]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Target-dependent code for Hitachi H8/500, for GDB. |
2 | Copyright 1993, 1994, 1995 Free Software Foundation, Inc. | |
3 | ||
c5aa993b | 4 | This file is part of GDB. |
c906108c | 5 | |
c5aa993b JM |
6 | This program is free software; you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
c906108c | 10 | |
c5aa993b JM |
11 | This program is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
c906108c | 15 | |
c5aa993b JM |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
20 | |
21 | /* | |
c5aa993b JM |
22 | Contributed by Steve Chamberlain |
23 | [email protected] | |
c906108c SS |
24 | */ |
25 | ||
26 | #include "defs.h" | |
27 | #include "frame.h" | |
28 | #include "obstack.h" | |
29 | #include "symtab.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "gdbcmd.h" | |
32 | #include "value.h" | |
33 | #include "dis-asm.h" | |
34 | #include "gdbcore.h" | |
35 | ||
36 | #define UNSIGNED_SHORT(X) ((X) & 0xffff) | |
37 | ||
38 | static int code_size = 2; | |
39 | ||
40 | static int data_size = 2; | |
41 | ||
42 | /* Shape of an H8/500 frame : | |
43 | ||
44 | arg-n | |
45 | .. | |
46 | arg-2 | |
47 | arg-1 | |
48 | return address <2 or 4 bytes> | |
c5aa993b | 49 | old fp <2 bytes> |
c906108c SS |
50 | auto-n |
51 | .. | |
52 | auto-1 | |
53 | saved registers | |
54 | ||
c5aa993b | 55 | */ |
c906108c SS |
56 | |
57 | /* an easy to debug H8 stack frame looks like: | |
c5aa993b JM |
58 | 0x6df6 push r6 |
59 | 0x0d76 mov.w r7,r6 | |
60 | 0x6dfn push reg | |
61 | 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp | |
62 | 0x1957 sub.w r5,sp | |
c906108c SS |
63 | |
64 | */ | |
65 | ||
66 | #define IS_PUSH(x) (((x) & 0xff00)==0x6d00) | |
67 | #define IS_LINK_8(x) ((x) == 0x17) | |
68 | #define IS_LINK_16(x) ((x) == 0x1f) | |
69 | #define IS_MOVE_FP(x) ((x) == 0x0d76) | |
70 | #define IS_MOV_SP_FP(x) ((x) == 0x0d76) | |
71 | #define IS_SUB2_SP(x) ((x) == 0x1b87) | |
72 | #define IS_MOVK_R5(x) ((x) == 0x7905) | |
73 | #define IS_SUB_R5SP(x) ((x) == 0x1957) | |
74 | ||
75 | #define LINK_8 0x17 | |
76 | #define LINK_16 0x1f | |
77 | ||
78 | int minimum_mode = 1; | |
79 | ||
80 | CORE_ADDR | |
81 | h8500_skip_prologue (start_pc) | |
82 | CORE_ADDR start_pc; | |
83 | { | |
84 | short int w; | |
85 | ||
86 | w = read_memory_integer (start_pc, 1); | |
87 | if (w == LINK_8) | |
88 | { | |
89 | start_pc += 2; | |
90 | w = read_memory_integer (start_pc, 1); | |
91 | } | |
92 | ||
93 | if (w == LINK_16) | |
94 | { | |
95 | start_pc += 3; | |
96 | w = read_memory_integer (start_pc, 2); | |
97 | } | |
98 | ||
99 | return start_pc; | |
100 | } | |
101 | ||
102 | CORE_ADDR | |
103 | h8500_addr_bits_remove (addr) | |
104 | CORE_ADDR addr; | |
105 | { | |
106 | return ((addr) & 0xffffff); | |
107 | } | |
108 | ||
109 | /* Given a GDB frame, determine the address of the calling function's frame. | |
110 | This will be used to create a new GDB frame struct, and then | |
111 | INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame. | |
112 | ||
113 | For us, the frame address is its stack pointer value, so we look up | |
114 | the function prologue to determine the caller's sp value, and return it. */ | |
115 | ||
116 | CORE_ADDR | |
117 | h8500_frame_chain (thisframe) | |
118 | struct frame_info *thisframe; | |
119 | { | |
120 | if (!inside_entry_file (thisframe->pc)) | |
121 | return (read_memory_integer (FRAME_FP (thisframe), PTR_SIZE)); | |
122 | else | |
123 | return 0; | |
124 | } | |
125 | ||
126 | /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or | |
127 | is not the address of a valid instruction, the address of the next | |
128 | instruction beyond ADDR otherwise. *PWORD1 receives the first word | |
c5aa993b | 129 | of the instruction. */ |
c906108c SS |
130 | |
131 | CORE_ADDR | |
132 | NEXT_PROLOGUE_INSN (addr, lim, pword1) | |
133 | CORE_ADDR addr; | |
134 | CORE_ADDR lim; | |
135 | char *pword1; | |
136 | { | |
137 | if (addr < lim + 8) | |
138 | { | |
139 | read_memory (addr, pword1, 1); | |
140 | read_memory (addr, pword1 + 1, 1); | |
141 | return 1; | |
142 | } | |
143 | return 0; | |
144 | } | |
145 | ||
146 | /* Examine the prologue of a function. `ip' points to the first | |
147 | instruction. `limit' is the limit of the prologue (e.g. the addr | |
148 | of the first linenumber, or perhaps the program counter if we're | |
149 | stepping through). `frame_sp' is the stack pointer value in use in | |
150 | this frame. `fsr' is a pointer to a frame_saved_regs structure | |
151 | into which we put info about the registers saved by this frame. | |
152 | `fi' is a struct frame_info pointer; we fill in various fields in | |
153 | it to reflect the offsets of the arg pointer and the locals | |
154 | pointer. */ | |
155 | ||
156 | /* Return the saved PC from this frame. */ | |
157 | ||
158 | CORE_ADDR | |
159 | frame_saved_pc (frame) | |
160 | struct frame_info *frame; | |
161 | { | |
162 | return read_memory_integer (FRAME_FP (frame) + 2, PTR_SIZE); | |
163 | } | |
164 | ||
c5aa993b | 165 | void |
c906108c SS |
166 | h8500_pop_frame () |
167 | { | |
168 | unsigned regnum; | |
169 | struct frame_saved_regs fsr; | |
170 | struct frame_info *frame = get_current_frame (); | |
171 | ||
172 | get_frame_saved_regs (frame, &fsr); | |
173 | ||
174 | for (regnum = 0; regnum < 8; regnum++) | |
175 | { | |
176 | if (fsr.regs[regnum]) | |
177 | write_register (regnum, read_memory_short (fsr.regs[regnum])); | |
178 | ||
179 | flush_cached_frames (); | |
180 | } | |
181 | } | |
182 | ||
183 | void | |
184 | print_register_hook (regno) | |
185 | int regno; | |
186 | { | |
187 | if (regno == CCR_REGNUM) | |
188 | { | |
189 | /* CCR register */ | |
190 | ||
191 | int C, Z, N, V; | |
192 | unsigned char b[2]; | |
193 | unsigned char l; | |
194 | ||
195 | read_relative_register_raw_bytes (regno, b); | |
196 | l = b[1]; | |
197 | printf_unfiltered ("\t"); | |
198 | printf_unfiltered ("I-%d - ", (l & 0x80) != 0); | |
199 | N = (l & 0x8) != 0; | |
200 | Z = (l & 0x4) != 0; | |
201 | V = (l & 0x2) != 0; | |
202 | C = (l & 0x1) != 0; | |
203 | printf_unfiltered ("N-%d ", N); | |
204 | printf_unfiltered ("Z-%d ", Z); | |
205 | printf_unfiltered ("V-%d ", V); | |
206 | printf_unfiltered ("C-%d ", C); | |
207 | if ((C | Z) == 0) | |
208 | printf_unfiltered ("u> "); | |
209 | if ((C | Z) == 1) | |
210 | printf_unfiltered ("u<= "); | |
211 | if ((C == 0)) | |
212 | printf_unfiltered ("u>= "); | |
213 | if (C == 1) | |
214 | printf_unfiltered ("u< "); | |
215 | if (Z == 0) | |
216 | printf_unfiltered ("!= "); | |
217 | if (Z == 1) | |
218 | printf_unfiltered ("== "); | |
219 | if ((N ^ V) == 0) | |
220 | printf_unfiltered (">= "); | |
221 | if ((N ^ V) == 1) | |
222 | printf_unfiltered ("< "); | |
223 | if ((Z | (N ^ V)) == 0) | |
224 | printf_unfiltered ("> "); | |
225 | if ((Z | (N ^ V)) == 1) | |
226 | printf_unfiltered ("<= "); | |
227 | } | |
228 | } | |
229 | ||
230 | int | |
231 | h8500_register_size (regno) | |
232 | int regno; | |
233 | { | |
234 | switch (regno) | |
235 | { | |
236 | case SEG_C_REGNUM: | |
237 | case SEG_D_REGNUM: | |
238 | case SEG_E_REGNUM: | |
239 | case SEG_T_REGNUM: | |
240 | return 1; | |
241 | case R0_REGNUM: | |
242 | case R1_REGNUM: | |
243 | case R2_REGNUM: | |
244 | case R3_REGNUM: | |
245 | case R4_REGNUM: | |
246 | case R5_REGNUM: | |
247 | case R6_REGNUM: | |
248 | case R7_REGNUM: | |
249 | case CCR_REGNUM: | |
250 | return 2; | |
251 | ||
252 | case PR0_REGNUM: | |
253 | case PR1_REGNUM: | |
254 | case PR2_REGNUM: | |
255 | case PR3_REGNUM: | |
256 | case PR4_REGNUM: | |
257 | case PR5_REGNUM: | |
258 | case PR6_REGNUM: | |
259 | case PR7_REGNUM: | |
260 | case PC_REGNUM: | |
261 | return 4; | |
262 | default: | |
263 | abort (); | |
264 | } | |
265 | } | |
266 | ||
267 | struct type * | |
268 | h8500_register_virtual_type (regno) | |
269 | int regno; | |
270 | { | |
271 | switch (regno) | |
272 | { | |
273 | case SEG_C_REGNUM: | |
274 | case SEG_E_REGNUM: | |
275 | case SEG_D_REGNUM: | |
276 | case SEG_T_REGNUM: | |
277 | return builtin_type_unsigned_char; | |
278 | case R0_REGNUM: | |
279 | case R1_REGNUM: | |
280 | case R2_REGNUM: | |
281 | case R3_REGNUM: | |
282 | case R4_REGNUM: | |
283 | case R5_REGNUM: | |
284 | case R6_REGNUM: | |
285 | case R7_REGNUM: | |
286 | case CCR_REGNUM: | |
287 | return builtin_type_unsigned_short; | |
288 | case PR0_REGNUM: | |
289 | case PR1_REGNUM: | |
290 | case PR2_REGNUM: | |
291 | case PR3_REGNUM: | |
292 | case PR4_REGNUM: | |
293 | case PR5_REGNUM: | |
294 | case PR6_REGNUM: | |
295 | case PR7_REGNUM: | |
296 | case PC_REGNUM: | |
297 | return builtin_type_unsigned_long; | |
298 | default: | |
299 | abort (); | |
300 | } | |
301 | } | |
302 | ||
303 | /* Put here the code to store, into a struct frame_saved_regs, | |
304 | the addresses of the saved registers of frame described by FRAME_INFO. | |
305 | This includes special registers such as pc and fp saved in special | |
306 | ways in the stack frame. sp is even more special: | |
307 | the address we return for it IS the sp for the next frame. */ | |
308 | ||
309 | void | |
310 | frame_find_saved_regs (frame_info, frame_saved_regs) | |
311 | struct frame_info *frame_info; | |
312 | struct frame_saved_regs *frame_saved_regs; | |
313 | { | |
314 | register int regnum; | |
315 | register int regmask; | |
316 | register CORE_ADDR next_addr; | |
317 | register CORE_ADDR pc; | |
318 | unsigned char thebyte; | |
319 | ||
320 | memset (frame_saved_regs, '\0', sizeof *frame_saved_regs); | |
321 | ||
322 | if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4 | |
323 | && (frame_info)->pc <= (frame_info)->frame) | |
324 | { | |
325 | next_addr = (frame_info)->frame; | |
326 | pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4; | |
327 | } | |
328 | else | |
329 | { | |
330 | pc = get_pc_function_start ((frame_info)->pc); | |
331 | /* Verify we have a link a6 instruction next; | |
c5aa993b JM |
332 | if not we lose. If we win, find the address above the saved |
333 | regs using the amount of storage from the link instruction. | |
334 | */ | |
c906108c SS |
335 | |
336 | thebyte = read_memory_integer (pc, 1); | |
337 | if (0x1f == thebyte) | |
338 | next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2; | |
339 | else if (0x17 == thebyte) | |
340 | next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 1), pc += 1; | |
341 | else | |
342 | goto lose; | |
343 | #if 0 | |
344 | /* FIXME steve */ | |
345 | /* If have an add:g.waddal #-n, sp next, adjust next_addr. */ | |
346 | if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774) | |
347 | next_addr += read_memory_integer (pc += 2, 4), pc += 4; | |
348 | #endif | |
349 | } | |
350 | ||
351 | thebyte = read_memory_integer (pc, 1); | |
352 | if (thebyte == 0x12) | |
353 | { | |
354 | /* Got stm */ | |
355 | pc++; | |
356 | regmask = read_memory_integer (pc, 1); | |
357 | pc++; | |
358 | for (regnum = 0; regnum < 8; regnum++, regmask >>= 1) | |
359 | { | |
360 | if (regmask & 1) | |
361 | { | |
362 | (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2; | |
363 | } | |
364 | } | |
365 | thebyte = read_memory_integer (pc, 1); | |
366 | } | |
367 | /* Maybe got a load of pushes */ | |
368 | while (thebyte == 0xbf) | |
369 | { | |
370 | pc++; | |
371 | regnum = read_memory_integer (pc, 1) & 0x7; | |
372 | pc++; | |
373 | (frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2; | |
374 | thebyte = read_memory_integer (pc, 1); | |
375 | } | |
376 | ||
377 | lose:; | |
378 | ||
379 | /* Remember the address of the frame pointer */ | |
380 | (frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame; | |
381 | ||
382 | /* This is where the old sp is hidden */ | |
383 | (frame_saved_regs)->regs[SP_REGNUM] = (frame_info)->frame; | |
384 | ||
385 | /* And the PC - remember the pushed FP is always two bytes long */ | |
386 | (frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2; | |
387 | } | |
388 | ||
389 | CORE_ADDR | |
390 | saved_pc_after_call () | |
391 | { | |
392 | int x; | |
393 | int a = read_register (SP_REGNUM); | |
394 | ||
395 | x = read_memory_integer (a, code_size); | |
396 | if (code_size == 2) | |
397 | { | |
398 | /* Stick current code segement onto top */ | |
399 | x &= 0xffff; | |
400 | x |= read_register (SEG_C_REGNUM) << 16; | |
401 | } | |
402 | x &= 0xffffff; | |
403 | return x; | |
404 | } | |
405 | ||
406 | void | |
407 | h8500_set_pointer_size (newsize) | |
408 | int newsize; | |
409 | { | |
410 | static int oldsize = 0; | |
411 | ||
412 | if (oldsize != newsize) | |
413 | { | |
414 | printf_unfiltered ("pointer size set to %d bits\n", newsize); | |
415 | oldsize = newsize; | |
416 | if (newsize == 32) | |
417 | { | |
418 | minimum_mode = 0; | |
419 | } | |
420 | else | |
421 | { | |
422 | minimum_mode = 1; | |
423 | } | |
424 | _initialize_gdbtypes (); | |
425 | } | |
426 | } | |
427 | ||
428 | static void | |
429 | big_command () | |
430 | { | |
431 | h8500_set_pointer_size (32); | |
432 | code_size = 4; | |
433 | data_size = 4; | |
434 | } | |
435 | ||
436 | static void | |
437 | medium_command () | |
438 | { | |
439 | h8500_set_pointer_size (32); | |
440 | code_size = 4; | |
441 | data_size = 2; | |
442 | } | |
443 | ||
444 | static void | |
445 | compact_command () | |
446 | { | |
447 | h8500_set_pointer_size (32); | |
448 | code_size = 2; | |
449 | data_size = 4; | |
450 | } | |
451 | ||
452 | static void | |
453 | small_command () | |
454 | { | |
455 | h8500_set_pointer_size (16); | |
456 | code_size = 2; | |
457 | data_size = 2; | |
458 | } | |
459 | ||
460 | static struct cmd_list_element *setmemorylist; | |
461 | ||
462 | static void | |
463 | set_memory (args, from_tty) | |
464 | char *args; | |
465 | int from_tty; | |
466 | { | |
467 | printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n"); | |
468 | help_list (setmemorylist, "set memory ", -1, gdb_stdout); | |
469 | } | |
470 | ||
471 | /* See if variable name is ppc or pr[0-7] */ | |
472 | ||
473 | int | |
474 | h8500_is_trapped_internalvar (name) | |
475 | char *name; | |
476 | { | |
477 | if (name[0] != 'p') | |
478 | return 0; | |
479 | ||
480 | if (strcmp (name + 1, "pc") == 0) | |
481 | return 1; | |
482 | ||
483 | if (name[1] == 'r' | |
484 | && name[2] >= '0' | |
485 | && name[2] <= '7' | |
486 | && name[3] == '\000') | |
487 | return 1; | |
488 | else | |
489 | return 0; | |
490 | } | |
491 | ||
492 | value_ptr | |
493 | h8500_value_of_trapped_internalvar (var) | |
494 | struct internalvar *var; | |
495 | { | |
496 | LONGEST regval; | |
497 | unsigned char regbuf[4]; | |
498 | int page_regnum, regnum; | |
499 | ||
500 | regnum = var->name[2] == 'c' ? PC_REGNUM : var->name[2] - '0'; | |
501 | ||
502 | switch (var->name[2]) | |
503 | { | |
504 | case 'c': | |
505 | page_regnum = SEG_C_REGNUM; | |
506 | break; | |
507 | case '0': | |
508 | case '1': | |
509 | case '2': | |
510 | case '3': | |
511 | page_regnum = SEG_D_REGNUM; | |
512 | break; | |
513 | case '4': | |
514 | case '5': | |
515 | page_regnum = SEG_E_REGNUM; | |
516 | break; | |
517 | case '6': | |
518 | case '7': | |
519 | page_regnum = SEG_T_REGNUM; | |
520 | break; | |
521 | } | |
522 | ||
523 | get_saved_register (regbuf, NULL, NULL, selected_frame, page_regnum, NULL); | |
524 | regval = regbuf[0] << 16; | |
525 | ||
526 | get_saved_register (regbuf, NULL, NULL, selected_frame, regnum, NULL); | |
c5aa993b | 527 | regval |= regbuf[0] << 8 | regbuf[1]; /* XXX host/target byte order */ |
c906108c SS |
528 | |
529 | free (var->value); /* Free up old value */ | |
530 | ||
531 | var->value = value_from_longest (builtin_type_unsigned_long, regval); | |
532 | release_value (var->value); /* Unchain new value */ | |
533 | ||
534 | VALUE_LVAL (var->value) = lval_internalvar; | |
535 | VALUE_INTERNALVAR (var->value) = var; | |
536 | return var->value; | |
537 | } | |
538 | ||
539 | void | |
540 | h8500_set_trapped_internalvar (var, newval, bitpos, bitsize, offset) | |
541 | struct internalvar *var; | |
542 | int offset, bitpos, bitsize; | |
543 | value_ptr newval; | |
544 | { | |
545 | char *page_regnum, *regnum; | |
546 | char expression[100]; | |
547 | unsigned new_regval; | |
548 | struct type *type; | |
549 | enum type_code newval_type_code; | |
550 | ||
551 | type = check_typedef (VALUE_TYPE (newval)); | |
552 | newval_type_code = TYPE_CODE (type); | |
553 | ||
554 | if ((newval_type_code != TYPE_CODE_INT | |
555 | && newval_type_code != TYPE_CODE_PTR) | |
556 | || TYPE_LENGTH (type) != sizeof (new_regval)) | |
557 | error ("Illegal type (%s) for assignment to $%s\n", | |
558 | TYPE_NAME (VALUE_TYPE (newval)), var->name); | |
559 | ||
560 | new_regval = *(long *) VALUE_CONTENTS_RAW (newval); | |
561 | ||
562 | regnum = var->name + 1; | |
563 | ||
564 | switch (var->name[2]) | |
565 | { | |
566 | case 'c': | |
567 | page_regnum = "cp"; | |
568 | break; | |
569 | case '0': | |
570 | case '1': | |
571 | case '2': | |
572 | case '3': | |
573 | page_regnum = "dp"; | |
574 | break; | |
575 | case '4': | |
576 | case '5': | |
577 | page_regnum = "ep"; | |
578 | break; | |
579 | case '6': | |
580 | case '7': | |
581 | page_regnum = "tp"; | |
582 | break; | |
583 | } | |
584 | ||
585 | sprintf (expression, "$%s=%d", page_regnum, new_regval >> 16); | |
586 | parse_and_eval (expression); | |
587 | ||
588 | sprintf (expression, "$%s=%d", regnum, new_regval & 0xffff); | |
589 | parse_and_eval (expression); | |
590 | } | |
591 | ||
592 | CORE_ADDR | |
593 | h8500_read_sp () | |
594 | { | |
595 | return read_register (PR7_REGNUM); | |
596 | } | |
597 | ||
598 | void | |
599 | h8500_write_sp (v) | |
600 | CORE_ADDR v; | |
601 | { | |
602 | write_register (PR7_REGNUM, v); | |
603 | } | |
604 | ||
605 | CORE_ADDR | |
606 | h8500_read_pc (pid) | |
607 | int pid; | |
608 | { | |
609 | return read_register (PC_REGNUM); | |
610 | } | |
611 | ||
612 | void | |
613 | h8500_write_pc (v, pid) | |
614 | CORE_ADDR v; | |
615 | int pid; | |
616 | { | |
617 | write_register (PC_REGNUM, v); | |
618 | } | |
619 | ||
620 | CORE_ADDR | |
621 | h8500_read_fp () | |
622 | { | |
623 | return read_register (PR6_REGNUM); | |
624 | } | |
625 | ||
626 | void | |
627 | h8500_write_fp (v) | |
628 | CORE_ADDR v; | |
629 | { | |
630 | write_register (PR6_REGNUM, v); | |
631 | } | |
632 | ||
633 | void | |
634 | _initialize_h8500_tdep () | |
635 | { | |
636 | tm_print_insn = print_insn_h8500; | |
637 | ||
638 | add_prefix_cmd ("memory", no_class, set_memory, | |
639 | "set the memory model", &setmemorylist, "set memory ", 0, | |
640 | &setlist); | |
641 | ||
642 | add_cmd ("small", class_support, small_command, | |
c5aa993b | 643 | "Set small memory model. (16 bit code, 16 bit data)", &setmemorylist); |
c906108c SS |
644 | |
645 | add_cmd ("big", class_support, big_command, | |
c5aa993b | 646 | "Set big memory model. (32 bit code, 32 bit data)", &setmemorylist); |
c906108c SS |
647 | |
648 | add_cmd ("medium", class_support, medium_command, | |
c5aa993b | 649 | "Set medium memory model. (32 bit code, 16 bit data)", &setmemorylist); |
c906108c SS |
650 | |
651 | add_cmd ("compact", class_support, compact_command, | |
c5aa993b | 652 | "Set compact memory model. (16 bit code, 32 bit data)", &setmemorylist); |
c906108c SS |
653 | |
654 | } |