]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-machine dependent code for Hitachi H8/300, for GDB. |
cda5a58a AC |
2 | |
3 | Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, | |
4 | 1999, 2000, 2001, 2002 Free Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | /* | |
c5aa993b JM |
24 | Contributed by Steve Chamberlain |
25 | [email protected] | |
c906108c SS |
26 | */ |
27 | ||
28 | #include "defs.h" | |
c906108c | 29 | #include "value.h" |
928e48af CV |
30 | #include "inferior.h" |
31 | #include "symfile.h" | |
32 | #include "arch-utils.h" | |
4e052eda | 33 | #include "regcache.h" |
928e48af CV |
34 | #include "gdbcore.h" |
35 | #include "objfiles.h" | |
36 | #include "gdbcmd.h" | |
4904ba5b | 37 | #include "gdb_assert.h" |
c906108c | 38 | |
928e48af CV |
39 | /* Extra info which is saved in each frame_info. */ |
40 | struct frame_extra_info | |
41 | { | |
42 | CORE_ADDR from_pc; | |
43 | CORE_ADDR args_pointer; | |
44 | CORE_ADDR locals_pointer; | |
45 | }; | |
c906108c | 46 | |
928e48af CV |
47 | #define E_NUM_REGS (h8300smode ? 14 : 13) |
48 | ||
49 | enum | |
50 | { | |
51 | h8300_reg_size = 2, | |
52 | h8300h_reg_size = 4, | |
53 | h8300_max_reg_size = 4, | |
54 | }; | |
55 | #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size) | |
56 | ||
57 | enum gdb_regnum | |
58 | { | |
59 | E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM, | |
60 | E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, | |
61 | E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM, | |
62 | E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM, | |
63 | E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM, | |
64 | E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM, | |
65 | E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM, | |
66 | E_SP_REGNUM, | |
67 | E_CCR_REGNUM, | |
68 | E_PC_REGNUM, | |
69 | E_CYCLES_REGNUM, | |
70 | E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM, | |
71 | E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM, | |
72 | E_INSTS_REGNUM | |
73 | }; | |
c906108c SS |
74 | |
75 | #define UNSIGNED_SHORT(X) ((X) & 0xffff) | |
76 | ||
77 | #define IS_PUSH(x) ((x & 0xfff0)==0x6df0) | |
78 | #define IS_PUSH_FP(x) (x == 0x6df6) | |
79 | #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6) | |
80 | #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6) | |
81 | #define IS_SUB2_SP(x) (x==0x1b87) | |
82 | #define IS_SUB4_SP(x) (x==0x1b97) | |
83 | #define IS_SUBL_SP(x) (x==0x7a37) | |
84 | #define IS_MOVK_R5(x) (x==0x7905) | |
85 | #define IS_SUB_R5SP(x) (x==0x1957) | |
86 | ||
928e48af CV |
87 | /* If the instruction at PC is an argument register spill, return its |
88 | length. Otherwise, return zero. | |
c906108c | 89 | |
928e48af CV |
90 | An argument register spill is an instruction that moves an argument |
91 | from the register in which it was passed to the stack slot in which | |
92 | it really lives. It is a byte, word, or longword move from an | |
93 | argument register to a negative offset from the frame pointer. */ | |
c906108c | 94 | |
928e48af CV |
95 | static int |
96 | h8300_is_argument_spill (CORE_ADDR pc) | |
97 | { | |
98 | int w = read_memory_unsigned_integer (pc, 2); | |
99 | ||
100 | if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */ | |
101 | && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */ | |
102 | { | |
103 | int w2 = read_memory_integer (pc + 2, 2); | |
104 | ||
105 | /* ... and d:16 is negative. */ | |
106 | if (w2 < 0) | |
107 | return 4; | |
108 | } | |
109 | else if (w == 0x7860) | |
110 | { | |
111 | int w2 = read_memory_integer (pc + 2, 2); | |
c906108c | 112 | |
928e48af CV |
113 | if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */ |
114 | { | |
115 | LONGEST disp = read_memory_integer (pc + 4, 4); | |
c906108c | 116 | |
928e48af CV |
117 | /* ... and d:24 is negative. */ |
118 | if (disp < 0 && disp > 0xffffff) | |
119 | return 8; | |
120 | } | |
121 | } | |
122 | else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */ | |
123 | && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */ | |
124 | { | |
125 | int w2 = read_memory_integer (pc + 2, 2); | |
c906108c | 126 | |
928e48af CV |
127 | /* ... and d:16 is negative. */ |
128 | if (w2 < 0) | |
129 | return 4; | |
130 | } | |
131 | else if (w == 0x78e0) | |
132 | { | |
133 | int w2 = read_memory_integer (pc + 2, 2); | |
c906108c | 134 | |
928e48af CV |
135 | if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */ |
136 | { | |
137 | LONGEST disp = read_memory_integer (pc + 4, 4); | |
138 | ||
139 | /* ... and d:24 is negative. */ | |
140 | if (disp < 0 && disp > 0xffffff) | |
141 | return 8; | |
142 | } | |
143 | } | |
144 | else if (w == 0x0100) | |
145 | { | |
146 | int w2 = read_memory_integer (pc + 2, 2); | |
147 | ||
148 | if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */ | |
149 | && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */ | |
150 | { | |
151 | int w3 = read_memory_integer (pc + 4, 2); | |
152 | ||
153 | /* ... and d:16 is negative. */ | |
154 | if (w3 < 0) | |
155 | return 6; | |
156 | } | |
157 | else if (w2 == 0x78e0) | |
158 | { | |
159 | int w3 = read_memory_integer (pc + 4, 2); | |
160 | ||
161 | if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */ | |
162 | { | |
163 | LONGEST disp = read_memory_integer (pc + 6, 4); | |
164 | ||
165 | /* ... and d:24 is negative. */ | |
166 | if (disp < 0 && disp > 0xffffff) | |
167 | return 10; | |
168 | } | |
169 | } | |
170 | } | |
171 | ||
172 | return 0; | |
173 | } | |
174 | ||
175 | static CORE_ADDR | |
fba45db2 | 176 | h8300_skip_prologue (CORE_ADDR start_pc) |
c906108c SS |
177 | { |
178 | short int w; | |
179 | int adjust = 0; | |
180 | ||
181 | /* Skip past all push and stm insns. */ | |
182 | while (1) | |
183 | { | |
184 | w = read_memory_unsigned_integer (start_pc, 2); | |
185 | /* First look for push insns. */ | |
186 | if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130) | |
187 | { | |
188 | w = read_memory_unsigned_integer (start_pc + 2, 2); | |
189 | adjust = 2; | |
190 | } | |
191 | ||
192 | if (IS_PUSH (w)) | |
193 | { | |
194 | start_pc += 2 + adjust; | |
195 | w = read_memory_unsigned_integer (start_pc, 2); | |
196 | continue; | |
197 | } | |
198 | adjust = 0; | |
199 | break; | |
200 | } | |
201 | ||
202 | /* Skip past a move to FP, either word or long sized */ | |
203 | w = read_memory_unsigned_integer (start_pc, 2); | |
204 | if (w == 0x0100) | |
205 | { | |
206 | w = read_memory_unsigned_integer (start_pc + 2, 2); | |
207 | adjust += 2; | |
208 | } | |
209 | ||
210 | if (IS_MOVE_FP (w)) | |
211 | { | |
212 | start_pc += 2 + adjust; | |
213 | w = read_memory_unsigned_integer (start_pc, 2); | |
214 | } | |
215 | ||
216 | /* Check for loading either a word constant into r5; | |
217 | long versions are handled by the SUBL_SP below. */ | |
218 | if (IS_MOVK_R5 (w)) | |
219 | { | |
220 | start_pc += 2; | |
221 | w = read_memory_unsigned_integer (start_pc, 2); | |
222 | } | |
223 | ||
224 | /* Now check for subtracting r5 from sp, word sized only. */ | |
225 | if (IS_SUB_R5SP (w)) | |
226 | { | |
227 | start_pc += 2 + adjust; | |
228 | w = read_memory_unsigned_integer (start_pc, 2); | |
229 | } | |
230 | ||
231 | /* Check for subs #2 and subs #4. */ | |
232 | while (IS_SUB2_SP (w) || IS_SUB4_SP (w)) | |
233 | { | |
234 | start_pc += 2 + adjust; | |
235 | w = read_memory_unsigned_integer (start_pc, 2); | |
236 | } | |
237 | ||
238 | /* Check for a 32bit subtract. */ | |
239 | if (IS_SUBL_SP (w)) | |
240 | start_pc += 6 + adjust; | |
241 | ||
928e48af CV |
242 | /* Check for spilling an argument register to the stack frame. |
243 | This could also be an initializing store from non-prologue code, | |
244 | but I don't think there's any harm in skipping that. */ | |
245 | for (;;) | |
246 | { | |
247 | int spill_size = h8300_is_argument_spill (start_pc); | |
248 | if (spill_size == 0) | |
249 | break; | |
250 | start_pc += spill_size; | |
251 | } | |
252 | ||
c906108c SS |
253 | return start_pc; |
254 | } | |
255 | ||
928e48af | 256 | static int |
7e78f0ca | 257 | gdb_print_insn_h8300 (bfd_vma memaddr, disassemble_info * info) |
c906108c SS |
258 | { |
259 | if (h8300smode) | |
260 | return print_insn_h8300s (memaddr, info); | |
261 | else if (h8300hmode) | |
262 | return print_insn_h8300h (memaddr, info); | |
263 | else | |
264 | return print_insn_h8300 (memaddr, info); | |
265 | } | |
266 | ||
c906108c SS |
267 | /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or |
268 | is not the address of a valid instruction, the address of the next | |
269 | instruction beyond ADDR otherwise. *PWORD1 receives the first word | |
c5aa993b | 270 | of the instruction. */ |
c906108c | 271 | |
928e48af | 272 | static CORE_ADDR |
d1a8e808 | 273 | h8300_next_prologue_insn (CORE_ADDR addr, CORE_ADDR lim, unsigned short* pword1) |
c906108c SS |
274 | { |
275 | char buf[2]; | |
276 | if (addr < lim + 8) | |
277 | { | |
278 | read_memory (addr, buf, 2); | |
279 | *pword1 = extract_signed_integer (buf, 2); | |
280 | ||
281 | return addr + 2; | |
282 | } | |
283 | return 0; | |
284 | } | |
285 | ||
286 | /* Examine the prologue of a function. `ip' points to the first instruction. | |
287 | `limit' is the limit of the prologue (e.g. the addr of the first | |
288 | linenumber, or perhaps the program counter if we're stepping through). | |
289 | `frame_sp' is the stack pointer value in use in this frame. | |
290 | `fsr' is a pointer to a frame_saved_regs structure into which we put | |
291 | info about the registers saved by this frame. | |
292 | `fi' is a struct frame_info pointer; we fill in various fields in it | |
293 | to reflect the offsets of the arg pointer and the locals pointer. */ | |
294 | ||
928e48af CV |
295 | /* Any function with a frame looks like this |
296 | SECOND ARG | |
297 | FIRST ARG | |
298 | RET PC | |
299 | SAVED R2 | |
300 | SAVED R3 | |
301 | SAVED FP <-FP POINTS HERE | |
302 | LOCALS0 | |
303 | LOCALS1 <-SP POINTS HERE | |
304 | */ | |
305 | ||
c906108c | 306 | static CORE_ADDR |
928e48af CV |
307 | h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit, |
308 | CORE_ADDR after_prolog_fp, CORE_ADDR *fsr, | |
309 | struct frame_info *fi) | |
c906108c SS |
310 | { |
311 | register CORE_ADDR next_ip; | |
312 | int r; | |
313 | int have_fp = 0; | |
928e48af | 314 | unsigned short insn_word; |
c906108c SS |
315 | /* Number of things pushed onto stack, starts at 2/4, 'cause the |
316 | PC is already there */ | |
928e48af | 317 | unsigned int reg_save_depth = BINWORD; |
c906108c SS |
318 | |
319 | unsigned int auto_depth = 0; /* Number of bytes of autos */ | |
320 | ||
321 | char in_frame[11]; /* One for each reg */ | |
322 | ||
323 | int adjust = 0; | |
324 | ||
325 | memset (in_frame, 1, 11); | |
326 | for (r = 0; r < 8; r++) | |
327 | { | |
928e48af | 328 | fsr[r] = 0; |
c906108c SS |
329 | } |
330 | if (after_prolog_fp == 0) | |
331 | { | |
928e48af | 332 | after_prolog_fp = read_register (E_SP_REGNUM); |
c906108c SS |
333 | } |
334 | ||
335 | /* If the PC isn't valid, quit now. */ | |
336 | if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff)) | |
337 | return 0; | |
338 | ||
d1a8e808 | 339 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
340 | |
341 | if (insn_word == 0x0100) | |
342 | { | |
343 | insn_word = read_memory_unsigned_integer (ip + 2, 2); | |
344 | adjust = 2; | |
345 | } | |
346 | ||
347 | /* Skip over any fp push instructions */ | |
928e48af | 348 | fsr[E_FP_REGNUM] = after_prolog_fp; |
c906108c SS |
349 | while (next_ip && IS_PUSH_FP (insn_word)) |
350 | { | |
351 | ip = next_ip + adjust; | |
352 | ||
353 | in_frame[insn_word & 0x7] = reg_save_depth; | |
d1a8e808 | 354 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
355 | reg_save_depth += 2 + adjust; |
356 | } | |
357 | ||
358 | /* Is this a move into the fp */ | |
359 | if (next_ip && IS_MOV_SP_FP (insn_word)) | |
360 | { | |
361 | ip = next_ip; | |
d1a8e808 | 362 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
363 | have_fp = 1; |
364 | } | |
365 | ||
366 | /* Skip over any stack adjustment, happens either with a number of | |
367 | sub#2,sp or a mov #x,r5 sub r5,sp */ | |
368 | ||
369 | if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word))) | |
370 | { | |
371 | while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word))) | |
372 | { | |
373 | auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4; | |
374 | ip = next_ip; | |
d1a8e808 | 375 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
376 | } |
377 | } | |
378 | else | |
379 | { | |
380 | if (next_ip && IS_MOVK_R5 (insn_word)) | |
381 | { | |
382 | ip = next_ip; | |
d1a8e808 | 383 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
384 | auto_depth += insn_word; |
385 | ||
d1a8e808 | 386 | next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word); |
c906108c SS |
387 | auto_depth += insn_word; |
388 | } | |
389 | if (next_ip && IS_SUBL_SP (insn_word)) | |
390 | { | |
391 | ip = next_ip; | |
392 | auto_depth += read_memory_unsigned_integer (ip, 4); | |
393 | ip += 4; | |
394 | ||
d1a8e808 | 395 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
396 | } |
397 | } | |
398 | ||
399 | /* Now examine the push insns to determine where everything lives | |
400 | on the stack. */ | |
401 | while (1) | |
402 | { | |
403 | adjust = 0; | |
404 | if (!next_ip) | |
405 | break; | |
406 | ||
407 | if (insn_word == 0x0100) | |
408 | { | |
409 | ip = next_ip; | |
d1a8e808 | 410 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
411 | adjust = 2; |
412 | } | |
413 | ||
414 | if (IS_PUSH (insn_word)) | |
415 | { | |
ddd216ea CV |
416 | auto_depth += 2 + adjust; |
417 | fsr[insn_word & 0x7] = after_prolog_fp - auto_depth; | |
c906108c | 418 | ip = next_ip; |
d1a8e808 | 419 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
420 | continue; |
421 | } | |
422 | ||
423 | /* Now check for push multiple insns. */ | |
424 | if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130) | |
425 | { | |
426 | int count = ((insn_word >> 4) & 0xf) + 1; | |
427 | int start, i; | |
428 | ||
429 | ip = next_ip; | |
d1a8e808 | 430 | next_ip = h8300_next_prologue_insn (ip, limit, &insn_word); |
c906108c SS |
431 | start = insn_word & 0x7; |
432 | ||
6d305052 | 433 | for (i = start; i < start + count; i++) |
c906108c | 434 | { |
c906108c | 435 | auto_depth += 4; |
ddd216ea | 436 | fsr[i] = after_prolog_fp - auto_depth; |
c906108c SS |
437 | } |
438 | } | |
439 | break; | |
440 | } | |
441 | ||
442 | /* The args are always reffed based from the stack pointer */ | |
928e48af | 443 | fi->extra_info->args_pointer = after_prolog_fp; |
c906108c | 444 | /* Locals are always reffed based from the fp */ |
928e48af | 445 | fi->extra_info->locals_pointer = after_prolog_fp; |
c906108c | 446 | /* The PC is at a known place */ |
928e48af | 447 | fi->extra_info->from_pc = |
7e78f0ca | 448 | read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD); |
c906108c SS |
449 | |
450 | /* Rememeber any others too */ | |
928e48af | 451 | in_frame[E_PC_REGNUM] = 0; |
c5aa993b | 452 | |
c906108c SS |
453 | if (have_fp) |
454 | /* We keep the old FP in the SP spot */ | |
928e48af | 455 | fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM], BINWORD); |
c906108c | 456 | else |
928e48af | 457 | fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth; |
c906108c SS |
458 | |
459 | return (ip); | |
460 | } | |
461 | ||
928e48af CV |
462 | static void |
463 | h8300_frame_init_saved_regs (struct frame_info *fi) | |
c906108c | 464 | { |
928e48af CV |
465 | CORE_ADDR func_addr, func_end; |
466 | ||
467 | if (!fi->saved_regs) | |
468 | { | |
469 | frame_saved_regs_zalloc (fi); | |
470 | ||
471 | /* Find the beginning of this function, so we can analyze its | |
472 | prologue. */ | |
473 | if (find_pc_partial_function (fi->pc, NULL, &func_addr, &func_end)) | |
474 | { | |
475 | struct symtab_and_line sal = find_pc_line (func_addr, 0); | |
476 | CORE_ADDR limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc; | |
477 | /* This will fill in fields in fi. */ | |
478 | h8300_examine_prologue (func_addr, limit, fi->frame, fi->saved_regs, fi); | |
479 | } | |
480 | /* Else we're out of luck (can't debug completely stripped code). | |
481 | FIXME. */ | |
482 | } | |
483 | } | |
484 | ||
a5afb99f AC |
485 | /* Given a GDB frame, determine the address of the calling function's |
486 | frame. This will be used to create a new GDB frame struct, and | |
487 | then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be | |
488 | called for the new frame. | |
928e48af CV |
489 | |
490 | For us, the frame address is its stack pointer value, so we look up | |
491 | the function prologue to determine the caller's sp value, and return it. */ | |
492 | ||
493 | static CORE_ADDR | |
494 | h8300_frame_chain (struct frame_info *thisframe) | |
495 | { | |
ae45cd16 | 496 | if (DEPRECATED_PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame)) |
928e48af | 497 | { /* initialize the from_pc now */ |
135c175f AC |
498 | thisframe->extra_info->from_pc = |
499 | deprecated_read_register_dummy (thisframe->pc, thisframe->frame, | |
500 | E_PC_REGNUM); | |
928e48af | 501 | return thisframe->frame; |
c906108c | 502 | } |
928e48af | 503 | return thisframe->saved_regs[E_SP_REGNUM]; |
c906108c SS |
504 | } |
505 | ||
506 | /* Return the saved PC from this frame. | |
507 | ||
508 | If the frame has a memory copy of SRP_REGNUM, use that. If not, | |
509 | just use the register SRP_REGNUM itself. */ | |
510 | ||
928e48af | 511 | static CORE_ADDR |
fba45db2 | 512 | h8300_frame_saved_pc (struct frame_info *frame) |
c906108c | 513 | { |
ae45cd16 | 514 | if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
135c175f AC |
515 | return deprecated_read_register_dummy (frame->pc, frame->frame, |
516 | E_PC_REGNUM); | |
c906108c | 517 | else |
928e48af | 518 | return frame->extra_info->from_pc; |
c906108c SS |
519 | } |
520 | ||
928e48af CV |
521 | static void |
522 | h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi) | |
523 | { | |
524 | if (!fi->extra_info) | |
525 | { | |
526 | fi->extra_info = (struct frame_extra_info *) | |
527 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
528 | fi->extra_info->from_pc = 0; | |
529 | fi->extra_info->args_pointer = 0; /* Unknown */ | |
530 | fi->extra_info->locals_pointer = 0; /* Unknown */ | |
531 | ||
532 | if (!fi->pc) | |
533 | { | |
534 | if (fi->next) | |
535 | fi->pc = h8300_frame_saved_pc (fi->next); | |
536 | } | |
537 | h8300_frame_init_saved_regs (fi); | |
538 | } | |
539 | } | |
540 | ||
541 | static CORE_ADDR | |
7256e1a5 | 542 | h8300_frame_locals_address (struct frame_info *fi) |
c906108c | 543 | { |
ae45cd16 | 544 | if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
c906108c | 545 | return (CORE_ADDR) 0; /* Not sure what else to do... */ |
928e48af | 546 | return fi->extra_info->locals_pointer; |
c906108c SS |
547 | } |
548 | ||
549 | /* Return the address of the argument block for the frame | |
550 | described by FI. Returns 0 if the address is unknown. */ | |
551 | ||
928e48af | 552 | static CORE_ADDR |
7256e1a5 | 553 | h8300_frame_args_address (struct frame_info *fi) |
c906108c | 554 | { |
ae45cd16 | 555 | if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame)) |
c906108c | 556 | return (CORE_ADDR) 0; /* Not sure what else to do... */ |
928e48af | 557 | return fi->extra_info->args_pointer; |
c906108c SS |
558 | } |
559 | ||
928e48af CV |
560 | /* Round N up or down to the nearest multiple of UNIT. |
561 | Evaluate N only once, UNIT several times. | |
562 | UNIT must be a power of two. */ | |
563 | #define round_up(n, unit) (((n) + (unit) - 1) & -(unit)) | |
564 | #define round_down(n, unit) ((n) & -(unit)) | |
565 | ||
c906108c SS |
566 | /* Function: push_arguments |
567 | Setup the function arguments for calling a function in the inferior. | |
928e48af CV |
568 | In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits |
569 | on the H8/300H. | |
570 | ||
571 | There are actually two ABI's here: -mquickcall (the default) and | |
572 | -mno-quickcall. With -mno-quickcall, all arguments are passed on | |
573 | the stack after the return address, word-aligned. With | |
574 | -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since | |
575 | GCC doesn't indicate in the object file which ABI was used to | |
576 | compile it, GDB only supports the default --- -mquickcall. | |
577 | ||
578 | Here are the rules for -mquickcall, in detail: | |
579 | ||
580 | Each argument, whether scalar or aggregate, is padded to occupy a | |
581 | whole number of words. Arguments smaller than a word are padded at | |
582 | the most significant end; those larger than a word are padded at | |
583 | the least significant end. | |
584 | ||
585 | The initial arguments are passed in r0 -- r2. Earlier arguments go in | |
586 | lower-numbered registers. Multi-word arguments are passed in | |
587 | consecutive registers, with the most significant end in the | |
588 | lower-numbered register. | |
589 | ||
590 | If an argument doesn't fit entirely in the remaining registers, it | |
591 | is passed entirely on the stack. Stack arguments begin just after | |
592 | the return address. Once an argument has overflowed onto the stack | |
593 | this way, all subsequent arguments are passed on the stack. | |
594 | ||
595 | The above rule has odd consequences. For example, on the h8/300s, | |
596 | if a function takes two longs and an int as arguments: | |
597 | - the first long will be passed in r0/r1, | |
598 | - the second long will be passed entirely on the stack, since it | |
599 | doesn't fit in r2, | |
600 | - and the int will be passed on the stack, even though it could fit | |
601 | in r2. | |
602 | ||
603 | A weird exception: if an argument is larger than a word, but not a | |
604 | whole number of words in length (before padding), it is passed on | |
605 | the stack following the rules for stack arguments above, even if | |
606 | there are sufficient registers available to hold it. Stranger | |
607 | still, the argument registers are still `used up' --- even though | |
608 | there's nothing in them. | |
609 | ||
610 | So, for example, on the h8/300s, if a function expects a three-byte | |
611 | structure and an int, the structure will go on the stack, and the | |
612 | int will go in r2, not r0. | |
613 | ||
614 | If the function returns an aggregate type (struct, union, or class) | |
615 | by value, the caller must allocate space to hold the return value, | |
616 | and pass the callee a pointer to this space as an invisible first | |
617 | argument, in R0. | |
618 | ||
619 | For varargs functions, the last fixed argument and all the variable | |
620 | arguments are always passed on the stack. This means that calls to | |
621 | varargs functions don't work properly unless there is a prototype | |
622 | in scope. | |
623 | ||
624 | Basically, this ABI is not good, for the following reasons: | |
625 | - You can't call vararg functions properly unless a prototype is in scope. | |
626 | - Structure passing is inconsistent, to no purpose I can see. | |
627 | - It often wastes argument registers, of which there are only three | |
628 | to begin with. */ | |
c906108c | 629 | |
928e48af | 630 | static CORE_ADDR |
fba45db2 | 631 | h8300_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
928e48af | 632 | int struct_return, CORE_ADDR struct_addr) |
c906108c SS |
633 | { |
634 | int stack_align, stack_alloc, stack_offset; | |
928e48af CV |
635 | int wordsize = BINWORD; |
636 | int reg; | |
637 | int argument; | |
638 | ||
639 | /* First, make sure the stack is properly aligned. */ | |
640 | sp = round_down (sp, wordsize); | |
641 | ||
642 | /* Now make sure there's space on the stack for the arguments. We | |
643 | may over-allocate a little here, but that won't hurt anything. */ | |
644 | stack_alloc = 0; | |
645 | for (argument = 0; argument < nargs; argument++) | |
646 | stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])), | |
647 | wordsize); | |
648 | sp -= stack_alloc; | |
649 | ||
650 | /* Now load as many arguments as possible into registers, and push | |
651 | the rest onto the stack. */ | |
652 | reg = E_ARG0_REGNUM; | |
653 | stack_offset = 0; | |
654 | ||
655 | /* If we're returning a structure by value, then we must pass a | |
656 | pointer to the buffer for the return value as an invisible first | |
657 | argument. */ | |
658 | if (struct_return) | |
659 | write_register (reg++, struct_addr); | |
660 | ||
661 | for (argument = 0; argument < nargs; argument++) | |
c906108c | 662 | { |
928e48af CV |
663 | struct type *type = VALUE_TYPE (args[argument]); |
664 | int len = TYPE_LENGTH (type); | |
665 | char *contents = (char *) VALUE_CONTENTS (args[argument]); | |
666 | ||
667 | /* Pad the argument appropriately. */ | |
668 | int padded_len = round_up (len, wordsize); | |
669 | char *padded = alloca (padded_len); | |
670 | ||
671 | memset (padded, 0, padded_len); | |
672 | memcpy (len < wordsize ? padded + padded_len - len : padded, | |
673 | contents, len); | |
674 | ||
675 | /* Could the argument fit in the remaining registers? */ | |
676 | if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize) | |
677 | { | |
678 | /* Are we going to pass it on the stack anyway, for no good | |
679 | reason? */ | |
680 | if (len > wordsize && len % wordsize) | |
681 | { | |
682 | /* I feel so unclean. */ | |
683 | write_memory (sp + stack_offset, padded, padded_len); | |
684 | stack_offset += padded_len; | |
685 | ||
686 | /* That's right --- even though we passed the argument | |
687 | on the stack, we consume the registers anyway! Love | |
688 | me, love my dog. */ | |
689 | reg += padded_len / wordsize; | |
690 | } | |
691 | else | |
692 | { | |
693 | /* Heavens to Betsy --- it's really going in registers! | |
694 | It would be nice if we could use write_register_bytes | |
695 | here, but on the h8/300s, there are gaps between | |
696 | the registers in the register file. */ | |
697 | int offset; | |
698 | ||
699 | for (offset = 0; offset < padded_len; offset += wordsize) | |
700 | { | |
701 | ULONGEST word = extract_address (padded + offset, wordsize); | |
702 | write_register (reg++, word); | |
703 | } | |
704 | } | |
705 | } | |
c906108c | 706 | else |
928e48af CV |
707 | { |
708 | /* It doesn't fit in registers! Onto the stack it goes. */ | |
709 | write_memory (sp + stack_offset, padded, padded_len); | |
710 | stack_offset += padded_len; | |
711 | ||
712 | /* Once one argument has spilled onto the stack, all | |
713 | subsequent arguments go on the stack. */ | |
714 | reg = E_ARGLAST_REGNUM + 1; | |
715 | } | |
c906108c | 716 | } |
928e48af | 717 | |
c906108c SS |
718 | return sp; |
719 | } | |
720 | ||
721 | /* Function: push_return_address | |
722 | Setup the return address for a dummy frame, as called by | |
723 | call_function_by_hand. Only necessary when you are using an | |
724 | empty CALL_DUMMY, ie. the target will not actually be executing | |
725 | a JSR/BSR instruction. */ | |
726 | ||
928e48af | 727 | static CORE_ADDR |
fba45db2 | 728 | h8300_push_return_address (CORE_ADDR pc, CORE_ADDR sp) |
c906108c SS |
729 | { |
730 | unsigned char buf[4]; | |
928e48af | 731 | int wordsize = BINWORD; |
c906108c SS |
732 | |
733 | sp -= wordsize; | |
734 | store_unsigned_integer (buf, wordsize, CALL_DUMMY_ADDRESS ()); | |
735 | write_memory (sp, buf, wordsize); | |
736 | return sp; | |
737 | } | |
738 | ||
7256e1a5 | 739 | /* Function: h8300_pop_frame |
c906108c SS |
740 | Restore the machine to the state it had before the current frame |
741 | was created. Usually used either by the "RETURN" command, or by | |
742 | call_function_by_hand after the dummy_frame is finished. */ | |
743 | ||
928e48af | 744 | static void |
fba45db2 | 745 | h8300_pop_frame (void) |
c906108c | 746 | { |
928e48af | 747 | unsigned regno; |
c906108c SS |
748 | struct frame_info *frame = get_current_frame (); |
749 | ||
ae45cd16 | 750 | if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) |
c906108c | 751 | { |
c5aa993b | 752 | generic_pop_dummy_frame (); |
c906108c SS |
753 | } |
754 | else | |
755 | { | |
928e48af | 756 | for (regno = 0; regno < 8; regno++) |
c906108c | 757 | { |
928e48af | 758 | /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the |
c906108c | 759 | actual value we want, not the address of the value we want. */ |
928e48af CV |
760 | if (frame->saved_regs[regno] && regno != E_SP_REGNUM) |
761 | write_register (regno, | |
762 | read_memory_integer (frame->saved_regs[regno], | |
763 | BINWORD)); | |
764 | else if (frame->saved_regs[regno] && regno == E_SP_REGNUM) | |
765 | write_register (regno, frame->frame + 2 * BINWORD); | |
c906108c SS |
766 | } |
767 | ||
928e48af CV |
768 | /* Don't forget to update the PC too! */ |
769 | write_register (E_PC_REGNUM, frame->extra_info->from_pc); | |
c906108c SS |
770 | } |
771 | flush_cached_frames (); | |
772 | } | |
773 | ||
774 | /* Function: extract_return_value | |
775 | Figure out where in REGBUF the called function has left its return value. | |
776 | Copy that into VALBUF. Be sure to account for CPU type. */ | |
777 | ||
928e48af | 778 | static void |
fba45db2 | 779 | h8300_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
c906108c | 780 | { |
928e48af CV |
781 | int wordsize = BINWORD; |
782 | int len = TYPE_LENGTH (type); | |
c5aa993b JM |
783 | |
784 | switch (len) | |
785 | { | |
786 | case 1: /* (char) */ | |
787 | case 2: /* (short), (int) */ | |
788 | memcpy (valbuf, regbuf + REGISTER_BYTE (0) + (wordsize - len), len); | |
789 | break; | |
790 | case 4: /* (long), (float) */ | |
928e48af | 791 | if (wordsize == 4) |
c5aa993b JM |
792 | { |
793 | memcpy (valbuf, regbuf + REGISTER_BYTE (0), 4); | |
794 | } | |
795 | else | |
796 | { | |
797 | memcpy (valbuf, regbuf + REGISTER_BYTE (0), 2); | |
798 | memcpy (valbuf + 2, regbuf + REGISTER_BYTE (1), 2); | |
799 | } | |
800 | break; | |
801 | case 8: /* (double) (doesn't seem to happen, which is good, | |
802 | because this almost certainly isn't right. */ | |
803 | error ("I don't know how a double is returned."); | |
804 | break; | |
805 | } | |
c906108c SS |
806 | } |
807 | ||
808 | /* Function: store_return_value | |
809 | Place the appropriate value in the appropriate registers. | |
810 | Primarily used by the RETURN command. */ | |
811 | ||
928e48af | 812 | static void |
fba45db2 | 813 | h8300_store_return_value (struct type *type, char *valbuf) |
c906108c | 814 | { |
928e48af CV |
815 | int regval; |
816 | int wordsize = BINWORD; | |
817 | int len = TYPE_LENGTH (type); | |
c906108c | 818 | |
c5aa993b JM |
819 | switch (len) |
820 | { | |
821 | case 1: /* char */ | |
822 | case 2: /* short, int */ | |
823 | regval = extract_address (valbuf, len); | |
824 | write_register (0, regval); | |
825 | break; | |
826 | case 4: /* long, float */ | |
827 | regval = extract_address (valbuf, len); | |
928e48af | 828 | if (wordsize == 4) |
c5aa993b JM |
829 | { |
830 | write_register (0, regval); | |
831 | } | |
832 | else | |
833 | { | |
834 | write_register (0, regval >> 16); | |
835 | write_register (1, regval & 0xffff); | |
836 | } | |
837 | break; | |
838 | case 8: /* presumeably double, but doesn't seem to happen */ | |
839 | error ("I don't know how to return a double."); | |
840 | break; | |
841 | } | |
c906108c SS |
842 | } |
843 | ||
928e48af | 844 | static struct cmd_list_element *setmachinelist; |
c906108c | 845 | |
928e48af CV |
846 | static const char * |
847 | h8300_register_name (int regno) | |
c906108c | 848 | { |
928e48af CV |
849 | /* The register names change depending on whether the h8300h processor |
850 | type is selected. */ | |
851 | static char *h8300_register_names[] = { | |
852 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", | |
853 | "sp", "ccr","pc","cycles", "tick", "inst", "" | |
854 | }; | |
855 | static char *h8300s_register_names[] = { | |
856 | "er0", "er1", "er2", "er3", "er4", "er5", "er6", | |
857 | "sp", "ccr", "pc", "cycles", "exr", "tick", "inst" | |
858 | }; | |
859 | char **register_names = | |
860 | h8300smode ? h8300s_register_names : h8300_register_names; | |
861 | if (regno < 0 || regno >= E_NUM_REGS) | |
862 | internal_error (__FILE__, __LINE__, | |
863 | "h8300_register_name: illegal register number %d", regno); | |
c906108c | 864 | else |
928e48af | 865 | return register_names[regno]; |
c906108c SS |
866 | } |
867 | ||
868 | static void | |
4904ba5b AC |
869 | h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file, |
870 | struct frame_info *frame, int regno) | |
c906108c | 871 | { |
4904ba5b AC |
872 | ULONGEST rval; |
873 | long val; | |
928e48af | 874 | const char *name = h8300_register_name (regno); |
c906108c | 875 | |
928e48af CV |
876 | if (!name || !*name) |
877 | return; | |
c906108c | 878 | |
4904ba5b AC |
879 | /* FIXME: cagney/2002-10-22: The code below assumes that VAL is at |
880 | least 4 bytes (32 bits) in size and hence is large enough to hold | |
881 | the largest h8300 register. Should instead be using ULONGEST and | |
882 | the phex() functions. */ | |
883 | gdb_assert (sizeof (val) >= 4); | |
884 | frame_read_unsigned_register (frame, regno, &rval); | |
885 | val = rval; | |
886 | ||
887 | fprintf_filtered (file, "%-14s ", name); | |
928e48af | 888 | if (h8300hmode) |
c906108c | 889 | { |
928e48af | 890 | if (val) |
4904ba5b | 891 | fprintf_filtered (file, "0x%08lx %-8ld", val, val); |
928e48af | 892 | else |
4904ba5b | 893 | fprintf_filtered (file, "0x%-8lx %-8ld", val, val); |
c906108c SS |
894 | } |
895 | else | |
896 | { | |
928e48af | 897 | if (val) |
4904ba5b | 898 | fprintf_filtered (file, "0x%04lx %-4ld", val, val); |
928e48af | 899 | else |
4904ba5b | 900 | fprintf_filtered (file, "0x%-4lx %-4ld", val, val); |
c906108c | 901 | } |
928e48af | 902 | if (regno == E_CCR_REGNUM) |
c906108c SS |
903 | { |
904 | /* CCR register */ | |
905 | int C, Z, N, V; | |
928e48af | 906 | unsigned char b[h8300h_reg_size]; |
c906108c | 907 | unsigned char l; |
6e7f8b9c | 908 | frame_register_read (deprecated_selected_frame, regno, b); |
928e48af | 909 | l = b[REGISTER_VIRTUAL_SIZE (E_CCR_REGNUM) - 1]; |
4904ba5b AC |
910 | fprintf_filtered (file, "\t"); |
911 | fprintf_filtered (file, "I-%d ", (l & 0x80) != 0); | |
912 | fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0); | |
913 | fprintf_filtered (file, "H-%d ", (l & 0x20) != 0); | |
914 | fprintf_filtered (file, "U-%d ", (l & 0x10) != 0); | |
c906108c SS |
915 | N = (l & 0x8) != 0; |
916 | Z = (l & 0x4) != 0; | |
917 | V = (l & 0x2) != 0; | |
918 | C = (l & 0x1) != 0; | |
4904ba5b AC |
919 | fprintf_filtered (file, "N-%d ", N); |
920 | fprintf_filtered (file, "Z-%d ", Z); | |
921 | fprintf_filtered (file, "V-%d ", V); | |
922 | fprintf_filtered (file, "C-%d ", C); | |
c906108c | 923 | if ((C | Z) == 0) |
4904ba5b | 924 | fprintf_filtered (file, "u> "); |
c906108c | 925 | if ((C | Z) == 1) |
4904ba5b | 926 | fprintf_filtered (file, "u<= "); |
c906108c | 927 | if ((C == 0)) |
4904ba5b | 928 | fprintf_filtered (file, "u>= "); |
c906108c | 929 | if (C == 1) |
4904ba5b | 930 | fprintf_filtered (file, "u< "); |
c906108c | 931 | if (Z == 0) |
4904ba5b | 932 | fprintf_filtered (file, "!= "); |
c906108c | 933 | if (Z == 1) |
4904ba5b | 934 | fprintf_filtered (file, "== "); |
c906108c | 935 | if ((N ^ V) == 0) |
4904ba5b | 936 | fprintf_filtered (file, ">= "); |
c906108c | 937 | if ((N ^ V) == 1) |
4904ba5b | 938 | fprintf_filtered (file, "< "); |
c906108c | 939 | if ((Z | (N ^ V)) == 0) |
4904ba5b | 940 | fprintf_filtered (file, "> "); |
c906108c | 941 | if ((Z | (N ^ V)) == 1) |
4904ba5b | 942 | fprintf_filtered (file, "<= "); |
c906108c | 943 | } |
928e48af | 944 | else if (regno == E_EXR_REGNUM && h8300smode) |
fc974602 AV |
945 | { |
946 | /* EXR register */ | |
928e48af | 947 | unsigned char b[h8300h_reg_size]; |
fc974602 | 948 | unsigned char l; |
6e7f8b9c | 949 | frame_register_read (deprecated_selected_frame, regno, b); |
928e48af | 950 | l = b[REGISTER_VIRTUAL_SIZE (E_EXR_REGNUM) - 1]; |
4904ba5b AC |
951 | fprintf_filtered (file, "\t"); |
952 | fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0); | |
953 | fprintf_filtered (file, "I2-%d ", (l & 4) != 0); | |
954 | fprintf_filtered (file, "I1-%d ", (l & 2) != 0); | |
955 | fprintf_filtered (file, "I0-%d", (l & 1) != 0); | |
d194345b | 956 | } |
4904ba5b | 957 | fprintf_filtered (file, "\n"); |
928e48af CV |
958 | } |
959 | ||
960 | static void | |
4904ba5b AC |
961 | h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file, |
962 | struct frame_info *frame, int regno, int cpregs) | |
928e48af CV |
963 | { |
964 | if (regno < 0) | |
965 | for (regno = 0; regno < E_NUM_REGS; ++regno) | |
4904ba5b | 966 | h8300_print_register (gdbarch, file, frame, regno); |
928e48af | 967 | else |
4904ba5b | 968 | h8300_print_register (gdbarch, file, frame, regno); |
928e48af CV |
969 | } |
970 | ||
971 | static CORE_ADDR | |
972 | h8300_saved_pc_after_call (struct frame_info *ignore) | |
973 | { | |
974 | return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD); | |
975 | } | |
976 | ||
977 | static int | |
978 | h8300_register_byte (int regno) | |
979 | { | |
980 | if (regno < 0 || regno >= E_NUM_REGS) | |
981 | internal_error (__FILE__, __LINE__, | |
982 | "h8300_register_byte: illegal register number %d", regno); | |
983 | else | |
984 | return regno * BINWORD; | |
985 | } | |
986 | ||
987 | static int | |
988 | h8300_register_raw_size (int regno) | |
989 | { | |
990 | if (regno < 0 || regno >= E_NUM_REGS) | |
991 | internal_error (__FILE__, __LINE__, | |
992 | "h8300_register_raw_size: illegal register number %d", | |
993 | regno); | |
994 | else | |
995 | return BINWORD; | |
996 | } | |
997 | ||
998 | static struct type * | |
999 | h8300_register_virtual_type (int regno) | |
1000 | { | |
1001 | if (regno < 0 || regno >= E_NUM_REGS) | |
1002 | internal_error (__FILE__, __LINE__, | |
1003 | "h8300_register_virtual_type: illegal register number %d", | |
1004 | regno); | |
1005 | else | |
1006 | return h8300hmode ? | |
1007 | builtin_type_unsigned_long : builtin_type_unsigned_short; | |
1008 | } | |
1009 | ||
1010 | static void | |
1011 | h8300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1012 | { | |
1013 | write_register (0, addr); | |
1014 | } | |
1015 | ||
1016 | static int | |
1017 | h8300_use_struct_convention (int gcc_p, struct type *type) | |
1018 | { | |
1019 | return 1; | |
1020 | } | |
1021 | ||
1022 | static CORE_ADDR | |
1023 | h8300_extract_struct_value_address (char *regbuf) | |
1024 | { | |
1025 | return extract_address (regbuf + h8300_register_byte (E_ARG0_REGNUM), | |
1026 | h8300_register_raw_size (E_ARG0_REGNUM)); | |
1027 | } | |
1028 | ||
1029 | const static unsigned char * | |
1030 | h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) | |
1031 | { | |
1032 | /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */ | |
1033 | static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */ | |
1034 | ||
1035 | *lenptr = sizeof (breakpoint); | |
1036 | return breakpoint; | |
1037 | } | |
1038 | ||
1039 | static void | |
1040 | h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, | |
1041 | struct frame_info *frame, const char *args) | |
1042 | { | |
1043 | fprintf_filtered (file, "\ | |
1044 | No floating-point info available for this processor.\n"); | |
1045 | } | |
1046 | ||
1047 | static struct gdbarch * | |
1048 | h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1049 | { | |
1050 | static LONGEST call_dummy_words[1] = { 0 }; | |
1051 | struct gdbarch_tdep *tdep = NULL; | |
1052 | struct gdbarch *gdbarch; | |
1053 | ||
1054 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1055 | if (arches != NULL) | |
1056 | return arches->gdbarch; | |
1057 | ||
1058 | #if 0 | |
1059 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
1060 | #endif | |
1061 | ||
1062 | if (info.bfd_arch_info->arch != bfd_arch_h8300) | |
1063 | return NULL; | |
1064 | ||
1065 | switch (info.bfd_arch_info->mach) | |
1066 | { | |
1067 | case bfd_mach_h8300: | |
1068 | h8300smode = 0; | |
1069 | h8300hmode = 0; | |
1070 | break; | |
1071 | case bfd_mach_h8300h: | |
1072 | h8300smode = 0; | |
1073 | h8300hmode = 1; | |
1074 | break; | |
1075 | case bfd_mach_h8300s: | |
1076 | h8300smode = 1; | |
1077 | h8300hmode = 1; | |
1078 | break; | |
1079 | } | |
1080 | ||
1081 | gdbarch = gdbarch_alloc (&info, 0); | |
1082 | ||
a5afb99f AC |
1083 | /* NOTE: cagney/2002-12-06: This can be deleted when this arch is |
1084 | ready to unwind the PC first (see frame.c:get_prev_frame()). */ | |
1085 | set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default); | |
1086 | ||
928e48af CV |
1087 | /* |
1088 | * Basic register fields and methods. | |
1089 | */ | |
1090 | ||
1091 | set_gdbarch_num_regs (gdbarch, E_NUM_REGS); | |
1092 | set_gdbarch_num_pseudo_regs (gdbarch, 0); | |
1093 | set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM); | |
1094 | set_gdbarch_fp_regnum (gdbarch, E_FP_REGNUM); | |
1095 | set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM); | |
1096 | set_gdbarch_register_name (gdbarch, h8300_register_name); | |
1097 | set_gdbarch_register_size (gdbarch, BINWORD); | |
1098 | set_gdbarch_register_bytes (gdbarch, E_NUM_REGS * BINWORD); | |
1099 | set_gdbarch_register_byte (gdbarch, h8300_register_byte); | |
1100 | set_gdbarch_register_raw_size (gdbarch, h8300_register_raw_size); | |
1101 | set_gdbarch_max_register_raw_size (gdbarch, h8300h_reg_size); | |
1102 | set_gdbarch_register_virtual_size (gdbarch, h8300_register_raw_size); | |
1103 | set_gdbarch_max_register_virtual_size (gdbarch, h8300h_reg_size); | |
1104 | set_gdbarch_register_virtual_type (gdbarch, h8300_register_virtual_type); | |
4904ba5b | 1105 | set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info); |
928e48af CV |
1106 | set_gdbarch_print_float_info (gdbarch, h8300_print_float_info); |
1107 | ||
1108 | /* | |
1109 | * Frame Info | |
1110 | */ | |
1111 | set_gdbarch_init_extra_frame_info (gdbarch, h8300_init_extra_frame_info); | |
1112 | set_gdbarch_frame_init_saved_regs (gdbarch, h8300_frame_init_saved_regs); | |
1113 | set_gdbarch_frame_chain (gdbarch, h8300_frame_chain); | |
928e48af CV |
1114 | set_gdbarch_saved_pc_after_call (gdbarch, h8300_saved_pc_after_call); |
1115 | set_gdbarch_frame_saved_pc (gdbarch, h8300_frame_saved_pc); | |
1116 | set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue); | |
1117 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); | |
1118 | set_gdbarch_frame_args_address (gdbarch, h8300_frame_args_address); | |
1119 | set_gdbarch_frame_locals_address (gdbarch, h8300_frame_locals_address); | |
1120 | ||
1121 | /* | |
1122 | * Miscelany | |
1123 | */ | |
1124 | /* Stack grows up. */ | |
1125 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1126 | /* PC stops zero byte after a trap instruction | |
1127 | (which means: exactly on trap instruction). */ | |
1128 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
1129 | /* This value is almost never non-zero... */ | |
1130 | set_gdbarch_function_start_offset (gdbarch, 0); | |
1131 | /* This value is almost never non-zero... */ | |
1132 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
1133 | /* OK to default this value to 'unknown'. */ | |
1134 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
1135 | set_gdbarch_frameless_function_invocation (gdbarch, | |
1136 | frameless_look_for_prologue); | |
1137 | ||
1138 | /* W/o prototype, coerce float args to double. */ | |
5247b418 | 1139 | /* set_gdbarch_coerce_float_to_double (gdbarch, standard_coerce_float_to_double); */ |
928e48af CV |
1140 | |
1141 | /* | |
1142 | * Call Dummies | |
1143 | * | |
1144 | * These values and methods are used when gdb calls a target function. */ | |
928e48af CV |
1145 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); |
1146 | set_gdbarch_push_return_address (gdbarch, h8300_push_return_address); | |
1147 | set_gdbarch_deprecated_extract_return_value (gdbarch, h8300_extract_return_value); | |
1148 | set_gdbarch_push_arguments (gdbarch, h8300_push_arguments); | |
1149 | set_gdbarch_pop_frame (gdbarch, h8300_pop_frame); | |
1150 | set_gdbarch_store_struct_return (gdbarch, h8300_store_struct_return); | |
1151 | set_gdbarch_deprecated_store_return_value (gdbarch, h8300_store_return_value); | |
1152 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, h8300_extract_struct_value_address); | |
1153 | set_gdbarch_use_struct_convention (gdbarch, h8300_use_struct_convention); | |
928e48af CV |
1154 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
1155 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
1156 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
1157 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
1158 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
928e48af CV |
1159 | set_gdbarch_call_dummy_p (gdbarch, 1); |
1160 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_words); | |
1161 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
1162 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
1163 | /* set_gdbarch_call_dummy_stack_adjust */ | |
1164 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
1165 | set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc); | |
1166 | ||
1167 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1168 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1169 | set_gdbarch_ptr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT); | |
1170 | set_gdbarch_addr_bit (gdbarch, BINWORD * TARGET_CHAR_BIT); | |
1171 | ||
5247b418 | 1172 | /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */ |
928e48af CV |
1173 | set_gdbarch_extra_stack_alignment_needed (gdbarch, 0); |
1174 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
1175 | ||
1176 | return gdbarch; | |
c906108c SS |
1177 | } |
1178 | ||
1179 | void | |
fba45db2 | 1180 | _initialize_h8300_tdep (void) |
c906108c SS |
1181 | { |
1182 | tm_print_insn = gdb_print_insn_h8300; | |
928e48af | 1183 | register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init); |
c906108c | 1184 | } |