]>
Commit | Line | Data |
---|---|---|
ef6f3a8b | 1 | /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. |
7531f36e | 2 | Copyright 1986, 1987, 1989, 1991, 1992, 1994, 1995, 1996 |
df1e1074 | 3 | Free Software Foundation, Inc. |
ef6f3a8b RP |
4 | |
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
6c9638b4 | 19 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
ef6f3a8b RP |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
23 | #include "target.h" | |
d87d7b10 SG |
24 | #include "gdbcore.h" |
25 | #include "xcoffsolib.h" | |
26 | #include "symfile.h" | |
27 | #include "objfiles.h" | |
886955e7 | 28 | #include "libbfd.h" /* For bfd_cache_lookup (FIXME) */ |
d87d7b10 | 29 | #include "bfd.h" |
e2adc41a | 30 | #include "gdb-stabs.h" |
ef6f3a8b RP |
31 | |
32 | #include <sys/ptrace.h> | |
33 | #include <sys/reg.h> | |
34 | ||
35 | #include <sys/param.h> | |
36 | #include <sys/dir.h> | |
37 | #include <sys/user.h> | |
38 | #include <signal.h> | |
39 | #include <sys/ioctl.h> | |
40 | #include <fcntl.h> | |
41 | ||
42 | #include <a.out.h> | |
43 | #include <sys/file.h> | |
2b576293 | 44 | #include "gdb_stat.h" |
ef6f3a8b | 45 | #include <sys/core.h> |
d87d7b10 | 46 | #include <sys/ldr.h> |
ef6f3a8b RP |
47 | |
48 | extern int errno; | |
0c4b30ea | 49 | |
d87d7b10 SG |
50 | extern struct vmap * map_vmap PARAMS ((bfd *bf, bfd *arch)); |
51 | ||
52 | extern struct target_ops exec_ops; | |
ef6f3a8b | 53 | |
a95d92fa FF |
54 | static void |
55 | vmap_exec PARAMS ((void)); | |
56 | ||
57 | static void | |
58 | vmap_ldinfo PARAMS ((struct ld_info *)); | |
59 | ||
60 | static struct vmap * | |
61 | add_vmap PARAMS ((struct ld_info *)); | |
62 | ||
63 | static int | |
64 | objfile_symbol_add PARAMS ((char *)); | |
65 | ||
66 | static void | |
67 | vmap_symtab PARAMS ((struct vmap *)); | |
68 | ||
69 | static void | |
948a9d92 | 70 | fetch_core_registers PARAMS ((char *, unsigned int, int, CORE_ADDR)); |
a95d92fa | 71 | |
ef6f3a8b RP |
72 | static void |
73 | exec_one_dummy_insn PARAMS ((void)); | |
74 | ||
d87d7b10 SG |
75 | extern void |
76 | add_text_to_loadinfo PARAMS ((CORE_ADDR textaddr, CORE_ADDR dataaddr)); | |
77 | ||
0c4b30ea SS |
78 | extern void |
79 | fixup_breakpoints PARAMS ((CORE_ADDR low, CORE_ADDR high, CORE_ADDR delta)); | |
80 | ||
ef6f3a8b RP |
81 | /* Conversion from gdb-to-system special purpose register numbers.. */ |
82 | ||
83 | static int special_regs[] = { | |
84 | IAR, /* PC_REGNUM */ | |
85 | MSR, /* PS_REGNUM */ | |
86 | CR, /* CR_REGNUM */ | |
87 | LR, /* LR_REGNUM */ | |
88 | CTR, /* CTR_REGNUM */ | |
89 | XER, /* XER_REGNUM */ | |
90 | MQ /* MQ_REGNUM */ | |
91 | }; | |
92 | ||
93 | void | |
94 | fetch_inferior_registers (regno) | |
95 | int regno; | |
96 | { | |
97 | int ii; | |
98 | extern char registers[]; | |
99 | ||
100 | if (regno < 0) { /* for all registers */ | |
101 | ||
102 | /* read 32 general purpose registers. */ | |
103 | ||
104 | for (ii=0; ii < 32; ++ii) | |
105 | *(int*)®isters[REGISTER_BYTE (ii)] = | |
106 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, 0, 0); | |
107 | ||
108 | /* read general purpose floating point registers. */ | |
109 | ||
110 | for (ii=0; ii < 32; ++ii) | |
111 | ptrace (PT_READ_FPR, inferior_pid, | |
0c4b30ea | 112 | (PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (FP0_REGNUM+ii)], |
ef6f3a8b RP |
113 | FPR0+ii, 0); |
114 | ||
115 | /* read special registers. */ | |
116 | for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) | |
117 | *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)] = | |
118 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) special_regs[ii], | |
119 | 0, 0); | |
120 | ||
121 | registers_fetched (); | |
122 | return; | |
123 | } | |
124 | ||
125 | /* else an individual register is addressed. */ | |
126 | ||
127 | else if (regno < FP0_REGNUM) { /* a GPR */ | |
128 | *(int*)®isters[REGISTER_BYTE (regno)] = | |
129 | ptrace (PT_READ_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, 0, 0); | |
130 | } | |
131 | else if (regno <= FPLAST_REGNUM) { /* a FPR */ | |
132 | ptrace (PT_READ_FPR, inferior_pid, | |
0c4b30ea | 133 | (PTRACE_ARG3_TYPE) ®isters [REGISTER_BYTE (regno)], |
ef6f3a8b RP |
134 | (regno-FP0_REGNUM+FPR0), 0); |
135 | } | |
136 | else if (regno <= LAST_SP_REGNUM) { /* a special register */ | |
137 | *(int*)®isters[REGISTER_BYTE (regno)] = | |
138 | ptrace (PT_READ_GPR, inferior_pid, | |
139 | (PTRACE_ARG3_TYPE) special_regs[regno-FIRST_SP_REGNUM], 0, 0); | |
140 | } | |
141 | else | |
199b2450 | 142 | fprintf_unfiltered (gdb_stderr, "gdb error: register no %d not implemented.\n", regno); |
ef6f3a8b RP |
143 | |
144 | register_valid [regno] = 1; | |
145 | } | |
146 | ||
147 | /* Store our register values back into the inferior. | |
148 | If REGNO is -1, do this for all registers. | |
149 | Otherwise, REGNO specifies which register (so we can save time). */ | |
150 | ||
151 | void | |
152 | store_inferior_registers (regno) | |
153 | int regno; | |
154 | { | |
155 | extern char registers[]; | |
156 | ||
157 | errno = 0; | |
158 | ||
0c4b30ea SS |
159 | if (regno == -1) |
160 | { /* for all registers.. */ | |
ef6f3a8b RP |
161 | int ii; |
162 | ||
163 | /* execute one dummy instruction (which is a breakpoint) in inferior | |
164 | process. So give kernel a chance to do internal house keeping. | |
165 | Otherwise the following ptrace(2) calls will mess up user stack | |
166 | since kernel will get confused about the bottom of the stack (%sp) */ | |
167 | ||
168 | exec_one_dummy_insn (); | |
169 | ||
170 | /* write general purpose registers first! */ | |
0c4b30ea SS |
171 | for ( ii=GPR0; ii<=GPR31; ++ii) |
172 | { | |
173 | ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) ii, | |
174 | *(int*)®isters[REGISTER_BYTE (ii)], 0); | |
175 | if (errno) | |
176 | { | |
177 | perror ("ptrace write_gpr"); | |
178 | errno = 0; | |
179 | } | |
ef6f3a8b | 180 | } |
ef6f3a8b RP |
181 | |
182 | /* write floating point registers now. */ | |
0c4b30ea SS |
183 | for ( ii=0; ii < 32; ++ii) |
184 | { | |
185 | ptrace (PT_WRITE_FPR, inferior_pid, | |
ef6f3a8b | 186 | (PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (FP0_REGNUM+ii)], |
0c4b30ea SS |
187 | FPR0+ii, 0); |
188 | if (errno) | |
189 | { | |
190 | perror ("ptrace write_fpr"); | |
191 | errno = 0; | |
192 | } | |
193 | } | |
ef6f3a8b RP |
194 | |
195 | /* write special registers. */ | |
0c4b30ea SS |
196 | for (ii=0; ii <= LAST_SP_REGNUM-FIRST_SP_REGNUM; ++ii) |
197 | { | |
198 | ptrace (PT_WRITE_GPR, inferior_pid, | |
199 | (PTRACE_ARG3_TYPE) special_regs[ii], | |
200 | *(int*)®isters[REGISTER_BYTE (FIRST_SP_REGNUM+ii)], 0); | |
201 | if (errno) | |
202 | { | |
203 | perror ("ptrace write_gpr"); | |
204 | errno = 0; | |
205 | } | |
ef6f3a8b | 206 | } |
0c4b30ea | 207 | } |
ef6f3a8b RP |
208 | |
209 | /* else, a specific register number is given... */ | |
210 | ||
0c4b30ea SS |
211 | else if (regno < FP0_REGNUM) /* a GPR */ |
212 | { | |
213 | ptrace (PT_WRITE_GPR, inferior_pid, (PTRACE_ARG3_TYPE) regno, | |
214 | *(int*)®isters[REGISTER_BYTE (regno)], 0); | |
215 | } | |
ef6f3a8b | 216 | |
0c4b30ea SS |
217 | else if (regno <= FPLAST_REGNUM) /* a FPR */ |
218 | { | |
219 | ptrace (PT_WRITE_FPR, inferior_pid, | |
220 | (PTRACE_ARG3_TYPE) ®isters[REGISTER_BYTE (regno)], | |
221 | regno - FP0_REGNUM + FPR0, 0); | |
222 | } | |
ef6f3a8b | 223 | |
0c4b30ea SS |
224 | else if (regno <= LAST_SP_REGNUM) /* a special register */ |
225 | { | |
226 | ptrace (PT_WRITE_GPR, inferior_pid, | |
227 | (PTRACE_ARG3_TYPE) special_regs [regno-FIRST_SP_REGNUM], | |
228 | *(int*)®isters[REGISTER_BYTE (regno)], 0); | |
229 | } | |
ef6f3a8b RP |
230 | |
231 | else | |
199b2450 | 232 | fprintf_unfiltered (gdb_stderr, "Gdb error: register no %d not implemented.\n", regno); |
ef6f3a8b | 233 | |
0c4b30ea SS |
234 | if (errno) |
235 | { | |
236 | perror ("ptrace write"); | |
237 | errno = 0; | |
238 | } | |
ef6f3a8b RP |
239 | } |
240 | ||
241 | /* Execute one dummy breakpoint instruction. This way we give the kernel | |
242 | a chance to do some housekeeping and update inferior's internal data, | |
243 | including u_area. */ | |
0c4b30ea | 244 | |
ef6f3a8b RP |
245 | static void |
246 | exec_one_dummy_insn () | |
247 | { | |
248 | #define DUMMY_INSN_ADDR (TEXT_SEGMENT_BASE)+0x200 | |
249 | ||
0c4b30ea | 250 | char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ |
ef6f3a8b | 251 | unsigned int status, pid; |
a466b86a | 252 | CORE_ADDR prev_pc; |
ef6f3a8b RP |
253 | |
254 | /* We plant one dummy breakpoint into DUMMY_INSN_ADDR address. We assume that | |
255 | this address will never be executed again by the real code. */ | |
256 | ||
0c4b30ea | 257 | target_insert_breakpoint (DUMMY_INSN_ADDR, shadow_contents); |
ef6f3a8b RP |
258 | |
259 | errno = 0; | |
a0d76829 JL |
260 | |
261 | /* You might think this could be done with a single ptrace call, and | |
262 | you'd be correct for just about every platform I've ever worked | |
263 | on. However, rs6000-ibm-aix4.1.3 seems to have screwed this up -- | |
264 | the inferior never hits the breakpoint (it's also worth noting | |
265 | powerpc-ibm-aix4.1.3 works correctly). */ | |
a466b86a | 266 | prev_pc = read_pc (); |
a0d76829 JL |
267 | write_pc (DUMMY_INSN_ADDR); |
268 | ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE)1, 0, 0); | |
269 | ||
ef6f3a8b RP |
270 | if (errno) |
271 | perror ("pt_continue"); | |
272 | ||
273 | do { | |
274 | pid = wait (&status); | |
275 | } while (pid != inferior_pid); | |
276 | ||
a466b86a | 277 | write_pc (prev_pc); |
0c4b30ea | 278 | target_remove_breakpoint (DUMMY_INSN_ADDR, shadow_contents); |
ef6f3a8b RP |
279 | } |
280 | ||
a1df8e78 | 281 | static void |
ef6f3a8b RP |
282 | fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr) |
283 | char *core_reg_sect; | |
284 | unsigned core_reg_size; | |
285 | int which; | |
948a9d92 | 286 | CORE_ADDR reg_addr; /* Unused in this version */ |
ef6f3a8b RP |
287 | { |
288 | /* fetch GPRs and special registers from the first register section | |
289 | in core bfd. */ | |
0c4b30ea SS |
290 | if (which == 0) |
291 | { | |
292 | /* copy GPRs first. */ | |
293 | memcpy (registers, core_reg_sect, 32 * 4); | |
294 | ||
295 | /* gdb's internal register template and bfd's register section layout | |
296 | should share a common include file. FIXMEmgo */ | |
297 | /* then comes special registes. They are supposed to be in the same | |
298 | order in gdb template and bfd `.reg' section. */ | |
299 | core_reg_sect += (32 * 4); | |
300 | memcpy (®isters [REGISTER_BYTE (FIRST_SP_REGNUM)], core_reg_sect, | |
301 | (LAST_SP_REGNUM - FIRST_SP_REGNUM + 1) * 4); | |
302 | } | |
ef6f3a8b RP |
303 | |
304 | /* fetch floating point registers from register section 2 in core bfd. */ | |
305 | else if (which == 2) | |
ade40d31 | 306 | memcpy (®isters [REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 32 * 8); |
ef6f3a8b RP |
307 | |
308 | else | |
199b2450 | 309 | fprintf_unfiltered (gdb_stderr, "Gdb error: unknown parameter to fetch_core_registers().\n"); |
ef6f3a8b | 310 | } |
d87d7b10 | 311 | \f |
0c4b30ea | 312 | /* handle symbol translation on vmapping */ |
d87d7b10 SG |
313 | |
314 | static void | |
315 | vmap_symtab (vp) | |
316 | register struct vmap *vp; | |
317 | { | |
318 | register struct objfile *objfile; | |
d87d7b10 SG |
319 | CORE_ADDR text_delta; |
320 | CORE_ADDR data_delta; | |
321 | CORE_ADDR bss_delta; | |
322 | struct section_offsets *new_offsets; | |
323 | int i; | |
324 | ||
325 | objfile = vp->objfile; | |
326 | if (objfile == NULL) | |
327 | { | |
328 | /* OK, it's not an objfile we opened ourselves. | |
329 | Currently, that can only happen with the exec file, so | |
330 | relocate the symbols for the symfile. */ | |
331 | if (symfile_objfile == NULL) | |
332 | return; | |
333 | objfile = symfile_objfile; | |
334 | } | |
335 | ||
336 | new_offsets = alloca | |
337 | (sizeof (struct section_offsets) | |
338 | + sizeof (new_offsets->offsets) * objfile->num_sections); | |
339 | ||
340 | for (i = 0; i < objfile->num_sections; ++i) | |
341 | ANOFFSET (new_offsets, i) = ANOFFSET (objfile->section_offsets, i); | |
342 | ||
d87d7b10 | 343 | text_delta = |
e2adc41a JK |
344 | vp->tstart - ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT); |
345 | ANOFFSET (new_offsets, SECT_OFF_TEXT) = vp->tstart; | |
d87d7b10 | 346 | |
d87d7b10 | 347 | data_delta = |
e2adc41a JK |
348 | vp->dstart - ANOFFSET (objfile->section_offsets, SECT_OFF_DATA); |
349 | ANOFFSET (new_offsets, SECT_OFF_DATA) = vp->dstart; | |
d87d7b10 | 350 | |
d87d7b10 | 351 | bss_delta = |
e2adc41a JK |
352 | vp->dstart - ANOFFSET (objfile->section_offsets, SECT_OFF_BSS); |
353 | ANOFFSET (new_offsets, SECT_OFF_BSS) = vp->dstart; | |
d87d7b10 SG |
354 | |
355 | objfile_relocate (objfile, new_offsets); | |
d87d7b10 SG |
356 | } |
357 | \f | |
358 | /* Add symbols for an objfile. */ | |
0c4b30ea | 359 | |
d87d7b10 SG |
360 | static int |
361 | objfile_symbol_add (arg) | |
362 | char *arg; | |
363 | { | |
364 | struct objfile *obj = (struct objfile *) arg; | |
0c4b30ea | 365 | |
d87d7b10 SG |
366 | syms_from_objfile (obj, 0, 0, 0); |
367 | new_symfile_objfile (obj, 0, 0); | |
368 | return 1; | |
369 | } | |
370 | ||
371 | /* Add a new vmap entry based on ldinfo() information. | |
372 | ||
373 | If ldi->ldinfo_fd is not valid (e.g. this struct ld_info is from a | |
374 | core file), the caller should set it to -1, and we will open the file. | |
375 | ||
376 | Return the vmap new entry. */ | |
0c4b30ea | 377 | |
d87d7b10 | 378 | static struct vmap * |
0c4b30ea | 379 | add_vmap (ldi) |
d87d7b10 SG |
380 | register struct ld_info *ldi; |
381 | { | |
0c4b30ea SS |
382 | bfd *abfd, *last; |
383 | register char *mem, *objname; | |
384 | struct objfile *obj; | |
385 | struct vmap *vp; | |
386 | ||
387 | /* This ldi structure was allocated using alloca() in | |
388 | xcoff_relocate_symtab(). Now we need to have persistent object | |
389 | and member names, so we should save them. */ | |
390 | ||
391 | mem = ldi->ldinfo_filename + strlen (ldi->ldinfo_filename) + 1; | |
392 | mem = savestring (mem, strlen (mem)); | |
393 | objname = savestring (ldi->ldinfo_filename, strlen (ldi->ldinfo_filename)); | |
394 | ||
395 | if (ldi->ldinfo_fd < 0) | |
396 | /* Note that this opens it once for every member; a possible | |
397 | enhancement would be to only open it once for every object. */ | |
398 | abfd = bfd_openr (objname, gnutarget); | |
399 | else | |
400 | abfd = bfd_fdopenr (objname, gnutarget, ldi->ldinfo_fd); | |
401 | if (!abfd) | |
402 | error ("Could not open `%s' as an executable file: %s", | |
403 | objname, bfd_errmsg (bfd_get_error ())); | |
404 | ||
405 | /* make sure we have an object file */ | |
406 | ||
407 | if (bfd_check_format (abfd, bfd_object)) | |
408 | vp = map_vmap (abfd, 0); | |
409 | ||
410 | else if (bfd_check_format (abfd, bfd_archive)) | |
411 | { | |
412 | last = 0; | |
413 | /* FIXME??? am I tossing BFDs? bfd? */ | |
414 | while ((last = bfd_openr_next_archived_file (abfd, last))) | |
415 | if (STREQ (mem, last->filename)) | |
416 | break; | |
417 | ||
418 | if (!last) | |
419 | { | |
420 | bfd_close (abfd); | |
421 | /* FIXME -- should be error */ | |
422 | warning ("\"%s\": member \"%s\" missing.", abfd->filename, mem); | |
a95d92fa | 423 | return 0; |
d87d7b10 | 424 | } |
0c4b30ea SS |
425 | |
426 | if (!bfd_check_format(last, bfd_object)) | |
427 | { | |
428 | bfd_close (last); /* XXX??? */ | |
429 | goto obj_err; | |
d87d7b10 | 430 | } |
0c4b30ea SS |
431 | |
432 | vp = map_vmap (last, abfd); | |
433 | } | |
434 | else | |
435 | { | |
436 | obj_err: | |
437 | bfd_close (abfd); | |
438 | error ("\"%s\": not in executable format: %s.", | |
439 | objname, bfd_errmsg (bfd_get_error ())); | |
440 | /*NOTREACHED*/ | |
441 | } | |
442 | obj = allocate_objfile (vp->bfd, 0); | |
443 | vp->objfile = obj; | |
d87d7b10 SG |
444 | |
445 | #ifndef SOLIB_SYMBOLS_MANUAL | |
0c4b30ea SS |
446 | if (catch_errors (objfile_symbol_add, (char *)obj, |
447 | "Error while reading shared library symbols:\n", | |
448 | RETURN_MASK_ALL)) | |
449 | { | |
450 | /* Note this is only done if symbol reading was successful. */ | |
451 | vmap_symtab (vp); | |
452 | vp->loaded = 1; | |
453 | } | |
d87d7b10 | 454 | #endif |
0c4b30ea | 455 | return vp; |
d87d7b10 SG |
456 | } |
457 | \f | |
0c4b30ea SS |
458 | /* update VMAP info with ldinfo() information |
459 | Input is ptr to ldinfo() results. */ | |
d87d7b10 SG |
460 | |
461 | static void | |
0c4b30ea | 462 | vmap_ldinfo (ldi) |
d87d7b10 SG |
463 | register struct ld_info *ldi; |
464 | { | |
465 | struct stat ii, vi; | |
466 | register struct vmap *vp; | |
88a5c3fc | 467 | int got_one, retried; |
a95d92fa | 468 | int got_exec_file = 0; |
d87d7b10 | 469 | |
0c4b30ea SS |
470 | /* For each *ldi, see if we have a corresponding *vp. |
471 | If so, update the mapping, and symbol table. | |
472 | If not, add an entry and symbol table. */ | |
d87d7b10 | 473 | |
0c4b30ea SS |
474 | do { |
475 | char *name = ldi->ldinfo_filename; | |
476 | char *memb = name + strlen(name) + 1; | |
d87d7b10 | 477 | |
0c4b30ea | 478 | retried = 0; |
d87d7b10 | 479 | |
0c4b30ea SS |
480 | if (fstat (ldi->ldinfo_fd, &ii) < 0) |
481 | fatal ("cannot fstat(fd=%d) on %s", ldi->ldinfo_fd, name); | |
482 | retry: | |
483 | for (got_one = 0, vp = vmap; vp; vp = vp->nxt) | |
484 | { | |
0c4b30ea SS |
485 | /* First try to find a `vp', which is the same as in ldinfo. |
486 | If not the same, just continue and grep the next `vp'. If same, | |
487 | relocate its tstart, tend, dstart, dend values. If no such `vp' | |
488 | found, get out of this for loop, add this ldi entry as a new vmap | |
489 | (add_vmap) and come back, fins its `vp' and so on... */ | |
d87d7b10 | 490 | |
0c4b30ea | 491 | /* The filenames are not always sufficient to match on. */ |
d87d7b10 | 492 | |
0c4b30ea SS |
493 | if ((name[0] == '/' && !STREQ(name, vp->name)) |
494 | || (memb[0] && !STREQ(memb, vp->member))) | |
495 | continue; | |
d87d7b10 | 496 | |
0c4b30ea | 497 | /* See if we are referring to the same file. */ |
fb494327 JK |
498 | if (bfd_stat (vp->bfd, &vi) < 0) |
499 | /* An error here is innocuous, most likely meaning that | |
500 | the file descriptor has become worthless. | |
501 | FIXME: What does it mean for a file descriptor to become | |
502 | "worthless"? What makes it happen? What error does it | |
503 | produce (ENOENT? others?)? Should we at least provide | |
504 | a warning? */ | |
523ca9d0 | 505 | continue; |
d87d7b10 | 506 | |
0c4b30ea SS |
507 | if (ii.st_dev != vi.st_dev || ii.st_ino != vi.st_ino) |
508 | continue; | |
d87d7b10 | 509 | |
0c4b30ea SS |
510 | if (!retried) |
511 | close (ldi->ldinfo_fd); | |
d87d7b10 | 512 | |
0c4b30ea | 513 | ++got_one; |
d87d7b10 | 514 | |
fb494327 | 515 | /* Found a corresponding VMAP. Remap! */ |
d87d7b10 | 516 | |
0c4b30ea SS |
517 | /* We can assume pointer == CORE_ADDR, this code is native only. */ |
518 | vp->tstart = (CORE_ADDR) ldi->ldinfo_textorg; | |
519 | vp->tend = vp->tstart + ldi->ldinfo_textsize; | |
520 | vp->dstart = (CORE_ADDR) ldi->ldinfo_dataorg; | |
521 | vp->dend = vp->dstart + ldi->ldinfo_datasize; | |
d87d7b10 | 522 | |
0c4b30ea SS |
523 | if (vp->tadj) |
524 | { | |
d87d7b10 SG |
525 | vp->tstart += vp->tadj; |
526 | vp->tend += vp->tadj; | |
527 | } | |
528 | ||
88a5c3fc JK |
529 | /* The objfile is only NULL for the exec file. */ |
530 | if (vp->objfile == NULL) | |
531 | got_exec_file = 1; | |
532 | ||
fbc3f191 JL |
533 | #ifdef DONT_RELOCATE_SYMFILE_OBJFILE |
534 | if (vp->objfile == symfile_objfile | |
535 | || vp->objfile == NULL) | |
536 | { | |
537 | ldi->ldinfo_dataorg = 0; | |
538 | vp->dstart = (CORE_ADDR) 0; | |
539 | vp->dend = ldi->ldinfo_datasize; | |
540 | } | |
541 | #endif | |
542 | ||
0c4b30ea SS |
543 | /* relocate symbol table(s). */ |
544 | vmap_symtab (vp); | |
d87d7b10 | 545 | |
fb494327 | 546 | /* There may be more, so we don't break out of the loop. */ |
0c4b30ea | 547 | } |
d87d7b10 | 548 | |
0c4b30ea SS |
549 | /* if there was no matching *vp, we must perforce create the sucker(s) */ |
550 | if (!got_one && !retried) | |
551 | { | |
552 | add_vmap (ldi); | |
553 | ++retried; | |
554 | goto retry; | |
555 | } | |
d87d7b10 SG |
556 | } while (ldi->ldinfo_next |
557 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
558 | ||
8989d4fc JK |
559 | /* If we don't find the symfile_objfile anywhere in the ldinfo, it |
560 | is unlikely that the symbol file is relocated to the proper | |
561 | address. And we might have attached to a process which is | |
562 | running a different copy of the same executable. */ | |
88a5c3fc | 563 | if (symfile_objfile != NULL && !got_exec_file) |
8989d4fc JK |
564 | { |
565 | warning_begin (); | |
566 | fputs_unfiltered ("Symbol file ", gdb_stderr); | |
567 | fputs_unfiltered (symfile_objfile->name, gdb_stderr); | |
568 | fputs_unfiltered ("\nis not mapped; discarding it.\n\ | |
569 | If in fact that file has symbols which the mapped files listed by\n\ | |
570 | \"info files\" lack, you can load symbols with the \"symbol-file\" or\n\ | |
571 | \"add-symbol-file\" commands (note that you must take care of relocating\n\ | |
572 | symbols to the proper address).\n", gdb_stderr); | |
573 | free_objfile (symfile_objfile); | |
574 | symfile_objfile = NULL; | |
575 | } | |
e2adc41a | 576 | breakpoint_re_set (); |
d87d7b10 SG |
577 | } |
578 | \f | |
579 | /* As well as symbol tables, exec_sections need relocation. After | |
580 | the inferior process' termination, there will be a relocated symbol | |
581 | table exist with no corresponding inferior process. At that time, we | |
582 | need to use `exec' bfd, rather than the inferior process's memory space | |
583 | to look up symbols. | |
584 | ||
585 | `exec_sections' need to be relocated only once, as long as the exec | |
586 | file remains unchanged. | |
587 | */ | |
588 | ||
589 | static void | |
590 | vmap_exec () | |
591 | { | |
592 | static bfd *execbfd; | |
593 | int i; | |
594 | ||
595 | if (execbfd == exec_bfd) | |
596 | return; | |
597 | ||
598 | execbfd = exec_bfd; | |
599 | ||
600 | if (!vmap || !exec_ops.to_sections) | |
601 | error ("vmap_exec: vmap or exec_ops.to_sections == 0\n"); | |
602 | ||
603 | for (i=0; &exec_ops.to_sections[i] < exec_ops.to_sections_end; i++) | |
604 | { | |
94d4b713 | 605 | if (STREQ(".text", exec_ops.to_sections[i].the_bfd_section->name)) |
d87d7b10 SG |
606 | { |
607 | exec_ops.to_sections[i].addr += vmap->tstart; | |
608 | exec_ops.to_sections[i].endaddr += vmap->tstart; | |
609 | } | |
94d4b713 | 610 | else if (STREQ(".data", exec_ops.to_sections[i].the_bfd_section->name)) |
d87d7b10 SG |
611 | { |
612 | exec_ops.to_sections[i].addr += vmap->dstart; | |
613 | exec_ops.to_sections[i].endaddr += vmap->dstart; | |
614 | } | |
615 | } | |
616 | } | |
617 | \f | |
618 | /* xcoff_relocate_symtab - hook for symbol table relocation. | |
619 | also reads shared libraries.. */ | |
620 | ||
0c4b30ea | 621 | void |
d87d7b10 | 622 | xcoff_relocate_symtab (pid) |
0c4b30ea | 623 | unsigned int pid; |
d87d7b10 SG |
624 | { |
625 | #define MAX_LOAD_SEGS 64 /* maximum number of load segments */ | |
626 | ||
0c4b30ea | 627 | struct ld_info *ldi; |
d87d7b10 | 628 | |
0c4b30ea | 629 | ldi = (void *) alloca(MAX_LOAD_SEGS * sizeof (*ldi)); |
d87d7b10 | 630 | |
0c4b30ea SS |
631 | /* According to my humble theory, AIX has some timing problems and |
632 | when the user stack grows, kernel doesn't update stack info in time | |
633 | and ptrace calls step on user stack. That is why we sleep here a little, | |
634 | and give kernel to update its internals. */ | |
d87d7b10 | 635 | |
0c4b30ea | 636 | usleep (36000); |
d87d7b10 | 637 | |
0c4b30ea SS |
638 | errno = 0; |
639 | ptrace (PT_LDINFO, pid, (PTRACE_ARG3_TYPE) ldi, | |
640 | MAX_LOAD_SEGS * sizeof(*ldi), ldi); | |
641 | if (errno) | |
642 | perror_with_name ("ptrace ldinfo"); | |
d87d7b10 | 643 | |
0c4b30ea | 644 | vmap_ldinfo (ldi); |
d87d7b10 | 645 | |
0c4b30ea SS |
646 | do { |
647 | /* We are allowed to assume CORE_ADDR == pointer. This code is | |
648 | native only. */ | |
649 | add_text_to_loadinfo ((CORE_ADDR) ldi->ldinfo_textorg, | |
650 | (CORE_ADDR) ldi->ldinfo_dataorg); | |
651 | } while (ldi->ldinfo_next | |
652 | && (ldi = (void *) (ldi->ldinfo_next + (char *) ldi))); | |
d87d7b10 SG |
653 | |
654 | #if 0 | |
655 | /* Now that we've jumbled things around, re-sort them. */ | |
656 | sort_minimal_symbols (); | |
657 | #endif | |
658 | ||
659 | /* relocate the exec and core sections as well. */ | |
660 | vmap_exec (); | |
661 | } | |
662 | \f | |
663 | /* Core file stuff. */ | |
664 | ||
665 | /* Relocate symtabs and read in shared library info, based on symbols | |
666 | from the core file. */ | |
0c4b30ea | 667 | |
d87d7b10 | 668 | void |
9137a6f4 PS |
669 | xcoff_relocate_core (target) |
670 | struct target_ops *target; | |
d87d7b10 SG |
671 | { |
672 | /* Offset of member MEMBER in a struct of type TYPE. */ | |
673 | #ifndef offsetof | |
674 | #define offsetof(TYPE, MEMBER) ((int) &((TYPE *)0)->MEMBER) | |
675 | #endif | |
676 | ||
677 | /* Size of a struct ld_info except for the variable-length filename. */ | |
678 | #define LDINFO_SIZE (offsetof (struct ld_info, ldinfo_filename)) | |
679 | ||
680 | sec_ptr ldinfo_sec; | |
681 | int offset = 0; | |
682 | struct ld_info *ldip; | |
683 | struct vmap *vp; | |
684 | ||
685 | /* Allocated size of buffer. */ | |
686 | int buffer_size = LDINFO_SIZE; | |
687 | char *buffer = xmalloc (buffer_size); | |
688 | struct cleanup *old = make_cleanup (free_current_contents, &buffer); | |
689 | ||
690 | /* FIXME, this restriction should not exist. For now, though I'll | |
691 | avoid coredumps with error() pending a real fix. */ | |
692 | if (vmap == NULL) | |
693 | error | |
694 | ("Can't debug a core file without an executable file (on the RS/6000)"); | |
695 | ||
696 | ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo"); | |
697 | if (ldinfo_sec == NULL) | |
698 | { | |
0c4b30ea | 699 | bfd_err: |
d87d7b10 | 700 | fprintf_filtered (gdb_stderr, "Couldn't get ldinfo from core file: %s\n", |
c4a081e1 | 701 | bfd_errmsg (bfd_get_error ())); |
d87d7b10 SG |
702 | do_cleanups (old); |
703 | return; | |
704 | } | |
705 | do | |
706 | { | |
707 | int i; | |
708 | int names_found = 0; | |
709 | ||
710 | /* Read in everything but the name. */ | |
711 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, buffer, | |
712 | offset, LDINFO_SIZE) == 0) | |
713 | goto bfd_err; | |
714 | ||
715 | /* Now the name. */ | |
716 | i = LDINFO_SIZE; | |
717 | do | |
718 | { | |
719 | if (i == buffer_size) | |
720 | { | |
721 | buffer_size *= 2; | |
722 | buffer = xrealloc (buffer, buffer_size); | |
723 | } | |
724 | if (bfd_get_section_contents (core_bfd, ldinfo_sec, &buffer[i], | |
725 | offset + i, 1) == 0) | |
726 | goto bfd_err; | |
727 | if (buffer[i++] == '\0') | |
728 | ++names_found; | |
729 | } while (names_found < 2); | |
730 | ||
0c4b30ea | 731 | ldip = (struct ld_info *) buffer; |
d87d7b10 SG |
732 | |
733 | /* Can't use a file descriptor from the core file; need to open it. */ | |
734 | ldip->ldinfo_fd = -1; | |
735 | ||
736 | /* The first ldinfo is for the exec file, allocated elsewhere. */ | |
737 | if (offset == 0) | |
738 | vp = vmap; | |
739 | else | |
740 | vp = add_vmap (ldip); | |
741 | ||
742 | offset += ldip->ldinfo_next; | |
743 | ||
744 | /* We can assume pointer == CORE_ADDR, this code is native only. */ | |
745 | vp->tstart = (CORE_ADDR) ldip->ldinfo_textorg; | |
746 | vp->tend = vp->tstart + ldip->ldinfo_textsize; | |
747 | vp->dstart = (CORE_ADDR) ldip->ldinfo_dataorg; | |
748 | vp->dend = vp->dstart + ldip->ldinfo_datasize; | |
749 | ||
df1e1074 PS |
750 | #ifdef DONT_RELOCATE_SYMFILE_OBJFILE |
751 | if (vp == vmap) | |
752 | { | |
753 | vp->dstart = (CORE_ADDR) 0; | |
754 | vp->dend = ldip->ldinfo_datasize; | |
755 | } | |
756 | #endif | |
757 | ||
523ca9d0 SS |
758 | if (vp->tadj != 0) |
759 | { | |
760 | vp->tstart += vp->tadj; | |
761 | vp->tend += vp->tadj; | |
762 | } | |
d87d7b10 SG |
763 | |
764 | /* Unless this is the exec file, | |
765 | add our sections to the section table for the core target. */ | |
766 | if (vp != vmap) | |
767 | { | |
768 | int count; | |
769 | struct section_table *stp; | |
148070cc JL |
770 | int update_coreops; |
771 | ||
772 | /* We must update the to_sections field in the core_ops structure | |
773 | now to avoid dangling pointer dereferences. */ | |
09af5868 | 774 | update_coreops = core_ops.to_sections == target->to_sections; |
d87d7b10 | 775 | |
9137a6f4 | 776 | count = target->to_sections_end - target->to_sections; |
d87d7b10 | 777 | count += 2; |
9137a6f4 PS |
778 | target->to_sections = (struct section_table *) |
779 | xrealloc (target->to_sections, | |
d87d7b10 | 780 | sizeof (struct section_table) * count); |
9137a6f4 | 781 | target->to_sections_end = target->to_sections + count; |
148070cc JL |
782 | |
783 | /* Update the to_sections field in the core_ops structure | |
784 | if needed. */ | |
785 | if (update_coreops) | |
786 | { | |
787 | core_ops.to_sections = target->to_sections; | |
788 | core_ops.to_sections_end = target->to_sections_end; | |
789 | } | |
9137a6f4 | 790 | stp = target->to_sections_end - 2; |
d87d7b10 SG |
791 | |
792 | /* "Why do we add bfd_section_vma?", I hear you cry. | |
793 | Well, the start of the section in the file is actually | |
794 | that far into the section as the struct vmap understands it. | |
795 | So for text sections, bfd_section_vma tends to be 0x200, | |
796 | and if vp->tstart is 0xd0002000, then the first byte of | |
797 | the text section on disk corresponds to address 0xd0002200. */ | |
798 | stp->bfd = vp->bfd; | |
94d4b713 JK |
799 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".text"); |
800 | stp->addr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->tstart; | |
801 | stp->endaddr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->tend; | |
d87d7b10 SG |
802 | stp++; |
803 | ||
804 | stp->bfd = vp->bfd; | |
94d4b713 JK |
805 | stp->the_bfd_section = bfd_get_section_by_name (stp->bfd, ".data"); |
806 | stp->addr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->dstart; | |
807 | stp->endaddr = bfd_section_vma (stp->bfd, stp->the_bfd_section) + vp->dend; | |
d87d7b10 SG |
808 | } |
809 | ||
810 | vmap_symtab (vp); | |
811 | ||
812 | add_text_to_loadinfo ((CORE_ADDR)ldip->ldinfo_textorg, | |
813 | (CORE_ADDR)ldip->ldinfo_dataorg); | |
814 | } while (ldip->ldinfo_next != 0); | |
815 | vmap_exec (); | |
e2adc41a | 816 | breakpoint_re_set (); |
d87d7b10 SG |
817 | do_cleanups (old); |
818 | } | |
7531f36e FF |
819 | |
820 | int | |
821 | kernel_u_size () | |
822 | { | |
823 | return (sizeof (struct user)); | |
824 | } | |
825 | ||
a1df8e78 FF |
826 | \f |
827 | /* Register that we are able to handle rs6000 core file formats. */ | |
828 | ||
829 | static struct core_fns rs6000_core_fns = | |
830 | { | |
831 | bfd_target_coff_flavour, | |
832 | fetch_core_registers, | |
833 | NULL | |
834 | }; | |
835 | ||
836 | void | |
837 | _initialize_core_rs6000 () | |
838 | { | |
062cb0d3 FF |
839 | /* For native configurations, where this module is included, inform |
840 | the xcoffsolib module where it can find the function for symbol table | |
841 | relocation at runtime. */ | |
842 | xcoff_relocate_symtab_hook = &xcoff_relocate_symtab; | |
a1df8e78 FF |
843 | add_core_fns (&rs6000_core_fns); |
844 | } |