALUE_OFFSET (arg1) + offset); |
c906108c SS |
2078 | if (boffset == -1) |
2079 | error ("virtual baseclass botch"); | |
2080 | ||
2081 | /* The virtual base class pointer might have been clobbered by the | |
2082 | user program. Make sure that it still points to a valid memory | |
2083 | location. */ | |
2084 | ||
2085 | boffset += offset; | |
2086 | if (boffset < 0 || boffset >= TYPE_LENGTH (type)) | |
2087 | { | |
2088 | CORE_ADDR base_addr; | |
c5aa993b | 2089 | |
c906108c SS |
2090 | base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) + boffset; |
2091 | if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2), | |
2092 | TYPE_LENGTH (basetype)) != 0) | |
2093 | error ("virtual baseclass botch"); | |
2094 | VALUE_LVAL (v2) = lval_memory; | |
2095 | VALUE_ADDRESS (v2) = base_addr; | |
2096 | } | |
2097 | else | |
2098 | { | |
2099 | VALUE_LVAL (v2) = VALUE_LVAL (arg1); | |
2100 | VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1); | |
2101 | VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + boffset; | |
2102 | if (VALUE_LAZY (arg1)) | |
2103 | VALUE_LAZY (v2) = 1; | |
2104 | else | |
2105 | memcpy (VALUE_CONTENTS_RAW (v2), | |
2106 | VALUE_CONTENTS_RAW (arg1) + boffset, | |
2107 | TYPE_LENGTH (basetype)); | |
2108 | } | |
2109 | ||
2110 | if (found_baseclass) | |
2111 | return v2; | |
2112 | v = search_struct_field (name, v2, 0, TYPE_BASECLASS (type, i), | |
2113 | looking_for_baseclass); | |
2114 | } | |
2115 | else if (found_baseclass) | |
2116 | v = value_primitive_field (arg1, offset, i, type); | |
2117 | else | |
2118 | v = search_struct_field (name, arg1, | |
c5aa993b | 2119 | offset + TYPE_BASECLASS_BITPOS (type, i) / 8, |
c906108c | 2120 | basetype, looking_for_baseclass); |
c5aa993b JM |
2121 | if (v) |
2122 | return v; | |
c906108c SS |
2123 | } |
2124 | return NULL; | |
2125 | } | |
2126 | ||
2127 | ||
2128 | /* Return the offset (in bytes) of the virtual base of type BASETYPE | |
2129 | * in an object pointed to by VALADDR (on the host), assumed to be of | |
2130 | * type TYPE. OFFSET is number of bytes beyond start of ARG to start | |
2131 | * looking (in case VALADDR is the contents of an enclosing object). | |
2132 | * | |
2133 | * This routine recurses on the primary base of the derived class because | |
2134 | * the virtual base entries of the primary base appear before the other | |
2135 | * virtual base entries. | |
2136 | * | |
2137 | * If the virtual base is not found, a negative integer is returned. | |
2138 | * The magnitude of the negative integer is the number of entries in | |
2139 | * the virtual table to skip over (entries corresponding to various | |
2140 | * ancestral classes in the chain of primary bases). | |
2141 | * | |
2142 | * Important: This assumes the HP / Taligent C++ runtime | |
2143 | * conventions. Use baseclass_offset() instead to deal with g++ | |
2144 | * conventions. */ | |
2145 | ||
2146 | void | |
c5aa993b JM |
2147 | find_rt_vbase_offset (type, basetype, valaddr, offset, boffset_p, skip_p) |
2148 | struct type *type; | |
2149 | struct type *basetype; | |
2150 | char *valaddr; | |
2151 | int offset; | |
2152 | int *boffset_p; | |
2153 | int *skip_p; | |
c906108c | 2154 | { |
c5aa993b JM |
2155 | int boffset; /* offset of virtual base */ |
2156 | int index; /* displacement to use in virtual table */ | |
c906108c | 2157 | int skip; |
c5aa993b JM |
2158 | |
2159 | value_ptr vp; | |
2160 | CORE_ADDR vtbl; /* the virtual table pointer */ | |
2161 | struct type *pbc; /* the primary base class */ | |
c906108c SS |
2162 | |
2163 | /* Look for the virtual base recursively in the primary base, first. | |
2164 | * This is because the derived class object and its primary base | |
2165 | * subobject share the primary virtual table. */ | |
c5aa993b | 2166 | |
c906108c | 2167 | boffset = 0; |
c5aa993b | 2168 | pbc = TYPE_PRIMARY_BASE (type); |
c906108c SS |
2169 | if (pbc) |
2170 | { | |
2171 | find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip); | |
2172 | if (skip < 0) | |
c5aa993b JM |
2173 | { |
2174 | *boffset_p = boffset; | |
2175 | *skip_p = -1; | |
2176 | return; | |
2177 | } | |
c906108c SS |
2178 | } |
2179 | else | |
2180 | skip = 0; | |
2181 | ||
2182 | ||
2183 | /* Find the index of the virtual base according to HP/Taligent | |
2184 | runtime spec. (Depth-first, left-to-right.) */ | |
2185 | index = virtual_base_index_skip_primaries (basetype, type); | |
2186 | ||
c5aa993b JM |
2187 | if (index < 0) |
2188 | { | |
2189 | *skip_p = skip + virtual_base_list_length_skip_primaries (type); | |
2190 | *boffset_p = 0; | |
2191 | return; | |
2192 | } | |
c906108c | 2193 | |
c5aa993b | 2194 | /* pai: FIXME -- 32x64 possible problem */ |
c906108c | 2195 | /* First word (4 bytes) in object layout is the vtable pointer */ |
c5aa993b | 2196 | vtbl = *(CORE_ADDR *) (valaddr + offset); |
c906108c | 2197 | |
c5aa993b | 2198 | /* Before the constructor is invoked, things are usually zero'd out. */ |
c906108c SS |
2199 | if (vtbl == 0) |
2200 | error ("Couldn't find virtual table -- object may not be constructed yet."); | |
2201 | ||
2202 | ||
2203 | /* Find virtual base's offset -- jump over entries for primary base | |
2204 | * ancestors, then use the index computed above. But also adjust by | |
2205 | * HP_ACC_VBASE_START for the vtable slots before the start of the | |
2206 | * virtual base entries. Offset is negative -- virtual base entries | |
2207 | * appear _before_ the address point of the virtual table. */ | |
c5aa993b | 2208 | |
c906108c | 2209 | /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier |
c5aa993b | 2210 | & use long type */ |
c906108c SS |
2211 | |
2212 | /* epstein : FIXME -- added param for overlay section. May not be correct */ | |
c5aa993b | 2213 | vp = value_at (builtin_type_int, vtbl + 4 * (-skip - index - HP_ACC_VBASE_START), NULL); |
c906108c SS |
2214 | boffset = value_as_long (vp); |
2215 | *skip_p = -1; | |
2216 | *boffset_p = boffset; | |
2217 | return; | |
2218 | } | |
2219 | ||
2220 | ||
2221 | /* Helper function used by value_struct_elt to recurse through baseclasses. | |
2222 | Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes, | |
2223 | and search in it assuming it has (class) type TYPE. | |
2224 | If found, return value, else if name matched and args not return (value)-1, | |
2225 | else return NULL. */ | |
2226 | ||
2227 | static value_ptr | |
2228 | search_struct_method (name, arg1p, args, offset, static_memfuncp, type) | |
2229 | char *name; | |
2230 | register value_ptr *arg1p, *args; | |
2231 | int offset, *static_memfuncp; | |
2232 | register struct type *type; | |
2233 | { | |
2234 | int i; | |
2235 | value_ptr v; | |
2236 | int name_matched = 0; | |
2237 | char dem_opname[64]; | |
2238 | ||
2239 | CHECK_TYPEDEF (type); | |
2240 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
2241 | { | |
2242 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i); | |
2243 | /* FIXME! May need to check for ARM demangling here */ | |
c5aa993b JM |
2244 | if (strncmp (t_field_name, "__", 2) == 0 || |
2245 | strncmp (t_field_name, "op", 2) == 0 || | |
2246 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 2247 | { |
c5aa993b JM |
2248 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
2249 | t_field_name = dem_opname; | |
2250 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 2251 | t_field_name = dem_opname; |
c906108c SS |
2252 | } |
2253 | if (t_field_name && STREQ (t_field_name, name)) | |
2254 | { | |
2255 | int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1; | |
2256 | struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i); | |
c5aa993b | 2257 | name_matched = 1; |
c906108c SS |
2258 | |
2259 | if (j > 0 && args == 0) | |
2260 | error ("cannot resolve overloaded method `%s': no arguments supplied", name); | |
2261 | while (j >= 0) | |
2262 | { | |
2263 | if (TYPE_FN_FIELD_STUB (f, j)) | |
2264 | check_stub_method (type, i, j); | |
2265 | if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j), | |
2266 | TYPE_FN_FIELD_ARGS (f, j), args)) | |
2267 | { | |
2268 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
2269 | return value_virtual_fn_field (arg1p, f, j, type, offset); | |
2270 | if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp) | |
2271 | *static_memfuncp = 1; | |
2272 | v = value_fn_field (arg1p, f, j, type, offset); | |
c5aa993b JM |
2273 | if (v != NULL) |
2274 | return v; | |
c906108c SS |
2275 | } |
2276 | j--; | |
2277 | } | |
2278 | } | |
2279 | } | |
2280 | ||
2281 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2282 | { | |
2283 | int base_offset; | |
2284 | ||
2285 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2286 | { | |
c5aa993b JM |
2287 | if (TYPE_HAS_VTABLE (type)) |
2288 | { | |
2289 | /* HP aCC compiled type, search for virtual base offset | |
2290 | according to HP/Taligent runtime spec. */ | |
2291 | int skip; | |
2292 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2293 | VALUE_CONTENTS_ALL (*arg1p), | |
2294 | offset + VALUE_EMBEDDED_OFFSET (*arg1p), | |
2295 | &base_offset, &skip); | |
2296 | if (skip >= 0) | |
2297 | error ("Virtual base class offset not found in vtable"); | |
2298 | } | |
2299 | else | |
2300 | { | |
2301 | struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i)); | |
2302 | char *base_valaddr; | |
2303 | ||
2304 | /* The virtual base class pointer might have been clobbered by the | |
2305 | user program. Make sure that it still points to a valid memory | |
2306 | location. */ | |
2307 | ||
2308 | if (offset < 0 || offset >= TYPE_LENGTH (type)) | |
2309 | { | |
2310 | base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass)); | |
2311 | if (target_read_memory (VALUE_ADDRESS (*arg1p) | |
2312 | + VALUE_OFFSET (*arg1p) + offset, | |
2313 | base_valaddr, | |
2314 | TYPE_LENGTH (baseclass)) != 0) | |
2315 | error ("virtual baseclass botch"); | |
2316 | } | |
2317 | else | |
2318 | base_valaddr = VALUE_CONTENTS (*arg1p) + offset; | |
2319 | ||
2320 | base_offset = | |
2321 | baseclass_offset (type, i, base_valaddr, | |
2322 | VALUE_ADDRESS (*arg1p) | |
2323 | + VALUE_OFFSET (*arg1p) + offset); | |
2324 | if (base_offset == -1) | |
2325 | error ("virtual baseclass botch"); | |
2326 | } | |
2327 | } | |
c906108c SS |
2328 | else |
2329 | { | |
2330 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2331 | } |
c906108c SS |
2332 | v = search_struct_method (name, arg1p, args, base_offset + offset, |
2333 | static_memfuncp, TYPE_BASECLASS (type, i)); | |
c5aa993b | 2334 | if (v == (value_ptr) - 1) |
c906108c SS |
2335 | { |
2336 | name_matched = 1; | |
2337 | } | |
2338 | else if (v) | |
2339 | { | |
2340 | /* FIXME-bothner: Why is this commented out? Why is it here? */ | |
c5aa993b | 2341 | /* *arg1p = arg1_tmp; */ |
c906108c | 2342 | return v; |
c5aa993b | 2343 | } |
c906108c | 2344 | } |
c5aa993b JM |
2345 | if (name_matched) |
2346 | return (value_ptr) - 1; | |
2347 | else | |
2348 | return NULL; | |
c906108c SS |
2349 | } |
2350 | ||
2351 | /* Given *ARGP, a value of type (pointer to a)* structure/union, | |
2352 | extract the component named NAME from the ultimate target structure/union | |
2353 | and return it as a value with its appropriate type. | |
2354 | ERR is used in the error message if *ARGP's type is wrong. | |
2355 | ||
2356 | C++: ARGS is a list of argument types to aid in the selection of | |
2357 | an appropriate method. Also, handle derived types. | |
2358 | ||
2359 | STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location | |
2360 | where the truthvalue of whether the function that was resolved was | |
2361 | a static member function or not is stored. | |
2362 | ||
2363 | ERR is an error message to be printed in case the field is not found. */ | |
2364 | ||
2365 | value_ptr | |
2366 | value_struct_elt (argp, args, name, static_memfuncp, err) | |
2367 | register value_ptr *argp, *args; | |
2368 | char *name; | |
2369 | int *static_memfuncp; | |
2370 | char *err; | |
2371 | { | |
2372 | register struct type *t; | |
2373 | value_ptr v; | |
2374 | ||
2375 | COERCE_ARRAY (*argp); | |
2376 | ||
2377 | t = check_typedef (VALUE_TYPE (*argp)); | |
2378 | ||
2379 | /* Follow pointers until we get to a non-pointer. */ | |
2380 | ||
2381 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
2382 | { | |
2383 | *argp = value_ind (*argp); | |
2384 | /* Don't coerce fn pointer to fn and then back again! */ | |
2385 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2386 | COERCE_ARRAY (*argp); | |
2387 | t = check_typedef (VALUE_TYPE (*argp)); | |
2388 | } | |
2389 | ||
2390 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2391 | error ("not implemented: member type in value_struct_elt"); | |
2392 | ||
c5aa993b | 2393 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2394 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2395 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
2396 | ||
2397 | /* Assume it's not, unless we see that it is. */ | |
2398 | if (static_memfuncp) | |
c5aa993b | 2399 | *static_memfuncp = 0; |
c906108c SS |
2400 | |
2401 | if (!args) | |
2402 | { | |
2403 | /* if there are no arguments ...do this... */ | |
2404 | ||
2405 | /* Try as a field first, because if we succeed, there | |
c5aa993b | 2406 | is less work to be done. */ |
c906108c SS |
2407 | v = search_struct_field (name, *argp, 0, t, 0); |
2408 | if (v) | |
2409 | return v; | |
2410 | ||
2411 | /* C++: If it was not found as a data field, then try to | |
2412 | return it as a pointer to a method. */ | |
2413 | ||
2414 | if (destructor_name_p (name, t)) | |
2415 | error ("Cannot get value of destructor"); | |
2416 | ||
2417 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2418 | ||
c5aa993b | 2419 | if (v == (value_ptr) - 1) |
c906108c SS |
2420 | error ("Cannot take address of a method"); |
2421 | else if (v == 0) | |
2422 | { | |
2423 | if (TYPE_NFN_FIELDS (t)) | |
2424 | error ("There is no member or method named %s.", name); | |
2425 | else | |
2426 | error ("There is no member named %s.", name); | |
2427 | } | |
2428 | return v; | |
2429 | } | |
2430 | ||
2431 | if (destructor_name_p (name, t)) | |
2432 | { | |
2433 | if (!args[1]) | |
2434 | { | |
2435 | /* Destructors are a special case. */ | |
2436 | int m_index, f_index; | |
2437 | ||
2438 | v = NULL; | |
2439 | if (get_destructor_fn_field (t, &m_index, &f_index)) | |
2440 | { | |
2441 | v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index), | |
2442 | f_index, NULL, 0); | |
2443 | } | |
2444 | if (v == NULL) | |
2445 | error ("could not find destructor function named %s.", name); | |
2446 | else | |
2447 | return v; | |
2448 | } | |
2449 | else | |
2450 | { | |
2451 | error ("destructor should not have any argument"); | |
2452 | } | |
2453 | } | |
2454 | else | |
2455 | v = search_struct_method (name, argp, args, 0, static_memfuncp, t); | |
2456 | ||
c5aa993b | 2457 | if (v == (value_ptr) - 1) |
c906108c | 2458 | { |
c5aa993b | 2459 | error ("Argument list of %s mismatch with component in the structure.", name); |
c906108c SS |
2460 | } |
2461 | else if (v == 0) | |
2462 | { | |
2463 | /* See if user tried to invoke data as function. If so, | |
c5aa993b JM |
2464 | hand it back. If it's not callable (i.e., a pointer to function), |
2465 | gdb should give an error. */ | |
c906108c SS |
2466 | v = search_struct_field (name, *argp, 0, t, 0); |
2467 | } | |
2468 | ||
2469 | if (!v) | |
2470 | error ("Structure has no component named %s.", name); | |
2471 | return v; | |
2472 | } | |
2473 | ||
2474 | /* Search through the methods of an object (and its bases) | |
2475 | * to find a specified method. Return the pointer to the | |
2476 | * fn_field list of overloaded instances. | |
2477 | * Helper function for value_find_oload_list. | |
2478 | * ARGP is a pointer to a pointer to a value (the object) | |
2479 | * METHOD is a string containing the method name | |
2480 | * OFFSET is the offset within the value | |
2481 | * STATIC_MEMFUNCP is set if the method is static | |
2482 | * TYPE is the assumed type of the object | |
2483 | * NUM_FNS is the number of overloaded instances | |
2484 | * BASETYPE is set to the actual type of the subobject where the method is found | |
2485 | * BOFFSET is the offset of the base subobject where the method is found */ | |
2486 | ||
7a292a7a | 2487 | static struct fn_field * |
c906108c | 2488 | find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset) |
7a292a7a | 2489 | value_ptr *argp; |
c5aa993b | 2490 | char *method; |
7a292a7a | 2491 | int offset; |
c5aa993b JM |
2492 | int *static_memfuncp; |
2493 | struct type *type; | |
2494 | int *num_fns; | |
2495 | struct type **basetype; | |
2496 | int *boffset; | |
c906108c SS |
2497 | { |
2498 | int i; | |
c5aa993b | 2499 | struct fn_field *f; |
c906108c SS |
2500 | CHECK_TYPEDEF (type); |
2501 | ||
2502 | *num_fns = 0; | |
2503 | ||
c5aa993b JM |
2504 | /* First check in object itself */ |
2505 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--) | |
c906108c SS |
2506 | { |
2507 | /* pai: FIXME What about operators and type conversions? */ | |
c5aa993b | 2508 | char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i); |
c906108c | 2509 | if (fn_field_name && STREQ (fn_field_name, method)) |
c5aa993b JM |
2510 | { |
2511 | *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i); | |
2512 | *basetype = type; | |
2513 | *boffset = offset; | |
2514 | return TYPE_FN_FIELDLIST1 (type, i); | |
2515 | } | |
2516 | } | |
2517 | ||
c906108c SS |
2518 | /* Not found in object, check in base subobjects */ |
2519 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2520 | { | |
2521 | int base_offset; | |
2522 | if (BASETYPE_VIA_VIRTUAL (type, i)) | |
2523 | { | |
c5aa993b JM |
2524 | if (TYPE_HAS_VTABLE (type)) |
2525 | { | |
2526 | /* HP aCC compiled type, search for virtual base offset | |
2527 | * according to HP/Taligent runtime spec. */ | |
2528 | int skip; | |
2529 | find_rt_vbase_offset (type, TYPE_BASECLASS (type, i), | |
2530 | VALUE_CONTENTS_ALL (*argp), | |
2531 | offset + VALUE_EMBEDDED_OFFSET (*argp), | |
2532 | &base_offset, &skip); | |
2533 | if (skip >= 0) | |
2534 | error ("Virtual base class offset not found in vtable"); | |
2535 | } | |
2536 | else | |
2537 | { | |
2538 | /* probably g++ runtime model */ | |
2539 | base_offset = VALUE_OFFSET (*argp) + offset; | |
2540 | base_offset = | |
2541 | baseclass_offset (type, i, | |
2542 | VALUE_CONTENTS (*argp) + base_offset, | |
2543 | VALUE_ADDRESS (*argp) + base_offset); | |
2544 | if (base_offset == -1) | |
2545 | error ("virtual baseclass botch"); | |
2546 | } | |
2547 | } | |
2548 | else | |
2549 | /* non-virtual base, simply use bit position from debug info */ | |
c906108c SS |
2550 | { |
2551 | base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8; | |
c5aa993b | 2552 | } |
c906108c | 2553 | f = find_method_list (argp, method, base_offset + offset, |
c5aa993b | 2554 | static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset); |
c906108c | 2555 | if (f) |
c5aa993b | 2556 | return f; |
c906108c | 2557 | } |
c5aa993b | 2558 | return NULL; |
c906108c SS |
2559 | } |
2560 | ||
2561 | /* Return the list of overloaded methods of a specified name. | |
2562 | * ARGP is a pointer to a pointer to a value (the object) | |
2563 | * METHOD is the method name | |
2564 | * OFFSET is the offset within the value contents | |
2565 | * STATIC_MEMFUNCP is set if the method is static | |
2566 | * NUM_FNS is the number of overloaded instances | |
2567 | * BASETYPE is set to the type of the base subobject that defines the method | |
2568 | * BOFFSET is the offset of the base subobject which defines the method */ | |
2569 | ||
2570 | struct fn_field * | |
2571 | value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset) | |
c5aa993b JM |
2572 | value_ptr *argp; |
2573 | char *method; | |
2574 | int offset; | |
2575 | int *static_memfuncp; | |
2576 | int *num_fns; | |
2577 | struct type **basetype; | |
2578 | int *boffset; | |
c906108c | 2579 | { |
c5aa993b | 2580 | struct type *t; |
c906108c SS |
2581 | |
2582 | t = check_typedef (VALUE_TYPE (*argp)); | |
2583 | ||
c5aa993b | 2584 | /* code snarfed from value_struct_elt */ |
c906108c SS |
2585 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) |
2586 | { | |
2587 | *argp = value_ind (*argp); | |
2588 | /* Don't coerce fn pointer to fn and then back again! */ | |
2589 | if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC) | |
2590 | COERCE_ARRAY (*argp); | |
2591 | t = check_typedef (VALUE_TYPE (*argp)); | |
2592 | } | |
c5aa993b | 2593 | |
c906108c SS |
2594 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) |
2595 | error ("Not implemented: member type in value_find_oload_lis"); | |
c5aa993b JM |
2596 | |
2597 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
2598 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
c906108c | 2599 | error ("Attempt to extract a component of a value that is not a struct or union"); |
c5aa993b | 2600 | |
c906108c SS |
2601 | /* Assume it's not static, unless we see that it is. */ |
2602 | if (static_memfuncp) | |
c5aa993b | 2603 | *static_memfuncp = 0; |
c906108c SS |
2604 | |
2605 | return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset); | |
c5aa993b | 2606 | |
c906108c SS |
2607 | } |
2608 | ||
2609 | /* Given an array of argument types (ARGTYPES) (which includes an | |
2610 | entry for "this" in the case of C++ methods), the number of | |
2611 | arguments NARGS, the NAME of a function whether it's a method or | |
2612 | not (METHOD), and the degree of laxness (LAX) in conforming to | |
2613 | overload resolution rules in ANSI C++, find the best function that | |
2614 | matches on the argument types according to the overload resolution | |
2615 | rules. | |
2616 | ||
2617 | In the case of class methods, the parameter OBJ is an object value | |
2618 | in which to search for overloaded methods. | |
2619 | ||
2620 | In the case of non-method functions, the parameter FSYM is a symbol | |
2621 | corresponding to one of the overloaded functions. | |
2622 | ||
2623 | Return value is an integer: 0 -> good match, 10 -> debugger applied | |
2624 | non-standard coercions, 100 -> incompatible. | |
2625 | ||
2626 | If a method is being searched for, VALP will hold the value. | |
2627 | If a non-method is being searched for, SYMP will hold the symbol for it. | |
2628 | ||
2629 | If a method is being searched for, and it is a static method, | |
2630 | then STATICP will point to a non-zero value. | |
2631 | ||
2632 | Note: This function does *not* check the value of | |
2633 | overload_resolution. Caller must check it to see whether overload | |
2634 | resolution is permitted. | |
c5aa993b | 2635 | */ |
c906108c SS |
2636 | |
2637 | int | |
2638 | find_overload_match (arg_types, nargs, name, method, lax, obj, fsym, valp, symp, staticp) | |
c5aa993b JM |
2639 | struct type **arg_types; |
2640 | int nargs; | |
2641 | char *name; | |
2642 | int method; | |
2643 | int lax; | |
2644 | value_ptr obj; | |
2645 | struct symbol *fsym; | |
2646 | value_ptr *valp; | |
2647 | struct symbol **symp; | |
2648 | int *staticp; | |
c906108c SS |
2649 | { |
2650 | int nparms; | |
c5aa993b | 2651 | struct type **parm_types; |
c906108c | 2652 | int champ_nparms = 0; |
c5aa993b JM |
2653 | |
2654 | short oload_champ = -1; /* Index of best overloaded function */ | |
2655 | short oload_ambiguous = 0; /* Current ambiguity state for overload resolution */ | |
2656 | /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs */ | |
2657 | short oload_ambig_champ = -1; /* 2nd contender for best match */ | |
2658 | short oload_non_standard = 0; /* did we have to use non-standard conversions? */ | |
2659 | short oload_incompatible = 0; /* are args supplied incompatible with any function? */ | |
2660 | ||
2661 | struct badness_vector *bv; /* A measure of how good an overloaded instance is */ | |
2662 | struct badness_vector *oload_champ_bv = NULL; /* The measure for the current best match */ | |
2663 | ||
c906108c | 2664 | value_ptr temp = obj; |
c5aa993b JM |
2665 | struct fn_field *fns_ptr = NULL; /* For methods, the list of overloaded methods */ |
2666 | struct symbol **oload_syms = NULL; /* For non-methods, the list of overloaded function symbols */ | |
2667 | int num_fns = 0; /* Number of overloaded instances being considered */ | |
2668 | struct type *basetype = NULL; | |
c906108c SS |
2669 | int boffset; |
2670 | register int jj; | |
2671 | register int ix; | |
2672 | ||
c5aa993b JM |
2673 | char *obj_type_name = NULL; |
2674 | char *func_name = NULL; | |
c906108c SS |
2675 | |
2676 | /* Get the list of overloaded methods or functions */ | |
2677 | if (method) | |
2678 | { | |
2679 | obj_type_name = TYPE_NAME (VALUE_TYPE (obj)); | |
2680 | /* Hack: evaluate_subexp_standard often passes in a pointer | |
2681 | value rather than the object itself, so try again */ | |
2682 | if ((!obj_type_name || !*obj_type_name) && | |
c5aa993b JM |
2683 | (TYPE_CODE (VALUE_TYPE (obj)) == TYPE_CODE_PTR)) |
2684 | obj_type_name = TYPE_NAME (TYPE_TARGET_TYPE (VALUE_TYPE (obj))); | |
c906108c SS |
2685 | |
2686 | fns_ptr = value_find_oload_method_list (&temp, name, 0, | |
c5aa993b JM |
2687 | staticp, |
2688 | &num_fns, | |
2689 | &basetype, &boffset); | |
c906108c | 2690 | if (!fns_ptr || !num_fns) |
c5aa993b JM |
2691 | error ("Couldn't find method %s%s%s", |
2692 | obj_type_name, | |
2693 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2694 | name); | |
c906108c SS |
2695 | } |
2696 | else | |
2697 | { | |
2698 | int i = -1; | |
2699 | func_name = cplus_demangle (SYMBOL_NAME (fsym), DMGL_NO_OPTS); | |
2700 | ||
917317f4 JM |
2701 | /* If the name is NULL this must be a C-style function. |
2702 | Just return the same symbol. */ | |
2703 | if (!func_name) | |
2704 | { | |
2705 | *symp = fsym; | |
2706 | return 0; | |
2707 | } | |
2708 | ||
c906108c SS |
2709 | oload_syms = make_symbol_overload_list (fsym); |
2710 | while (oload_syms[++i]) | |
c5aa993b | 2711 | num_fns++; |
c906108c | 2712 | if (!num_fns) |
c5aa993b | 2713 | error ("Couldn't find function %s", func_name); |
c906108c | 2714 | } |
c5aa993b | 2715 | |
c906108c SS |
2716 | oload_champ_bv = NULL; |
2717 | ||
c5aa993b | 2718 | /* Consider each candidate in turn */ |
c906108c SS |
2719 | for (ix = 0; ix < num_fns; ix++) |
2720 | { | |
c5aa993b | 2721 | /* Number of parameters for current candidate */ |
c906108c | 2722 | nparms = method ? TYPE_NFIELDS (fns_ptr[ix].type) |
c5aa993b | 2723 | : TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix])); |
c906108c | 2724 | |
c5aa993b | 2725 | /* Prepare array of parameter types */ |
c906108c SS |
2726 | parm_types = (struct type **) xmalloc (nparms * (sizeof (struct type *))); |
2727 | for (jj = 0; jj < nparms; jj++) | |
c5aa993b JM |
2728 | parm_types[jj] = method ? TYPE_FIELD_TYPE (fns_ptr[ix].type, jj) |
2729 | : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]), jj); | |
c906108c SS |
2730 | |
2731 | /* Compare parameter types to supplied argument types */ | |
2732 | bv = rank_function (parm_types, nparms, arg_types, nargs); | |
c5aa993b | 2733 | |
c906108c | 2734 | if (!oload_champ_bv) |
c5aa993b JM |
2735 | { |
2736 | oload_champ_bv = bv; | |
2737 | oload_champ = 0; | |
2738 | champ_nparms = nparms; | |
2739 | } | |
c906108c | 2740 | else |
c5aa993b JM |
2741 | /* See whether current candidate is better or worse than previous best */ |
2742 | switch (compare_badness (bv, oload_champ_bv)) | |
2743 | { | |
2744 | case 0: | |
2745 | oload_ambiguous = 1; /* top two contenders are equally good */ | |
2746 | oload_ambig_champ = ix; | |
2747 | break; | |
2748 | case 1: | |
2749 | oload_ambiguous = 2; /* incomparable top contenders */ | |
2750 | oload_ambig_champ = ix; | |
2751 | break; | |
2752 | case 2: | |
2753 | oload_champ_bv = bv; /* new champion, record details */ | |
2754 | oload_ambiguous = 0; | |
2755 | oload_champ = ix; | |
2756 | oload_ambig_champ = -1; | |
2757 | champ_nparms = nparms; | |
2758 | break; | |
2759 | case 3: | |
2760 | default: | |
2761 | break; | |
2762 | } | |
c906108c SS |
2763 | free (parm_types); |
2764 | #ifdef DEBUG_OLOAD | |
2765 | if (method) | |
c5aa993b | 2766 | printf ("Overloaded method instance %s, # of parms %d\n", fns_ptr[ix].physname, nparms); |
c906108c | 2767 | else |
c5aa993b | 2768 | printf ("Overloaded function instance %s # of parms %d\n", SYMBOL_DEMANGLED_NAME (oload_syms[ix]), nparms); |
c906108c | 2769 | for (jj = 0; jj <= nargs; jj++) |
c5aa993b JM |
2770 | printf ("...Badness @ %d : %d\n", jj, bv->rank[jj]); |
2771 | printf ("Overload resolution champion is %d, ambiguous? %d\n", oload_champ, oload_ambiguous); | |
c906108c | 2772 | #endif |
c5aa993b | 2773 | } /* end loop over all candidates */ |
c906108c SS |
2774 | |
2775 | if (oload_ambiguous) | |
2776 | { | |
2777 | if (method) | |
c5aa993b JM |
2778 | error ("Cannot resolve overloaded method %s%s%s to unique instance; disambiguate by specifying function signature", |
2779 | obj_type_name, | |
2780 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2781 | name); | |
c906108c | 2782 | else |
c5aa993b JM |
2783 | error ("Cannot resolve overloaded function %s to unique instance; disambiguate by specifying function signature", |
2784 | func_name); | |
c906108c SS |
2785 | } |
2786 | ||
c5aa993b | 2787 | /* Check how bad the best match is */ |
c906108c SS |
2788 | for (ix = 1; ix <= nargs; ix++) |
2789 | { | |
2790 | switch (oload_champ_bv->rank[ix]) | |
c5aa993b JM |
2791 | { |
2792 | case 10: | |
2793 | oload_non_standard = 1; /* non-standard type conversions needed */ | |
2794 | break; | |
2795 | case 100: | |
2796 | oload_incompatible = 1; /* truly mismatched types */ | |
2797 | break; | |
2798 | } | |
c906108c SS |
2799 | } |
2800 | if (oload_incompatible) | |
2801 | { | |
2802 | if (method) | |
c5aa993b JM |
2803 | error ("Cannot resolve method %s%s%s to any overloaded instance", |
2804 | obj_type_name, | |
2805 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2806 | name); | |
c906108c | 2807 | else |
c5aa993b JM |
2808 | error ("Cannot resolve function %s to any overloaded instance", |
2809 | func_name); | |
c906108c SS |
2810 | } |
2811 | else if (oload_non_standard) | |
2812 | { | |
2813 | if (method) | |
c5aa993b JM |
2814 | warning ("Using non-standard conversion to match method %s%s%s to supplied arguments", |
2815 | obj_type_name, | |
2816 | (obj_type_name && *obj_type_name) ? "::" : "", | |
2817 | name); | |
c906108c | 2818 | else |
c5aa993b JM |
2819 | warning ("Using non-standard conversion to match function %s to supplied arguments", |
2820 | func_name); | |
c906108c SS |
2821 | } |
2822 | ||
2823 | if (method) | |
2824 | { | |
2825 | if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, oload_champ)) | |
c5aa993b | 2826 | *valp = value_virtual_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c | 2827 | else |
c5aa993b | 2828 | *valp = value_fn_field (&temp, fns_ptr, oload_champ, basetype, boffset); |
c906108c SS |
2829 | } |
2830 | else | |
2831 | { | |
2832 | *symp = oload_syms[oload_champ]; | |
2833 | free (func_name); | |
2834 | } | |
2835 | ||
2836 | return oload_incompatible ? 100 : (oload_non_standard ? 10 : 0); | |
2837 | } | |
2838 | ||
2839 | /* C++: return 1 is NAME is a legitimate name for the destructor | |
2840 | of type TYPE. If TYPE does not have a destructor, or | |
2841 | if NAME is inappropriate for TYPE, an error is signaled. */ | |
2842 | int | |
2843 | destructor_name_p (name, type) | |
2844 | const char *name; | |
2845 | const struct type *type; | |
2846 | { | |
2847 | /* destructors are a special case. */ | |
2848 | ||
2849 | if (name[0] == '~') | |
2850 | { | |
2851 | char *dname = type_name_no_tag (type); | |
2852 | char *cp = strchr (dname, '<'); | |
2853 | unsigned int len; | |
2854 | ||
2855 | /* Do not compare the template part for template classes. */ | |
2856 | if (cp == NULL) | |
2857 | len = strlen (dname); | |
2858 | else | |
2859 | len = cp - dname; | |
2860 | if (strlen (name + 1) != len || !STREQN (dname, name + 1, len)) | |
2861 | error ("name of destructor must equal name of class"); | |
2862 | else | |
2863 | return 1; | |
2864 | } | |
2865 | return 0; | |
2866 | } | |
2867 | ||
2868 | /* Helper function for check_field: Given TYPE, a structure/union, | |
2869 | return 1 if the component named NAME from the ultimate | |
2870 | target structure/union is defined, otherwise, return 0. */ | |
2871 | ||
2872 | static int | |
2873 | check_field_in (type, name) | |
2874 | register struct type *type; | |
2875 | const char *name; | |
2876 | { | |
2877 | register int i; | |
2878 | ||
2879 | for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--) | |
2880 | { | |
2881 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
2882 | if (t_field_name && STREQ (t_field_name, name)) | |
2883 | return 1; | |
2884 | } | |
2885 | ||
2886 | /* C++: If it was not found as a data field, then try to | |
2887 | return it as a pointer to a method. */ | |
2888 | ||
2889 | /* Destructors are a special case. */ | |
2890 | if (destructor_name_p (name, type)) | |
2891 | { | |
2892 | int m_index, f_index; | |
2893 | ||
2894 | return get_destructor_fn_field (type, &m_index, &f_index); | |
2895 | } | |
2896 | ||
2897 | for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i) | |
2898 | { | |
2899 | if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name)) | |
2900 | return 1; | |
2901 | } | |
2902 | ||
2903 | for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--) | |
2904 | if (check_field_in (TYPE_BASECLASS (type, i), name)) | |
2905 | return 1; | |
c5aa993b | 2906 | |
c906108c SS |
2907 | return 0; |
2908 | } | |
2909 | ||
2910 | ||
2911 | /* C++: Given ARG1, a value of type (pointer to a)* structure/union, | |
2912 | return 1 if the component named NAME from the ultimate | |
2913 | target structure/union is defined, otherwise, return 0. */ | |
2914 | ||
2915 | int | |
2916 | check_field (arg1, name) | |
2917 | register value_ptr arg1; | |
2918 | const char *name; | |
2919 | { | |
2920 | register struct type *t; | |
2921 | ||
2922 | COERCE_ARRAY (arg1); | |
2923 | ||
2924 | t = VALUE_TYPE (arg1); | |
2925 | ||
2926 | /* Follow pointers until we get to a non-pointer. */ | |
2927 | ||
2928 | for (;;) | |
2929 | { | |
2930 | CHECK_TYPEDEF (t); | |
2931 | if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF) | |
2932 | break; | |
2933 | t = TYPE_TARGET_TYPE (t); | |
2934 | } | |
2935 | ||
2936 | if (TYPE_CODE (t) == TYPE_CODE_MEMBER) | |
2937 | error ("not implemented: member type in check_field"); | |
2938 | ||
c5aa993b | 2939 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2940 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2941 | error ("Internal error: `this' is not an aggregate"); | |
2942 | ||
2943 | return check_field_in (t, name); | |
2944 | } | |
2945 | ||
2946 | /* C++: Given an aggregate type CURTYPE, and a member name NAME, | |
2947 | return the address of this member as a "pointer to member" | |
2948 | type. If INTYPE is non-null, then it will be the type | |
2949 | of the member we are looking for. This will help us resolve | |
2950 | "pointers to member functions". This function is used | |
2951 | to resolve user expressions of the form "DOMAIN::NAME". */ | |
2952 | ||
2953 | value_ptr | |
2954 | value_struct_elt_for_reference (domain, offset, curtype, name, intype) | |
2955 | struct type *domain, *curtype, *intype; | |
2956 | int offset; | |
2957 | char *name; | |
2958 | { | |
2959 | register struct type *t = curtype; | |
2960 | register int i; | |
2961 | value_ptr v; | |
2962 | ||
c5aa993b | 2963 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT |
c906108c SS |
2964 | && TYPE_CODE (t) != TYPE_CODE_UNION) |
2965 | error ("Internal error: non-aggregate type to value_struct_elt_for_reference"); | |
2966 | ||
2967 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
2968 | { | |
2969 | char *t_field_name = TYPE_FIELD_NAME (t, i); | |
c5aa993b | 2970 | |
c906108c SS |
2971 | if (t_field_name && STREQ (t_field_name, name)) |
2972 | { | |
2973 | if (TYPE_FIELD_STATIC (t, i)) | |
2974 | { | |
2975 | v = value_static_field (t, i); | |
2976 | if (v == NULL) | |
2977 | error ("Internal error: could not find static variable %s", | |
2978 | name); | |
2979 | return v; | |
2980 | } | |
2981 | if (TYPE_FIELD_PACKED (t, i)) | |
2982 | error ("pointers to bitfield members not allowed"); | |
c5aa993b | 2983 | |
c906108c SS |
2984 | return value_from_longest |
2985 | (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i), | |
2986 | domain)), | |
2987 | offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3)); | |
2988 | } | |
2989 | } | |
2990 | ||
2991 | /* C++: If it was not found as a data field, then try to | |
2992 | return it as a pointer to a method. */ | |
2993 | ||
2994 | /* Destructors are a special case. */ | |
2995 | if (destructor_name_p (name, t)) | |
2996 | { | |
2997 | error ("member pointers to destructors not implemented yet"); | |
2998 | } | |
2999 | ||
3000 | /* Perform all necessary dereferencing. */ | |
3001 | while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR) | |
3002 | intype = TYPE_TARGET_TYPE (intype); | |
3003 | ||
3004 | for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i) | |
3005 | { | |
3006 | char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i); | |
3007 | char dem_opname[64]; | |
3008 | ||
c5aa993b JM |
3009 | if (strncmp (t_field_name, "__", 2) == 0 || |
3010 | strncmp (t_field_name, "op", 2) == 0 || | |
3011 | strncmp (t_field_name, "type", 4) == 0) | |
c906108c | 3012 | { |
c5aa993b JM |
3013 | if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI)) |
3014 | t_field_name = dem_opname; | |
3015 | else if (cplus_demangle_opname (t_field_name, dem_opname, 0)) | |
c906108c | 3016 | t_field_name = dem_opname; |
c906108c SS |
3017 | } |
3018 | if (t_field_name && STREQ (t_field_name, name)) | |
3019 | { | |
3020 | int j = TYPE_FN_FIELDLIST_LENGTH (t, i); | |
3021 | struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i); | |
c5aa993b | 3022 | |
c906108c SS |
3023 | if (intype == 0 && j > 1) |
3024 | error ("non-unique member `%s' requires type instantiation", name); | |
3025 | if (intype) | |
3026 | { | |
3027 | while (j--) | |
3028 | if (TYPE_FN_FIELD_TYPE (f, j) == intype) | |
3029 | break; | |
3030 | if (j < 0) | |
3031 | error ("no member function matches that type instantiation"); | |
3032 | } | |
3033 | else | |
3034 | j = 0; | |
c5aa993b | 3035 | |
c906108c SS |
3036 | if (TYPE_FN_FIELD_STUB (f, j)) |
3037 | check_stub_method (t, i, j); | |
3038 | if (TYPE_FN_FIELD_VIRTUAL_P (f, j)) | |
3039 | { | |
3040 | return value_from_longest | |
3041 | (lookup_reference_type | |
3042 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3043 | domain)), | |
3044 | (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j))); | |
3045 | } | |
3046 | else | |
3047 | { | |
3048 | struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j), | |
3049 | 0, VAR_NAMESPACE, 0, NULL); | |
3050 | if (s == NULL) | |
3051 | { | |
3052 | v = 0; | |
3053 | } | |
3054 | else | |
3055 | { | |
3056 | v = read_var_value (s, 0); | |
3057 | #if 0 | |
3058 | VALUE_TYPE (v) = lookup_reference_type | |
3059 | (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j), | |
3060 | domain)); | |
3061 | #endif | |
3062 | } | |
3063 | return v; | |
3064 | } | |
3065 | } | |
3066 | } | |
3067 | for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--) | |
3068 | { | |
3069 | value_ptr v; | |
3070 | int base_offset; | |
3071 | ||
3072 | if (BASETYPE_VIA_VIRTUAL (t, i)) | |
3073 | base_offset = 0; | |
3074 | else | |
3075 | base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8; | |
3076 | v = value_struct_elt_for_reference (domain, | |
3077 | offset + base_offset, | |
3078 | TYPE_BASECLASS (t, i), | |
3079 | name, | |
3080 | intype); | |
3081 | if (v) | |
3082 | return v; | |
3083 | } | |
3084 | return 0; | |
3085 | } | |
3086 | ||
3087 | ||
3088 | /* Find the real run-time type of a value using RTTI. | |
3089 | * V is a pointer to the value. | |
3090 | * A pointer to the struct type entry of the run-time type | |
3091 | * is returneed. | |
3092 | * FULL is a flag that is set only if the value V includes | |
3093 | * the entire contents of an object of the RTTI type. | |
3094 | * TOP is the offset to the top of the enclosing object of | |
3095 | * the real run-time type. This offset may be for the embedded | |
3096 | * object, or for the enclosing object of V. | |
3097 | * USING_ENC is the flag that distinguishes the two cases. | |
3098 | * If it is 1, then the offset is for the enclosing object, | |
3099 | * otherwise for the embedded object. | |
3100 | * | |
3101 | * This currently works only for RTTI information generated | |
3102 | * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10) | |
3103 | * does not appear to support RTTI. This function returns a | |
3104 | * NULL value for objects in the g++ runtime model. */ | |
3105 | ||
3106 | struct type * | |
3107 | value_rtti_type (v, full, top, using_enc) | |
c5aa993b JM |
3108 | value_ptr v; |
3109 | int *full; | |
3110 | int *top; | |
3111 | int *using_enc; | |
c906108c | 3112 | { |
c5aa993b JM |
3113 | struct type *known_type; |
3114 | struct type *rtti_type; | |
c906108c SS |
3115 | CORE_ADDR coreptr; |
3116 | value_ptr vp; | |
3117 | int using_enclosing = 0; | |
3118 | long top_offset = 0; | |
3119 | char rtti_type_name[256]; | |
3120 | ||
3121 | if (full) | |
3122 | *full = 0; | |
3123 | if (top) | |
3124 | *top = -1; | |
3125 | if (using_enc) | |
3126 | *using_enc = 0; | |
3127 | ||
c5aa993b | 3128 | /* Get declared type */ |
c906108c SS |
3129 | known_type = VALUE_TYPE (v); |
3130 | CHECK_TYPEDEF (known_type); | |
c5aa993b | 3131 | /* RTTI works only or class objects */ |
c906108c SS |
3132 | if (TYPE_CODE (known_type) != TYPE_CODE_CLASS) |
3133 | return NULL; | |
3134 | ||
3135 | /* If neither the declared type nor the enclosing type of the | |
3136 | * value structure has a HP ANSI C++ style virtual table, | |
3137 | * we can't do anything. */ | |
3138 | if (!TYPE_HAS_VTABLE (known_type)) | |
3139 | { | |
3140 | known_type = VALUE_ENCLOSING_TYPE (v); | |
3141 | CHECK_TYPEDEF (known_type); | |
3142 | if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) || | |
c5aa993b JM |
3143 | !TYPE_HAS_VTABLE (known_type)) |
3144 | return NULL; /* No RTTI, or not HP-compiled types */ | |
c906108c SS |
3145 | CHECK_TYPEDEF (known_type); |
3146 | using_enclosing = 1; | |
3147 | } | |
3148 | ||
3149 | if (using_enclosing && using_enc) | |
3150 | *using_enc = 1; | |
3151 | ||
3152 | /* First get the virtual table address */ | |
c5aa993b JM |
3153 | coreptr = *(CORE_ADDR *) ((VALUE_CONTENTS_ALL (v)) |
3154 | + VALUE_OFFSET (v) | |
3155 | + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v))); | |
c906108c | 3156 | if (coreptr == 0) |
c5aa993b | 3157 | return NULL; /* return silently -- maybe called on gdb-generated value */ |
c906108c | 3158 | |
c5aa993b | 3159 | /* Fetch the top offset of the object */ |
c906108c | 3160 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ |
c5aa993b JM |
3161 | vp = value_at (builtin_type_int, |
3162 | coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET, | |
3163 | VALUE_BFD_SECTION (v)); | |
c906108c SS |
3164 | top_offset = value_as_long (vp); |
3165 | if (top) | |
3166 | *top = top_offset; | |
3167 | ||
3168 | /* Fetch the typeinfo pointer */ | |
3169 | /* FIXME possible 32x64 problem with pointer size & arithmetic */ | |
3170 | vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v)); | |
3171 | /* Indirect through the typeinfo pointer and retrieve the pointer | |
3172 | * to the string name */ | |
c5aa993b | 3173 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); |
c906108c SS |
3174 | if (!coreptr) |
3175 | error ("Retrieved null typeinfo pointer in trying to determine run-time type"); | |
c5aa993b JM |
3176 | vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */ |
3177 | /* FIXME possible 32x64 problem */ | |
c906108c | 3178 | |
c5aa993b | 3179 | coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp)); |
c906108c SS |
3180 | |
3181 | read_memory_string (coreptr, rtti_type_name, 256); | |
3182 | ||
3183 | if (strlen (rtti_type_name) == 0) | |
3184 | error ("Retrieved null type name from typeinfo"); | |
c5aa993b | 3185 | |
c906108c SS |
3186 | /* search for type */ |
3187 | rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1); | |
c5aa993b | 3188 | |
c906108c SS |
3189 | if (!rtti_type) |
3190 | error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name); | |
3191 | CHECK_TYPEDEF (rtti_type); | |
3192 | ||
c5aa993b JM |
3193 | #if 0 /* debugging */ |
3194 | printf ("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1); | |
c906108c SS |
3195 | #endif |
3196 | ||
3197 | /* Check whether we have the entire object */ | |
c5aa993b | 3198 | if (full /* Non-null pointer passed */ |
c906108c SS |
3199 | |
3200 | && | |
c5aa993b JM |
3201 | /* Either we checked on the whole object in hand and found the |
3202 | top offset to be zero */ | |
3203 | (((top_offset == 0) && | |
3204 | using_enclosing && | |
3205 | TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type)) | |
3206 | || | |
3207 | /* Or we checked on the embedded object and top offset was the | |
3208 | same as the embedded offset */ | |
3209 | ((top_offset == VALUE_EMBEDDED_OFFSET (v)) && | |
3210 | !using_enclosing && | |
3211 | TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type)))) | |
3212 | ||
c906108c | 3213 | *full = 1; |
c5aa993b | 3214 | |
c906108c SS |
3215 | return rtti_type; |
3216 | } | |
3217 | ||
3218 | /* Given a pointer value V, find the real (RTTI) type | |
3219 | of the object it points to. | |
3220 | Other parameters FULL, TOP, USING_ENC as with value_rtti_type() | |
3221 | and refer to the values computed for the object pointed to. */ | |
3222 | ||
3223 | struct type * | |
3224 | value_rtti_target_type (v, full, top, using_enc) | |
c5aa993b JM |
3225 | value_ptr v; |
3226 | int *full; | |
3227 | int *top; | |
3228 | int *using_enc; | |
c906108c SS |
3229 | { |
3230 | value_ptr target; | |
3231 | ||
3232 | target = value_ind (v); | |
3233 | ||
3234 | return value_rtti_type (target, full, top, using_enc); | |
3235 | } | |
3236 | ||
3237 | /* Given a value pointed to by ARGP, check its real run-time type, and | |
3238 | if that is different from the enclosing type, create a new value | |
3239 | using the real run-time type as the enclosing type (and of the same | |
3240 | type as ARGP) and return it, with the embedded offset adjusted to | |
3241 | be the correct offset to the enclosed object | |
3242 | RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other | |
3243 | parameters, computed by value_rtti_type(). If these are available, | |
3244 | they can be supplied and a second call to value_rtti_type() is avoided. | |
3245 | (Pass RTYPE == NULL if they're not available */ | |
3246 | ||
3247 | value_ptr | |
3248 | value_full_object (argp, rtype, xfull, xtop, xusing_enc) | |
c5aa993b JM |
3249 | value_ptr argp; |
3250 | struct type *rtype; | |
3251 | int xfull; | |
3252 | int xtop; | |
3253 | int xusing_enc; | |
3254 | ||
c906108c | 3255 | { |
c5aa993b | 3256 | struct type *real_type; |
c906108c SS |
3257 | int full = 0; |
3258 | int top = -1; | |
3259 | int using_enc = 0; | |
3260 | value_ptr new_val; | |
3261 | ||
3262 | if (rtype) | |
3263 | { | |
3264 | real_type = rtype; | |
3265 | full = xfull; | |
3266 | top = xtop; | |
3267 | using_enc = xusing_enc; | |
3268 | } | |
3269 | else | |
3270 | real_type = value_rtti_type (argp, &full, &top, &using_enc); | |
3271 | ||
3272 | /* If no RTTI data, or if object is already complete, do nothing */ | |
3273 | if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp)) | |
3274 | return argp; | |
3275 | ||
3276 | /* If we have the full object, but for some reason the enclosing | |
c5aa993b | 3277 | type is wrong, set it *//* pai: FIXME -- sounds iffy */ |
c906108c SS |
3278 | if (full) |
3279 | { | |
3280 | VALUE_ENCLOSING_TYPE (argp) = real_type; | |
3281 | return argp; | |
3282 | } | |
3283 | ||
3284 | /* Check if object is in memory */ | |
3285 | if (VALUE_LVAL (argp) != lval_memory) | |
3286 | { | |
3287 | warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type)); | |
c5aa993b | 3288 | |
c906108c SS |
3289 | return argp; |
3290 | } | |
c5aa993b | 3291 | |
c906108c SS |
3292 | /* All other cases -- retrieve the complete object */ |
3293 | /* Go back by the computed top_offset from the beginning of the object, | |
3294 | adjusting for the embedded offset of argp if that's what value_rtti_type | |
3295 | used for its computation. */ | |
3296 | new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top + | |
c5aa993b JM |
3297 | (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)), |
3298 | VALUE_BFD_SECTION (argp)); | |
c906108c SS |
3299 | VALUE_TYPE (new_val) = VALUE_TYPE (argp); |
3300 | VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top; | |
3301 | return new_val; | |
3302 | } | |
3303 | ||
3304 | ||
3305 | ||
3306 | ||
3307 | /* C++: return the value of the class instance variable, if one exists. | |
3308 | Flag COMPLAIN signals an error if the request is made in an | |
3309 | inappropriate context. */ | |
3310 | ||
3311 | value_ptr | |
3312 | value_of_this (complain) | |
3313 | int complain; | |
3314 | { | |
3315 | struct symbol *func, *sym; | |
3316 | struct block *b; | |
3317 | int i; | |
3318 | static const char funny_this[] = "this"; | |
3319 | value_ptr this; | |
3320 | ||
3321 | if (selected_frame == 0) | |
3322 | { | |
3323 | if (complain) | |
c5aa993b JM |
3324 | error ("no frame selected"); |
3325 | else | |
3326 | return 0; | |
c906108c SS |
3327 | } |
3328 | ||
3329 | func = get_frame_function (selected_frame); | |
3330 | if (!func) | |
3331 | { | |
3332 | if (complain) | |
3333 | error ("no `this' in nameless context"); | |
c5aa993b JM |
3334 | else |
3335 | return 0; | |
c906108c SS |
3336 | } |
3337 | ||
3338 | b = SYMBOL_BLOCK_VALUE (func); | |
3339 | i = BLOCK_NSYMS (b); | |
3340 | if (i <= 0) | |
3341 | { | |
3342 | if (complain) | |
c5aa993b JM |
3343 | error ("no args, no `this'"); |
3344 | else | |
3345 | return 0; | |
c906108c SS |
3346 | } |
3347 | ||
3348 | /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER | |
3349 | symbol instead of the LOC_ARG one (if both exist). */ | |
3350 | sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE); | |
3351 | if (sym == NULL) | |
3352 | { | |
3353 | if (complain) | |
3354 | error ("current stack frame not in method"); | |
3355 | else | |
3356 | return NULL; | |
3357 | } | |
3358 | ||
3359 | this = read_var_value (sym, selected_frame); | |
3360 | if (this == 0 && complain) | |
3361 | error ("`this' argument at unknown address"); | |
3362 | return this; | |
3363 | } | |
3364 | ||
3365 | /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements | |
3366 | long, starting at LOWBOUND. The result has the same lower bound as | |
3367 | the original ARRAY. */ | |
3368 | ||
3369 | value_ptr | |
3370 | value_slice (array, lowbound, length) | |
3371 | value_ptr array; | |
3372 | int lowbound, length; | |
3373 | { | |
3374 | struct type *slice_range_type, *slice_type, *range_type; | |
3375 | LONGEST lowerbound, upperbound, offset; | |
3376 | value_ptr slice; | |
3377 | struct type *array_type; | |
3378 | array_type = check_typedef (VALUE_TYPE (array)); | |
3379 | COERCE_VARYING_ARRAY (array, array_type); | |
3380 | if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY | |
3381 | && TYPE_CODE (array_type) != TYPE_CODE_STRING | |
3382 | && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING) | |
3383 | error ("cannot take slice of non-array"); | |
3384 | range_type = TYPE_INDEX_TYPE (array_type); | |
3385 | if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) | |
3386 | error ("slice from bad array or bitstring"); | |
3387 | if (lowbound < lowerbound || length < 0 | |
3388 | || lowbound + length - 1 > upperbound | |
c5aa993b | 3389 | /* Chill allows zero-length strings but not arrays. */ |
c906108c SS |
3390 | || (current_language->la_language == language_chill |
3391 | && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY)) | |
3392 | error ("slice out of range"); | |
3393 | /* FIXME-type-allocation: need a way to free this type when we are | |
3394 | done with it. */ | |
c5aa993b | 3395 | slice_range_type = create_range_type ((struct type *) NULL, |
c906108c SS |
3396 | TYPE_TARGET_TYPE (range_type), |
3397 | lowbound, lowbound + length - 1); | |
3398 | if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING) | |
3399 | { | |
3400 | int i; | |
c5aa993b | 3401 | slice_type = create_set_type ((struct type *) NULL, slice_range_type); |
c906108c SS |
3402 | TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING; |
3403 | slice = value_zero (slice_type, not_lval); | |
3404 | for (i = 0; i < length; i++) | |
3405 | { | |
3406 | int element = value_bit_index (array_type, | |
3407 | VALUE_CONTENTS (array), | |
3408 | lowbound + i); | |
3409 | if (element < 0) | |
3410 | error ("internal error accessing bitstring"); | |
3411 | else if (element > 0) | |
3412 | { | |
3413 | int j = i % TARGET_CHAR_BIT; | |
3414 | if (BITS_BIG_ENDIAN) | |
3415 | j = TARGET_CHAR_BIT - 1 - j; | |
3416 | VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j); | |
3417 | } | |
3418 | } | |
3419 | /* We should set the address, bitssize, and bitspos, so the clice | |
c5aa993b JM |
3420 | can be used on the LHS, but that may require extensions to |
3421 | value_assign. For now, just leave as a non_lval. FIXME. */ | |
c906108c SS |
3422 | } |
3423 | else | |
3424 | { | |
3425 | struct type *element_type = TYPE_TARGET_TYPE (array_type); | |
3426 | offset | |
3427 | = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type)); | |
c5aa993b | 3428 | slice_type = create_array_type ((struct type *) NULL, element_type, |
c906108c SS |
3429 | slice_range_type); |
3430 | TYPE_CODE (slice_type) = TYPE_CODE (array_type); | |
3431 | slice = allocate_value (slice_type); | |
3432 | if (VALUE_LAZY (array)) | |
3433 | VALUE_LAZY (slice) = 1; | |
3434 | else | |
3435 | memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset, | |
3436 | TYPE_LENGTH (slice_type)); | |
3437 | if (VALUE_LVAL (array) == lval_internalvar) | |
3438 | VALUE_LVAL (slice) = lval_internalvar_component; | |
3439 | else | |
3440 | VALUE_LVAL (slice) = VALUE_LVAL (array); | |
3441 | VALUE_ADDRESS (slice) = VALUE_ADDRESS (array); | |
3442 | VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset; | |
3443 | } | |
3444 | return slice; | |
3445 | } | |
3446 | ||
3447 | /* Assuming chill_varying_type (VARRAY) is true, return an equivalent | |
3448 | value as a fixed-length array. */ | |
3449 | ||
3450 | value_ptr | |
3451 | varying_to_slice (varray) | |
3452 | value_ptr varray; | |
3453 | { | |
3454 | struct type *vtype = check_typedef (VALUE_TYPE (varray)); | |
3455 | LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0), | |
3456 | VALUE_CONTENTS (varray) | |
3457 | + TYPE_FIELD_BITPOS (vtype, 0) / 8); | |
3458 | return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length); | |
3459 | } | |
3460 | ||
3461 | /* Create a value for a FORTRAN complex number. Currently most of | |
3462 | the time values are coerced to COMPLEX*16 (i.e. a complex number | |
3463 | composed of 2 doubles. This really should be a smarter routine | |
3464 | that figures out precision inteligently as opposed to assuming | |
c5aa993b | 3465 | doubles. FIXME: fmb */ |
c906108c SS |
3466 | |
3467 | value_ptr | |
3468 | value_literal_complex (arg1, arg2, type) | |
3469 | value_ptr arg1; | |
3470 | value_ptr arg2; | |
3471 | struct type *type; | |
3472 | { | |
3473 | register value_ptr val; | |
3474 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3475 | ||
3476 | val = allocate_value (type); | |
3477 | arg1 = value_cast (real_type, arg1); | |
3478 | arg2 = value_cast (real_type, arg2); | |
3479 | ||
3480 | memcpy (VALUE_CONTENTS_RAW (val), | |
3481 | VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type)); | |
3482 | memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type), | |
3483 | VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type)); | |
3484 | return val; | |
3485 | } | |
3486 | ||
3487 | /* Cast a value into the appropriate complex data type. */ | |
3488 | ||
3489 | static value_ptr | |
3490 | cast_into_complex (type, val) | |
3491 | struct type *type; | |
3492 | register value_ptr val; | |
3493 | { | |
3494 | struct type *real_type = TYPE_TARGET_TYPE (type); | |
3495 | if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX) | |
3496 | { | |
3497 | struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val)); | |
3498 | value_ptr re_val = allocate_value (val_real_type); | |
3499 | value_ptr im_val = allocate_value (val_real_type); | |
3500 | ||
3501 | memcpy (VALUE_CONTENTS_RAW (re_val), | |
3502 | VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type)); | |
3503 | memcpy (VALUE_CONTENTS_RAW (im_val), | |
3504 | VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type), | |
c5aa993b | 3505 | TYPE_LENGTH (val_real_type)); |
c906108c SS |
3506 | |
3507 | return value_literal_complex (re_val, im_val, type); | |
3508 | } | |
3509 | else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT | |
3510 | || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT) | |
3511 | return value_literal_complex (val, value_zero (real_type, not_lval), type); | |
3512 | else | |
3513 | error ("cannot cast non-number to complex"); | |
3514 | } | |
3515 | ||
3516 | void | |
3517 | _initialize_valops () | |
3518 | { | |
3519 | #if 0 | |
3520 | add_show_from_set | |
c5aa993b | 3521 | (add_set_cmd ("abandon", class_support, var_boolean, (char *) &auto_abandon, |
c906108c SS |
3522 | "Set automatic abandonment of expressions upon failure.", |
3523 | &setlist), | |
3524 | &showlist); | |
3525 | #endif | |
3526 | ||
3527 | add_show_from_set | |
c5aa993b | 3528 | (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *) &overload_resolution, |
c906108c SS |
3529 | "Set overload resolution in evaluating C++ functions.", |
3530 | &setlist), | |
3531 | &showlist); | |
3532 | overload_resolution = 1; | |
3533 | ||
3534 | } |