]>
Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
197e01b6 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software |
9fc9f5e2 | 4 | Foundation, Inc. |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
20 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
21 | Boston, MA 02110-1301, USA. */ | |
16461d7d KB |
22 | |
23 | #include "defs.h" | |
24 | #include "inferior.h" | |
16461d7d | 25 | #include "gdbcore.h" |
8064c6ae | 26 | #include "arch-utils.h" |
16461d7d | 27 | #include "floatformat.h" |
4e052eda | 28 | #include "regcache.h" |
004d836a JJ |
29 | #include "reggroups.h" |
30 | #include "frame.h" | |
31 | #include "frame-base.h" | |
32 | #include "frame-unwind.h" | |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
bd1ce8ba | 35 | #include "gdb_assert.h" |
16461d7d KB |
36 | #include "objfiles.h" |
37 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 38 | #include "elf-bfd.h" |
a89aa300 | 39 | #include "dis-asm.h" |
7d9b040b | 40 | #include "infcall.h" |
b33e8514 | 41 | #include "osabi.h" |
9fc9f5e2 | 42 | #include "ia64-tdep.h" |
16461d7d | 43 | |
968d1cb4 | 44 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 45 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
46 | #include "libunwind-frame.h" |
47 | #include "libunwind-ia64.h" | |
c5a27d9c JJ |
48 | |
49 | /* Note: KERNEL_START is supposed to be an address which is not going | |
50 | to ever contain any valid unwind info. For ia64 linux, the choice | |
51 | of 0xc000000000000000 is fairly safe since that's uncached space. | |
52 | ||
53 | We use KERNEL_START as follows: after obtaining the kernel's | |
54 | unwind table via getunwind(), we project its unwind data into | |
55 | address-range KERNEL_START-(KERNEL_START+ktab_size) and then | |
56 | when ia64_access_mem() sees a memory access to this | |
57 | address-range, we redirect it to ktab instead. | |
58 | ||
59 | None of this hackery is needed with a modern kernel/libcs | |
60 | which uses the kernel virtual DSO to provide access to the | |
61 | kernel's unwind info. In that case, ktab_size remains 0 and | |
62 | hence the value of KERNEL_START doesn't matter. */ | |
63 | ||
64 | #define KERNEL_START 0xc000000000000000ULL | |
65 | ||
66 | static size_t ktab_size = 0; | |
67 | struct ia64_table_entry | |
68 | { | |
69 | uint64_t start_offset; | |
70 | uint64_t end_offset; | |
71 | uint64_t info_offset; | |
72 | }; | |
73 | ||
74 | static struct ia64_table_entry *ktab = NULL; | |
75 | ||
968d1cb4 JJ |
76 | #endif |
77 | ||
698cb3f0 KB |
78 | /* An enumeration of the different IA-64 instruction types. */ |
79 | ||
16461d7d KB |
80 | typedef enum instruction_type |
81 | { | |
82 | A, /* Integer ALU ; I-unit or M-unit */ | |
83 | I, /* Non-ALU integer; I-unit */ | |
84 | M, /* Memory ; M-unit */ | |
85 | F, /* Floating-point ; F-unit */ | |
86 | B, /* Branch ; B-unit */ | |
87 | L, /* Extended (L+X) ; I-unit */ | |
88 | X, /* Extended (L+X) ; I-unit */ | |
89 | undefined /* undefined or reserved */ | |
90 | } instruction_type; | |
91 | ||
92 | /* We represent IA-64 PC addresses as the value of the instruction | |
93 | pointer or'd with some bit combination in the low nibble which | |
94 | represents the slot number in the bundle addressed by the | |
95 | instruction pointer. The problem is that the Linux kernel | |
96 | multiplies its slot numbers (for exceptions) by one while the | |
97 | disassembler multiplies its slot numbers by 6. In addition, I've | |
98 | heard it said that the simulator uses 1 as the multiplier. | |
99 | ||
100 | I've fixed the disassembler so that the bytes_per_line field will | |
101 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
102 | is set to six (which is how it was set up initially). -- objdump | |
103 | displays pretty disassembly dumps with this value. For our purposes, | |
104 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
105 | never want to also display the raw bytes the way objdump does. */ | |
106 | ||
107 | #define SLOT_MULTIPLIER 1 | |
108 | ||
109 | /* Length in bytes of an instruction bundle */ | |
110 | ||
111 | #define BUNDLE_LEN 16 | |
112 | ||
16461d7d KB |
113 | static gdbarch_init_ftype ia64_gdbarch_init; |
114 | ||
115 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 116 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 117 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 118 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
64a5b29c | 119 | static struct type *is_float_or_hfa_type (struct type *t); |
b33e8514 | 120 | static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr); |
16461d7d | 121 | |
004d836a JJ |
122 | static struct type *builtin_type_ia64_ext; |
123 | ||
124 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 125 | |
16461d7d KB |
126 | static int sp_regnum = IA64_GR12_REGNUM; |
127 | static int fp_regnum = IA64_VFP_REGNUM; | |
128 | static int lr_regnum = IA64_VRAP_REGNUM; | |
129 | ||
004d836a | 130 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 131 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
132 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
133 | V127_REGNUM = V32_REGNUM + 95, | |
134 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
135 | |
136 | /* Array of register names; There should be ia64_num_regs strings in | |
137 | the initializer. */ | |
138 | ||
139 | static char *ia64_register_names[] = | |
140 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
141 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
142 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
143 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
144 | "", "", "", "", "", "", "", "", |
145 | "", "", "", "", "", "", "", "", | |
146 | "", "", "", "", "", "", "", "", | |
147 | "", "", "", "", "", "", "", "", | |
148 | "", "", "", "", "", "", "", "", | |
149 | "", "", "", "", "", "", "", "", | |
150 | "", "", "", "", "", "", "", "", | |
151 | "", "", "", "", "", "", "", "", | |
152 | "", "", "", "", "", "", "", "", | |
153 | "", "", "", "", "", "", "", "", | |
154 | "", "", "", "", "", "", "", "", | |
155 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
156 | |
157 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
158 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
159 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
160 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
161 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
162 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
163 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
164 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
165 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
166 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
167 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
168 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
169 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
170 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
171 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
172 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
173 | ||
004d836a JJ |
174 | "", "", "", "", "", "", "", "", |
175 | "", "", "", "", "", "", "", "", | |
176 | "", "", "", "", "", "", "", "", | |
177 | "", "", "", "", "", "", "", "", | |
178 | "", "", "", "", "", "", "", "", | |
179 | "", "", "", "", "", "", "", "", | |
180 | "", "", "", "", "", "", "", "", | |
181 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
182 | |
183 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
184 | ||
185 | "vfp", "vrap", | |
186 | ||
187 | "pr", "ip", "psr", "cfm", | |
188 | ||
189 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
190 | "", "", "", "", "", "", "", "", | |
191 | "rsc", "bsp", "bspstore", "rnat", | |
192 | "", "fcr", "", "", | |
193 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
194 | "ccv", "", "", "", "unat", "", "", "", | |
195 | "fpsr", "", "", "", "itc", | |
196 | "", "", "", "", "", "", "", "", "", "", | |
197 | "", "", "", "", "", "", "", "", "", | |
198 | "pfs", "lc", "ec", | |
199 | "", "", "", "", "", "", "", "", "", "", | |
200 | "", "", "", "", "", "", "", "", "", "", | |
201 | "", "", "", "", "", "", "", "", "", "", | |
202 | "", "", "", "", "", "", "", "", "", "", | |
203 | "", "", "", "", "", "", "", "", "", "", | |
204 | "", "", "", "", "", "", "", "", "", "", | |
205 | "", | |
206 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
207 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
208 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
209 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
210 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
211 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
212 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
213 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
214 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
215 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
216 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
217 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
218 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
219 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
220 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
221 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
222 | |
223 | "bof", | |
224 | ||
225 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
226 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
227 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
228 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
229 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
230 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
231 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
232 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
233 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
234 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
235 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
236 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
237 | ||
238 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
239 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
240 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
241 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
242 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
243 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
244 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
245 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
246 | }; |
247 | ||
004d836a JJ |
248 | struct ia64_frame_cache |
249 | { | |
250 | CORE_ADDR base; /* frame pointer base for frame */ | |
251 | CORE_ADDR pc; /* function start pc for frame */ | |
252 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
253 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
254 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 255 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
256 | int frameless; |
257 | int sof; /* Size of frame (decoded from cfm value) */ | |
258 | int sol; /* Size of locals (decoded from cfm value) */ | |
259 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
260 | CORE_ADDR after_prologue; | |
261 | /* Address of first instruction after the last | |
262 | prologue instruction; Note that there may | |
263 | be instructions from the function's body | |
264 | intermingled with the prologue. */ | |
265 | int mem_stack_frame_size; | |
266 | /* Size of the memory stack frame (may be zero), | |
267 | or -1 if it has not been determined yet. */ | |
268 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 269 | for this frame. 0 if no register is being used |
16461d7d | 270 | as the frame pointer. */ |
004d836a JJ |
271 | |
272 | /* Saved registers. */ | |
273 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
274 | ||
275 | }; | |
244bc108 | 276 | |
698cb3f0 KB |
277 | #define SIGCONTEXT_REGISTER_ADDRESS \ |
278 | (gdbarch_tdep (current_gdbarch)->sigcontext_register_address) | |
16461d7d | 279 | |
004d836a JJ |
280 | int |
281 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
282 | struct reggroup *group) | |
16461d7d | 283 | { |
004d836a JJ |
284 | int vector_p; |
285 | int float_p; | |
286 | int raw_p; | |
287 | if (group == all_reggroup) | |
288 | return 1; | |
289 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
290 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
291 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
292 | if (group == float_reggroup) | |
293 | return float_p; | |
294 | if (group == vector_reggroup) | |
295 | return vector_p; | |
296 | if (group == general_reggroup) | |
297 | return (!vector_p && !float_p); | |
298 | if (group == save_reggroup || group == restore_reggroup) | |
299 | return raw_p; | |
300 | return 0; | |
16461d7d KB |
301 | } |
302 | ||
004d836a JJ |
303 | static const char * |
304 | ia64_register_name (int reg) | |
16461d7d | 305 | { |
004d836a | 306 | return ia64_register_names[reg]; |
16461d7d KB |
307 | } |
308 | ||
004d836a JJ |
309 | struct type * |
310 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 311 | { |
004d836a JJ |
312 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
313 | return builtin_type_ia64_ext; | |
314 | else | |
315 | return builtin_type_long; | |
16461d7d KB |
316 | } |
317 | ||
a78f21af | 318 | static int |
004d836a | 319 | ia64_dwarf_reg_to_regnum (int reg) |
16461d7d | 320 | { |
004d836a JJ |
321 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
322 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
323 | return reg; | |
16461d7d KB |
324 | } |
325 | ||
4afcc598 | 326 | static int |
2fda21a6 | 327 | floatformat_valid (const struct floatformat *fmt, const void *from) |
4afcc598 JJ |
328 | { |
329 | return 1; | |
330 | } | |
331 | ||
16461d7d KB |
332 | const struct floatformat floatformat_ia64_ext = |
333 | { | |
334 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
4afcc598 | 335 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid |
16461d7d KB |
336 | }; |
337 | ||
16461d7d KB |
338 | |
339 | /* Extract ``len'' bits from an instruction bundle starting at | |
340 | bit ``from''. */ | |
341 | ||
244bc108 | 342 | static long long |
16461d7d KB |
343 | extract_bit_field (char *bundle, int from, int len) |
344 | { | |
345 | long long result = 0LL; | |
346 | int to = from + len; | |
347 | int from_byte = from / 8; | |
348 | int to_byte = to / 8; | |
349 | unsigned char *b = (unsigned char *) bundle; | |
350 | unsigned char c; | |
351 | int lshift; | |
352 | int i; | |
353 | ||
354 | c = b[from_byte]; | |
355 | if (from_byte == to_byte) | |
356 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
357 | result = c >> (from % 8); | |
358 | lshift = 8 - (from % 8); | |
359 | ||
360 | for (i = from_byte+1; i < to_byte; i++) | |
361 | { | |
362 | result |= ((long long) b[i]) << lshift; | |
363 | lshift += 8; | |
364 | } | |
365 | ||
366 | if (from_byte < to_byte && (to % 8 != 0)) | |
367 | { | |
368 | c = b[to_byte]; | |
369 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
370 | result |= ((long long) c) << lshift; | |
371 | } | |
372 | ||
373 | return result; | |
374 | } | |
375 | ||
376 | /* Replace the specified bits in an instruction bundle */ | |
377 | ||
244bc108 | 378 | static void |
16461d7d KB |
379 | replace_bit_field (char *bundle, long long val, int from, int len) |
380 | { | |
381 | int to = from + len; | |
382 | int from_byte = from / 8; | |
383 | int to_byte = to / 8; | |
384 | unsigned char *b = (unsigned char *) bundle; | |
385 | unsigned char c; | |
386 | ||
387 | if (from_byte == to_byte) | |
388 | { | |
389 | unsigned char left, right; | |
390 | c = b[from_byte]; | |
391 | left = (c >> (to % 8)) << (to % 8); | |
392 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
393 | c = (unsigned char) (val & 0xff); | |
394 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
395 | c |= right | left; | |
396 | b[from_byte] = c; | |
397 | } | |
398 | else | |
399 | { | |
400 | int i; | |
401 | c = b[from_byte]; | |
402 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
403 | c = c | (val << (from % 8)); | |
404 | b[from_byte] = c; | |
405 | val >>= 8 - from % 8; | |
406 | ||
407 | for (i = from_byte+1; i < to_byte; i++) | |
408 | { | |
409 | c = val & 0xff; | |
410 | val >>= 8; | |
411 | b[i] = c; | |
412 | } | |
413 | ||
414 | if (to % 8 != 0) | |
415 | { | |
416 | unsigned char cv = (unsigned char) val; | |
417 | c = b[to_byte]; | |
418 | c = c >> (to % 8) << (to % 8); | |
419 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
420 | b[to_byte] = c; | |
421 | } | |
422 | } | |
423 | } | |
424 | ||
425 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
426 | and instruction bundle */ | |
427 | ||
244bc108 | 428 | static long long |
2fc3ac7e | 429 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
430 | { |
431 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
432 | } | |
433 | ||
434 | /* Store an instruction in an instruction bundle */ | |
435 | ||
244bc108 | 436 | static void |
2fc3ac7e | 437 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
438 | { |
439 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
440 | } | |
441 | ||
64a5b29c | 442 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
443 | { |
444 | { M, I, I }, /* 00 */ | |
445 | { M, I, I }, /* 01 */ | |
446 | { M, I, I }, /* 02 */ | |
447 | { M, I, I }, /* 03 */ | |
448 | { M, L, X }, /* 04 */ | |
449 | { M, L, X }, /* 05 */ | |
450 | { undefined, undefined, undefined }, /* 06 */ | |
451 | { undefined, undefined, undefined }, /* 07 */ | |
452 | { M, M, I }, /* 08 */ | |
453 | { M, M, I }, /* 09 */ | |
454 | { M, M, I }, /* 0A */ | |
455 | { M, M, I }, /* 0B */ | |
456 | { M, F, I }, /* 0C */ | |
457 | { M, F, I }, /* 0D */ | |
458 | { M, M, F }, /* 0E */ | |
459 | { M, M, F }, /* 0F */ | |
460 | { M, I, B }, /* 10 */ | |
461 | { M, I, B }, /* 11 */ | |
462 | { M, B, B }, /* 12 */ | |
463 | { M, B, B }, /* 13 */ | |
464 | { undefined, undefined, undefined }, /* 14 */ | |
465 | { undefined, undefined, undefined }, /* 15 */ | |
466 | { B, B, B }, /* 16 */ | |
467 | { B, B, B }, /* 17 */ | |
468 | { M, M, B }, /* 18 */ | |
469 | { M, M, B }, /* 19 */ | |
470 | { undefined, undefined, undefined }, /* 1A */ | |
471 | { undefined, undefined, undefined }, /* 1B */ | |
472 | { M, F, B }, /* 1C */ | |
473 | { M, F, B }, /* 1D */ | |
474 | { undefined, undefined, undefined }, /* 1E */ | |
475 | { undefined, undefined, undefined }, /* 1F */ | |
476 | }; | |
477 | ||
478 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
479 | address of the next instruction to fetch. */ | |
480 | ||
481 | static CORE_ADDR | |
482 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
483 | { | |
484 | char bundle[BUNDLE_LEN]; | |
485 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
486 | long long template; | |
487 | int val; | |
488 | ||
c26e1c2b KB |
489 | /* Warn about slot numbers greater than 2. We used to generate |
490 | an error here on the assumption that the user entered an invalid | |
491 | address. But, sometimes GDB itself requests an invalid address. | |
492 | This can (easily) happen when execution stops in a function for | |
493 | which there are no symbols. The prologue scanner will attempt to | |
494 | find the beginning of the function - if the nearest symbol | |
495 | happens to not be aligned on a bundle boundary (16 bytes), the | |
496 | resulting starting address will cause GDB to think that the slot | |
497 | number is too large. | |
498 | ||
499 | So we warn about it and set the slot number to zero. It is | |
500 | not necessarily a fatal condition, particularly if debugging | |
501 | at the assembly language level. */ | |
16461d7d | 502 | if (slotnum > 2) |
c26e1c2b | 503 | { |
8a3fe4f8 AC |
504 | warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
505 | "Using slot 0 instead")); | |
c26e1c2b KB |
506 | slotnum = 0; |
507 | } | |
16461d7d KB |
508 | |
509 | addr &= ~0x0f; | |
510 | ||
511 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
512 | ||
513 | if (val != 0) | |
514 | return 0; | |
515 | ||
516 | *instr = slotN_contents (bundle, slotnum); | |
517 | template = extract_bit_field (bundle, 0, 5); | |
518 | *it = template_encoding_table[(int)template][slotnum]; | |
519 | ||
64a5b29c | 520 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
521 | addr += 16; |
522 | else | |
523 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
524 | ||
525 | return addr; | |
526 | } | |
527 | ||
528 | /* There are 5 different break instructions (break.i, break.b, | |
529 | break.m, break.f, and break.x), but they all have the same | |
530 | encoding. (The five bit template in the low five bits of the | |
531 | instruction bundle distinguishes one from another.) | |
532 | ||
533 | The runtime architecture manual specifies that break instructions | |
534 | used for debugging purposes must have the upper two bits of the 21 | |
535 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
536 | instruction encodes the most significant bit of its 21 bit | |
537 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
538 | is at bit 25 which leads to the pattern below. | |
539 | ||
540 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
541 | it turns out that 0x80000 was used as the syscall break in the early | |
542 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
543 | instead. But that didn't work either (I later found out that this | |
544 | pattern was used by the simulator that I was using.) So I ended up | |
545 | using the pattern seen below. */ | |
546 | ||
547 | #if 0 | |
aaab4dba | 548 | #define IA64_BREAKPOINT 0x00002000040LL |
16461d7d | 549 | #endif |
aaab4dba | 550 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
551 | |
552 | static int | |
8181d85f | 553 | ia64_memory_insert_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 554 | { |
8181d85f | 555 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
556 | char bundle[BUNDLE_LEN]; |
557 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
558 | long long instr; | |
559 | int val; | |
126fa72d | 560 | int template; |
16461d7d KB |
561 | |
562 | if (slotnum > 2) | |
8a3fe4f8 | 563 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
16461d7d KB |
564 | |
565 | addr &= ~0x0f; | |
566 | ||
567 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
568 | |
569 | /* Check for L type instruction in 2nd slot, if present then | |
570 | bump up the slot number to the 3rd slot */ | |
571 | template = extract_bit_field (bundle, 0, 5); | |
572 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
573 | { | |
574 | slotnum = 2; | |
575 | } | |
576 | ||
16461d7d | 577 | instr = slotN_contents (bundle, slotnum); |
8181d85f DJ |
578 | memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr)); |
579 | bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr); | |
aaab4dba | 580 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
16461d7d KB |
581 | if (val == 0) |
582 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
583 | ||
584 | return val; | |
585 | } | |
586 | ||
587 | static int | |
8181d85f | 588 | ia64_memory_remove_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 589 | { |
8181d85f | 590 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
591 | char bundle[BUNDLE_LEN]; |
592 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
593 | long long instr; | |
594 | int val; | |
126fa72d | 595 | int template; |
16461d7d KB |
596 | |
597 | addr &= ~0x0f; | |
598 | ||
599 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
600 | |
601 | /* Check for L type instruction in 2nd slot, if present then | |
602 | bump up the slot number to the 3rd slot */ | |
603 | template = extract_bit_field (bundle, 0, 5); | |
604 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
605 | { | |
606 | slotnum = 2; | |
607 | } | |
608 | ||
8181d85f | 609 | memcpy (&instr, bp_tgt->shadow_contents, sizeof instr); |
16461d7d KB |
610 | replace_slotN_contents (bundle, instr, slotnum); |
611 | if (val == 0) | |
612 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
613 | ||
614 | return val; | |
615 | } | |
616 | ||
617 | /* We don't really want to use this, but remote.c needs to call it in order | |
618 | to figure out if Z-packets are supported or not. Oh, well. */ | |
f4f9705a | 619 | const unsigned char * |
fba45db2 | 620 | ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
621 | { |
622 | static unsigned char breakpoint[] = | |
623 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
624 | *lenptr = sizeof (breakpoint); | |
625 | #if 0 | |
626 | *pcptr &= ~0x0f; | |
627 | #endif | |
628 | return breakpoint; | |
629 | } | |
630 | ||
a78f21af | 631 | static CORE_ADDR |
39f77062 | 632 | ia64_read_pc (ptid_t ptid) |
16461d7d | 633 | { |
39f77062 KB |
634 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); |
635 | CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid); | |
16461d7d KB |
636 | int slot_num = (psr_value >> 41) & 3; |
637 | ||
638 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
639 | } | |
640 | ||
54a5c8d8 | 641 | void |
39f77062 | 642 | ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid) |
16461d7d KB |
643 | { |
644 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
39f77062 | 645 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); |
16461d7d KB |
646 | psr_value &= ~(3LL << 41); |
647 | psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41; | |
648 | ||
649 | new_pc &= ~0xfLL; | |
650 | ||
39f77062 KB |
651 | write_register_pid (IA64_PSR_REGNUM, psr_value, ptid); |
652 | write_register_pid (IA64_IP_REGNUM, new_pc, ptid); | |
16461d7d KB |
653 | } |
654 | ||
655 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
656 | ||
657 | /* Returns the address of the slot that's NSLOTS slots away from | |
658 | the address ADDR. NSLOTS may be positive or negative. */ | |
659 | static CORE_ADDR | |
660 | rse_address_add(CORE_ADDR addr, int nslots) | |
661 | { | |
662 | CORE_ADDR new_addr; | |
663 | int mandatory_nat_slots = nslots / 63; | |
664 | int direction = nslots < 0 ? -1 : 1; | |
665 | ||
666 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
667 | ||
668 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
669 | new_addr += 8 * direction; | |
670 | ||
671 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
672 | new_addr += 8 * direction; | |
673 | ||
674 | return new_addr; | |
675 | } | |
676 | ||
004d836a JJ |
677 | static void |
678 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 679 | int regnum, gdb_byte *buf) |
16461d7d | 680 | { |
004d836a | 681 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 682 | { |
88d82102 | 683 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c JJ |
684 | /* First try and use the libunwind special reg accessor, otherwise fallback to |
685 | standard logic. */ | |
686 | if (!libunwind_is_initialized () | |
687 | || libunwind_get_reg_special (gdbarch, regnum, buf) != 0) | |
88d82102 | 688 | #endif |
004d836a | 689 | { |
c5a27d9c JJ |
690 | /* The fallback position is to assume that r32-r127 are found sequentially |
691 | in memory starting at $bof. This isn't always true, but without libunwind, | |
692 | this is the best we can do. */ | |
693 | ULONGEST cfm; | |
694 | ULONGEST bsp; | |
695 | CORE_ADDR reg; | |
696 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
697 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
698 | ||
699 | /* The bsp points at the end of the register frame so we | |
700 | subtract the size of frame from it to get start of register frame. */ | |
701 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
702 | ||
703 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
704 | { | |
705 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
706 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
707 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), reg); | |
708 | } | |
709 | else | |
710 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0); | |
004d836a | 711 | } |
004d836a JJ |
712 | } |
713 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
714 | { | |
715 | ULONGEST unatN_val; | |
716 | ULONGEST unat; | |
717 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
718 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
aa2a9a3c | 719 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val); |
004d836a JJ |
720 | } |
721 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
722 | { | |
723 | ULONGEST natN_val = 0; | |
724 | ULONGEST bsp; | |
725 | ULONGEST cfm; | |
726 | CORE_ADDR gr_addr = 0; | |
727 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
728 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
729 | ||
730 | /* The bsp points at the end of the register frame so we | |
731 | subtract the size of frame from it to get start of register frame. */ | |
732 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
733 | ||
734 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
735 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
736 | ||
737 | if (gr_addr != 0) | |
738 | { | |
739 | /* Compute address of nat collection bits. */ | |
740 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
741 | CORE_ADDR nat_collection; | |
742 | int nat_bit; | |
743 | /* If our nat collection address is bigger than bsp, we have to get | |
744 | the nat collection from rnat. Otherwise, we fetch the nat | |
745 | collection from the computed address. */ | |
746 | if (nat_addr >= bsp) | |
747 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
748 | else | |
749 | nat_collection = read_memory_integer (nat_addr, 8); | |
750 | nat_bit = (gr_addr >> 3) & 0x3f; | |
751 | natN_val = (nat_collection >> nat_bit) & 1; | |
752 | } | |
753 | ||
aa2a9a3c | 754 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val); |
244bc108 | 755 | } |
004d836a JJ |
756 | else if (regnum == VBOF_REGNUM) |
757 | { | |
758 | /* A virtual register frame start is provided for user convenience. | |
759 | It can be calculated as the bsp - sof (sizeof frame). */ | |
760 | ULONGEST bsp, vbsp; | |
761 | ULONGEST cfm; | |
762 | CORE_ADDR reg; | |
763 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
764 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
765 | ||
766 | /* The bsp points at the end of the register frame so we | |
767 | subtract the size of frame from it to get beginning of frame. */ | |
768 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
aa2a9a3c | 769 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp); |
004d836a JJ |
770 | } |
771 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
772 | { | |
773 | ULONGEST pr; | |
774 | ULONGEST cfm; | |
775 | ULONGEST prN_val; | |
776 | CORE_ADDR reg; | |
777 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
778 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
779 | ||
780 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
781 | { | |
782 | /* Fetch predicate register rename base from current frame | |
783 | marker for this frame. */ | |
784 | int rrb_pr = (cfm >> 32) & 0x3f; | |
785 | ||
786 | /* Adjust the register number to account for register rotation. */ | |
787 | regnum = VP16_REGNUM | |
788 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
789 | } | |
790 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
aa2a9a3c | 791 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val); |
004d836a JJ |
792 | } |
793 | else | |
aa2a9a3c | 794 | memset (buf, 0, register_size (current_gdbarch, regnum)); |
16461d7d KB |
795 | } |
796 | ||
004d836a JJ |
797 | static void |
798 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 799 | int regnum, const gdb_byte *buf) |
16461d7d | 800 | { |
004d836a | 801 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 802 | { |
004d836a JJ |
803 | ULONGEST bsp; |
804 | ULONGEST cfm; | |
805 | CORE_ADDR reg; | |
806 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
807 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
808 | ||
809 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
810 | ||
811 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
812 | { | |
813 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
814 | write_memory (reg_addr, (void *)buf, 8); | |
815 | } | |
816 | } | |
817 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
818 | { | |
819 | ULONGEST unatN_val, unat, unatN_mask; | |
820 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
aa2a9a3c | 821 | unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
822 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
823 | if (unatN_val == 0) | |
824 | unat &= ~unatN_mask; | |
825 | else if (unatN_val == 1) | |
826 | unat |= unatN_mask; | |
827 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
828 | } | |
829 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
830 | { | |
831 | ULONGEST natN_val; | |
832 | ULONGEST bsp; | |
833 | ULONGEST cfm; | |
834 | CORE_ADDR gr_addr = 0; | |
835 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
836 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
837 | ||
838 | /* The bsp points at the end of the register frame so we | |
839 | subtract the size of frame from it to get start of register frame. */ | |
840 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
841 | ||
842 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
843 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
844 | ||
aa2a9a3c | 845 | natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
846 | |
847 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
848 | { | |
849 | /* Compute address of nat collection bits. */ | |
850 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
851 | CORE_ADDR nat_collection; | |
852 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
853 | ULONGEST natN_mask = (1LL << natN_bit); | |
854 | /* If our nat collection address is bigger than bsp, we have to get | |
855 | the nat collection from rnat. Otherwise, we fetch the nat | |
856 | collection from the computed address. */ | |
857 | if (nat_addr >= bsp) | |
858 | { | |
859 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
860 | if (natN_val) | |
861 | nat_collection |= natN_mask; | |
862 | else | |
863 | nat_collection &= ~natN_mask; | |
864 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
865 | } | |
866 | else | |
867 | { | |
868 | char nat_buf[8]; | |
869 | nat_collection = read_memory_integer (nat_addr, 8); | |
870 | if (natN_val) | |
871 | nat_collection |= natN_mask; | |
872 | else | |
873 | nat_collection &= ~natN_mask; | |
aa2a9a3c | 874 | store_unsigned_integer (nat_buf, register_size (current_gdbarch, regnum), nat_collection); |
004d836a JJ |
875 | write_memory (nat_addr, nat_buf, 8); |
876 | } | |
877 | } | |
878 | } | |
879 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
880 | { | |
881 | ULONGEST pr; | |
882 | ULONGEST cfm; | |
883 | ULONGEST prN_val; | |
884 | ULONGEST prN_mask; | |
885 | ||
886 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
887 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
888 | ||
889 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
890 | { | |
891 | /* Fetch predicate register rename base from current frame | |
892 | marker for this frame. */ | |
893 | int rrb_pr = (cfm >> 32) & 0x3f; | |
894 | ||
895 | /* Adjust the register number to account for register rotation. */ | |
896 | regnum = VP16_REGNUM | |
897 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
898 | } | |
aa2a9a3c | 899 | prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
900 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
901 | if (prN_val == 0) | |
902 | pr &= ~prN_mask; | |
903 | else if (prN_val == 1) | |
904 | pr |= prN_mask; | |
905 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 906 | } |
16461d7d KB |
907 | } |
908 | ||
004d836a JJ |
909 | /* The ia64 needs to convert between various ieee floating-point formats |
910 | and the special ia64 floating point register format. */ | |
911 | ||
912 | static int | |
913 | ia64_convert_register_p (int regno, struct type *type) | |
914 | { | |
915 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM); | |
916 | } | |
917 | ||
918 | static void | |
919 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
88d82102 | 920 | struct type *valtype, gdb_byte *out) |
004d836a JJ |
921 | { |
922 | char in[MAX_REGISTER_SIZE]; | |
923 | frame_register_read (frame, regnum, in); | |
924 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
925 | } | |
926 | ||
927 | static void | |
928 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
88d82102 | 929 | struct type *valtype, const gdb_byte *in) |
004d836a JJ |
930 | { |
931 | char out[MAX_REGISTER_SIZE]; | |
932 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
933 | put_frame_register (frame, regnum, out); | |
934 | } | |
935 | ||
936 | ||
58ab00f9 KB |
937 | /* Limit the number of skipped non-prologue instructions since examining |
938 | of the prologue is expensive. */ | |
5ea2bd7f | 939 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
940 | |
941 | /* Given PC representing the starting address of a function, and | |
942 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
943 | for a prologue, attempt to further refine this limit by using | |
944 | the line data in the symbol table. If successful, a better guess | |
945 | on where the prologue ends is returned, otherwise the previous | |
946 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
947 | which will be set to indicate whether the returned limit may be | |
948 | used with no further scanning in the event that the function is | |
949 | frameless. */ | |
950 | ||
634aa483 AC |
951 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
952 | superseded by skip_prologue_using_sal. */ | |
953 | ||
58ab00f9 KB |
954 | static CORE_ADDR |
955 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
956 | { | |
957 | struct symtab_and_line prologue_sal; | |
958 | CORE_ADDR start_pc = pc; | |
959 | ||
960 | /* Start off not trusting the limit. */ | |
961 | *trust_limit = 0; | |
962 | ||
963 | prologue_sal = find_pc_line (pc, 0); | |
964 | if (prologue_sal.line != 0) | |
965 | { | |
966 | int i; | |
967 | CORE_ADDR addr = prologue_sal.end; | |
968 | ||
969 | /* Handle the case in which compiler's optimizer/scheduler | |
970 | has moved instructions into the prologue. We scan ahead | |
971 | in the function looking for address ranges whose corresponding | |
972 | line number is less than or equal to the first one that we | |
973 | found for the function. (It can be less than when the | |
974 | scheduler puts a body instruction before the first prologue | |
975 | instruction.) */ | |
976 | for (i = 2 * max_skip_non_prologue_insns; | |
977 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
978 | i--) | |
979 | { | |
980 | struct symtab_and_line sal; | |
981 | ||
982 | sal = find_pc_line (addr, 0); | |
983 | if (sal.line == 0) | |
984 | break; | |
985 | if (sal.line <= prologue_sal.line | |
986 | && sal.symtab == prologue_sal.symtab) | |
987 | { | |
988 | prologue_sal = sal; | |
989 | } | |
990 | addr = sal.end; | |
991 | } | |
992 | ||
993 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
994 | { | |
995 | lim_pc = prologue_sal.end; | |
996 | if (start_pc == get_pc_function_start (lim_pc)) | |
997 | *trust_limit = 1; | |
998 | } | |
999 | } | |
1000 | return lim_pc; | |
1001 | } | |
1002 | ||
16461d7d KB |
1003 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
1004 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
1005 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
1006 | #define imm9(_instr_) \ | |
1007 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
1008 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
1009 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
1010 | ||
004d836a JJ |
1011 | /* Allocate and initialize a frame cache. */ |
1012 | ||
1013 | static struct ia64_frame_cache * | |
1014 | ia64_alloc_frame_cache (void) | |
1015 | { | |
1016 | struct ia64_frame_cache *cache; | |
1017 | int i; | |
1018 | ||
1019 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
1020 | ||
1021 | /* Base address. */ | |
1022 | cache->base = 0; | |
1023 | cache->pc = 0; | |
1024 | cache->cfm = 0; | |
4afcc598 | 1025 | cache->prev_cfm = 0; |
004d836a JJ |
1026 | cache->sof = 0; |
1027 | cache->sol = 0; | |
1028 | cache->sor = 0; | |
1029 | cache->bsp = 0; | |
1030 | cache->fp_reg = 0; | |
1031 | cache->frameless = 1; | |
1032 | ||
1033 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1034 | cache->saved_regs[i] = 0; | |
1035 | ||
1036 | return cache; | |
1037 | } | |
1038 | ||
16461d7d | 1039 | static CORE_ADDR |
004d836a | 1040 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) |
16461d7d KB |
1041 | { |
1042 | CORE_ADDR next_pc; | |
1043 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1044 | instruction_type it; |
1045 | long long instr; | |
16461d7d KB |
1046 | int cfm_reg = 0; |
1047 | int ret_reg = 0; | |
1048 | int fp_reg = 0; | |
1049 | int unat_save_reg = 0; | |
1050 | int pr_save_reg = 0; | |
1051 | int mem_stack_frame_size = 0; | |
1052 | int spill_reg = 0; | |
1053 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1054 | char instores[8]; |
1055 | char infpstores[8]; | |
5ea2bd7f | 1056 | char reg_contents[256]; |
58ab00f9 | 1057 | int trust_limit; |
004d836a JJ |
1058 | int frameless = 1; |
1059 | int i; | |
1060 | CORE_ADDR addr; | |
1061 | char buf[8]; | |
1062 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1063 | |
1064 | memset (instores, 0, sizeof instores); | |
1065 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1066 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1067 | |
004d836a JJ |
1068 | if (cache->after_prologue != 0 |
1069 | && cache->after_prologue <= lim_pc) | |
1070 | return cache->after_prologue; | |
16461d7d | 1071 | |
58ab00f9 | 1072 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1073 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1074 | |
1075 | /* We want to check if we have a recognizable function start before we | |
1076 | look ahead for a prologue. */ | |
16461d7d KB |
1077 | if (pc < lim_pc && next_pc |
1078 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1079 | { | |
5ea2bd7f | 1080 | /* alloc - start of a regular function. */ |
16461d7d KB |
1081 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1082 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1083 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1084 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1085 | |
1086 | /* Verify that the current cfm matches what we think is the | |
1087 | function start. If we have somehow jumped within a function, | |
1088 | we do not want to interpret the prologue and calculate the | |
1089 | addresses of various registers such as the return address. | |
1090 | We will instead treat the frame as frameless. */ | |
1091 | if (!next_frame || | |
1092 | (sof == (cache->cfm & 0x7f) && | |
1093 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1094 | frameless = 0; | |
1095 | ||
16461d7d KB |
1096 | cfm_reg = rN; |
1097 | last_prologue_pc = next_pc; | |
1098 | pc = next_pc; | |
1099 | } | |
1100 | else | |
58ab00f9 | 1101 | { |
5ea2bd7f JJ |
1102 | /* Look for a leaf routine. */ |
1103 | if (pc < lim_pc && next_pc | |
1104 | && (it == I || it == M) | |
1105 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1106 | { | |
1107 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1108 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1109 | | ((instr & 0x001f8000000LL) >> 20) | |
1110 | | ((instr & 0x000000fe000LL) >> 13)); | |
1111 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1112 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1113 | int qp = (int) (instr & 0x0000000003fLL); | |
1114 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1115 | { | |
1116 | /* mov r2, r12 - beginning of leaf routine */ | |
1117 | fp_reg = rN; | |
5ea2bd7f JJ |
1118 | last_prologue_pc = next_pc; |
1119 | } | |
1120 | } | |
1121 | ||
1122 | /* If we don't recognize a regular function or leaf routine, we are | |
1123 | done. */ | |
1124 | if (!fp_reg) | |
1125 | { | |
1126 | pc = lim_pc; | |
1127 | if (trust_limit) | |
1128 | last_prologue_pc = lim_pc; | |
1129 | } | |
58ab00f9 | 1130 | } |
16461d7d KB |
1131 | |
1132 | /* Loop, looking for prologue instructions, keeping track of | |
1133 | where preserved registers were spilled. */ | |
1134 | while (pc < lim_pc) | |
1135 | { | |
1136 | next_pc = fetch_instruction (pc, &it, &instr); | |
1137 | if (next_pc == 0) | |
1138 | break; | |
1139 | ||
594706e6 | 1140 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1141 | { |
102d615a JJ |
1142 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1143 | if (trust_limit) | |
1144 | lim_pc = pc; | |
1145 | break; | |
1146 | } | |
1147 | else if (((instr & 0x3fLL) != 0LL) && | |
1148 | (frameless || ret_reg != 0)) | |
1149 | { | |
1150 | /* Exit loop upon hitting a predicated instruction if | |
1151 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1152 | if (trust_limit) |
1153 | lim_pc = pc; | |
0927a22b KB |
1154 | break; |
1155 | } | |
1156 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1157 | { |
1158 | /* Move from BR */ | |
1159 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1160 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1161 | int qp = (int) (instr & 0x0000000003f); | |
1162 | ||
1163 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1164 | { | |
1165 | ret_reg = rN; | |
1166 | last_prologue_pc = next_pc; | |
1167 | } | |
1168 | } | |
1169 | else if ((it == I || it == M) | |
1170 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1171 | { | |
1172 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1173 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1174 | | ((instr & 0x001f8000000LL) >> 20) | |
1175 | | ((instr & 0x000000fe000LL) >> 13)); | |
1176 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1177 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1178 | int qp = (int) (instr & 0x0000000003fLL); | |
1179 | ||
1180 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1181 | { | |
1182 | /* mov rN, r12 */ | |
1183 | fp_reg = rN; | |
1184 | last_prologue_pc = next_pc; | |
1185 | } | |
1186 | else if (qp == 0 && rN == 12 && rM == 12) | |
1187 | { | |
1188 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1189 | mem_stack_frame_size -= imm; | |
1190 | last_prologue_pc = next_pc; | |
1191 | } | |
1192 | else if (qp == 0 && rN == 2 | |
1193 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1194 | { | |
004d836a JJ |
1195 | char buf[MAX_REGISTER_SIZE]; |
1196 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1197 | /* adds r2, spilloffset, rFramePointer |
1198 | or | |
1199 | adds r2, spilloffset, r12 | |
1200 | ||
1201 | Get ready for stf.spill or st8.spill instructions. | |
1202 | The address to start spilling at is loaded into r2. | |
1203 | FIXME: Why r2? That's what gcc currently uses; it | |
1204 | could well be different for other compilers. */ | |
1205 | ||
1206 | /* Hmm... whether or not this will work will depend on | |
1207 | where the pc is. If it's still early in the prologue | |
1208 | this'll be wrong. FIXME */ | |
004d836a JJ |
1209 | if (next_frame) |
1210 | { | |
1211 | frame_unwind_register (next_frame, sp_regnum, buf); | |
1212 | saved_sp = extract_unsigned_integer (buf, 8); | |
1213 | } | |
1214 | spill_addr = saved_sp | |
16461d7d KB |
1215 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1216 | + imm; | |
1217 | spill_reg = rN; | |
1218 | last_prologue_pc = next_pc; | |
1219 | } | |
5ea2bd7f JJ |
1220 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] && |
1221 | rN < 256 && imm == 0) | |
1222 | { | |
1223 | /* mov rN, rM where rM is an input register */ | |
1224 | reg_contents[rN] = rM; | |
1225 | last_prologue_pc = next_pc; | |
1226 | } | |
1227 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1228 | rM == 2) | |
1229 | { | |
1230 | /* mov r12, r2 */ | |
1231 | last_prologue_pc = next_pc; | |
1232 | break; | |
1233 | } | |
16461d7d KB |
1234 | } |
1235 | else if (it == M | |
1236 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1237 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1238 | { | |
1239 | /* stf.spill [rN] = fM, imm9 | |
1240 | or | |
1241 | stf.spill [rN] = fM */ | |
1242 | ||
1243 | int imm = imm9(instr); | |
1244 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1245 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1246 | int qp = (int) (instr & 0x0000000003fLL); | |
1247 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1248 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1249 | { | |
004d836a | 1250 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1251 | |
594706e6 | 1252 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1253 | spill_addr += imm; |
1254 | else | |
1255 | spill_addr = 0; /* last one; must be done */ | |
1256 | last_prologue_pc = next_pc; | |
1257 | } | |
1258 | } | |
1259 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1260 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1261 | { | |
1262 | /* mov.m rN = arM | |
1263 | or | |
1264 | mov.i rN = arM */ | |
1265 | ||
1266 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1267 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1268 | int qp = (int) (instr & 0x0000000003fLL); | |
1269 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1270 | { | |
1271 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1272 | r3 (or whatever) and watch for a store of this register... */ | |
1273 | unat_save_reg = rN; | |
1274 | last_prologue_pc = next_pc; | |
1275 | } | |
1276 | } | |
1277 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1278 | { | |
1279 | /* mov rN = pr */ | |
1280 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1281 | int qp = (int) (instr & 0x0000000003fLL); | |
1282 | if (qp == 0 && isScratch (rN)) | |
1283 | { | |
1284 | pr_save_reg = rN; | |
1285 | last_prologue_pc = next_pc; | |
1286 | } | |
1287 | } | |
1288 | else if (it == M | |
1289 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1290 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1291 | { | |
1292 | /* st8 [rN] = rM | |
1293 | or | |
1294 | st8 [rN] = rM, imm9 */ | |
1295 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1296 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1297 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1298 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1299 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1300 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1301 | { | |
1302 | /* We've found a spill of either the UNAT register or the PR | |
1303 | register. (Well, not exactly; what we've actually found is | |
1304 | a spill of the register that UNAT or PR was moved to). | |
1305 | Record that fact and move on... */ | |
1306 | if (rM == unat_save_reg) | |
1307 | { | |
1308 | /* Track UNAT register */ | |
004d836a | 1309 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1310 | unat_save_reg = 0; |
1311 | } | |
1312 | else | |
1313 | { | |
1314 | /* Track PR register */ | |
004d836a | 1315 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1316 | pr_save_reg = 0; |
1317 | } | |
1318 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1319 | /* st8 [rN] = rM, imm9 */ | |
1320 | spill_addr += imm9(instr); | |
1321 | else | |
1322 | spill_addr = 0; /* must be done spilling */ | |
1323 | last_prologue_pc = next_pc; | |
1324 | } | |
0927a22b KB |
1325 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1326 | { | |
1327 | /* Allow up to one store of each input register. */ | |
1328 | instores[rM-32] = 1; | |
1329 | last_prologue_pc = next_pc; | |
1330 | } | |
5ea2bd7f JJ |
1331 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1332 | !instores[indirect-32]) | |
1333 | { | |
1334 | /* Allow an indirect store of an input register. */ | |
1335 | instores[indirect-32] = 1; | |
1336 | last_prologue_pc = next_pc; | |
1337 | } | |
0927a22b KB |
1338 | } |
1339 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1340 | { | |
1341 | /* One of | |
1342 | st1 [rN] = rM | |
1343 | st2 [rN] = rM | |
1344 | st4 [rN] = rM | |
1345 | st8 [rN] = rM | |
1346 | Note that the st8 case is handled in the clause above. | |
1347 | ||
1348 | Advance over stores of input registers. One store per input | |
1349 | register is permitted. */ | |
1350 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1351 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1352 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1353 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1354 | { | |
1355 | instores[rM-32] = 1; | |
1356 | last_prologue_pc = next_pc; | |
1357 | } | |
5ea2bd7f JJ |
1358 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1359 | !instores[indirect-32]) | |
1360 | { | |
1361 | /* Allow an indirect store of an input register. */ | |
1362 | instores[indirect-32] = 1; | |
1363 | last_prologue_pc = next_pc; | |
1364 | } | |
0927a22b KB |
1365 | } |
1366 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1367 | { | |
1368 | /* Either | |
1369 | stfs [rN] = fM | |
1370 | or | |
1371 | stfd [rN] = fM | |
1372 | ||
1373 | Advance over stores of floating point input registers. Again | |
1374 | one store per register is permitted */ | |
1375 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1376 | int qp = (int) (instr & 0x0000000003fLL); | |
1377 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1378 | { | |
1379 | infpstores[fM-8] = 1; | |
1380 | last_prologue_pc = next_pc; | |
1381 | } | |
16461d7d KB |
1382 | } |
1383 | else if (it == M | |
1384 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1385 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1386 | { | |
1387 | /* st8.spill [rN] = rM | |
1388 | or | |
1389 | st8.spill [rN] = rM, imm9 */ | |
1390 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1391 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1392 | int qp = (int) (instr & 0x0000000003fLL); | |
1393 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1394 | { | |
1395 | /* We've found a spill of one of the preserved general purpose | |
1396 | regs. Record the spill address and advance the spill | |
1397 | register if appropriate. */ | |
004d836a | 1398 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1399 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1400 | /* st8.spill [rN] = rM, imm9 */ | |
1401 | spill_addr += imm9(instr); | |
1402 | else | |
1403 | spill_addr = 0; /* Done spilling */ | |
1404 | last_prologue_pc = next_pc; | |
1405 | } | |
1406 | } | |
16461d7d KB |
1407 | |
1408 | pc = next_pc; | |
1409 | } | |
1410 | ||
004d836a JJ |
1411 | /* If not frameless and we aren't called by skip_prologue, then we need to calculate |
1412 | registers for the previous frame which will be needed later. */ | |
16461d7d | 1413 | |
004d836a | 1414 | if (!frameless && next_frame) |
da50a4b7 | 1415 | { |
004d836a JJ |
1416 | /* Extract the size of the rotating portion of the stack |
1417 | frame and the register rename base from the current | |
1418 | frame marker. */ | |
1419 | cfm = cache->cfm; | |
1420 | sor = cache->sor; | |
1421 | sof = cache->sof; | |
1422 | sol = cache->sol; | |
1423 | rrb_gr = (cfm >> 18) & 0x7f; | |
1424 | ||
1425 | /* Find the bof (beginning of frame). */ | |
1426 | bof = rse_address_add (cache->bsp, -sof); | |
1427 | ||
1428 | for (i = 0, addr = bof; | |
1429 | i < sof; | |
1430 | i++, addr += 8) | |
1431 | { | |
1432 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1433 | { | |
1434 | addr += 8; | |
1435 | } | |
1436 | if (i+32 == cfm_reg) | |
1437 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1438 | if (i+32 == ret_reg) | |
1439 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1440 | if (i+32 == fp_reg) | |
1441 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1442 | } | |
16461d7d | 1443 | |
004d836a JJ |
1444 | /* For the previous argument registers we require the previous bof. |
1445 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1446 | cfm = 0; |
004d836a JJ |
1447 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1448 | { | |
1449 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1450 | } |
1451 | else if (cfm_reg != 0) | |
1452 | { | |
1453 | frame_unwind_register (next_frame, cfm_reg, buf); | |
1454 | cfm = extract_unsigned_integer (buf, 8); | |
1455 | } | |
1456 | cache->prev_cfm = cfm; | |
1457 | ||
1458 | if (cfm != 0) | |
1459 | { | |
004d836a JJ |
1460 | sor = ((cfm >> 14) & 0xf) * 8; |
1461 | sof = (cfm & 0x7f); | |
1462 | sol = (cfm >> 7) & 0x7f; | |
1463 | rrb_gr = (cfm >> 18) & 0x7f; | |
1464 | ||
1465 | /* The previous bof only requires subtraction of the sol (size of locals) | |
1466 | due to the overlap between output and input of subsequent frames. */ | |
1467 | bof = rse_address_add (bof, -sol); | |
1468 | ||
1469 | for (i = 0, addr = bof; | |
1470 | i < sof; | |
1471 | i++, addr += 8) | |
1472 | { | |
1473 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1474 | { | |
1475 | addr += 8; | |
1476 | } | |
1477 | if (i < sor) | |
1478 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1479 | = addr; | |
1480 | else | |
1481 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1482 | } | |
1483 | ||
1484 | } | |
1485 | } | |
1486 | ||
5ea2bd7f JJ |
1487 | /* Try and trust the lim_pc value whenever possible. */ |
1488 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1489 | last_prologue_pc = lim_pc; |
1490 | ||
1491 | cache->frameless = frameless; | |
1492 | cache->after_prologue = last_prologue_pc; | |
1493 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1494 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1495 | |
16461d7d KB |
1496 | return last_prologue_pc; |
1497 | } | |
1498 | ||
1499 | CORE_ADDR | |
1500 | ia64_skip_prologue (CORE_ADDR pc) | |
1501 | { | |
004d836a JJ |
1502 | struct ia64_frame_cache cache; |
1503 | cache.base = 0; | |
1504 | cache.after_prologue = 0; | |
1505 | cache.cfm = 0; | |
1506 | cache.bsp = 0; | |
1507 | ||
1508 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1509 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1510 | } |
1511 | ||
004d836a JJ |
1512 | |
1513 | /* Normal frames. */ | |
1514 | ||
1515 | static struct ia64_frame_cache * | |
1516 | ia64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
16461d7d | 1517 | { |
004d836a JJ |
1518 | struct ia64_frame_cache *cache; |
1519 | char buf[8]; | |
1520 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1521 | int i; | |
16461d7d | 1522 | |
004d836a JJ |
1523 | if (*this_cache) |
1524 | return *this_cache; | |
16461d7d | 1525 | |
004d836a JJ |
1526 | cache = ia64_alloc_frame_cache (); |
1527 | *this_cache = cache; | |
16461d7d | 1528 | |
004d836a JJ |
1529 | frame_unwind_register (next_frame, sp_regnum, buf); |
1530 | cache->saved_sp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1531 | |
004d836a JJ |
1532 | /* We always want the bsp to point to the end of frame. |
1533 | This way, we can always get the beginning of frame (bof) | |
1534 | by subtracting frame size. */ | |
1535 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1536 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1537 | ||
1538 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1539 | psr = extract_unsigned_integer (buf, 8); | |
1540 | ||
1541 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1542 | cfm = extract_unsigned_integer (buf, 8); | |
1543 | ||
1544 | cache->sof = (cfm & 0x7f); | |
1545 | cache->sol = (cfm >> 7) & 0x7f; | |
1546 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1547 | ||
1548 | cache->cfm = cfm; | |
1549 | ||
1550 | cache->pc = frame_func_unwind (next_frame); | |
1551 | ||
1552 | if (cache->pc != 0) | |
1553 | examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); | |
1554 | ||
1555 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1556 | ||
1557 | return cache; | |
16461d7d KB |
1558 | } |
1559 | ||
a78f21af | 1560 | static void |
004d836a JJ |
1561 | ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
1562 | struct frame_id *this_id) | |
16461d7d | 1563 | { |
004d836a JJ |
1564 | struct ia64_frame_cache *cache = |
1565 | ia64_frame_cache (next_frame, this_cache); | |
16461d7d | 1566 | |
c5a27d9c | 1567 | /* If outermost frame, mark with null frame id. */ |
004d836a | 1568 | if (cache->base == 0) |
c5a27d9c JJ |
1569 | (*this_id) = null_frame_id; |
1570 | else | |
1571 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); | |
4afcc598 JJ |
1572 | if (gdbarch_debug >= 1) |
1573 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1574 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1575 | paddr_nz (this_id->code_addr), | |
1576 | paddr_nz (this_id->stack_addr), | |
1577 | paddr_nz (cache->bsp), next_frame); | |
004d836a | 1578 | } |
244bc108 | 1579 | |
004d836a JJ |
1580 | static void |
1581 | ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1582 | int regnum, int *optimizedp, | |
1583 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1584 | int *realnump, gdb_byte *valuep) |
004d836a JJ |
1585 | { |
1586 | struct ia64_frame_cache *cache = | |
1587 | ia64_frame_cache (next_frame, this_cache); | |
1588 | char dummy_valp[MAX_REGISTER_SIZE]; | |
1589 | char buf[8]; | |
1590 | ||
1591 | gdb_assert (regnum >= 0); | |
244bc108 | 1592 | |
004d836a | 1593 | if (!target_has_registers) |
8a3fe4f8 | 1594 | error (_("No registers.")); |
244bc108 | 1595 | |
004d836a JJ |
1596 | *optimizedp = 0; |
1597 | *addrp = 0; | |
1598 | *lvalp = not_lval; | |
1599 | *realnump = -1; | |
244bc108 | 1600 | |
004d836a JJ |
1601 | /* Rather than check each time if valuep is non-null, supply a dummy buffer |
1602 | when valuep is not supplied. */ | |
1603 | if (!valuep) | |
1604 | valuep = dummy_valp; | |
1605 | ||
aa2a9a3c | 1606 | memset (valuep, 0, register_size (current_gdbarch, regnum)); |
004d836a JJ |
1607 | |
1608 | if (regnum == SP_REGNUM) | |
16461d7d KB |
1609 | { |
1610 | /* Handle SP values for all frames but the topmost. */ | |
aa2a9a3c | 1611 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a | 1612 | cache->base); |
16461d7d KB |
1613 | } |
1614 | else if (regnum == IA64_BSP_REGNUM) | |
1615 | { | |
004d836a JJ |
1616 | char cfm_valuep[MAX_REGISTER_SIZE]; |
1617 | int cfm_optim; | |
1618 | int cfm_realnum; | |
1619 | enum lval_type cfm_lval; | |
1620 | CORE_ADDR cfm_addr; | |
1621 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
1622 | ||
1623 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
1624 | This corresponds to what the hardware bsp register will be if we pop the frame | |
1625 | back which is why we might have been called. We know the beginning of the current | |
aa2a9a3c | 1626 | frame is cache->bsp - cache->sof. This value in the previous frame points to |
004d836a JJ |
1627 | the start of the output registers. We can calculate the end of that frame by adding |
1628 | the size of output (sof (size of frame) - sol (size of locals)). */ | |
1629 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1630 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
1631 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
1632 | ||
1633 | bsp = rse_address_add (cache->bsp, -(cache->sof)); | |
1634 | prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
1635 | ||
aa2a9a3c | 1636 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a JJ |
1637 | prev_bsp); |
1638 | } | |
1639 | else if (regnum == IA64_CFM_REGNUM) | |
1640 | { | |
4afcc598 JJ |
1641 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1642 | ||
1643 | if (addr != 0) | |
004d836a | 1644 | { |
4afcc598 JJ |
1645 | *lvalp = lval_memory; |
1646 | *addrp = addr; | |
1647 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
004d836a | 1648 | } |
4afcc598 JJ |
1649 | else if (cache->prev_cfm) |
1650 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm); | |
1651 | else if (cache->frameless) | |
004d836a | 1652 | { |
4afcc598 JJ |
1653 | CORE_ADDR cfm = 0; |
1654 | frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); | |
004d836a | 1655 | } |
16461d7d KB |
1656 | } |
1657 | else if (regnum == IA64_VFP_REGNUM) | |
1658 | { | |
1659 | /* If the function in question uses an automatic register (r32-r127) | |
1660 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1661 | above. If the function lacks one of these frame pointers, we can | |
004d836a JJ |
1662 | still provide a value since we know the size of the frame. */ |
1663 | CORE_ADDR vfp = cache->base; | |
aa2a9a3c | 1664 | store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp); |
16461d7d | 1665 | } |
004d836a | 1666 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1667 | { |
004d836a | 1668 | char pr_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1669 | int pr_optim; |
004d836a | 1670 | int pr_realnum; |
16461d7d KB |
1671 | enum lval_type pr_lval; |
1672 | CORE_ADDR pr_addr; | |
004d836a JJ |
1673 | ULONGEST prN_val; |
1674 | ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, | |
1675 | &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); | |
1676 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
3a854e23 KB |
1677 | { |
1678 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1679 | marker for this frame. */ |
1680 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1681 | |
004d836a JJ |
1682 | /* Adjust the register number to account for register rotation. */ |
1683 | regnum = VP16_REGNUM | |
1684 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
3a854e23 | 1685 | } |
004d836a JJ |
1686 | prN_val = extract_bit_field ((unsigned char *) pr_valuep, |
1687 | regnum - VP0_REGNUM, 1); | |
aa2a9a3c | 1688 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); |
16461d7d KB |
1689 | } |
1690 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1691 | { | |
004d836a | 1692 | char unat_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1693 | int unat_optim; |
004d836a | 1694 | int unat_realnum; |
16461d7d KB |
1695 | enum lval_type unat_lval; |
1696 | CORE_ADDR unat_addr; | |
004d836a JJ |
1697 | ULONGEST unatN_val; |
1698 | ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, | |
1699 | &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); | |
1700 | unatN_val = extract_bit_field ((unsigned char *) unat_valuep, | |
16461d7d | 1701 | regnum - IA64_NAT0_REGNUM, 1); |
aa2a9a3c | 1702 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
16461d7d | 1703 | unatN_val); |
16461d7d KB |
1704 | } |
1705 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1706 | { | |
1707 | int natval = 0; | |
1708 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1709 | interested in. */ |
1710 | CORE_ADDR gr_addr; | |
244bc108 | 1711 | |
004d836a JJ |
1712 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM |
1713 | + IA64_GR0_REGNUM]; | |
1714 | if (gr_addr != 0) | |
244bc108 | 1715 | { |
004d836a | 1716 | /* Compute address of nat collection bits. */ |
16461d7d | 1717 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1718 | CORE_ADDR bsp; |
16461d7d KB |
1719 | CORE_ADDR nat_collection; |
1720 | int nat_bit; | |
1721 | /* If our nat collection address is bigger than bsp, we have to get | |
1722 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a JJ |
1723 | collection from the computed address. */ |
1724 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1725 | bsp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1726 | if (nat_addr >= bsp) |
004d836a JJ |
1727 | { |
1728 | frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); | |
1729 | nat_collection = extract_unsigned_integer (buf, 8); | |
1730 | } | |
16461d7d KB |
1731 | else |
1732 | nat_collection = read_memory_integer (nat_addr, 8); | |
1733 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1734 | natval = (nat_collection >> nat_bit) & 1; | |
1735 | } | |
004d836a | 1736 | |
aa2a9a3c | 1737 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval); |
244bc108 KB |
1738 | } |
1739 | else if (regnum == IA64_IP_REGNUM) | |
1740 | { | |
004d836a | 1741 | CORE_ADDR pc = 0; |
4afcc598 | 1742 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1743 | |
4afcc598 | 1744 | if (addr != 0) |
004d836a | 1745 | { |
4afcc598 JJ |
1746 | *lvalp = lval_memory; |
1747 | *addrp = addr; | |
1748 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a JJ |
1749 | pc = extract_unsigned_integer (buf, 8); |
1750 | } | |
4afcc598 | 1751 | else if (cache->frameless) |
004d836a | 1752 | { |
4afcc598 JJ |
1753 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); |
1754 | pc = extract_unsigned_integer (buf, 8); | |
244bc108 | 1755 | } |
004d836a JJ |
1756 | pc &= ~0xf; |
1757 | store_unsigned_integer (valuep, 8, pc); | |
244bc108 | 1758 | } |
004d836a | 1759 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1760 | { |
4afcc598 JJ |
1761 | /* We don't know how to get the complete previous PSR, but we need it for |
1762 | the slot information when we unwind the pc (pc is formed of IP register | |
1763 | plus slot information from PSR). To get the previous slot information, | |
1764 | we mask it off the return address. */ | |
004d836a JJ |
1765 | ULONGEST slot_num = 0; |
1766 | CORE_ADDR pc= 0; | |
1767 | CORE_ADDR psr = 0; | |
4afcc598 | 1768 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a JJ |
1769 | |
1770 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1771 | psr = extract_unsigned_integer (buf, 8); | |
1772 | ||
4afcc598 | 1773 | if (addr != 0) |
244bc108 | 1774 | { |
4afcc598 JJ |
1775 | *lvalp = lval_memory; |
1776 | *addrp = addr; | |
1777 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a | 1778 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1779 | } |
4afcc598 | 1780 | else if (cache->frameless) |
004d836a | 1781 | { |
4afcc598 JJ |
1782 | CORE_ADDR pc; |
1783 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); | |
1784 | pc = extract_unsigned_integer (buf, 8); | |
004d836a JJ |
1785 | } |
1786 | psr &= ~(3LL << 41); | |
1787 | slot_num = pc & 0x3LL; | |
1788 | psr |= (CORE_ADDR)slot_num << 41; | |
1789 | store_unsigned_integer (valuep, 8, psr); | |
1790 | } | |
4afcc598 JJ |
1791 | else if (regnum == IA64_BR0_REGNUM) |
1792 | { | |
1793 | CORE_ADDR br0 = 0; | |
1794 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; | |
1795 | if (addr != 0) | |
1796 | { | |
1797 | *lvalp = lval_memory; | |
1798 | *addrp = addr; | |
1799 | read_memory (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM)); | |
1800 | br0 = extract_unsigned_integer (buf, 8); | |
1801 | } | |
1802 | store_unsigned_integer (valuep, 8, br0); | |
1803 | } | |
004d836a JJ |
1804 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || |
1805 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
1806 | { | |
1807 | CORE_ADDR addr = 0; | |
1808 | if (regnum >= V32_REGNUM) | |
1809 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1810 | addr = cache->saved_regs[regnum]; | |
244bc108 KB |
1811 | if (addr != 0) |
1812 | { | |
004d836a JJ |
1813 | *lvalp = lval_memory; |
1814 | *addrp = addr; | |
aa2a9a3c | 1815 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1816 | } |
004d836a | 1817 | else if (cache->frameless) |
244bc108 | 1818 | { |
004d836a JJ |
1819 | char r_valuep[MAX_REGISTER_SIZE]; |
1820 | int r_optim; | |
1821 | int r_realnum; | |
1822 | enum lval_type r_lval; | |
1823 | CORE_ADDR r_addr; | |
1824 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1825 | CORE_ADDR addr = 0; | |
1826 | if (regnum >= V32_REGNUM) | |
1827 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1828 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1829 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1830 | prev_cfm = extract_unsigned_integer (r_valuep, 8); | |
1831 | ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, | |
1832 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1833 | prev_bsp = extract_unsigned_integer (r_valuep, 8); | |
1834 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); | |
1835 | ||
1836 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
1837 | *lvalp = lval_memory; | |
1838 | *addrp = addr; | |
aa2a9a3c | 1839 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1840 | } |
16461d7d KB |
1841 | } |
1842 | else | |
1843 | { | |
004d836a | 1844 | CORE_ADDR addr = 0; |
3a854e23 KB |
1845 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1846 | { | |
1847 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1848 | frame marker for this frame. */ |
1849 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1850 | |
1851 | /* Adjust the floating point register number to account for | |
004d836a | 1852 | register rotation. */ |
3a854e23 KB |
1853 | regnum = IA64_FR32_REGNUM |
1854 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1855 | } | |
1856 | ||
004d836a JJ |
1857 | /* If we have stored a memory address, access the register. */ |
1858 | addr = cache->saved_regs[regnum]; | |
1859 | if (addr != 0) | |
1860 | { | |
1861 | *lvalp = lval_memory; | |
1862 | *addrp = addr; | |
aa2a9a3c | 1863 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
004d836a JJ |
1864 | } |
1865 | /* Otherwise, punt and get the current value of the register. */ | |
1866 | else | |
1867 | frame_unwind_register (next_frame, regnum, valuep); | |
16461d7d | 1868 | } |
4afcc598 JJ |
1869 | |
1870 | if (gdbarch_debug >= 1) | |
1871 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 1872 | "regular prev register <%d> <%s> is 0x%s\n", regnum, |
4afcc598 | 1873 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
1874 | ? ia64_register_names[regnum] : "r??"), |
1875 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
16461d7d | 1876 | } |
004d836a JJ |
1877 | |
1878 | static const struct frame_unwind ia64_frame_unwind = | |
1879 | { | |
1880 | NORMAL_FRAME, | |
1881 | &ia64_frame_this_id, | |
1882 | &ia64_frame_prev_register | |
1883 | }; | |
1884 | ||
1885 | static const struct frame_unwind * | |
1886 | ia64_frame_sniffer (struct frame_info *next_frame) | |
1887 | { | |
1888 | return &ia64_frame_unwind; | |
1889 | } | |
1890 | ||
1891 | /* Signal trampolines. */ | |
1892 | ||
1893 | static void | |
1894 | ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache) | |
1895 | { | |
1896 | if (SIGCONTEXT_REGISTER_ADDRESS) | |
1897 | { | |
1898 | int regno; | |
1899 | ||
1900 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
1901 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM); | |
1902 | cache->saved_regs[IA64_CFM_REGNUM] = | |
1903 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM); | |
1904 | cache->saved_regs[IA64_PSR_REGNUM] = | |
1905 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM); | |
004d836a | 1906 | cache->saved_regs[IA64_BSP_REGNUM] = |
4afcc598 | 1907 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM); |
004d836a JJ |
1908 | cache->saved_regs[IA64_RNAT_REGNUM] = |
1909 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM); | |
1910 | cache->saved_regs[IA64_CCV_REGNUM] = | |
1911 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM); | |
1912 | cache->saved_regs[IA64_UNAT_REGNUM] = | |
1913 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM); | |
1914 | cache->saved_regs[IA64_FPSR_REGNUM] = | |
1915 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM); | |
1916 | cache->saved_regs[IA64_PFS_REGNUM] = | |
1917 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM); | |
1918 | cache->saved_regs[IA64_LC_REGNUM] = | |
1919 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM); | |
1920 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) | |
4afcc598 JJ |
1921 | cache->saved_regs[regno] = |
1922 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
004d836a JJ |
1923 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
1924 | cache->saved_regs[regno] = | |
1925 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
932644f0 | 1926 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a JJ |
1927 | cache->saved_regs[regno] = |
1928 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
1929 | } | |
1930 | } | |
1931 | ||
1932 | static struct ia64_frame_cache * | |
1933 | ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1934 | { | |
1935 | struct ia64_frame_cache *cache; | |
1936 | CORE_ADDR addr; | |
1937 | char buf[8]; | |
1938 | int i; | |
1939 | ||
1940 | if (*this_cache) | |
1941 | return *this_cache; | |
1942 | ||
1943 | cache = ia64_alloc_frame_cache (); | |
1944 | ||
1945 | frame_unwind_register (next_frame, sp_regnum, buf); | |
4afcc598 JJ |
1946 | /* Note that frame size is hard-coded below. We cannot calculate it |
1947 | via prologue examination. */ | |
1948 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
1949 | ||
1950 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1951 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1952 | ||
1953 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1954 | cache->cfm = extract_unsigned_integer (buf, 8); | |
1955 | cache->sof = cache->cfm & 0x7f; | |
004d836a JJ |
1956 | |
1957 | ia64_sigtramp_frame_init_saved_regs (cache); | |
1958 | ||
1959 | *this_cache = cache; | |
1960 | return cache; | |
1961 | } | |
1962 | ||
1963 | static void | |
1964 | ia64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1965 | void **this_cache, struct frame_id *this_id) | |
1966 | { | |
1967 | struct ia64_frame_cache *cache = | |
1968 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1969 | ||
4afcc598 JJ |
1970 | (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); |
1971 | if (gdbarch_debug >= 1) | |
1972 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1973 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1974 | paddr_nz (this_id->code_addr), | |
1975 | paddr_nz (this_id->stack_addr), | |
1976 | paddr_nz (cache->bsp), next_frame); | |
004d836a JJ |
1977 | } |
1978 | ||
1979 | static void | |
1980 | ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
1981 | void **this_cache, | |
1982 | int regnum, int *optimizedp, | |
1983 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1984 | int *realnump, gdb_byte *valuep) |
004d836a | 1985 | { |
4afcc598 JJ |
1986 | char dummy_valp[MAX_REGISTER_SIZE]; |
1987 | char buf[MAX_REGISTER_SIZE]; | |
1988 | ||
1989 | struct ia64_frame_cache *cache = | |
1990 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1991 | ||
1992 | gdb_assert (regnum >= 0); | |
1993 | ||
1994 | if (!target_has_registers) | |
8a3fe4f8 | 1995 | error (_("No registers.")); |
4afcc598 JJ |
1996 | |
1997 | *optimizedp = 0; | |
1998 | *addrp = 0; | |
1999 | *lvalp = not_lval; | |
2000 | *realnump = -1; | |
2001 | ||
2002 | /* Rather than check each time if valuep is non-null, supply a dummy buffer | |
2003 | when valuep is not supplied. */ | |
2004 | if (!valuep) | |
2005 | valuep = dummy_valp; | |
2006 | ||
2007 | memset (valuep, 0, register_size (current_gdbarch, regnum)); | |
2008 | ||
2009 | if (regnum == IA64_IP_REGNUM) | |
2010 | { | |
2011 | CORE_ADDR pc = 0; | |
2012 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
2013 | ||
2014 | if (addr != 0) | |
2015 | { | |
2016 | *lvalp = lval_memory; | |
2017 | *addrp = addr; | |
2018 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
2019 | pc = extract_unsigned_integer (buf, 8); | |
2020 | } | |
2021 | pc &= ~0xf; | |
2022 | store_unsigned_integer (valuep, 8, pc); | |
2023 | } | |
2024 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || | |
2025 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
2026 | { | |
2027 | CORE_ADDR addr = 0; | |
2028 | if (regnum >= V32_REGNUM) | |
2029 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2030 | addr = cache->saved_regs[regnum]; | |
2031 | if (addr != 0) | |
2032 | { | |
2033 | *lvalp = lval_memory; | |
2034 | *addrp = addr; | |
2035 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2036 | } | |
2037 | } | |
2038 | else | |
2039 | { | |
2040 | /* All other registers not listed above. */ | |
2041 | CORE_ADDR addr = cache->saved_regs[regnum]; | |
2042 | if (addr != 0) | |
2043 | { | |
2044 | *lvalp = lval_memory; | |
2045 | *addrp = addr; | |
2046 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2047 | } | |
2048 | } | |
004d836a | 2049 | |
4afcc598 JJ |
2050 | if (gdbarch_debug >= 1) |
2051 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2052 | "sigtramp prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2053 | (regnum < IA64_GR32_REGNUM |
2054 | || (regnum > IA64_GR127_REGNUM | |
2055 | && regnum < LAST_PSEUDO_REGNUM)) | |
2056 | ? ia64_register_names[regnum] | |
2057 | : (regnum < LAST_PSEUDO_REGNUM | |
2058 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2059 | : "OUT_OF_RANGE"), | |
78ced177 | 2060 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
004d836a JJ |
2061 | } |
2062 | ||
2063 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2064 | { | |
2065 | SIGTRAMP_FRAME, | |
2066 | ia64_sigtramp_frame_this_id, | |
2067 | ia64_sigtramp_frame_prev_register | |
2068 | }; | |
2069 | ||
2070 | static const struct frame_unwind * | |
2071 | ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2072 | { | |
2073 | char *name; | |
2074 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
2075 | ||
2076 | find_pc_partial_function (pc, &name, NULL, NULL); | |
0b281939 | 2077 | if (legacy_pc_in_sigtramp (pc, name)) |
004d836a JJ |
2078 | return &ia64_sigtramp_frame_unwind; |
2079 | ||
2080 | return NULL; | |
2081 | } | |
2082 | \f | |
2083 | ||
2084 | static CORE_ADDR | |
2085 | ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
2086 | { | |
2087 | struct ia64_frame_cache *cache = | |
2088 | ia64_frame_cache (next_frame, this_cache); | |
2089 | ||
2090 | return cache->base; | |
2091 | } | |
2092 | ||
2093 | static const struct frame_base ia64_frame_base = | |
2094 | { | |
2095 | &ia64_frame_unwind, | |
2096 | ia64_frame_base_address, | |
2097 | ia64_frame_base_address, | |
2098 | ia64_frame_base_address | |
2099 | }; | |
16461d7d | 2100 | |
968d1cb4 JJ |
2101 | #ifdef HAVE_LIBUNWIND_IA64_H |
2102 | ||
2103 | struct ia64_unwind_table_entry | |
2104 | { | |
2105 | unw_word_t start_offset; | |
2106 | unw_word_t end_offset; | |
2107 | unw_word_t info_offset; | |
2108 | }; | |
2109 | ||
2110 | static __inline__ uint64_t | |
2111 | ia64_rse_slot_num (uint64_t addr) | |
2112 | { | |
2113 | return (addr >> 3) & 0x3f; | |
2114 | } | |
2115 | ||
2116 | /* Skip over a designated number of registers in the backing | |
2117 | store, remembering every 64th position is for NAT. */ | |
2118 | static __inline__ uint64_t | |
2119 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2120 | { | |
2121 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2122 | ||
2123 | if (num_regs < 0) | |
2124 | delta -= 0x3e; | |
2125 | return addr + ((num_regs + delta/0x3f) << 3); | |
2126 | } | |
2127 | ||
2128 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2129 | number to a libunwind register number. */ | |
2130 | static int | |
2131 | ia64_gdb2uw_regnum (int regnum) | |
2132 | { | |
2133 | if (regnum == sp_regnum) | |
2134 | return UNW_IA64_SP; | |
2135 | else if (regnum == IA64_BSP_REGNUM) | |
2136 | return UNW_IA64_BSP; | |
2137 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2138 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2139 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2140 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2141 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2142 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2143 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2144 | return -1; | |
2145 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2146 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2147 | else if (regnum == IA64_PR_REGNUM) | |
2148 | return UNW_IA64_PR; | |
2149 | else if (regnum == IA64_IP_REGNUM) | |
2150 | return UNW_REG_IP; | |
2151 | else if (regnum == IA64_CFM_REGNUM) | |
2152 | return UNW_IA64_CFM; | |
2153 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2154 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2155 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2156 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2157 | else | |
2158 | return -1; | |
2159 | } | |
2160 | ||
2161 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2162 | number to a ia64 gdb register number. */ | |
2163 | static int | |
2164 | ia64_uw2gdb_regnum (int uw_regnum) | |
2165 | { | |
2166 | if (uw_regnum == UNW_IA64_SP) | |
2167 | return sp_regnum; | |
2168 | else if (uw_regnum == UNW_IA64_BSP) | |
2169 | return IA64_BSP_REGNUM; | |
2170 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2171 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2172 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2173 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2174 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2175 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2176 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2177 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2178 | else if (uw_regnum == UNW_IA64_PR) | |
2179 | return IA64_PR_REGNUM; | |
2180 | else if (uw_regnum == UNW_REG_IP) | |
2181 | return IA64_IP_REGNUM; | |
2182 | else if (uw_regnum == UNW_IA64_CFM) | |
2183 | return IA64_CFM_REGNUM; | |
2184 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2185 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2186 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2187 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2188 | else | |
2189 | return -1; | |
2190 | } | |
2191 | ||
2192 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2193 | register or not. */ | |
2194 | static int | |
2195 | ia64_is_fpreg (int uw_regnum) | |
2196 | { | |
2197 | return unw_is_fpreg (uw_regnum); | |
2198 | } | |
2199 | ||
2200 | /* Libunwind callback accessor function for general registers. */ | |
2201 | static int | |
2202 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2203 | int write, void *arg) | |
2204 | { | |
2205 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2206 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2207 | struct frame_info *next_frame = arg; | |
2208 | long new_sof, old_sof; | |
2209 | char buf[MAX_REGISTER_SIZE]; | |
2210 | ||
2211 | if (write) | |
2212 | { | |
2213 | if (regnum < 0) | |
2214 | /* ignore writes to pseudo-registers such as UNW_IA64_PROC_STARTI. */ | |
2215 | return 0; | |
2216 | ||
2217 | switch (uw_regnum) | |
2218 | { | |
2219 | case UNW_REG_IP: | |
2220 | ia64_write_pc (*val, inferior_ptid); | |
2221 | break; | |
2222 | ||
2223 | case UNW_IA64_AR_BSPSTORE: | |
2224 | write_register (IA64_BSP_REGNUM, *val); | |
2225 | break; | |
2226 | ||
2227 | case UNW_IA64_AR_BSP: | |
2228 | case UNW_IA64_BSP: | |
2229 | /* Account for the fact that ptrace() expects bsp to point | |
2230 | after the current register frame. */ | |
2231 | cfm = read_register (IA64_CFM_REGNUM); | |
2232 | sof = (cfm & 0x7f); | |
2233 | bsp = ia64_rse_skip_regs (*val, sof); | |
2234 | write_register (IA64_BSP_REGNUM, bsp); | |
2235 | break; | |
2236 | ||
2237 | case UNW_IA64_CFM: | |
2238 | /* If we change CFM, we need to adjust ptrace's notion of | |
2239 | bsp accordingly, so that the real bsp remains | |
2240 | unchanged. */ | |
2241 | bsp = read_register (IA64_BSP_REGNUM); | |
2242 | cfm = read_register (IA64_CFM_REGNUM); | |
2243 | old_sof = (cfm & 0x7f); | |
2244 | new_sof = (*val & 0x7f); | |
2245 | if (old_sof != new_sof) | |
2246 | { | |
2247 | bsp = ia64_rse_skip_regs (bsp, -old_sof + new_sof); | |
2248 | write_register (IA64_BSP_REGNUM, bsp); | |
2249 | } | |
2250 | write_register (IA64_CFM_REGNUM, *val); | |
2251 | break; | |
2252 | ||
2253 | default: | |
2254 | write_register (regnum, *val); | |
2255 | break; | |
2256 | } | |
2257 | if (gdbarch_debug >= 1) | |
2258 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2259 | " access_reg: to cache: %4s=0x%s\n", |
968d1cb4 | 2260 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2261 | ? ia64_register_names[regnum] : "r??"), |
2262 | paddr_nz (*val)); | |
968d1cb4 JJ |
2263 | } |
2264 | else | |
2265 | { | |
2266 | switch (uw_regnum) | |
2267 | { | |
2268 | case UNW_REG_IP: | |
2269 | /* Libunwind expects to see the pc value which means the slot number | |
2270 | from the psr must be merged with the ip word address. */ | |
2271 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
2272 | ip = extract_unsigned_integer (buf, 8); | |
2273 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
2274 | psr = extract_unsigned_integer (buf, 8); | |
2275 | *val = ip | ((psr >> 41) & 0x3); | |
2276 | break; | |
2277 | ||
2278 | case UNW_IA64_AR_BSP: | |
2279 | /* Libunwind expects to see the beginning of the current register | |
2280 | frame so we must account for the fact that ptrace() will return a value | |
2281 | for bsp that points *after* the current register frame. */ | |
2282 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2283 | bsp = extract_unsigned_integer (buf, 8); | |
2284 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2285 | cfm = extract_unsigned_integer (buf, 8); | |
2286 | sof = (cfm & 0x7f); | |
2287 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2288 | break; | |
2289 | ||
2290 | case UNW_IA64_AR_BSPSTORE: | |
2291 | /* Libunwind wants bspstore to be after the current register frame. | |
2292 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2293 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2294 | *val = extract_unsigned_integer (buf, 8); | |
2295 | break; | |
2296 | ||
2297 | default: | |
2298 | /* For all other registers, just unwind the value directly. */ | |
2299 | frame_unwind_register (next_frame, regnum, buf); | |
2300 | *val = extract_unsigned_integer (buf, 8); | |
2301 | break; | |
2302 | } | |
2303 | ||
2304 | if (gdbarch_debug >= 1) | |
2305 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2306 | " access_reg: from cache: %4s=0x%s\n", |
968d1cb4 | 2307 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2308 | ? ia64_register_names[regnum] : "r??"), |
2309 | paddr_nz (*val)); | |
968d1cb4 JJ |
2310 | } |
2311 | return 0; | |
2312 | } | |
2313 | ||
2314 | /* Libunwind callback accessor function for floating-point registers. */ | |
2315 | static int | |
2316 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2317 | int write, void *arg) | |
2318 | { | |
2319 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2320 | ||
2321 | if (write) | |
2322 | regcache_cooked_write (current_regcache, regnum, (char *) val); | |
2323 | else | |
2324 | regcache_cooked_read (current_regcache, regnum, (char *) val); | |
2325 | return 0; | |
2326 | } | |
2327 | ||
c5a27d9c JJ |
2328 | /* Libunwind callback accessor function for top-level rse registers. */ |
2329 | static int | |
2330 | ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2331 | int write, void *arg) | |
2332 | { | |
2333 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2334 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2335 | long new_sof, old_sof; | |
2336 | ||
2337 | if (write) | |
2338 | { | |
2339 | if (regnum < 0) | |
2340 | /* ignore writes to pseudo-registers such as UNW_IA64_PROC_STARTI. */ | |
2341 | return 0; | |
2342 | ||
2343 | switch (uw_regnum) | |
2344 | { | |
2345 | case UNW_REG_IP: | |
2346 | ia64_write_pc (*val, inferior_ptid); | |
2347 | break; | |
2348 | ||
2349 | case UNW_IA64_AR_BSPSTORE: | |
2350 | write_register (IA64_BSP_REGNUM, *val); | |
2351 | break; | |
2352 | ||
2353 | case UNW_IA64_AR_BSP: | |
2354 | case UNW_IA64_BSP: | |
2355 | /* Account for the fact that ptrace() expects bsp to point | |
2356 | after the current register frame. */ | |
2357 | cfm = read_register (IA64_CFM_REGNUM); | |
2358 | sof = (cfm & 0x7f); | |
2359 | bsp = ia64_rse_skip_regs (*val, sof); | |
2360 | write_register (IA64_BSP_REGNUM, bsp); | |
2361 | break; | |
2362 | ||
2363 | case UNW_IA64_CFM: | |
2364 | /* If we change CFM, we need to adjust ptrace's notion of | |
2365 | bsp accordingly, so that the real bsp remains | |
2366 | unchanged. */ | |
2367 | bsp = read_register (IA64_BSP_REGNUM); | |
2368 | cfm = read_register (IA64_CFM_REGNUM); | |
2369 | old_sof = (cfm & 0x7f); | |
2370 | new_sof = (*val & 0x7f); | |
2371 | if (old_sof != new_sof) | |
2372 | { | |
2373 | bsp = ia64_rse_skip_regs (bsp, -old_sof + new_sof); | |
2374 | write_register (IA64_BSP_REGNUM, bsp); | |
2375 | } | |
2376 | write_register (IA64_CFM_REGNUM, *val); | |
2377 | break; | |
2378 | ||
2379 | default: | |
2380 | write_register (regnum, *val); | |
2381 | break; | |
2382 | } | |
2383 | if (gdbarch_debug >= 1) | |
2384 | fprintf_unfiltered (gdb_stdlog, | |
2385 | " access_rse_reg: to cache: %4s=0x%s\n", | |
2386 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2387 | ? ia64_register_names[regnum] : "r??"), | |
2388 | paddr_nz (*val)); | |
2389 | } | |
2390 | else | |
2391 | { | |
2392 | switch (uw_regnum) | |
2393 | { | |
2394 | case UNW_REG_IP: | |
2395 | /* Libunwind expects to see the pc value which means the slot number | |
2396 | from the psr must be merged with the ip word address. */ | |
2397 | ip = read_register (IA64_IP_REGNUM); | |
2398 | psr = read_register (IA64_PSR_REGNUM); | |
2399 | *val = ip | ((psr >> 41) & 0x3); | |
2400 | break; | |
2401 | ||
2402 | case UNW_IA64_AR_BSP: | |
2403 | /* Libunwind expects to see the beginning of the current register | |
2404 | frame so we must account for the fact that ptrace() will return a value | |
2405 | for bsp that points *after* the current register frame. */ | |
2406 | bsp = read_register (IA64_BSP_REGNUM); | |
2407 | cfm = read_register (IA64_CFM_REGNUM); | |
2408 | sof = (cfm & 0x7f); | |
2409 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2410 | break; | |
2411 | ||
2412 | case UNW_IA64_AR_BSPSTORE: | |
2413 | /* Libunwind wants bspstore to be after the current register frame. | |
2414 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2415 | *val = read_register (IA64_BSP_REGNUM); | |
2416 | break; | |
2417 | ||
2418 | default: | |
2419 | /* For all other registers, just read the value directly. */ | |
2420 | *val = read_register (regnum); | |
2421 | break; | |
2422 | } | |
2423 | } | |
2424 | ||
2425 | if (gdbarch_debug >= 1) | |
2426 | fprintf_unfiltered (gdb_stdlog, | |
2427 | " access_rse_reg: from cache: %4s=0x%s\n", | |
2428 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2429 | ? ia64_register_names[regnum] : "r??"), | |
2430 | paddr_nz (*val)); | |
2431 | ||
2432 | return 0; | |
2433 | } | |
2434 | ||
968d1cb4 JJ |
2435 | /* Libunwind callback accessor function for accessing memory. */ |
2436 | static int | |
2437 | ia64_access_mem (unw_addr_space_t as, | |
2438 | unw_word_t addr, unw_word_t *val, | |
2439 | int write, void *arg) | |
2440 | { | |
c5a27d9c JJ |
2441 | if (addr - KERNEL_START < ktab_size) |
2442 | { | |
2443 | unw_word_t *laddr = (unw_word_t*) ((char *) ktab | |
2444 | + (addr - KERNEL_START)); | |
2445 | ||
2446 | if (write) | |
2447 | *laddr = *val; | |
2448 | else | |
2449 | *val = *laddr; | |
2450 | return 0; | |
2451 | } | |
2452 | ||
968d1cb4 JJ |
2453 | /* XXX do we need to normalize byte-order here? */ |
2454 | if (write) | |
2455 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2456 | else | |
2457 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2458 | } | |
2459 | ||
2460 | /* Call low-level function to access the kernel unwind table. */ | |
2461 | static int | |
2462 | getunwind_table (void *buf, size_t len) | |
2463 | { | |
2464 | LONGEST x; | |
c5a27d9c | 2465 | |
10d6c8cd DJ |
2466 | /* FIXME drow/2005-09-10: This code used to call |
2467 | ia64_linux_xfer_unwind_table directly to fetch the unwind table | |
2468 | for the currently running ia64-linux kernel. That data should | |
2469 | come from the core file and be accessed via the auxv vector; if | |
2470 | we want to preserve fall back to the running kernel's table, then | |
2471 | we should find a way to override the corefile layer's | |
2472 | xfer_partial method. */ | |
2473 | x = target_read_partial (¤t_target, TARGET_OBJECT_UNWIND_TABLE, NULL, | |
2474 | buf, 0, len); | |
968d1cb4 JJ |
2475 | |
2476 | return (int)x; | |
2477 | } | |
10d6c8cd | 2478 | |
968d1cb4 JJ |
2479 | /* Get the kernel unwind table. */ |
2480 | static int | |
2481 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2482 | { | |
c5a27d9c | 2483 | static struct ia64_table_entry *etab; |
968d1cb4 | 2484 | |
c5a27d9c | 2485 | if (!ktab) |
968d1cb4 | 2486 | { |
c5a27d9c | 2487 | size_t size; |
968d1cb4 JJ |
2488 | size = getunwind_table (NULL, 0); |
2489 | if ((int)size < 0) | |
c5a27d9c JJ |
2490 | return -UNW_ENOINFO; |
2491 | ktab_size = size; | |
2492 | ktab = xmalloc (ktab_size); | |
2493 | getunwind_table (ktab, ktab_size); | |
2494 | ||
968d1cb4 | 2495 | for (etab = ktab; etab->start_offset; ++etab) |
c5a27d9c | 2496 | etab->info_offset += KERNEL_START; |
968d1cb4 JJ |
2497 | } |
2498 | ||
2499 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2500 | return -UNW_ENOINFO; | |
2501 | ||
2502 | di->format = UNW_INFO_FORMAT_TABLE; | |
2503 | di->gp = 0; | |
2504 | di->start_ip = ktab[0].start_offset; | |
2505 | di->end_ip = etab[-1].end_offset; | |
2506 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2507 | di->u.ti.segbase = 0; | |
2508 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2509 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2510 | ||
2511 | if (gdbarch_debug >= 1) | |
2512 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2513 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2514 | (char *) di->u.ti.name_ptr, | |
2515 | paddr_nz (di->u.ti.segbase), | |
2516 | paddr_u (di->u.ti.table_len), | |
2517 | paddr_nz (di->gp)); | |
968d1cb4 JJ |
2518 | return 0; |
2519 | } | |
2520 | ||
2521 | /* Find the unwind table entry for a specified address. */ | |
2522 | static int | |
2523 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2524 | unw_dyn_info_t *dip, void **buf) | |
2525 | { | |
2526 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2527 | Elf_Internal_Ehdr *ehdr; | |
2528 | unw_word_t segbase = 0; | |
2529 | CORE_ADDR load_base; | |
2530 | bfd *bfd; | |
2531 | int i; | |
2532 | ||
2533 | bfd = objfile->obfd; | |
2534 | ||
2535 | ehdr = elf_tdata (bfd)->elf_header; | |
2536 | phdr = elf_tdata (bfd)->phdr; | |
2537 | ||
2538 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2539 | ||
2540 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2541 | { | |
2542 | switch (phdr[i].p_type) | |
2543 | { | |
2544 | case PT_LOAD: | |
2545 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2546 | < phdr[i].p_memsz) | |
2547 | p_text = phdr + i; | |
2548 | break; | |
2549 | ||
2550 | case PT_IA_64_UNWIND: | |
2551 | p_unwind = phdr + i; | |
2552 | break; | |
2553 | ||
2554 | default: | |
2555 | break; | |
2556 | } | |
2557 | } | |
2558 | ||
c5a27d9c | 2559 | if (!p_text || !p_unwind) |
968d1cb4 JJ |
2560 | return -UNW_ENOINFO; |
2561 | ||
c5a27d9c JJ |
2562 | /* Verify that the segment that contains the IP also contains |
2563 | the static unwind table. If not, we may be in the Linux kernel's | |
2564 | DSO gate page in which case the unwind table is another segment. | |
2565 | Otherwise, we are dealing with runtime-generated code, for which we | |
2566 | have no info here. */ | |
968d1cb4 JJ |
2567 | segbase = p_text->p_vaddr + load_base; |
2568 | ||
c5a27d9c JJ |
2569 | if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
2570 | { | |
2571 | int ok = 0; | |
2572 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2573 | { | |
2574 | if (phdr[i].p_type == PT_LOAD | |
2575 | && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) | |
2576 | { | |
2577 | ok = 1; | |
2578 | /* Get the segbase from the section containing the | |
2579 | libunwind table. */ | |
2580 | segbase = phdr[i].p_vaddr + load_base; | |
2581 | } | |
2582 | } | |
2583 | if (!ok) | |
2584 | return -UNW_ENOINFO; | |
2585 | } | |
2586 | ||
2587 | dip->start_ip = p_text->p_vaddr + load_base; | |
968d1cb4 | 2588 | dip->end_ip = dip->start_ip + p_text->p_memsz; |
b33e8514 | 2589 | dip->gp = ia64_find_global_pointer (ip); |
503ff15d KB |
2590 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2591 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2592 | dip->u.rti.segbase = segbase; | |
2593 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2594 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2595 | |
2596 | return 0; | |
2597 | } | |
2598 | ||
2599 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2600 | static int | |
2601 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2602 | int need_unwind_info, void *arg) | |
2603 | { | |
2604 | struct obj_section *sec = find_pc_section (ip); | |
2605 | unw_dyn_info_t di; | |
2606 | int ret; | |
2607 | void *buf = NULL; | |
2608 | ||
2609 | if (!sec) | |
2610 | { | |
2611 | /* XXX This only works if the host and the target architecture are | |
2612 | both ia64 and if the have (more or less) the same kernel | |
2613 | version. */ | |
2614 | if (get_kernel_table (ip, &di) < 0) | |
2615 | return -UNW_ENOINFO; | |
503ff15d KB |
2616 | |
2617 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2618 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2619 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2620 | "length=%s,data=0x%s)\n", | |
2621 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2622 | paddr_nz (di.u.ti.segbase), | |
2623 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2624 | paddr_nz (di.gp), | |
2625 | paddr_u (di.u.ti.table_len), | |
2626 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); | |
968d1cb4 JJ |
2627 | } |
2628 | else | |
2629 | { | |
2630 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2631 | if (ret < 0) | |
2632 | return ret; | |
968d1cb4 | 2633 | |
503ff15d | 2634 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2635 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2636 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2637 | "length=%s,data=0x%s)\n", | |
2638 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2639 | paddr_nz (di.u.rti.segbase), | |
2640 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2641 | paddr_nz (di.gp), | |
2642 | paddr_u (di.u.rti.table_len), | |
2643 | paddr_nz (di.u.rti.table_data)); | |
503ff15d | 2644 | } |
968d1cb4 | 2645 | |
503ff15d KB |
2646 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2647 | arg); | |
968d1cb4 JJ |
2648 | |
2649 | /* We no longer need the dyn info storage so free it. */ | |
2650 | xfree (buf); | |
2651 | ||
2652 | return ret; | |
2653 | } | |
2654 | ||
2655 | /* Libunwind callback accessor function for cleanup. */ | |
2656 | static void | |
2657 | ia64_put_unwind_info (unw_addr_space_t as, | |
2658 | unw_proc_info_t *pip, void *arg) | |
2659 | { | |
2660 | /* Nothing required for now. */ | |
2661 | } | |
2662 | ||
2663 | /* Libunwind callback accessor function to get head of the dynamic | |
2664 | unwind-info registration list. */ | |
2665 | static int | |
2666 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2667 | unw_word_t *dilap, void *arg) | |
2668 | { | |
2669 | struct obj_section *text_sec; | |
2670 | struct objfile *objfile; | |
2671 | unw_word_t ip, addr; | |
2672 | unw_dyn_info_t di; | |
2673 | int ret; | |
2674 | ||
2675 | if (!libunwind_is_initialized ()) | |
2676 | return -UNW_ENOINFO; | |
2677 | ||
2678 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2679 | { | |
2680 | void *buf = NULL; | |
2681 | ||
2682 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
2683 | ip = text_sec->addr; | |
2684 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); | |
2685 | if (ret >= 0) | |
2686 | { | |
503ff15d | 2687 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2688 | /* We no longer need the dyn info storage so free it. */ |
2689 | xfree (buf); | |
2690 | ||
2691 | if (addr) | |
2692 | { | |
2693 | if (gdbarch_debug >= 1) | |
2694 | fprintf_unfiltered (gdb_stdlog, | |
2695 | "dynamic unwind table in objfile %s " | |
78ced177 | 2696 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2697 | bfd_get_filename (objfile->obfd), |
78ced177 | 2698 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2699 | *dilap = addr; |
2700 | return 0; | |
2701 | } | |
2702 | } | |
2703 | } | |
2704 | return -UNW_ENOINFO; | |
2705 | } | |
2706 | ||
2707 | ||
2708 | /* Frame interface functions for libunwind. */ | |
2709 | ||
2710 | static void | |
2711 | ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
7166c4a9 | 2712 | struct frame_id *this_id) |
968d1cb4 JJ |
2713 | { |
2714 | char buf[8]; | |
2715 | CORE_ADDR bsp; | |
2716 | struct frame_id id; | |
c5a27d9c JJ |
2717 | CORE_ADDR prev_ip, addr; |
2718 | int realnum, optimized; | |
2719 | enum lval_type lval; | |
2720 | ||
968d1cb4 JJ |
2721 | |
2722 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
c5a27d9c JJ |
2723 | if (frame_id_eq (id, null_frame_id)) |
2724 | { | |
2725 | (*this_id) = null_frame_id; | |
2726 | return; | |
2727 | } | |
968d1cb4 | 2728 | |
c5a27d9c JJ |
2729 | /* We must add the bsp as the special address for frame comparison |
2730 | purposes. */ | |
968d1cb4 JJ |
2731 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
2732 | bsp = extract_unsigned_integer (buf, 8); | |
2733 | ||
c5a27d9c JJ |
2734 | /* If the previous frame pc value is 0, then we are at the end of the stack |
2735 | and don't want to unwind past this frame. We return a null frame_id to | |
2736 | indicate this. */ | |
2737 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2738 | &optimized, &lval, &addr, &realnum, buf); |
2739 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2740 | |
2741 | if (prev_ip != 0) | |
2742 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2743 | else | |
2744 | (*this_id) = null_frame_id; | |
968d1cb4 JJ |
2745 | |
2746 | if (gdbarch_debug >= 1) | |
2747 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
2748 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
2749 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2750 | paddr_nz (bsp), next_frame); | |
968d1cb4 JJ |
2751 | } |
2752 | ||
2753 | static void | |
2754 | ia64_libunwind_frame_prev_register (struct frame_info *next_frame, | |
2755 | void **this_cache, | |
2756 | int regnum, int *optimizedp, | |
2757 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2758 | int *realnump, gdb_byte *valuep) |
968d1cb4 JJ |
2759 | { |
2760 | int reg = regnum; | |
2761 | ||
2762 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2763 | reg = IA64_PR_REGNUM; | |
2764 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2765 | reg = IA64_UNAT_REGNUM; | |
2766 | ||
2767 | /* Let libunwind do most of the work. */ | |
2768 | libunwind_frame_prev_register (next_frame, this_cache, reg, | |
2769 | optimizedp, lvalp, addrp, realnump, valuep); | |
2770 | ||
6672f2ae AS |
2771 | /* No more to do if the value is not supposed to be supplied. */ |
2772 | if (!valuep) | |
2773 | return; | |
2774 | ||
968d1cb4 JJ |
2775 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2776 | { | |
2777 | ULONGEST prN_val; | |
2778 | ||
2779 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2780 | { | |
2781 | int rrb_pr = 0; | |
2782 | ULONGEST cfm; | |
2783 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2784 | ||
2785 | /* Fetch predicate register rename base from current frame | |
2786 | marker for this frame. */ | |
2787 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2788 | cfm = extract_unsigned_integer (buf, 8); | |
2789 | rrb_pr = (cfm >> 32) & 0x3f; | |
2790 | ||
2791 | /* Adjust the register number to account for register rotation. */ | |
2792 | regnum = VP16_REGNUM | |
2793 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
2794 | } | |
2795 | prN_val = extract_bit_field ((unsigned char *) valuep, | |
2796 | regnum - VP0_REGNUM, 1); | |
2797 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); | |
2798 | } | |
2799 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2800 | { | |
2801 | ULONGEST unatN_val; | |
2802 | ||
2803 | unatN_val = extract_bit_field ((unsigned char *) valuep, | |
2804 | regnum - IA64_NAT0_REGNUM, 1); | |
2805 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2806 | unatN_val); | |
2807 | } | |
2808 | else if (regnum == IA64_BSP_REGNUM) | |
2809 | { | |
2810 | char cfm_valuep[MAX_REGISTER_SIZE]; | |
2811 | int cfm_optim; | |
2812 | int cfm_realnum; | |
2813 | enum lval_type cfm_lval; | |
2814 | CORE_ADDR cfm_addr; | |
2815 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
2816 | ||
2817 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
2818 | This corresponds to what the hardware bsp register will be if we pop the frame | |
2819 | back which is why we might have been called. We know that libunwind will pass us back | |
2820 | the beginning of the current frame so we should just add sof to it. */ | |
2821 | prev_bsp = extract_unsigned_integer (valuep, 8); | |
2822 | libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
2823 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
2824 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
2825 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); | |
2826 | ||
2827 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2828 | prev_bsp); | |
2829 | } | |
2830 | ||
2831 | if (gdbarch_debug >= 1) | |
2832 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2833 | "libunwind prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2834 | (regnum < IA64_GR32_REGNUM |
2835 | || (regnum > IA64_GR127_REGNUM | |
2836 | && regnum < LAST_PSEUDO_REGNUM)) | |
2837 | ? ia64_register_names[regnum] | |
2838 | : (regnum < LAST_PSEUDO_REGNUM | |
2839 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2840 | : "OUT_OF_RANGE"), | |
78ced177 | 2841 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
968d1cb4 JJ |
2842 | } |
2843 | ||
2844 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2845 | { | |
2846 | NORMAL_FRAME, | |
2847 | ia64_libunwind_frame_this_id, | |
2848 | ia64_libunwind_frame_prev_register | |
2849 | }; | |
2850 | ||
2851 | static const struct frame_unwind * | |
2852 | ia64_libunwind_frame_sniffer (struct frame_info *next_frame) | |
2853 | { | |
2854 | if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) | |
2855 | return &ia64_libunwind_frame_unwind; | |
2856 | ||
2857 | return NULL; | |
2858 | } | |
2859 | ||
c5a27d9c JJ |
2860 | static void |
2861 | ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2862 | struct frame_id *this_id) | |
2863 | { | |
2864 | char buf[8]; | |
2865 | CORE_ADDR bsp; | |
2866 | struct frame_id id; | |
2867 | CORE_ADDR prev_ip; | |
2868 | ||
2869 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
2870 | if (frame_id_eq (id, null_frame_id)) | |
2871 | { | |
2872 | (*this_id) = null_frame_id; | |
2873 | return; | |
2874 | } | |
2875 | ||
2876 | /* We must add the bsp as the special address for frame comparison | |
2877 | purposes. */ | |
2878 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2879 | bsp = extract_unsigned_integer (buf, 8); | |
2880 | ||
2881 | /* For a sigtramp frame, we don't make the check for previous ip being 0. */ | |
2882 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2883 | ||
2884 | if (gdbarch_debug >= 1) | |
2885 | fprintf_unfiltered (gdb_stdlog, | |
2886 | "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", | |
2887 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2888 | paddr_nz (bsp), next_frame); | |
2889 | } | |
2890 | ||
2891 | static void | |
2892 | ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2893 | void **this_cache, | |
2894 | int regnum, int *optimizedp, | |
2895 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2896 | int *realnump, gdb_byte *valuep) |
c5a27d9c JJ |
2897 | |
2898 | { | |
f1b4b38e | 2899 | gdb_byte buf[8]; |
c5a27d9c JJ |
2900 | CORE_ADDR prev_ip, addr; |
2901 | int realnum, optimized; | |
2902 | enum lval_type lval; | |
2903 | ||
2904 | ||
2905 | /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT | |
2906 | method of getting previous registers. */ | |
2907 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2908 | &optimized, &lval, &addr, &realnum, buf); |
2909 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2910 | |
2911 | if (prev_ip == 0) | |
2912 | { | |
2913 | void *tmp_cache = NULL; | |
2914 | ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp, | |
2915 | addrp, realnump, valuep); | |
2916 | } | |
2917 | else | |
2918 | ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp, | |
2919 | addrp, realnump, valuep); | |
2920 | } | |
2921 | ||
2922 | static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = | |
2923 | { | |
2924 | SIGTRAMP_FRAME, | |
2925 | ia64_libunwind_sigtramp_frame_this_id, | |
2926 | ia64_libunwind_sigtramp_frame_prev_register | |
2927 | }; | |
2928 | ||
2929 | static const struct frame_unwind * | |
2930 | ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2931 | { | |
2932 | if (libunwind_is_initialized ()) | |
2933 | { | |
2934 | if (libunwind_sigtramp_frame_sniffer (next_frame)) | |
2935 | return &ia64_libunwind_sigtramp_frame_unwind; | |
2936 | return NULL; | |
2937 | } | |
2938 | else | |
2939 | return ia64_sigtramp_frame_sniffer (next_frame); | |
2940 | } | |
2941 | ||
968d1cb4 JJ |
2942 | /* Set of libunwind callback acccessor functions. */ |
2943 | static unw_accessors_t ia64_unw_accessors = | |
2944 | { | |
2945 | ia64_find_proc_info_x, | |
2946 | ia64_put_unwind_info, | |
2947 | ia64_get_dyn_info_list, | |
2948 | ia64_access_mem, | |
2949 | ia64_access_reg, | |
2950 | ia64_access_fpreg, | |
2951 | /* resume */ | |
2952 | /* get_proc_name */ | |
2953 | }; | |
2954 | ||
c5a27d9c JJ |
2955 | /* Set of special libunwind callback acccessor functions specific for accessing |
2956 | the rse registers. At the top of the stack, we want libunwind to figure out | |
2957 | how to read r32 - r127. Though usually they are found sequentially in memory | |
2958 | starting from $bof, this is not always true. */ | |
2959 | static unw_accessors_t ia64_unw_rse_accessors = | |
2960 | { | |
2961 | ia64_find_proc_info_x, | |
2962 | ia64_put_unwind_info, | |
2963 | ia64_get_dyn_info_list, | |
2964 | ia64_access_mem, | |
2965 | ia64_access_rse_reg, | |
2966 | ia64_access_fpreg, | |
2967 | /* resume */ | |
2968 | /* get_proc_name */ | |
2969 | }; | |
2970 | ||
968d1cb4 JJ |
2971 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ |
2972 | static struct libunwind_descr ia64_libunwind_descr = | |
2973 | { | |
2974 | ia64_gdb2uw_regnum, | |
2975 | ia64_uw2gdb_regnum, | |
2976 | ia64_is_fpreg, | |
2977 | &ia64_unw_accessors, | |
c5a27d9c | 2978 | &ia64_unw_rse_accessors, |
968d1cb4 JJ |
2979 | }; |
2980 | ||
2981 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2982 | ||
74055713 AC |
2983 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
2984 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE | |
2985 | is the type (which is known to be struct, union or array). */ | |
16461d7d KB |
2986 | int |
2987 | ia64_use_struct_convention (int gcc_p, struct type *type) | |
2988 | { | |
64a5b29c KB |
2989 | struct type *float_elt_type; |
2990 | ||
2991 | /* HFAs are structures (or arrays) consisting entirely of floating | |
2992 | point values of the same length. Up to 8 of these are returned | |
2993 | in registers. Don't use the struct convention when this is the | |
004d836a | 2994 | case. */ |
64a5b29c KB |
2995 | float_elt_type = is_float_or_hfa_type (type); |
2996 | if (float_elt_type != NULL | |
2997 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2998 | return 0; | |
2999 | ||
3000 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 3001 | Don't use the struct convention for those either. */ |
16461d7d KB |
3002 | return TYPE_LENGTH (type) > 32; |
3003 | } | |
3004 | ||
3005 | void | |
2d522557 AC |
3006 | ia64_extract_return_value (struct type *type, struct regcache *regcache, |
3007 | gdb_byte *valbuf) | |
16461d7d | 3008 | { |
64a5b29c KB |
3009 | struct type *float_elt_type; |
3010 | ||
3011 | float_elt_type = is_float_or_hfa_type (type); | |
3012 | if (float_elt_type != NULL) | |
3013 | { | |
004d836a | 3014 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
3015 | int offset = 0; |
3016 | int regnum = IA64_FR8_REGNUM; | |
3017 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
3018 | ||
3019 | while (n-- > 0) | |
3020 | { | |
004d836a JJ |
3021 | regcache_cooked_read (regcache, regnum, from); |
3022 | convert_typed_floating (from, builtin_type_ia64_ext, | |
3023 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
3024 | offset += TYPE_LENGTH (float_elt_type); |
3025 | regnum++; | |
3026 | } | |
3027 | } | |
16461d7d | 3028 | else |
004d836a JJ |
3029 | { |
3030 | ULONGEST val; | |
3031 | int offset = 0; | |
3032 | int regnum = IA64_GR8_REGNUM; | |
3033 | int reglen = TYPE_LENGTH (ia64_register_type (NULL, IA64_GR8_REGNUM)); | |
3034 | int n = TYPE_LENGTH (type) / reglen; | |
3035 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 3036 | |
004d836a JJ |
3037 | while (n-- > 0) |
3038 | { | |
3039 | ULONGEST val; | |
3040 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3041 | memcpy ((char *)valbuf + offset, &val, reglen); | |
3042 | offset += reglen; | |
3043 | regnum++; | |
3044 | } | |
16461d7d | 3045 | |
004d836a JJ |
3046 | if (m) |
3047 | { | |
3048 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3049 | memcpy ((char *)valbuf + offset, &val, m); | |
3050 | } | |
3051 | } | |
16461d7d KB |
3052 | } |
3053 | ||
3054 | CORE_ADDR | |
004d836a | 3055 | ia64_extract_struct_value_address (struct regcache *regcache) |
16461d7d | 3056 | { |
8a3fe4f8 | 3057 | error (_("ia64_extract_struct_value_address called and cannot get struct value address")); |
004d836a | 3058 | return 0; |
16461d7d KB |
3059 | } |
3060 | ||
16461d7d | 3061 | |
64a5b29c KB |
3062 | static int |
3063 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
3064 | { | |
3065 | switch (TYPE_CODE (t)) | |
3066 | { | |
3067 | case TYPE_CODE_FLT: | |
3068 | if (*etp) | |
3069 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
3070 | else | |
3071 | { | |
3072 | *etp = t; | |
3073 | return 1; | |
3074 | } | |
3075 | break; | |
3076 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
3077 | return |
3078 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
3079 | etp); | |
64a5b29c KB |
3080 | break; |
3081 | case TYPE_CODE_STRUCT: | |
3082 | { | |
3083 | int i; | |
3084 | ||
3085 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
3086 | if (!is_float_or_hfa_type_recurse |
3087 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
3088 | return 0; |
3089 | return 1; | |
3090 | } | |
3091 | break; | |
3092 | default: | |
3093 | return 0; | |
3094 | break; | |
3095 | } | |
3096 | } | |
3097 | ||
3098 | /* Determine if the given type is one of the floating point types or | |
3099 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 3100 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
3101 | |
3102 | static struct type * | |
3103 | is_float_or_hfa_type (struct type *t) | |
3104 | { | |
3105 | struct type *et = 0; | |
3106 | ||
3107 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
3108 | } | |
3109 | ||
3110 | ||
98f96ba1 KB |
3111 | /* Return 1 if the alignment of T is such that the next even slot |
3112 | should be used. Return 0, if the next available slot should | |
3113 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 3114 | and Runtime manual). */ |
98f96ba1 KB |
3115 | |
3116 | static int | |
3117 | slot_alignment_is_next_even (struct type *t) | |
3118 | { | |
3119 | switch (TYPE_CODE (t)) | |
3120 | { | |
3121 | case TYPE_CODE_INT: | |
3122 | case TYPE_CODE_FLT: | |
3123 | if (TYPE_LENGTH (t) > 8) | |
3124 | return 1; | |
3125 | else | |
3126 | return 0; | |
3127 | case TYPE_CODE_ARRAY: | |
3128 | return | |
3129 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
3130 | case TYPE_CODE_STRUCT: | |
3131 | { | |
3132 | int i; | |
3133 | ||
3134 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3135 | if (slot_alignment_is_next_even | |
3136 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
3137 | return 1; | |
3138 | return 0; | |
3139 | } | |
3140 | default: | |
3141 | return 0; | |
3142 | } | |
3143 | } | |
3144 | ||
64a5b29c KB |
3145 | /* Attempt to find (and return) the global pointer for the given |
3146 | function. | |
3147 | ||
3148 | This is a rather nasty bit of code searchs for the .dynamic section | |
3149 | in the objfile corresponding to the pc of the function we're trying | |
3150 | to call. Once it finds the addresses at which the .dynamic section | |
3151 | lives in the child process, it scans the Elf64_Dyn entries for a | |
3152 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
3153 | d_un.d_ptr value is the global pointer. */ | |
3154 | ||
3155 | static CORE_ADDR | |
b33e8514 | 3156 | ia64_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 3157 | { |
76d689a6 | 3158 | struct obj_section *faddr_sect; |
64a5b29c | 3159 | |
76d689a6 KB |
3160 | faddr_sect = find_pc_section (faddr); |
3161 | if (faddr_sect != NULL) | |
64a5b29c KB |
3162 | { |
3163 | struct obj_section *osect; | |
3164 | ||
76d689a6 | 3165 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
3166 | { |
3167 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
3168 | break; | |
3169 | } | |
3170 | ||
76d689a6 | 3171 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3172 | { |
3173 | CORE_ADDR addr; | |
3174 | ||
3175 | addr = osect->addr; | |
3176 | while (addr < osect->endaddr) | |
3177 | { | |
3178 | int status; | |
3179 | LONGEST tag; | |
3180 | char buf[8]; | |
3181 | ||
3182 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3183 | if (status != 0) | |
3184 | break; | |
3185 | tag = extract_signed_integer (buf, sizeof (buf)); | |
3186 | ||
3187 | if (tag == DT_PLTGOT) | |
3188 | { | |
3189 | CORE_ADDR global_pointer; | |
3190 | ||
3191 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
3192 | if (status != 0) | |
3193 | break; | |
7c0b4a20 | 3194 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
3195 | |
3196 | /* The payoff... */ | |
3197 | return global_pointer; | |
3198 | } | |
3199 | ||
3200 | if (tag == DT_NULL) | |
3201 | break; | |
3202 | ||
3203 | addr += 16; | |
3204 | } | |
3205 | } | |
3206 | } | |
3207 | return 0; | |
3208 | } | |
3209 | ||
3210 | /* Given a function's address, attempt to find (and return) the | |
3211 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 3212 | not found. */ |
64a5b29c KB |
3213 | static CORE_ADDR |
3214 | find_extant_func_descr (CORE_ADDR faddr) | |
3215 | { | |
76d689a6 | 3216 | struct obj_section *faddr_sect; |
64a5b29c | 3217 | |
004d836a | 3218 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
3219 | faddr_sect = find_pc_section (faddr); |
3220 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
3221 | return faddr; |
3222 | ||
76d689a6 | 3223 | if (faddr_sect != NULL) |
64a5b29c | 3224 | { |
76d689a6 KB |
3225 | struct obj_section *osect; |
3226 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
3227 | { |
3228 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
3229 | break; | |
3230 | } | |
3231 | ||
76d689a6 | 3232 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3233 | { |
3234 | CORE_ADDR addr; | |
3235 | ||
3236 | addr = osect->addr; | |
3237 | while (addr < osect->endaddr) | |
3238 | { | |
3239 | int status; | |
3240 | LONGEST faddr2; | |
3241 | char buf[8]; | |
3242 | ||
3243 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3244 | if (status != 0) | |
3245 | break; | |
3246 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
3247 | ||
3248 | if (faddr == faddr2) | |
3249 | return addr; | |
3250 | ||
3251 | addr += 16; | |
3252 | } | |
3253 | } | |
3254 | } | |
3255 | return 0; | |
3256 | } | |
3257 | ||
3258 | /* Attempt to find a function descriptor corresponding to the | |
3259 | given address. If none is found, construct one on the | |
004d836a | 3260 | stack using the address at fdaptr. */ |
64a5b29c KB |
3261 | |
3262 | static CORE_ADDR | |
3263 | find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr) | |
3264 | { | |
3265 | CORE_ADDR fdesc; | |
3266 | ||
3267 | fdesc = find_extant_func_descr (faddr); | |
3268 | ||
3269 | if (fdesc == 0) | |
3270 | { | |
3271 | CORE_ADDR global_pointer; | |
3272 | char buf[16]; | |
3273 | ||
3274 | fdesc = *fdaptr; | |
3275 | *fdaptr += 16; | |
3276 | ||
b33e8514 | 3277 | global_pointer = ia64_find_global_pointer (faddr); |
64a5b29c KB |
3278 | |
3279 | if (global_pointer == 0) | |
3280 | global_pointer = read_register (IA64_GR1_REGNUM); | |
3281 | ||
fbd9dcd3 AC |
3282 | store_unsigned_integer (buf, 8, faddr); |
3283 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
3284 | |
3285 | write_memory (fdesc, buf, 16); | |
3286 | } | |
3287 | ||
3288 | return fdesc; | |
3289 | } | |
16461d7d | 3290 | |
af8b88dd JJ |
3291 | /* Use the following routine when printing out function pointers |
3292 | so the user can see the function address rather than just the | |
3293 | function descriptor. */ | |
3294 | static CORE_ADDR | |
e2d0e7eb AC |
3295 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3296 | struct target_ops *targ) | |
af8b88dd JJ |
3297 | { |
3298 | struct obj_section *s; | |
3299 | ||
3300 | s = find_pc_section (addr); | |
3301 | ||
3302 | /* check if ADDR points to a function descriptor. */ | |
3303 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3304 | return read_memory_unsigned_integer (addr, 8); | |
3305 | ||
3306 | return addr; | |
3307 | } | |
3308 | ||
a78f21af | 3309 | static CORE_ADDR |
004d836a JJ |
3310 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3311 | { | |
3312 | return sp & ~0xfLL; | |
3313 | } | |
3314 | ||
3315 | static CORE_ADDR | |
7d9b040b | 3316 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3317 | struct regcache *regcache, CORE_ADDR bp_addr, |
3318 | int nargs, struct value **args, CORE_ADDR sp, | |
3319 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3320 | { |
3321 | int argno; | |
ea7c478f | 3322 | struct value *arg; |
16461d7d KB |
3323 | struct type *type; |
3324 | int len, argoffset; | |
64a5b29c | 3325 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3326 | int floatreg; |
004d836a | 3327 | CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr, pc, global_pointer; |
7d9b040b | 3328 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3329 | |
3330 | nslots = 0; | |
64a5b29c | 3331 | nfuncargs = 0; |
004d836a | 3332 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3333 | for (argno = 0; argno < nargs; argno++) |
3334 | { | |
3335 | arg = args[argno]; | |
4991999e | 3336 | type = check_typedef (value_type (arg)); |
16461d7d KB |
3337 | len = TYPE_LENGTH (type); |
3338 | ||
98f96ba1 | 3339 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3340 | nslots++; |
3341 | ||
64a5b29c KB |
3342 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3343 | nfuncargs++; | |
3344 | ||
16461d7d KB |
3345 | nslots += (len + 7) / 8; |
3346 | } | |
3347 | ||
004d836a | 3348 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3349 | rseslots = (nslots > 8) ? 8 : nslots; |
3350 | memslots = nslots - rseslots; | |
3351 | ||
004d836a JJ |
3352 | /* Allocate a new RSE frame. */ |
3353 | cfm = read_register (IA64_CFM_REGNUM); | |
16461d7d | 3354 | |
004d836a | 3355 | bsp = read_register (IA64_BSP_REGNUM); |
16461d7d | 3356 | new_bsp = rse_address_add (bsp, rseslots); |
004d836a | 3357 | write_register (IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3358 | |
004d836a | 3359 | pfs = read_register (IA64_PFS_REGNUM); |
16461d7d KB |
3360 | pfs &= 0xc000000000000000LL; |
3361 | pfs |= (cfm & 0xffffffffffffLL); | |
004d836a | 3362 | write_register (IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3363 | |
3364 | cfm &= 0xc000000000000000LL; | |
3365 | cfm |= rseslots; | |
004d836a | 3366 | write_register (IA64_CFM_REGNUM, cfm); |
16461d7d | 3367 | |
64a5b29c KB |
3368 | /* We will attempt to find function descriptors in the .opd segment, |
3369 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3370 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3371 | funcdescaddr = sp - nfuncargs * 16; |
3372 | funcdescaddr &= ~0xfLL; | |
3373 | ||
3374 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3375 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3376 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3377 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3378 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3379 | |
64a5b29c KB |
3380 | /* Place the arguments where they belong. The arguments will be |
3381 | either placed in the RSE backing store or on the memory stack. | |
3382 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3383 | floating point registers. */ |
16461d7d KB |
3384 | slotnum = 0; |
3385 | floatreg = IA64_FR8_REGNUM; | |
3386 | for (argno = 0; argno < nargs; argno++) | |
3387 | { | |
64a5b29c KB |
3388 | struct type *float_elt_type; |
3389 | ||
16461d7d | 3390 | arg = args[argno]; |
4991999e | 3391 | type = check_typedef (value_type (arg)); |
16461d7d | 3392 | len = TYPE_LENGTH (type); |
64a5b29c | 3393 | |
004d836a | 3394 | /* Special handling for function parameters. */ |
64a5b29c KB |
3395 | if (len == 8 |
3396 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3397 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3398 | { | |
3399 | char val_buf[8]; | |
3400 | ||
fbd9dcd3 | 3401 | store_unsigned_integer (val_buf, 8, |
0fd88904 | 3402 | find_func_descr (extract_unsigned_integer (value_contents (arg), 8), |
fbd9dcd3 | 3403 | &funcdescaddr)); |
64a5b29c KB |
3404 | if (slotnum < rseslots) |
3405 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3406 | else | |
3407 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3408 | slotnum++; | |
3409 | continue; | |
3410 | } | |
3411 | ||
004d836a | 3412 | /* Normal slots. */ |
98f96ba1 KB |
3413 | |
3414 | /* Skip odd slot if necessary... */ | |
3415 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3416 | slotnum++; |
98f96ba1 | 3417 | |
16461d7d KB |
3418 | argoffset = 0; |
3419 | while (len > 0) | |
3420 | { | |
3421 | char val_buf[8]; | |
3422 | ||
3423 | memset (val_buf, 0, 8); | |
0fd88904 | 3424 | memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len); |
16461d7d KB |
3425 | |
3426 | if (slotnum < rseslots) | |
3427 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3428 | else | |
3429 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3430 | ||
3431 | argoffset += 8; | |
3432 | len -= 8; | |
3433 | slotnum++; | |
3434 | } | |
64a5b29c | 3435 | |
004d836a | 3436 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3437 | float_elt_type = is_float_or_hfa_type (type); |
3438 | if (float_elt_type != NULL) | |
3439 | { | |
3440 | argoffset = 0; | |
3441 | len = TYPE_LENGTH (type); | |
3442 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3443 | { | |
004d836a | 3444 | char to[MAX_REGISTER_SIZE]; |
0fd88904 | 3445 | convert_typed_floating (value_contents (arg) + argoffset, float_elt_type, |
004d836a JJ |
3446 | to, builtin_type_ia64_ext); |
3447 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3448 | floatreg++; |
3449 | argoffset += TYPE_LENGTH (float_elt_type); | |
3450 | len -= TYPE_LENGTH (float_elt_type); | |
3451 | } | |
16461d7d KB |
3452 | } |
3453 | } | |
3454 | ||
004d836a | 3455 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3456 | if (struct_return) |
3457 | { | |
004d836a | 3458 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3459 | } |
3460 | ||
b33e8514 | 3461 | global_pointer = ia64_find_global_pointer (func_addr); |
8dd5115e | 3462 | |
004d836a JJ |
3463 | if (global_pointer != 0) |
3464 | write_register (IA64_GR1_REGNUM, global_pointer); | |
a59fe496 | 3465 | |
004d836a | 3466 | write_register (IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3467 | |
004d836a | 3468 | write_register (sp_regnum, sp); |
16461d7d KB |
3469 | |
3470 | return sp; | |
3471 | } | |
3472 | ||
004d836a JJ |
3473 | static struct frame_id |
3474 | ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3475 | { |
004d836a | 3476 | char buf[8]; |
4afcc598 | 3477 | CORE_ADDR sp, bsp; |
004d836a JJ |
3478 | |
3479 | frame_unwind_register (next_frame, sp_regnum, buf); | |
3480 | sp = extract_unsigned_integer (buf, 8); | |
3481 | ||
4afcc598 JJ |
3482 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
3483 | bsp = extract_unsigned_integer (buf, 8); | |
3484 | ||
3485 | if (gdbarch_debug >= 1) | |
3486 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
3487 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
3488 | paddr_nz (frame_pc_unwind (next_frame)), | |
3489 | paddr_nz (sp), paddr_nz (bsp)); | |
4afcc598 JJ |
3490 | |
3491 | return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); | |
16461d7d KB |
3492 | } |
3493 | ||
004d836a JJ |
3494 | static CORE_ADDR |
3495 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3496 | { |
004d836a JJ |
3497 | char buf[8]; |
3498 | CORE_ADDR ip, psr, pc; | |
3499 | ||
3500 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3501 | ip = extract_unsigned_integer (buf, 8); | |
3502 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3503 | psr = extract_unsigned_integer (buf, 8); | |
3504 | ||
3505 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3506 | return pc; | |
16461d7d KB |
3507 | } |
3508 | ||
3509 | static void | |
88d82102 JJ |
3510 | ia64_store_return_value (struct type *type, struct regcache *regcache, |
3511 | const gdb_byte *valbuf) | |
16461d7d | 3512 | { |
004d836a | 3513 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
16461d7d | 3514 | { |
004d836a JJ |
3515 | char to[MAX_REGISTER_SIZE]; |
3516 | convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext); | |
3517 | regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to); | |
3518 | target_store_registers (IA64_FR8_REGNUM); | |
16461d7d KB |
3519 | } |
3520 | else | |
004d836a | 3521 | regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf); |
16461d7d KB |
3522 | } |
3523 | ||
3524 | static void | |
1750fa04 AC |
3525 | ia64_remote_translate_xfer_address (struct gdbarch *gdbarch, |
3526 | struct regcache *regcache, | |
3527 | CORE_ADDR memaddr, int nr_bytes, | |
16461d7d KB |
3528 | CORE_ADDR *targ_addr, int *targ_len) |
3529 | { | |
3530 | *targ_addr = memaddr; | |
3531 | *targ_len = nr_bytes; | |
3532 | } | |
3533 | ||
6926787d AS |
3534 | static int |
3535 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3536 | { | |
3537 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3538 | return print_insn_ia64 (memaddr, info); | |
3539 | } | |
3540 | ||
16461d7d KB |
3541 | static struct gdbarch * |
3542 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3543 | { | |
3544 | struct gdbarch *gdbarch; | |
244bc108 | 3545 | struct gdbarch_tdep *tdep; |
244bc108 | 3546 | |
85bf2b91 JJ |
3547 | /* If there is already a candidate, use it. */ |
3548 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3549 | if (arches != NULL) | |
3550 | return arches->gdbarch; | |
16461d7d | 3551 | |
244bc108 KB |
3552 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3553 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3554 | |
b33e8514 | 3555 | tdep->sigcontext_register_address = 0; |
698cb3f0 | 3556 | |
004d836a JJ |
3557 | /* Define the ia64 floating-point format to gdb. */ |
3558 | builtin_type_ia64_ext = | |
3559 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3560 | 0, "builtin_type_ia64_ext", NULL); | |
3561 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = &floatformat_ia64_ext; | |
3562 | ||
5439edaa AC |
3563 | /* According to the ia64 specs, instructions that store long double |
3564 | floats in memory use a long-double format different than that | |
3565 | used in the floating registers. The memory format matches the | |
3566 | x86 extended float format which is 80 bits. An OS may choose to | |
3567 | use this format (e.g. GNU/Linux) or choose to use a different | |
3568 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3569 | the setting of the format may be moved/overridden in an | |
3570 | OS-specific tdep file. */ | |
32edc941 JJ |
3571 | set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext); |
3572 | ||
16461d7d KB |
3573 | set_gdbarch_short_bit (gdbarch, 16); |
3574 | set_gdbarch_int_bit (gdbarch, 32); | |
3575 | set_gdbarch_long_bit (gdbarch, 64); | |
3576 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3577 | set_gdbarch_float_bit (gdbarch, 32); | |
3578 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3579 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3580 | set_gdbarch_ptr_bit (gdbarch, 64); |
3581 | ||
004d836a JJ |
3582 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3583 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3584 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3585 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3586 | |
3587 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a JJ |
3588 | /* FIXME: Following interface should not be needed, however, without it recurse.exp |
3589 | gets a number of extra failures. */ | |
b1e29e33 | 3590 | set_gdbarch_deprecated_register_size (gdbarch, 8); |
004d836a | 3591 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3592 | |
004d836a JJ |
3593 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3594 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3595 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3596 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3597 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3598 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3599 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3600 | |
004d836a | 3601 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3602 | |
b5622e8d | 3603 | set_gdbarch_deprecated_use_struct_convention (gdbarch, ia64_use_struct_convention); |
004d836a | 3604 | set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); |
16461d7d | 3605 | |
004d836a | 3606 | set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); |
74055713 | 3607 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address); |
16461d7d KB |
3608 | |
3609 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3610 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3611 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3612 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
b33e8514 | 3613 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
16461d7d KB |
3614 | |
3615 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3616 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a JJ |
3617 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
3618 | set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); | |
16461d7d | 3619 | |
004d836a | 3620 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
968d1cb4 | 3621 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c | 3622 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer); |
968d1cb4 JJ |
3623 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); |
3624 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); | |
c5a27d9c JJ |
3625 | #else |
3626 | frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); | |
968d1cb4 | 3627 | #endif |
004d836a JJ |
3628 | frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); |
3629 | frame_base_set_default (gdbarch, &ia64_frame_base); | |
16461d7d KB |
3630 | |
3631 | /* Settings that should be unnecessary. */ | |
3632 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3633 | ||
16461d7d KB |
3634 | set_gdbarch_remote_translate_xfer_address ( |
3635 | gdbarch, ia64_remote_translate_xfer_address); | |
3636 | ||
6926787d | 3637 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3638 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3639 | |
b33e8514 AS |
3640 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3641 | gdbarch_init_osabi (info, gdbarch); | |
3642 | ||
16461d7d KB |
3643 | return gdbarch; |
3644 | } | |
3645 | ||
a78f21af AC |
3646 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3647 | ||
16461d7d KB |
3648 | void |
3649 | _initialize_ia64_tdep (void) | |
3650 | { | |
b33e8514 | 3651 | gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
16461d7d | 3652 | } |