]>
Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
9fc9f5e2 AC |
3 | Copyright 1999, 2000, 2001, 2002, 2003, 2004 Free Software |
4 | Foundation, Inc. | |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
24 | #include "inferior.h" | |
16461d7d | 25 | #include "gdbcore.h" |
8064c6ae | 26 | #include "arch-utils.h" |
16461d7d | 27 | #include "floatformat.h" |
4e052eda | 28 | #include "regcache.h" |
004d836a JJ |
29 | #include "reggroups.h" |
30 | #include "frame.h" | |
31 | #include "frame-base.h" | |
32 | #include "frame-unwind.h" | |
d16aafd8 | 33 | #include "doublest.h" |
fd0407d6 | 34 | #include "value.h" |
bd1ce8ba | 35 | #include "gdb_assert.h" |
16461d7d KB |
36 | #include "objfiles.h" |
37 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 38 | #include "elf-bfd.h" |
a89aa300 | 39 | #include "dis-asm.h" |
7d9b040b | 40 | #include "infcall.h" |
9fc9f5e2 | 41 | #include "ia64-tdep.h" |
16461d7d | 42 | |
968d1cb4 | 43 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 44 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
45 | #include "libunwind-frame.h" |
46 | #include "libunwind-ia64.h" | |
47 | #endif | |
48 | ||
698cb3f0 KB |
49 | /* Hook for determining the global pointer when calling functions in |
50 | the inferior under AIX. The initialization code in ia64-aix-nat.c | |
51 | sets this hook to the address of a function which will find the | |
52 | global pointer for a given address. | |
53 | ||
54 | The generic code which uses the dynamic section in the inferior for | |
55 | finding the global pointer is not of much use on AIX since the | |
56 | values obtained from the inferior have not been relocated. */ | |
57 | ||
58 | CORE_ADDR (*native_find_global_pointer) (CORE_ADDR) = 0; | |
59 | ||
60 | /* An enumeration of the different IA-64 instruction types. */ | |
61 | ||
16461d7d KB |
62 | typedef enum instruction_type |
63 | { | |
64 | A, /* Integer ALU ; I-unit or M-unit */ | |
65 | I, /* Non-ALU integer; I-unit */ | |
66 | M, /* Memory ; M-unit */ | |
67 | F, /* Floating-point ; F-unit */ | |
68 | B, /* Branch ; B-unit */ | |
69 | L, /* Extended (L+X) ; I-unit */ | |
70 | X, /* Extended (L+X) ; I-unit */ | |
71 | undefined /* undefined or reserved */ | |
72 | } instruction_type; | |
73 | ||
74 | /* We represent IA-64 PC addresses as the value of the instruction | |
75 | pointer or'd with some bit combination in the low nibble which | |
76 | represents the slot number in the bundle addressed by the | |
77 | instruction pointer. The problem is that the Linux kernel | |
78 | multiplies its slot numbers (for exceptions) by one while the | |
79 | disassembler multiplies its slot numbers by 6. In addition, I've | |
80 | heard it said that the simulator uses 1 as the multiplier. | |
81 | ||
82 | I've fixed the disassembler so that the bytes_per_line field will | |
83 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
84 | is set to six (which is how it was set up initially). -- objdump | |
85 | displays pretty disassembly dumps with this value. For our purposes, | |
86 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
87 | never want to also display the raw bytes the way objdump does. */ | |
88 | ||
89 | #define SLOT_MULTIPLIER 1 | |
90 | ||
91 | /* Length in bytes of an instruction bundle */ | |
92 | ||
93 | #define BUNDLE_LEN 16 | |
94 | ||
16461d7d KB |
95 | static gdbarch_init_ftype ia64_gdbarch_init; |
96 | ||
97 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 98 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 99 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 100 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
004d836a | 101 | static gdbarch_extract_return_value_ftype ia64_extract_return_value; |
64a5b29c | 102 | static struct type *is_float_or_hfa_type (struct type *t); |
16461d7d | 103 | |
004d836a JJ |
104 | static struct type *builtin_type_ia64_ext; |
105 | ||
106 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 107 | |
16461d7d KB |
108 | static int sp_regnum = IA64_GR12_REGNUM; |
109 | static int fp_regnum = IA64_VFP_REGNUM; | |
110 | static int lr_regnum = IA64_VRAP_REGNUM; | |
111 | ||
004d836a | 112 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 113 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
114 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
115 | V127_REGNUM = V32_REGNUM + 95, | |
116 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
117 | |
118 | /* Array of register names; There should be ia64_num_regs strings in | |
119 | the initializer. */ | |
120 | ||
121 | static char *ia64_register_names[] = | |
122 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
123 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
124 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
125 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
126 | "", "", "", "", "", "", "", "", |
127 | "", "", "", "", "", "", "", "", | |
128 | "", "", "", "", "", "", "", "", | |
129 | "", "", "", "", "", "", "", "", | |
130 | "", "", "", "", "", "", "", "", | |
131 | "", "", "", "", "", "", "", "", | |
132 | "", "", "", "", "", "", "", "", | |
133 | "", "", "", "", "", "", "", "", | |
134 | "", "", "", "", "", "", "", "", | |
135 | "", "", "", "", "", "", "", "", | |
136 | "", "", "", "", "", "", "", "", | |
137 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
138 | |
139 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
140 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
141 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
142 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
143 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
144 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
145 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
146 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
147 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
148 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
149 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
150 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
151 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
152 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
153 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
154 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
155 | ||
004d836a JJ |
156 | "", "", "", "", "", "", "", "", |
157 | "", "", "", "", "", "", "", "", | |
158 | "", "", "", "", "", "", "", "", | |
159 | "", "", "", "", "", "", "", "", | |
160 | "", "", "", "", "", "", "", "", | |
161 | "", "", "", "", "", "", "", "", | |
162 | "", "", "", "", "", "", "", "", | |
163 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
164 | |
165 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
166 | ||
167 | "vfp", "vrap", | |
168 | ||
169 | "pr", "ip", "psr", "cfm", | |
170 | ||
171 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
172 | "", "", "", "", "", "", "", "", | |
173 | "rsc", "bsp", "bspstore", "rnat", | |
174 | "", "fcr", "", "", | |
175 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
176 | "ccv", "", "", "", "unat", "", "", "", | |
177 | "fpsr", "", "", "", "itc", | |
178 | "", "", "", "", "", "", "", "", "", "", | |
179 | "", "", "", "", "", "", "", "", "", | |
180 | "pfs", "lc", "ec", | |
181 | "", "", "", "", "", "", "", "", "", "", | |
182 | "", "", "", "", "", "", "", "", "", "", | |
183 | "", "", "", "", "", "", "", "", "", "", | |
184 | "", "", "", "", "", "", "", "", "", "", | |
185 | "", "", "", "", "", "", "", "", "", "", | |
186 | "", "", "", "", "", "", "", "", "", "", | |
187 | "", | |
188 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
189 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
190 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
191 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
192 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
193 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
194 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
195 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
196 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
197 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
198 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
199 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
200 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
201 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
202 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
203 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
204 | |
205 | "bof", | |
206 | ||
207 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
208 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
209 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
210 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
211 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
212 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
213 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
214 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
215 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
216 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
217 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
218 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
219 | ||
220 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
221 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
222 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
223 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
224 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
225 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
226 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
227 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
228 | }; |
229 | ||
004d836a JJ |
230 | struct ia64_frame_cache |
231 | { | |
232 | CORE_ADDR base; /* frame pointer base for frame */ | |
233 | CORE_ADDR pc; /* function start pc for frame */ | |
234 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
235 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
236 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 237 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
238 | int frameless; |
239 | int sof; /* Size of frame (decoded from cfm value) */ | |
240 | int sol; /* Size of locals (decoded from cfm value) */ | |
241 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
242 | CORE_ADDR after_prologue; | |
243 | /* Address of first instruction after the last | |
244 | prologue instruction; Note that there may | |
245 | be instructions from the function's body | |
246 | intermingled with the prologue. */ | |
247 | int mem_stack_frame_size; | |
248 | /* Size of the memory stack frame (may be zero), | |
249 | or -1 if it has not been determined yet. */ | |
250 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 251 | for this frame. 0 if no register is being used |
16461d7d | 252 | as the frame pointer. */ |
004d836a JJ |
253 | |
254 | /* Saved registers. */ | |
255 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
256 | ||
257 | }; | |
244bc108 KB |
258 | |
259 | struct gdbarch_tdep | |
260 | { | |
244bc108 KB |
261 | CORE_ADDR (*sigcontext_register_address) (CORE_ADDR, int); |
262 | /* OS specific function which, given a frame address | |
263 | and register number, returns the offset to the | |
264 | given register from the start of the frame. */ | |
698cb3f0 | 265 | CORE_ADDR (*find_global_pointer) (CORE_ADDR); |
244bc108 KB |
266 | }; |
267 | ||
698cb3f0 KB |
268 | #define SIGCONTEXT_REGISTER_ADDRESS \ |
269 | (gdbarch_tdep (current_gdbarch)->sigcontext_register_address) | |
270 | #define FIND_GLOBAL_POINTER \ | |
271 | (gdbarch_tdep (current_gdbarch)->find_global_pointer) | |
16461d7d | 272 | |
004d836a JJ |
273 | int |
274 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
275 | struct reggroup *group) | |
16461d7d | 276 | { |
004d836a JJ |
277 | int vector_p; |
278 | int float_p; | |
279 | int raw_p; | |
280 | if (group == all_reggroup) | |
281 | return 1; | |
282 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
283 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
284 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
285 | if (group == float_reggroup) | |
286 | return float_p; | |
287 | if (group == vector_reggroup) | |
288 | return vector_p; | |
289 | if (group == general_reggroup) | |
290 | return (!vector_p && !float_p); | |
291 | if (group == save_reggroup || group == restore_reggroup) | |
292 | return raw_p; | |
293 | return 0; | |
16461d7d KB |
294 | } |
295 | ||
004d836a JJ |
296 | static const char * |
297 | ia64_register_name (int reg) | |
16461d7d | 298 | { |
004d836a | 299 | return ia64_register_names[reg]; |
16461d7d KB |
300 | } |
301 | ||
004d836a JJ |
302 | struct type * |
303 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 304 | { |
004d836a JJ |
305 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
306 | return builtin_type_ia64_ext; | |
307 | else | |
308 | return builtin_type_long; | |
16461d7d KB |
309 | } |
310 | ||
a78f21af | 311 | static int |
004d836a | 312 | ia64_dwarf_reg_to_regnum (int reg) |
16461d7d | 313 | { |
004d836a JJ |
314 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
315 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
316 | return reg; | |
16461d7d KB |
317 | } |
318 | ||
4afcc598 | 319 | static int |
7be0c536 | 320 | floatformat_valid (const struct floatformat *fmt, const char *from) |
4afcc598 JJ |
321 | { |
322 | return 1; | |
323 | } | |
324 | ||
16461d7d KB |
325 | const struct floatformat floatformat_ia64_ext = |
326 | { | |
327 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
4afcc598 | 328 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid |
16461d7d KB |
329 | }; |
330 | ||
16461d7d KB |
331 | |
332 | /* Extract ``len'' bits from an instruction bundle starting at | |
333 | bit ``from''. */ | |
334 | ||
244bc108 | 335 | static long long |
16461d7d KB |
336 | extract_bit_field (char *bundle, int from, int len) |
337 | { | |
338 | long long result = 0LL; | |
339 | int to = from + len; | |
340 | int from_byte = from / 8; | |
341 | int to_byte = to / 8; | |
342 | unsigned char *b = (unsigned char *) bundle; | |
343 | unsigned char c; | |
344 | int lshift; | |
345 | int i; | |
346 | ||
347 | c = b[from_byte]; | |
348 | if (from_byte == to_byte) | |
349 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
350 | result = c >> (from % 8); | |
351 | lshift = 8 - (from % 8); | |
352 | ||
353 | for (i = from_byte+1; i < to_byte; i++) | |
354 | { | |
355 | result |= ((long long) b[i]) << lshift; | |
356 | lshift += 8; | |
357 | } | |
358 | ||
359 | if (from_byte < to_byte && (to % 8 != 0)) | |
360 | { | |
361 | c = b[to_byte]; | |
362 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
363 | result |= ((long long) c) << lshift; | |
364 | } | |
365 | ||
366 | return result; | |
367 | } | |
368 | ||
369 | /* Replace the specified bits in an instruction bundle */ | |
370 | ||
244bc108 | 371 | static void |
16461d7d KB |
372 | replace_bit_field (char *bundle, long long val, int from, int len) |
373 | { | |
374 | int to = from + len; | |
375 | int from_byte = from / 8; | |
376 | int to_byte = to / 8; | |
377 | unsigned char *b = (unsigned char *) bundle; | |
378 | unsigned char c; | |
379 | ||
380 | if (from_byte == to_byte) | |
381 | { | |
382 | unsigned char left, right; | |
383 | c = b[from_byte]; | |
384 | left = (c >> (to % 8)) << (to % 8); | |
385 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
386 | c = (unsigned char) (val & 0xff); | |
387 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
388 | c |= right | left; | |
389 | b[from_byte] = c; | |
390 | } | |
391 | else | |
392 | { | |
393 | int i; | |
394 | c = b[from_byte]; | |
395 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
396 | c = c | (val << (from % 8)); | |
397 | b[from_byte] = c; | |
398 | val >>= 8 - from % 8; | |
399 | ||
400 | for (i = from_byte+1; i < to_byte; i++) | |
401 | { | |
402 | c = val & 0xff; | |
403 | val >>= 8; | |
404 | b[i] = c; | |
405 | } | |
406 | ||
407 | if (to % 8 != 0) | |
408 | { | |
409 | unsigned char cv = (unsigned char) val; | |
410 | c = b[to_byte]; | |
411 | c = c >> (to % 8) << (to % 8); | |
412 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
413 | b[to_byte] = c; | |
414 | } | |
415 | } | |
416 | } | |
417 | ||
418 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
419 | and instruction bundle */ | |
420 | ||
244bc108 | 421 | static long long |
2fc3ac7e | 422 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
423 | { |
424 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
425 | } | |
426 | ||
427 | /* Store an instruction in an instruction bundle */ | |
428 | ||
244bc108 | 429 | static void |
2fc3ac7e | 430 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
431 | { |
432 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
433 | } | |
434 | ||
64a5b29c | 435 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
436 | { |
437 | { M, I, I }, /* 00 */ | |
438 | { M, I, I }, /* 01 */ | |
439 | { M, I, I }, /* 02 */ | |
440 | { M, I, I }, /* 03 */ | |
441 | { M, L, X }, /* 04 */ | |
442 | { M, L, X }, /* 05 */ | |
443 | { undefined, undefined, undefined }, /* 06 */ | |
444 | { undefined, undefined, undefined }, /* 07 */ | |
445 | { M, M, I }, /* 08 */ | |
446 | { M, M, I }, /* 09 */ | |
447 | { M, M, I }, /* 0A */ | |
448 | { M, M, I }, /* 0B */ | |
449 | { M, F, I }, /* 0C */ | |
450 | { M, F, I }, /* 0D */ | |
451 | { M, M, F }, /* 0E */ | |
452 | { M, M, F }, /* 0F */ | |
453 | { M, I, B }, /* 10 */ | |
454 | { M, I, B }, /* 11 */ | |
455 | { M, B, B }, /* 12 */ | |
456 | { M, B, B }, /* 13 */ | |
457 | { undefined, undefined, undefined }, /* 14 */ | |
458 | { undefined, undefined, undefined }, /* 15 */ | |
459 | { B, B, B }, /* 16 */ | |
460 | { B, B, B }, /* 17 */ | |
461 | { M, M, B }, /* 18 */ | |
462 | { M, M, B }, /* 19 */ | |
463 | { undefined, undefined, undefined }, /* 1A */ | |
464 | { undefined, undefined, undefined }, /* 1B */ | |
465 | { M, F, B }, /* 1C */ | |
466 | { M, F, B }, /* 1D */ | |
467 | { undefined, undefined, undefined }, /* 1E */ | |
468 | { undefined, undefined, undefined }, /* 1F */ | |
469 | }; | |
470 | ||
471 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
472 | address of the next instruction to fetch. */ | |
473 | ||
474 | static CORE_ADDR | |
475 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
476 | { | |
477 | char bundle[BUNDLE_LEN]; | |
478 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
479 | long long template; | |
480 | int val; | |
481 | ||
c26e1c2b KB |
482 | /* Warn about slot numbers greater than 2. We used to generate |
483 | an error here on the assumption that the user entered an invalid | |
484 | address. But, sometimes GDB itself requests an invalid address. | |
485 | This can (easily) happen when execution stops in a function for | |
486 | which there are no symbols. The prologue scanner will attempt to | |
487 | find the beginning of the function - if the nearest symbol | |
488 | happens to not be aligned on a bundle boundary (16 bytes), the | |
489 | resulting starting address will cause GDB to think that the slot | |
490 | number is too large. | |
491 | ||
492 | So we warn about it and set the slot number to zero. It is | |
493 | not necessarily a fatal condition, particularly if debugging | |
494 | at the assembly language level. */ | |
16461d7d | 495 | if (slotnum > 2) |
c26e1c2b KB |
496 | { |
497 | warning ("Can't fetch instructions for slot numbers greater than 2.\n" | |
498 | "Using slot 0 instead"); | |
499 | slotnum = 0; | |
500 | } | |
16461d7d KB |
501 | |
502 | addr &= ~0x0f; | |
503 | ||
504 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
505 | ||
506 | if (val != 0) | |
507 | return 0; | |
508 | ||
509 | *instr = slotN_contents (bundle, slotnum); | |
510 | template = extract_bit_field (bundle, 0, 5); | |
511 | *it = template_encoding_table[(int)template][slotnum]; | |
512 | ||
64a5b29c | 513 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
514 | addr += 16; |
515 | else | |
516 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
517 | ||
518 | return addr; | |
519 | } | |
520 | ||
521 | /* There are 5 different break instructions (break.i, break.b, | |
522 | break.m, break.f, and break.x), but they all have the same | |
523 | encoding. (The five bit template in the low five bits of the | |
524 | instruction bundle distinguishes one from another.) | |
525 | ||
526 | The runtime architecture manual specifies that break instructions | |
527 | used for debugging purposes must have the upper two bits of the 21 | |
528 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
529 | instruction encodes the most significant bit of its 21 bit | |
530 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
531 | is at bit 25 which leads to the pattern below. | |
532 | ||
533 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
534 | it turns out that 0x80000 was used as the syscall break in the early | |
535 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
536 | instead. But that didn't work either (I later found out that this | |
537 | pattern was used by the simulator that I was using.) So I ended up | |
538 | using the pattern seen below. */ | |
539 | ||
540 | #if 0 | |
aaab4dba | 541 | #define IA64_BREAKPOINT 0x00002000040LL |
16461d7d | 542 | #endif |
aaab4dba | 543 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
544 | |
545 | static int | |
546 | ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) | |
547 | { | |
548 | char bundle[BUNDLE_LEN]; | |
549 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
550 | long long instr; | |
551 | int val; | |
126fa72d | 552 | int template; |
16461d7d KB |
553 | |
554 | if (slotnum > 2) | |
555 | error("Can't insert breakpoint for slot numbers greater than 2."); | |
556 | ||
557 | addr &= ~0x0f; | |
558 | ||
559 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
560 | |
561 | /* Check for L type instruction in 2nd slot, if present then | |
562 | bump up the slot number to the 3rd slot */ | |
563 | template = extract_bit_field (bundle, 0, 5); | |
564 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
565 | { | |
566 | slotnum = 2; | |
567 | } | |
568 | ||
16461d7d KB |
569 | instr = slotN_contents (bundle, slotnum); |
570 | memcpy(contents_cache, &instr, sizeof(instr)); | |
aaab4dba | 571 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
16461d7d KB |
572 | if (val == 0) |
573 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
574 | ||
575 | return val; | |
576 | } | |
577 | ||
578 | static int | |
579 | ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) | |
580 | { | |
581 | char bundle[BUNDLE_LEN]; | |
582 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
583 | long long instr; | |
584 | int val; | |
126fa72d | 585 | int template; |
16461d7d KB |
586 | |
587 | addr &= ~0x0f; | |
588 | ||
589 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
590 | |
591 | /* Check for L type instruction in 2nd slot, if present then | |
592 | bump up the slot number to the 3rd slot */ | |
593 | template = extract_bit_field (bundle, 0, 5); | |
594 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
595 | { | |
596 | slotnum = 2; | |
597 | } | |
598 | ||
16461d7d KB |
599 | memcpy (&instr, contents_cache, sizeof instr); |
600 | replace_slotN_contents (bundle, instr, slotnum); | |
601 | if (val == 0) | |
602 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
603 | ||
604 | return val; | |
605 | } | |
606 | ||
607 | /* We don't really want to use this, but remote.c needs to call it in order | |
608 | to figure out if Z-packets are supported or not. Oh, well. */ | |
f4f9705a | 609 | const unsigned char * |
fba45db2 | 610 | ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
611 | { |
612 | static unsigned char breakpoint[] = | |
613 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
614 | *lenptr = sizeof (breakpoint); | |
615 | #if 0 | |
616 | *pcptr &= ~0x0f; | |
617 | #endif | |
618 | return breakpoint; | |
619 | } | |
620 | ||
a78f21af | 621 | static CORE_ADDR |
39f77062 | 622 | ia64_read_pc (ptid_t ptid) |
16461d7d | 623 | { |
39f77062 KB |
624 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); |
625 | CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid); | |
16461d7d KB |
626 | int slot_num = (psr_value >> 41) & 3; |
627 | ||
628 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
629 | } | |
630 | ||
54a5c8d8 | 631 | void |
39f77062 | 632 | ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid) |
16461d7d KB |
633 | { |
634 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
39f77062 | 635 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid); |
16461d7d KB |
636 | psr_value &= ~(3LL << 41); |
637 | psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41; | |
638 | ||
639 | new_pc &= ~0xfLL; | |
640 | ||
39f77062 KB |
641 | write_register_pid (IA64_PSR_REGNUM, psr_value, ptid); |
642 | write_register_pid (IA64_IP_REGNUM, new_pc, ptid); | |
16461d7d KB |
643 | } |
644 | ||
645 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
646 | ||
647 | /* Returns the address of the slot that's NSLOTS slots away from | |
648 | the address ADDR. NSLOTS may be positive or negative. */ | |
649 | static CORE_ADDR | |
650 | rse_address_add(CORE_ADDR addr, int nslots) | |
651 | { | |
652 | CORE_ADDR new_addr; | |
653 | int mandatory_nat_slots = nslots / 63; | |
654 | int direction = nslots < 0 ? -1 : 1; | |
655 | ||
656 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
657 | ||
658 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
659 | new_addr += 8 * direction; | |
660 | ||
661 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
662 | new_addr += 8 * direction; | |
663 | ||
664 | return new_addr; | |
665 | } | |
666 | ||
004d836a JJ |
667 | static void |
668 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
669 | int regnum, void *buf) | |
16461d7d | 670 | { |
004d836a | 671 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 672 | { |
004d836a JJ |
673 | ULONGEST bsp; |
674 | ULONGEST cfm; | |
675 | CORE_ADDR reg; | |
676 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
677 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
678 | ||
679 | /* The bsp points at the end of the register frame so we | |
680 | subtract the size of frame from it to get start of register frame. */ | |
681 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
682 | ||
683 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
684 | { | |
685 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
686 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
aa2a9a3c | 687 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), reg); |
004d836a | 688 | } |
244bc108 | 689 | else |
aa2a9a3c | 690 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0); |
004d836a JJ |
691 | } |
692 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
693 | { | |
694 | ULONGEST unatN_val; | |
695 | ULONGEST unat; | |
696 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
697 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
aa2a9a3c | 698 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val); |
004d836a JJ |
699 | } |
700 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
701 | { | |
702 | ULONGEST natN_val = 0; | |
703 | ULONGEST bsp; | |
704 | ULONGEST cfm; | |
705 | CORE_ADDR gr_addr = 0; | |
706 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
707 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
708 | ||
709 | /* The bsp points at the end of the register frame so we | |
710 | subtract the size of frame from it to get start of register frame. */ | |
711 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
712 | ||
713 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
714 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
715 | ||
716 | if (gr_addr != 0) | |
717 | { | |
718 | /* Compute address of nat collection bits. */ | |
719 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
720 | CORE_ADDR nat_collection; | |
721 | int nat_bit; | |
722 | /* If our nat collection address is bigger than bsp, we have to get | |
723 | the nat collection from rnat. Otherwise, we fetch the nat | |
724 | collection from the computed address. */ | |
725 | if (nat_addr >= bsp) | |
726 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
727 | else | |
728 | nat_collection = read_memory_integer (nat_addr, 8); | |
729 | nat_bit = (gr_addr >> 3) & 0x3f; | |
730 | natN_val = (nat_collection >> nat_bit) & 1; | |
731 | } | |
732 | ||
aa2a9a3c | 733 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val); |
244bc108 | 734 | } |
004d836a JJ |
735 | else if (regnum == VBOF_REGNUM) |
736 | { | |
737 | /* A virtual register frame start is provided for user convenience. | |
738 | It can be calculated as the bsp - sof (sizeof frame). */ | |
739 | ULONGEST bsp, vbsp; | |
740 | ULONGEST cfm; | |
741 | CORE_ADDR reg; | |
742 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
743 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
744 | ||
745 | /* The bsp points at the end of the register frame so we | |
746 | subtract the size of frame from it to get beginning of frame. */ | |
747 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
aa2a9a3c | 748 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp); |
004d836a JJ |
749 | } |
750 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
751 | { | |
752 | ULONGEST pr; | |
753 | ULONGEST cfm; | |
754 | ULONGEST prN_val; | |
755 | CORE_ADDR reg; | |
756 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
757 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
758 | ||
759 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
760 | { | |
761 | /* Fetch predicate register rename base from current frame | |
762 | marker for this frame. */ | |
763 | int rrb_pr = (cfm >> 32) & 0x3f; | |
764 | ||
765 | /* Adjust the register number to account for register rotation. */ | |
766 | regnum = VP16_REGNUM | |
767 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
768 | } | |
769 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
aa2a9a3c | 770 | store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val); |
004d836a JJ |
771 | } |
772 | else | |
aa2a9a3c | 773 | memset (buf, 0, register_size (current_gdbarch, regnum)); |
16461d7d KB |
774 | } |
775 | ||
004d836a JJ |
776 | static void |
777 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
778 | int regnum, const void *buf) | |
16461d7d | 779 | { |
004d836a | 780 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 781 | { |
004d836a JJ |
782 | ULONGEST bsp; |
783 | ULONGEST cfm; | |
784 | CORE_ADDR reg; | |
785 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
786 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
787 | ||
788 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
789 | ||
790 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
791 | { | |
792 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
793 | write_memory (reg_addr, (void *)buf, 8); | |
794 | } | |
795 | } | |
796 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
797 | { | |
798 | ULONGEST unatN_val, unat, unatN_mask; | |
799 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
aa2a9a3c | 800 | unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
801 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
802 | if (unatN_val == 0) | |
803 | unat &= ~unatN_mask; | |
804 | else if (unatN_val == 1) | |
805 | unat |= unatN_mask; | |
806 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
807 | } | |
808 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
809 | { | |
810 | ULONGEST natN_val; | |
811 | ULONGEST bsp; | |
812 | ULONGEST cfm; | |
813 | CORE_ADDR gr_addr = 0; | |
814 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
815 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
816 | ||
817 | /* The bsp points at the end of the register frame so we | |
818 | subtract the size of frame from it to get start of register frame. */ | |
819 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
820 | ||
821 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
822 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
823 | ||
aa2a9a3c | 824 | natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
825 | |
826 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
827 | { | |
828 | /* Compute address of nat collection bits. */ | |
829 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
830 | CORE_ADDR nat_collection; | |
831 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
832 | ULONGEST natN_mask = (1LL << natN_bit); | |
833 | /* If our nat collection address is bigger than bsp, we have to get | |
834 | the nat collection from rnat. Otherwise, we fetch the nat | |
835 | collection from the computed address. */ | |
836 | if (nat_addr >= bsp) | |
837 | { | |
838 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
839 | if (natN_val) | |
840 | nat_collection |= natN_mask; | |
841 | else | |
842 | nat_collection &= ~natN_mask; | |
843 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
844 | } | |
845 | else | |
846 | { | |
847 | char nat_buf[8]; | |
848 | nat_collection = read_memory_integer (nat_addr, 8); | |
849 | if (natN_val) | |
850 | nat_collection |= natN_mask; | |
851 | else | |
852 | nat_collection &= ~natN_mask; | |
aa2a9a3c | 853 | store_unsigned_integer (nat_buf, register_size (current_gdbarch, regnum), nat_collection); |
004d836a JJ |
854 | write_memory (nat_addr, nat_buf, 8); |
855 | } | |
856 | } | |
857 | } | |
858 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
859 | { | |
860 | ULONGEST pr; | |
861 | ULONGEST cfm; | |
862 | ULONGEST prN_val; | |
863 | ULONGEST prN_mask; | |
864 | ||
865 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
866 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
867 | ||
868 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
869 | { | |
870 | /* Fetch predicate register rename base from current frame | |
871 | marker for this frame. */ | |
872 | int rrb_pr = (cfm >> 32) & 0x3f; | |
873 | ||
874 | /* Adjust the register number to account for register rotation. */ | |
875 | regnum = VP16_REGNUM | |
876 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
877 | } | |
aa2a9a3c | 878 | prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum)); |
004d836a JJ |
879 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
880 | if (prN_val == 0) | |
881 | pr &= ~prN_mask; | |
882 | else if (prN_val == 1) | |
883 | pr |= prN_mask; | |
884 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 885 | } |
16461d7d KB |
886 | } |
887 | ||
004d836a JJ |
888 | /* The ia64 needs to convert between various ieee floating-point formats |
889 | and the special ia64 floating point register format. */ | |
890 | ||
891 | static int | |
892 | ia64_convert_register_p (int regno, struct type *type) | |
893 | { | |
894 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM); | |
895 | } | |
896 | ||
897 | static void | |
898 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
899 | struct type *valtype, void *out) | |
900 | { | |
901 | char in[MAX_REGISTER_SIZE]; | |
902 | frame_register_read (frame, regnum, in); | |
903 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
904 | } | |
905 | ||
906 | static void | |
907 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
908 | struct type *valtype, const void *in) | |
909 | { | |
910 | char out[MAX_REGISTER_SIZE]; | |
911 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
912 | put_frame_register (frame, regnum, out); | |
913 | } | |
914 | ||
915 | ||
58ab00f9 KB |
916 | /* Limit the number of skipped non-prologue instructions since examining |
917 | of the prologue is expensive. */ | |
5ea2bd7f | 918 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
919 | |
920 | /* Given PC representing the starting address of a function, and | |
921 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
922 | for a prologue, attempt to further refine this limit by using | |
923 | the line data in the symbol table. If successful, a better guess | |
924 | on where the prologue ends is returned, otherwise the previous | |
925 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
926 | which will be set to indicate whether the returned limit may be | |
927 | used with no further scanning in the event that the function is | |
928 | frameless. */ | |
929 | ||
634aa483 AC |
930 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
931 | superseded by skip_prologue_using_sal. */ | |
932 | ||
58ab00f9 KB |
933 | static CORE_ADDR |
934 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
935 | { | |
936 | struct symtab_and_line prologue_sal; | |
937 | CORE_ADDR start_pc = pc; | |
938 | ||
939 | /* Start off not trusting the limit. */ | |
940 | *trust_limit = 0; | |
941 | ||
942 | prologue_sal = find_pc_line (pc, 0); | |
943 | if (prologue_sal.line != 0) | |
944 | { | |
945 | int i; | |
946 | CORE_ADDR addr = prologue_sal.end; | |
947 | ||
948 | /* Handle the case in which compiler's optimizer/scheduler | |
949 | has moved instructions into the prologue. We scan ahead | |
950 | in the function looking for address ranges whose corresponding | |
951 | line number is less than or equal to the first one that we | |
952 | found for the function. (It can be less than when the | |
953 | scheduler puts a body instruction before the first prologue | |
954 | instruction.) */ | |
955 | for (i = 2 * max_skip_non_prologue_insns; | |
956 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
957 | i--) | |
958 | { | |
959 | struct symtab_and_line sal; | |
960 | ||
961 | sal = find_pc_line (addr, 0); | |
962 | if (sal.line == 0) | |
963 | break; | |
964 | if (sal.line <= prologue_sal.line | |
965 | && sal.symtab == prologue_sal.symtab) | |
966 | { | |
967 | prologue_sal = sal; | |
968 | } | |
969 | addr = sal.end; | |
970 | } | |
971 | ||
972 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
973 | { | |
974 | lim_pc = prologue_sal.end; | |
975 | if (start_pc == get_pc_function_start (lim_pc)) | |
976 | *trust_limit = 1; | |
977 | } | |
978 | } | |
979 | return lim_pc; | |
980 | } | |
981 | ||
16461d7d KB |
982 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
983 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
984 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
985 | #define imm9(_instr_) \ | |
986 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
987 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
988 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
989 | ||
004d836a JJ |
990 | /* Allocate and initialize a frame cache. */ |
991 | ||
992 | static struct ia64_frame_cache * | |
993 | ia64_alloc_frame_cache (void) | |
994 | { | |
995 | struct ia64_frame_cache *cache; | |
996 | int i; | |
997 | ||
998 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
999 | ||
1000 | /* Base address. */ | |
1001 | cache->base = 0; | |
1002 | cache->pc = 0; | |
1003 | cache->cfm = 0; | |
4afcc598 | 1004 | cache->prev_cfm = 0; |
004d836a JJ |
1005 | cache->sof = 0; |
1006 | cache->sol = 0; | |
1007 | cache->sor = 0; | |
1008 | cache->bsp = 0; | |
1009 | cache->fp_reg = 0; | |
1010 | cache->frameless = 1; | |
1011 | ||
1012 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1013 | cache->saved_regs[i] = 0; | |
1014 | ||
1015 | return cache; | |
1016 | } | |
1017 | ||
16461d7d | 1018 | static CORE_ADDR |
004d836a | 1019 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) |
16461d7d KB |
1020 | { |
1021 | CORE_ADDR next_pc; | |
1022 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1023 | instruction_type it; |
1024 | long long instr; | |
16461d7d KB |
1025 | int cfm_reg = 0; |
1026 | int ret_reg = 0; | |
1027 | int fp_reg = 0; | |
1028 | int unat_save_reg = 0; | |
1029 | int pr_save_reg = 0; | |
1030 | int mem_stack_frame_size = 0; | |
1031 | int spill_reg = 0; | |
1032 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1033 | char instores[8]; |
1034 | char infpstores[8]; | |
5ea2bd7f | 1035 | char reg_contents[256]; |
58ab00f9 | 1036 | int trust_limit; |
004d836a JJ |
1037 | int frameless = 1; |
1038 | int i; | |
1039 | CORE_ADDR addr; | |
1040 | char buf[8]; | |
1041 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1042 | |
1043 | memset (instores, 0, sizeof instores); | |
1044 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1045 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1046 | |
004d836a JJ |
1047 | if (cache->after_prologue != 0 |
1048 | && cache->after_prologue <= lim_pc) | |
1049 | return cache->after_prologue; | |
16461d7d | 1050 | |
58ab00f9 | 1051 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1052 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1053 | |
1054 | /* We want to check if we have a recognizable function start before we | |
1055 | look ahead for a prologue. */ | |
16461d7d KB |
1056 | if (pc < lim_pc && next_pc |
1057 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1058 | { | |
5ea2bd7f | 1059 | /* alloc - start of a regular function. */ |
16461d7d KB |
1060 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1061 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1062 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1063 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1064 | |
1065 | /* Verify that the current cfm matches what we think is the | |
1066 | function start. If we have somehow jumped within a function, | |
1067 | we do not want to interpret the prologue and calculate the | |
1068 | addresses of various registers such as the return address. | |
1069 | We will instead treat the frame as frameless. */ | |
1070 | if (!next_frame || | |
1071 | (sof == (cache->cfm & 0x7f) && | |
1072 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1073 | frameless = 0; | |
1074 | ||
16461d7d KB |
1075 | cfm_reg = rN; |
1076 | last_prologue_pc = next_pc; | |
1077 | pc = next_pc; | |
1078 | } | |
1079 | else | |
58ab00f9 | 1080 | { |
5ea2bd7f JJ |
1081 | /* Look for a leaf routine. */ |
1082 | if (pc < lim_pc && next_pc | |
1083 | && (it == I || it == M) | |
1084 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1085 | { | |
1086 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1087 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1088 | | ((instr & 0x001f8000000LL) >> 20) | |
1089 | | ((instr & 0x000000fe000LL) >> 13)); | |
1090 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1091 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1092 | int qp = (int) (instr & 0x0000000003fLL); | |
1093 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1094 | { | |
1095 | /* mov r2, r12 - beginning of leaf routine */ | |
1096 | fp_reg = rN; | |
5ea2bd7f JJ |
1097 | last_prologue_pc = next_pc; |
1098 | } | |
1099 | } | |
1100 | ||
1101 | /* If we don't recognize a regular function or leaf routine, we are | |
1102 | done. */ | |
1103 | if (!fp_reg) | |
1104 | { | |
1105 | pc = lim_pc; | |
1106 | if (trust_limit) | |
1107 | last_prologue_pc = lim_pc; | |
1108 | } | |
58ab00f9 | 1109 | } |
16461d7d KB |
1110 | |
1111 | /* Loop, looking for prologue instructions, keeping track of | |
1112 | where preserved registers were spilled. */ | |
1113 | while (pc < lim_pc) | |
1114 | { | |
1115 | next_pc = fetch_instruction (pc, &it, &instr); | |
1116 | if (next_pc == 0) | |
1117 | break; | |
1118 | ||
594706e6 | 1119 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1120 | { |
102d615a JJ |
1121 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1122 | if (trust_limit) | |
1123 | lim_pc = pc; | |
1124 | break; | |
1125 | } | |
1126 | else if (((instr & 0x3fLL) != 0LL) && | |
1127 | (frameless || ret_reg != 0)) | |
1128 | { | |
1129 | /* Exit loop upon hitting a predicated instruction if | |
1130 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1131 | if (trust_limit) |
1132 | lim_pc = pc; | |
0927a22b KB |
1133 | break; |
1134 | } | |
1135 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1136 | { |
1137 | /* Move from BR */ | |
1138 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1139 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1140 | int qp = (int) (instr & 0x0000000003f); | |
1141 | ||
1142 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1143 | { | |
1144 | ret_reg = rN; | |
1145 | last_prologue_pc = next_pc; | |
1146 | } | |
1147 | } | |
1148 | else if ((it == I || it == M) | |
1149 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1150 | { | |
1151 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1152 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1153 | | ((instr & 0x001f8000000LL) >> 20) | |
1154 | | ((instr & 0x000000fe000LL) >> 13)); | |
1155 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1156 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1157 | int qp = (int) (instr & 0x0000000003fLL); | |
1158 | ||
1159 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1160 | { | |
1161 | /* mov rN, r12 */ | |
1162 | fp_reg = rN; | |
1163 | last_prologue_pc = next_pc; | |
1164 | } | |
1165 | else if (qp == 0 && rN == 12 && rM == 12) | |
1166 | { | |
1167 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1168 | mem_stack_frame_size -= imm; | |
1169 | last_prologue_pc = next_pc; | |
1170 | } | |
1171 | else if (qp == 0 && rN == 2 | |
1172 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1173 | { | |
004d836a JJ |
1174 | char buf[MAX_REGISTER_SIZE]; |
1175 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1176 | /* adds r2, spilloffset, rFramePointer |
1177 | or | |
1178 | adds r2, spilloffset, r12 | |
1179 | ||
1180 | Get ready for stf.spill or st8.spill instructions. | |
1181 | The address to start spilling at is loaded into r2. | |
1182 | FIXME: Why r2? That's what gcc currently uses; it | |
1183 | could well be different for other compilers. */ | |
1184 | ||
1185 | /* Hmm... whether or not this will work will depend on | |
1186 | where the pc is. If it's still early in the prologue | |
1187 | this'll be wrong. FIXME */ | |
004d836a JJ |
1188 | if (next_frame) |
1189 | { | |
1190 | frame_unwind_register (next_frame, sp_regnum, buf); | |
1191 | saved_sp = extract_unsigned_integer (buf, 8); | |
1192 | } | |
1193 | spill_addr = saved_sp | |
16461d7d KB |
1194 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1195 | + imm; | |
1196 | spill_reg = rN; | |
1197 | last_prologue_pc = next_pc; | |
1198 | } | |
5ea2bd7f JJ |
1199 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] && |
1200 | rN < 256 && imm == 0) | |
1201 | { | |
1202 | /* mov rN, rM where rM is an input register */ | |
1203 | reg_contents[rN] = rM; | |
1204 | last_prologue_pc = next_pc; | |
1205 | } | |
1206 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1207 | rM == 2) | |
1208 | { | |
1209 | /* mov r12, r2 */ | |
1210 | last_prologue_pc = next_pc; | |
1211 | break; | |
1212 | } | |
16461d7d KB |
1213 | } |
1214 | else if (it == M | |
1215 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1216 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1217 | { | |
1218 | /* stf.spill [rN] = fM, imm9 | |
1219 | or | |
1220 | stf.spill [rN] = fM */ | |
1221 | ||
1222 | int imm = imm9(instr); | |
1223 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1224 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1225 | int qp = (int) (instr & 0x0000000003fLL); | |
1226 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1227 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1228 | { | |
004d836a | 1229 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1230 | |
594706e6 | 1231 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1232 | spill_addr += imm; |
1233 | else | |
1234 | spill_addr = 0; /* last one; must be done */ | |
1235 | last_prologue_pc = next_pc; | |
1236 | } | |
1237 | } | |
1238 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1239 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1240 | { | |
1241 | /* mov.m rN = arM | |
1242 | or | |
1243 | mov.i rN = arM */ | |
1244 | ||
1245 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1246 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1247 | int qp = (int) (instr & 0x0000000003fLL); | |
1248 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1249 | { | |
1250 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1251 | r3 (or whatever) and watch for a store of this register... */ | |
1252 | unat_save_reg = rN; | |
1253 | last_prologue_pc = next_pc; | |
1254 | } | |
1255 | } | |
1256 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1257 | { | |
1258 | /* mov rN = pr */ | |
1259 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1260 | int qp = (int) (instr & 0x0000000003fLL); | |
1261 | if (qp == 0 && isScratch (rN)) | |
1262 | { | |
1263 | pr_save_reg = rN; | |
1264 | last_prologue_pc = next_pc; | |
1265 | } | |
1266 | } | |
1267 | else if (it == M | |
1268 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1269 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1270 | { | |
1271 | /* st8 [rN] = rM | |
1272 | or | |
1273 | st8 [rN] = rM, imm9 */ | |
1274 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1275 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1276 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1277 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1278 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1279 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1280 | { | |
1281 | /* We've found a spill of either the UNAT register or the PR | |
1282 | register. (Well, not exactly; what we've actually found is | |
1283 | a spill of the register that UNAT or PR was moved to). | |
1284 | Record that fact and move on... */ | |
1285 | if (rM == unat_save_reg) | |
1286 | { | |
1287 | /* Track UNAT register */ | |
004d836a | 1288 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1289 | unat_save_reg = 0; |
1290 | } | |
1291 | else | |
1292 | { | |
1293 | /* Track PR register */ | |
004d836a | 1294 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1295 | pr_save_reg = 0; |
1296 | } | |
1297 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1298 | /* st8 [rN] = rM, imm9 */ | |
1299 | spill_addr += imm9(instr); | |
1300 | else | |
1301 | spill_addr = 0; /* must be done spilling */ | |
1302 | last_prologue_pc = next_pc; | |
1303 | } | |
0927a22b KB |
1304 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1305 | { | |
1306 | /* Allow up to one store of each input register. */ | |
1307 | instores[rM-32] = 1; | |
1308 | last_prologue_pc = next_pc; | |
1309 | } | |
5ea2bd7f JJ |
1310 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1311 | !instores[indirect-32]) | |
1312 | { | |
1313 | /* Allow an indirect store of an input register. */ | |
1314 | instores[indirect-32] = 1; | |
1315 | last_prologue_pc = next_pc; | |
1316 | } | |
0927a22b KB |
1317 | } |
1318 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1319 | { | |
1320 | /* One of | |
1321 | st1 [rN] = rM | |
1322 | st2 [rN] = rM | |
1323 | st4 [rN] = rM | |
1324 | st8 [rN] = rM | |
1325 | Note that the st8 case is handled in the clause above. | |
1326 | ||
1327 | Advance over stores of input registers. One store per input | |
1328 | register is permitted. */ | |
1329 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1330 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1331 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1332 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1333 | { | |
1334 | instores[rM-32] = 1; | |
1335 | last_prologue_pc = next_pc; | |
1336 | } | |
5ea2bd7f JJ |
1337 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1338 | !instores[indirect-32]) | |
1339 | { | |
1340 | /* Allow an indirect store of an input register. */ | |
1341 | instores[indirect-32] = 1; | |
1342 | last_prologue_pc = next_pc; | |
1343 | } | |
0927a22b KB |
1344 | } |
1345 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1346 | { | |
1347 | /* Either | |
1348 | stfs [rN] = fM | |
1349 | or | |
1350 | stfd [rN] = fM | |
1351 | ||
1352 | Advance over stores of floating point input registers. Again | |
1353 | one store per register is permitted */ | |
1354 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1355 | int qp = (int) (instr & 0x0000000003fLL); | |
1356 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1357 | { | |
1358 | infpstores[fM-8] = 1; | |
1359 | last_prologue_pc = next_pc; | |
1360 | } | |
16461d7d KB |
1361 | } |
1362 | else if (it == M | |
1363 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1364 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1365 | { | |
1366 | /* st8.spill [rN] = rM | |
1367 | or | |
1368 | st8.spill [rN] = rM, imm9 */ | |
1369 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1370 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1371 | int qp = (int) (instr & 0x0000000003fLL); | |
1372 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1373 | { | |
1374 | /* We've found a spill of one of the preserved general purpose | |
1375 | regs. Record the spill address and advance the spill | |
1376 | register if appropriate. */ | |
004d836a | 1377 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1378 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1379 | /* st8.spill [rN] = rM, imm9 */ | |
1380 | spill_addr += imm9(instr); | |
1381 | else | |
1382 | spill_addr = 0; /* Done spilling */ | |
1383 | last_prologue_pc = next_pc; | |
1384 | } | |
1385 | } | |
16461d7d KB |
1386 | |
1387 | pc = next_pc; | |
1388 | } | |
1389 | ||
004d836a JJ |
1390 | /* If not frameless and we aren't called by skip_prologue, then we need to calculate |
1391 | registers for the previous frame which will be needed later. */ | |
16461d7d | 1392 | |
004d836a | 1393 | if (!frameless && next_frame) |
da50a4b7 | 1394 | { |
004d836a JJ |
1395 | /* Extract the size of the rotating portion of the stack |
1396 | frame and the register rename base from the current | |
1397 | frame marker. */ | |
1398 | cfm = cache->cfm; | |
1399 | sor = cache->sor; | |
1400 | sof = cache->sof; | |
1401 | sol = cache->sol; | |
1402 | rrb_gr = (cfm >> 18) & 0x7f; | |
1403 | ||
1404 | /* Find the bof (beginning of frame). */ | |
1405 | bof = rse_address_add (cache->bsp, -sof); | |
1406 | ||
1407 | for (i = 0, addr = bof; | |
1408 | i < sof; | |
1409 | i++, addr += 8) | |
1410 | { | |
1411 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1412 | { | |
1413 | addr += 8; | |
1414 | } | |
1415 | if (i+32 == cfm_reg) | |
1416 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1417 | if (i+32 == ret_reg) | |
1418 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1419 | if (i+32 == fp_reg) | |
1420 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1421 | } | |
16461d7d | 1422 | |
004d836a JJ |
1423 | /* For the previous argument registers we require the previous bof. |
1424 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1425 | cfm = 0; |
004d836a JJ |
1426 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1427 | { | |
1428 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1429 | } |
1430 | else if (cfm_reg != 0) | |
1431 | { | |
1432 | frame_unwind_register (next_frame, cfm_reg, buf); | |
1433 | cfm = extract_unsigned_integer (buf, 8); | |
1434 | } | |
1435 | cache->prev_cfm = cfm; | |
1436 | ||
1437 | if (cfm != 0) | |
1438 | { | |
004d836a JJ |
1439 | sor = ((cfm >> 14) & 0xf) * 8; |
1440 | sof = (cfm & 0x7f); | |
1441 | sol = (cfm >> 7) & 0x7f; | |
1442 | rrb_gr = (cfm >> 18) & 0x7f; | |
1443 | ||
1444 | /* The previous bof only requires subtraction of the sol (size of locals) | |
1445 | due to the overlap between output and input of subsequent frames. */ | |
1446 | bof = rse_address_add (bof, -sol); | |
1447 | ||
1448 | for (i = 0, addr = bof; | |
1449 | i < sof; | |
1450 | i++, addr += 8) | |
1451 | { | |
1452 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1453 | { | |
1454 | addr += 8; | |
1455 | } | |
1456 | if (i < sor) | |
1457 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1458 | = addr; | |
1459 | else | |
1460 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1461 | } | |
1462 | ||
1463 | } | |
1464 | } | |
1465 | ||
5ea2bd7f JJ |
1466 | /* Try and trust the lim_pc value whenever possible. */ |
1467 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1468 | last_prologue_pc = lim_pc; |
1469 | ||
1470 | cache->frameless = frameless; | |
1471 | cache->after_prologue = last_prologue_pc; | |
1472 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1473 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1474 | |
16461d7d KB |
1475 | return last_prologue_pc; |
1476 | } | |
1477 | ||
1478 | CORE_ADDR | |
1479 | ia64_skip_prologue (CORE_ADDR pc) | |
1480 | { | |
004d836a JJ |
1481 | struct ia64_frame_cache cache; |
1482 | cache.base = 0; | |
1483 | cache.after_prologue = 0; | |
1484 | cache.cfm = 0; | |
1485 | cache.bsp = 0; | |
1486 | ||
1487 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1488 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1489 | } |
1490 | ||
004d836a JJ |
1491 | |
1492 | /* Normal frames. */ | |
1493 | ||
1494 | static struct ia64_frame_cache * | |
1495 | ia64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
16461d7d | 1496 | { |
004d836a JJ |
1497 | struct ia64_frame_cache *cache; |
1498 | char buf[8]; | |
1499 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1500 | int i; | |
16461d7d | 1501 | |
004d836a JJ |
1502 | if (*this_cache) |
1503 | return *this_cache; | |
16461d7d | 1504 | |
004d836a JJ |
1505 | cache = ia64_alloc_frame_cache (); |
1506 | *this_cache = cache; | |
16461d7d | 1507 | |
004d836a JJ |
1508 | frame_unwind_register (next_frame, sp_regnum, buf); |
1509 | cache->saved_sp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1510 | |
004d836a JJ |
1511 | /* We always want the bsp to point to the end of frame. |
1512 | This way, we can always get the beginning of frame (bof) | |
1513 | by subtracting frame size. */ | |
1514 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1515 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1516 | ||
1517 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1518 | psr = extract_unsigned_integer (buf, 8); | |
1519 | ||
1520 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1521 | cfm = extract_unsigned_integer (buf, 8); | |
1522 | ||
1523 | cache->sof = (cfm & 0x7f); | |
1524 | cache->sol = (cfm >> 7) & 0x7f; | |
1525 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1526 | ||
1527 | cache->cfm = cfm; | |
1528 | ||
1529 | cache->pc = frame_func_unwind (next_frame); | |
1530 | ||
1531 | if (cache->pc != 0) | |
1532 | examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); | |
1533 | ||
1534 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1535 | ||
1536 | return cache; | |
16461d7d KB |
1537 | } |
1538 | ||
a78f21af | 1539 | static void |
004d836a JJ |
1540 | ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
1541 | struct frame_id *this_id) | |
16461d7d | 1542 | { |
004d836a JJ |
1543 | struct ia64_frame_cache *cache = |
1544 | ia64_frame_cache (next_frame, this_cache); | |
16461d7d | 1545 | |
004d836a JJ |
1546 | /* This marks the outermost frame. */ |
1547 | if (cache->base == 0) | |
1548 | return; | |
16461d7d | 1549 | |
4afcc598 JJ |
1550 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); |
1551 | if (gdbarch_debug >= 1) | |
1552 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1553 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1554 | paddr_nz (this_id->code_addr), | |
1555 | paddr_nz (this_id->stack_addr), | |
1556 | paddr_nz (cache->bsp), next_frame); | |
004d836a | 1557 | } |
244bc108 | 1558 | |
004d836a JJ |
1559 | static void |
1560 | ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1561 | int regnum, int *optimizedp, | |
1562 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1563 | int *realnump, void *valuep) | |
1564 | { | |
1565 | struct ia64_frame_cache *cache = | |
1566 | ia64_frame_cache (next_frame, this_cache); | |
1567 | char dummy_valp[MAX_REGISTER_SIZE]; | |
1568 | char buf[8]; | |
1569 | ||
1570 | gdb_assert (regnum >= 0); | |
244bc108 | 1571 | |
004d836a JJ |
1572 | if (!target_has_registers) |
1573 | error ("No registers."); | |
244bc108 | 1574 | |
004d836a JJ |
1575 | *optimizedp = 0; |
1576 | *addrp = 0; | |
1577 | *lvalp = not_lval; | |
1578 | *realnump = -1; | |
244bc108 | 1579 | |
004d836a JJ |
1580 | /* Rather than check each time if valuep is non-null, supply a dummy buffer |
1581 | when valuep is not supplied. */ | |
1582 | if (!valuep) | |
1583 | valuep = dummy_valp; | |
1584 | ||
aa2a9a3c | 1585 | memset (valuep, 0, register_size (current_gdbarch, regnum)); |
004d836a JJ |
1586 | |
1587 | if (regnum == SP_REGNUM) | |
16461d7d KB |
1588 | { |
1589 | /* Handle SP values for all frames but the topmost. */ | |
aa2a9a3c | 1590 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a | 1591 | cache->base); |
16461d7d KB |
1592 | } |
1593 | else if (regnum == IA64_BSP_REGNUM) | |
1594 | { | |
004d836a JJ |
1595 | char cfm_valuep[MAX_REGISTER_SIZE]; |
1596 | int cfm_optim; | |
1597 | int cfm_realnum; | |
1598 | enum lval_type cfm_lval; | |
1599 | CORE_ADDR cfm_addr; | |
1600 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
1601 | ||
1602 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
1603 | This corresponds to what the hardware bsp register will be if we pop the frame | |
1604 | back which is why we might have been called. We know the beginning of the current | |
aa2a9a3c | 1605 | frame is cache->bsp - cache->sof. This value in the previous frame points to |
004d836a JJ |
1606 | the start of the output registers. We can calculate the end of that frame by adding |
1607 | the size of output (sof (size of frame) - sol (size of locals)). */ | |
1608 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1609 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
1610 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
1611 | ||
1612 | bsp = rse_address_add (cache->bsp, -(cache->sof)); | |
1613 | prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
1614 | ||
aa2a9a3c | 1615 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
004d836a JJ |
1616 | prev_bsp); |
1617 | } | |
1618 | else if (regnum == IA64_CFM_REGNUM) | |
1619 | { | |
4afcc598 JJ |
1620 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1621 | ||
1622 | if (addr != 0) | |
004d836a | 1623 | { |
4afcc598 JJ |
1624 | *lvalp = lval_memory; |
1625 | *addrp = addr; | |
1626 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
004d836a | 1627 | } |
4afcc598 JJ |
1628 | else if (cache->prev_cfm) |
1629 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm); | |
1630 | else if (cache->frameless) | |
004d836a | 1631 | { |
4afcc598 JJ |
1632 | CORE_ADDR cfm = 0; |
1633 | frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); | |
004d836a | 1634 | } |
16461d7d KB |
1635 | } |
1636 | else if (regnum == IA64_VFP_REGNUM) | |
1637 | { | |
1638 | /* If the function in question uses an automatic register (r32-r127) | |
1639 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1640 | above. If the function lacks one of these frame pointers, we can | |
004d836a JJ |
1641 | still provide a value since we know the size of the frame. */ |
1642 | CORE_ADDR vfp = cache->base; | |
aa2a9a3c | 1643 | store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp); |
16461d7d | 1644 | } |
004d836a | 1645 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1646 | { |
004d836a | 1647 | char pr_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1648 | int pr_optim; |
004d836a | 1649 | int pr_realnum; |
16461d7d KB |
1650 | enum lval_type pr_lval; |
1651 | CORE_ADDR pr_addr; | |
004d836a JJ |
1652 | ULONGEST prN_val; |
1653 | ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, | |
1654 | &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); | |
1655 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
3a854e23 KB |
1656 | { |
1657 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1658 | marker for this frame. */ |
1659 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1660 | |
004d836a JJ |
1661 | /* Adjust the register number to account for register rotation. */ |
1662 | regnum = VP16_REGNUM | |
1663 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
3a854e23 | 1664 | } |
004d836a JJ |
1665 | prN_val = extract_bit_field ((unsigned char *) pr_valuep, |
1666 | regnum - VP0_REGNUM, 1); | |
aa2a9a3c | 1667 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); |
16461d7d KB |
1668 | } |
1669 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1670 | { | |
004d836a | 1671 | char unat_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1672 | int unat_optim; |
004d836a | 1673 | int unat_realnum; |
16461d7d KB |
1674 | enum lval_type unat_lval; |
1675 | CORE_ADDR unat_addr; | |
004d836a JJ |
1676 | ULONGEST unatN_val; |
1677 | ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, | |
1678 | &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); | |
1679 | unatN_val = extract_bit_field ((unsigned char *) unat_valuep, | |
16461d7d | 1680 | regnum - IA64_NAT0_REGNUM, 1); |
aa2a9a3c | 1681 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), |
16461d7d | 1682 | unatN_val); |
16461d7d KB |
1683 | } |
1684 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1685 | { | |
1686 | int natval = 0; | |
1687 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1688 | interested in. */ |
1689 | CORE_ADDR gr_addr; | |
244bc108 | 1690 | |
004d836a JJ |
1691 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM |
1692 | + IA64_GR0_REGNUM]; | |
1693 | if (gr_addr != 0) | |
244bc108 | 1694 | { |
004d836a | 1695 | /* Compute address of nat collection bits. */ |
16461d7d | 1696 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1697 | CORE_ADDR bsp; |
16461d7d KB |
1698 | CORE_ADDR nat_collection; |
1699 | int nat_bit; | |
1700 | /* If our nat collection address is bigger than bsp, we have to get | |
1701 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a JJ |
1702 | collection from the computed address. */ |
1703 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1704 | bsp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1705 | if (nat_addr >= bsp) |
004d836a JJ |
1706 | { |
1707 | frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); | |
1708 | nat_collection = extract_unsigned_integer (buf, 8); | |
1709 | } | |
16461d7d KB |
1710 | else |
1711 | nat_collection = read_memory_integer (nat_addr, 8); | |
1712 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1713 | natval = (nat_collection >> nat_bit) & 1; | |
1714 | } | |
004d836a | 1715 | |
aa2a9a3c | 1716 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval); |
244bc108 KB |
1717 | } |
1718 | else if (regnum == IA64_IP_REGNUM) | |
1719 | { | |
004d836a | 1720 | CORE_ADDR pc = 0; |
4afcc598 | 1721 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1722 | |
4afcc598 | 1723 | if (addr != 0) |
004d836a | 1724 | { |
4afcc598 JJ |
1725 | *lvalp = lval_memory; |
1726 | *addrp = addr; | |
1727 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a JJ |
1728 | pc = extract_unsigned_integer (buf, 8); |
1729 | } | |
4afcc598 | 1730 | else if (cache->frameless) |
004d836a | 1731 | { |
4afcc598 JJ |
1732 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); |
1733 | pc = extract_unsigned_integer (buf, 8); | |
244bc108 | 1734 | } |
004d836a JJ |
1735 | pc &= ~0xf; |
1736 | store_unsigned_integer (valuep, 8, pc); | |
244bc108 | 1737 | } |
004d836a | 1738 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1739 | { |
4afcc598 JJ |
1740 | /* We don't know how to get the complete previous PSR, but we need it for |
1741 | the slot information when we unwind the pc (pc is formed of IP register | |
1742 | plus slot information from PSR). To get the previous slot information, | |
1743 | we mask it off the return address. */ | |
004d836a JJ |
1744 | ULONGEST slot_num = 0; |
1745 | CORE_ADDR pc= 0; | |
1746 | CORE_ADDR psr = 0; | |
4afcc598 | 1747 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a JJ |
1748 | |
1749 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1750 | psr = extract_unsigned_integer (buf, 8); | |
1751 | ||
4afcc598 | 1752 | if (addr != 0) |
244bc108 | 1753 | { |
4afcc598 JJ |
1754 | *lvalp = lval_memory; |
1755 | *addrp = addr; | |
1756 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
004d836a | 1757 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1758 | } |
4afcc598 | 1759 | else if (cache->frameless) |
004d836a | 1760 | { |
4afcc598 JJ |
1761 | CORE_ADDR pc; |
1762 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); | |
1763 | pc = extract_unsigned_integer (buf, 8); | |
004d836a JJ |
1764 | } |
1765 | psr &= ~(3LL << 41); | |
1766 | slot_num = pc & 0x3LL; | |
1767 | psr |= (CORE_ADDR)slot_num << 41; | |
1768 | store_unsigned_integer (valuep, 8, psr); | |
1769 | } | |
4afcc598 JJ |
1770 | else if (regnum == IA64_BR0_REGNUM) |
1771 | { | |
1772 | CORE_ADDR br0 = 0; | |
1773 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; | |
1774 | if (addr != 0) | |
1775 | { | |
1776 | *lvalp = lval_memory; | |
1777 | *addrp = addr; | |
1778 | read_memory (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM)); | |
1779 | br0 = extract_unsigned_integer (buf, 8); | |
1780 | } | |
1781 | store_unsigned_integer (valuep, 8, br0); | |
1782 | } | |
004d836a JJ |
1783 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || |
1784 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
1785 | { | |
1786 | CORE_ADDR addr = 0; | |
1787 | if (regnum >= V32_REGNUM) | |
1788 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1789 | addr = cache->saved_regs[regnum]; | |
244bc108 KB |
1790 | if (addr != 0) |
1791 | { | |
004d836a JJ |
1792 | *lvalp = lval_memory; |
1793 | *addrp = addr; | |
aa2a9a3c | 1794 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1795 | } |
004d836a | 1796 | else if (cache->frameless) |
244bc108 | 1797 | { |
004d836a JJ |
1798 | char r_valuep[MAX_REGISTER_SIZE]; |
1799 | int r_optim; | |
1800 | int r_realnum; | |
1801 | enum lval_type r_lval; | |
1802 | CORE_ADDR r_addr; | |
1803 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1804 | CORE_ADDR addr = 0; | |
1805 | if (regnum >= V32_REGNUM) | |
1806 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1807 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1808 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1809 | prev_cfm = extract_unsigned_integer (r_valuep, 8); | |
1810 | ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, | |
1811 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1812 | prev_bsp = extract_unsigned_integer (r_valuep, 8); | |
1813 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); | |
1814 | ||
1815 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
1816 | *lvalp = lval_memory; | |
1817 | *addrp = addr; | |
aa2a9a3c | 1818 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
244bc108 | 1819 | } |
16461d7d KB |
1820 | } |
1821 | else | |
1822 | { | |
004d836a | 1823 | CORE_ADDR addr = 0; |
3a854e23 KB |
1824 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1825 | { | |
1826 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1827 | frame marker for this frame. */ |
1828 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1829 | |
1830 | /* Adjust the floating point register number to account for | |
004d836a | 1831 | register rotation. */ |
3a854e23 KB |
1832 | regnum = IA64_FR32_REGNUM |
1833 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1834 | } | |
1835 | ||
004d836a JJ |
1836 | /* If we have stored a memory address, access the register. */ |
1837 | addr = cache->saved_regs[regnum]; | |
1838 | if (addr != 0) | |
1839 | { | |
1840 | *lvalp = lval_memory; | |
1841 | *addrp = addr; | |
aa2a9a3c | 1842 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); |
004d836a JJ |
1843 | } |
1844 | /* Otherwise, punt and get the current value of the register. */ | |
1845 | else | |
1846 | frame_unwind_register (next_frame, regnum, valuep); | |
16461d7d | 1847 | } |
4afcc598 JJ |
1848 | |
1849 | if (gdbarch_debug >= 1) | |
1850 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 1851 | "regular prev register <%d> <%s> is 0x%s\n", regnum, |
4afcc598 | 1852 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
1853 | ? ia64_register_names[regnum] : "r??"), |
1854 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
16461d7d | 1855 | } |
004d836a JJ |
1856 | |
1857 | static const struct frame_unwind ia64_frame_unwind = | |
1858 | { | |
1859 | NORMAL_FRAME, | |
1860 | &ia64_frame_this_id, | |
1861 | &ia64_frame_prev_register | |
1862 | }; | |
1863 | ||
1864 | static const struct frame_unwind * | |
1865 | ia64_frame_sniffer (struct frame_info *next_frame) | |
1866 | { | |
1867 | return &ia64_frame_unwind; | |
1868 | } | |
1869 | ||
1870 | /* Signal trampolines. */ | |
1871 | ||
1872 | static void | |
1873 | ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache) | |
1874 | { | |
1875 | if (SIGCONTEXT_REGISTER_ADDRESS) | |
1876 | { | |
1877 | int regno; | |
1878 | ||
1879 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
1880 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM); | |
1881 | cache->saved_regs[IA64_CFM_REGNUM] = | |
1882 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM); | |
1883 | cache->saved_regs[IA64_PSR_REGNUM] = | |
1884 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM); | |
004d836a | 1885 | cache->saved_regs[IA64_BSP_REGNUM] = |
4afcc598 | 1886 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM); |
004d836a JJ |
1887 | cache->saved_regs[IA64_RNAT_REGNUM] = |
1888 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM); | |
1889 | cache->saved_regs[IA64_CCV_REGNUM] = | |
1890 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM); | |
1891 | cache->saved_regs[IA64_UNAT_REGNUM] = | |
1892 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM); | |
1893 | cache->saved_regs[IA64_FPSR_REGNUM] = | |
1894 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM); | |
1895 | cache->saved_regs[IA64_PFS_REGNUM] = | |
1896 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM); | |
1897 | cache->saved_regs[IA64_LC_REGNUM] = | |
1898 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM); | |
1899 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) | |
4afcc598 JJ |
1900 | cache->saved_regs[regno] = |
1901 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
004d836a JJ |
1902 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
1903 | cache->saved_regs[regno] = | |
1904 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
932644f0 | 1905 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a JJ |
1906 | cache->saved_regs[regno] = |
1907 | SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno); | |
1908 | } | |
1909 | } | |
1910 | ||
1911 | static struct ia64_frame_cache * | |
1912 | ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1913 | { | |
1914 | struct ia64_frame_cache *cache; | |
1915 | CORE_ADDR addr; | |
1916 | char buf[8]; | |
1917 | int i; | |
1918 | ||
1919 | if (*this_cache) | |
1920 | return *this_cache; | |
1921 | ||
1922 | cache = ia64_alloc_frame_cache (); | |
1923 | ||
1924 | frame_unwind_register (next_frame, sp_regnum, buf); | |
4afcc598 JJ |
1925 | /* Note that frame size is hard-coded below. We cannot calculate it |
1926 | via prologue examination. */ | |
1927 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
1928 | ||
1929 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1930 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1931 | ||
1932 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1933 | cache->cfm = extract_unsigned_integer (buf, 8); | |
1934 | cache->sof = cache->cfm & 0x7f; | |
004d836a JJ |
1935 | |
1936 | ia64_sigtramp_frame_init_saved_regs (cache); | |
1937 | ||
1938 | *this_cache = cache; | |
1939 | return cache; | |
1940 | } | |
1941 | ||
1942 | static void | |
1943 | ia64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1944 | void **this_cache, struct frame_id *this_id) | |
1945 | { | |
1946 | struct ia64_frame_cache *cache = | |
1947 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1948 | ||
4afcc598 JJ |
1949 | (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); |
1950 | if (gdbarch_debug >= 1) | |
1951 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1952 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1953 | paddr_nz (this_id->code_addr), | |
1954 | paddr_nz (this_id->stack_addr), | |
1955 | paddr_nz (cache->bsp), next_frame); | |
004d836a JJ |
1956 | } |
1957 | ||
1958 | static void | |
1959 | ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
1960 | void **this_cache, | |
1961 | int regnum, int *optimizedp, | |
1962 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
1963 | int *realnump, void *valuep) | |
1964 | { | |
4afcc598 JJ |
1965 | char dummy_valp[MAX_REGISTER_SIZE]; |
1966 | char buf[MAX_REGISTER_SIZE]; | |
1967 | ||
1968 | struct ia64_frame_cache *cache = | |
1969 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1970 | ||
1971 | gdb_assert (regnum >= 0); | |
1972 | ||
1973 | if (!target_has_registers) | |
1974 | error ("No registers."); | |
1975 | ||
1976 | *optimizedp = 0; | |
1977 | *addrp = 0; | |
1978 | *lvalp = not_lval; | |
1979 | *realnump = -1; | |
1980 | ||
1981 | /* Rather than check each time if valuep is non-null, supply a dummy buffer | |
1982 | when valuep is not supplied. */ | |
1983 | if (!valuep) | |
1984 | valuep = dummy_valp; | |
1985 | ||
1986 | memset (valuep, 0, register_size (current_gdbarch, regnum)); | |
1987 | ||
1988 | if (regnum == IA64_IP_REGNUM) | |
1989 | { | |
1990 | CORE_ADDR pc = 0; | |
1991 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
1992 | ||
1993 | if (addr != 0) | |
1994 | { | |
1995 | *lvalp = lval_memory; | |
1996 | *addrp = addr; | |
1997 | read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM)); | |
1998 | pc = extract_unsigned_integer (buf, 8); | |
1999 | } | |
2000 | pc &= ~0xf; | |
2001 | store_unsigned_integer (valuep, 8, pc); | |
2002 | } | |
2003 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || | |
2004 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
2005 | { | |
2006 | CORE_ADDR addr = 0; | |
2007 | if (regnum >= V32_REGNUM) | |
2008 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2009 | addr = cache->saved_regs[regnum]; | |
2010 | if (addr != 0) | |
2011 | { | |
2012 | *lvalp = lval_memory; | |
2013 | *addrp = addr; | |
2014 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2015 | } | |
2016 | } | |
2017 | else | |
2018 | { | |
2019 | /* All other registers not listed above. */ | |
2020 | CORE_ADDR addr = cache->saved_regs[regnum]; | |
2021 | if (addr != 0) | |
2022 | { | |
2023 | *lvalp = lval_memory; | |
2024 | *addrp = addr; | |
2025 | read_memory (addr, valuep, register_size (current_gdbarch, regnum)); | |
2026 | } | |
2027 | } | |
004d836a | 2028 | |
4afcc598 JJ |
2029 | if (gdbarch_debug >= 1) |
2030 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2031 | "sigtramp prev register <%s> is 0x%s\n", |
4afcc598 | 2032 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2033 | ? ia64_register_names[regnum] : "r??"), |
2034 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
004d836a JJ |
2035 | } |
2036 | ||
2037 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2038 | { | |
2039 | SIGTRAMP_FRAME, | |
2040 | ia64_sigtramp_frame_this_id, | |
2041 | ia64_sigtramp_frame_prev_register | |
2042 | }; | |
2043 | ||
2044 | static const struct frame_unwind * | |
2045 | ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2046 | { | |
2047 | char *name; | |
2048 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
2049 | ||
2050 | find_pc_partial_function (pc, &name, NULL, NULL); | |
0b281939 | 2051 | if (legacy_pc_in_sigtramp (pc, name)) |
004d836a JJ |
2052 | return &ia64_sigtramp_frame_unwind; |
2053 | ||
2054 | return NULL; | |
2055 | } | |
2056 | \f | |
2057 | ||
2058 | static CORE_ADDR | |
2059 | ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
2060 | { | |
2061 | struct ia64_frame_cache *cache = | |
2062 | ia64_frame_cache (next_frame, this_cache); | |
2063 | ||
2064 | return cache->base; | |
2065 | } | |
2066 | ||
2067 | static const struct frame_base ia64_frame_base = | |
2068 | { | |
2069 | &ia64_frame_unwind, | |
2070 | ia64_frame_base_address, | |
2071 | ia64_frame_base_address, | |
2072 | ia64_frame_base_address | |
2073 | }; | |
16461d7d | 2074 | |
968d1cb4 JJ |
2075 | #ifdef HAVE_LIBUNWIND_IA64_H |
2076 | ||
2077 | struct ia64_unwind_table_entry | |
2078 | { | |
2079 | unw_word_t start_offset; | |
2080 | unw_word_t end_offset; | |
2081 | unw_word_t info_offset; | |
2082 | }; | |
2083 | ||
2084 | static __inline__ uint64_t | |
2085 | ia64_rse_slot_num (uint64_t addr) | |
2086 | { | |
2087 | return (addr >> 3) & 0x3f; | |
2088 | } | |
2089 | ||
2090 | /* Skip over a designated number of registers in the backing | |
2091 | store, remembering every 64th position is for NAT. */ | |
2092 | static __inline__ uint64_t | |
2093 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2094 | { | |
2095 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2096 | ||
2097 | if (num_regs < 0) | |
2098 | delta -= 0x3e; | |
2099 | return addr + ((num_regs + delta/0x3f) << 3); | |
2100 | } | |
2101 | ||
2102 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2103 | number to a libunwind register number. */ | |
2104 | static int | |
2105 | ia64_gdb2uw_regnum (int regnum) | |
2106 | { | |
2107 | if (regnum == sp_regnum) | |
2108 | return UNW_IA64_SP; | |
2109 | else if (regnum == IA64_BSP_REGNUM) | |
2110 | return UNW_IA64_BSP; | |
2111 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2112 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2113 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2114 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2115 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2116 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2117 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2118 | return -1; | |
2119 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2120 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2121 | else if (regnum == IA64_PR_REGNUM) | |
2122 | return UNW_IA64_PR; | |
2123 | else if (regnum == IA64_IP_REGNUM) | |
2124 | return UNW_REG_IP; | |
2125 | else if (regnum == IA64_CFM_REGNUM) | |
2126 | return UNW_IA64_CFM; | |
2127 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2128 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2129 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2130 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2131 | else | |
2132 | return -1; | |
2133 | } | |
2134 | ||
2135 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2136 | number to a ia64 gdb register number. */ | |
2137 | static int | |
2138 | ia64_uw2gdb_regnum (int uw_regnum) | |
2139 | { | |
2140 | if (uw_regnum == UNW_IA64_SP) | |
2141 | return sp_regnum; | |
2142 | else if (uw_regnum == UNW_IA64_BSP) | |
2143 | return IA64_BSP_REGNUM; | |
2144 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2145 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2146 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2147 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2148 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2149 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2150 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2151 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2152 | else if (uw_regnum == UNW_IA64_PR) | |
2153 | return IA64_PR_REGNUM; | |
2154 | else if (uw_regnum == UNW_REG_IP) | |
2155 | return IA64_IP_REGNUM; | |
2156 | else if (uw_regnum == UNW_IA64_CFM) | |
2157 | return IA64_CFM_REGNUM; | |
2158 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2159 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2160 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2161 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2162 | else | |
2163 | return -1; | |
2164 | } | |
2165 | ||
2166 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2167 | register or not. */ | |
2168 | static int | |
2169 | ia64_is_fpreg (int uw_regnum) | |
2170 | { | |
2171 | return unw_is_fpreg (uw_regnum); | |
2172 | } | |
2173 | ||
2174 | /* Libunwind callback accessor function for general registers. */ | |
2175 | static int | |
2176 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2177 | int write, void *arg) | |
2178 | { | |
2179 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2180 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2181 | struct frame_info *next_frame = arg; | |
2182 | long new_sof, old_sof; | |
2183 | char buf[MAX_REGISTER_SIZE]; | |
2184 | ||
2185 | if (write) | |
2186 | { | |
2187 | if (regnum < 0) | |
2188 | /* ignore writes to pseudo-registers such as UNW_IA64_PROC_STARTI. */ | |
2189 | return 0; | |
2190 | ||
2191 | switch (uw_regnum) | |
2192 | { | |
2193 | case UNW_REG_IP: | |
2194 | ia64_write_pc (*val, inferior_ptid); | |
2195 | break; | |
2196 | ||
2197 | case UNW_IA64_AR_BSPSTORE: | |
2198 | write_register (IA64_BSP_REGNUM, *val); | |
2199 | break; | |
2200 | ||
2201 | case UNW_IA64_AR_BSP: | |
2202 | case UNW_IA64_BSP: | |
2203 | /* Account for the fact that ptrace() expects bsp to point | |
2204 | after the current register frame. */ | |
2205 | cfm = read_register (IA64_CFM_REGNUM); | |
2206 | sof = (cfm & 0x7f); | |
2207 | bsp = ia64_rse_skip_regs (*val, sof); | |
2208 | write_register (IA64_BSP_REGNUM, bsp); | |
2209 | break; | |
2210 | ||
2211 | case UNW_IA64_CFM: | |
2212 | /* If we change CFM, we need to adjust ptrace's notion of | |
2213 | bsp accordingly, so that the real bsp remains | |
2214 | unchanged. */ | |
2215 | bsp = read_register (IA64_BSP_REGNUM); | |
2216 | cfm = read_register (IA64_CFM_REGNUM); | |
2217 | old_sof = (cfm & 0x7f); | |
2218 | new_sof = (*val & 0x7f); | |
2219 | if (old_sof != new_sof) | |
2220 | { | |
2221 | bsp = ia64_rse_skip_regs (bsp, -old_sof + new_sof); | |
2222 | write_register (IA64_BSP_REGNUM, bsp); | |
2223 | } | |
2224 | write_register (IA64_CFM_REGNUM, *val); | |
2225 | break; | |
2226 | ||
2227 | default: | |
2228 | write_register (regnum, *val); | |
2229 | break; | |
2230 | } | |
2231 | if (gdbarch_debug >= 1) | |
2232 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2233 | " access_reg: to cache: %4s=0x%s\n", |
968d1cb4 | 2234 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2235 | ? ia64_register_names[regnum] : "r??"), |
2236 | paddr_nz (*val)); | |
968d1cb4 JJ |
2237 | } |
2238 | else | |
2239 | { | |
2240 | switch (uw_regnum) | |
2241 | { | |
2242 | case UNW_REG_IP: | |
2243 | /* Libunwind expects to see the pc value which means the slot number | |
2244 | from the psr must be merged with the ip word address. */ | |
2245 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
2246 | ip = extract_unsigned_integer (buf, 8); | |
2247 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
2248 | psr = extract_unsigned_integer (buf, 8); | |
2249 | *val = ip | ((psr >> 41) & 0x3); | |
2250 | break; | |
2251 | ||
2252 | case UNW_IA64_AR_BSP: | |
2253 | /* Libunwind expects to see the beginning of the current register | |
2254 | frame so we must account for the fact that ptrace() will return a value | |
2255 | for bsp that points *after* the current register frame. */ | |
2256 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2257 | bsp = extract_unsigned_integer (buf, 8); | |
2258 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2259 | cfm = extract_unsigned_integer (buf, 8); | |
2260 | sof = (cfm & 0x7f); | |
2261 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2262 | break; | |
2263 | ||
2264 | case UNW_IA64_AR_BSPSTORE: | |
2265 | /* Libunwind wants bspstore to be after the current register frame. | |
2266 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2267 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2268 | *val = extract_unsigned_integer (buf, 8); | |
2269 | break; | |
2270 | ||
2271 | default: | |
2272 | /* For all other registers, just unwind the value directly. */ | |
2273 | frame_unwind_register (next_frame, regnum, buf); | |
2274 | *val = extract_unsigned_integer (buf, 8); | |
2275 | break; | |
2276 | } | |
2277 | ||
2278 | if (gdbarch_debug >= 1) | |
2279 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2280 | " access_reg: from cache: %4s=0x%s\n", |
968d1cb4 | 2281 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2282 | ? ia64_register_names[regnum] : "r??"), |
2283 | paddr_nz (*val)); | |
968d1cb4 JJ |
2284 | } |
2285 | return 0; | |
2286 | } | |
2287 | ||
2288 | /* Libunwind callback accessor function for floating-point registers. */ | |
2289 | static int | |
2290 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2291 | int write, void *arg) | |
2292 | { | |
2293 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2294 | ||
2295 | if (write) | |
2296 | regcache_cooked_write (current_regcache, regnum, (char *) val); | |
2297 | else | |
2298 | regcache_cooked_read (current_regcache, regnum, (char *) val); | |
2299 | return 0; | |
2300 | } | |
2301 | ||
2302 | /* Libunwind callback accessor function for accessing memory. */ | |
2303 | static int | |
2304 | ia64_access_mem (unw_addr_space_t as, | |
2305 | unw_word_t addr, unw_word_t *val, | |
2306 | int write, void *arg) | |
2307 | { | |
2308 | /* XXX do we need to normalize byte-order here? */ | |
2309 | if (write) | |
2310 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2311 | else | |
2312 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2313 | } | |
2314 | ||
2315 | /* Call low-level function to access the kernel unwind table. */ | |
2316 | static int | |
2317 | getunwind_table (void *buf, size_t len) | |
2318 | { | |
2319 | LONGEST x; | |
2320 | x = target_read_partial (¤t_target, TARGET_OBJECT_UNWIND_TABLE, NULL, | |
2321 | buf, 0, len); | |
2322 | ||
2323 | return (int)x; | |
2324 | } | |
2325 | ||
2326 | /* Get the kernel unwind table. */ | |
2327 | static int | |
2328 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2329 | { | |
2330 | size_t size; | |
2331 | struct ia64_table_entry | |
2332 | { | |
2333 | uint64_t start_offset; | |
2334 | uint64_t end_offset; | |
2335 | uint64_t info_offset; | |
2336 | }; | |
2337 | static struct ia64_table_entry *ktab = NULL, *etab; | |
2338 | ||
2339 | if (!ktab) | |
2340 | { | |
2341 | size = getunwind_table (NULL, 0); | |
2342 | if ((int)size < 0) | |
2343 | return -UNW_ENOINFO; | |
2344 | ktab = xmalloc (size); | |
2345 | getunwind_table (ktab, size); | |
2346 | ||
2347 | /* Determine length of kernel's unwind table and relocate | |
2348 | it's entries. */ | |
2349 | for (etab = ktab; etab->start_offset; ++etab) | |
2350 | etab->info_offset += (uint64_t) ktab; | |
2351 | } | |
2352 | ||
2353 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2354 | return -UNW_ENOINFO; | |
2355 | ||
2356 | di->format = UNW_INFO_FORMAT_TABLE; | |
2357 | di->gp = 0; | |
2358 | di->start_ip = ktab[0].start_offset; | |
2359 | di->end_ip = etab[-1].end_offset; | |
2360 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2361 | di->u.ti.segbase = 0; | |
2362 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2363 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2364 | ||
2365 | if (gdbarch_debug >= 1) | |
2366 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2367 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2368 | (char *) di->u.ti.name_ptr, | |
2369 | paddr_nz (di->u.ti.segbase), | |
2370 | paddr_u (di->u.ti.table_len), | |
2371 | paddr_nz (di->gp)); | |
968d1cb4 JJ |
2372 | return 0; |
2373 | } | |
2374 | ||
2375 | /* Find the unwind table entry for a specified address. */ | |
2376 | static int | |
2377 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2378 | unw_dyn_info_t *dip, void **buf) | |
2379 | { | |
2380 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2381 | Elf_Internal_Ehdr *ehdr; | |
2382 | unw_word_t segbase = 0; | |
2383 | CORE_ADDR load_base; | |
2384 | bfd *bfd; | |
2385 | int i; | |
2386 | ||
2387 | bfd = objfile->obfd; | |
2388 | ||
2389 | ehdr = elf_tdata (bfd)->elf_header; | |
2390 | phdr = elf_tdata (bfd)->phdr; | |
2391 | ||
2392 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2393 | ||
2394 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2395 | { | |
2396 | switch (phdr[i].p_type) | |
2397 | { | |
2398 | case PT_LOAD: | |
2399 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2400 | < phdr[i].p_memsz) | |
2401 | p_text = phdr + i; | |
2402 | break; | |
2403 | ||
2404 | case PT_IA_64_UNWIND: | |
2405 | p_unwind = phdr + i; | |
2406 | break; | |
2407 | ||
2408 | default: | |
2409 | break; | |
2410 | } | |
2411 | } | |
2412 | ||
2413 | if (!p_text || !p_unwind | |
2414 | /* Verify that the segment that contains the IP also contains | |
2415 | the static unwind table. If not, we are dealing with | |
2416 | runtime-generated code, for which we have no info here. */ | |
2417 | || (p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) | |
2418 | return -UNW_ENOINFO; | |
2419 | ||
2420 | segbase = p_text->p_vaddr + load_base; | |
2421 | ||
2422 | dip->start_ip = segbase; | |
2423 | dip->end_ip = dip->start_ip + p_text->p_memsz; | |
2424 | dip->gp = FIND_GLOBAL_POINTER (ip); | |
503ff15d KB |
2425 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2426 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2427 | dip->u.rti.segbase = segbase; | |
2428 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2429 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2430 | |
2431 | return 0; | |
2432 | } | |
2433 | ||
2434 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2435 | static int | |
2436 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2437 | int need_unwind_info, void *arg) | |
2438 | { | |
2439 | struct obj_section *sec = find_pc_section (ip); | |
2440 | unw_dyn_info_t di; | |
2441 | int ret; | |
2442 | void *buf = NULL; | |
2443 | ||
2444 | if (!sec) | |
2445 | { | |
2446 | /* XXX This only works if the host and the target architecture are | |
2447 | both ia64 and if the have (more or less) the same kernel | |
2448 | version. */ | |
2449 | if (get_kernel_table (ip, &di) < 0) | |
2450 | return -UNW_ENOINFO; | |
503ff15d KB |
2451 | |
2452 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2453 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2454 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2455 | "length=%s,data=0x%s)\n", | |
2456 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2457 | paddr_nz (di.u.ti.segbase), | |
2458 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2459 | paddr_nz (di.gp), | |
2460 | paddr_u (di.u.ti.table_len), | |
2461 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); | |
968d1cb4 JJ |
2462 | } |
2463 | else | |
2464 | { | |
2465 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2466 | if (ret < 0) | |
2467 | return ret; | |
968d1cb4 | 2468 | |
503ff15d | 2469 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2470 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2471 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2472 | "length=%s,data=0x%s)\n", | |
2473 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2474 | paddr_nz (di.u.rti.segbase), | |
2475 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2476 | paddr_nz (di.gp), | |
2477 | paddr_u (di.u.rti.table_len), | |
2478 | paddr_nz (di.u.rti.table_data)); | |
503ff15d | 2479 | } |
968d1cb4 | 2480 | |
503ff15d KB |
2481 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2482 | arg); | |
968d1cb4 JJ |
2483 | |
2484 | /* We no longer need the dyn info storage so free it. */ | |
2485 | xfree (buf); | |
2486 | ||
2487 | return ret; | |
2488 | } | |
2489 | ||
2490 | /* Libunwind callback accessor function for cleanup. */ | |
2491 | static void | |
2492 | ia64_put_unwind_info (unw_addr_space_t as, | |
2493 | unw_proc_info_t *pip, void *arg) | |
2494 | { | |
2495 | /* Nothing required for now. */ | |
2496 | } | |
2497 | ||
2498 | /* Libunwind callback accessor function to get head of the dynamic | |
2499 | unwind-info registration list. */ | |
2500 | static int | |
2501 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2502 | unw_word_t *dilap, void *arg) | |
2503 | { | |
2504 | struct obj_section *text_sec; | |
2505 | struct objfile *objfile; | |
2506 | unw_word_t ip, addr; | |
2507 | unw_dyn_info_t di; | |
2508 | int ret; | |
2509 | ||
2510 | if (!libunwind_is_initialized ()) | |
2511 | return -UNW_ENOINFO; | |
2512 | ||
2513 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2514 | { | |
2515 | void *buf = NULL; | |
2516 | ||
2517 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
2518 | ip = text_sec->addr; | |
2519 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); | |
2520 | if (ret >= 0) | |
2521 | { | |
503ff15d | 2522 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2523 | /* We no longer need the dyn info storage so free it. */ |
2524 | xfree (buf); | |
2525 | ||
2526 | if (addr) | |
2527 | { | |
2528 | if (gdbarch_debug >= 1) | |
2529 | fprintf_unfiltered (gdb_stdlog, | |
2530 | "dynamic unwind table in objfile %s " | |
78ced177 | 2531 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2532 | bfd_get_filename (objfile->obfd), |
78ced177 | 2533 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2534 | *dilap = addr; |
2535 | return 0; | |
2536 | } | |
2537 | } | |
2538 | } | |
2539 | return -UNW_ENOINFO; | |
2540 | } | |
2541 | ||
2542 | ||
2543 | /* Frame interface functions for libunwind. */ | |
2544 | ||
2545 | static void | |
2546 | ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2547 | struct frame_id *this_id) | |
2548 | { | |
2549 | char buf[8]; | |
2550 | CORE_ADDR bsp; | |
2551 | struct frame_id id; | |
2552 | ||
2553 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
2554 | ||
2555 | /* We must add the bsp as the special address for frame comparison purposes. */ | |
2556 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2557 | bsp = extract_unsigned_integer (buf, 8); | |
2558 | ||
2559 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2560 | ||
2561 | if (gdbarch_debug >= 1) | |
2562 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
2563 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
2564 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2565 | paddr_nz (bsp), next_frame); | |
968d1cb4 JJ |
2566 | } |
2567 | ||
2568 | static void | |
2569 | ia64_libunwind_frame_prev_register (struct frame_info *next_frame, | |
2570 | void **this_cache, | |
2571 | int regnum, int *optimizedp, | |
2572 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
2573 | int *realnump, void *valuep) | |
2574 | { | |
2575 | int reg = regnum; | |
2576 | ||
2577 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2578 | reg = IA64_PR_REGNUM; | |
2579 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2580 | reg = IA64_UNAT_REGNUM; | |
2581 | ||
2582 | /* Let libunwind do most of the work. */ | |
2583 | libunwind_frame_prev_register (next_frame, this_cache, reg, | |
2584 | optimizedp, lvalp, addrp, realnump, valuep); | |
2585 | ||
6672f2ae AS |
2586 | /* No more to do if the value is not supposed to be supplied. */ |
2587 | if (!valuep) | |
2588 | return; | |
2589 | ||
968d1cb4 JJ |
2590 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2591 | { | |
2592 | ULONGEST prN_val; | |
2593 | ||
2594 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2595 | { | |
2596 | int rrb_pr = 0; | |
2597 | ULONGEST cfm; | |
2598 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2599 | ||
2600 | /* Fetch predicate register rename base from current frame | |
2601 | marker for this frame. */ | |
2602 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2603 | cfm = extract_unsigned_integer (buf, 8); | |
2604 | rrb_pr = (cfm >> 32) & 0x3f; | |
2605 | ||
2606 | /* Adjust the register number to account for register rotation. */ | |
2607 | regnum = VP16_REGNUM | |
2608 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
2609 | } | |
2610 | prN_val = extract_bit_field ((unsigned char *) valuep, | |
2611 | regnum - VP0_REGNUM, 1); | |
2612 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val); | |
2613 | } | |
2614 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2615 | { | |
2616 | ULONGEST unatN_val; | |
2617 | ||
2618 | unatN_val = extract_bit_field ((unsigned char *) valuep, | |
2619 | regnum - IA64_NAT0_REGNUM, 1); | |
2620 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2621 | unatN_val); | |
2622 | } | |
2623 | else if (regnum == IA64_BSP_REGNUM) | |
2624 | { | |
2625 | char cfm_valuep[MAX_REGISTER_SIZE]; | |
2626 | int cfm_optim; | |
2627 | int cfm_realnum; | |
2628 | enum lval_type cfm_lval; | |
2629 | CORE_ADDR cfm_addr; | |
2630 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
2631 | ||
2632 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
2633 | This corresponds to what the hardware bsp register will be if we pop the frame | |
2634 | back which is why we might have been called. We know that libunwind will pass us back | |
2635 | the beginning of the current frame so we should just add sof to it. */ | |
2636 | prev_bsp = extract_unsigned_integer (valuep, 8); | |
2637 | libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
2638 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
2639 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
2640 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); | |
2641 | ||
2642 | store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), | |
2643 | prev_bsp); | |
2644 | } | |
2645 | ||
2646 | if (gdbarch_debug >= 1) | |
2647 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2648 | "libunwind prev register <%s> is 0x%s\n", |
968d1cb4 | 2649 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
2650 | ? ia64_register_names[regnum] : "r??"), |
2651 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
968d1cb4 JJ |
2652 | } |
2653 | ||
2654 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2655 | { | |
2656 | NORMAL_FRAME, | |
2657 | ia64_libunwind_frame_this_id, | |
2658 | ia64_libunwind_frame_prev_register | |
2659 | }; | |
2660 | ||
2661 | static const struct frame_unwind * | |
2662 | ia64_libunwind_frame_sniffer (struct frame_info *next_frame) | |
2663 | { | |
2664 | if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) | |
2665 | return &ia64_libunwind_frame_unwind; | |
2666 | ||
2667 | return NULL; | |
2668 | } | |
2669 | ||
2670 | /* Set of libunwind callback acccessor functions. */ | |
2671 | static unw_accessors_t ia64_unw_accessors = | |
2672 | { | |
2673 | ia64_find_proc_info_x, | |
2674 | ia64_put_unwind_info, | |
2675 | ia64_get_dyn_info_list, | |
2676 | ia64_access_mem, | |
2677 | ia64_access_reg, | |
2678 | ia64_access_fpreg, | |
2679 | /* resume */ | |
2680 | /* get_proc_name */ | |
2681 | }; | |
2682 | ||
2683 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ | |
2684 | static struct libunwind_descr ia64_libunwind_descr = | |
2685 | { | |
2686 | ia64_gdb2uw_regnum, | |
2687 | ia64_uw2gdb_regnum, | |
2688 | ia64_is_fpreg, | |
2689 | &ia64_unw_accessors, | |
2690 | }; | |
2691 | ||
2692 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2693 | ||
74055713 AC |
2694 | /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of |
2695 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE | |
2696 | is the type (which is known to be struct, union or array). */ | |
16461d7d KB |
2697 | int |
2698 | ia64_use_struct_convention (int gcc_p, struct type *type) | |
2699 | { | |
64a5b29c KB |
2700 | struct type *float_elt_type; |
2701 | ||
2702 | /* HFAs are structures (or arrays) consisting entirely of floating | |
2703 | point values of the same length. Up to 8 of these are returned | |
2704 | in registers. Don't use the struct convention when this is the | |
004d836a | 2705 | case. */ |
64a5b29c KB |
2706 | float_elt_type = is_float_or_hfa_type (type); |
2707 | if (float_elt_type != NULL | |
2708 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2709 | return 0; | |
2710 | ||
2711 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 2712 | Don't use the struct convention for those either. */ |
16461d7d KB |
2713 | return TYPE_LENGTH (type) > 32; |
2714 | } | |
2715 | ||
2716 | void | |
004d836a | 2717 | ia64_extract_return_value (struct type *type, struct regcache *regcache, void *valbuf) |
16461d7d | 2718 | { |
64a5b29c KB |
2719 | struct type *float_elt_type; |
2720 | ||
2721 | float_elt_type = is_float_or_hfa_type (type); | |
2722 | if (float_elt_type != NULL) | |
2723 | { | |
004d836a | 2724 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
2725 | int offset = 0; |
2726 | int regnum = IA64_FR8_REGNUM; | |
2727 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
2728 | ||
2729 | while (n-- > 0) | |
2730 | { | |
004d836a JJ |
2731 | regcache_cooked_read (regcache, regnum, from); |
2732 | convert_typed_floating (from, builtin_type_ia64_ext, | |
2733 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
2734 | offset += TYPE_LENGTH (float_elt_type); |
2735 | regnum++; | |
2736 | } | |
2737 | } | |
16461d7d | 2738 | else |
004d836a JJ |
2739 | { |
2740 | ULONGEST val; | |
2741 | int offset = 0; | |
2742 | int regnum = IA64_GR8_REGNUM; | |
2743 | int reglen = TYPE_LENGTH (ia64_register_type (NULL, IA64_GR8_REGNUM)); | |
2744 | int n = TYPE_LENGTH (type) / reglen; | |
2745 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 2746 | |
004d836a JJ |
2747 | while (n-- > 0) |
2748 | { | |
2749 | ULONGEST val; | |
2750 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2751 | memcpy ((char *)valbuf + offset, &val, reglen); | |
2752 | offset += reglen; | |
2753 | regnum++; | |
2754 | } | |
16461d7d | 2755 | |
004d836a JJ |
2756 | if (m) |
2757 | { | |
2758 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2759 | memcpy ((char *)valbuf + offset, &val, m); | |
2760 | } | |
2761 | } | |
16461d7d KB |
2762 | } |
2763 | ||
2764 | CORE_ADDR | |
004d836a | 2765 | ia64_extract_struct_value_address (struct regcache *regcache) |
16461d7d | 2766 | { |
004d836a JJ |
2767 | error ("ia64_extract_struct_value_address called and cannot get struct value address"); |
2768 | return 0; | |
16461d7d KB |
2769 | } |
2770 | ||
16461d7d | 2771 | |
64a5b29c KB |
2772 | static int |
2773 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
2774 | { | |
2775 | switch (TYPE_CODE (t)) | |
2776 | { | |
2777 | case TYPE_CODE_FLT: | |
2778 | if (*etp) | |
2779 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
2780 | else | |
2781 | { | |
2782 | *etp = t; | |
2783 | return 1; | |
2784 | } | |
2785 | break; | |
2786 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
2787 | return |
2788 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
2789 | etp); | |
64a5b29c KB |
2790 | break; |
2791 | case TYPE_CODE_STRUCT: | |
2792 | { | |
2793 | int i; | |
2794 | ||
2795 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
2796 | if (!is_float_or_hfa_type_recurse |
2797 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
2798 | return 0; |
2799 | return 1; | |
2800 | } | |
2801 | break; | |
2802 | default: | |
2803 | return 0; | |
2804 | break; | |
2805 | } | |
2806 | } | |
2807 | ||
2808 | /* Determine if the given type is one of the floating point types or | |
2809 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 2810 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
2811 | |
2812 | static struct type * | |
2813 | is_float_or_hfa_type (struct type *t) | |
2814 | { | |
2815 | struct type *et = 0; | |
2816 | ||
2817 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
2818 | } | |
2819 | ||
2820 | ||
98f96ba1 KB |
2821 | /* Return 1 if the alignment of T is such that the next even slot |
2822 | should be used. Return 0, if the next available slot should | |
2823 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 2824 | and Runtime manual). */ |
98f96ba1 KB |
2825 | |
2826 | static int | |
2827 | slot_alignment_is_next_even (struct type *t) | |
2828 | { | |
2829 | switch (TYPE_CODE (t)) | |
2830 | { | |
2831 | case TYPE_CODE_INT: | |
2832 | case TYPE_CODE_FLT: | |
2833 | if (TYPE_LENGTH (t) > 8) | |
2834 | return 1; | |
2835 | else | |
2836 | return 0; | |
2837 | case TYPE_CODE_ARRAY: | |
2838 | return | |
2839 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
2840 | case TYPE_CODE_STRUCT: | |
2841 | { | |
2842 | int i; | |
2843 | ||
2844 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
2845 | if (slot_alignment_is_next_even | |
2846 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
2847 | return 1; | |
2848 | return 0; | |
2849 | } | |
2850 | default: | |
2851 | return 0; | |
2852 | } | |
2853 | } | |
2854 | ||
64a5b29c KB |
2855 | /* Attempt to find (and return) the global pointer for the given |
2856 | function. | |
2857 | ||
2858 | This is a rather nasty bit of code searchs for the .dynamic section | |
2859 | in the objfile corresponding to the pc of the function we're trying | |
2860 | to call. Once it finds the addresses at which the .dynamic section | |
2861 | lives in the child process, it scans the Elf64_Dyn entries for a | |
2862 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
2863 | d_un.d_ptr value is the global pointer. */ | |
2864 | ||
2865 | static CORE_ADDR | |
698cb3f0 | 2866 | generic_elf_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 2867 | { |
76d689a6 | 2868 | struct obj_section *faddr_sect; |
64a5b29c | 2869 | |
76d689a6 KB |
2870 | faddr_sect = find_pc_section (faddr); |
2871 | if (faddr_sect != NULL) | |
64a5b29c KB |
2872 | { |
2873 | struct obj_section *osect; | |
2874 | ||
76d689a6 | 2875 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
2876 | { |
2877 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
2878 | break; | |
2879 | } | |
2880 | ||
76d689a6 | 2881 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
2882 | { |
2883 | CORE_ADDR addr; | |
2884 | ||
2885 | addr = osect->addr; | |
2886 | while (addr < osect->endaddr) | |
2887 | { | |
2888 | int status; | |
2889 | LONGEST tag; | |
2890 | char buf[8]; | |
2891 | ||
2892 | status = target_read_memory (addr, buf, sizeof (buf)); | |
2893 | if (status != 0) | |
2894 | break; | |
2895 | tag = extract_signed_integer (buf, sizeof (buf)); | |
2896 | ||
2897 | if (tag == DT_PLTGOT) | |
2898 | { | |
2899 | CORE_ADDR global_pointer; | |
2900 | ||
2901 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
2902 | if (status != 0) | |
2903 | break; | |
7c0b4a20 | 2904 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
2905 | |
2906 | /* The payoff... */ | |
2907 | return global_pointer; | |
2908 | } | |
2909 | ||
2910 | if (tag == DT_NULL) | |
2911 | break; | |
2912 | ||
2913 | addr += 16; | |
2914 | } | |
2915 | } | |
2916 | } | |
2917 | return 0; | |
2918 | } | |
2919 | ||
2920 | /* Given a function's address, attempt to find (and return) the | |
2921 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 2922 | not found. */ |
64a5b29c KB |
2923 | static CORE_ADDR |
2924 | find_extant_func_descr (CORE_ADDR faddr) | |
2925 | { | |
76d689a6 | 2926 | struct obj_section *faddr_sect; |
64a5b29c | 2927 | |
004d836a | 2928 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
2929 | faddr_sect = find_pc_section (faddr); |
2930 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
2931 | return faddr; |
2932 | ||
76d689a6 | 2933 | if (faddr_sect != NULL) |
64a5b29c | 2934 | { |
76d689a6 KB |
2935 | struct obj_section *osect; |
2936 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
2937 | { |
2938 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
2939 | break; | |
2940 | } | |
2941 | ||
76d689a6 | 2942 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
2943 | { |
2944 | CORE_ADDR addr; | |
2945 | ||
2946 | addr = osect->addr; | |
2947 | while (addr < osect->endaddr) | |
2948 | { | |
2949 | int status; | |
2950 | LONGEST faddr2; | |
2951 | char buf[8]; | |
2952 | ||
2953 | status = target_read_memory (addr, buf, sizeof (buf)); | |
2954 | if (status != 0) | |
2955 | break; | |
2956 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
2957 | ||
2958 | if (faddr == faddr2) | |
2959 | return addr; | |
2960 | ||
2961 | addr += 16; | |
2962 | } | |
2963 | } | |
2964 | } | |
2965 | return 0; | |
2966 | } | |
2967 | ||
2968 | /* Attempt to find a function descriptor corresponding to the | |
2969 | given address. If none is found, construct one on the | |
004d836a | 2970 | stack using the address at fdaptr. */ |
64a5b29c KB |
2971 | |
2972 | static CORE_ADDR | |
2973 | find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr) | |
2974 | { | |
2975 | CORE_ADDR fdesc; | |
2976 | ||
2977 | fdesc = find_extant_func_descr (faddr); | |
2978 | ||
2979 | if (fdesc == 0) | |
2980 | { | |
2981 | CORE_ADDR global_pointer; | |
2982 | char buf[16]; | |
2983 | ||
2984 | fdesc = *fdaptr; | |
2985 | *fdaptr += 16; | |
2986 | ||
698cb3f0 | 2987 | global_pointer = FIND_GLOBAL_POINTER (faddr); |
64a5b29c KB |
2988 | |
2989 | if (global_pointer == 0) | |
2990 | global_pointer = read_register (IA64_GR1_REGNUM); | |
2991 | ||
fbd9dcd3 AC |
2992 | store_unsigned_integer (buf, 8, faddr); |
2993 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
2994 | |
2995 | write_memory (fdesc, buf, 16); | |
2996 | } | |
2997 | ||
2998 | return fdesc; | |
2999 | } | |
16461d7d | 3000 | |
af8b88dd JJ |
3001 | /* Use the following routine when printing out function pointers |
3002 | so the user can see the function address rather than just the | |
3003 | function descriptor. */ | |
3004 | static CORE_ADDR | |
e2d0e7eb AC |
3005 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3006 | struct target_ops *targ) | |
af8b88dd JJ |
3007 | { |
3008 | struct obj_section *s; | |
3009 | ||
3010 | s = find_pc_section (addr); | |
3011 | ||
3012 | /* check if ADDR points to a function descriptor. */ | |
3013 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3014 | return read_memory_unsigned_integer (addr, 8); | |
3015 | ||
3016 | return addr; | |
3017 | } | |
3018 | ||
a78f21af | 3019 | static CORE_ADDR |
004d836a JJ |
3020 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3021 | { | |
3022 | return sp & ~0xfLL; | |
3023 | } | |
3024 | ||
3025 | static CORE_ADDR | |
7d9b040b | 3026 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3027 | struct regcache *regcache, CORE_ADDR bp_addr, |
3028 | int nargs, struct value **args, CORE_ADDR sp, | |
3029 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3030 | { |
3031 | int argno; | |
ea7c478f | 3032 | struct value *arg; |
16461d7d KB |
3033 | struct type *type; |
3034 | int len, argoffset; | |
64a5b29c | 3035 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3036 | int floatreg; |
004d836a | 3037 | CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr, pc, global_pointer; |
7d9b040b | 3038 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3039 | |
3040 | nslots = 0; | |
64a5b29c | 3041 | nfuncargs = 0; |
004d836a | 3042 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3043 | for (argno = 0; argno < nargs; argno++) |
3044 | { | |
3045 | arg = args[argno]; | |
3046 | type = check_typedef (VALUE_TYPE (arg)); | |
3047 | len = TYPE_LENGTH (type); | |
3048 | ||
98f96ba1 | 3049 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3050 | nslots++; |
3051 | ||
64a5b29c KB |
3052 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3053 | nfuncargs++; | |
3054 | ||
16461d7d KB |
3055 | nslots += (len + 7) / 8; |
3056 | } | |
3057 | ||
004d836a | 3058 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3059 | rseslots = (nslots > 8) ? 8 : nslots; |
3060 | memslots = nslots - rseslots; | |
3061 | ||
004d836a JJ |
3062 | /* Allocate a new RSE frame. */ |
3063 | cfm = read_register (IA64_CFM_REGNUM); | |
16461d7d | 3064 | |
004d836a | 3065 | bsp = read_register (IA64_BSP_REGNUM); |
16461d7d | 3066 | new_bsp = rse_address_add (bsp, rseslots); |
004d836a | 3067 | write_register (IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3068 | |
004d836a | 3069 | pfs = read_register (IA64_PFS_REGNUM); |
16461d7d KB |
3070 | pfs &= 0xc000000000000000LL; |
3071 | pfs |= (cfm & 0xffffffffffffLL); | |
004d836a | 3072 | write_register (IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3073 | |
3074 | cfm &= 0xc000000000000000LL; | |
3075 | cfm |= rseslots; | |
004d836a | 3076 | write_register (IA64_CFM_REGNUM, cfm); |
16461d7d | 3077 | |
64a5b29c KB |
3078 | /* We will attempt to find function descriptors in the .opd segment, |
3079 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3080 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3081 | funcdescaddr = sp - nfuncargs * 16; |
3082 | funcdescaddr &= ~0xfLL; | |
3083 | ||
3084 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3085 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3086 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3087 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3088 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3089 | |
64a5b29c KB |
3090 | /* Place the arguments where they belong. The arguments will be |
3091 | either placed in the RSE backing store or on the memory stack. | |
3092 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3093 | floating point registers. */ |
16461d7d KB |
3094 | slotnum = 0; |
3095 | floatreg = IA64_FR8_REGNUM; | |
3096 | for (argno = 0; argno < nargs; argno++) | |
3097 | { | |
64a5b29c KB |
3098 | struct type *float_elt_type; |
3099 | ||
16461d7d KB |
3100 | arg = args[argno]; |
3101 | type = check_typedef (VALUE_TYPE (arg)); | |
3102 | len = TYPE_LENGTH (type); | |
64a5b29c | 3103 | |
004d836a | 3104 | /* Special handling for function parameters. */ |
64a5b29c KB |
3105 | if (len == 8 |
3106 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3107 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3108 | { | |
3109 | char val_buf[8]; | |
3110 | ||
fbd9dcd3 | 3111 | store_unsigned_integer (val_buf, 8, |
7c0b4a20 | 3112 | find_func_descr (extract_unsigned_integer (VALUE_CONTENTS (arg), 8), |
fbd9dcd3 | 3113 | &funcdescaddr)); |
64a5b29c KB |
3114 | if (slotnum < rseslots) |
3115 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3116 | else | |
3117 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3118 | slotnum++; | |
3119 | continue; | |
3120 | } | |
3121 | ||
004d836a | 3122 | /* Normal slots. */ |
98f96ba1 KB |
3123 | |
3124 | /* Skip odd slot if necessary... */ | |
3125 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3126 | slotnum++; |
98f96ba1 | 3127 | |
16461d7d KB |
3128 | argoffset = 0; |
3129 | while (len > 0) | |
3130 | { | |
3131 | char val_buf[8]; | |
3132 | ||
3133 | memset (val_buf, 0, 8); | |
3134 | memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len); | |
3135 | ||
3136 | if (slotnum < rseslots) | |
3137 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3138 | else | |
3139 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3140 | ||
3141 | argoffset += 8; | |
3142 | len -= 8; | |
3143 | slotnum++; | |
3144 | } | |
64a5b29c | 3145 | |
004d836a | 3146 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3147 | float_elt_type = is_float_or_hfa_type (type); |
3148 | if (float_elt_type != NULL) | |
3149 | { | |
3150 | argoffset = 0; | |
3151 | len = TYPE_LENGTH (type); | |
3152 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3153 | { | |
004d836a JJ |
3154 | char to[MAX_REGISTER_SIZE]; |
3155 | convert_typed_floating (VALUE_CONTENTS (arg) + argoffset, float_elt_type, | |
3156 | to, builtin_type_ia64_ext); | |
3157 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3158 | floatreg++; |
3159 | argoffset += TYPE_LENGTH (float_elt_type); | |
3160 | len -= TYPE_LENGTH (float_elt_type); | |
3161 | } | |
16461d7d KB |
3162 | } |
3163 | } | |
3164 | ||
004d836a | 3165 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3166 | if (struct_return) |
3167 | { | |
004d836a | 3168 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3169 | } |
3170 | ||
004d836a | 3171 | global_pointer = FIND_GLOBAL_POINTER (func_addr); |
8dd5115e | 3172 | |
004d836a JJ |
3173 | if (global_pointer != 0) |
3174 | write_register (IA64_GR1_REGNUM, global_pointer); | |
a59fe496 | 3175 | |
004d836a | 3176 | write_register (IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3177 | |
004d836a | 3178 | write_register (sp_regnum, sp); |
16461d7d KB |
3179 | |
3180 | return sp; | |
3181 | } | |
3182 | ||
004d836a JJ |
3183 | static struct frame_id |
3184 | ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3185 | { |
004d836a | 3186 | char buf[8]; |
4afcc598 | 3187 | CORE_ADDR sp, bsp; |
004d836a JJ |
3188 | |
3189 | frame_unwind_register (next_frame, sp_regnum, buf); | |
3190 | sp = extract_unsigned_integer (buf, 8); | |
3191 | ||
4afcc598 JJ |
3192 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
3193 | bsp = extract_unsigned_integer (buf, 8); | |
3194 | ||
3195 | if (gdbarch_debug >= 1) | |
3196 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
3197 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
3198 | paddr_nz (frame_pc_unwind (next_frame)), | |
3199 | paddr_nz (sp), paddr_nz (bsp)); | |
4afcc598 JJ |
3200 | |
3201 | return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); | |
16461d7d KB |
3202 | } |
3203 | ||
004d836a JJ |
3204 | static CORE_ADDR |
3205 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3206 | { |
004d836a JJ |
3207 | char buf[8]; |
3208 | CORE_ADDR ip, psr, pc; | |
3209 | ||
3210 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3211 | ip = extract_unsigned_integer (buf, 8); | |
3212 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3213 | psr = extract_unsigned_integer (buf, 8); | |
3214 | ||
3215 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3216 | return pc; | |
16461d7d KB |
3217 | } |
3218 | ||
3219 | static void | |
004d836a | 3220 | ia64_store_return_value (struct type *type, struct regcache *regcache, const void *valbuf) |
16461d7d | 3221 | { |
004d836a | 3222 | if (TYPE_CODE (type) == TYPE_CODE_FLT) |
16461d7d | 3223 | { |
004d836a JJ |
3224 | char to[MAX_REGISTER_SIZE]; |
3225 | convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext); | |
3226 | regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to); | |
3227 | target_store_registers (IA64_FR8_REGNUM); | |
16461d7d KB |
3228 | } |
3229 | else | |
004d836a | 3230 | regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf); |
16461d7d KB |
3231 | } |
3232 | ||
3233 | static void | |
1750fa04 AC |
3234 | ia64_remote_translate_xfer_address (struct gdbarch *gdbarch, |
3235 | struct regcache *regcache, | |
3236 | CORE_ADDR memaddr, int nr_bytes, | |
16461d7d KB |
3237 | CORE_ADDR *targ_addr, int *targ_len) |
3238 | { | |
3239 | *targ_addr = memaddr; | |
3240 | *targ_len = nr_bytes; | |
3241 | } | |
3242 | ||
6926787d AS |
3243 | static int |
3244 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3245 | { | |
3246 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3247 | return print_insn_ia64 (memaddr, info); | |
3248 | } | |
3249 | ||
16461d7d KB |
3250 | static struct gdbarch * |
3251 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3252 | { | |
3253 | struct gdbarch *gdbarch; | |
244bc108 | 3254 | struct gdbarch_tdep *tdep; |
244bc108 | 3255 | |
85bf2b91 JJ |
3256 | /* If there is already a candidate, use it. */ |
3257 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3258 | if (arches != NULL) | |
3259 | return arches->gdbarch; | |
16461d7d | 3260 | |
244bc108 KB |
3261 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3262 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3263 | |
d7fa2ae2 KB |
3264 | /* Set the method of obtaining the sigcontext addresses at which |
3265 | registers are saved. The method of checking to see if | |
3266 | native_find_global_pointer is nonzero to indicate that we're | |
3267 | on AIX is kind of hokey, but I can't think of a better way | |
3268 | to do it. */ | |
85bf2b91 | 3269 | if (info.osabi == GDB_OSABI_LINUX) |
244bc108 | 3270 | tdep->sigcontext_register_address = ia64_linux_sigcontext_register_address; |
d7fa2ae2 KB |
3271 | else if (native_find_global_pointer != 0) |
3272 | tdep->sigcontext_register_address = ia64_aix_sigcontext_register_address; | |
244bc108 KB |
3273 | else |
3274 | tdep->sigcontext_register_address = 0; | |
16461d7d | 3275 | |
ca557f44 AC |
3276 | /* We know that GNU/Linux won't have to resort to the |
3277 | native_find_global_pointer hackery. But that's the only one we | |
3278 | know about so far, so if native_find_global_pointer is set to | |
3279 | something non-zero, then use it. Otherwise fall back to using | |
3280 | generic_elf_find_global_pointer. This arrangement should (in | |
3281 | theory) allow us to cross debug GNU/Linux binaries from an AIX | |
3282 | machine. */ | |
85bf2b91 | 3283 | if (info.osabi == GDB_OSABI_LINUX) |
698cb3f0 KB |
3284 | tdep->find_global_pointer = generic_elf_find_global_pointer; |
3285 | else if (native_find_global_pointer != 0) | |
3286 | tdep->find_global_pointer = native_find_global_pointer; | |
3287 | else | |
3288 | tdep->find_global_pointer = generic_elf_find_global_pointer; | |
3289 | ||
004d836a JJ |
3290 | /* Define the ia64 floating-point format to gdb. */ |
3291 | builtin_type_ia64_ext = | |
3292 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3293 | 0, "builtin_type_ia64_ext", NULL); | |
3294 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = &floatformat_ia64_ext; | |
3295 | ||
5439edaa AC |
3296 | /* According to the ia64 specs, instructions that store long double |
3297 | floats in memory use a long-double format different than that | |
3298 | used in the floating registers. The memory format matches the | |
3299 | x86 extended float format which is 80 bits. An OS may choose to | |
3300 | use this format (e.g. GNU/Linux) or choose to use a different | |
3301 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3302 | the setting of the format may be moved/overridden in an | |
3303 | OS-specific tdep file. */ | |
32edc941 JJ |
3304 | set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext); |
3305 | ||
16461d7d KB |
3306 | set_gdbarch_short_bit (gdbarch, 16); |
3307 | set_gdbarch_int_bit (gdbarch, 32); | |
3308 | set_gdbarch_long_bit (gdbarch, 64); | |
3309 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3310 | set_gdbarch_float_bit (gdbarch, 32); | |
3311 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3312 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3313 | set_gdbarch_ptr_bit (gdbarch, 64); |
3314 | ||
004d836a JJ |
3315 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3316 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3317 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3318 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3319 | |
3320 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a JJ |
3321 | /* FIXME: Following interface should not be needed, however, without it recurse.exp |
3322 | gets a number of extra failures. */ | |
b1e29e33 | 3323 | set_gdbarch_deprecated_register_size (gdbarch, 8); |
004d836a | 3324 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3325 | |
004d836a JJ |
3326 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3327 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3328 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3329 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3330 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3331 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3332 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3333 | |
004d836a | 3334 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3335 | |
b5622e8d | 3336 | set_gdbarch_deprecated_use_struct_convention (gdbarch, ia64_use_struct_convention); |
004d836a | 3337 | set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); |
16461d7d | 3338 | |
004d836a | 3339 | set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); |
74055713 | 3340 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address); |
16461d7d KB |
3341 | |
3342 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3343 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3344 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3345 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
54a5c8d8 KB |
3346 | if (info.osabi == GDB_OSABI_LINUX) |
3347 | set_gdbarch_write_pc (gdbarch, ia64_linux_write_pc); | |
3348 | else | |
3349 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); | |
16461d7d KB |
3350 | |
3351 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3352 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a JJ |
3353 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
3354 | set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); | |
16461d7d | 3355 | |
004d836a JJ |
3356 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
3357 | frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); | |
968d1cb4 JJ |
3358 | #ifdef HAVE_LIBUNWIND_IA64_H |
3359 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); | |
3360 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); | |
3361 | #endif | |
004d836a JJ |
3362 | frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); |
3363 | frame_base_set_default (gdbarch, &ia64_frame_base); | |
16461d7d KB |
3364 | |
3365 | /* Settings that should be unnecessary. */ | |
3366 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3367 | ||
16461d7d KB |
3368 | set_gdbarch_remote_translate_xfer_address ( |
3369 | gdbarch, ia64_remote_translate_xfer_address); | |
3370 | ||
6926787d | 3371 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3372 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3373 | |
16461d7d KB |
3374 | return gdbarch; |
3375 | } | |
3376 | ||
a78f21af AC |
3377 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3378 | ||
16461d7d KB |
3379 | void |
3380 | _initialize_ia64_tdep (void) | |
3381 | { | |
3382 | register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init); | |
16461d7d | 3383 | } |