]>
Commit | Line | Data |
---|---|---|
5489fcc3 KR |
1 | /* |
2 | * Histogram related operations. | |
3 | */ | |
4 | #include <stdio.h> | |
5 | #include "libiberty.h" | |
6 | #include "gprof.h" | |
7 | #include "core.h" | |
8 | #include "gmon_io.h" | |
9 | #include "gmon_out.h" | |
10 | #include "hist.h" | |
11 | #include "symtab.h" | |
12 | #include "sym_ids.h" | |
13 | #include "utils.h" | |
14 | ||
15 | /* declarations of automatically generated functions to output blurbs: */ | |
12516a37 | 16 | extern void flat_blurb PARAMS ((FILE * fp)); |
5489fcc3 KR |
17 | |
18 | bfd_vma s_lowpc; /* lowest address in .text */ | |
19 | bfd_vma s_highpc = 0; /* highest address in .text */ | |
20 | bfd_vma lowpc, highpc; /* same, but expressed in UNITs */ | |
21 | int hist_num_bins = 0; /* number of histogram samples */ | |
22 | int *hist_sample = 0; /* histogram samples (shorts in the file!) */ | |
23 | double hist_scale; | |
12516a37 KR |
24 | char hist_dimension[sizeof (((struct gmon_hist_hdr *) 0)->dimen) + 1] = |
25 | "seconds"; | |
5489fcc3 KR |
26 | char hist_dimension_abbrev = 's'; |
27 | ||
28 | static double accum_time; /* accumulated time so far for print_line() */ | |
29 | static double total_time; /* total time for all routines */ | |
30 | /* | |
31 | * Table of SI prefixes for powers of 10 (used to automatically | |
32 | * scale some of the values in the flat profile). | |
33 | */ | |
12516a37 KR |
34 | const struct |
35 | { | |
5489fcc3 KR |
36 | char prefix; |
37 | double scale; | |
12516a37 KR |
38 | } |
39 | SItab[] = | |
40 | { | |
41 | { | |
42 | 'T', 1e-12 | |
43 | } | |
44 | , /* tera */ | |
45 | { | |
46 | 'G', 1e-09 | |
47 | } | |
48 | , /* giga */ | |
49 | { | |
50 | 'M', 1e-06 | |
51 | } | |
52 | , /* mega */ | |
53 | { | |
54 | 'K', 1e-03 | |
55 | } | |
56 | , /* kilo */ | |
57 | { | |
58 | ' ', 1e-00 | |
59 | } | |
60 | , | |
61 | { | |
62 | 'm', 1e+03 | |
63 | } | |
64 | , /* milli */ | |
65 | { | |
66 | 'u', 1e+06 | |
67 | } | |
68 | , /* micro */ | |
69 | { | |
70 | 'n', 1e+09 | |
71 | } | |
72 | , /* nano */ | |
73 | { | |
74 | 'p', 1e+12 | |
75 | } | |
76 | , /* pico */ | |
77 | { | |
78 | 'f', 1e+15 | |
79 | } | |
80 | , /* femto */ | |
81 | { | |
82 | 'a', 1e+18 | |
83 | } | |
84 | , /* ato */ | |
5489fcc3 KR |
85 | }; |
86 | ||
87 | /* | |
88 | * Read the histogram from file IFP. FILENAME is the name of IFP and | |
89 | * is provided for formatting error messages only. | |
90 | */ | |
91 | void | |
12516a37 | 92 | DEFUN (hist_read_rec, (ifp, filename), FILE * ifp AND const char *filename) |
5489fcc3 | 93 | { |
12516a37 KR |
94 | struct gmon_hist_hdr hdr; |
95 | bfd_vma n_lowpc, n_highpc; | |
96 | int i, ncnt, profrate; | |
97 | UNIT count; | |
98 | ||
99 | if (fread (&hdr, sizeof (hdr), 1, ifp) != 1) | |
100 | { | |
101 | fprintf (stderr, "%s: %s: unexpected end of file\n", | |
102 | whoami, filename); | |
103 | done (1); | |
03c35bcb | 104 | } |
12516a37 KR |
105 | |
106 | n_lowpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.low_pc); | |
107 | n_highpc = (bfd_vma) get_vma (core_bfd, (bfd_byte *) hdr.high_pc); | |
108 | ncnt = bfd_get_32 (core_bfd, (bfd_byte *) hdr.hist_size); | |
109 | profrate = bfd_get_32 (core_bfd, (bfd_byte *) hdr.prof_rate); | |
110 | strncpy (hist_dimension, hdr.dimen, sizeof (hdr.dimen)); | |
111 | hist_dimension[sizeof (hdr.dimen)] = '\0'; | |
112 | hist_dimension_abbrev = hdr.dimen_abbrev; | |
113 | ||
114 | if (!s_highpc) | |
115 | { | |
116 | ||
117 | /* this is the first histogram record: */ | |
118 | ||
119 | s_lowpc = n_lowpc; | |
120 | s_highpc = n_highpc; | |
121 | lowpc = (bfd_vma) n_lowpc / sizeof (UNIT); | |
122 | highpc = (bfd_vma) n_highpc / sizeof (UNIT); | |
123 | hist_num_bins = ncnt; | |
124 | hz = profrate; | |
03c35bcb | 125 | } |
12516a37 KR |
126 | |
127 | DBG (SAMPLEDEBUG, | |
128 | printf ("[hist_read_rec] n_lowpc 0x%lx n_highpc 0x%lx ncnt %d\n", | |
5489fcc3 | 129 | n_lowpc, n_highpc, ncnt); |
12516a37 | 130 | printf ("[hist_read_rec] s_lowpc 0x%lx s_highpc 0x%lx nsamples %d\n", |
5489fcc3 | 131 | s_lowpc, s_highpc, hist_num_bins); |
12516a37 | 132 | printf ("[hist_read_rec] lowpc 0x%lx highpc 0x%lx\n", |
5489fcc3 KR |
133 | lowpc, highpc)); |
134 | ||
12516a37 KR |
135 | if (n_lowpc != s_lowpc || n_highpc != s_highpc |
136 | || ncnt != hist_num_bins || hz != profrate) | |
5489fcc3 | 137 | { |
12516a37 KR |
138 | fprintf (stderr, "%s: `%s' is incompatible with first gmon file\n", |
139 | whoami, filename); | |
140 | done (1); | |
03c35bcb | 141 | } |
5489fcc3 | 142 | |
12516a37 KR |
143 | if (!hist_sample) |
144 | { | |
145 | hist_sample = (int *) xmalloc (hist_num_bins * sizeof (hist_sample[0])); | |
146 | memset (hist_sample, 0, hist_num_bins * sizeof (hist_sample[0])); | |
03c35bcb | 147 | } |
5489fcc3 | 148 | |
12516a37 KR |
149 | for (i = 0; i < hist_num_bins; ++i) |
150 | { | |
151 | if (fread (&count[0], sizeof (count), 1, ifp) != 1) | |
152 | { | |
153 | fprintf (stderr, | |
154 | "%s: %s: unexpected EOF after reading %d of %d samples\n", | |
155 | whoami, filename, i, hist_num_bins); | |
156 | done (1); | |
03c35bcb | 157 | } |
12516a37 | 158 | hist_sample[i] += bfd_get_16 (core_bfd, (bfd_byte *) & count[0]); |
03c35bcb KR |
159 | } |
160 | } | |
5489fcc3 KR |
161 | |
162 | ||
163 | /* | |
164 | * Write execution histogram to file OFP. FILENAME is the name | |
165 | * of OFP and is provided for formatting error-messages only. | |
166 | */ | |
167 | void | |
12516a37 | 168 | DEFUN (hist_write_hist, (ofp, filename), FILE * ofp AND const char *filename) |
5489fcc3 | 169 | { |
12516a37 KR |
170 | struct gmon_hist_hdr hdr; |
171 | unsigned char tag; | |
172 | UNIT count; | |
173 | int i; | |
174 | ||
175 | /* write header: */ | |
176 | ||
177 | tag = GMON_TAG_TIME_HIST; | |
178 | put_vma (core_bfd, s_lowpc, (bfd_byte *) hdr.low_pc); | |
179 | put_vma (core_bfd, s_highpc, (bfd_byte *) hdr.high_pc); | |
180 | bfd_put_32 (core_bfd, hist_num_bins, (bfd_byte *) hdr.hist_size); | |
181 | bfd_put_32 (core_bfd, hz, (bfd_byte *) hdr.prof_rate); | |
182 | strncpy (hdr.dimen, hist_dimension, sizeof (hdr.dimen)); | |
183 | hdr.dimen_abbrev = hist_dimension_abbrev; | |
184 | ||
185 | if (fwrite (&tag, sizeof (tag), 1, ofp) != 1 | |
186 | || fwrite (&hdr, sizeof (hdr), 1, ofp) != 1) | |
187 | { | |
188 | perror (filename); | |
189 | done (1); | |
03c35bcb | 190 | } |
12516a37 KR |
191 | |
192 | for (i = 0; i < hist_num_bins; ++i) | |
193 | { | |
194 | bfd_put_16 (core_bfd, hist_sample[i], (bfd_byte *) & count[0]); | |
195 | if (fwrite (&count[0], sizeof (count), 1, ofp) != 1) | |
196 | { | |
197 | perror (filename); | |
198 | done (1); | |
03c35bcb KR |
199 | } |
200 | } | |
201 | } | |
5489fcc3 KR |
202 | |
203 | ||
204 | /* | |
205 | * Calculate scaled entry point addresses (to save time in | |
206 | * hist_assign_samples), and, on architectures that have procedure | |
207 | * entry masks at the start of a function, possibly push the scaled | |
208 | * entry points over the procedure entry mask, if it turns out that | |
209 | * the entry point is in one bin and the code for a routine is in the | |
210 | * next bin. | |
211 | */ | |
212 | static void | |
fcc14c40 | 213 | scale_and_align_entries () |
5489fcc3 | 214 | { |
12516a37 | 215 | Sym *sym; |
12516a37 KR |
216 | bfd_vma bin_of_entry; |
217 | bfd_vma bin_of_code; | |
5489fcc3 | 218 | |
12516a37 KR |
219 | for (sym = symtab.base; sym < symtab.limit; sym++) |
220 | { | |
221 | sym->hist.scaled_addr = sym->addr / sizeof (UNIT); | |
12516a37 KR |
222 | bin_of_entry = (sym->hist.scaled_addr - lowpc) / hist_scale; |
223 | bin_of_code = (sym->hist.scaled_addr + UNITS_TO_CODE - lowpc) / hist_scale; | |
224 | if (bin_of_entry < bin_of_code) | |
225 | { | |
226 | DBG (SAMPLEDEBUG, | |
227 | printf ("[scale_and_align_entries] pushing 0x%lx to 0x%lx\n", | |
c446c25a KR |
228 | sym->hist.scaled_addr, |
229 | sym->hist.scaled_addr + UNITS_TO_CODE)); | |
230 | sym->hist.scaled_addr += UNITS_TO_CODE; | |
03c35bcb | 231 | } |
03c35bcb KR |
232 | } |
233 | } | |
5489fcc3 KR |
234 | |
235 | ||
236 | /* | |
237 | * Assign samples to the symbol to which they belong. | |
238 | * | |
239 | * Histogram bin I covers some address range [BIN_LOWPC,BIN_HIGH_PC) | |
240 | * which may overlap one more symbol address ranges. If a symbol | |
241 | * overlaps with the bin's address range by O percent, then O percent | |
242 | * of the bin's count is credited to that symbol. | |
243 | * | |
244 | * There are three cases as to where BIN_LOW_PC and BIN_HIGH_PC can be | |
245 | * with respect to the symbol's address range [SYM_LOW_PC, | |
246 | * SYM_HIGH_PC) as shown in the following diagram. OVERLAP computes | |
247 | * the distance (in UNITs) between the arrows, the fraction of the | |
248 | * sample that is to be credited to the symbol which starts at | |
249 | * SYM_LOW_PC. | |
250 | * | |
12516a37 KR |
251 | * sym_low_pc sym_high_pc |
252 | * | | | |
253 | * v v | |
5489fcc3 | 254 | * |
12516a37 KR |
255 | * +-----------------------------------------------+ |
256 | * | | | |
257 | * | ->| |<- ->| |<- ->| |<- | | |
258 | * | | | | | | | |
259 | * +---------+ +---------+ +---------+ | |
5489fcc3 | 260 | * |
12516a37 KR |
261 | * ^ ^ ^ ^ ^ ^ |
262 | * | | | | | | | |
5489fcc3 KR |
263 | * bin_low_pc bin_high_pc bin_low_pc bin_high_pc bin_low_pc bin_high_pc |
264 | * | |
265 | * For the VAX we assert that samples will never fall in the first two | |
266 | * bytes of any routine, since that is the entry mask, thus we call | |
267 | * scale_and_align_entries() to adjust the entry points if the entry | |
268 | * mask falls in one bin but the code for the routine doesn't start | |
269 | * until the next bin. In conjunction with the alignment of routine | |
270 | * addresses, this should allow us to have only one sample for every | |
271 | * four bytes of text space and never have any overlap (the two end | |
272 | * cases, above). | |
273 | */ | |
274 | void | |
12516a37 | 275 | DEFUN_VOID (hist_assign_samples) |
5489fcc3 | 276 | { |
12516a37 KR |
277 | bfd_vma bin_low_pc, bin_high_pc; |
278 | bfd_vma sym_low_pc, sym_high_pc; | |
279 | bfd_vma overlap, addr; | |
280 | int bin_count, i, j; | |
281 | double time, credit; | |
282 | ||
283 | /* read samples and assign to symbols: */ | |
284 | hist_scale = highpc - lowpc; | |
285 | hist_scale /= hist_num_bins; | |
286 | scale_and_align_entries (); | |
287 | ||
288 | /* iterate over all sample bins: */ | |
289 | ||
290 | for (i = 0, j = 1; i < hist_num_bins; ++i) | |
291 | { | |
292 | bin_count = hist_sample[i]; | |
293 | if (!bin_count) | |
294 | { | |
295 | continue; | |
03c35bcb | 296 | } |
12516a37 KR |
297 | bin_low_pc = lowpc + (bfd_vma) (hist_scale * i); |
298 | bin_high_pc = lowpc + (bfd_vma) (hist_scale * (i + 1)); | |
299 | time = bin_count; | |
300 | DBG (SAMPLEDEBUG, | |
301 | printf ( | |
302 | "[assign_samples] bin_low_pc=0x%lx, bin_high_pc=0x%lx, bin_count=%d\n", | |
303 | sizeof (UNIT) * bin_low_pc, sizeof (UNIT) * bin_high_pc, | |
304 | bin_count)); | |
305 | total_time += time; | |
306 | ||
307 | /* credit all symbols that are covered by bin I: */ | |
308 | ||
309 | for (j = j - 1; j < symtab.len; ++j) | |
310 | { | |
311 | sym_low_pc = symtab.base[j].hist.scaled_addr; | |
312 | sym_high_pc = symtab.base[j + 1].hist.scaled_addr; | |
313 | /* | |
314 | * If high end of bin is below entry address, go for next | |
315 | * bin: | |
316 | */ | |
317 | if (bin_high_pc < sym_low_pc) | |
318 | { | |
319 | break; | |
03c35bcb | 320 | } |
12516a37 KR |
321 | /* |
322 | * If low end of bin is above high end of symbol, go for | |
323 | * next symbol. | |
324 | */ | |
325 | if (bin_low_pc >= sym_high_pc) | |
326 | { | |
327 | continue; | |
03c35bcb | 328 | } |
12516a37 KR |
329 | overlap = |
330 | MIN (bin_high_pc, sym_high_pc) - MAX (bin_low_pc, sym_low_pc); | |
331 | if (overlap > 0) | |
332 | { | |
333 | DBG (SAMPLEDEBUG, | |
334 | printf ( | |
335 | "[assign_samples] [0x%lx,0x%lx) %s gets %f ticks %ld overlap\n", | |
336 | symtab.base[j].addr, sizeof (UNIT) * sym_high_pc, | |
337 | symtab.base[j].name, overlap * time / hist_scale, | |
338 | overlap)); | |
339 | addr = symtab.base[j].addr; | |
340 | credit = overlap * time / hist_scale; | |
341 | /* | |
342 | * Credit symbol if it appears in INCL_FLAT or that | |
343 | * table is empty and it does not appear it in | |
344 | * EXCL_FLAT. | |
345 | */ | |
346 | if (sym_lookup (&syms[INCL_FLAT], addr) | |
347 | || (syms[INCL_FLAT].len == 0 | |
348 | && !sym_lookup (&syms[EXCL_FLAT], addr))) | |
5489fcc3 | 349 | { |
12516a37 KR |
350 | symtab.base[j].hist.time += credit; |
351 | } | |
352 | else | |
353 | { | |
354 | total_time -= credit; | |
03c35bcb KR |
355 | } |
356 | } | |
357 | } | |
358 | } | |
12516a37 | 359 | DBG (SAMPLEDEBUG, printf ("[assign_samples] total_time %f\n", |
5489fcc3 | 360 | total_time)); |
03c35bcb | 361 | } |
5489fcc3 KR |
362 | |
363 | ||
364 | /* | |
365 | * Print header for flag histogram profile: | |
366 | */ | |
367 | static void | |
12516a37 | 368 | DEFUN (print_header, (prefix), const char prefix) |
5489fcc3 | 369 | { |
12516a37 KR |
370 | char unit[64]; |
371 | ||
372 | sprintf (unit, "%c%c/call", prefix, hist_dimension_abbrev); | |
373 | ||
374 | if (bsd_style_output) | |
375 | { | |
376 | printf ("\ngranularity: each sample hit covers %ld byte(s)", | |
377 | (long) hist_scale * sizeof (UNIT)); | |
378 | if (total_time > 0.0) | |
379 | { | |
380 | printf (" for %.2f%% of %.2f %s\n\n", | |
381 | 100.0 / total_time, total_time / hz, hist_dimension); | |
03c35bcb | 382 | } |
12516a37 KR |
383 | } |
384 | else | |
385 | { | |
386 | printf ("\nEach sample counts as %g %s.\n", 1.0 / hz, hist_dimension); | |
03c35bcb | 387 | } |
12516a37 KR |
388 | |
389 | if (total_time <= 0.0) | |
390 | { | |
391 | printf (" no time accumulated\n\n"); | |
392 | /* this doesn't hurt since all the numerators will be zero: */ | |
393 | total_time = 1.0; | |
03c35bcb | 394 | } |
12516a37 KR |
395 | |
396 | printf ("%5.5s %10.10s %8.8s %8.8s %8.8s %8.8s %-8.8s\n", | |
397 | "% ", "cumulative", "self ", "", "self ", "total ", ""); | |
398 | printf ("%5.5s %9.9s %8.8s %8.8s %8.8s %8.8s %-8.8s\n", | |
399 | "time", hist_dimension, hist_dimension, "calls", unit, unit, | |
400 | "name"); | |
03c35bcb | 401 | } |
5489fcc3 KR |
402 | |
403 | ||
404 | static void | |
12516a37 | 405 | DEFUN (print_line, (sym, scale), Sym * sym AND double scale) |
5489fcc3 | 406 | { |
12516a37 KR |
407 | if (ignore_zeros && sym->ncalls == 0 && sym->hist.time == 0) |
408 | { | |
409 | return; | |
03c35bcb | 410 | } |
12516a37 KR |
411 | |
412 | accum_time += sym->hist.time; | |
413 | if (bsd_style_output) | |
414 | { | |
415 | printf ("%5.1f %10.2f %8.2f", | |
416 | total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0, | |
417 | accum_time / hz, sym->hist.time / hz); | |
418 | } | |
419 | else | |
420 | { | |
421 | printf ("%6.2f %9.2f %8.2f", | |
422 | total_time > 0.0 ? 100 * sym->hist.time / total_time : 0.0, | |
423 | accum_time / hz, sym->hist.time / hz); | |
03c35bcb | 424 | } |
12516a37 KR |
425 | if (sym->ncalls) |
426 | { | |
427 | printf (" %8d %8.2f %8.2f ", | |
428 | sym->ncalls, scale * sym->hist.time / hz / sym->ncalls, | |
429 | scale * (sym->hist.time + sym->cg.child_time) / hz / sym->ncalls); | |
430 | } | |
431 | else | |
432 | { | |
433 | printf (" %8.8s %8.8s %8.8s ", "", "", ""); | |
03c35bcb | 434 | } |
12516a37 KR |
435 | if (bsd_style_output) |
436 | { | |
437 | print_name (sym); | |
438 | } | |
439 | else | |
440 | { | |
441 | print_name_only (sym); | |
03c35bcb | 442 | } |
12516a37 | 443 | printf ("\n"); |
03c35bcb | 444 | } |
5489fcc3 KR |
445 | |
446 | ||
447 | /* | |
448 | * Compare LP and RP. The primary comparison key is execution time, | |
449 | * the secondary is number of invocation, and the tertiary is the | |
450 | * lexicographic order of the function names. | |
451 | */ | |
452 | static int | |
12516a37 | 453 | DEFUN (cmp_time, (lp, rp), const PTR lp AND const PTR rp) |
5489fcc3 | 454 | { |
12516a37 KR |
455 | const Sym *left = *(const Sym **) lp; |
456 | const Sym *right = *(const Sym **) rp; | |
457 | double time_diff; | |
458 | long call_diff; | |
459 | ||
460 | time_diff = right->hist.time - left->hist.time; | |
461 | if (time_diff > 0.0) | |
462 | { | |
463 | return 1; | |
03c35bcb | 464 | } |
12516a37 KR |
465 | if (time_diff < 0.0) |
466 | { | |
467 | return -1; | |
03c35bcb | 468 | } |
12516a37 KR |
469 | |
470 | call_diff = right->ncalls - left->ncalls; | |
471 | if (call_diff > 0) | |
472 | { | |
473 | return 1; | |
03c35bcb | 474 | } |
12516a37 KR |
475 | if (call_diff < 0) |
476 | { | |
477 | return -1; | |
03c35bcb | 478 | } |
12516a37 KR |
479 | |
480 | return strcmp (left->name, right->name); | |
03c35bcb | 481 | } |
5489fcc3 KR |
482 | |
483 | ||
484 | /* | |
485 | * Print the flat histogram profile. | |
486 | */ | |
487 | void | |
12516a37 | 488 | DEFUN_VOID (hist_print) |
5489fcc3 | 489 | { |
12516a37 KR |
490 | Sym **time_sorted_syms, *top_dog, *sym; |
491 | int index, log_scale; | |
492 | double top_time, time; | |
493 | bfd_vma addr; | |
494 | ||
495 | if (first_output) | |
496 | { | |
497 | first_output = FALSE; | |
498 | } | |
499 | else | |
500 | { | |
501 | printf ("\f\n"); | |
03c35bcb | 502 | } |
12516a37 KR |
503 | |
504 | accum_time = 0.0; | |
505 | if (bsd_style_output) | |
506 | { | |
507 | if (print_descriptions) | |
508 | { | |
509 | printf ("\n\n\nflat profile:\n"); | |
510 | flat_blurb (stdout); | |
03c35bcb | 511 | } |
12516a37 KR |
512 | } |
513 | else | |
514 | { | |
515 | printf ("Flat profile:\n"); | |
03c35bcb | 516 | } |
12516a37 KR |
517 | /* |
518 | * Sort the symbol table by time (call-count and name as secondary | |
519 | * and tertiary keys): | |
520 | */ | |
521 | time_sorted_syms = (Sym **) xmalloc (symtab.len * sizeof (Sym *)); | |
522 | for (index = 0; index < symtab.len; ++index) | |
523 | { | |
524 | time_sorted_syms[index] = &symtab.base[index]; | |
03c35bcb | 525 | } |
12516a37 KR |
526 | qsort (time_sorted_syms, symtab.len, sizeof (Sym *), cmp_time); |
527 | ||
528 | if (bsd_style_output) | |
529 | { | |
530 | log_scale = 5; /* milli-seconds is BSD-default */ | |
531 | } | |
532 | else | |
533 | { | |
534 | /* | |
535 | * Search for symbol with highest per-call execution time and | |
536 | * scale accordingly: | |
537 | */ | |
538 | log_scale = 0; | |
539 | top_dog = 0; | |
540 | top_time = 0.0; | |
541 | for (index = 0; index < symtab.len; ++index) | |
542 | { | |
543 | sym = time_sorted_syms[index]; | |
544 | if (sym->ncalls) | |
545 | { | |
546 | time = (sym->hist.time + sym->cg.child_time) / sym->ncalls; | |
547 | if (time > top_time) | |
548 | { | |
549 | top_dog = sym; | |
550 | top_time = time; | |
03c35bcb KR |
551 | } |
552 | } | |
553 | } | |
12516a37 KR |
554 | if (top_dog && top_dog->ncalls && top_time > 0.0) |
555 | { | |
556 | top_time /= hz; | |
557 | while (SItab[log_scale].scale * top_time < 1000.0 | |
558 | && log_scale < sizeof (SItab) / sizeof (SItab[0]) - 1) | |
5489fcc3 | 559 | { |
12516a37 | 560 | ++log_scale; |
03c35bcb KR |
561 | } |
562 | } | |
563 | } | |
12516a37 KR |
564 | |
565 | /* | |
566 | * For now, the dimension is always seconds. In the future, we | |
567 | * may also want to support other (pseudo-)dimensions (such as | |
568 | * I-cache misses etc.). | |
569 | */ | |
570 | print_header (SItab[log_scale].prefix); | |
571 | for (index = 0; index < symtab.len; ++index) | |
572 | { | |
573 | addr = time_sorted_syms[index]->addr; | |
574 | /* | |
575 | * Print symbol if its in INCL_FLAT table or that table | |
576 | * is empty and the symbol is not in EXCL_FLAT. | |
577 | */ | |
578 | if (sym_lookup (&syms[INCL_FLAT], addr) | |
579 | || (syms[INCL_FLAT].len == 0 | |
580 | && !sym_lookup (&syms[EXCL_FLAT], addr))) | |
5489fcc3 | 581 | { |
12516a37 | 582 | print_line (time_sorted_syms[index], SItab[log_scale].scale); |
03c35bcb KR |
583 | } |
584 | } | |
12516a37 | 585 | free (time_sorted_syms); |
5489fcc3 | 586 | |
12516a37 KR |
587 | if (print_descriptions && !bsd_style_output) |
588 | { | |
589 | flat_blurb (stdout); | |
03c35bcb KR |
590 | } |
591 | } |