]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Intel 386 target-dependent stuff. |
349c5d5f AC |
2 | |
3 | Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, | |
4 | 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. | |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b JM |
18 | You should have received a copy of the GNU General Public License |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
22 | |
23 | #include "defs.h" | |
24 | #include "gdb_string.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "gdbcore.h" | |
dfe01d39 | 28 | #include "objfiles.h" |
c906108c SS |
29 | #include "target.h" |
30 | #include "floatformat.h" | |
c0d1d883 | 31 | #include "symfile.h" |
c906108c SS |
32 | #include "symtab.h" |
33 | #include "gdbcmd.h" | |
34 | #include "command.h" | |
b4a20239 | 35 | #include "arch-utils.h" |
4e052eda | 36 | #include "regcache.h" |
d16aafd8 | 37 | #include "doublest.h" |
fd0407d6 | 38 | #include "value.h" |
3d261580 MK |
39 | #include "gdb_assert.h" |
40 | ||
d2a7c97a | 41 | #include "i386-tdep.h" |
61113f8b | 42 | #include "i387-tdep.h" |
d2a7c97a | 43 | |
fc633446 MK |
44 | /* Names of the registers. The first 10 registers match the register |
45 | numbering scheme used by GCC for stabs and DWARF. */ | |
46 | static char *i386_register_names[] = | |
47 | { | |
48 | "eax", "ecx", "edx", "ebx", | |
49 | "esp", "ebp", "esi", "edi", | |
50 | "eip", "eflags", "cs", "ss", | |
51 | "ds", "es", "fs", "gs", | |
52 | "st0", "st1", "st2", "st3", | |
53 | "st4", "st5", "st6", "st7", | |
54 | "fctrl", "fstat", "ftag", "fiseg", | |
55 | "fioff", "foseg", "fooff", "fop", | |
56 | "xmm0", "xmm1", "xmm2", "xmm3", | |
57 | "xmm4", "xmm5", "xmm6", "xmm7", | |
58 | "mxcsr" | |
59 | }; | |
60 | ||
28fc6740 AC |
61 | /* MMX registers. */ |
62 | ||
63 | static char *i386_mmx_names[] = | |
64 | { | |
65 | "mm0", "mm1", "mm2", "mm3", | |
66 | "mm4", "mm5", "mm6", "mm7" | |
67 | }; | |
68 | static const int mmx_num_regs = (sizeof (i386_mmx_names) | |
69 | / sizeof (i386_mmx_names[0])); | |
70 | #define MM0_REGNUM (NUM_REGS) | |
71 | ||
72 | static int | |
73 | mmx_regnum_p (int reg) | |
74 | { | |
75 | return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs); | |
76 | } | |
77 | ||
fc633446 MK |
78 | /* Return the name of register REG. */ |
79 | ||
fa88f677 | 80 | const char * |
fc633446 MK |
81 | i386_register_name (int reg) |
82 | { | |
83 | if (reg < 0) | |
84 | return NULL; | |
28fc6740 AC |
85 | if (mmx_regnum_p (reg)) |
86 | return i386_mmx_names[reg - MM0_REGNUM]; | |
fc633446 MK |
87 | if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names)) |
88 | return NULL; | |
89 | ||
90 | return i386_register_names[reg]; | |
91 | } | |
92 | ||
85540d8c MK |
93 | /* Convert stabs register number REG to the appropriate register |
94 | number used by GDB. */ | |
95 | ||
8201327c | 96 | static int |
85540d8c MK |
97 | i386_stab_reg_to_regnum (int reg) |
98 | { | |
99 | /* This implements what GCC calls the "default" register map. */ | |
100 | if (reg >= 0 && reg <= 7) | |
101 | { | |
102 | /* General registers. */ | |
103 | return reg; | |
104 | } | |
105 | else if (reg >= 12 && reg <= 19) | |
106 | { | |
107 | /* Floating-point registers. */ | |
108 | return reg - 12 + FP0_REGNUM; | |
109 | } | |
110 | else if (reg >= 21 && reg <= 28) | |
111 | { | |
112 | /* SSE registers. */ | |
113 | return reg - 21 + XMM0_REGNUM; | |
114 | } | |
115 | else if (reg >= 29 && reg <= 36) | |
116 | { | |
117 | /* MMX registers. */ | |
7d12f766 | 118 | return reg - 29 + MM0_REGNUM; |
85540d8c MK |
119 | } |
120 | ||
121 | /* This will hopefully provoke a warning. */ | |
122 | return NUM_REGS + NUM_PSEUDO_REGS; | |
123 | } | |
124 | ||
8201327c | 125 | /* Convert DWARF register number REG to the appropriate register |
85540d8c MK |
126 | number used by GDB. */ |
127 | ||
8201327c | 128 | static int |
85540d8c MK |
129 | i386_dwarf_reg_to_regnum (int reg) |
130 | { | |
131 | /* The DWARF register numbering includes %eip and %eflags, and | |
132 | numbers the floating point registers differently. */ | |
133 | if (reg >= 0 && reg <= 9) | |
134 | { | |
135 | /* General registers. */ | |
136 | return reg; | |
137 | } | |
138 | else if (reg >= 11 && reg <= 18) | |
139 | { | |
140 | /* Floating-point registers. */ | |
141 | return reg - 11 + FP0_REGNUM; | |
142 | } | |
143 | else if (reg >= 21) | |
144 | { | |
145 | /* The SSE and MMX registers have identical numbers as in stabs. */ | |
146 | return i386_stab_reg_to_regnum (reg); | |
147 | } | |
148 | ||
149 | /* This will hopefully provoke a warning. */ | |
150 | return NUM_REGS + NUM_PSEUDO_REGS; | |
151 | } | |
fc338970 | 152 | \f |
917317f4 | 153 | |
fc338970 MK |
154 | /* This is the variable that is set with "set disassembly-flavor", and |
155 | its legitimate values. */ | |
53904c9e AC |
156 | static const char att_flavor[] = "att"; |
157 | static const char intel_flavor[] = "intel"; | |
158 | static const char *valid_flavors[] = | |
c5aa993b | 159 | { |
c906108c SS |
160 | att_flavor, |
161 | intel_flavor, | |
162 | NULL | |
163 | }; | |
53904c9e | 164 | static const char *disassembly_flavor = att_flavor; |
c906108c | 165 | |
fc338970 MK |
166 | /* Stdio style buffering was used to minimize calls to ptrace, but |
167 | this buffering did not take into account that the code section | |
168 | being accessed may not be an even number of buffers long (even if | |
169 | the buffer is only sizeof(int) long). In cases where the code | |
170 | section size happened to be a non-integral number of buffers long, | |
171 | attempting to read the last buffer would fail. Simply using | |
172 | target_read_memory and ignoring errors, rather than read_memory, is | |
173 | not the correct solution, since legitimate access errors would then | |
174 | be totally ignored. To properly handle this situation and continue | |
175 | to use buffering would require that this code be able to determine | |
176 | the minimum code section size granularity (not the alignment of the | |
177 | section itself, since the actual failing case that pointed out this | |
178 | problem had a section alignment of 4 but was not a multiple of 4 | |
179 | bytes long), on a target by target basis, and then adjust it's | |
180 | buffer size accordingly. This is messy, but potentially feasible. | |
181 | It probably needs the bfd library's help and support. For now, the | |
182 | buffer size is set to 1. (FIXME -fnf) */ | |
183 | ||
184 | #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */ | |
c906108c SS |
185 | static CORE_ADDR codestream_next_addr; |
186 | static CORE_ADDR codestream_addr; | |
187 | static unsigned char codestream_buf[CODESTREAM_BUFSIZ]; | |
188 | static int codestream_off; | |
189 | static int codestream_cnt; | |
190 | ||
191 | #define codestream_tell() (codestream_addr + codestream_off) | |
fc338970 MK |
192 | #define codestream_peek() \ |
193 | (codestream_cnt == 0 ? \ | |
194 | codestream_fill(1) : codestream_buf[codestream_off]) | |
195 | #define codestream_get() \ | |
196 | (codestream_cnt-- == 0 ? \ | |
197 | codestream_fill(0) : codestream_buf[codestream_off++]) | |
c906108c | 198 | |
c5aa993b | 199 | static unsigned char |
fba45db2 | 200 | codestream_fill (int peek_flag) |
c906108c SS |
201 | { |
202 | codestream_addr = codestream_next_addr; | |
203 | codestream_next_addr += CODESTREAM_BUFSIZ; | |
204 | codestream_off = 0; | |
205 | codestream_cnt = CODESTREAM_BUFSIZ; | |
206 | read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ); | |
c5aa993b | 207 | |
c906108c | 208 | if (peek_flag) |
c5aa993b | 209 | return (codestream_peek ()); |
c906108c | 210 | else |
c5aa993b | 211 | return (codestream_get ()); |
c906108c SS |
212 | } |
213 | ||
214 | static void | |
fba45db2 | 215 | codestream_seek (CORE_ADDR place) |
c906108c SS |
216 | { |
217 | codestream_next_addr = place / CODESTREAM_BUFSIZ; | |
218 | codestream_next_addr *= CODESTREAM_BUFSIZ; | |
219 | codestream_cnt = 0; | |
220 | codestream_fill (1); | |
c5aa993b | 221 | while (codestream_tell () != place) |
c906108c SS |
222 | codestream_get (); |
223 | } | |
224 | ||
225 | static void | |
fba45db2 | 226 | codestream_read (unsigned char *buf, int count) |
c906108c SS |
227 | { |
228 | unsigned char *p; | |
229 | int i; | |
230 | p = buf; | |
231 | for (i = 0; i < count; i++) | |
232 | *p++ = codestream_get (); | |
233 | } | |
fc338970 | 234 | \f |
c906108c | 235 | |
fc338970 | 236 | /* If the next instruction is a jump, move to its target. */ |
c906108c SS |
237 | |
238 | static void | |
fba45db2 | 239 | i386_follow_jump (void) |
c906108c SS |
240 | { |
241 | unsigned char buf[4]; | |
242 | long delta; | |
243 | ||
244 | int data16; | |
245 | CORE_ADDR pos; | |
246 | ||
247 | pos = codestream_tell (); | |
248 | ||
249 | data16 = 0; | |
250 | if (codestream_peek () == 0x66) | |
251 | { | |
252 | codestream_get (); | |
253 | data16 = 1; | |
254 | } | |
255 | ||
256 | switch (codestream_get ()) | |
257 | { | |
258 | case 0xe9: | |
fc338970 | 259 | /* Relative jump: if data16 == 0, disp32, else disp16. */ |
c906108c SS |
260 | if (data16) |
261 | { | |
262 | codestream_read (buf, 2); | |
263 | delta = extract_signed_integer (buf, 2); | |
264 | ||
fc338970 MK |
265 | /* Include the size of the jmp instruction (including the |
266 | 0x66 prefix). */ | |
c5aa993b | 267 | pos += delta + 4; |
c906108c SS |
268 | } |
269 | else | |
270 | { | |
271 | codestream_read (buf, 4); | |
272 | delta = extract_signed_integer (buf, 4); | |
273 | ||
274 | pos += delta + 5; | |
275 | } | |
276 | break; | |
277 | case 0xeb: | |
fc338970 | 278 | /* Relative jump, disp8 (ignore data16). */ |
c906108c SS |
279 | codestream_read (buf, 1); |
280 | /* Sign-extend it. */ | |
281 | delta = extract_signed_integer (buf, 1); | |
282 | ||
283 | pos += delta + 2; | |
284 | break; | |
285 | } | |
286 | codestream_seek (pos); | |
287 | } | |
288 | ||
fc338970 MK |
289 | /* Find & return the amount a local space allocated, and advance the |
290 | codestream to the first register push (if any). | |
291 | ||
292 | If the entry sequence doesn't make sense, return -1, and leave | |
293 | codestream pointer at a random spot. */ | |
c906108c SS |
294 | |
295 | static long | |
fba45db2 | 296 | i386_get_frame_setup (CORE_ADDR pc) |
c906108c SS |
297 | { |
298 | unsigned char op; | |
299 | ||
300 | codestream_seek (pc); | |
301 | ||
302 | i386_follow_jump (); | |
303 | ||
304 | op = codestream_get (); | |
305 | ||
306 | if (op == 0x58) /* popl %eax */ | |
307 | { | |
fc338970 MK |
308 | /* This function must start with |
309 | ||
310 | popl %eax 0x58 | |
311 | xchgl %eax, (%esp) 0x87 0x04 0x24 | |
312 | or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00 | |
313 | ||
314 | (the System V compiler puts out the second `xchg' | |
315 | instruction, and the assembler doesn't try to optimize it, so | |
316 | the 'sib' form gets generated). This sequence is used to get | |
317 | the address of the return buffer for a function that returns | |
318 | a structure. */ | |
c906108c SS |
319 | int pos; |
320 | unsigned char buf[4]; | |
fc338970 MK |
321 | static unsigned char proto1[3] = { 0x87, 0x04, 0x24 }; |
322 | static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 }; | |
323 | ||
c906108c SS |
324 | pos = codestream_tell (); |
325 | codestream_read (buf, 4); | |
326 | if (memcmp (buf, proto1, 3) == 0) | |
327 | pos += 3; | |
328 | else if (memcmp (buf, proto2, 4) == 0) | |
329 | pos += 4; | |
330 | ||
331 | codestream_seek (pos); | |
fc338970 | 332 | op = codestream_get (); /* Update next opcode. */ |
c906108c SS |
333 | } |
334 | ||
335 | if (op == 0x68 || op == 0x6a) | |
336 | { | |
fc338970 MK |
337 | /* This function may start with |
338 | ||
339 | pushl constant | |
340 | call _probe | |
341 | addl $4, %esp | |
342 | ||
343 | followed by | |
344 | ||
345 | pushl %ebp | |
346 | ||
347 | etc. */ | |
c906108c SS |
348 | int pos; |
349 | unsigned char buf[8]; | |
350 | ||
fc338970 | 351 | /* Skip past the `pushl' instruction; it has either a one-byte |
c906108c SS |
352 | or a four-byte operand, depending on the opcode. */ |
353 | pos = codestream_tell (); | |
354 | if (op == 0x68) | |
355 | pos += 4; | |
356 | else | |
357 | pos += 1; | |
358 | codestream_seek (pos); | |
359 | ||
fc338970 MK |
360 | /* Read the following 8 bytes, which should be "call _probe" (6 |
361 | bytes) followed by "addl $4,%esp" (2 bytes). */ | |
c906108c SS |
362 | codestream_read (buf, sizeof (buf)); |
363 | if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4) | |
364 | pos += sizeof (buf); | |
365 | codestream_seek (pos); | |
fc338970 | 366 | op = codestream_get (); /* Update next opcode. */ |
c906108c SS |
367 | } |
368 | ||
369 | if (op == 0x55) /* pushl %ebp */ | |
c5aa993b | 370 | { |
fc338970 | 371 | /* Check for "movl %esp, %ebp" -- can be written in two ways. */ |
c906108c SS |
372 | switch (codestream_get ()) |
373 | { | |
374 | case 0x8b: | |
375 | if (codestream_get () != 0xec) | |
fc338970 | 376 | return -1; |
c906108c SS |
377 | break; |
378 | case 0x89: | |
379 | if (codestream_get () != 0xe5) | |
fc338970 | 380 | return -1; |
c906108c SS |
381 | break; |
382 | default: | |
fc338970 | 383 | return -1; |
c906108c | 384 | } |
fc338970 MK |
385 | /* Check for stack adjustment |
386 | ||
387 | subl $XXX, %esp | |
388 | ||
389 | NOTE: You can't subtract a 16 bit immediate from a 32 bit | |
390 | reg, so we don't have to worry about a data16 prefix. */ | |
c906108c SS |
391 | op = codestream_peek (); |
392 | if (op == 0x83) | |
393 | { | |
fc338970 | 394 | /* `subl' with 8 bit immediate. */ |
c906108c SS |
395 | codestream_get (); |
396 | if (codestream_get () != 0xec) | |
fc338970 | 397 | /* Some instruction starting with 0x83 other than `subl'. */ |
c906108c SS |
398 | { |
399 | codestream_seek (codestream_tell () - 2); | |
400 | return 0; | |
401 | } | |
fc338970 MK |
402 | /* `subl' with signed byte immediate (though it wouldn't |
403 | make sense to be negative). */ | |
c5aa993b | 404 | return (codestream_get ()); |
c906108c SS |
405 | } |
406 | else if (op == 0x81) | |
407 | { | |
408 | char buf[4]; | |
fc338970 | 409 | /* Maybe it is `subl' with a 32 bit immedediate. */ |
c5aa993b | 410 | codestream_get (); |
c906108c | 411 | if (codestream_get () != 0xec) |
fc338970 | 412 | /* Some instruction starting with 0x81 other than `subl'. */ |
c906108c SS |
413 | { |
414 | codestream_seek (codestream_tell () - 2); | |
415 | return 0; | |
416 | } | |
fc338970 | 417 | /* It is `subl' with a 32 bit immediate. */ |
c5aa993b | 418 | codestream_read ((unsigned char *) buf, 4); |
c906108c SS |
419 | return extract_signed_integer (buf, 4); |
420 | } | |
421 | else | |
422 | { | |
fc338970 | 423 | return 0; |
c906108c SS |
424 | } |
425 | } | |
426 | else if (op == 0xc8) | |
427 | { | |
428 | char buf[2]; | |
fc338970 | 429 | /* `enter' with 16 bit unsigned immediate. */ |
c5aa993b | 430 | codestream_read ((unsigned char *) buf, 2); |
fc338970 | 431 | codestream_get (); /* Flush final byte of enter instruction. */ |
c906108c SS |
432 | return extract_unsigned_integer (buf, 2); |
433 | } | |
434 | return (-1); | |
435 | } | |
436 | ||
6bff26de MK |
437 | /* Signal trampolines don't have a meaningful frame. The frame |
438 | pointer value we use is actually the frame pointer of the calling | |
439 | frame -- that is, the frame which was in progress when the signal | |
440 | trampoline was entered. GDB mostly treats this frame pointer value | |
441 | as a magic cookie. We detect the case of a signal trampoline by | |
442 | looking at the SIGNAL_HANDLER_CALLER field, which is set based on | |
443 | PC_IN_SIGTRAMP. | |
444 | ||
445 | When a signal trampoline is invoked from a frameless function, we | |
446 | essentially have two frameless functions in a row. In this case, | |
447 | we use the same magic cookie for three frames in a row. We detect | |
448 | this case by seeing whether the next frame has | |
449 | SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the | |
450 | current frame is actually frameless. In this case, we need to get | |
451 | the PC by looking at the SP register value stored in the signal | |
452 | context. | |
453 | ||
454 | This should work in most cases except in horrible situations where | |
455 | a signal occurs just as we enter a function but before the frame | |
c0d1d883 MK |
456 | has been set up. Incidentally, that's just what happens when we |
457 | call a function from GDB with a signal pending (there's a test in | |
458 | the testsuite that makes this happen). Therefore we pretend that | |
459 | we have a frameless function if we're stopped at the start of a | |
460 | function. */ | |
6bff26de MK |
461 | |
462 | /* Return non-zero if we're dealing with a frameless signal, that is, | |
463 | a signal trampoline invoked from a frameless function. */ | |
464 | ||
465 | static int | |
466 | i386_frameless_signal_p (struct frame_info *frame) | |
467 | { | |
c0d1d883 MK |
468 | return (frame->next && frame->next->signal_handler_caller |
469 | && (frameless_look_for_prologue (frame) | |
470 | || frame->pc == get_pc_function_start (frame->pc))); | |
6bff26de MK |
471 | } |
472 | ||
c833a37e MK |
473 | /* Return the chain-pointer for FRAME. In the case of the i386, the |
474 | frame's nominal address is the address of a 4-byte word containing | |
475 | the calling frame's address. */ | |
476 | ||
8201327c | 477 | static CORE_ADDR |
c833a37e MK |
478 | i386_frame_chain (struct frame_info *frame) |
479 | { | |
c0d1d883 MK |
480 | if (PC_IN_CALL_DUMMY (frame->pc, 0, 0)) |
481 | return frame->frame; | |
482 | ||
6bff26de MK |
483 | if (frame->signal_handler_caller |
484 | || i386_frameless_signal_p (frame)) | |
c833a37e MK |
485 | return frame->frame; |
486 | ||
487 | if (! inside_entry_file (frame->pc)) | |
488 | return read_memory_unsigned_integer (frame->frame, 4); | |
489 | ||
490 | return 0; | |
491 | } | |
492 | ||
539ffe0b MK |
493 | /* Determine whether the function invocation represented by FRAME does |
494 | not have a from on the stack associated with it. If it does not, | |
495 | return non-zero, otherwise return zero. */ | |
496 | ||
3a1e71e3 | 497 | static int |
539ffe0b MK |
498 | i386_frameless_function_invocation (struct frame_info *frame) |
499 | { | |
500 | if (frame->signal_handler_caller) | |
501 | return 0; | |
502 | ||
503 | return frameless_look_for_prologue (frame); | |
504 | } | |
505 | ||
21d0e8a4 MK |
506 | /* Assuming FRAME is for a sigtramp routine, return the saved program |
507 | counter. */ | |
508 | ||
509 | static CORE_ADDR | |
510 | i386_sigtramp_saved_pc (struct frame_info *frame) | |
511 | { | |
512 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
513 | CORE_ADDR addr; | |
514 | ||
515 | addr = tdep->sigcontext_addr (frame); | |
516 | return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4); | |
517 | } | |
518 | ||
6bff26de MK |
519 | /* Assuming FRAME is for a sigtramp routine, return the saved stack |
520 | pointer. */ | |
521 | ||
522 | static CORE_ADDR | |
523 | i386_sigtramp_saved_sp (struct frame_info *frame) | |
524 | { | |
525 | struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch); | |
526 | CORE_ADDR addr; | |
527 | ||
528 | addr = tdep->sigcontext_addr (frame); | |
529 | return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4); | |
530 | } | |
531 | ||
0d17c81d MK |
532 | /* Return the saved program counter for FRAME. */ |
533 | ||
8201327c | 534 | static CORE_ADDR |
0d17c81d MK |
535 | i386_frame_saved_pc (struct frame_info *frame) |
536 | { | |
c0d1d883 | 537 | if (PC_IN_CALL_DUMMY (frame->pc, 0, 0)) |
135c175f AC |
538 | return deprecated_read_register_dummy (frame->pc, frame->frame, |
539 | PC_REGNUM); | |
c0d1d883 | 540 | |
0d17c81d | 541 | if (frame->signal_handler_caller) |
21d0e8a4 | 542 | return i386_sigtramp_saved_pc (frame); |
0d17c81d | 543 | |
6bff26de MK |
544 | if (i386_frameless_signal_p (frame)) |
545 | { | |
546 | CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next); | |
547 | return read_memory_unsigned_integer (sp, 4); | |
548 | } | |
549 | ||
8201327c | 550 | return read_memory_unsigned_integer (frame->frame + 4, 4); |
22797942 AC |
551 | } |
552 | ||
ed84f6c1 MK |
553 | /* Immediately after a function call, return the saved pc. */ |
554 | ||
8201327c | 555 | static CORE_ADDR |
ed84f6c1 MK |
556 | i386_saved_pc_after_call (struct frame_info *frame) |
557 | { | |
6bff26de MK |
558 | if (frame->signal_handler_caller) |
559 | return i386_sigtramp_saved_pc (frame); | |
560 | ||
ed84f6c1 MK |
561 | return read_memory_unsigned_integer (read_register (SP_REGNUM), 4); |
562 | } | |
563 | ||
c906108c SS |
564 | /* Return number of args passed to a frame. |
565 | Can return -1, meaning no way to tell. */ | |
566 | ||
3a1e71e3 | 567 | static int |
fba45db2 | 568 | i386_frame_num_args (struct frame_info *fi) |
c906108c SS |
569 | { |
570 | #if 1 | |
571 | return -1; | |
572 | #else | |
573 | /* This loses because not only might the compiler not be popping the | |
fc338970 MK |
574 | args right after the function call, it might be popping args from |
575 | both this call and a previous one, and we would say there are | |
576 | more args than there really are. */ | |
c906108c | 577 | |
c5aa993b JM |
578 | int retpc; |
579 | unsigned char op; | |
c906108c SS |
580 | struct frame_info *pfi; |
581 | ||
fc338970 | 582 | /* On the i386, the instruction following the call could be: |
c906108c SS |
583 | popl %ecx - one arg |
584 | addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits | |
fc338970 | 585 | anything else - zero args. */ |
c906108c SS |
586 | |
587 | int frameless; | |
588 | ||
392a587b | 589 | frameless = FRAMELESS_FUNCTION_INVOCATION (fi); |
c906108c | 590 | if (frameless) |
fc338970 MK |
591 | /* In the absence of a frame pointer, GDB doesn't get correct |
592 | values for nameless arguments. Return -1, so it doesn't print | |
593 | any nameless arguments. */ | |
c906108c SS |
594 | return -1; |
595 | ||
c5aa993b | 596 | pfi = get_prev_frame (fi); |
c906108c SS |
597 | if (pfi == 0) |
598 | { | |
fc338970 MK |
599 | /* NOTE: This can happen if we are looking at the frame for |
600 | main, because FRAME_CHAIN_VALID won't let us go into start. | |
601 | If we have debugging symbols, that's not really a big deal; | |
602 | it just means it will only show as many arguments to main as | |
603 | are declared. */ | |
c906108c SS |
604 | return -1; |
605 | } | |
606 | else | |
607 | { | |
c5aa993b JM |
608 | retpc = pfi->pc; |
609 | op = read_memory_integer (retpc, 1); | |
fc338970 | 610 | if (op == 0x59) /* pop %ecx */ |
c5aa993b | 611 | return 1; |
c906108c SS |
612 | else if (op == 0x83) |
613 | { | |
c5aa993b JM |
614 | op = read_memory_integer (retpc + 1, 1); |
615 | if (op == 0xc4) | |
616 | /* addl $<signed imm 8 bits>, %esp */ | |
617 | return (read_memory_integer (retpc + 2, 1) & 0xff) / 4; | |
c906108c SS |
618 | else |
619 | return 0; | |
620 | } | |
fc338970 MK |
621 | else if (op == 0x81) /* `add' with 32 bit immediate. */ |
622 | { | |
c5aa993b JM |
623 | op = read_memory_integer (retpc + 1, 1); |
624 | if (op == 0xc4) | |
625 | /* addl $<imm 32>, %esp */ | |
626 | return read_memory_integer (retpc + 2, 4) / 4; | |
c906108c SS |
627 | else |
628 | return 0; | |
629 | } | |
630 | else | |
631 | { | |
632 | return 0; | |
633 | } | |
634 | } | |
635 | #endif | |
636 | } | |
637 | ||
fc338970 MK |
638 | /* Parse the first few instructions the function to see what registers |
639 | were stored. | |
640 | ||
641 | We handle these cases: | |
642 | ||
643 | The startup sequence can be at the start of the function, or the | |
644 | function can start with a branch to startup code at the end. | |
645 | ||
646 | %ebp can be set up with either the 'enter' instruction, or "pushl | |
647 | %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was | |
648 | once used in the System V compiler). | |
649 | ||
650 | Local space is allocated just below the saved %ebp by either the | |
651 | 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16 | |
652 | bit unsigned argument for space to allocate, and the 'addl' | |
653 | instruction could have either a signed byte, or 32 bit immediate. | |
654 | ||
655 | Next, the registers used by this function are pushed. With the | |
656 | System V compiler they will always be in the order: %edi, %esi, | |
657 | %ebx (and sometimes a harmless bug causes it to also save but not | |
658 | restore %eax); however, the code below is willing to see the pushes | |
659 | in any order, and will handle up to 8 of them. | |
660 | ||
661 | If the setup sequence is at the end of the function, then the next | |
662 | instruction will be a branch back to the start. */ | |
c906108c | 663 | |
3a1e71e3 | 664 | static void |
fba45db2 | 665 | i386_frame_init_saved_regs (struct frame_info *fip) |
c906108c SS |
666 | { |
667 | long locals = -1; | |
668 | unsigned char op; | |
fc338970 | 669 | CORE_ADDR addr; |
c906108c SS |
670 | CORE_ADDR pc; |
671 | int i; | |
c5aa993b | 672 | |
1211c4e4 AC |
673 | if (fip->saved_regs) |
674 | return; | |
675 | ||
676 | frame_saved_regs_zalloc (fip); | |
c5aa993b | 677 | |
c906108c SS |
678 | pc = get_pc_function_start (fip->pc); |
679 | if (pc != 0) | |
680 | locals = i386_get_frame_setup (pc); | |
c5aa993b JM |
681 | |
682 | if (locals >= 0) | |
c906108c | 683 | { |
fc338970 | 684 | addr = fip->frame - 4 - locals; |
c5aa993b | 685 | for (i = 0; i < 8; i++) |
c906108c SS |
686 | { |
687 | op = codestream_get (); | |
688 | if (op < 0x50 || op > 0x57) | |
689 | break; | |
690 | #ifdef I386_REGNO_TO_SYMMETRY | |
691 | /* Dynix uses different internal numbering. Ick. */ | |
fc338970 | 692 | fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr; |
c906108c | 693 | #else |
fc338970 | 694 | fip->saved_regs[op - 0x50] = addr; |
c906108c | 695 | #endif |
fc338970 | 696 | addr -= 4; |
c906108c SS |
697 | } |
698 | } | |
c5aa993b | 699 | |
1211c4e4 AC |
700 | fip->saved_regs[PC_REGNUM] = fip->frame + 4; |
701 | fip->saved_regs[FP_REGNUM] = fip->frame; | |
c906108c SS |
702 | } |
703 | ||
fc338970 | 704 | /* Return PC of first real instruction. */ |
c906108c | 705 | |
3a1e71e3 | 706 | static CORE_ADDR |
93924b6b | 707 | i386_skip_prologue (CORE_ADDR pc) |
c906108c SS |
708 | { |
709 | unsigned char op; | |
710 | int i; | |
c5aa993b | 711 | static unsigned char pic_pat[6] = |
fc338970 MK |
712 | { 0xe8, 0, 0, 0, 0, /* call 0x0 */ |
713 | 0x5b, /* popl %ebx */ | |
c5aa993b | 714 | }; |
c906108c | 715 | CORE_ADDR pos; |
c5aa993b | 716 | |
c906108c SS |
717 | if (i386_get_frame_setup (pc) < 0) |
718 | return (pc); | |
c5aa993b | 719 | |
fc338970 MK |
720 | /* Found valid frame setup -- codestream now points to start of push |
721 | instructions for saving registers. */ | |
c5aa993b | 722 | |
fc338970 | 723 | /* Skip over register saves. */ |
c906108c SS |
724 | for (i = 0; i < 8; i++) |
725 | { | |
726 | op = codestream_peek (); | |
fc338970 | 727 | /* Break if not `pushl' instrunction. */ |
c5aa993b | 728 | if (op < 0x50 || op > 0x57) |
c906108c SS |
729 | break; |
730 | codestream_get (); | |
731 | } | |
732 | ||
fc338970 MK |
733 | /* The native cc on SVR4 in -K PIC mode inserts the following code |
734 | to get the address of the global offset table (GOT) into register | |
735 | %ebx | |
736 | ||
737 | call 0x0 | |
738 | popl %ebx | |
739 | movl %ebx,x(%ebp) (optional) | |
740 | addl y,%ebx | |
741 | ||
c906108c SS |
742 | This code is with the rest of the prologue (at the end of the |
743 | function), so we have to skip it to get to the first real | |
744 | instruction at the start of the function. */ | |
c5aa993b | 745 | |
c906108c SS |
746 | pos = codestream_tell (); |
747 | for (i = 0; i < 6; i++) | |
748 | { | |
749 | op = codestream_get (); | |
c5aa993b | 750 | if (pic_pat[i] != op) |
c906108c SS |
751 | break; |
752 | } | |
753 | if (i == 6) | |
754 | { | |
755 | unsigned char buf[4]; | |
756 | long delta = 6; | |
757 | ||
758 | op = codestream_get (); | |
c5aa993b | 759 | if (op == 0x89) /* movl %ebx, x(%ebp) */ |
c906108c SS |
760 | { |
761 | op = codestream_get (); | |
fc338970 | 762 | if (op == 0x5d) /* One byte offset from %ebp. */ |
c906108c SS |
763 | { |
764 | delta += 3; | |
765 | codestream_read (buf, 1); | |
766 | } | |
fc338970 | 767 | else if (op == 0x9d) /* Four byte offset from %ebp. */ |
c906108c SS |
768 | { |
769 | delta += 6; | |
770 | codestream_read (buf, 4); | |
771 | } | |
fc338970 | 772 | else /* Unexpected instruction. */ |
c5aa993b JM |
773 | delta = -1; |
774 | op = codestream_get (); | |
c906108c | 775 | } |
c5aa993b JM |
776 | /* addl y,%ebx */ |
777 | if (delta > 0 && op == 0x81 && codestream_get () == 0xc3) | |
c906108c | 778 | { |
c5aa993b | 779 | pos += delta + 6; |
c906108c SS |
780 | } |
781 | } | |
782 | codestream_seek (pos); | |
c5aa993b | 783 | |
c906108c | 784 | i386_follow_jump (); |
c5aa993b | 785 | |
c906108c SS |
786 | return (codestream_tell ()); |
787 | } | |
788 | ||
93924b6b MK |
789 | /* Use the program counter to determine the contents and size of a |
790 | breakpoint instruction. Return a pointer to a string of bytes that | |
791 | encode a breakpoint instruction, store the length of the string in | |
792 | *LEN and optionally adjust *PC to point to the correct memory | |
793 | location for inserting the breakpoint. | |
794 | ||
795 | On the i386 we have a single breakpoint that fits in a single byte | |
796 | and can be inserted anywhere. */ | |
797 | ||
798 | static const unsigned char * | |
799 | i386_breakpoint_from_pc (CORE_ADDR *pc, int *len) | |
800 | { | |
801 | static unsigned char break_insn[] = { 0xcc }; /* int 3 */ | |
802 | ||
803 | *len = sizeof (break_insn); | |
804 | return break_insn; | |
805 | } | |
806 | ||
c0d1d883 MK |
807 | /* Push the return address (pointing to the call dummy) onto the stack |
808 | and return the new value for the stack pointer. */ | |
c5aa993b | 809 | |
c0d1d883 MK |
810 | static CORE_ADDR |
811 | i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
a7769679 | 812 | { |
c0d1d883 | 813 | char buf[4]; |
a7769679 | 814 | |
c0d1d883 MK |
815 | store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ()); |
816 | write_memory (sp - 4, buf, 4); | |
817 | return sp - 4; | |
a7769679 MK |
818 | } |
819 | ||
3a1e71e3 | 820 | static void |
c0d1d883 | 821 | i386_do_pop_frame (struct frame_info *frame) |
c906108c | 822 | { |
c906108c SS |
823 | CORE_ADDR fp; |
824 | int regnum; | |
00f8375e | 825 | char regbuf[I386_MAX_REGISTER_SIZE]; |
c5aa993b | 826 | |
c906108c | 827 | fp = FRAME_FP (frame); |
1211c4e4 AC |
828 | i386_frame_init_saved_regs (frame); |
829 | ||
c5aa993b | 830 | for (regnum = 0; regnum < NUM_REGS; regnum++) |
c906108c | 831 | { |
fc338970 MK |
832 | CORE_ADDR addr; |
833 | addr = frame->saved_regs[regnum]; | |
834 | if (addr) | |
c906108c | 835 | { |
fc338970 | 836 | read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum)); |
c2848c82 | 837 | write_register_gen (regnum, regbuf); |
c906108c SS |
838 | } |
839 | } | |
840 | write_register (FP_REGNUM, read_memory_integer (fp, 4)); | |
841 | write_register (PC_REGNUM, read_memory_integer (fp + 4, 4)); | |
842 | write_register (SP_REGNUM, fp + 8); | |
843 | flush_cached_frames (); | |
844 | } | |
c0d1d883 MK |
845 | |
846 | static void | |
847 | i386_pop_frame (void) | |
848 | { | |
849 | generic_pop_current_frame (i386_do_pop_frame); | |
850 | } | |
fc338970 | 851 | \f |
c906108c | 852 | |
fc338970 MK |
853 | /* Figure out where the longjmp will land. Slurp the args out of the |
854 | stack. We expect the first arg to be a pointer to the jmp_buf | |
8201327c MK |
855 | structure from which we extract the address that we will land at. |
856 | This address is copied into PC. This routine returns true on | |
fc338970 | 857 | success. */ |
c906108c | 858 | |
8201327c MK |
859 | static int |
860 | i386_get_longjmp_target (CORE_ADDR *pc) | |
c906108c | 861 | { |
8201327c | 862 | char buf[4]; |
c906108c | 863 | CORE_ADDR sp, jb_addr; |
8201327c | 864 | int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset; |
c906108c | 865 | |
8201327c MK |
866 | /* If JB_PC_OFFSET is -1, we have no way to find out where the |
867 | longjmp will land. */ | |
868 | if (jb_pc_offset == -1) | |
c906108c SS |
869 | return 0; |
870 | ||
8201327c MK |
871 | sp = read_register (SP_REGNUM); |
872 | if (target_read_memory (sp + 4, buf, 4)) | |
c906108c SS |
873 | return 0; |
874 | ||
8201327c MK |
875 | jb_addr = extract_address (buf, 4); |
876 | if (target_read_memory (jb_addr + jb_pc_offset, buf, 4)) | |
877 | return 0; | |
c906108c | 878 | |
8201327c | 879 | *pc = extract_address (buf, 4); |
c906108c SS |
880 | return 1; |
881 | } | |
fc338970 | 882 | \f |
c906108c | 883 | |
3a1e71e3 | 884 | static CORE_ADDR |
ea7c478f | 885 | i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
22f8ba57 MK |
886 | int struct_return, CORE_ADDR struct_addr) |
887 | { | |
888 | sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr); | |
889 | ||
890 | if (struct_return) | |
891 | { | |
892 | char buf[4]; | |
893 | ||
894 | sp -= 4; | |
895 | store_address (buf, 4, struct_addr); | |
896 | write_memory (sp, buf, 4); | |
897 | } | |
898 | ||
899 | return sp; | |
900 | } | |
901 | ||
3a1e71e3 | 902 | static void |
22f8ba57 MK |
903 | i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) |
904 | { | |
905 | /* Do nothing. Everything was already done by i386_push_arguments. */ | |
906 | } | |
907 | ||
1a309862 MK |
908 | /* These registers are used for returning integers (and on some |
909 | targets also for returning `struct' and `union' values when their | |
ef9dff19 | 910 | size and alignment match an integer type). */ |
1a309862 MK |
911 | #define LOW_RETURN_REGNUM 0 /* %eax */ |
912 | #define HIGH_RETURN_REGNUM 2 /* %edx */ | |
913 | ||
914 | /* Extract from an array REGBUF containing the (raw) register state, a | |
915 | function return value of TYPE, and copy that, in virtual format, | |
916 | into VALBUF. */ | |
917 | ||
3a1e71e3 | 918 | static void |
00f8375e | 919 | i386_extract_return_value (struct type *type, struct regcache *regcache, |
ebba8386 | 920 | void *dst) |
c906108c | 921 | { |
ebba8386 | 922 | bfd_byte *valbuf = dst; |
1a309862 | 923 | int len = TYPE_LENGTH (type); |
00f8375e | 924 | char buf[I386_MAX_REGISTER_SIZE]; |
1a309862 | 925 | |
1e8d0a7b MK |
926 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
927 | && TYPE_NFIELDS (type) == 1) | |
3df1b9b4 | 928 | { |
00f8375e | 929 | i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf); |
3df1b9b4 MK |
930 | return; |
931 | } | |
1e8d0a7b MK |
932 | |
933 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
c906108c | 934 | { |
356a6b3e | 935 | if (FP0_REGNUM == 0) |
1a309862 MK |
936 | { |
937 | warning ("Cannot find floating-point return value."); | |
938 | memset (valbuf, 0, len); | |
ef9dff19 | 939 | return; |
1a309862 MK |
940 | } |
941 | ||
c6ba6f0d MK |
942 | /* Floating-point return values can be found in %st(0). Convert |
943 | its contents to the desired type. This is probably not | |
944 | exactly how it would happen on the target itself, but it is | |
945 | the best we can do. */ | |
0818c12a | 946 | regcache_raw_read (regcache, FP0_REGNUM, buf); |
00f8375e | 947 | convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type); |
c906108c SS |
948 | } |
949 | else | |
c5aa993b | 950 | { |
d4f3574e SS |
951 | int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM); |
952 | int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM); | |
953 | ||
954 | if (len <= low_size) | |
00f8375e | 955 | { |
0818c12a | 956 | regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf); |
00f8375e MK |
957 | memcpy (valbuf, buf, len); |
958 | } | |
d4f3574e SS |
959 | else if (len <= (low_size + high_size)) |
960 | { | |
0818c12a | 961 | regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf); |
00f8375e | 962 | memcpy (valbuf, buf, low_size); |
0818c12a | 963 | regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf); |
00f8375e | 964 | memcpy (valbuf + low_size, buf, len - low_size); |
d4f3574e SS |
965 | } |
966 | else | |
8e65ff28 AC |
967 | internal_error (__FILE__, __LINE__, |
968 | "Cannot extract return value of %d bytes long.", len); | |
c906108c SS |
969 | } |
970 | } | |
971 | ||
ef9dff19 MK |
972 | /* Write into the appropriate registers a function return value stored |
973 | in VALBUF of type TYPE, given in virtual format. */ | |
974 | ||
3a1e71e3 | 975 | static void |
3d7f4f49 MK |
976 | i386_store_return_value (struct type *type, struct regcache *regcache, |
977 | const void *valbuf) | |
ef9dff19 MK |
978 | { |
979 | int len = TYPE_LENGTH (type); | |
980 | ||
1e8d0a7b MK |
981 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT |
982 | && TYPE_NFIELDS (type) == 1) | |
3df1b9b4 | 983 | { |
3d7f4f49 | 984 | i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf); |
3df1b9b4 MK |
985 | return; |
986 | } | |
1e8d0a7b MK |
987 | |
988 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
ef9dff19 | 989 | { |
3d7f4f49 | 990 | ULONGEST fstat; |
c6ba6f0d | 991 | char buf[FPU_REG_RAW_SIZE]; |
ccb945b8 | 992 | |
356a6b3e | 993 | if (FP0_REGNUM == 0) |
ef9dff19 MK |
994 | { |
995 | warning ("Cannot set floating-point return value."); | |
996 | return; | |
997 | } | |
998 | ||
635b0cc1 MK |
999 | /* Returning floating-point values is a bit tricky. Apart from |
1000 | storing the return value in %st(0), we have to simulate the | |
1001 | state of the FPU at function return point. */ | |
1002 | ||
c6ba6f0d MK |
1003 | /* Convert the value found in VALBUF to the extended |
1004 | floating-point format used by the FPU. This is probably | |
1005 | not exactly how it would happen on the target itself, but | |
1006 | it is the best we can do. */ | |
1007 | convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext); | |
3d7f4f49 | 1008 | regcache_raw_write (regcache, FP0_REGNUM, buf); |
ccb945b8 | 1009 | |
635b0cc1 MK |
1010 | /* Set the top of the floating-point register stack to 7. The |
1011 | actual value doesn't really matter, but 7 is what a normal | |
1012 | function return would end up with if the program started out | |
1013 | with a freshly initialized FPU. */ | |
3d7f4f49 | 1014 | regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat); |
ccb945b8 | 1015 | fstat |= (7 << 11); |
3d7f4f49 | 1016 | regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat); |
ccb945b8 | 1017 | |
635b0cc1 MK |
1018 | /* Mark %st(1) through %st(7) as empty. Since we set the top of |
1019 | the floating-point register stack to 7, the appropriate value | |
1020 | for the tag word is 0x3fff. */ | |
3d7f4f49 | 1021 | regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff); |
ef9dff19 MK |
1022 | } |
1023 | else | |
1024 | { | |
1025 | int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM); | |
1026 | int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM); | |
1027 | ||
1028 | if (len <= low_size) | |
3d7f4f49 | 1029 | regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf); |
ef9dff19 MK |
1030 | else if (len <= (low_size + high_size)) |
1031 | { | |
3d7f4f49 MK |
1032 | regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf); |
1033 | regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0, | |
1034 | len - low_size, (char *) valbuf + low_size); | |
ef9dff19 MK |
1035 | } |
1036 | else | |
8e65ff28 AC |
1037 | internal_error (__FILE__, __LINE__, |
1038 | "Cannot store return value of %d bytes long.", len); | |
ef9dff19 MK |
1039 | } |
1040 | } | |
f7af9647 MK |
1041 | |
1042 | /* Extract from an array REGBUF containing the (raw) register state | |
1043 | the address in which a function should return its structure value, | |
1044 | as a CORE_ADDR. */ | |
1045 | ||
3a1e71e3 | 1046 | static CORE_ADDR |
00f8375e | 1047 | i386_extract_struct_value_address (struct regcache *regcache) |
f7af9647 | 1048 | { |
a378f419 AC |
1049 | /* NOTE: cagney/2002-08-12: Replaced a call to |
1050 | regcache_raw_read_as_address() with a call to | |
1051 | regcache_cooked_read_unsigned(). The old, ...as_address function | |
1052 | was eventually calling extract_unsigned_integer (via | |
1053 | extract_address) to unpack the registers value. The below is | |
1054 | doing an unsigned extract so that it is functionally equivalent. | |
1055 | The read needs to be cooked as, otherwise, it will never | |
1056 | correctly return the value of a register in the [NUM_REGS | |
1057 | .. NUM_REGS+NUM_PSEUDO_REGS) range. */ | |
1058 | ULONGEST val; | |
1059 | regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val); | |
1060 | return val; | |
f7af9647 | 1061 | } |
fc338970 | 1062 | \f |
ef9dff19 | 1063 | |
8201327c MK |
1064 | /* This is the variable that is set with "set struct-convention", and |
1065 | its legitimate values. */ | |
1066 | static const char default_struct_convention[] = "default"; | |
1067 | static const char pcc_struct_convention[] = "pcc"; | |
1068 | static const char reg_struct_convention[] = "reg"; | |
1069 | static const char *valid_conventions[] = | |
1070 | { | |
1071 | default_struct_convention, | |
1072 | pcc_struct_convention, | |
1073 | reg_struct_convention, | |
1074 | NULL | |
1075 | }; | |
1076 | static const char *struct_convention = default_struct_convention; | |
1077 | ||
1078 | static int | |
1079 | i386_use_struct_convention (int gcc_p, struct type *type) | |
1080 | { | |
1081 | enum struct_return struct_return; | |
1082 | ||
1083 | if (struct_convention == default_struct_convention) | |
1084 | struct_return = gdbarch_tdep (current_gdbarch)->struct_return; | |
1085 | else if (struct_convention == pcc_struct_convention) | |
1086 | struct_return = pcc_struct_return; | |
1087 | else | |
1088 | struct_return = reg_struct_return; | |
1089 | ||
1090 | return generic_use_struct_convention (struct_return == reg_struct_return, | |
1091 | type); | |
1092 | } | |
1093 | \f | |
1094 | ||
d7a0d72c MK |
1095 | /* Return the GDB type object for the "standard" data type of data in |
1096 | register REGNUM. Perhaps %esi and %edi should go here, but | |
1097 | potentially they could be used for things other than address. */ | |
1098 | ||
3a1e71e3 | 1099 | static struct type * |
d7a0d72c MK |
1100 | i386_register_virtual_type (int regnum) |
1101 | { | |
1102 | if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM) | |
1103 | return lookup_pointer_type (builtin_type_void); | |
1104 | ||
66da5fd8 | 1105 | if (FP_REGNUM_P (regnum)) |
c6ba6f0d | 1106 | return builtin_type_i387_ext; |
d7a0d72c | 1107 | |
66da5fd8 | 1108 | if (SSE_REGNUM_P (regnum)) |
3139facc | 1109 | return builtin_type_vec128i; |
d7a0d72c | 1110 | |
28fc6740 AC |
1111 | if (mmx_regnum_p (regnum)) |
1112 | return builtin_type_vec64i; | |
1113 | ||
d7a0d72c MK |
1114 | return builtin_type_int; |
1115 | } | |
1116 | ||
28fc6740 AC |
1117 | /* Map a cooked register onto a raw register or memory. For the i386, |
1118 | the MMX registers need to be mapped onto floating point registers. */ | |
1119 | ||
1120 | static int | |
1121 | mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum) | |
1122 | { | |
1123 | int mmxi; | |
1124 | ULONGEST fstat; | |
1125 | int tos; | |
1126 | int fpi; | |
1127 | mmxi = regnum - MM0_REGNUM; | |
1128 | regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat); | |
1129 | tos = (fstat >> 11) & 0x7; | |
1130 | fpi = (mmxi + tos) % 8; | |
1131 | return (FP0_REGNUM + fpi); | |
1132 | } | |
1133 | ||
1134 | static void | |
1135 | i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
1136 | int regnum, void *buf) | |
1137 | { | |
1138 | if (mmx_regnum_p (regnum)) | |
1139 | { | |
1140 | char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE); | |
1141 | int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum); | |
1142 | regcache_raw_read (regcache, fpnum, mmx_buf); | |
1143 | /* Extract (always little endian). */ | |
1144 | memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum)); | |
1145 | } | |
1146 | else | |
1147 | regcache_raw_read (regcache, regnum, buf); | |
1148 | } | |
1149 | ||
1150 | static void | |
1151 | i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
1152 | int regnum, const void *buf) | |
1153 | { | |
1154 | if (mmx_regnum_p (regnum)) | |
1155 | { | |
1156 | char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE); | |
1157 | int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum); | |
1158 | /* Read ... */ | |
1159 | regcache_raw_read (regcache, fpnum, mmx_buf); | |
1160 | /* ... Modify ... (always little endian). */ | |
1161 | memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum)); | |
1162 | /* ... Write. */ | |
1163 | regcache_raw_write (regcache, fpnum, mmx_buf); | |
1164 | } | |
1165 | else | |
1166 | regcache_raw_write (regcache, regnum, buf); | |
1167 | } | |
1168 | ||
d7a0d72c MK |
1169 | /* Return true iff register REGNUM's virtual format is different from |
1170 | its raw format. Note that this definition assumes that the host | |
1171 | supports IEEE 32-bit floats, since it doesn't say that SSE | |
1172 | registers need conversion. Even if we can't find a counterexample, | |
1173 | this is still sloppy. */ | |
1174 | ||
3a1e71e3 | 1175 | static int |
d7a0d72c MK |
1176 | i386_register_convertible (int regnum) |
1177 | { | |
66da5fd8 | 1178 | return FP_REGNUM_P (regnum); |
d7a0d72c MK |
1179 | } |
1180 | ||
ac27f131 | 1181 | /* Convert data from raw format for register REGNUM in buffer FROM to |
3d261580 | 1182 | virtual format with type TYPE in buffer TO. */ |
ac27f131 | 1183 | |
3a1e71e3 | 1184 | static void |
ac27f131 MK |
1185 | i386_register_convert_to_virtual (int regnum, struct type *type, |
1186 | char *from, char *to) | |
1187 | { | |
66da5fd8 | 1188 | gdb_assert (FP_REGNUM_P (regnum)); |
3d261580 MK |
1189 | |
1190 | /* We only support floating-point values. */ | |
8d7f6b4a MK |
1191 | if (TYPE_CODE (type) != TYPE_CODE_FLT) |
1192 | { | |
1193 | warning ("Cannot convert floating-point register value " | |
1194 | "to non-floating-point type."); | |
1195 | memset (to, 0, TYPE_LENGTH (type)); | |
1196 | return; | |
1197 | } | |
3d261580 | 1198 | |
c6ba6f0d MK |
1199 | /* Convert to TYPE. This should be a no-op if TYPE is equivalent to |
1200 | the extended floating-point format used by the FPU. */ | |
1201 | convert_typed_floating (from, builtin_type_i387_ext, to, type); | |
ac27f131 MK |
1202 | } |
1203 | ||
1204 | /* Convert data from virtual format with type TYPE in buffer FROM to | |
3d261580 | 1205 | raw format for register REGNUM in buffer TO. */ |
ac27f131 | 1206 | |
3a1e71e3 | 1207 | static void |
ac27f131 MK |
1208 | i386_register_convert_to_raw (struct type *type, int regnum, |
1209 | char *from, char *to) | |
1210 | { | |
66da5fd8 | 1211 | gdb_assert (FP_REGNUM_P (regnum)); |
c6ba6f0d MK |
1212 | |
1213 | /* We only support floating-point values. */ | |
1214 | if (TYPE_CODE (type) != TYPE_CODE_FLT) | |
1215 | { | |
1216 | warning ("Cannot convert non-floating-point type " | |
1217 | "to floating-point register value."); | |
1218 | memset (to, 0, TYPE_LENGTH (type)); | |
1219 | return; | |
1220 | } | |
3d261580 | 1221 | |
c6ba6f0d MK |
1222 | /* Convert from TYPE. This should be a no-op if TYPE is equivalent |
1223 | to the extended floating-point format used by the FPU. */ | |
1224 | convert_typed_floating (from, type, to, builtin_type_i387_ext); | |
ac27f131 | 1225 | } |
ac27f131 | 1226 | \f |
fc338970 | 1227 | |
c906108c | 1228 | #ifdef STATIC_TRANSFORM_NAME |
fc338970 MK |
1229 | /* SunPRO encodes the static variables. This is not related to C++ |
1230 | mangling, it is done for C too. */ | |
c906108c SS |
1231 | |
1232 | char * | |
fba45db2 | 1233 | sunpro_static_transform_name (char *name) |
c906108c SS |
1234 | { |
1235 | char *p; | |
1236 | if (IS_STATIC_TRANSFORM_NAME (name)) | |
1237 | { | |
fc338970 MK |
1238 | /* For file-local statics there will be a period, a bunch of |
1239 | junk (the contents of which match a string given in the | |
c5aa993b JM |
1240 | N_OPT), a period and the name. For function-local statics |
1241 | there will be a bunch of junk (which seems to change the | |
1242 | second character from 'A' to 'B'), a period, the name of the | |
1243 | function, and the name. So just skip everything before the | |
1244 | last period. */ | |
c906108c SS |
1245 | p = strrchr (name, '.'); |
1246 | if (p != NULL) | |
1247 | name = p + 1; | |
1248 | } | |
1249 | return name; | |
1250 | } | |
1251 | #endif /* STATIC_TRANSFORM_NAME */ | |
fc338970 | 1252 | \f |
c906108c | 1253 | |
fc338970 | 1254 | /* Stuff for WIN32 PE style DLL's but is pretty generic really. */ |
c906108c SS |
1255 | |
1256 | CORE_ADDR | |
1cce71eb | 1257 | i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name) |
c906108c | 1258 | { |
fc338970 | 1259 | if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */ |
c906108c | 1260 | { |
c5aa993b | 1261 | unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4); |
c906108c | 1262 | struct minimal_symbol *indsym = |
fc338970 | 1263 | indirect ? lookup_minimal_symbol_by_pc (indirect) : 0; |
c5aa993b | 1264 | char *symname = indsym ? SYMBOL_NAME (indsym) : 0; |
c906108c | 1265 | |
c5aa993b | 1266 | if (symname) |
c906108c | 1267 | { |
c5aa993b JM |
1268 | if (strncmp (symname, "__imp_", 6) == 0 |
1269 | || strncmp (symname, "_imp_", 5) == 0) | |
c906108c SS |
1270 | return name ? 1 : read_memory_unsigned_integer (indirect, 4); |
1271 | } | |
1272 | } | |
fc338970 | 1273 | return 0; /* Not a trampoline. */ |
c906108c | 1274 | } |
fc338970 MK |
1275 | \f |
1276 | ||
8201327c MK |
1277 | /* Return non-zero if PC and NAME show that we are in a signal |
1278 | trampoline. */ | |
1279 | ||
1280 | static int | |
1281 | i386_pc_in_sigtramp (CORE_ADDR pc, char *name) | |
1282 | { | |
1283 | return (name && strcmp ("_sigtramp", name) == 0); | |
1284 | } | |
1285 | \f | |
1286 | ||
fc338970 MK |
1287 | /* We have two flavours of disassembly. The machinery on this page |
1288 | deals with switching between those. */ | |
c906108c SS |
1289 | |
1290 | static int | |
5e3397bb | 1291 | i386_print_insn (bfd_vma pc, disassemble_info *info) |
c906108c | 1292 | { |
5e3397bb MK |
1293 | gdb_assert (disassembly_flavor == att_flavor |
1294 | || disassembly_flavor == intel_flavor); | |
1295 | ||
1296 | /* FIXME: kettenis/20020915: Until disassembler_options is properly | |
1297 | constified, cast to prevent a compiler warning. */ | |
1298 | info->disassembler_options = (char *) disassembly_flavor; | |
1299 | info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach; | |
1300 | ||
1301 | return print_insn_i386 (pc, info); | |
7a292a7a | 1302 | } |
fc338970 | 1303 | \f |
3ce1502b | 1304 | |
8201327c MK |
1305 | /* There are a few i386 architecture variants that differ only |
1306 | slightly from the generic i386 target. For now, we don't give them | |
1307 | their own source file, but include them here. As a consequence, | |
1308 | they'll always be included. */ | |
3ce1502b | 1309 | |
8201327c | 1310 | /* System V Release 4 (SVR4). */ |
3ce1502b | 1311 | |
8201327c MK |
1312 | static int |
1313 | i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name) | |
d2a7c97a | 1314 | { |
8201327c MK |
1315 | return (name && (strcmp ("_sigreturn", name) == 0 |
1316 | || strcmp ("_sigacthandler", name) == 0 | |
1317 | || strcmp ("sigvechandler", name) == 0)); | |
1318 | } | |
d2a7c97a | 1319 | |
21d0e8a4 MK |
1320 | /* Get address of the pushed ucontext (sigcontext) on the stack for |
1321 | all three variants of SVR4 sigtramps. */ | |
3ce1502b | 1322 | |
3a1e71e3 | 1323 | static CORE_ADDR |
21d0e8a4 | 1324 | i386_svr4_sigcontext_addr (struct frame_info *frame) |
8201327c | 1325 | { |
21d0e8a4 | 1326 | int sigcontext_offset = -1; |
8201327c MK |
1327 | char *name = NULL; |
1328 | ||
1329 | find_pc_partial_function (frame->pc, &name, NULL, NULL); | |
1330 | if (name) | |
d2a7c97a | 1331 | { |
8201327c | 1332 | if (strcmp (name, "_sigreturn") == 0) |
21d0e8a4 | 1333 | sigcontext_offset = 132; |
8201327c | 1334 | else if (strcmp (name, "_sigacthandler") == 0) |
21d0e8a4 | 1335 | sigcontext_offset = 80; |
8201327c | 1336 | else if (strcmp (name, "sigvechandler") == 0) |
21d0e8a4 | 1337 | sigcontext_offset = 120; |
8201327c | 1338 | } |
3ce1502b | 1339 | |
21d0e8a4 MK |
1340 | gdb_assert (sigcontext_offset != -1); |
1341 | ||
8201327c | 1342 | if (frame->next) |
21d0e8a4 MK |
1343 | return frame->next->frame + sigcontext_offset; |
1344 | return read_register (SP_REGNUM) + sigcontext_offset; | |
8201327c MK |
1345 | } |
1346 | \f | |
3ce1502b | 1347 | |
8201327c | 1348 | /* DJGPP. */ |
d2a7c97a | 1349 | |
8201327c MK |
1350 | static int |
1351 | i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name) | |
1352 | { | |
1353 | /* DJGPP doesn't have any special frames for signal handlers. */ | |
1354 | return 0; | |
1355 | } | |
1356 | \f | |
d2a7c97a | 1357 | |
8201327c | 1358 | /* Generic ELF. */ |
d2a7c97a | 1359 | |
8201327c MK |
1360 | void |
1361 | i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1362 | { | |
1363 | /* We typically use stabs-in-ELF with the DWARF register numbering. */ | |
1364 | set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum); | |
1365 | } | |
3ce1502b | 1366 | |
8201327c | 1367 | /* System V Release 4 (SVR4). */ |
3ce1502b | 1368 | |
8201327c MK |
1369 | void |
1370 | i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) | |
1371 | { | |
1372 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3ce1502b | 1373 | |
8201327c MK |
1374 | /* System V Release 4 uses ELF. */ |
1375 | i386_elf_init_abi (info, gdbarch); | |
3ce1502b | 1376 | |
dfe01d39 MK |
1377 | /* System V Release 4 has shared libraries. */ |
1378 | set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section); | |
1379 | set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target); | |
1380 | ||
8201327c | 1381 | /* FIXME: kettenis/20020511: Why do we override this function here? */ |
b4671f85 | 1382 | set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid); |
3ce1502b | 1383 | |
8201327c | 1384 | set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp); |
21d0e8a4 MK |
1385 | tdep->sigcontext_addr = i386_svr4_sigcontext_addr; |
1386 | tdep->sc_pc_offset = 14 * 4; | |
1387 | tdep->sc_sp_offset = 7 * 4; | |
3ce1502b | 1388 | |
8201327c | 1389 | tdep->jb_pc_offset = 20; |
3ce1502b MK |
1390 | } |
1391 | ||
8201327c | 1392 | /* DJGPP. */ |
3ce1502b | 1393 | |
3a1e71e3 | 1394 | static void |
8201327c | 1395 | i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
3ce1502b | 1396 | { |
8201327c | 1397 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3ce1502b | 1398 | |
8201327c | 1399 | set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp); |
3ce1502b | 1400 | |
8201327c | 1401 | tdep->jb_pc_offset = 36; |
3ce1502b MK |
1402 | } |
1403 | ||
8201327c | 1404 | /* NetWare. */ |
3ce1502b | 1405 | |
3a1e71e3 | 1406 | static void |
8201327c | 1407 | i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) |
3ce1502b | 1408 | { |
8201327c | 1409 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
3ce1502b | 1410 | |
8201327c | 1411 | /* FIXME: kettenis/20020511: Why do we override this function here? */ |
b4671f85 | 1412 | set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid); |
8201327c MK |
1413 | |
1414 | tdep->jb_pc_offset = 24; | |
d2a7c97a | 1415 | } |
8201327c | 1416 | \f |
2acceee2 | 1417 | |
3a1e71e3 | 1418 | static struct gdbarch * |
a62cc96e AC |
1419 | i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1420 | { | |
cd3c07fc | 1421 | struct gdbarch_tdep *tdep; |
a62cc96e | 1422 | struct gdbarch *gdbarch; |
8201327c | 1423 | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; |
a62cc96e | 1424 | |
8201327c | 1425 | /* Try to determine the OS ABI of the object we're loading. */ |
3ce1502b | 1426 | if (info.abfd != NULL) |
8201327c | 1427 | osabi = gdbarch_lookup_osabi (info.abfd); |
d2a7c97a | 1428 | |
3ce1502b | 1429 | /* Find a candidate among extant architectures. */ |
d2a7c97a MK |
1430 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
1431 | arches != NULL; | |
1432 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1433 | { | |
8201327c | 1434 | /* Make sure the OS ABI selection matches. */ |
65d6d66a | 1435 | tdep = gdbarch_tdep (arches->gdbarch); |
8201327c | 1436 | if (tdep && tdep->osabi == osabi) |
65d6d66a | 1437 | return arches->gdbarch; |
d2a7c97a | 1438 | } |
a62cc96e AC |
1439 | |
1440 | /* Allocate space for the new architecture. */ | |
1441 | tdep = XMALLOC (struct gdbarch_tdep); | |
1442 | gdbarch = gdbarch_alloc (&info, tdep); | |
1443 | ||
8201327c MK |
1444 | tdep->osabi = osabi; |
1445 | ||
1446 | /* The i386 default settings don't include the SSE registers. | |
356a6b3e MK |
1447 | FIXME: kettenis/20020614: They do include the FPU registers for |
1448 | now, which probably is not quite right. */ | |
8201327c | 1449 | tdep->num_xmm_regs = 0; |
d2a7c97a | 1450 | |
8201327c MK |
1451 | tdep->jb_pc_offset = -1; |
1452 | tdep->struct_return = pcc_struct_return; | |
8201327c MK |
1453 | tdep->sigtramp_start = 0; |
1454 | tdep->sigtramp_end = 0; | |
21d0e8a4 | 1455 | tdep->sigcontext_addr = NULL; |
8201327c | 1456 | tdep->sc_pc_offset = -1; |
21d0e8a4 | 1457 | tdep->sc_sp_offset = -1; |
8201327c | 1458 | |
896fb97d MK |
1459 | /* The format used for `long double' on almost all i386 targets is |
1460 | the i387 extended floating-point format. In fact, of all targets | |
1461 | in the GCC 2.95 tree, only OSF/1 does it different, and insists | |
1462 | on having a `long double' that's not `long' at all. */ | |
1463 | set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext); | |
21d0e8a4 | 1464 | |
66da5fd8 | 1465 | /* Although the i387 extended floating-point has only 80 significant |
896fb97d MK |
1466 | bits, a `long double' actually takes up 96, probably to enforce |
1467 | alignment. */ | |
1468 | set_gdbarch_long_double_bit (gdbarch, 96); | |
1469 | ||
356a6b3e MK |
1470 | /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h, |
1471 | tm-symmetry.h currently override this. Sigh. */ | |
1472 | set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS); | |
21d0e8a4 | 1473 | |
66da5fd8 MK |
1474 | set_gdbarch_sp_regnum (gdbarch, 4); /* %esp */ |
1475 | set_gdbarch_fp_regnum (gdbarch, 5); /* %ebp */ | |
1476 | set_gdbarch_pc_regnum (gdbarch, 8); /* %eip */ | |
1477 | set_gdbarch_ps_regnum (gdbarch, 9); /* %eflags */ | |
1478 | set_gdbarch_fp0_regnum (gdbarch, 16); /* %st(0) */ | |
356a6b3e MK |
1479 | |
1480 | /* Use the "default" register numbering scheme for stabs and COFF. */ | |
1481 | set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum); | |
1482 | set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum); | |
1483 | ||
1484 | /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */ | |
1485 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum); | |
1486 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum); | |
1487 | ||
1488 | /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to | |
1489 | be in use on any of the supported i386 targets. */ | |
1490 | ||
1491 | set_gdbarch_register_name (gdbarch, i386_register_name); | |
1492 | set_gdbarch_register_size (gdbarch, 4); | |
1493 | set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS); | |
00f8375e MK |
1494 | set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE); |
1495 | set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE); | |
b6197528 | 1496 | set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type); |
356a6b3e | 1497 | |
61113f8b MK |
1498 | set_gdbarch_print_float_info (gdbarch, i387_print_float_info); |
1499 | ||
8201327c | 1500 | set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target); |
96297dab | 1501 | |
c0d1d883 | 1502 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); |
a62cc96e AC |
1503 | |
1504 | /* Call dummy code. */ | |
c0d1d883 MK |
1505 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); |
1506 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
8758dec1 | 1507 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); |
c0d1d883 | 1508 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); |
a62cc96e | 1509 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); |
c0d1d883 | 1510 | set_gdbarch_call_dummy_length (gdbarch, 0); |
a62cc96e | 1511 | set_gdbarch_call_dummy_p (gdbarch, 1); |
c0d1d883 MK |
1512 | set_gdbarch_call_dummy_words (gdbarch, NULL); |
1513 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
a62cc96e | 1514 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); |
c0d1d883 | 1515 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); |
a62cc96e | 1516 | |
b6197528 MK |
1517 | set_gdbarch_register_convertible (gdbarch, i386_register_convertible); |
1518 | set_gdbarch_register_convert_to_virtual (gdbarch, | |
1519 | i386_register_convert_to_virtual); | |
1520 | set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw); | |
1521 | ||
7b4c2dce | 1522 | set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register); |
a62cc96e | 1523 | |
c0d1d883 | 1524 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); |
a62cc96e | 1525 | |
8758dec1 MK |
1526 | /* "An argument's size is increased, if necessary, to make it a |
1527 | multiple of [32-bit] words. This may require tail padding, | |
1528 | depending on the size of the argument" -- from the x86 ABI. */ | |
1529 | set_gdbarch_parm_boundary (gdbarch, 32); | |
1530 | ||
00f8375e | 1531 | set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value); |
fc08ec52 | 1532 | set_gdbarch_push_arguments (gdbarch, i386_push_arguments); |
c0d1d883 MK |
1533 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); |
1534 | set_gdbarch_push_return_address (gdbarch, i386_push_return_address); | |
fc08ec52 MK |
1535 | set_gdbarch_pop_frame (gdbarch, i386_pop_frame); |
1536 | set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return); | |
3d7f4f49 | 1537 | set_gdbarch_store_return_value (gdbarch, i386_store_return_value); |
00f8375e | 1538 | set_gdbarch_extract_struct_value_address (gdbarch, |
fc08ec52 | 1539 | i386_extract_struct_value_address); |
8201327c MK |
1540 | set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention); |
1541 | ||
42fdc8df | 1542 | set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs); |
93924b6b MK |
1543 | set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue); |
1544 | ||
1545 | /* Stack grows downward. */ | |
1546 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1547 | ||
1548 | set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc); | |
1549 | set_gdbarch_decr_pc_after_break (gdbarch, 1); | |
1550 | set_gdbarch_function_start_offset (gdbarch, 0); | |
42fdc8df | 1551 | |
8201327c MK |
1552 | /* The following redefines make backtracing through sigtramp work. |
1553 | They manufacture a fake sigtramp frame and obtain the saved pc in | |
1554 | sigtramp from the sigcontext structure which is pushed by the | |
1555 | kernel on the user stack, along with a pointer to it. */ | |
1556 | ||
42fdc8df MK |
1557 | set_gdbarch_frame_args_skip (gdbarch, 8); |
1558 | set_gdbarch_frameless_function_invocation (gdbarch, | |
1559 | i386_frameless_function_invocation); | |
8201327c | 1560 | set_gdbarch_frame_chain (gdbarch, i386_frame_chain); |
c0d1d883 | 1561 | set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid); |
8201327c | 1562 | set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc); |
42fdc8df MK |
1563 | set_gdbarch_frame_args_address (gdbarch, default_frame_address); |
1564 | set_gdbarch_frame_locals_address (gdbarch, default_frame_address); | |
8201327c | 1565 | set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call); |
42fdc8df | 1566 | set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args); |
8201327c MK |
1567 | set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp); |
1568 | ||
28fc6740 AC |
1569 | /* Wire in the MMX registers. */ |
1570 | set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs); | |
1571 | set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read); | |
1572 | set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write); | |
1573 | ||
5e3397bb MK |
1574 | set_gdbarch_print_insn (gdbarch, i386_print_insn); |
1575 | ||
3ce1502b | 1576 | /* Hook in ABI-specific overrides, if they have been registered. */ |
8201327c | 1577 | gdbarch_init_osabi (info, gdbarch, osabi); |
3ce1502b | 1578 | |
a62cc96e AC |
1579 | return gdbarch; |
1580 | } | |
1581 | ||
8201327c MK |
1582 | static enum gdb_osabi |
1583 | i386_coff_osabi_sniffer (bfd *abfd) | |
1584 | { | |
762c5349 MK |
1585 | if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0 |
1586 | || strcmp (bfd_get_target (abfd), "coff-go32") == 0) | |
8201327c MK |
1587 | return GDB_OSABI_GO32; |
1588 | ||
1589 | return GDB_OSABI_UNKNOWN; | |
1590 | } | |
1591 | ||
1592 | static enum gdb_osabi | |
1593 | i386_nlm_osabi_sniffer (bfd *abfd) | |
1594 | { | |
1595 | return GDB_OSABI_NETWARE; | |
1596 | } | |
1597 | \f | |
1598 | ||
28e9e0f0 MK |
1599 | /* Provide a prototype to silence -Wmissing-prototypes. */ |
1600 | void _initialize_i386_tdep (void); | |
1601 | ||
c906108c | 1602 | void |
fba45db2 | 1603 | _initialize_i386_tdep (void) |
c906108c | 1604 | { |
a62cc96e AC |
1605 | register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init); |
1606 | ||
fc338970 | 1607 | /* Add the variable that controls the disassembly flavor. */ |
917317f4 JM |
1608 | { |
1609 | struct cmd_list_element *new_cmd; | |
7a292a7a | 1610 | |
917317f4 JM |
1611 | new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class, |
1612 | valid_flavors, | |
1ed2a135 | 1613 | &disassembly_flavor, |
fc338970 MK |
1614 | "\ |
1615 | Set the disassembly flavor, the valid values are \"att\" and \"intel\", \ | |
c906108c | 1616 | and the default value is \"att\".", |
917317f4 | 1617 | &setlist); |
917317f4 JM |
1618 | add_show_from_set (new_cmd, &showlist); |
1619 | } | |
8201327c MK |
1620 | |
1621 | /* Add the variable that controls the convention for returning | |
1622 | structs. */ | |
1623 | { | |
1624 | struct cmd_list_element *new_cmd; | |
1625 | ||
1626 | new_cmd = add_set_enum_cmd ("struct-convention", no_class, | |
5e3397bb | 1627 | valid_conventions, |
8201327c MK |
1628 | &struct_convention, "\ |
1629 | Set the convention for returning small structs, valid values \ | |
1630 | are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".", | |
1631 | &setlist); | |
1632 | add_show_from_set (new_cmd, &showlist); | |
1633 | } | |
1634 | ||
1635 | gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour, | |
1636 | i386_coff_osabi_sniffer); | |
1637 | gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour, | |
1638 | i386_nlm_osabi_sniffer); | |
1639 | ||
1640 | gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4, | |
1641 | i386_svr4_init_abi); | |
1642 | gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32, | |
1643 | i386_go32_init_abi); | |
1644 | gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE, | |
1645 | i386_nw_init_abi); | |
c906108c | 1646 | } |