]>
Commit | Line | Data |
---|---|---|
14f9c5c9 AS |
1 | /* Ada language support routines for GDB, the GNU debugger. Copyright |
2 | 1992, 1993, 1994, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ | |
19 | ||
20 | #include <stdio.h> | |
21 | #include <string.h> | |
22 | #include <ctype.h> | |
23 | #include <stdarg.h> | |
24 | #include "demangle.h" | |
25 | #include "defs.h" | |
26 | #include "symtab.h" | |
27 | #include "gdbtypes.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "expression.h" | |
30 | #include "parser-defs.h" | |
31 | #include "language.h" | |
32 | #include "c-lang.h" | |
33 | #include "inferior.h" | |
34 | #include "symfile.h" | |
35 | #include "objfiles.h" | |
36 | #include "breakpoint.h" | |
37 | #include "gdbcore.h" | |
38 | #include "ada-lang.h" | |
39 | #ifdef UI_OUT | |
40 | #include "ui-out.h" | |
41 | #endif | |
42 | ||
43 | struct cleanup* unresolved_names; | |
44 | ||
45 | void extract_string (CORE_ADDR addr, char *buf); | |
46 | ||
47 | static struct type * ada_create_fundamental_type (struct objfile *, int); | |
48 | ||
49 | static void modify_general_field (char *, LONGEST, int, int); | |
50 | ||
51 | static struct type* desc_base_type (struct type*); | |
52 | ||
53 | static struct type* desc_bounds_type (struct type*); | |
54 | ||
55 | static struct value* desc_bounds (struct value*); | |
56 | ||
57 | static int fat_pntr_bounds_bitpos (struct type*); | |
58 | ||
59 | static int fat_pntr_bounds_bitsize (struct type*); | |
60 | ||
61 | static struct type* desc_data_type (struct type*); | |
62 | ||
63 | static struct value* desc_data (struct value*); | |
64 | ||
65 | static int fat_pntr_data_bitpos (struct type*); | |
66 | ||
67 | static int fat_pntr_data_bitsize (struct type*); | |
68 | ||
69 | static struct value* desc_one_bound (struct value*, int, int); | |
70 | ||
71 | static int desc_bound_bitpos (struct type*, int, int); | |
72 | ||
73 | static int desc_bound_bitsize (struct type*, int, int); | |
74 | ||
75 | static struct type* desc_index_type (struct type*, int); | |
76 | ||
77 | static int desc_arity (struct type*); | |
78 | ||
79 | static int ada_type_match (struct type*, struct type*, int); | |
80 | ||
81 | static int ada_args_match (struct symbol*, struct value**, int); | |
82 | ||
83 | static struct value* place_on_stack (struct value*, CORE_ADDR*); | |
84 | ||
85 | static struct value* convert_actual (struct value*, struct type*, CORE_ADDR*); | |
86 | ||
87 | static struct value* make_array_descriptor (struct type*, struct value*, CORE_ADDR*); | |
88 | ||
89 | static void ada_add_block_symbols (struct block*, const char*, | |
90 | namespace_enum, struct objfile*, int); | |
91 | ||
92 | static void fill_in_ada_prototype (struct symbol*); | |
93 | ||
94 | static int is_nonfunction (struct symbol**, int); | |
95 | ||
96 | static void add_defn_to_vec (struct symbol*, struct block*); | |
97 | ||
98 | static struct partial_symbol* | |
99 | ada_lookup_partial_symbol (struct partial_symtab*, const char*, | |
100 | int, namespace_enum, int); | |
101 | ||
102 | static struct symtab* symtab_for_sym (struct symbol*); | |
103 | ||
104 | static struct value* ada_resolve_subexp (struct expression**, int*, int, struct type*); | |
105 | ||
106 | static void replace_operator_with_call (struct expression**, int, int, int, | |
107 | struct symbol*, struct block*); | |
108 | ||
109 | static int possible_user_operator_p (enum exp_opcode, struct value**); | |
110 | ||
111 | static const char* ada_op_name (enum exp_opcode); | |
112 | ||
113 | static int numeric_type_p (struct type*); | |
114 | ||
115 | static int integer_type_p (struct type*); | |
116 | ||
117 | static int scalar_type_p (struct type*); | |
118 | ||
119 | static int discrete_type_p (struct type*); | |
120 | ||
121 | static char* extended_canonical_line_spec (struct symtab_and_line, const char*); | |
122 | ||
123 | static struct value* evaluate_subexp (struct type*, struct expression*, int*, enum noside); | |
124 | ||
125 | static struct value* evaluate_subexp_type (struct expression*, int*); | |
126 | ||
127 | static struct type * ada_create_fundamental_type (struct objfile*, int); | |
128 | ||
129 | static int is_dynamic_field (struct type *, int); | |
130 | ||
131 | static struct type* | |
132 | to_fixed_variant_branch_type (struct type*, char*, CORE_ADDR, struct value*); | |
133 | ||
134 | static struct type* to_fixed_range_type (char*, struct value*, struct objfile*); | |
135 | ||
136 | static struct type* to_static_fixed_type (struct type*); | |
137 | ||
138 | static struct value* unwrap_value (struct value*); | |
139 | ||
140 | static struct type* packed_array_type (struct type*, long*); | |
141 | ||
142 | static struct type* decode_packed_array_type (struct type*); | |
143 | ||
144 | static struct value* decode_packed_array (struct value*); | |
145 | ||
146 | static struct value* value_subscript_packed (struct value*, int, struct value**); | |
147 | ||
148 | static struct value* coerce_unspec_val_to_type (struct value*, long, struct type*); | |
149 | ||
150 | static struct value* get_var_value (char*, char*); | |
151 | ||
152 | static int lesseq_defined_than (struct symbol*, struct symbol*); | |
153 | ||
154 | static int equiv_types (struct type*, struct type*); | |
155 | ||
156 | static int is_name_suffix (const char*); | |
157 | ||
158 | static int wild_match (const char*, int, const char*); | |
159 | ||
160 | static struct symtabs_and_lines find_sal_from_funcs_and_line (const char*, int, struct symbol**, int); | |
161 | ||
162 | static int | |
163 | find_line_in_linetable (struct linetable*, int, struct symbol**, int, int*); | |
164 | ||
165 | static int find_next_line_in_linetable (struct linetable*, int, int, int); | |
166 | ||
167 | static struct symtabs_and_lines all_sals_for_line (const char*, int, char***); | |
168 | ||
169 | static void read_all_symtabs (const char*); | |
170 | ||
171 | static int is_plausible_func_for_line (struct symbol*, int); | |
172 | ||
173 | static struct value* ada_coerce_ref (struct value*); | |
174 | ||
175 | static struct value* value_pos_atr (struct value*); | |
176 | ||
177 | static struct value* value_val_atr (struct type*, struct value*); | |
178 | ||
179 | static struct symbol* standard_lookup (const char*, namespace_enum); | |
180 | ||
181 | extern void markTimeStart (int index); | |
182 | extern void markTimeStop (int index); | |
183 | ||
184 | \f | |
185 | ||
186 | /* Maximum-sized dynamic type. */ | |
187 | static unsigned int varsize_limit; | |
188 | ||
189 | static const char* ada_completer_word_break_characters = | |
190 | " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; | |
191 | ||
192 | /* The name of the symbol to use to get the name of the main subprogram */ | |
193 | #define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name" | |
194 | ||
195 | /* Utilities */ | |
196 | ||
197 | /* extract_string | |
198 | * | |
199 | * read the string located at ADDR from the inferior and store the | |
200 | * result into BUF | |
201 | */ | |
202 | void | |
203 | extract_string (CORE_ADDR addr, char *buf) | |
204 | { | |
205 | int char_index = 0; | |
206 | ||
207 | /* Loop, reading one byte at a time, until we reach the '\000' | |
208 | end-of-string marker */ | |
209 | do | |
210 | { | |
211 | target_read_memory (addr + char_index * sizeof (char), | |
212 | buf + char_index * sizeof (char), | |
213 | sizeof (char)); | |
214 | char_index++; | |
215 | } | |
216 | while (buf[char_index - 1] != '\000'); | |
217 | } | |
218 | ||
219 | /* Assuming *OLD_VECT points to an array of *SIZE objects of size | |
220 | ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, | |
221 | updating *OLD_VECT and *SIZE as necessary. */ | |
222 | ||
223 | void | |
224 | grow_vect (old_vect, size, min_size, element_size) | |
225 | void** old_vect; | |
226 | size_t* size; | |
227 | size_t min_size; | |
228 | int element_size; | |
229 | { | |
230 | if (*size < min_size) { | |
231 | *size *= 2; | |
232 | if (*size < min_size) | |
233 | *size = min_size; | |
234 | *old_vect = xrealloc (*old_vect, *size * element_size); | |
235 | } | |
236 | } | |
237 | ||
238 | /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing | |
239 | suffix of FIELD_NAME beginning "___" */ | |
240 | ||
241 | static int | |
242 | field_name_match (field_name, target) | |
243 | const char *field_name; | |
244 | const char *target; | |
245 | { | |
246 | int len = strlen (target); | |
247 | return | |
248 | STREQN (field_name, target, len) | |
249 | && (field_name[len] == '\0' | |
250 | || (STREQN (field_name + len, "___", 3) | |
251 | && ! STREQ (field_name + strlen (field_name) - 6, "___XVN"))); | |
252 | } | |
253 | ||
254 | ||
255 | /* The length of the prefix of NAME prior to any "___" suffix. */ | |
256 | ||
257 | int | |
258 | ada_name_prefix_len (name) | |
259 | const char* name; | |
260 | { | |
261 | if (name == NULL) | |
262 | return 0; | |
263 | else | |
264 | { | |
265 | const char* p = strstr (name, "___"); | |
266 | if (p == NULL) | |
267 | return strlen (name); | |
268 | else | |
269 | return p - name; | |
270 | } | |
271 | } | |
272 | ||
273 | /* SUFFIX is a suffix of STR. False if STR is null. */ | |
274 | static int | |
275 | is_suffix (const char* str, const char* suffix) | |
276 | { | |
277 | int len1, len2; | |
278 | if (str == NULL) | |
279 | return 0; | |
280 | len1 = strlen (str); | |
281 | len2 = strlen (suffix); | |
282 | return (len1 >= len2 && STREQ (str + len1 - len2, suffix)); | |
283 | } | |
284 | ||
285 | /* Create a value of type TYPE whose contents come from VALADDR, if it | |
286 | * is non-null, and whose memory address (in the inferior) is | |
287 | * ADDRESS. */ | |
288 | struct value* | |
289 | value_from_contents_and_address (type, valaddr, address) | |
290 | struct type* type; | |
291 | char* valaddr; | |
292 | CORE_ADDR address; | |
293 | { | |
294 | struct value* v = allocate_value (type); | |
295 | if (valaddr == NULL) | |
296 | VALUE_LAZY (v) = 1; | |
297 | else | |
298 | memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type)); | |
299 | VALUE_ADDRESS (v) = address; | |
300 | if (address != 0) | |
301 | VALUE_LVAL (v) = lval_memory; | |
302 | return v; | |
303 | } | |
304 | ||
305 | /* The contents of value VAL, beginning at offset OFFSET, treated as a | |
306 | value of type TYPE. The result is an lval in memory if VAL is. */ | |
307 | ||
308 | static struct value* | |
309 | coerce_unspec_val_to_type (val, offset, type) | |
310 | struct value* val; | |
311 | long offset; | |
312 | struct type *type; | |
313 | { | |
314 | CHECK_TYPEDEF (type); | |
315 | if (VALUE_LVAL (val) == lval_memory) | |
316 | return value_at_lazy (type, | |
317 | VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset, NULL); | |
318 | else | |
319 | { | |
320 | struct value* result = allocate_value (type); | |
321 | VALUE_LVAL (result) = not_lval; | |
322 | if (VALUE_ADDRESS (val) == 0) | |
323 | memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset, | |
324 | TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val)) | |
325 | ? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type)); | |
326 | else | |
327 | { | |
328 | VALUE_ADDRESS (result) = | |
329 | VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset; | |
330 | VALUE_LAZY (result) = 1; | |
331 | } | |
332 | return result; | |
333 | } | |
334 | } | |
335 | ||
336 | static char* | |
337 | cond_offset_host (valaddr, offset) | |
338 | char* valaddr; | |
339 | long offset; | |
340 | { | |
341 | if (valaddr == NULL) | |
342 | return NULL; | |
343 | else | |
344 | return valaddr + offset; | |
345 | } | |
346 | ||
347 | static CORE_ADDR | |
348 | cond_offset_target (address, offset) | |
349 | CORE_ADDR address; | |
350 | long offset; | |
351 | { | |
352 | if (address == 0) | |
353 | return 0; | |
354 | else | |
355 | return address + offset; | |
356 | } | |
357 | ||
358 | /* Perform execute_command on the result of concatenating all | |
359 | arguments up to NULL. */ | |
360 | static void | |
361 | do_command (const char* arg, ...) | |
362 | { | |
363 | int len; | |
364 | char* cmd; | |
365 | const char* s; | |
366 | va_list ap; | |
367 | ||
368 | va_start (ap, arg); | |
369 | len = 0; | |
370 | s = arg; | |
371 | cmd = ""; | |
372 | for (; s != NULL; s = va_arg (ap, const char*)) | |
373 | { | |
374 | char* cmd1; | |
375 | len += strlen (s); | |
376 | cmd1 = alloca (len+1); | |
377 | strcpy (cmd1, cmd); | |
378 | strcat (cmd1, s); | |
379 | cmd = cmd1; | |
380 | } | |
381 | va_end (ap); | |
382 | execute_command (cmd, 0); | |
383 | } | |
384 | ||
385 | \f | |
386 | /* Language Selection */ | |
387 | ||
388 | /* If the main program is in Ada, return language_ada, otherwise return LANG | |
389 | (the main program is in Ada iif the adainit symbol is found). | |
390 | ||
391 | MAIN_PST is not used. */ | |
392 | ||
393 | enum language | |
394 | ada_update_initial_language (lang, main_pst) | |
395 | enum language lang; | |
396 | struct partial_symtab* main_pst; | |
397 | { | |
398 | if (lookup_minimal_symbol ("adainit", (const char*) NULL, | |
399 | (struct objfile*) NULL) != NULL) | |
400 | /* return language_ada; */ | |
401 | /* FIXME: language_ada should be defined in defs.h */ | |
402 | return language_unknown; | |
403 | ||
404 | return lang; | |
405 | } | |
406 | ||
407 | \f | |
408 | /* Symbols */ | |
409 | ||
410 | /* Table of Ada operators and their GNAT-mangled names. Last entry is pair | |
411 | of NULLs. */ | |
412 | ||
413 | const struct ada_opname_map ada_opname_table[] = | |
414 | { | |
415 | { "Oadd", "\"+\"", BINOP_ADD }, | |
416 | { "Osubtract", "\"-\"", BINOP_SUB }, | |
417 | { "Omultiply", "\"*\"", BINOP_MUL }, | |
418 | { "Odivide", "\"/\"", BINOP_DIV }, | |
419 | { "Omod", "\"mod\"", BINOP_MOD }, | |
420 | { "Orem", "\"rem\"", BINOP_REM }, | |
421 | { "Oexpon", "\"**\"", BINOP_EXP }, | |
422 | { "Olt", "\"<\"", BINOP_LESS }, | |
423 | { "Ole", "\"<=\"", BINOP_LEQ }, | |
424 | { "Ogt", "\">\"", BINOP_GTR }, | |
425 | { "Oge", "\">=\"", BINOP_GEQ }, | |
426 | { "Oeq", "\"=\"", BINOP_EQUAL }, | |
427 | { "One", "\"/=\"", BINOP_NOTEQUAL }, | |
428 | { "Oand", "\"and\"", BINOP_BITWISE_AND }, | |
429 | { "Oor", "\"or\"", BINOP_BITWISE_IOR }, | |
430 | { "Oxor", "\"xor\"", BINOP_BITWISE_XOR }, | |
431 | { "Oconcat", "\"&\"", BINOP_CONCAT }, | |
432 | { "Oabs", "\"abs\"", UNOP_ABS }, | |
433 | { "Onot", "\"not\"", UNOP_LOGICAL_NOT }, | |
434 | { "Oadd", "\"+\"", UNOP_PLUS }, | |
435 | { "Osubtract", "\"-\"", UNOP_NEG }, | |
436 | { NULL, NULL } | |
437 | }; | |
438 | ||
439 | /* True if STR should be suppressed in info listings. */ | |
440 | static int | |
441 | is_suppressed_name (str) | |
442 | const char* str; | |
443 | { | |
444 | if (STREQN (str, "_ada_", 5)) | |
445 | str += 5; | |
446 | if (str[0] == '_' || str[0] == '\000') | |
447 | return 1; | |
448 | else | |
449 | { | |
450 | const char* p; | |
451 | const char* suffix = strstr (str, "___"); | |
452 | if (suffix != NULL && suffix[3] != 'X') | |
453 | return 1; | |
454 | if (suffix == NULL) | |
455 | suffix = str + strlen (str); | |
456 | for (p = suffix-1; p != str; p -= 1) | |
457 | if (isupper (*p)) | |
458 | { | |
459 | int i; | |
460 | if (p[0] == 'X' && p[-1] != '_') | |
461 | goto OK; | |
462 | if (*p != 'O') | |
463 | return 1; | |
464 | for (i = 0; ada_opname_table[i].mangled != NULL; i += 1) | |
465 | if (STREQN (ada_opname_table[i].mangled, p, | |
466 | strlen (ada_opname_table[i].mangled))) | |
467 | goto OK; | |
468 | return 1; | |
469 | OK: ; | |
470 | } | |
471 | return 0; | |
472 | } | |
473 | } | |
474 | ||
475 | /* The "mangled" form of DEMANGLED, according to GNAT conventions. | |
476 | * The result is valid until the next call to ada_mangle. */ | |
477 | char * | |
478 | ada_mangle (demangled) | |
479 | const char* demangled; | |
480 | { | |
481 | static char* mangling_buffer = NULL; | |
482 | static size_t mangling_buffer_size = 0; | |
483 | const char* p; | |
484 | int k; | |
485 | ||
486 | if (demangled == NULL) | |
487 | return NULL; | |
488 | ||
489 | GROW_VECT (mangling_buffer, mangling_buffer_size, 2*strlen (demangled) + 10); | |
490 | ||
491 | k = 0; | |
492 | for (p = demangled; *p != '\0'; p += 1) | |
493 | { | |
494 | if (*p == '.') | |
495 | { | |
496 | mangling_buffer[k] = mangling_buffer[k+1] = '_'; | |
497 | k += 2; | |
498 | } | |
499 | else if (*p == '"') | |
500 | { | |
501 | const struct ada_opname_map* mapping; | |
502 | ||
503 | for (mapping = ada_opname_table; | |
504 | mapping->mangled != NULL && | |
505 | ! STREQN (mapping->demangled, p, strlen (mapping->demangled)); | |
506 | p += 1) | |
507 | ; | |
508 | if (mapping->mangled == NULL) | |
509 | error ("invalid Ada operator name: %s", p); | |
510 | strcpy (mangling_buffer+k, mapping->mangled); | |
511 | k += strlen (mapping->mangled); | |
512 | break; | |
513 | } | |
514 | else | |
515 | { | |
516 | mangling_buffer[k] = *p; | |
517 | k += 1; | |
518 | } | |
519 | } | |
520 | ||
521 | mangling_buffer[k] = '\0'; | |
522 | return mangling_buffer; | |
523 | } | |
524 | ||
525 | /* Return NAME folded to lower case, or, if surrounded by single | |
526 | * quotes, unfolded, but with the quotes stripped away. Result good | |
527 | * to next call. */ | |
528 | char* | |
529 | ada_fold_name (const char* name) | |
530 | { | |
531 | static char* fold_buffer = NULL; | |
532 | static size_t fold_buffer_size = 0; | |
533 | ||
534 | int len = strlen (name); | |
535 | GROW_VECT (fold_buffer, fold_buffer_size, len+1); | |
536 | ||
537 | if (name[0] == '\'') | |
538 | { | |
539 | strncpy (fold_buffer, name+1, len-2); | |
540 | fold_buffer[len-2] = '\000'; | |
541 | } | |
542 | else | |
543 | { | |
544 | int i; | |
545 | for (i = 0; i <= len; i += 1) | |
546 | fold_buffer[i] = tolower (name[i]); | |
547 | } | |
548 | ||
549 | return fold_buffer; | |
550 | } | |
551 | ||
552 | /* Demangle: | |
553 | 1. Discard final __{DIGIT}+ or ${DIGIT}+ | |
554 | 2. Convert other instances of embedded "__" to `.'. | |
555 | 3. Discard leading _ada_. | |
556 | 4. Convert operator names to the appropriate quoted symbols. | |
557 | 5. Remove everything after first ___ if it is followed by | |
558 | 'X'. | |
559 | 6. Replace TK__ with __, and a trailing B or TKB with nothing. | |
560 | 7. Put symbols that should be suppressed in <...> brackets. | |
561 | 8. Remove trailing X[bn]* suffix (indicating names in package bodies). | |
562 | The resulting string is valid until the next call of ada_demangle. | |
563 | */ | |
564 | ||
565 | char * | |
566 | ada_demangle (mangled) | |
567 | const char* mangled; | |
568 | { | |
569 | int i, j; | |
570 | int len0; | |
571 | const char* p; | |
572 | char* demangled; | |
573 | int at_start_name; | |
574 | static char* demangling_buffer = NULL; | |
575 | static size_t demangling_buffer_size = 0; | |
576 | ||
577 | if (STREQN (mangled, "_ada_", 5)) | |
578 | mangled += 5; | |
579 | ||
580 | if (mangled[0] == '_' || mangled[0] == '<') | |
581 | goto Suppress; | |
582 | ||
583 | p = strstr (mangled, "___"); | |
584 | if (p == NULL) | |
585 | len0 = strlen (mangled); | |
586 | else | |
587 | { | |
588 | if (p[3] == 'X') | |
589 | len0 = p - mangled; | |
590 | else | |
591 | goto Suppress; | |
592 | } | |
593 | if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB")) | |
594 | len0 -= 3; | |
595 | if (len0 > 1 && STREQ (mangled + len0 - 1, "B")) | |
596 | len0 -= 1; | |
597 | ||
598 | /* Make demangled big enough for possible expansion by operator name. */ | |
599 | GROW_VECT (demangling_buffer, demangling_buffer_size, 2*len0+1); | |
600 | demangled = demangling_buffer; | |
601 | ||
602 | if (isdigit (mangled[len0 - 1])) { | |
603 | for (i = len0-2; i >= 0 && isdigit (mangled[i]); i -= 1) | |
604 | ; | |
605 | if (i > 1 && mangled[i] == '_' && mangled[i-1] == '_') | |
606 | len0 = i - 1; | |
607 | else if (mangled[i] == '$') | |
608 | len0 = i; | |
609 | } | |
610 | ||
611 | for (i = 0, j = 0; i < len0 && ! isalpha (mangled[i]); i += 1, j += 1) | |
612 | demangled[j] = mangled[i]; | |
613 | ||
614 | at_start_name = 1; | |
615 | while (i < len0) | |
616 | { | |
617 | if (at_start_name && mangled[i] == 'O') | |
618 | { | |
619 | int k; | |
620 | for (k = 0; ada_opname_table[k].mangled != NULL; k += 1) | |
621 | { | |
622 | int op_len = strlen (ada_opname_table[k].mangled); | |
623 | if (STREQN (ada_opname_table[k].mangled+1, mangled+i+1, op_len-1) | |
624 | && ! isalnum (mangled[i + op_len])) | |
625 | { | |
626 | strcpy (demangled + j, ada_opname_table[k].demangled); | |
627 | at_start_name = 0; | |
628 | i += op_len; | |
629 | j += strlen (ada_opname_table[k].demangled); | |
630 | break; | |
631 | } | |
632 | } | |
633 | if (ada_opname_table[k].mangled != NULL) | |
634 | continue; | |
635 | } | |
636 | at_start_name = 0; | |
637 | ||
638 | if (i < len0-4 && STREQN (mangled+i, "TK__", 4)) | |
639 | i += 2; | |
640 | if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i-1])) | |
641 | { | |
642 | do | |
643 | i += 1; | |
644 | while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n')); | |
645 | if (i < len0) | |
646 | goto Suppress; | |
647 | } | |
648 | else if (i < len0-2 && mangled[i] == '_' && mangled[i+1] == '_') | |
649 | { | |
650 | demangled[j] = '.'; | |
651 | at_start_name = 1; | |
652 | i += 2; j += 1; | |
653 | } | |
654 | else | |
655 | { | |
656 | demangled[j] = mangled[i]; | |
657 | i += 1; j += 1; | |
658 | } | |
659 | } | |
660 | demangled[j] = '\000'; | |
661 | ||
662 | for (i = 0; demangled[i] != '\0'; i += 1) | |
663 | if (isupper (demangled[i]) || demangled[i] == ' ') | |
664 | goto Suppress; | |
665 | ||
666 | return demangled; | |
667 | ||
668 | Suppress: | |
669 | GROW_VECT (demangling_buffer, demangling_buffer_size, | |
670 | strlen (mangled) + 3); | |
671 | demangled = demangling_buffer; | |
672 | if (mangled[0] == '<') | |
673 | strcpy (demangled, mangled); | |
674 | else | |
675 | sprintf (demangled, "<%s>", mangled); | |
676 | return demangled; | |
677 | ||
678 | } | |
679 | ||
680 | /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing | |
681 | * suffixes that encode debugging information or leading _ada_ on | |
682 | * SYM_NAME (see is_name_suffix commentary for the debugging | |
683 | * information that is ignored). If WILD, then NAME need only match a | |
684 | * suffix of SYM_NAME minus the same suffixes. Also returns 0 if | |
685 | * either argument is NULL. */ | |
686 | ||
687 | int | |
688 | ada_match_name (sym_name, name, wild) | |
689 | const char* sym_name; | |
690 | const char* name; | |
691 | int wild; | |
692 | { | |
693 | if (sym_name == NULL || name == NULL) | |
694 | return 0; | |
695 | else if (wild) | |
696 | return wild_match (name, strlen (name), sym_name); | |
697 | else { | |
698 | int len_name = strlen (name); | |
699 | return (STREQN (sym_name, name, len_name) | |
700 | && is_name_suffix (sym_name+len_name)) | |
701 | || (STREQN (sym_name, "_ada_", 5) | |
702 | && STREQN (sym_name+5, name, len_name) | |
703 | && is_name_suffix (sym_name+len_name+5)); | |
704 | } | |
705 | } | |
706 | ||
707 | /* True (non-zero) iff in Ada mode, the symbol SYM should be | |
708 | suppressed in info listings. */ | |
709 | ||
710 | int | |
711 | ada_suppress_symbol_printing (sym) | |
712 | struct symbol *sym; | |
713 | { | |
714 | if (SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE) | |
715 | return 1; | |
716 | else | |
717 | return is_suppressed_name (SYMBOL_NAME (sym)); | |
718 | } | |
719 | ||
720 | \f | |
721 | /* Arrays */ | |
722 | ||
723 | /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of | |
724 | array descriptors. */ | |
725 | ||
726 | static char* bound_name[] = { | |
727 | "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", | |
728 | "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" | |
729 | }; | |
730 | ||
731 | /* Maximum number of array dimensions we are prepared to handle. */ | |
732 | ||
733 | #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*))) | |
734 | ||
735 | /* Like modify_field, but allows bitpos > wordlength. */ | |
736 | ||
737 | static void | |
738 | modify_general_field (addr, fieldval, bitpos, bitsize) | |
739 | char *addr; | |
740 | LONGEST fieldval; | |
741 | int bitpos, bitsize; | |
742 | { | |
743 | modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)), | |
744 | fieldval, bitpos % (8 * sizeof (LONGEST)), | |
745 | bitsize); | |
746 | } | |
747 | ||
748 | ||
749 | /* The desc_* routines return primitive portions of array descriptors | |
750 | (fat pointers). */ | |
751 | ||
752 | /* The descriptor or array type, if any, indicated by TYPE; removes | |
753 | level of indirection, if needed. */ | |
754 | static struct type* | |
755 | desc_base_type (type) | |
756 | struct type* type; | |
757 | { | |
758 | if (type == NULL) | |
759 | return NULL; | |
760 | CHECK_TYPEDEF (type); | |
761 | if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR) | |
762 | return check_typedef (TYPE_TARGET_TYPE (type)); | |
763 | else | |
764 | return type; | |
765 | } | |
766 | ||
767 | /* True iff TYPE indicates a "thin" array pointer type. */ | |
768 | static int | |
769 | is_thin_pntr (struct type* type) | |
770 | { | |
771 | return | |
772 | is_suffix (ada_type_name (desc_base_type (type)), "___XUT") | |
773 | || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); | |
774 | } | |
775 | ||
776 | /* The descriptor type for thin pointer type TYPE. */ | |
777 | static struct type* | |
778 | thin_descriptor_type (struct type* type) | |
779 | { | |
780 | struct type* base_type = desc_base_type (type); | |
781 | if (base_type == NULL) | |
782 | return NULL; | |
783 | if (is_suffix (ada_type_name (base_type), "___XVE")) | |
784 | return base_type; | |
785 | else | |
786 | { | |
787 | struct type* alt_type = | |
788 | ada_find_parallel_type (base_type, "___XVE"); | |
789 | if (alt_type == NULL) | |
790 | return base_type; | |
791 | else | |
792 | return alt_type; | |
793 | } | |
794 | } | |
795 | ||
796 | /* A pointer to the array data for thin-pointer value VAL. */ | |
797 | static struct value* | |
798 | thin_data_pntr (struct value* val) | |
799 | { | |
800 | struct type* type = VALUE_TYPE (val); | |
801 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
802 | return value_cast (desc_data_type (thin_descriptor_type (type)), | |
803 | value_copy (val)); | |
804 | else | |
805 | return value_from_longest (desc_data_type (thin_descriptor_type (type)), | |
806 | VALUE_ADDRESS (val) + VALUE_OFFSET (val)); | |
807 | } | |
808 | ||
809 | /* True iff TYPE indicates a "thick" array pointer type. */ | |
810 | static int | |
811 | is_thick_pntr (struct type* type) | |
812 | { | |
813 | type = desc_base_type (type); | |
814 | return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
815 | && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); | |
816 | } | |
817 | ||
818 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a | |
819 | pointer to one, the type of its bounds data; otherwise, NULL. */ | |
820 | static struct type* | |
821 | desc_bounds_type (type) | |
822 | struct type* type; | |
823 | { | |
824 | struct type* r; | |
825 | ||
826 | type = desc_base_type (type); | |
827 | ||
828 | if (type == NULL) | |
829 | return NULL; | |
830 | else if (is_thin_pntr (type)) | |
831 | { | |
832 | type = thin_descriptor_type (type); | |
833 | if (type == NULL) | |
834 | return NULL; | |
835 | r = lookup_struct_elt_type (type, "BOUNDS", 1); | |
836 | if (r != NULL) | |
837 | return check_typedef (r); | |
838 | } | |
839 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
840 | { | |
841 | r = lookup_struct_elt_type (type, "P_BOUNDS", 1); | |
842 | if (r != NULL) | |
843 | return check_typedef (TYPE_TARGET_TYPE (check_typedef (r))); | |
844 | } | |
845 | return NULL; | |
846 | } | |
847 | ||
848 | /* If ARR is an array descriptor (fat or thin pointer), or pointer to | |
849 | one, a pointer to its bounds data. Otherwise NULL. */ | |
850 | static struct value* | |
851 | desc_bounds (arr) | |
852 | struct value* arr; | |
853 | { | |
854 | struct type* type = check_typedef (VALUE_TYPE (arr)); | |
855 | if (is_thin_pntr (type)) | |
856 | { | |
857 | struct type* bounds_type = desc_bounds_type (thin_descriptor_type (type)); | |
858 | LONGEST addr; | |
859 | ||
860 | if (desc_bounds_type == NULL) | |
861 | error ("Bad GNAT array descriptor"); | |
862 | ||
863 | /* NOTE: The following calculation is not really kosher, but | |
864 | since desc_type is an XVE-encoded type (and shouldn't be), | |
865 | the correct calculation is a real pain. FIXME (and fix GCC). */ | |
866 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
867 | addr = value_as_long (arr); | |
868 | else | |
869 | addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr); | |
870 | ||
871 | return | |
872 | value_from_longest (lookup_pointer_type (bounds_type), | |
873 | addr - TYPE_LENGTH (bounds_type)); | |
874 | } | |
875 | ||
876 | else if (is_thick_pntr (type)) | |
877 | return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, | |
878 | "Bad GNAT array descriptor"); | |
879 | else | |
880 | return NULL; | |
881 | } | |
882 | ||
883 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
884 | position of the field containing the address of the bounds data. */ | |
885 | static int | |
886 | fat_pntr_bounds_bitpos (type) | |
887 | struct type* type; | |
888 | { | |
889 | return TYPE_FIELD_BITPOS (desc_base_type (type), 1); | |
890 | } | |
891 | ||
892 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
893 | size of the field containing the address of the bounds data. */ | |
894 | static int | |
895 | fat_pntr_bounds_bitsize (type) | |
896 | struct type* type; | |
897 | { | |
898 | type = desc_base_type (type); | |
899 | ||
900 | if (TYPE_FIELD_BITSIZE (type, 1) > 0) | |
901 | return TYPE_FIELD_BITSIZE (type, 1); | |
902 | else | |
903 | return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1))); | |
904 | } | |
905 | ||
906 | /* If TYPE is the type of an array descriptor (fat or thin pointer) or a | |
907 | pointer to one, the type of its array data (a | |
908 | pointer-to-array-with-no-bounds type); otherwise, NULL. Use | |
909 | ada_type_of_array to get an array type with bounds data. */ | |
910 | static struct type* | |
911 | desc_data_type (type) | |
912 | struct type* type; | |
913 | { | |
914 | type = desc_base_type (type); | |
915 | ||
916 | /* NOTE: The following is bogus; see comment in desc_bounds. */ | |
917 | if (is_thin_pntr (type)) | |
918 | return lookup_pointer_type | |
919 | (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type),1))); | |
920 | else if (is_thick_pntr (type)) | |
921 | return lookup_struct_elt_type (type, "P_ARRAY", 1); | |
922 | else | |
923 | return NULL; | |
924 | } | |
925 | ||
926 | /* If ARR is an array descriptor (fat or thin pointer), a pointer to | |
927 | its array data. */ | |
928 | static struct value* | |
929 | desc_data (arr) | |
930 | struct value* arr; | |
931 | { | |
932 | struct type* type = VALUE_TYPE (arr); | |
933 | if (is_thin_pntr (type)) | |
934 | return thin_data_pntr (arr); | |
935 | else if (is_thick_pntr (type)) | |
936 | return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, | |
937 | "Bad GNAT array descriptor"); | |
938 | else | |
939 | return NULL; | |
940 | } | |
941 | ||
942 | ||
943 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
944 | position of the field containing the address of the data. */ | |
945 | static int | |
946 | fat_pntr_data_bitpos (type) | |
947 | struct type* type; | |
948 | { | |
949 | return TYPE_FIELD_BITPOS (desc_base_type (type), 0); | |
950 | } | |
951 | ||
952 | /* If TYPE is the type of an array-descriptor (fat pointer), the bit | |
953 | size of the field containing the address of the data. */ | |
954 | static int | |
955 | fat_pntr_data_bitsize (type) | |
956 | struct type* type; | |
957 | { | |
958 | type = desc_base_type (type); | |
959 | ||
960 | if (TYPE_FIELD_BITSIZE (type, 0) > 0) | |
961 | return TYPE_FIELD_BITSIZE (type, 0); | |
962 | else | |
963 | return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); | |
964 | } | |
965 | ||
966 | /* If BOUNDS is an array-bounds structure (or pointer to one), return | |
967 | the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
968 | bound, if WHICH is 1. The first bound is I=1. */ | |
969 | static struct value* | |
970 | desc_one_bound (bounds, i, which) | |
971 | struct value* bounds; | |
972 | int i; | |
973 | int which; | |
974 | { | |
975 | return value_struct_elt (&bounds, NULL, bound_name[2*i+which-2], NULL, | |
976 | "Bad GNAT array descriptor bounds"); | |
977 | } | |
978 | ||
979 | /* If BOUNDS is an array-bounds structure type, return the bit position | |
980 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
981 | bound, if WHICH is 1. The first bound is I=1. */ | |
982 | static int | |
983 | desc_bound_bitpos (type, i, which) | |
984 | struct type* type; | |
985 | int i; | |
986 | int which; | |
987 | { | |
988 | return TYPE_FIELD_BITPOS (desc_base_type (type), 2*i+which-2); | |
989 | } | |
990 | ||
991 | /* If BOUNDS is an array-bounds structure type, return the bit field size | |
992 | of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper | |
993 | bound, if WHICH is 1. The first bound is I=1. */ | |
994 | static int | |
995 | desc_bound_bitsize (type, i, which) | |
996 | struct type* type; | |
997 | int i; | |
998 | int which; | |
999 | { | |
1000 | type = desc_base_type (type); | |
1001 | ||
1002 | if (TYPE_FIELD_BITSIZE (type, 2*i+which-2) > 0) | |
1003 | return TYPE_FIELD_BITSIZE (type, 2*i+which-2); | |
1004 | else | |
1005 | return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2*i+which-2)); | |
1006 | } | |
1007 | ||
1008 | /* If TYPE is the type of an array-bounds structure, the type of its | |
1009 | Ith bound (numbering from 1). Otherwise, NULL. */ | |
1010 | static struct type* | |
1011 | desc_index_type (type, i) | |
1012 | struct type* type; | |
1013 | int i; | |
1014 | { | |
1015 | type = desc_base_type (type); | |
1016 | ||
1017 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1018 | return lookup_struct_elt_type (type, bound_name[2*i-2], 1); | |
1019 | else | |
1020 | return NULL; | |
1021 | } | |
1022 | ||
1023 | /* The number of index positions in the array-bounds type TYPE. 0 | |
1024 | if TYPE is NULL. */ | |
1025 | static int | |
1026 | desc_arity (type) | |
1027 | struct type* type; | |
1028 | { | |
1029 | type = desc_base_type (type); | |
1030 | ||
1031 | if (type != NULL) | |
1032 | return TYPE_NFIELDS (type) / 2; | |
1033 | return 0; | |
1034 | } | |
1035 | ||
1036 | ||
1037 | /* Non-zero iff type is a simple array type (or pointer to one). */ | |
1038 | int | |
1039 | ada_is_simple_array (type) | |
1040 | struct type* type; | |
1041 | { | |
1042 | if (type == NULL) | |
1043 | return 0; | |
1044 | CHECK_TYPEDEF (type); | |
1045 | return (TYPE_CODE (type) == TYPE_CODE_ARRAY | |
1046 | || (TYPE_CODE (type) == TYPE_CODE_PTR | |
1047 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); | |
1048 | } | |
1049 | ||
1050 | /* Non-zero iff type belongs to a GNAT array descriptor. */ | |
1051 | int | |
1052 | ada_is_array_descriptor (type) | |
1053 | struct type* type; | |
1054 | { | |
1055 | struct type* data_type = desc_data_type (type); | |
1056 | ||
1057 | if (type == NULL) | |
1058 | return 0; | |
1059 | CHECK_TYPEDEF (type); | |
1060 | return | |
1061 | data_type != NULL | |
1062 | && ((TYPE_CODE (data_type) == TYPE_CODE_PTR | |
1063 | && TYPE_TARGET_TYPE (data_type) != NULL | |
1064 | && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY) | |
1065 | || | |
1066 | TYPE_CODE (data_type) == TYPE_CODE_ARRAY) | |
1067 | && desc_arity (desc_bounds_type (type)) > 0; | |
1068 | } | |
1069 | ||
1070 | /* Non-zero iff type is a partially mal-formed GNAT array | |
1071 | descriptor. (FIXME: This is to compensate for some problems with | |
1072 | debugging output from GNAT. Re-examine periodically to see if it | |
1073 | is still needed. */ | |
1074 | int | |
1075 | ada_is_bogus_array_descriptor (type) | |
1076 | struct type *type; | |
1077 | { | |
1078 | return | |
1079 | type != NULL | |
1080 | && TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1081 | && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL | |
1082 | || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) | |
1083 | && ! ada_is_array_descriptor (type); | |
1084 | } | |
1085 | ||
1086 | ||
1087 | /* If ARR has a record type in the form of a standard GNAT array descriptor, | |
1088 | (fat pointer) returns the type of the array data described---specifically, | |
1089 | a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled | |
1090 | in from the descriptor; otherwise, they are left unspecified. If | |
1091 | the ARR denotes a null array descriptor and BOUNDS is non-zero, | |
1092 | returns NULL. The result is simply the type of ARR if ARR is not | |
1093 | a descriptor. */ | |
1094 | struct type* | |
1095 | ada_type_of_array (arr, bounds) | |
1096 | struct value* arr; | |
1097 | int bounds; | |
1098 | { | |
1099 | if (ada_is_packed_array_type (VALUE_TYPE (arr))) | |
1100 | return decode_packed_array_type (VALUE_TYPE (arr)); | |
1101 | ||
1102 | if (! ada_is_array_descriptor (VALUE_TYPE (arr))) | |
1103 | return VALUE_TYPE (arr); | |
1104 | ||
1105 | if (! bounds) | |
1106 | return check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr)))); | |
1107 | else | |
1108 | { | |
1109 | struct type* elt_type; | |
1110 | int arity; | |
1111 | struct value* descriptor; | |
1112 | struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr)); | |
1113 | ||
1114 | elt_type = ada_array_element_type (VALUE_TYPE (arr), -1); | |
1115 | arity = ada_array_arity (VALUE_TYPE (arr)); | |
1116 | ||
1117 | if (elt_type == NULL || arity == 0) | |
1118 | return check_typedef (VALUE_TYPE (arr)); | |
1119 | ||
1120 | descriptor = desc_bounds (arr); | |
1121 | if (value_as_long (descriptor) == 0) | |
1122 | return NULL; | |
1123 | while (arity > 0) { | |
1124 | struct type* range_type = alloc_type (objf); | |
1125 | struct type* array_type = alloc_type (objf); | |
1126 | struct value* low = desc_one_bound (descriptor, arity, 0); | |
1127 | struct value* high = desc_one_bound (descriptor, arity, 1); | |
1128 | arity -= 1; | |
1129 | ||
1130 | create_range_type (range_type, VALUE_TYPE (low), | |
1131 | (int) value_as_long (low), | |
1132 | (int) value_as_long (high)); | |
1133 | elt_type = create_array_type (array_type, elt_type, range_type); | |
1134 | } | |
1135 | ||
1136 | return lookup_pointer_type (elt_type); | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | /* If ARR does not represent an array, returns ARR unchanged. | |
1141 | Otherwise, returns either a standard GDB array with bounds set | |
1142 | appropriately or, if ARR is a non-null fat pointer, a pointer to a standard | |
1143 | GDB array. Returns NULL if ARR is a null fat pointer. */ | |
1144 | struct value* | |
1145 | ada_coerce_to_simple_array_ptr (arr) | |
1146 | struct value* arr; | |
1147 | { | |
1148 | if (ada_is_array_descriptor (VALUE_TYPE (arr))) | |
1149 | { | |
1150 | struct type* arrType = ada_type_of_array (arr, 1); | |
1151 | if (arrType == NULL) | |
1152 | return NULL; | |
1153 | return value_cast (arrType, value_copy (desc_data (arr))); | |
1154 | } | |
1155 | else if (ada_is_packed_array_type (VALUE_TYPE (arr))) | |
1156 | return decode_packed_array (arr); | |
1157 | else | |
1158 | return arr; | |
1159 | } | |
1160 | ||
1161 | /* If ARR does not represent an array, returns ARR unchanged. | |
1162 | Otherwise, returns a standard GDB array describing ARR (which may | |
1163 | be ARR itself if it already is in the proper form). */ | |
1164 | struct value* | |
1165 | ada_coerce_to_simple_array (arr) | |
1166 | struct value* arr; | |
1167 | { | |
1168 | if (ada_is_array_descriptor (VALUE_TYPE (arr))) | |
1169 | { | |
1170 | struct value* arrVal = ada_coerce_to_simple_array_ptr (arr); | |
1171 | if (arrVal == NULL) | |
1172 | error ("Bounds unavailable for null array pointer."); | |
1173 | return value_ind (arrVal); | |
1174 | } | |
1175 | else if (ada_is_packed_array_type (VALUE_TYPE (arr))) | |
1176 | return decode_packed_array (arr); | |
1177 | else | |
1178 | return arr; | |
1179 | } | |
1180 | ||
1181 | /* If TYPE represents a GNAT array type, return it translated to an | |
1182 | ordinary GDB array type (possibly with BITSIZE fields indicating | |
1183 | packing). For other types, is the identity. */ | |
1184 | struct type* | |
1185 | ada_coerce_to_simple_array_type (type) | |
1186 | struct type* type; | |
1187 | { | |
1188 | struct value* mark = value_mark (); | |
1189 | struct value* dummy = value_from_longest (builtin_type_long, 0); | |
1190 | struct type* result; | |
1191 | VALUE_TYPE (dummy) = type; | |
1192 | result = ada_type_of_array (dummy, 0); | |
1193 | value_free_to_mark (dummy); | |
1194 | return result; | |
1195 | } | |
1196 | ||
1197 | /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ | |
1198 | int | |
1199 | ada_is_packed_array_type (type) | |
1200 | struct type* type; | |
1201 | { | |
1202 | if (type == NULL) | |
1203 | return 0; | |
1204 | CHECK_TYPEDEF (type); | |
1205 | return | |
1206 | ada_type_name (type) != NULL | |
1207 | && strstr (ada_type_name (type), "___XP") != NULL; | |
1208 | } | |
1209 | ||
1210 | /* Given that TYPE is a standard GDB array type with all bounds filled | |
1211 | in, and that the element size of its ultimate scalar constituents | |
1212 | (that is, either its elements, or, if it is an array of arrays, its | |
1213 | elements' elements, etc.) is *ELT_BITS, return an identical type, | |
1214 | but with the bit sizes of its elements (and those of any | |
1215 | constituent arrays) recorded in the BITSIZE components of its | |
1216 | TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size | |
1217 | in bits. */ | |
1218 | static struct type* | |
1219 | packed_array_type (type, elt_bits) | |
1220 | struct type* type; | |
1221 | long* elt_bits; | |
1222 | { | |
1223 | struct type* new_elt_type; | |
1224 | struct type* new_type; | |
1225 | LONGEST low_bound, high_bound; | |
1226 | ||
1227 | CHECK_TYPEDEF (type); | |
1228 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
1229 | return type; | |
1230 | ||
1231 | new_type = alloc_type (TYPE_OBJFILE (type)); | |
1232 | new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)), | |
1233 | elt_bits); | |
1234 | create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0)); | |
1235 | TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; | |
1236 | TYPE_NAME (new_type) = ada_type_name (type); | |
1237 | ||
1238 | if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0), | |
1239 | &low_bound, &high_bound) < 0) | |
1240 | low_bound = high_bound = 0; | |
1241 | if (high_bound < low_bound) | |
1242 | *elt_bits = TYPE_LENGTH (new_type) = 0; | |
1243 | else | |
1244 | { | |
1245 | *elt_bits *= (high_bound - low_bound + 1); | |
1246 | TYPE_LENGTH (new_type) = | |
1247 | (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; | |
1248 | } | |
1249 | ||
1250 | /* TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */ | |
1251 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
1252 | return new_type; | |
1253 | } | |
1254 | ||
1255 | /* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). | |
1256 | */ | |
1257 | static struct type* | |
1258 | decode_packed_array_type (type) | |
1259 | struct type* type; | |
1260 | { | |
1261 | struct symbol** syms; | |
1262 | struct block** blocks; | |
1263 | const char* raw_name = ada_type_name (check_typedef (type)); | |
1264 | char* name = (char*) alloca (strlen (raw_name) + 1); | |
1265 | char* tail = strstr (raw_name, "___XP"); | |
1266 | struct type* shadow_type; | |
1267 | long bits; | |
1268 | int i, n; | |
1269 | ||
1270 | memcpy (name, raw_name, tail - raw_name); | |
1271 | name[tail - raw_name] = '\000'; | |
1272 | ||
1273 | /* NOTE: Use ada_lookup_symbol_list because of bug in some versions | |
1274 | * of gcc (Solaris, e.g.). FIXME when compiler is fixed. */ | |
1275 | n = ada_lookup_symbol_list (name, get_selected_block (NULL), | |
1276 | VAR_NAMESPACE, &syms, &blocks); | |
1277 | for (i = 0; i < n; i += 1) | |
1278 | if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF | |
1279 | && STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i])))) | |
1280 | break; | |
1281 | if (i >= n) | |
1282 | { | |
1283 | warning ("could not find bounds information on packed array"); | |
1284 | return NULL; | |
1285 | } | |
1286 | shadow_type = SYMBOL_TYPE (syms[i]); | |
1287 | ||
1288 | if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) | |
1289 | { | |
1290 | warning ("could not understand bounds information on packed array"); | |
1291 | return NULL; | |
1292 | } | |
1293 | ||
1294 | if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) | |
1295 | { | |
1296 | warning ("could not understand bit size information on packed array"); | |
1297 | return NULL; | |
1298 | } | |
1299 | ||
1300 | return packed_array_type (shadow_type, &bits); | |
1301 | } | |
1302 | ||
1303 | /* Given that ARR is a struct value* indicating a GNAT packed array, | |
1304 | returns a simple array that denotes that array. Its type is a | |
1305 | standard GDB array type except that the BITSIZEs of the array | |
1306 | target types are set to the number of bits in each element, and the | |
1307 | type length is set appropriately. */ | |
1308 | ||
1309 | static struct value* | |
1310 | decode_packed_array (arr) | |
1311 | struct value* arr; | |
1312 | { | |
1313 | struct type* type = decode_packed_array_type (VALUE_TYPE (arr)); | |
1314 | ||
1315 | if (type == NULL) | |
1316 | { | |
1317 | error ("can't unpack array"); | |
1318 | return NULL; | |
1319 | } | |
1320 | else | |
1321 | return coerce_unspec_val_to_type (arr, 0, type); | |
1322 | } | |
1323 | ||
1324 | ||
1325 | /* The value of the element of packed array ARR at the ARITY indices | |
1326 | given in IND. ARR must be a simple array. */ | |
1327 | ||
1328 | static struct value* | |
1329 | value_subscript_packed (arr, arity, ind) | |
1330 | struct value* arr; | |
1331 | int arity; | |
1332 | struct value** ind; | |
1333 | { | |
1334 | int i; | |
1335 | int bits, elt_off, bit_off; | |
1336 | long elt_total_bit_offset; | |
1337 | struct type* elt_type; | |
1338 | struct value* v; | |
1339 | ||
1340 | bits = 0; | |
1341 | elt_total_bit_offset = 0; | |
1342 | elt_type = check_typedef (VALUE_TYPE (arr)); | |
1343 | for (i = 0; i < arity; i += 1) | |
1344 | { | |
1345 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY | |
1346 | || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) | |
1347 | error ("attempt to do packed indexing of something other than a packed array"); | |
1348 | else | |
1349 | { | |
1350 | struct type *range_type = TYPE_INDEX_TYPE (elt_type); | |
1351 | LONGEST lowerbound, upperbound; | |
1352 | LONGEST idx; | |
1353 | ||
1354 | if (get_discrete_bounds (range_type, &lowerbound, | |
1355 | &upperbound) < 0) | |
1356 | { | |
1357 | warning ("don't know bounds of array"); | |
1358 | lowerbound = upperbound = 0; | |
1359 | } | |
1360 | ||
1361 | idx = value_as_long (value_pos_atr (ind[i])); | |
1362 | if (idx < lowerbound || idx > upperbound) | |
1363 | warning ("packed array index %ld out of bounds", (long) idx); | |
1364 | bits = TYPE_FIELD_BITSIZE (elt_type, 0); | |
1365 | elt_total_bit_offset += (idx - lowerbound) * bits; | |
1366 | elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); | |
1367 | } | |
1368 | } | |
1369 | elt_off = elt_total_bit_offset / HOST_CHAR_BIT; | |
1370 | bit_off = elt_total_bit_offset % HOST_CHAR_BIT; | |
1371 | ||
1372 | v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, | |
1373 | bits, elt_type); | |
1374 | if (VALUE_LVAL (arr) == lval_internalvar) | |
1375 | VALUE_LVAL (v) = lval_internalvar_component; | |
1376 | else | |
1377 | VALUE_LVAL (v) = VALUE_LVAL (arr); | |
1378 | return v; | |
1379 | } | |
1380 | ||
1381 | /* Non-zero iff TYPE includes negative integer values. */ | |
1382 | ||
1383 | static int | |
1384 | has_negatives (type) | |
1385 | struct type* type; | |
1386 | { | |
1387 | switch (TYPE_CODE (type)) { | |
1388 | default: | |
1389 | return 0; | |
1390 | case TYPE_CODE_INT: | |
1391 | return ! TYPE_UNSIGNED (type); | |
1392 | case TYPE_CODE_RANGE: | |
1393 | return TYPE_LOW_BOUND (type) < 0; | |
1394 | } | |
1395 | } | |
1396 | ||
1397 | ||
1398 | /* Create a new value of type TYPE from the contents of OBJ starting | |
1399 | at byte OFFSET, and bit offset BIT_OFFSET within that byte, | |
1400 | proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then | |
1401 | assigning through the result will set the field fetched from. OBJ | |
1402 | may also be NULL, in which case, VALADDR+OFFSET must address the | |
1403 | start of storage containing the packed value. The value returned | |
1404 | in this case is never an lval. | |
1405 | Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ | |
1406 | ||
1407 | struct value* | |
1408 | ada_value_primitive_packed_val (obj, valaddr, offset, bit_offset, | |
1409 | bit_size, type) | |
1410 | struct value* obj; | |
1411 | char* valaddr; | |
1412 | long offset; | |
1413 | int bit_offset; | |
1414 | int bit_size; | |
1415 | struct type* type; | |
1416 | { | |
1417 | struct value* v; | |
1418 | int src, /* Index into the source area. */ | |
1419 | targ, /* Index into the target area. */ | |
1420 | i, | |
1421 | srcBitsLeft, /* Number of source bits left to move. */ | |
1422 | nsrc, ntarg, /* Number of source and target bytes. */ | |
1423 | unusedLS, /* Number of bits in next significant | |
1424 | * byte of source that are unused. */ | |
1425 | accumSize; /* Number of meaningful bits in accum */ | |
1426 | unsigned char* bytes; /* First byte containing data to unpack. */ | |
1427 | unsigned char* unpacked; | |
1428 | unsigned long accum; /* Staging area for bits being transferred */ | |
1429 | unsigned char sign; | |
1430 | int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; | |
1431 | /* Transmit bytes from least to most significant; delta is the | |
1432 | * direction the indices move. */ | |
1433 | int delta = BITS_BIG_ENDIAN ? -1 : 1; | |
1434 | ||
1435 | CHECK_TYPEDEF (type); | |
1436 | ||
1437 | if (obj == NULL) | |
1438 | { | |
1439 | v = allocate_value (type); | |
1440 | bytes = (unsigned char*) (valaddr + offset); | |
1441 | } | |
1442 | else if (VALUE_LAZY (obj)) | |
1443 | { | |
1444 | v = value_at (type, | |
1445 | VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL); | |
1446 | bytes = (unsigned char*) alloca (len); | |
1447 | read_memory (VALUE_ADDRESS (v), bytes, len); | |
1448 | } | |
1449 | else | |
1450 | { | |
1451 | v = allocate_value (type); | |
1452 | bytes = (unsigned char*) VALUE_CONTENTS (obj) + offset; | |
1453 | } | |
1454 | ||
1455 | if (obj != NULL) | |
1456 | { | |
1457 | VALUE_LVAL (v) = VALUE_LVAL (obj); | |
1458 | if (VALUE_LVAL (obj) == lval_internalvar) | |
1459 | VALUE_LVAL (v) = lval_internalvar_component; | |
1460 | VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset; | |
1461 | VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj); | |
1462 | VALUE_BITSIZE (v) = bit_size; | |
1463 | if (VALUE_BITPOS (v) >= HOST_CHAR_BIT) | |
1464 | { | |
1465 | VALUE_ADDRESS (v) += 1; | |
1466 | VALUE_BITPOS (v) -= HOST_CHAR_BIT; | |
1467 | } | |
1468 | } | |
1469 | else | |
1470 | VALUE_BITSIZE (v) = bit_size; | |
1471 | unpacked = (unsigned char*) VALUE_CONTENTS (v); | |
1472 | ||
1473 | srcBitsLeft = bit_size; | |
1474 | nsrc = len; | |
1475 | ntarg = TYPE_LENGTH (type); | |
1476 | sign = 0; | |
1477 | if (bit_size == 0) | |
1478 | { | |
1479 | memset (unpacked, 0, TYPE_LENGTH (type)); | |
1480 | return v; | |
1481 | } | |
1482 | else if (BITS_BIG_ENDIAN) | |
1483 | { | |
1484 | src = len-1; | |
1485 | if (has_negatives (type) && | |
1486 | ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT-1)))) | |
1487 | sign = ~0; | |
1488 | ||
1489 | unusedLS = | |
1490 | (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) | |
1491 | % HOST_CHAR_BIT; | |
1492 | ||
1493 | switch (TYPE_CODE (type)) | |
1494 | { | |
1495 | case TYPE_CODE_ARRAY: | |
1496 | case TYPE_CODE_UNION: | |
1497 | case TYPE_CODE_STRUCT: | |
1498 | /* Non-scalar values must be aligned at a byte boundary. */ | |
1499 | accumSize = | |
1500 | (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; | |
1501 | /* And are placed at the beginning (most-significant) bytes | |
1502 | * of the target. */ | |
1503 | targ = src; | |
1504 | break; | |
1505 | default: | |
1506 | accumSize = 0; | |
1507 | targ = TYPE_LENGTH (type) - 1; | |
1508 | break; | |
1509 | } | |
1510 | } | |
1511 | else | |
1512 | { | |
1513 | int sign_bit_offset = (bit_size + bit_offset - 1) % 8; | |
1514 | ||
1515 | src = targ = 0; | |
1516 | unusedLS = bit_offset; | |
1517 | accumSize = 0; | |
1518 | ||
1519 | if (has_negatives (type) && (bytes[len-1] & (1 << sign_bit_offset))) | |
1520 | sign = ~0; | |
1521 | } | |
1522 | ||
1523 | accum = 0; | |
1524 | while (nsrc > 0) | |
1525 | { | |
1526 | /* Mask for removing bits of the next source byte that are not | |
1527 | * part of the value. */ | |
1528 | unsigned int unusedMSMask = | |
1529 | (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft))-1; | |
1530 | /* Sign-extend bits for this byte. */ | |
1531 | unsigned int signMask = sign & ~unusedMSMask; | |
1532 | accum |= | |
1533 | (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; | |
1534 | accumSize += HOST_CHAR_BIT - unusedLS; | |
1535 | if (accumSize >= HOST_CHAR_BIT) | |
1536 | { | |
1537 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
1538 | accumSize -= HOST_CHAR_BIT; | |
1539 | accum >>= HOST_CHAR_BIT; | |
1540 | ntarg -= 1; | |
1541 | targ += delta; | |
1542 | } | |
1543 | srcBitsLeft -= HOST_CHAR_BIT - unusedLS; | |
1544 | unusedLS = 0; | |
1545 | nsrc -= 1; | |
1546 | src += delta; | |
1547 | } | |
1548 | while (ntarg > 0) | |
1549 | { | |
1550 | accum |= sign << accumSize; | |
1551 | unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); | |
1552 | accumSize -= HOST_CHAR_BIT; | |
1553 | accum >>= HOST_CHAR_BIT; | |
1554 | ntarg -= 1; | |
1555 | targ += delta; | |
1556 | } | |
1557 | ||
1558 | return v; | |
1559 | } | |
1560 | ||
1561 | /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to | |
1562 | TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must | |
1563 | not overlap. */ | |
1564 | static void | |
1565 | move_bits (char* target, int targ_offset, char* source, int src_offset, int n) | |
1566 | { | |
1567 | unsigned int accum, mask; | |
1568 | int accum_bits, chunk_size; | |
1569 | ||
1570 | target += targ_offset / HOST_CHAR_BIT; | |
1571 | targ_offset %= HOST_CHAR_BIT; | |
1572 | source += src_offset / HOST_CHAR_BIT; | |
1573 | src_offset %= HOST_CHAR_BIT; | |
1574 | if (BITS_BIG_ENDIAN) | |
1575 | { | |
1576 | accum = (unsigned char) *source; | |
1577 | source += 1; | |
1578 | accum_bits = HOST_CHAR_BIT - src_offset; | |
1579 | ||
1580 | while (n > 0) | |
1581 | { | |
1582 | int unused_right; | |
1583 | accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; | |
1584 | accum_bits += HOST_CHAR_BIT; | |
1585 | source += 1; | |
1586 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
1587 | if (chunk_size > n) | |
1588 | chunk_size = n; | |
1589 | unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); | |
1590 | mask = ((1 << chunk_size) - 1) << unused_right; | |
1591 | *target = | |
1592 | (*target & ~mask) | |
1593 | | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); | |
1594 | n -= chunk_size; | |
1595 | accum_bits -= chunk_size; | |
1596 | target += 1; | |
1597 | targ_offset = 0; | |
1598 | } | |
1599 | } | |
1600 | else | |
1601 | { | |
1602 | accum = (unsigned char) *source >> src_offset; | |
1603 | source += 1; | |
1604 | accum_bits = HOST_CHAR_BIT - src_offset; | |
1605 | ||
1606 | while (n > 0) | |
1607 | { | |
1608 | accum = accum + ((unsigned char) *source << accum_bits); | |
1609 | accum_bits += HOST_CHAR_BIT; | |
1610 | source += 1; | |
1611 | chunk_size = HOST_CHAR_BIT - targ_offset; | |
1612 | if (chunk_size > n) | |
1613 | chunk_size = n; | |
1614 | mask = ((1 << chunk_size) - 1) << targ_offset; | |
1615 | *target = | |
1616 | (*target & ~mask) | ((accum << targ_offset) & mask); | |
1617 | n -= chunk_size; | |
1618 | accum_bits -= chunk_size; | |
1619 | accum >>= chunk_size; | |
1620 | target += 1; | |
1621 | targ_offset = 0; | |
1622 | } | |
1623 | } | |
1624 | } | |
1625 | ||
1626 | ||
1627 | /* Store the contents of FROMVAL into the location of TOVAL. | |
1628 | Return a new value with the location of TOVAL and contents of | |
1629 | FROMVAL. Handles assignment into packed fields that have | |
1630 | floating-point or non-scalar types. */ | |
1631 | ||
1632 | static struct value* | |
1633 | ada_value_assign (struct value* toval, struct value* fromval) | |
1634 | { | |
1635 | struct type* type = VALUE_TYPE (toval); | |
1636 | int bits = VALUE_BITSIZE (toval); | |
1637 | ||
1638 | if (!toval->modifiable) | |
1639 | error ("Left operand of assignment is not a modifiable lvalue."); | |
1640 | ||
1641 | COERCE_REF (toval); | |
1642 | ||
1643 | if (VALUE_LVAL (toval) == lval_memory | |
1644 | && bits > 0 | |
1645 | && (TYPE_CODE (type) == TYPE_CODE_FLT | |
1646 | || TYPE_CODE (type) == TYPE_CODE_STRUCT)) | |
1647 | { | |
1648 | int len = | |
1649 | (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) | |
1650 | / HOST_CHAR_BIT; | |
1651 | char* buffer = (char*) alloca (len); | |
1652 | struct value* val; | |
1653 | ||
1654 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1655 | fromval = value_cast (type, fromval); | |
1656 | ||
1657 | read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len); | |
1658 | if (BITS_BIG_ENDIAN) | |
1659 | move_bits (buffer, VALUE_BITPOS (toval), | |
1660 | VALUE_CONTENTS (fromval), | |
1661 | TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT - bits, | |
1662 | bits); | |
1663 | else | |
1664 | move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval), | |
1665 | 0, bits); | |
1666 | write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len); | |
1667 | ||
1668 | val = value_copy (toval); | |
1669 | memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), | |
1670 | TYPE_LENGTH (type)); | |
1671 | VALUE_TYPE (val) = type; | |
1672 | ||
1673 | return val; | |
1674 | } | |
1675 | ||
1676 | return value_assign (toval, fromval); | |
1677 | } | |
1678 | ||
1679 | ||
1680 | /* The value of the element of array ARR at the ARITY indices given in IND. | |
1681 | ARR may be either a simple array, GNAT array descriptor, or pointer | |
1682 | thereto. */ | |
1683 | ||
1684 | struct value* | |
1685 | ada_value_subscript (arr, arity, ind) | |
1686 | struct value* arr; | |
1687 | int arity; | |
1688 | struct value** ind; | |
1689 | { | |
1690 | int k; | |
1691 | struct value* elt; | |
1692 | struct type* elt_type; | |
1693 | ||
1694 | elt = ada_coerce_to_simple_array (arr); | |
1695 | ||
1696 | elt_type = check_typedef (VALUE_TYPE (elt)); | |
1697 | if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY | |
1698 | && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) | |
1699 | return value_subscript_packed (elt, arity, ind); | |
1700 | ||
1701 | for (k = 0; k < arity; k += 1) | |
1702 | { | |
1703 | if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) | |
1704 | error("too many subscripts (%d expected)", k); | |
1705 | elt = value_subscript (elt, value_pos_atr (ind[k])); | |
1706 | } | |
1707 | return elt; | |
1708 | } | |
1709 | ||
1710 | /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the | |
1711 | value of the element of *ARR at the ARITY indices given in | |
1712 | IND. Does not read the entire array into memory. */ | |
1713 | ||
1714 | struct value* | |
1715 | ada_value_ptr_subscript (arr, type, arity, ind) | |
1716 | struct value* arr; | |
1717 | struct type* type; | |
1718 | int arity; | |
1719 | struct value** ind; | |
1720 | { | |
1721 | int k; | |
1722 | ||
1723 | for (k = 0; k < arity; k += 1) | |
1724 | { | |
1725 | LONGEST lwb, upb; | |
1726 | struct value* idx; | |
1727 | ||
1728 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY) | |
1729 | error("too many subscripts (%d expected)", k); | |
1730 | arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), | |
1731 | value_copy (arr)); | |
1732 | get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); | |
1733 | if (lwb == 0) | |
1734 | idx = ind[k]; | |
1735 | else | |
1736 | idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb)); | |
1737 | arr = value_add (arr, idx); | |
1738 | type = TYPE_TARGET_TYPE (type); | |
1739 | } | |
1740 | ||
1741 | return value_ind (arr); | |
1742 | } | |
1743 | ||
1744 | /* If type is a record type in the form of a standard GNAT array | |
1745 | descriptor, returns the number of dimensions for type. If arr is a | |
1746 | simple array, returns the number of "array of"s that prefix its | |
1747 | type designation. Otherwise, returns 0. */ | |
1748 | ||
1749 | int | |
1750 | ada_array_arity (type) | |
1751 | struct type* type; | |
1752 | { | |
1753 | int arity; | |
1754 | ||
1755 | if (type == NULL) | |
1756 | return 0; | |
1757 | ||
1758 | type = desc_base_type (type); | |
1759 | ||
1760 | arity = 0; | |
1761 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1762 | return desc_arity (desc_bounds_type (type)); | |
1763 | else | |
1764 | while (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
1765 | { | |
1766 | arity += 1; | |
1767 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
1768 | } | |
1769 | ||
1770 | return arity; | |
1771 | } | |
1772 | ||
1773 | /* If TYPE is a record type in the form of a standard GNAT array | |
1774 | descriptor or a simple array type, returns the element type for | |
1775 | TYPE after indexing by NINDICES indices, or by all indices if | |
1776 | NINDICES is -1. Otherwise, returns NULL. */ | |
1777 | ||
1778 | struct type* | |
1779 | ada_array_element_type (type, nindices) | |
1780 | struct type* type; | |
1781 | int nindices; | |
1782 | { | |
1783 | type = desc_base_type (type); | |
1784 | ||
1785 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT) | |
1786 | { | |
1787 | int k; | |
1788 | struct type* p_array_type; | |
1789 | ||
1790 | p_array_type = desc_data_type (type); | |
1791 | ||
1792 | k = ada_array_arity (type); | |
1793 | if (k == 0) | |
1794 | return NULL; | |
1795 | ||
1796 | /* Initially p_array_type = elt_type(*)[]...(k times)...[] */ | |
1797 | if (nindices >= 0 && k > nindices) | |
1798 | k = nindices; | |
1799 | p_array_type = TYPE_TARGET_TYPE (p_array_type); | |
1800 | while (k > 0 && p_array_type != NULL) | |
1801 | { | |
1802 | p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type)); | |
1803 | k -= 1; | |
1804 | } | |
1805 | return p_array_type; | |
1806 | } | |
1807 | else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
1808 | { | |
1809 | while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
1810 | { | |
1811 | type = TYPE_TARGET_TYPE (type); | |
1812 | nindices -= 1; | |
1813 | } | |
1814 | return type; | |
1815 | } | |
1816 | ||
1817 | return NULL; | |
1818 | } | |
1819 | ||
1820 | /* The type of nth index in arrays of given type (n numbering from 1). Does | |
1821 | not examine memory. */ | |
1822 | ||
1823 | struct type* | |
1824 | ada_index_type (type, n) | |
1825 | struct type* type; | |
1826 | int n; | |
1827 | { | |
1828 | type = desc_base_type (type); | |
1829 | ||
1830 | if (n > ada_array_arity (type)) | |
1831 | return NULL; | |
1832 | ||
1833 | if (ada_is_simple_array (type)) | |
1834 | { | |
1835 | int i; | |
1836 | ||
1837 | for (i = 1; i < n; i += 1) | |
1838 | type = TYPE_TARGET_TYPE (type); | |
1839 | ||
1840 | return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0)); | |
1841 | } | |
1842 | else | |
1843 | return desc_index_type (desc_bounds_type (type), n); | |
1844 | } | |
1845 | ||
1846 | /* Given that arr is an array type, returns the lower bound of the | |
1847 | Nth index (numbering from 1) if WHICH is 0, and the upper bound if | |
1848 | WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an | |
1849 | array-descriptor type. If TYPEP is non-null, *TYPEP is set to the | |
1850 | bounds type. It works for other arrays with bounds supplied by | |
1851 | run-time quantities other than discriminants. */ | |
1852 | ||
1853 | LONGEST | |
1854 | ada_array_bound_from_type (arr_type, n, which, typep) | |
1855 | struct type* arr_type; | |
1856 | int n; | |
1857 | int which; | |
1858 | struct type** typep; | |
1859 | { | |
1860 | struct type* type; | |
1861 | struct type* index_type_desc; | |
1862 | ||
1863 | if (ada_is_packed_array_type (arr_type)) | |
1864 | arr_type = decode_packed_array_type (arr_type); | |
1865 | ||
1866 | if (arr_type == NULL || ! ada_is_simple_array (arr_type)) | |
1867 | { | |
1868 | if (typep != NULL) | |
1869 | *typep = builtin_type_int; | |
1870 | return (LONGEST) -which; | |
1871 | } | |
1872 | ||
1873 | if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) | |
1874 | type = TYPE_TARGET_TYPE (arr_type); | |
1875 | else | |
1876 | type = arr_type; | |
1877 | ||
1878 | index_type_desc = ada_find_parallel_type (type, "___XA"); | |
1879 | if (index_type_desc == NULL) | |
1880 | { | |
1881 | struct type* range_type; | |
1882 | struct type* index_type; | |
1883 | ||
1884 | while (n > 1) | |
1885 | { | |
1886 | type = TYPE_TARGET_TYPE (type); | |
1887 | n -= 1; | |
1888 | } | |
1889 | ||
1890 | range_type = TYPE_INDEX_TYPE (type); | |
1891 | index_type = TYPE_TARGET_TYPE (range_type); | |
1892 | if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF) | |
1893 | index_type = builtin_type_long; | |
1894 | if (typep != NULL) | |
1895 | *typep = index_type; | |
1896 | return | |
1897 | (LONGEST) (which == 0 | |
1898 | ? TYPE_LOW_BOUND (range_type) | |
1899 | : TYPE_HIGH_BOUND (range_type)); | |
1900 | } | |
1901 | else | |
1902 | { | |
1903 | struct type* index_type = | |
1904 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n-1), | |
1905 | NULL, TYPE_OBJFILE (arr_type)); | |
1906 | if (typep != NULL) | |
1907 | *typep = TYPE_TARGET_TYPE (index_type); | |
1908 | return | |
1909 | (LONGEST) (which == 0 | |
1910 | ? TYPE_LOW_BOUND (index_type) | |
1911 | : TYPE_HIGH_BOUND (index_type)); | |
1912 | } | |
1913 | } | |
1914 | ||
1915 | /* Given that arr is an array value, returns the lower bound of the | |
1916 | nth index (numbering from 1) if which is 0, and the upper bound if | |
1917 | which is 1. This routine will also work for arrays with bounds | |
1918 | supplied by run-time quantities other than discriminants. */ | |
1919 | ||
1920 | struct value* | |
1921 | ada_array_bound (arr, n, which) | |
1922 | struct value* arr; | |
1923 | int n; | |
1924 | int which; | |
1925 | { | |
1926 | struct type* arr_type = VALUE_TYPE (arr); | |
1927 | ||
1928 | if (ada_is_packed_array_type (arr_type)) | |
1929 | return ada_array_bound (decode_packed_array (arr), n, which); | |
1930 | else if (ada_is_simple_array (arr_type)) | |
1931 | { | |
1932 | struct type* type; | |
1933 | LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); | |
1934 | return value_from_longest (type, v); | |
1935 | } | |
1936 | else | |
1937 | return desc_one_bound (desc_bounds (arr), n, which); | |
1938 | } | |
1939 | ||
1940 | /* Given that arr is an array value, returns the length of the | |
1941 | nth index. This routine will also work for arrays with bounds | |
1942 | supplied by run-time quantities other than discriminants. Does not | |
1943 | work for arrays indexed by enumeration types with representation | |
1944 | clauses at the moment. */ | |
1945 | ||
1946 | struct value* | |
1947 | ada_array_length (arr, n) | |
1948 | struct value* arr; | |
1949 | int n; | |
1950 | { | |
1951 | struct type* arr_type = check_typedef (VALUE_TYPE (arr)); | |
1952 | struct type* index_type_desc; | |
1953 | ||
1954 | if (ada_is_packed_array_type (arr_type)) | |
1955 | return ada_array_length (decode_packed_array (arr), n); | |
1956 | ||
1957 | if (ada_is_simple_array (arr_type)) | |
1958 | { | |
1959 | struct type* type; | |
1960 | LONGEST v = | |
1961 | ada_array_bound_from_type (arr_type, n, 1, &type) - | |
1962 | ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; | |
1963 | return value_from_longest (type, v); | |
1964 | } | |
1965 | else | |
1966 | return | |
1967 | value_from_longest (builtin_type_ada_int, | |
1968 | value_as_long (desc_one_bound (desc_bounds (arr), | |
1969 | n, 1)) | |
1970 | - value_as_long (desc_one_bound (desc_bounds (arr), | |
1971 | n, 0)) | |
1972 | + 1); | |
1973 | } | |
1974 | ||
1975 | \f | |
1976 | /* Name resolution */ | |
1977 | ||
1978 | /* The "demangled" name for the user-definable Ada operator corresponding | |
1979 | to op. */ | |
1980 | ||
1981 | static const char* | |
1982 | ada_op_name (op) | |
1983 | enum exp_opcode op; | |
1984 | { | |
1985 | int i; | |
1986 | ||
1987 | for (i = 0; ada_opname_table[i].mangled != NULL; i += 1) | |
1988 | { | |
1989 | if (ada_opname_table[i].op == op) | |
1990 | return ada_opname_table[i].demangled; | |
1991 | } | |
1992 | error ("Could not find operator name for opcode"); | |
1993 | } | |
1994 | ||
1995 | ||
1996 | /* Same as evaluate_type (*EXP), but resolves ambiguous symbol | |
1997 | references (OP_UNRESOLVED_VALUES) and converts operators that are | |
1998 | user-defined into appropriate function calls. If CONTEXT_TYPE is | |
1999 | non-null, it provides a preferred result type [at the moment, only | |
2000 | type void has any effect---causing procedures to be preferred over | |
2001 | functions in calls]. A null CONTEXT_TYPE indicates that a non-void | |
2002 | return type is preferred. The variable unresolved_names contains a list | |
2003 | of character strings referenced by expout that should be freed. | |
2004 | May change (expand) *EXP. */ | |
2005 | ||
2006 | void | |
2007 | ada_resolve (expp, context_type) | |
2008 | struct expression** expp; | |
2009 | struct type* context_type; | |
2010 | { | |
2011 | int pc; | |
2012 | pc = 0; | |
2013 | ada_resolve_subexp (expp, &pc, 1, context_type); | |
2014 | } | |
2015 | ||
2016 | /* Resolve the operator of the subexpression beginning at | |
2017 | position *POS of *EXPP. "Resolving" consists of replacing | |
2018 | OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing | |
2019 | built-in operators with function calls to user-defined operators, | |
2020 | where appropriate, and (when DEPROCEDURE_P is non-zero), converting | |
2021 | function-valued variables into parameterless calls. May expand | |
2022 | EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */ | |
2023 | ||
2024 | static struct value* | |
2025 | ada_resolve_subexp (expp, pos, deprocedure_p, context_type) | |
2026 | struct expression** expp; | |
2027 | int *pos; | |
2028 | int deprocedure_p; | |
2029 | struct type* context_type; | |
2030 | { | |
2031 | int pc = *pos; | |
2032 | int i; | |
2033 | struct expression* exp; /* Convenience: == *expp */ | |
2034 | enum exp_opcode op = (*expp)->elts[pc].opcode; | |
2035 | struct value** argvec; /* Vector of operand types (alloca'ed). */ | |
2036 | int nargs; /* Number of operands */ | |
2037 | ||
2038 | argvec = NULL; | |
2039 | nargs = 0; | |
2040 | exp = *expp; | |
2041 | ||
2042 | /* Pass one: resolve operands, saving their types and updating *pos. */ | |
2043 | switch (op) | |
2044 | { | |
2045 | case OP_VAR_VALUE: | |
2046 | /* case OP_UNRESOLVED_VALUE:*/ | |
2047 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
2048 | *pos += 4; | |
2049 | break; | |
2050 | ||
2051 | case OP_FUNCALL: | |
2052 | nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
2053 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
2054 | /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE) | |
2055 | { | |
2056 | *pos += 7; | |
2057 | ||
2058 | argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); | |
2059 | for (i = 0; i < nargs-1; i += 1) | |
2060 | argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL); | |
2061 | argvec[i] = NULL; | |
2062 | } | |
2063 | else | |
2064 | { | |
2065 | *pos += 3; | |
2066 | ada_resolve_subexp (expp, pos, 0, NULL); | |
2067 | for (i = 1; i < nargs; i += 1) | |
2068 | ada_resolve_subexp (expp, pos, 1, NULL); | |
2069 | } | |
2070 | */ | |
2071 | exp = *expp; | |
2072 | break; | |
2073 | ||
2074 | /* FIXME: UNOP_QUAL should be defined in expression.h */ | |
2075 | /* case UNOP_QUAL: | |
2076 | nargs = 1; | |
2077 | *pos += 3; | |
2078 | ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type); | |
2079 | exp = *expp; | |
2080 | break; | |
2081 | */ | |
2082 | /* FIXME: OP_ATTRIBUTE should be defined in expression.h */ | |
2083 | /* case OP_ATTRIBUTE: | |
2084 | nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1; | |
2085 | *pos += 4; | |
2086 | for (i = 0; i < nargs; i += 1) | |
2087 | ada_resolve_subexp (expp, pos, 1, NULL); | |
2088 | exp = *expp; | |
2089 | break; | |
2090 | */ | |
2091 | case UNOP_ADDR: | |
2092 | nargs = 1; | |
2093 | *pos += 1; | |
2094 | ada_resolve_subexp (expp, pos, 0, NULL); | |
2095 | exp = *expp; | |
2096 | break; | |
2097 | ||
2098 | case BINOP_ASSIGN: | |
2099 | { | |
2100 | struct value* arg1; | |
2101 | nargs = 2; | |
2102 | *pos += 1; | |
2103 | arg1 = ada_resolve_subexp (expp, pos, 0, NULL); | |
2104 | if (arg1 == NULL) | |
2105 | ada_resolve_subexp (expp, pos, 1, NULL); | |
2106 | else | |
2107 | ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1)); | |
2108 | break; | |
2109 | } | |
2110 | ||
2111 | default: | |
2112 | switch (op) | |
2113 | { | |
2114 | default: | |
2115 | error ("Unexpected operator during name resolution"); | |
2116 | case UNOP_CAST: | |
2117 | /* case UNOP_MBR: | |
2118 | nargs = 1; | |
2119 | *pos += 3; | |
2120 | break; | |
2121 | */ | |
2122 | case BINOP_ADD: | |
2123 | case BINOP_SUB: | |
2124 | case BINOP_MUL: | |
2125 | case BINOP_DIV: | |
2126 | case BINOP_REM: | |
2127 | case BINOP_MOD: | |
2128 | case BINOP_EXP: | |
2129 | case BINOP_CONCAT: | |
2130 | case BINOP_LOGICAL_AND: | |
2131 | case BINOP_LOGICAL_OR: | |
2132 | case BINOP_BITWISE_AND: | |
2133 | case BINOP_BITWISE_IOR: | |
2134 | case BINOP_BITWISE_XOR: | |
2135 | ||
2136 | case BINOP_EQUAL: | |
2137 | case BINOP_NOTEQUAL: | |
2138 | case BINOP_LESS: | |
2139 | case BINOP_GTR: | |
2140 | case BINOP_LEQ: | |
2141 | case BINOP_GEQ: | |
2142 | ||
2143 | case BINOP_REPEAT: | |
2144 | case BINOP_SUBSCRIPT: | |
2145 | case BINOP_COMMA: | |
2146 | nargs = 2; | |
2147 | *pos += 1; | |
2148 | break; | |
2149 | ||
2150 | case UNOP_NEG: | |
2151 | case UNOP_PLUS: | |
2152 | case UNOP_LOGICAL_NOT: | |
2153 | case UNOP_ABS: | |
2154 | case UNOP_IND: | |
2155 | nargs = 1; | |
2156 | *pos += 1; | |
2157 | break; | |
2158 | ||
2159 | case OP_LONG: | |
2160 | case OP_DOUBLE: | |
2161 | case OP_VAR_VALUE: | |
2162 | *pos += 4; | |
2163 | break; | |
2164 | ||
2165 | case OP_TYPE: | |
2166 | case OP_BOOL: | |
2167 | case OP_LAST: | |
2168 | case OP_REGISTER: | |
2169 | case OP_INTERNALVAR: | |
2170 | *pos += 3; | |
2171 | break; | |
2172 | ||
2173 | case UNOP_MEMVAL: | |
2174 | *pos += 3; | |
2175 | nargs = 1; | |
2176 | break; | |
2177 | ||
2178 | case STRUCTOP_STRUCT: | |
2179 | case STRUCTOP_PTR: | |
2180 | nargs = 1; | |
2181 | *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); | |
2182 | break; | |
2183 | ||
2184 | case OP_ARRAY: | |
2185 | *pos += 4; | |
2186 | nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1; | |
2187 | nargs -= longest_to_int (exp->elts[pc + 1].longconst); | |
2188 | /* A null array contains one dummy element to give the type. */ | |
2189 | /* if (nargs == 0) | |
2190 | nargs = 1; | |
2191 | break;*/ | |
2192 | ||
2193 | case TERNOP_SLICE: | |
2194 | /* FIXME: TERNOP_MBR should be defined in expression.h */ | |
2195 | /* case TERNOP_MBR: | |
2196 | *pos += 1; | |
2197 | nargs = 3; | |
2198 | break; | |
2199 | */ | |
2200 | /* FIXME: BINOP_MBR should be defined in expression.h */ | |
2201 | /* case BINOP_MBR: | |
2202 | *pos += 3; | |
2203 | nargs = 2; | |
2204 | break;*/ | |
2205 | } | |
2206 | ||
2207 | argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); | |
2208 | for (i = 0; i < nargs; i += 1) | |
2209 | argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL); | |
2210 | argvec[i] = NULL; | |
2211 | exp = *expp; | |
2212 | break; | |
2213 | } | |
2214 | ||
2215 | /* Pass two: perform any resolution on principal operator. */ | |
2216 | switch (op) | |
2217 | { | |
2218 | default: | |
2219 | break; | |
2220 | ||
2221 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
2222 | /* case OP_UNRESOLVED_VALUE: | |
2223 | { | |
2224 | struct symbol** candidate_syms; | |
2225 | struct block** candidate_blocks; | |
2226 | int n_candidates; | |
2227 | ||
2228 | n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name, | |
2229 | exp->elts[pc + 1].block, | |
2230 | VAR_NAMESPACE, | |
2231 | &candidate_syms, | |
2232 | &candidate_blocks); | |
2233 | ||
2234 | if (n_candidates > 1) | |
2235 | {*/ | |
2236 | /* Types tend to get re-introduced locally, so if there | |
2237 | are any local symbols that are not types, first filter | |
2238 | out all types.*/ /* | |
2239 | int j; | |
2240 | for (j = 0; j < n_candidates; j += 1) | |
2241 | switch (SYMBOL_CLASS (candidate_syms[j])) | |
2242 | { | |
2243 | case LOC_REGISTER: | |
2244 | case LOC_ARG: | |
2245 | case LOC_REF_ARG: | |
2246 | case LOC_REGPARM: | |
2247 | case LOC_REGPARM_ADDR: | |
2248 | case LOC_LOCAL: | |
2249 | case LOC_LOCAL_ARG: | |
2250 | case LOC_BASEREG: | |
2251 | case LOC_BASEREG_ARG: | |
2252 | goto FoundNonType; | |
2253 | default: | |
2254 | break; | |
2255 | } | |
2256 | FoundNonType: | |
2257 | if (j < n_candidates) | |
2258 | { | |
2259 | j = 0; | |
2260 | while (j < n_candidates) | |
2261 | { | |
2262 | if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF) | |
2263 | { | |
2264 | candidate_syms[j] = candidate_syms[n_candidates-1]; | |
2265 | candidate_blocks[j] = candidate_blocks[n_candidates-1]; | |
2266 | n_candidates -= 1; | |
2267 | } | |
2268 | else | |
2269 | j += 1; | |
2270 | } | |
2271 | } | |
2272 | } | |
2273 | ||
2274 | if (n_candidates == 0) | |
2275 | error ("No definition found for %s", | |
2276 | ada_demangle (exp->elts[pc + 2].name)); | |
2277 | else if (n_candidates == 1) | |
2278 | i = 0; | |
2279 | else if (deprocedure_p | |
2280 | && ! is_nonfunction (candidate_syms, n_candidates)) | |
2281 | { | |
2282 | i = ada_resolve_function (candidate_syms, candidate_blocks, | |
2283 | n_candidates, NULL, 0, | |
2284 | exp->elts[pc + 2].name, context_type); | |
2285 | if (i < 0) | |
2286 | error ("Could not find a match for %s", | |
2287 | ada_demangle (exp->elts[pc + 2].name)); | |
2288 | } | |
2289 | else | |
2290 | { | |
2291 | printf_filtered ("Multiple matches for %s\n", | |
2292 | ada_demangle (exp->elts[pc+2].name)); | |
2293 | user_select_syms (candidate_syms, candidate_blocks, | |
2294 | n_candidates, 1); | |
2295 | i = 0; | |
2296 | } | |
2297 | ||
2298 | exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE; | |
2299 | exp->elts[pc + 1].block = candidate_blocks[i]; | |
2300 | exp->elts[pc + 2].symbol = candidate_syms[i]; | |
2301 | if (innermost_block == NULL || | |
2302 | contained_in (candidate_blocks[i], innermost_block)) | |
2303 | innermost_block = candidate_blocks[i]; | |
2304 | }*/ | |
2305 | /* FALL THROUGH */ | |
2306 | ||
2307 | case OP_VAR_VALUE: | |
2308 | if (deprocedure_p && | |
2309 | TYPE_CODE (SYMBOL_TYPE (exp->elts[pc+2].symbol)) == TYPE_CODE_FUNC) | |
2310 | { | |
2311 | replace_operator_with_call (expp, pc, 0, 0, | |
2312 | exp->elts[pc+2].symbol, | |
2313 | exp->elts[pc+1].block); | |
2314 | exp = *expp; | |
2315 | } | |
2316 | break; | |
2317 | ||
2318 | case OP_FUNCALL: | |
2319 | { | |
2320 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
2321 | /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE) | |
2322 | { | |
2323 | struct symbol** candidate_syms; | |
2324 | struct block** candidate_blocks; | |
2325 | int n_candidates; | |
2326 | ||
2327 | n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name, | |
2328 | exp->elts[pc + 4].block, | |
2329 | VAR_NAMESPACE, | |
2330 | &candidate_syms, | |
2331 | &candidate_blocks); | |
2332 | if (n_candidates == 1) | |
2333 | i = 0; | |
2334 | else | |
2335 | { | |
2336 | i = ada_resolve_function (candidate_syms, candidate_blocks, | |
2337 | n_candidates, argvec, nargs-1, | |
2338 | exp->elts[pc + 5].name, context_type); | |
2339 | if (i < 0) | |
2340 | error ("Could not find a match for %s", | |
2341 | ada_demangle (exp->elts[pc + 5].name)); | |
2342 | } | |
2343 | ||
2344 | exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
2345 | exp->elts[pc + 4].block = candidate_blocks[i]; | |
2346 | exp->elts[pc + 5].symbol = candidate_syms[i]; | |
2347 | if (innermost_block == NULL || | |
2348 | contained_in (candidate_blocks[i], innermost_block)) | |
2349 | innermost_block = candidate_blocks[i]; | |
2350 | }*/ | |
2351 | ||
2352 | } | |
2353 | break; | |
2354 | case BINOP_ADD: | |
2355 | case BINOP_SUB: | |
2356 | case BINOP_MUL: | |
2357 | case BINOP_DIV: | |
2358 | case BINOP_REM: | |
2359 | case BINOP_MOD: | |
2360 | case BINOP_CONCAT: | |
2361 | case BINOP_BITWISE_AND: | |
2362 | case BINOP_BITWISE_IOR: | |
2363 | case BINOP_BITWISE_XOR: | |
2364 | case BINOP_EQUAL: | |
2365 | case BINOP_NOTEQUAL: | |
2366 | case BINOP_LESS: | |
2367 | case BINOP_GTR: | |
2368 | case BINOP_LEQ: | |
2369 | case BINOP_GEQ: | |
2370 | case BINOP_EXP: | |
2371 | case UNOP_NEG: | |
2372 | case UNOP_PLUS: | |
2373 | case UNOP_LOGICAL_NOT: | |
2374 | case UNOP_ABS: | |
2375 | if (possible_user_operator_p (op, argvec)) | |
2376 | { | |
2377 | struct symbol** candidate_syms; | |
2378 | struct block** candidate_blocks; | |
2379 | int n_candidates; | |
2380 | ||
2381 | n_candidates = ada_lookup_symbol_list (ada_mangle (ada_op_name (op)), | |
2382 | (struct block*) NULL, | |
2383 | VAR_NAMESPACE, | |
2384 | &candidate_syms, | |
2385 | &candidate_blocks); | |
2386 | i = ada_resolve_function (candidate_syms, candidate_blocks, | |
2387 | n_candidates, argvec, nargs, | |
2388 | ada_op_name (op), NULL); | |
2389 | if (i < 0) | |
2390 | break; | |
2391 | ||
2392 | replace_operator_with_call (expp, pc, nargs, 1, | |
2393 | candidate_syms[i], candidate_blocks[i]); | |
2394 | exp = *expp; | |
2395 | } | |
2396 | break; | |
2397 | } | |
2398 | ||
2399 | *pos = pc; | |
2400 | return evaluate_subexp_type (exp, pos); | |
2401 | } | |
2402 | ||
2403 | /* Return non-zero if formal type FTYPE matches actual type ATYPE. If | |
2404 | MAY_DEREF is non-zero, the formal may be a pointer and the actual | |
2405 | a non-pointer. */ | |
2406 | /* The term "match" here is rather loose. The match is heuristic and | |
2407 | liberal. FIXME: TOO liberal, in fact. */ | |
2408 | ||
2409 | static int | |
2410 | ada_type_match (ftype, atype, may_deref) | |
2411 | struct type* ftype; | |
2412 | struct type* atype; | |
2413 | int may_deref; | |
2414 | { | |
2415 | CHECK_TYPEDEF (ftype); | |
2416 | CHECK_TYPEDEF (atype); | |
2417 | ||
2418 | if (TYPE_CODE (ftype) == TYPE_CODE_REF) | |
2419 | ftype = TYPE_TARGET_TYPE (ftype); | |
2420 | if (TYPE_CODE (atype) == TYPE_CODE_REF) | |
2421 | atype = TYPE_TARGET_TYPE (atype); | |
2422 | ||
2423 | if (TYPE_CODE (ftype) == TYPE_CODE_VOID | |
2424 | || TYPE_CODE (atype) == TYPE_CODE_VOID) | |
2425 | return 1; | |
2426 | ||
2427 | switch (TYPE_CODE (ftype)) | |
2428 | { | |
2429 | default: | |
2430 | return 1; | |
2431 | case TYPE_CODE_PTR: | |
2432 | if (TYPE_CODE (atype) == TYPE_CODE_PTR) | |
2433 | return ada_type_match (TYPE_TARGET_TYPE (ftype), | |
2434 | TYPE_TARGET_TYPE (atype), 0); | |
2435 | else return (may_deref && | |
2436 | ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); | |
2437 | case TYPE_CODE_INT: | |
2438 | case TYPE_CODE_ENUM: | |
2439 | case TYPE_CODE_RANGE: | |
2440 | switch (TYPE_CODE (atype)) | |
2441 | { | |
2442 | case TYPE_CODE_INT: | |
2443 | case TYPE_CODE_ENUM: | |
2444 | case TYPE_CODE_RANGE: | |
2445 | return 1; | |
2446 | default: | |
2447 | return 0; | |
2448 | } | |
2449 | ||
2450 | case TYPE_CODE_ARRAY: | |
2451 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
2452 | || ada_is_array_descriptor (atype)); | |
2453 | ||
2454 | case TYPE_CODE_STRUCT: | |
2455 | if (ada_is_array_descriptor (ftype)) | |
2456 | return (TYPE_CODE (atype) == TYPE_CODE_ARRAY | |
2457 | || ada_is_array_descriptor (atype)); | |
2458 | else | |
2459 | return (TYPE_CODE (atype) == TYPE_CODE_STRUCT | |
2460 | && ! ada_is_array_descriptor (atype)); | |
2461 | ||
2462 | case TYPE_CODE_UNION: | |
2463 | case TYPE_CODE_FLT: | |
2464 | return (TYPE_CODE (atype) == TYPE_CODE (ftype)); | |
2465 | } | |
2466 | } | |
2467 | ||
2468 | /* Return non-zero if the formals of FUNC "sufficiently match" the | |
2469 | vector of actual argument types ACTUALS of size N_ACTUALS. FUNC | |
2470 | may also be an enumeral, in which case it is treated as a 0- | |
2471 | argument function. */ | |
2472 | ||
2473 | static int | |
2474 | ada_args_match (func, actuals, n_actuals) | |
2475 | struct symbol* func; | |
2476 | struct value** actuals; | |
2477 | int n_actuals; | |
2478 | { | |
2479 | int i; | |
2480 | struct type* func_type = SYMBOL_TYPE (func); | |
2481 | ||
2482 | if (SYMBOL_CLASS (func) == LOC_CONST && | |
2483 | TYPE_CODE (func_type) == TYPE_CODE_ENUM) | |
2484 | return (n_actuals == 0); | |
2485 | else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) | |
2486 | return 0; | |
2487 | ||
2488 | if (TYPE_NFIELDS (func_type) != n_actuals) | |
2489 | return 0; | |
2490 | ||
2491 | for (i = 0; i < n_actuals; i += 1) | |
2492 | { | |
2493 | struct type* ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i)); | |
2494 | struct type* atype = check_typedef (VALUE_TYPE (actuals[i])); | |
2495 | ||
2496 | if (! ada_type_match (TYPE_FIELD_TYPE (func_type, i), | |
2497 | VALUE_TYPE (actuals[i]), 1)) | |
2498 | return 0; | |
2499 | } | |
2500 | return 1; | |
2501 | } | |
2502 | ||
2503 | /* False iff function type FUNC_TYPE definitely does not produce a value | |
2504 | compatible with type CONTEXT_TYPE. Conservatively returns 1 if | |
2505 | FUNC_TYPE is not a valid function type with a non-null return type | |
2506 | or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ | |
2507 | ||
2508 | static int | |
2509 | return_match (func_type, context_type) | |
2510 | struct type* func_type; | |
2511 | struct type* context_type; | |
2512 | { | |
2513 | struct type* return_type; | |
2514 | ||
2515 | if (func_type == NULL) | |
2516 | return 1; | |
2517 | ||
2518 | /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */ | |
2519 | /* if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) | |
2520 | return_type = base_type (TYPE_TARGET_TYPE (func_type)); | |
2521 | else | |
2522 | return_type = base_type (func_type);*/ | |
2523 | if (return_type == NULL) | |
2524 | return 1; | |
2525 | ||
2526 | /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */ | |
2527 | /* context_type = base_type (context_type);*/ | |
2528 | ||
2529 | if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) | |
2530 | return context_type == NULL || return_type == context_type; | |
2531 | else if (context_type == NULL) | |
2532 | return TYPE_CODE (return_type) != TYPE_CODE_VOID; | |
2533 | else | |
2534 | return TYPE_CODE (return_type) == TYPE_CODE (context_type); | |
2535 | } | |
2536 | ||
2537 | ||
2538 | /* Return the index in SYMS[0..NSYMS-1] of symbol for the | |
2539 | function (if any) that matches the types of the NARGS arguments in | |
2540 | ARGS. If CONTEXT_TYPE is non-null, and there is at least one match | |
2541 | that returns type CONTEXT_TYPE, then eliminate other matches. If | |
2542 | CONTEXT_TYPE is null, prefer a non-void-returning function. | |
2543 | Asks the user if there is more than one match remaining. Returns -1 | |
2544 | if there is no such symbol or none is selected. NAME is used | |
2545 | solely for messages. May re-arrange and modify SYMS in | |
2546 | the process; the index returned is for the modified vector. BLOCKS | |
2547 | is modified in parallel to SYMS. */ | |
2548 | ||
2549 | int | |
2550 | ada_resolve_function (syms, blocks, nsyms, args, nargs, name, context_type) | |
2551 | struct symbol* syms[]; | |
2552 | struct block* blocks[]; | |
2553 | struct value** args; | |
2554 | int nsyms, nargs; | |
2555 | const char* name; | |
2556 | struct type* context_type; | |
2557 | { | |
2558 | int k; | |
2559 | int m; /* Number of hits */ | |
2560 | struct type* fallback; | |
2561 | struct type* return_type; | |
2562 | ||
2563 | return_type = context_type; | |
2564 | if (context_type == NULL) | |
2565 | fallback = builtin_type_void; | |
2566 | else | |
2567 | fallback = NULL; | |
2568 | ||
2569 | m = 0; | |
2570 | while (1) | |
2571 | { | |
2572 | for (k = 0; k < nsyms; k += 1) | |
2573 | { | |
2574 | struct type* type = check_typedef (SYMBOL_TYPE (syms[k])); | |
2575 | ||
2576 | if (ada_args_match (syms[k], args, nargs) | |
2577 | && return_match (SYMBOL_TYPE (syms[k]), return_type)) | |
2578 | { | |
2579 | syms[m] = syms[k]; | |
2580 | if (blocks != NULL) | |
2581 | blocks[m] = blocks[k]; | |
2582 | m += 1; | |
2583 | } | |
2584 | } | |
2585 | if (m > 0 || return_type == fallback) | |
2586 | break; | |
2587 | else | |
2588 | return_type = fallback; | |
2589 | } | |
2590 | ||
2591 | if (m == 0) | |
2592 | return -1; | |
2593 | else if (m > 1) | |
2594 | { | |
2595 | printf_filtered ("Multiple matches for %s\n", name); | |
2596 | user_select_syms (syms, blocks, m, 1); | |
2597 | return 0; | |
2598 | } | |
2599 | return 0; | |
2600 | } | |
2601 | ||
2602 | /* Returns true (non-zero) iff demangled name N0 should appear before N1 */ | |
2603 | /* in a listing of choices during disambiguation (see sort_choices, below). */ | |
2604 | /* The idea is that overloadings of a subprogram name from the */ | |
2605 | /* same package should sort in their source order. We settle for ordering */ | |
2606 | /* such symbols by their trailing number (__N or $N). */ | |
2607 | static int | |
2608 | mangled_ordered_before (char* N0, char* N1) | |
2609 | { | |
2610 | if (N1 == NULL) | |
2611 | return 0; | |
2612 | else if (N0 == NULL) | |
2613 | return 1; | |
2614 | else | |
2615 | { | |
2616 | int k0, k1; | |
2617 | for (k0 = strlen (N0)-1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) | |
2618 | ; | |
2619 | for (k1 = strlen (N1)-1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) | |
2620 | ; | |
2621 | if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0+1] != '\000' | |
2622 | && (N1[k1] == '_' || N1[k1] == '$') && N1[k1+1] != '\000') | |
2623 | { | |
2624 | int n0, n1; | |
2625 | n0 = k0; | |
2626 | while (N0[n0] == '_' && n0 > 0 && N0[n0-1] == '_') | |
2627 | n0 -= 1; | |
2628 | n1 = k1; | |
2629 | while (N1[n1] == '_' && n1 > 0 && N1[n1-1] == '_') | |
2630 | n1 -= 1; | |
2631 | if (n0 == n1 && STREQN (N0, N1, n0)) | |
2632 | return (atoi (N0+k0+1) < atoi (N1+k1+1)); | |
2633 | } | |
2634 | return (strcmp (N0, N1) < 0); | |
2635 | } | |
2636 | } | |
2637 | ||
2638 | /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */ | |
2639 | /* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */ | |
2640 | /* permutation. */ | |
2641 | static void | |
2642 | sort_choices (syms, blocks, nsyms) | |
2643 | struct symbol* syms[]; | |
2644 | struct block* blocks[]; | |
2645 | int nsyms; | |
2646 | { | |
2647 | int i, j; | |
2648 | for (i = 1; i < nsyms; i += 1) | |
2649 | { | |
2650 | struct symbol* sym = syms[i]; | |
2651 | struct block* block = blocks[i]; | |
2652 | int j; | |
2653 | ||
2654 | for (j = i-1; j >= 0; j -= 1) | |
2655 | { | |
2656 | if (mangled_ordered_before (SYMBOL_NAME (syms[j]), | |
2657 | SYMBOL_NAME (sym))) | |
2658 | break; | |
2659 | syms[j+1] = syms[j]; | |
2660 | blocks[j+1] = blocks[j]; | |
2661 | } | |
2662 | syms[j+1] = sym; | |
2663 | blocks[j+1] = block; | |
2664 | } | |
2665 | } | |
2666 | ||
2667 | /* Given a list of NSYMS symbols in SYMS and corresponding blocks in */ | |
2668 | /* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */ | |
2669 | /* necessary), returning the number selected, and setting the first */ | |
2670 | /* elements of SYMS and BLOCKS to the selected symbols and */ | |
2671 | /* corresponding blocks. Error if no symbols selected. BLOCKS may */ | |
2672 | /* be NULL, in which case it is ignored. */ | |
2673 | ||
2674 | /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought | |
2675 | to be re-integrated one of these days. */ | |
2676 | ||
2677 | int | |
2678 | user_select_syms (syms, blocks, nsyms, max_results) | |
2679 | struct symbol* syms[]; | |
2680 | struct block* blocks[]; | |
2681 | int nsyms; | |
2682 | int max_results; | |
2683 | { | |
2684 | int i; | |
2685 | int* chosen = (int*) alloca (sizeof(int) * nsyms); | |
2686 | int n_chosen; | |
2687 | int first_choice = (max_results == 1) ? 1 : 2; | |
2688 | ||
2689 | if (max_results < 1) | |
2690 | error ("Request to select 0 symbols!"); | |
2691 | if (nsyms <= 1) | |
2692 | return nsyms; | |
2693 | ||
2694 | printf_unfiltered("[0] cancel\n"); | |
2695 | if (max_results > 1) | |
2696 | printf_unfiltered("[1] all\n"); | |
2697 | ||
2698 | sort_choices (syms, blocks, nsyms); | |
2699 | ||
2700 | for (i = 0; i < nsyms; i += 1) | |
2701 | { | |
2702 | if (syms[i] == NULL) | |
2703 | continue; | |
2704 | ||
2705 | if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK) | |
2706 | { | |
2707 | struct symtab_and_line sal = find_function_start_sal (syms[i], 1); | |
2708 | printf_unfiltered ("[%d] %s at %s:%d\n", | |
2709 | i + first_choice, | |
2710 | SYMBOL_SOURCE_NAME (syms[i]), | |
2711 | sal.symtab == NULL | |
2712 | ? "<no source file available>" | |
2713 | : sal.symtab->filename, | |
2714 | sal.line); | |
2715 | continue; | |
2716 | } | |
2717 | else | |
2718 | { | |
2719 | int is_enumeral = | |
2720 | (SYMBOL_CLASS (syms[i]) == LOC_CONST | |
2721 | && SYMBOL_TYPE (syms[i]) != NULL | |
2722 | && TYPE_CODE (SYMBOL_TYPE (syms[i])) | |
2723 | == TYPE_CODE_ENUM); | |
2724 | struct symtab* symtab = symtab_for_sym (syms[i]); | |
2725 | ||
2726 | if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL) | |
2727 | printf_unfiltered ("[%d] %s at %s:%d\n", | |
2728 | i + first_choice, | |
2729 | SYMBOL_SOURCE_NAME (syms[i]), | |
2730 | symtab->filename, SYMBOL_LINE (syms[i])); | |
2731 | else if (is_enumeral && | |
2732 | TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL) | |
2733 | { | |
2734 | printf_unfiltered ("[%d] ", i + first_choice); | |
2735 | ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0); | |
2736 | printf_unfiltered ("'(%s) (enumeral)\n", | |
2737 | SYMBOL_SOURCE_NAME (syms[i])); | |
2738 | } | |
2739 | else if (symtab != NULL) | |
2740 | printf_unfiltered (is_enumeral | |
2741 | ? "[%d] %s in %s (enumeral)\n" | |
2742 | : "[%d] %s at %s:?\n", | |
2743 | i + first_choice, | |
2744 | SYMBOL_SOURCE_NAME (syms[i]), | |
2745 | symtab->filename); | |
2746 | else | |
2747 | printf_unfiltered (is_enumeral | |
2748 | ? "[%d] %s (enumeral)\n" | |
2749 | : "[%d] %s at ?\n", | |
2750 | i + first_choice, SYMBOL_SOURCE_NAME (syms[i])); | |
2751 | } | |
2752 | } | |
2753 | ||
2754 | n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, | |
2755 | "overload-choice"); | |
2756 | ||
2757 | for (i = 0; i < n_chosen; i += 1) | |
2758 | { | |
2759 | syms[i] = syms[chosen[i]]; | |
2760 | if (blocks != NULL) | |
2761 | blocks[i] = blocks[chosen[i]]; | |
2762 | } | |
2763 | ||
2764 | return n_chosen; | |
2765 | } | |
2766 | ||
2767 | /* Read and validate a set of numeric choices from the user in the | |
2768 | range 0 .. N_CHOICES-1. Place the results in increasing | |
2769 | order in CHOICES[0 .. N-1], and return N. | |
2770 | ||
2771 | The user types choices as a sequence of numbers on one line | |
2772 | separated by blanks, encoding them as follows: | |
2773 | ||
2774 | + A choice of 0 means to cancel the selection, throwing an error. | |
2775 | + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. | |
2776 | + The user chooses k by typing k+IS_ALL_CHOICE+1. | |
2777 | ||
2778 | The user is not allowed to choose more than MAX_RESULTS values. | |
2779 | ||
2780 | ANNOTATION_SUFFIX, if present, is used to annotate the input | |
2781 | prompts (for use with the -f switch). */ | |
2782 | ||
2783 | int | |
2784 | get_selections (choices, n_choices, max_results, is_all_choice, | |
2785 | annotation_suffix) | |
2786 | int* choices; | |
2787 | int n_choices; | |
2788 | int max_results; | |
2789 | int is_all_choice; | |
2790 | char* annotation_suffix; | |
2791 | { | |
2792 | int i; | |
2793 | char* args; | |
2794 | const char* prompt; | |
2795 | int n_chosen; | |
2796 | int first_choice = is_all_choice ? 2 : 1; | |
2797 | ||
2798 | prompt = getenv ("PS2"); | |
2799 | if (prompt == NULL) | |
2800 | prompt = ">"; | |
2801 | ||
2802 | printf_unfiltered ("%s ", prompt); | |
2803 | gdb_flush (gdb_stdout); | |
2804 | ||
2805 | args = command_line_input ((char *) NULL, 0, annotation_suffix); | |
2806 | ||
2807 | if (args == NULL) | |
2808 | error_no_arg ("one or more choice numbers"); | |
2809 | ||
2810 | n_chosen = 0; | |
2811 | ||
2812 | /* Set choices[0 .. n_chosen-1] to the users' choices in ascending | |
2813 | order, as given in args. Choices are validated. */ | |
2814 | while (1) | |
2815 | { | |
2816 | char* args2; | |
2817 | int choice, j; | |
2818 | ||
2819 | while (isspace (*args)) | |
2820 | args += 1; | |
2821 | if (*args == '\0' && n_chosen == 0) | |
2822 | error_no_arg ("one or more choice numbers"); | |
2823 | else if (*args == '\0') | |
2824 | break; | |
2825 | ||
2826 | choice = strtol (args, &args2, 10); | |
2827 | if (args == args2 || choice < 0 || choice > n_choices + first_choice - 1) | |
2828 | error ("Argument must be choice number"); | |
2829 | args = args2; | |
2830 | ||
2831 | if (choice == 0) | |
2832 | error ("cancelled"); | |
2833 | ||
2834 | if (choice < first_choice) | |
2835 | { | |
2836 | n_chosen = n_choices; | |
2837 | for (j = 0; j < n_choices; j += 1) | |
2838 | choices[j] = j; | |
2839 | break; | |
2840 | } | |
2841 | choice -= first_choice; | |
2842 | ||
2843 | for (j = n_chosen-1; j >= 0 && choice < choices[j]; j -= 1) | |
2844 | {} | |
2845 | ||
2846 | if (j < 0 || choice != choices[j]) | |
2847 | { | |
2848 | int k; | |
2849 | for (k = n_chosen-1; k > j; k -= 1) | |
2850 | choices[k+1] = choices[k]; | |
2851 | choices[j+1] = choice; | |
2852 | n_chosen += 1; | |
2853 | } | |
2854 | } | |
2855 | ||
2856 | if (n_chosen > max_results) | |
2857 | error ("Select no more than %d of the above", max_results); | |
2858 | ||
2859 | return n_chosen; | |
2860 | } | |
2861 | ||
2862 | /* Replace the operator of length OPLEN at position PC in *EXPP with a call */ | |
2863 | /* on the function identified by SYM and BLOCK, and taking NARGS */ | |
2864 | /* arguments. Update *EXPP as needed to hold more space. */ | |
2865 | ||
2866 | static void | |
2867 | replace_operator_with_call (expp, pc, nargs, oplen, sym, block) | |
2868 | struct expression** expp; | |
2869 | int pc, nargs, oplen; | |
2870 | struct symbol* sym; | |
2871 | struct block* block; | |
2872 | { | |
2873 | /* A new expression, with 6 more elements (3 for funcall, 4 for function | |
2874 | symbol, -oplen for operator being replaced). */ | |
2875 | struct expression* newexp = (struct expression*) | |
2876 | xmalloc (sizeof (struct expression) | |
2877 | + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); | |
2878 | struct expression* exp = *expp; | |
2879 | ||
2880 | newexp->nelts = exp->nelts + 7 - oplen; | |
2881 | newexp->language_defn = exp->language_defn; | |
2882 | memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); | |
2883 | memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, | |
2884 | EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); | |
2885 | ||
2886 | newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; | |
2887 | newexp->elts[pc + 1].longconst = (LONGEST) nargs; | |
2888 | ||
2889 | newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; | |
2890 | newexp->elts[pc + 4].block = block; | |
2891 | newexp->elts[pc + 5].symbol = sym; | |
2892 | ||
2893 | *expp = newexp; | |
2894 | free (exp); | |
2895 | } | |
2896 | ||
2897 | /* Type-class predicates */ | |
2898 | ||
2899 | /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */ | |
2900 | /* FLOAT.) */ | |
2901 | ||
2902 | static int | |
2903 | numeric_type_p (type) | |
2904 | struct type* type; | |
2905 | { | |
2906 | if (type == NULL) | |
2907 | return 0; | |
2908 | else { | |
2909 | switch (TYPE_CODE (type)) | |
2910 | { | |
2911 | case TYPE_CODE_INT: | |
2912 | case TYPE_CODE_FLT: | |
2913 | return 1; | |
2914 | case TYPE_CODE_RANGE: | |
2915 | return (type == TYPE_TARGET_TYPE (type) | |
2916 | || numeric_type_p (TYPE_TARGET_TYPE (type))); | |
2917 | default: | |
2918 | return 0; | |
2919 | } | |
2920 | } | |
2921 | } | |
2922 | ||
2923 | /* True iff TYPE is integral (an INT or RANGE of INTs). */ | |
2924 | ||
2925 | static int | |
2926 | integer_type_p (type) | |
2927 | struct type* type; | |
2928 | { | |
2929 | if (type == NULL) | |
2930 | return 0; | |
2931 | else { | |
2932 | switch (TYPE_CODE (type)) | |
2933 | { | |
2934 | case TYPE_CODE_INT: | |
2935 | return 1; | |
2936 | case TYPE_CODE_RANGE: | |
2937 | return (type == TYPE_TARGET_TYPE (type) | |
2938 | || integer_type_p (TYPE_TARGET_TYPE (type))); | |
2939 | default: | |
2940 | return 0; | |
2941 | } | |
2942 | } | |
2943 | } | |
2944 | ||
2945 | /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ | |
2946 | ||
2947 | static int | |
2948 | scalar_type_p (type) | |
2949 | struct type* type; | |
2950 | { | |
2951 | if (type == NULL) | |
2952 | return 0; | |
2953 | else { | |
2954 | switch (TYPE_CODE (type)) | |
2955 | { | |
2956 | case TYPE_CODE_INT: | |
2957 | case TYPE_CODE_RANGE: | |
2958 | case TYPE_CODE_ENUM: | |
2959 | case TYPE_CODE_FLT: | |
2960 | return 1; | |
2961 | default: | |
2962 | return 0; | |
2963 | } | |
2964 | } | |
2965 | } | |
2966 | ||
2967 | /* True iff TYPE is discrete (INT, RANGE, ENUM). */ | |
2968 | ||
2969 | static int | |
2970 | discrete_type_p (type) | |
2971 | struct type* type; | |
2972 | { | |
2973 | if (type == NULL) | |
2974 | return 0; | |
2975 | else { | |
2976 | switch (TYPE_CODE (type)) | |
2977 | { | |
2978 | case TYPE_CODE_INT: | |
2979 | case TYPE_CODE_RANGE: | |
2980 | case TYPE_CODE_ENUM: | |
2981 | return 1; | |
2982 | default: | |
2983 | return 0; | |
2984 | } | |
2985 | } | |
2986 | } | |
2987 | ||
2988 | /* Returns non-zero if OP with operatands in the vector ARGS could be | |
2989 | a user-defined function. Errs on the side of pre-defined operators | |
2990 | (i.e., result 0). */ | |
2991 | ||
2992 | static int | |
2993 | possible_user_operator_p (op, args) | |
2994 | enum exp_opcode op; | |
2995 | struct value* args[]; | |
2996 | { | |
2997 | struct type* type0 = check_typedef (VALUE_TYPE (args[0])); | |
2998 | struct type* type1 = | |
2999 | (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1])); | |
3000 | ||
3001 | switch (op) | |
3002 | { | |
3003 | default: | |
3004 | return 0; | |
3005 | ||
3006 | case BINOP_ADD: | |
3007 | case BINOP_SUB: | |
3008 | case BINOP_MUL: | |
3009 | case BINOP_DIV: | |
3010 | return (! (numeric_type_p (type0) && numeric_type_p (type1))); | |
3011 | ||
3012 | case BINOP_REM: | |
3013 | case BINOP_MOD: | |
3014 | case BINOP_BITWISE_AND: | |
3015 | case BINOP_BITWISE_IOR: | |
3016 | case BINOP_BITWISE_XOR: | |
3017 | return (! (integer_type_p (type0) && integer_type_p (type1))); | |
3018 | ||
3019 | case BINOP_EQUAL: | |
3020 | case BINOP_NOTEQUAL: | |
3021 | case BINOP_LESS: | |
3022 | case BINOP_GTR: | |
3023 | case BINOP_LEQ: | |
3024 | case BINOP_GEQ: | |
3025 | return (! (scalar_type_p (type0) && scalar_type_p (type1))); | |
3026 | ||
3027 | case BINOP_CONCAT: | |
3028 | return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY && | |
3029 | (TYPE_CODE (type0) != TYPE_CODE_PTR || | |
3030 | TYPE_CODE (TYPE_TARGET_TYPE (type0)) | |
3031 | != TYPE_CODE_ARRAY)) | |
3032 | || (TYPE_CODE (type1) != TYPE_CODE_ARRAY && | |
3033 | (TYPE_CODE (type1) != TYPE_CODE_PTR || | |
3034 | TYPE_CODE (TYPE_TARGET_TYPE (type1)) | |
3035 | != TYPE_CODE_ARRAY))); | |
3036 | ||
3037 | case BINOP_EXP: | |
3038 | return (! (numeric_type_p (type0) && integer_type_p (type1))); | |
3039 | ||
3040 | case UNOP_NEG: | |
3041 | case UNOP_PLUS: | |
3042 | case UNOP_LOGICAL_NOT: | |
3043 | case UNOP_ABS: | |
3044 | return (! numeric_type_p (type0)); | |
3045 | ||
3046 | } | |
3047 | } | |
3048 | \f | |
3049 | /* Renaming */ | |
3050 | ||
3051 | /** NOTE: In the following, we assume that a renaming type's name may | |
3052 | * have an ___XD suffix. It would be nice if this went away at some | |
3053 | * point. */ | |
3054 | ||
3055 | /* If TYPE encodes a renaming, returns the renaming suffix, which | |
3056 | * is XR for an object renaming, XRP for a procedure renaming, XRE for | |
3057 | * an exception renaming, and XRS for a subprogram renaming. Returns | |
3058 | * NULL if NAME encodes none of these. */ | |
3059 | const char* | |
3060 | ada_renaming_type (type) | |
3061 | struct type* type; | |
3062 | { | |
3063 | if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM) | |
3064 | { | |
3065 | const char* name = type_name_no_tag (type); | |
3066 | const char* suffix = (name == NULL) ? NULL : strstr (name, "___XR"); | |
3067 | if (suffix == NULL | |
3068 | || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL)) | |
3069 | return NULL; | |
3070 | else | |
3071 | return suffix + 3; | |
3072 | } | |
3073 | else | |
3074 | return NULL; | |
3075 | } | |
3076 | ||
3077 | /* Return non-zero iff SYM encodes an object renaming. */ | |
3078 | int | |
3079 | ada_is_object_renaming (sym) | |
3080 | struct symbol* sym; | |
3081 | { | |
3082 | const char* renaming_type = ada_renaming_type (SYMBOL_TYPE (sym)); | |
3083 | return renaming_type != NULL | |
3084 | && (renaming_type[2] == '\0' || renaming_type[2] == '_'); | |
3085 | } | |
3086 | ||
3087 | /* Assuming that SYM encodes a non-object renaming, returns the original | |
3088 | * name of the renamed entity. The name is good until the end of | |
3089 | * parsing. */ | |
3090 | const char* | |
3091 | ada_simple_renamed_entity (sym) | |
3092 | struct symbol* sym; | |
3093 | { | |
3094 | struct type* type; | |
3095 | const char* raw_name; | |
3096 | int len; | |
3097 | char* result; | |
3098 | ||
3099 | type = SYMBOL_TYPE (sym); | |
3100 | if (type == NULL || TYPE_NFIELDS (type) < 1) | |
3101 | error ("Improperly encoded renaming."); | |
3102 | ||
3103 | raw_name = TYPE_FIELD_NAME (type, 0); | |
3104 | len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5; | |
3105 | if (len <= 0) | |
3106 | error ("Improperly encoded renaming."); | |
3107 | ||
3108 | result = xmalloc (len + 1); | |
3109 | /* FIXME: add_name_string_cleanup should be defined in parse.c */ | |
3110 | /* add_name_string_cleanup (result);*/ | |
3111 | strncpy (result, raw_name, len); | |
3112 | result[len] = '\000'; | |
3113 | return result; | |
3114 | } | |
3115 | ||
3116 | \f | |
3117 | /* Evaluation: Function Calls */ | |
3118 | ||
3119 | /* Copy VAL onto the stack, using and updating *SP as the stack | |
3120 | pointer. Return VAL as an lvalue. */ | |
3121 | ||
3122 | static struct value* | |
3123 | place_on_stack (val, sp) | |
3124 | struct value* val; | |
3125 | CORE_ADDR* sp; | |
3126 | { | |
3127 | CORE_ADDR old_sp = *sp; | |
3128 | ||
3129 | #ifdef STACK_ALIGN | |
3130 | *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val), | |
3131 | STACK_ALIGN (TYPE_LENGTH (check_typedef (VALUE_TYPE (val))))); | |
3132 | #else | |
3133 | *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val), | |
3134 | TYPE_LENGTH (check_typedef (VALUE_TYPE (val)))); | |
3135 | #endif | |
3136 | ||
3137 | VALUE_LVAL (val) = lval_memory; | |
3138 | if (INNER_THAN (1, 2)) | |
3139 | VALUE_ADDRESS (val) = *sp; | |
3140 | else | |
3141 | VALUE_ADDRESS (val) = old_sp; | |
3142 | ||
3143 | return val; | |
3144 | } | |
3145 | ||
3146 | /* Return the value ACTUAL, converted to be an appropriate value for a | |
3147 | formal of type FORMAL_TYPE. Use *SP as a stack pointer for | |
3148 | allocating any necessary descriptors (fat pointers), or copies of | |
3149 | values not residing in memory, updating it as needed. */ | |
3150 | ||
3151 | static struct value* | |
3152 | convert_actual (actual, formal_type0, sp) | |
3153 | struct value* actual; | |
3154 | struct type* formal_type0; | |
3155 | CORE_ADDR* sp; | |
3156 | { | |
3157 | struct type* actual_type = check_typedef (VALUE_TYPE (actual)); | |
3158 | struct type* formal_type = check_typedef (formal_type0); | |
3159 | struct type* formal_target = | |
3160 | TYPE_CODE (formal_type) == TYPE_CODE_PTR | |
3161 | ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; | |
3162 | struct type* actual_target = | |
3163 | TYPE_CODE (actual_type) == TYPE_CODE_PTR | |
3164 | ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; | |
3165 | ||
3166 | if (ada_is_array_descriptor (formal_target) | |
3167 | && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) | |
3168 | return make_array_descriptor (formal_type, actual, sp); | |
3169 | else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR) | |
3170 | { | |
3171 | if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY | |
3172 | && ada_is_array_descriptor (actual_target)) | |
3173 | return desc_data (actual); | |
3174 | else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) | |
3175 | { | |
3176 | if (VALUE_LVAL (actual) != lval_memory) | |
3177 | { | |
3178 | struct value* val; | |
3179 | actual_type = check_typedef (VALUE_TYPE (actual)); | |
3180 | val = allocate_value (actual_type); | |
3181 | memcpy ((char*) VALUE_CONTENTS_RAW (val), | |
3182 | (char*) VALUE_CONTENTS (actual), | |
3183 | TYPE_LENGTH (actual_type)); | |
3184 | actual = place_on_stack (val, sp); | |
3185 | } | |
3186 | return value_addr (actual); | |
3187 | } | |
3188 | } | |
3189 | else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) | |
3190 | return ada_value_ind (actual); | |
3191 | ||
3192 | return actual; | |
3193 | } | |
3194 | ||
3195 | ||
3196 | /* Push a descriptor of type TYPE for array value ARR on the stack at | |
3197 | *SP, updating *SP to reflect the new descriptor. Return either | |
3198 | an lvalue representing the new descriptor, or (if TYPE is a pointer- | |
3199 | to-descriptor type rather than a descriptor type), a struct value* | |
3200 | representing a pointer to this descriptor. */ | |
3201 | ||
3202 | static struct value* | |
3203 | make_array_descriptor (type, arr, sp) | |
3204 | struct type* type; | |
3205 | struct value* arr; | |
3206 | CORE_ADDR* sp; | |
3207 | { | |
3208 | struct type* bounds_type = desc_bounds_type (type); | |
3209 | struct type* desc_type = desc_base_type (type); | |
3210 | struct value* descriptor = allocate_value (desc_type); | |
3211 | struct value* bounds = allocate_value (bounds_type); | |
3212 | CORE_ADDR bounds_addr; | |
3213 | int i; | |
3214 | ||
3215 | for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1) | |
3216 | { | |
3217 | modify_general_field (VALUE_CONTENTS (bounds), | |
3218 | value_as_long (ada_array_bound (arr, i, 0)), | |
3219 | desc_bound_bitpos (bounds_type, i, 0), | |
3220 | desc_bound_bitsize (bounds_type, i, 0)); | |
3221 | modify_general_field (VALUE_CONTENTS (bounds), | |
3222 | value_as_long (ada_array_bound (arr, i, 1)), | |
3223 | desc_bound_bitpos (bounds_type, i, 1), | |
3224 | desc_bound_bitsize (bounds_type, i, 1)); | |
3225 | } | |
3226 | ||
3227 | bounds = place_on_stack (bounds, sp); | |
3228 | ||
3229 | modify_general_field (VALUE_CONTENTS (descriptor), | |
3230 | arr, | |
3231 | fat_pntr_data_bitpos (desc_type), | |
3232 | fat_pntr_data_bitsize (desc_type)); | |
3233 | modify_general_field (VALUE_CONTENTS (descriptor), | |
3234 | VALUE_ADDRESS (bounds), | |
3235 | fat_pntr_bounds_bitpos (desc_type), | |
3236 | fat_pntr_bounds_bitsize (desc_type)); | |
3237 | ||
3238 | descriptor = place_on_stack (descriptor, sp); | |
3239 | ||
3240 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
3241 | return value_addr (descriptor); | |
3242 | else | |
3243 | return descriptor; | |
3244 | } | |
3245 | ||
3246 | ||
3247 | /* Assuming a dummy frame has been established on the target, perform any | |
3248 | conversions needed for calling function FUNC on the NARGS actual | |
3249 | parameters in ARGS, other than standard C conversions. Does | |
3250 | nothing if FUNC does not have Ada-style prototype data, or if NARGS | |
3251 | does not match the number of arguments expected. Use *SP as a | |
3252 | stack pointer for additional data that must be pushed, updating its | |
3253 | value as needed. */ | |
3254 | ||
3255 | void | |
3256 | ada_convert_actuals (func, nargs, args, sp) | |
3257 | struct value* func; | |
3258 | int nargs; | |
3259 | struct value* args[]; | |
3260 | CORE_ADDR* sp; | |
3261 | { | |
3262 | int i; | |
3263 | ||
3264 | if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0 | |
3265 | || nargs != TYPE_NFIELDS (VALUE_TYPE (func))) | |
3266 | return; | |
3267 | ||
3268 | for (i = 0; i < nargs; i += 1) | |
3269 | args[i] = | |
3270 | convert_actual (args[i], | |
3271 | TYPE_FIELD_TYPE (VALUE_TYPE (func), i), | |
3272 | sp); | |
3273 | } | |
3274 | ||
3275 | \f | |
3276 | /* Symbol Lookup */ | |
3277 | ||
3278 | ||
3279 | /* The vectors of symbols and blocks ultimately returned from */ | |
3280 | /* ada_lookup_symbol_list. */ | |
3281 | ||
3282 | /* Current size of defn_symbols and defn_blocks */ | |
3283 | static size_t defn_vector_size = 0; | |
3284 | ||
3285 | /* Current number of symbols found. */ | |
3286 | static int ndefns = 0; | |
3287 | ||
3288 | static struct symbol** defn_symbols = NULL; | |
3289 | static struct block** defn_blocks = NULL; | |
3290 | ||
3291 | /* Return the result of a standard (literal, C-like) lookup of NAME in | |
3292 | * given NAMESPACE. */ | |
3293 | ||
3294 | static struct symbol* | |
3295 | standard_lookup (name, namespace) | |
3296 | const char* name; | |
3297 | namespace_enum namespace; | |
3298 | { | |
3299 | struct symbol* sym; | |
3300 | struct symtab* symtab; | |
3301 | sym = lookup_symbol (name, (struct block*) NULL, namespace, 0, &symtab); | |
3302 | return sym; | |
3303 | } | |
3304 | ||
3305 | ||
3306 | /* Non-zero iff there is at least one non-function/non-enumeral symbol */ | |
3307 | /* in SYMS[0..N-1]. We treat enumerals as functions, since they */ | |
3308 | /* contend in overloading in the same way. */ | |
3309 | static int | |
3310 | is_nonfunction (syms, n) | |
3311 | struct symbol* syms[]; | |
3312 | int n; | |
3313 | { | |
3314 | int i; | |
3315 | ||
3316 | for (i = 0; i < n; i += 1) | |
3317 | if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC | |
3318 | && TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM) | |
3319 | return 1; | |
3320 | ||
3321 | return 0; | |
3322 | } | |
3323 | ||
3324 | /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent | |
3325 | struct types. Otherwise, they may not. */ | |
3326 | ||
3327 | static int | |
3328 | equiv_types (type0, type1) | |
3329 | struct type* type0; | |
3330 | struct type* type1; | |
3331 | { | |
3332 | if (type0 == type1) | |
3333 | return 1; | |
3334 | if (type0 == NULL || type1 == NULL | |
3335 | || TYPE_CODE (type0) != TYPE_CODE (type1)) | |
3336 | return 0; | |
3337 | if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT | |
3338 | || TYPE_CODE (type0) == TYPE_CODE_ENUM) | |
3339 | && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL | |
3340 | && STREQ (ada_type_name (type0), ada_type_name (type1))) | |
3341 | return 1; | |
3342 | ||
3343 | return 0; | |
3344 | } | |
3345 | ||
3346 | /* True iff SYM0 represents the same entity as SYM1, or one that is | |
3347 | no more defined than that of SYM1. */ | |
3348 | ||
3349 | static int | |
3350 | lesseq_defined_than (sym0, sym1) | |
3351 | struct symbol* sym0; | |
3352 | struct symbol* sym1; | |
3353 | { | |
3354 | if (sym0 == sym1) | |
3355 | return 1; | |
3356 | if (SYMBOL_NAMESPACE (sym0) != SYMBOL_NAMESPACE (sym1) | |
3357 | || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) | |
3358 | return 0; | |
3359 | ||
3360 | switch (SYMBOL_CLASS (sym0)) | |
3361 | { | |
3362 | case LOC_UNDEF: | |
3363 | return 1; | |
3364 | case LOC_TYPEDEF: | |
3365 | { | |
3366 | struct type* type0 = SYMBOL_TYPE (sym0); | |
3367 | struct type* type1 = SYMBOL_TYPE (sym1); | |
3368 | char* name0 = SYMBOL_NAME (sym0); | |
3369 | char* name1 = SYMBOL_NAME (sym1); | |
3370 | int len0 = strlen (name0); | |
3371 | return | |
3372 | TYPE_CODE (type0) == TYPE_CODE (type1) | |
3373 | && (equiv_types (type0, type1) | |
3374 | || (len0 < strlen (name1) && STREQN (name0, name1, len0) | |
3375 | && STREQN (name1 + len0, "___XV", 5))); | |
3376 | } | |
3377 | case LOC_CONST: | |
3378 | return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) | |
3379 | && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); | |
3380 | default: | |
3381 | return 0; | |
3382 | } | |
3383 | } | |
3384 | ||
3385 | /* Append SYM to the end of defn_symbols, and BLOCK to the end of | |
3386 | defn_blocks, updating ndefns, and expanding defn_symbols and | |
3387 | defn_blocks as needed. Do not include SYM if it is a duplicate. */ | |
3388 | ||
3389 | static void | |
3390 | add_defn_to_vec (sym, block) | |
3391 | struct symbol* sym; | |
3392 | struct block* block; | |
3393 | { | |
3394 | int i; | |
3395 | size_t tmp; | |
3396 | ||
3397 | if (SYMBOL_TYPE (sym) != NULL) | |
3398 | CHECK_TYPEDEF (SYMBOL_TYPE (sym)); | |
3399 | for (i = 0; i < ndefns; i += 1) | |
3400 | { | |
3401 | if (lesseq_defined_than (sym, defn_symbols[i])) | |
3402 | return; | |
3403 | else if (lesseq_defined_than (defn_symbols[i], sym)) | |
3404 | { | |
3405 | defn_symbols[i] = sym; | |
3406 | defn_blocks[i] = block; | |
3407 | return; | |
3408 | } | |
3409 | } | |
3410 | ||
3411 | tmp = defn_vector_size; | |
3412 | GROW_VECT (defn_symbols, tmp, ndefns+2); | |
3413 | GROW_VECT (defn_blocks, defn_vector_size, ndefns+2); | |
3414 | ||
3415 | defn_symbols[ndefns] = sym; | |
3416 | defn_blocks[ndefns] = block; | |
3417 | ndefns += 1; | |
3418 | } | |
3419 | ||
3420 | /* Look, in partial_symtab PST, for symbol NAME in given namespace. | |
3421 | Check the global symbols if GLOBAL, the static symbols if not. Do | |
3422 | wild-card match if WILD. */ | |
3423 | ||
3424 | static struct partial_symbol * | |
3425 | ada_lookup_partial_symbol (pst, name, global, namespace, wild) | |
3426 | struct partial_symtab *pst; | |
3427 | const char *name; | |
3428 | int global; | |
3429 | namespace_enum namespace; | |
3430 | int wild; | |
3431 | { | |
3432 | struct partial_symbol **start; | |
3433 | int name_len = strlen (name); | |
3434 | int length = (global ? pst->n_global_syms : pst->n_static_syms); | |
3435 | int i; | |
3436 | ||
3437 | if (length == 0) | |
3438 | { | |
3439 | return (NULL); | |
3440 | } | |
3441 | ||
3442 | start = (global ? | |
3443 | pst->objfile->global_psymbols.list + pst->globals_offset : | |
3444 | pst->objfile->static_psymbols.list + pst->statics_offset ); | |
3445 | ||
3446 | if (wild) | |
3447 | { | |
3448 | for (i = 0; i < length; i += 1) | |
3449 | { | |
3450 | struct partial_symbol* psym = start[i]; | |
3451 | ||
3452 | if (SYMBOL_NAMESPACE (psym) == namespace && | |
3453 | wild_match (name, name_len, SYMBOL_NAME (psym))) | |
3454 | return psym; | |
3455 | } | |
3456 | return NULL; | |
3457 | } | |
3458 | else | |
3459 | { | |
3460 | if (global) | |
3461 | { | |
3462 | int U; | |
3463 | i = 0; U = length-1; | |
3464 | while (U - i > 4) | |
3465 | { | |
3466 | int M = (U+i) >> 1; | |
3467 | struct partial_symbol* psym = start[M]; | |
3468 | if (SYMBOL_NAME (psym)[0] < name[0]) | |
3469 | i = M+1; | |
3470 | else if (SYMBOL_NAME (psym)[0] > name[0]) | |
3471 | U = M-1; | |
3472 | else if (strcmp (SYMBOL_NAME (psym), name) < 0) | |
3473 | i = M+1; | |
3474 | else | |
3475 | U = M; | |
3476 | } | |
3477 | } | |
3478 | else | |
3479 | i = 0; | |
3480 | ||
3481 | while (i < length) | |
3482 | { | |
3483 | struct partial_symbol *psym = start[i]; | |
3484 | ||
3485 | if (SYMBOL_NAMESPACE (psym) == namespace) | |
3486 | { | |
3487 | int cmp = strncmp (name, SYMBOL_NAME (psym), name_len); | |
3488 | ||
3489 | if (cmp < 0) | |
3490 | { | |
3491 | if (global) | |
3492 | break; | |
3493 | } | |
3494 | else if (cmp == 0 | |
3495 | && is_name_suffix (SYMBOL_NAME (psym) + name_len)) | |
3496 | return psym; | |
3497 | } | |
3498 | i += 1; | |
3499 | } | |
3500 | ||
3501 | if (global) | |
3502 | { | |
3503 | int U; | |
3504 | i = 0; U = length-1; | |
3505 | while (U - i > 4) | |
3506 | { | |
3507 | int M = (U+i) >> 1; | |
3508 | struct partial_symbol *psym = start[M]; | |
3509 | if (SYMBOL_NAME (psym)[0] < '_') | |
3510 | i = M+1; | |
3511 | else if (SYMBOL_NAME (psym)[0] > '_') | |
3512 | U = M-1; | |
3513 | else if (strcmp (SYMBOL_NAME (psym), "_ada_") < 0) | |
3514 | i = M+1; | |
3515 | else | |
3516 | U = M; | |
3517 | } | |
3518 | } | |
3519 | else | |
3520 | i = 0; | |
3521 | ||
3522 | while (i < length) | |
3523 | { | |
3524 | struct partial_symbol* psym = start[i]; | |
3525 | ||
3526 | if (SYMBOL_NAMESPACE (psym) == namespace) | |
3527 | { | |
3528 | int cmp; | |
3529 | ||
3530 | cmp = (int) '_' - (int) SYMBOL_NAME (psym)[0]; | |
3531 | if (cmp == 0) | |
3532 | { | |
3533 | cmp = strncmp ("_ada_", SYMBOL_NAME (psym), 5); | |
3534 | if (cmp == 0) | |
3535 | cmp = strncmp (name, SYMBOL_NAME (psym) + 5, name_len); | |
3536 | } | |
3537 | ||
3538 | if (cmp < 0) | |
3539 | { | |
3540 | if (global) | |
3541 | break; | |
3542 | } | |
3543 | else if (cmp == 0 | |
3544 | && is_name_suffix (SYMBOL_NAME (psym) + name_len + 5)) | |
3545 | return psym; | |
3546 | } | |
3547 | i += 1; | |
3548 | } | |
3549 | ||
3550 | } | |
3551 | return NULL; | |
3552 | } | |
3553 | ||
3554 | ||
3555 | /* Find a symbol table containing symbol SYM or NULL if none. */ | |
3556 | static struct symtab* | |
3557 | symtab_for_sym (sym) | |
3558 | struct symbol* sym; | |
3559 | { | |
3560 | struct symtab* s; | |
3561 | struct objfile *objfile; | |
3562 | struct block *b; | |
3563 | int i, j; | |
3564 | ||
3565 | ALL_SYMTABS (objfile, s) | |
3566 | { | |
3567 | switch (SYMBOL_CLASS (sym)) | |
3568 | { | |
3569 | case LOC_CONST: | |
3570 | case LOC_STATIC: | |
3571 | case LOC_TYPEDEF: | |
3572 | case LOC_REGISTER: | |
3573 | case LOC_LABEL: | |
3574 | case LOC_BLOCK: | |
3575 | case LOC_CONST_BYTES: | |
3576 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); | |
3577 | for (i = 0; i < BLOCK_NSYMS (b); i += 1) | |
3578 | if (sym == BLOCK_SYM (b, i)) | |
3579 | return s; | |
3580 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); | |
3581 | for (i = 0; i < BLOCK_NSYMS (b); i += 1) | |
3582 | if (sym == BLOCK_SYM (b, i)) | |
3583 | return s; | |
3584 | break; | |
3585 | default: | |
3586 | break; | |
3587 | } | |
3588 | switch (SYMBOL_CLASS (sym)) | |
3589 | { | |
3590 | case LOC_REGISTER: | |
3591 | case LOC_ARG: | |
3592 | case LOC_REF_ARG: | |
3593 | case LOC_REGPARM: | |
3594 | case LOC_REGPARM_ADDR: | |
3595 | case LOC_LOCAL: | |
3596 | case LOC_TYPEDEF: | |
3597 | case LOC_LOCAL_ARG: | |
3598 | case LOC_BASEREG: | |
3599 | case LOC_BASEREG_ARG: | |
3600 | for (j = FIRST_LOCAL_BLOCK; | |
3601 | j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1) | |
3602 | { | |
3603 | b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j); | |
3604 | for (i = 0; i < BLOCK_NSYMS (b); i += 1) | |
3605 | if (sym == BLOCK_SYM (b, i)) | |
3606 | return s; | |
3607 | } | |
3608 | break; | |
3609 | default: | |
3610 | break; | |
3611 | } | |
3612 | } | |
3613 | return NULL; | |
3614 | } | |
3615 | ||
3616 | /* Return a minimal symbol matching NAME according to Ada demangling | |
3617 | rules. Returns NULL if there is no such minimal symbol. */ | |
3618 | ||
3619 | struct minimal_symbol* | |
3620 | ada_lookup_minimal_symbol (name) | |
3621 | const char* name; | |
3622 | { | |
3623 | struct objfile* objfile; | |
3624 | struct minimal_symbol* msymbol; | |
3625 | int wild_match = (strstr (name, "__") == NULL); | |
3626 | ||
3627 | ALL_MSYMBOLS (objfile, msymbol) | |
3628 | { | |
3629 | if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match) | |
3630 | && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) | |
3631 | return msymbol; | |
3632 | } | |
3633 | ||
3634 | return NULL; | |
3635 | } | |
3636 | ||
3637 | /* For all subprograms that statically enclose the subprogram of the | |
3638 | * selected frame, add symbols matching identifier NAME in NAMESPACE | |
3639 | * and their blocks to vectors *defn_symbols and *defn_blocks, as for | |
3640 | * ada_add_block_symbols (q.v.). If WILD, treat as NAME with a | |
3641 | * wildcard prefix. At the moment, this function uses a heuristic to | |
3642 | * find the frames of enclosing subprograms: it treats the | |
3643 | * pointer-sized value at location 0 from the local-variable base of a | |
3644 | * frame as a static link, and then searches up the call stack for a | |
3645 | * frame with that same local-variable base. */ | |
3646 | static void | |
3647 | add_symbols_from_enclosing_procs (name, namespace, wild_match) | |
3648 | const char* name; | |
3649 | namespace_enum namespace; | |
3650 | int wild_match; | |
3651 | { | |
3652 | #ifdef i386 | |
3653 | static struct symbol static_link_sym; | |
3654 | static struct symbol *static_link; | |
3655 | ||
3656 | struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); | |
3657 | struct frame_info* frame; | |
3658 | struct frame_info* target_frame; | |
3659 | ||
3660 | if (static_link == NULL) | |
3661 | { | |
3662 | /* Initialize the local variable symbol that stands for the | |
3663 | * static link (when it exists). */ | |
3664 | static_link = &static_link_sym; | |
3665 | SYMBOL_NAME (static_link) = ""; | |
3666 | SYMBOL_LANGUAGE (static_link) = language_unknown; | |
3667 | SYMBOL_CLASS (static_link) = LOC_LOCAL; | |
3668 | SYMBOL_NAMESPACE (static_link) = VAR_NAMESPACE; | |
3669 | SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void); | |
3670 | SYMBOL_VALUE (static_link) = | |
3671 | - (long) TYPE_LENGTH (SYMBOL_TYPE (static_link)); | |
3672 | } | |
3673 | ||
3674 | frame = selected_frame; | |
3675 | while (frame != NULL && ndefns == 0) | |
3676 | { | |
3677 | struct block* block; | |
3678 | struct value* target_link_val = read_var_value (static_link, frame); | |
3679 | CORE_ADDR target_link; | |
3680 | ||
3681 | if (target_link_val == NULL) | |
3682 | break; | |
3683 | QUIT; | |
3684 | ||
3685 | target_link = target_link_val; | |
3686 | do { | |
3687 | QUIT; | |
3688 | frame = get_prev_frame (frame); | |
3689 | } while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link); | |
3690 | ||
3691 | if (frame == NULL) | |
3692 | break; | |
3693 | ||
3694 | block = get_frame_block (frame, 0); | |
3695 | while (block != NULL && block_function (block) != NULL && ndefns == 0) | |
3696 | { | |
3697 | ada_add_block_symbols (block, name, namespace, NULL, wild_match); | |
3698 | ||
3699 | block = BLOCK_SUPERBLOCK (block); | |
3700 | } | |
3701 | } | |
3702 | ||
3703 | do_cleanups (old_chain); | |
3704 | #endif | |
3705 | } | |
3706 | ||
3707 | /* True if TYPE is definitely an artificial type supplied to a symbol | |
3708 | * for which no debugging information was given in the symbol file. */ | |
3709 | static int | |
3710 | is_nondebugging_type (type) | |
3711 | struct type* type; | |
3712 | { | |
3713 | char* name = ada_type_name (type); | |
3714 | return (name != NULL && STREQ (name, "<variable, no debug info>")); | |
3715 | } | |
3716 | ||
3717 | /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely | |
3718 | * duplicate other symbols in the list. (The only case I know of where | |
3719 | * this happens is when object files containing stabs-in-ecoff are | |
3720 | * linked with files containing ordinary ecoff debugging symbols (or no | |
3721 | * debugging symbols)). Modifies SYMS to squeeze out deleted symbols, | |
3722 | * and applies the same modification to BLOCKS to maintain the | |
3723 | * correspondence between SYMS[i] and BLOCKS[i]. Returns the number | |
3724 | * of symbols in the modified list. */ | |
3725 | static int | |
3726 | remove_extra_symbols (syms, blocks, nsyms) | |
3727 | struct symbol** syms; | |
3728 | struct block** blocks; | |
3729 | int nsyms; | |
3730 | { | |
3731 | int i, j; | |
3732 | ||
3733 | i = 0; | |
3734 | while (i < nsyms) | |
3735 | { | |
3736 | if (SYMBOL_NAME (syms[i]) != NULL && SYMBOL_CLASS (syms[i]) == LOC_STATIC | |
3737 | && is_nondebugging_type (SYMBOL_TYPE (syms[i]))) | |
3738 | { | |
3739 | for (j = 0; j < nsyms; j += 1) | |
3740 | { | |
3741 | if (i != j | |
3742 | && SYMBOL_NAME (syms[j]) != NULL | |
3743 | && STREQ (SYMBOL_NAME (syms[i]), SYMBOL_NAME (syms[j])) | |
3744 | && SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j]) | |
3745 | && SYMBOL_VALUE_ADDRESS (syms[i]) | |
3746 | == SYMBOL_VALUE_ADDRESS (syms[j])) | |
3747 | { | |
3748 | int k; | |
3749 | for (k = i+1; k < nsyms; k += 1) | |
3750 | { | |
3751 | syms[k-1] = syms[k]; | |
3752 | blocks[k-1] = blocks[k]; | |
3753 | } | |
3754 | nsyms -= 1; | |
3755 | goto NextSymbol; | |
3756 | } | |
3757 | } | |
3758 | } | |
3759 | i += 1; | |
3760 | NextSymbol: | |
3761 | ; | |
3762 | } | |
3763 | return nsyms; | |
3764 | } | |
3765 | ||
3766 | /* Find symbols in NAMESPACE matching NAME, in BLOCK0 and enclosing | |
3767 | scope and in global scopes, returning the number of matches. Sets | |
3768 | *SYMS to point to a vector of matching symbols, with *BLOCKS | |
3769 | pointing to the vector of corresponding blocks in which those | |
3770 | symbols reside. These two vectors are transient---good only to the | |
3771 | next call of ada_lookup_symbol_list. Any non-function/non-enumeral symbol | |
3772 | match within the nest of blocks whose innermost member is BLOCK0, | |
3773 | is the outermost match returned (no other matches in that or | |
3774 | enclosing blocks is returned). If there are any matches in or | |
3775 | surrounding BLOCK0, then these alone are returned. */ | |
3776 | ||
3777 | int | |
3778 | ada_lookup_symbol_list (name, block0, namespace, syms, blocks) | |
3779 | const char *name; | |
3780 | struct block *block0; | |
3781 | namespace_enum namespace; | |
3782 | struct symbol*** syms; | |
3783 | struct block*** blocks; | |
3784 | { | |
3785 | struct symbol *sym; | |
3786 | struct symtab *s; | |
3787 | struct partial_symtab *ps; | |
3788 | struct blockvector *bv; | |
3789 | struct objfile *objfile; | |
3790 | struct block *b; | |
3791 | struct block *block; | |
3792 | struct minimal_symbol *msymbol; | |
3793 | int wild_match = (strstr (name, "__") == NULL); | |
3794 | int cacheIfUnique; | |
3795 | ||
3796 | #ifdef TIMING | |
3797 | markTimeStart (0); | |
3798 | #endif | |
3799 | ||
3800 | ndefns = 0; | |
3801 | cacheIfUnique = 0; | |
3802 | ||
3803 | /* Search specified block and its superiors. */ | |
3804 | ||
3805 | block = block0; | |
3806 | while (block != NULL) | |
3807 | { | |
3808 | ada_add_block_symbols (block, name, namespace, NULL, wild_match); | |
3809 | ||
3810 | /* If we found a non-function match, assume that's the one. */ | |
3811 | if (is_nonfunction (defn_symbols, ndefns)) | |
3812 | goto done; | |
3813 | ||
3814 | block = BLOCK_SUPERBLOCK (block); | |
3815 | } | |
3816 | ||
3817 | /* If we found ANY matches in the specified BLOCK, we're done. */ | |
3818 | ||
3819 | if (ndefns > 0) | |
3820 | goto done; | |
3821 | ||
3822 | cacheIfUnique = 1; | |
3823 | ||
3824 | /* Now add symbols from all global blocks: symbol tables, minimal symbol | |
3825 | tables, and psymtab's */ | |
3826 | ||
3827 | ALL_SYMTABS (objfile, s) | |
3828 | { | |
3829 | QUIT; | |
3830 | if (! s->primary) | |
3831 | continue; | |
3832 | bv = BLOCKVECTOR (s); | |
3833 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
3834 | ada_add_block_symbols (block, name, namespace, objfile, wild_match); | |
3835 | } | |
3836 | ||
3837 | if (namespace == VAR_NAMESPACE) | |
3838 | { | |
3839 | ALL_MSYMBOLS (objfile, msymbol) | |
3840 | { | |
3841 | if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match)) | |
3842 | { | |
3843 | switch (MSYMBOL_TYPE (msymbol)) | |
3844 | { | |
3845 | case mst_solib_trampoline: | |
3846 | break; | |
3847 | default: | |
3848 | s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)); | |
3849 | if (s != NULL) | |
3850 | { | |
3851 | int old_ndefns = ndefns; | |
3852 | QUIT; | |
3853 | bv = BLOCKVECTOR (s); | |
3854 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
3855 | ada_add_block_symbols (block, | |
3856 | SYMBOL_NAME (msymbol), | |
3857 | namespace, objfile, wild_match); | |
3858 | if (ndefns == old_ndefns) | |
3859 | { | |
3860 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
3861 | ada_add_block_symbols (block, | |
3862 | SYMBOL_NAME (msymbol), | |
3863 | namespace, objfile, | |
3864 | wild_match); | |
3865 | } | |
3866 | } | |
3867 | } | |
3868 | } | |
3869 | } | |
3870 | } | |
3871 | ||
3872 | ALL_PSYMTABS (objfile, ps) | |
3873 | { | |
3874 | QUIT; | |
3875 | if (!ps->readin | |
3876 | && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match)) | |
3877 | { | |
3878 | s = PSYMTAB_TO_SYMTAB (ps); | |
3879 | if (! s->primary) | |
3880 | continue; | |
3881 | bv = BLOCKVECTOR (s); | |
3882 | block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); | |
3883 | ada_add_block_symbols (block, name, namespace, objfile, wild_match); | |
3884 | } | |
3885 | } | |
3886 | ||
3887 | /* Now add symbols from all per-file blocks if we've gotten no hits. | |
3888 | (Not strictly correct, but perhaps better than an error). | |
3889 | Do the symtabs first, then check the psymtabs */ | |
3890 | ||
3891 | if (ndefns == 0) | |
3892 | { | |
3893 | ||
3894 | ALL_SYMTABS (objfile, s) | |
3895 | { | |
3896 | QUIT; | |
3897 | if (! s->primary) | |
3898 | continue; | |
3899 | bv = BLOCKVECTOR (s); | |
3900 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
3901 | ada_add_block_symbols (block, name, namespace, objfile, wild_match); | |
3902 | } | |
3903 | ||
3904 | ALL_PSYMTABS (objfile, ps) | |
3905 | { | |
3906 | QUIT; | |
3907 | if (!ps->readin | |
3908 | && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match)) | |
3909 | { | |
3910 | s = PSYMTAB_TO_SYMTAB(ps); | |
3911 | bv = BLOCKVECTOR (s); | |
3912 | if (! s->primary) | |
3913 | continue; | |
3914 | block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); | |
3915 | ada_add_block_symbols (block, name, namespace, | |
3916 | objfile, wild_match); | |
3917 | } | |
3918 | } | |
3919 | } | |
3920 | ||
3921 | /* Finally, we try to find NAME as a local symbol in some lexically | |
3922 | enclosing block. We do this last, expecting this case to be | |
3923 | rare. */ | |
3924 | if (ndefns == 0) | |
3925 | { | |
3926 | add_symbols_from_enclosing_procs (name, namespace, wild_match); | |
3927 | if (ndefns > 0) | |
3928 | goto done; | |
3929 | } | |
3930 | ||
3931 | done: | |
3932 | ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns); | |
3933 | ||
3934 | ||
3935 | *syms = defn_symbols; | |
3936 | *blocks = defn_blocks; | |
3937 | #ifdef TIMING | |
3938 | markTimeStop (0); | |
3939 | #endif | |
3940 | return ndefns; | |
3941 | } | |
3942 | ||
3943 | /* Return a symbol in NAMESPACE matching NAME, in BLOCK0 and enclosing | |
3944 | * scope and in global scopes, or NULL if none. NAME is folded to | |
3945 | * lower case first, unless it is surrounded in single quotes. | |
3946 | * Otherwise, the result is as for ada_lookup_symbol_list, but is | |
3947 | * disambiguated by user query if needed. */ | |
3948 | ||
3949 | struct symbol* | |
3950 | ada_lookup_symbol (name, block0, namespace) | |
3951 | const char *name; | |
3952 | struct block *block0; | |
3953 | namespace_enum namespace; | |
3954 | { | |
3955 | struct symbol** candidate_syms; | |
3956 | struct block** candidate_blocks; | |
3957 | int n_candidates; | |
3958 | ||
3959 | n_candidates = ada_lookup_symbol_list (name, | |
3960 | block0, namespace, | |
3961 | &candidate_syms, &candidate_blocks); | |
3962 | ||
3963 | if (n_candidates == 0) | |
3964 | return NULL; | |
3965 | else if (n_candidates != 1) | |
3966 | user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1); | |
3967 | ||
3968 | return candidate_syms[0]; | |
3969 | } | |
3970 | ||
3971 | ||
3972 | /* True iff STR is a possible encoded suffix of a normal Ada name | |
3973 | * that is to be ignored for matching purposes. Suffixes of parallel | |
3974 | * names (e.g., XVE) are not included here. Currently, the possible suffixes | |
3975 | * are given by the regular expression: | |
3976 | * (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$ | |
3977 | * | |
3978 | */ | |
3979 | static int | |
3980 | is_name_suffix (str) | |
3981 | const char* str; | |
3982 | { | |
3983 | int k; | |
3984 | if (str[0] == 'X') | |
3985 | { | |
3986 | str += 1; | |
3987 | while (str[0] != '_' && str[0] != '\0') | |
3988 | { | |
3989 | if (str[0] != 'n' && str[0] != 'b') | |
3990 | return 0; | |
3991 | str += 1; | |
3992 | } | |
3993 | } | |
3994 | if (str[0] == '\000') | |
3995 | return 1; | |
3996 | if (str[0] == '_') | |
3997 | { | |
3998 | if (str[1] != '_' || str[2] == '\000') | |
3999 | return 0; | |
4000 | if (str[2] == '_') | |
4001 | { | |
4002 | if (STREQ (str+3, "LJM")) | |
4003 | return 1; | |
4004 | if (str[3] != 'X') | |
4005 | return 0; | |
4006 | if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' || | |
4007 | str[4] == 'U' || str[4] == 'P') | |
4008 | return 1; | |
4009 | if (str[4] == 'R' && str[5] != 'T') | |
4010 | return 1; | |
4011 | return 0; | |
4012 | } | |
4013 | for (k = 2; str[k] != '\0'; k += 1) | |
4014 | if (!isdigit (str[k])) | |
4015 | return 0; | |
4016 | return 1; | |
4017 | } | |
4018 | if (str[0] == '$' && str[1] != '\000') | |
4019 | { | |
4020 | for (k = 1; str[k] != '\0'; k += 1) | |
4021 | if (!isdigit (str[k])) | |
4022 | return 0; | |
4023 | return 1; | |
4024 | } | |
4025 | return 0; | |
4026 | } | |
4027 | ||
4028 | /* True if NAME represents a name of the form A1.A2....An, n>=1 and | |
4029 | * PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores | |
4030 | * informational suffixes of NAME (i.e., for which is_name_suffix is | |
4031 | * true). */ | |
4032 | static int | |
4033 | wild_match (patn, patn_len, name) | |
4034 | const char* patn; | |
4035 | int patn_len; | |
4036 | const char* name; | |
4037 | { | |
4038 | int name_len; | |
4039 | int s, e; | |
4040 | ||
4041 | name_len = strlen (name); | |
4042 | if (name_len >= patn_len+5 && STREQN (name, "_ada_", 5) | |
4043 | && STREQN (patn, name+5, patn_len) | |
4044 | && is_name_suffix (name+patn_len+5)) | |
4045 | return 1; | |
4046 | ||
4047 | while (name_len >= patn_len) | |
4048 | { | |
4049 | if (STREQN (patn, name, patn_len) | |
4050 | && is_name_suffix (name+patn_len)) | |
4051 | return 1; | |
4052 | do { | |
4053 | name += 1; name_len -= 1; | |
4054 | } while (name_len > 0 | |
4055 | && name[0] != '.' && (name[0] != '_' || name[1] != '_')); | |
4056 | if (name_len <= 0) | |
4057 | return 0; | |
4058 | if (name[0] == '_') | |
4059 | { | |
4060 | if (! islower (name[2])) | |
4061 | return 0; | |
4062 | name += 2; name_len -= 2; | |
4063 | } | |
4064 | else | |
4065 | { | |
4066 | if (! islower (name[1])) | |
4067 | return 0; | |
4068 | name += 1; name_len -= 1; | |
4069 | } | |
4070 | } | |
4071 | ||
4072 | return 0; | |
4073 | } | |
4074 | ||
4075 | ||
4076 | /* Add symbols from BLOCK matching identifier NAME in NAMESPACE to | |
4077 | vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of | |
4078 | the vector *defn_symbols), and *ndefns (the number of symbols | |
4079 | currently stored in *defn_symbols). If WILD, treat as NAME with a | |
4080 | wildcard prefix. OBJFILE is the section containing BLOCK. */ | |
4081 | ||
4082 | static void | |
4083 | ada_add_block_symbols (block, name, namespace, objfile, wild) | |
4084 | struct block* block; | |
4085 | const char* name; | |
4086 | namespace_enum namespace; | |
4087 | struct objfile* objfile; | |
4088 | int wild; | |
4089 | { | |
4090 | int i; | |
4091 | int name_len = strlen (name); | |
4092 | /* A matching argument symbol, if any. */ | |
4093 | struct symbol *arg_sym; | |
4094 | /* Set true when we find a matching non-argument symbol */ | |
4095 | int found_sym; | |
4096 | int is_sorted = BLOCK_SHOULD_SORT (block); | |
4097 | ||
4098 | arg_sym = NULL; found_sym = 0; | |
4099 | if (wild) | |
4100 | { | |
4101 | for (i = 0; i < BLOCK_NSYMS (block); i += 1) | |
4102 | { | |
4103 | struct symbol *sym = BLOCK_SYM (block, i); | |
4104 | ||
4105 | if (SYMBOL_NAMESPACE (sym) == namespace && | |
4106 | wild_match (name, name_len, SYMBOL_NAME (sym))) | |
4107 | { | |
4108 | switch (SYMBOL_CLASS (sym)) | |
4109 | { | |
4110 | case LOC_ARG: | |
4111 | case LOC_LOCAL_ARG: | |
4112 | case LOC_REF_ARG: | |
4113 | case LOC_REGPARM: | |
4114 | case LOC_REGPARM_ADDR: | |
4115 | case LOC_BASEREG_ARG: | |
4116 | arg_sym = sym; | |
4117 | break; | |
4118 | case LOC_UNRESOLVED: | |
4119 | continue; | |
4120 | default: | |
4121 | found_sym = 1; | |
4122 | fill_in_ada_prototype (sym); | |
4123 | add_defn_to_vec (fixup_symbol_section (sym, objfile), block); | |
4124 | break; | |
4125 | } | |
4126 | } | |
4127 | } | |
4128 | } | |
4129 | else | |
4130 | { | |
4131 | if (is_sorted) | |
4132 | { | |
4133 | int U; | |
4134 | i = 0; U = BLOCK_NSYMS (block)-1; | |
4135 | while (U - i > 4) | |
4136 | { | |
4137 | int M = (U+i) >> 1; | |
4138 | struct symbol *sym = BLOCK_SYM (block, M); | |
4139 | if (SYMBOL_NAME (sym)[0] < name[0]) | |
4140 | i = M+1; | |
4141 | else if (SYMBOL_NAME (sym)[0] > name[0]) | |
4142 | U = M-1; | |
4143 | else if (strcmp (SYMBOL_NAME (sym), name) < 0) | |
4144 | i = M+1; | |
4145 | else | |
4146 | U = M; | |
4147 | } | |
4148 | } | |
4149 | else | |
4150 | i = 0; | |
4151 | ||
4152 | for (; i < BLOCK_NSYMS (block); i += 1) | |
4153 | { | |
4154 | struct symbol *sym = BLOCK_SYM (block, i); | |
4155 | ||
4156 | if (SYMBOL_NAMESPACE (sym) == namespace) | |
4157 | { | |
4158 | int cmp = strncmp (name, SYMBOL_NAME (sym), name_len); | |
4159 | ||
4160 | if (cmp < 0) | |
4161 | { | |
4162 | if (is_sorted) | |
4163 | break; | |
4164 | } | |
4165 | else if (cmp == 0 | |
4166 | && is_name_suffix (SYMBOL_NAME (sym) + name_len)) | |
4167 | { | |
4168 | switch (SYMBOL_CLASS (sym)) | |
4169 | { | |
4170 | case LOC_ARG: | |
4171 | case LOC_LOCAL_ARG: | |
4172 | case LOC_REF_ARG: | |
4173 | case LOC_REGPARM: | |
4174 | case LOC_REGPARM_ADDR: | |
4175 | case LOC_BASEREG_ARG: | |
4176 | arg_sym = sym; | |
4177 | break; | |
4178 | case LOC_UNRESOLVED: | |
4179 | break; | |
4180 | default: | |
4181 | found_sym = 1; | |
4182 | fill_in_ada_prototype (sym); | |
4183 | add_defn_to_vec (fixup_symbol_section (sym, objfile), | |
4184 | block); | |
4185 | break; | |
4186 | } | |
4187 | } | |
4188 | } | |
4189 | } | |
4190 | } | |
4191 | ||
4192 | if (! found_sym && arg_sym != NULL) | |
4193 | { | |
4194 | fill_in_ada_prototype (arg_sym); | |
4195 | add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block); | |
4196 | } | |
4197 | ||
4198 | if (! wild) | |
4199 | { | |
4200 | arg_sym = NULL; found_sym = 0; | |
4201 | if (is_sorted) | |
4202 | { | |
4203 | int U; | |
4204 | i = 0; U = BLOCK_NSYMS (block)-1; | |
4205 | while (U - i > 4) | |
4206 | { | |
4207 | int M = (U+i) >> 1; | |
4208 | struct symbol *sym = BLOCK_SYM (block, M); | |
4209 | if (SYMBOL_NAME (sym)[0] < '_') | |
4210 | i = M+1; | |
4211 | else if (SYMBOL_NAME (sym)[0] > '_') | |
4212 | U = M-1; | |
4213 | else if (strcmp (SYMBOL_NAME (sym), "_ada_") < 0) | |
4214 | i = M+1; | |
4215 | else | |
4216 | U = M; | |
4217 | } | |
4218 | } | |
4219 | else | |
4220 | i = 0; | |
4221 | ||
4222 | for (; i < BLOCK_NSYMS (block); i += 1) | |
4223 | { | |
4224 | struct symbol *sym = BLOCK_SYM (block, i); | |
4225 | ||
4226 | if (SYMBOL_NAMESPACE (sym) == namespace) | |
4227 | { | |
4228 | int cmp; | |
4229 | ||
4230 | cmp = (int) '_' - (int) SYMBOL_NAME (sym)[0]; | |
4231 | if (cmp == 0) | |
4232 | { | |
4233 | cmp = strncmp ("_ada_", SYMBOL_NAME (sym), 5); | |
4234 | if (cmp == 0) | |
4235 | cmp = strncmp (name, SYMBOL_NAME (sym) + 5, name_len); | |
4236 | } | |
4237 | ||
4238 | if (cmp < 0) | |
4239 | { | |
4240 | if (is_sorted) | |
4241 | break; | |
4242 | } | |
4243 | else if (cmp == 0 | |
4244 | && is_name_suffix (SYMBOL_NAME (sym) + name_len + 5)) | |
4245 | { | |
4246 | switch (SYMBOL_CLASS (sym)) | |
4247 | { | |
4248 | case LOC_ARG: | |
4249 | case LOC_LOCAL_ARG: | |
4250 | case LOC_REF_ARG: | |
4251 | case LOC_REGPARM: | |
4252 | case LOC_REGPARM_ADDR: | |
4253 | case LOC_BASEREG_ARG: | |
4254 | arg_sym = sym; | |
4255 | break; | |
4256 | case LOC_UNRESOLVED: | |
4257 | break; | |
4258 | default: | |
4259 | found_sym = 1; | |
4260 | fill_in_ada_prototype (sym); | |
4261 | add_defn_to_vec (fixup_symbol_section (sym, objfile), | |
4262 | block); | |
4263 | break; | |
4264 | } | |
4265 | } | |
4266 | } | |
4267 | } | |
4268 | ||
4269 | /* NOTE: This really shouldn't be needed for _ada_ symbols. | |
4270 | They aren't parameters, right? */ | |
4271 | if (! found_sym && arg_sym != NULL) | |
4272 | { | |
4273 | fill_in_ada_prototype (arg_sym); | |
4274 | add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block); | |
4275 | } | |
4276 | } | |
4277 | } | |
4278 | ||
4279 | \f | |
4280 | /* Function Types */ | |
4281 | ||
4282 | /* Assuming that SYM is the symbol for a function, fill in its type | |
170911c7 | 4283 | with prototype information, if it is not already there. */ |
14f9c5c9 AS |
4284 | |
4285 | static void | |
4286 | fill_in_ada_prototype (func) | |
4287 | struct symbol* func; | |
4288 | { | |
4289 | struct block* b; | |
4290 | int nargs, nsyms; | |
4291 | int i; | |
4292 | struct type* ftype; | |
4293 | struct type* rtype; | |
4294 | size_t max_fields; | |
4295 | ||
4296 | if (func == NULL | |
4297 | || TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC | |
4298 | || TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL) | |
4299 | return; | |
4300 | ||
4301 | /* We make each function type unique, so that each may have its own */ | |
4302 | /* parameter types. This particular way of doing so wastes space: */ | |
4303 | /* it would be nicer to build the argument types while the original */ | |
4304 | /* function type is being built (FIXME). */ | |
4305 | rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func))); | |
4306 | ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func))); | |
4307 | make_function_type (rtype, &ftype); | |
4308 | SYMBOL_TYPE (func) = ftype; | |
4309 | ||
4310 | b = SYMBOL_BLOCK_VALUE (func); | |
4311 | nsyms = BLOCK_NSYMS (b); | |
4312 | ||
4313 | nargs = 0; | |
4314 | max_fields = 8; | |
4315 | TYPE_FIELDS (ftype) = | |
4316 | (struct field*) xmalloc (sizeof (struct field) * max_fields); | |
4317 | for (i = 0; i < nsyms; i += 1) | |
4318 | { | |
4319 | struct symbol *sym = BLOCK_SYM (b, i); | |
4320 | ||
4321 | GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs+1); | |
4322 | ||
4323 | switch (SYMBOL_CLASS (sym)) | |
4324 | { | |
4325 | case LOC_REF_ARG: | |
4326 | case LOC_REGPARM_ADDR: | |
4327 | TYPE_FIELD_BITPOS (ftype, nargs) = nargs; | |
4328 | TYPE_FIELD_BITSIZE (ftype, nargs) = 0; | |
4329 | TYPE_FIELD_TYPE (ftype, nargs) = | |
4330 | lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym))); | |
4331 | TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym); | |
4332 | nargs += 1; | |
4333 | ||
4334 | break; | |
4335 | ||
4336 | case LOC_ARG: | |
4337 | case LOC_REGPARM: | |
4338 | case LOC_LOCAL_ARG: | |
4339 | case LOC_BASEREG_ARG: | |
4340 | TYPE_FIELD_BITPOS (ftype, nargs) = nargs; | |
4341 | TYPE_FIELD_BITSIZE (ftype, nargs) = 0; | |
4342 | TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym)); | |
4343 | TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym); | |
4344 | nargs += 1; | |
4345 | ||
4346 | break; | |
4347 | ||
4348 | default: | |
4349 | break; | |
4350 | } | |
4351 | } | |
4352 | ||
4353 | /* Re-allocate fields vector; if there are no fields, make the */ | |
4354 | /* fields pointer non-null anyway, to mark that this function type */ | |
4355 | /* has been filled in. */ | |
4356 | ||
4357 | TYPE_NFIELDS (ftype) = nargs; | |
4358 | if (nargs == 0) | |
4359 | { | |
4360 | static struct field dummy_field = {0, 0, 0, 0}; | |
4361 | free (TYPE_FIELDS (ftype)); | |
4362 | TYPE_FIELDS (ftype) = &dummy_field; | |
4363 | } | |
4364 | else | |
4365 | { | |
4366 | struct field* fields = | |
4367 | (struct field*) TYPE_ALLOC (ftype, nargs * sizeof (struct field)); | |
4368 | memcpy ((char*) fields, | |
4369 | (char*) TYPE_FIELDS (ftype), | |
4370 | nargs * sizeof (struct field)); | |
4371 | free (TYPE_FIELDS (ftype)); | |
4372 | TYPE_FIELDS (ftype) = fields; | |
4373 | } | |
4374 | } | |
4375 | ||
4376 | \f | |
4377 | /* Breakpoint-related */ | |
4378 | ||
4379 | char no_symtab_msg[] = "No symbol table is loaded. Use the \"file\" command."; | |
4380 | ||
4381 | /* Assuming that LINE is pointing at the beginning of an argument to | |
4382 | 'break', return a pointer to the delimiter for the initial segment | |
4383 | of that name. This is the first ':', ' ', or end of LINE. | |
4384 | */ | |
4385 | char* | |
4386 | ada_start_decode_line_1 (line) | |
4387 | char* line; | |
4388 | { | |
4389 | /* [NOTE: strpbrk would be more elegant, but I am reluctant to be | |
4390 | the first to use such a library function in GDB code.] */ | |
4391 | char* p; | |
4392 | for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1) | |
4393 | ; | |
4394 | return p; | |
4395 | } | |
4396 | ||
4397 | /* *SPEC points to a function and line number spec (as in a break | |
4398 | command), following any initial file name specification. | |
4399 | ||
4400 | Return all symbol table/line specfications (sals) consistent with the | |
4401 | information in *SPEC and FILE_TABLE in the | |
4402 | following sense: | |
4403 | + FILE_TABLE is null, or the sal refers to a line in the file | |
4404 | named by FILE_TABLE. | |
4405 | + If *SPEC points to an argument with a trailing ':LINENUM', | |
4406 | then the sal refers to that line (or one following it as closely as | |
4407 | possible). | |
4408 | + If *SPEC does not start with '*', the sal is in a function with | |
4409 | that name. | |
4410 | ||
4411 | Returns with 0 elements if no matching non-minimal symbols found. | |
4412 | ||
4413 | If *SPEC begins with a function name of the form <NAME>, then NAME | |
4414 | is taken as a literal name; otherwise the function name is subject | |
4415 | to the usual mangling. | |
4416 | ||
4417 | *SPEC is updated to point after the function/line number specification. | |
4418 | ||
4419 | FUNFIRSTLINE is non-zero if we desire the first line of real code | |
4420 | in each function (this is ignored in the presence of a LINENUM spec.). | |
4421 | ||
4422 | If CANONICAL is non-NULL, and if any of the sals require a | |
4423 | 'canonical line spec', then *CANONICAL is set to point to an array | |
4424 | of strings, corresponding to and equal in length to the returned | |
4425 | list of sals, such that (*CANONICAL)[i] is non-null and contains a | |
4426 | canonical line spec for the ith returned sal, if needed. If no | |
4427 | canonical line specs are required and CANONICAL is non-null, | |
4428 | *CANONICAL is set to NULL. | |
4429 | ||
4430 | A 'canonical line spec' is simply a name (in the format of the | |
4431 | breakpoint command) that uniquely identifies a breakpoint position, | |
4432 | with no further contextual information or user selection. It is | |
4433 | needed whenever the file name, function name, and line number | |
4434 | information supplied is insufficient for this unique | |
4435 | identification. Currently overloaded functions, the name '*', | |
4436 | or static functions without a filename yield a canonical line spec. | |
4437 | The array and the line spec strings are allocated on the heap; it | |
4438 | is the caller's responsibility to free them. */ | |
4439 | ||
4440 | struct symtabs_and_lines | |
4441 | ada_finish_decode_line_1 (spec, file_table, funfirstline, canonical) | |
4442 | char** spec; | |
4443 | struct symtab* file_table; | |
4444 | int funfirstline; | |
4445 | char*** canonical; | |
4446 | { | |
4447 | struct symbol** symbols; | |
4448 | struct block** blocks; | |
4449 | struct block* block; | |
4450 | int n_matches, i, line_num; | |
4451 | struct symtabs_and_lines selected; | |
4452 | struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); | |
4453 | char* name; | |
4454 | ||
4455 | int len; | |
4456 | char* lower_name; | |
4457 | char* unquoted_name; | |
4458 | ||
4459 | if (file_table == NULL) | |
4460 | block = get_selected_block (NULL); | |
4461 | else | |
4462 | block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK); | |
4463 | ||
4464 | if (canonical != NULL) | |
4465 | *canonical = (char**) NULL; | |
4466 | ||
4467 | name = *spec; | |
4468 | if (**spec == '*') | |
4469 | *spec += 1; | |
4470 | else | |
4471 | { | |
4472 | while (**spec != '\000' && | |
4473 | ! strchr (ada_completer_word_break_characters, **spec)) | |
4474 | *spec += 1; | |
4475 | } | |
4476 | len = *spec - name; | |
4477 | ||
4478 | line_num = -1; | |
4479 | if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1])) | |
4480 | { | |
4481 | line_num = strtol (*spec + 1, spec, 10); | |
4482 | while (**spec == ' ' || **spec == '\t') | |
4483 | *spec += 1; | |
4484 | } | |
4485 | ||
4486 | if (name[0] == '*') | |
4487 | { | |
4488 | if (line_num == -1) | |
4489 | error ("Wild-card function with no line number or file name."); | |
4490 | ||
4491 | return all_sals_for_line (file_table->filename, line_num, canonical); | |
4492 | } | |
4493 | ||
4494 | if (name[0] == '\'') | |
4495 | { | |
4496 | name += 1; | |
4497 | len -= 2; | |
4498 | } | |
4499 | ||
4500 | if (name[0] == '<') | |
4501 | { | |
4502 | unquoted_name = (char*) alloca (len-1); | |
4503 | memcpy (unquoted_name, name+1, len-2); | |
4504 | unquoted_name[len-2] = '\000'; | |
4505 | lower_name = NULL; | |
4506 | } | |
4507 | else | |
4508 | { | |
4509 | unquoted_name = (char*) alloca (len+1); | |
4510 | memcpy (unquoted_name, name, len); | |
4511 | unquoted_name[len] = '\000'; | |
4512 | lower_name = (char*) alloca (len + 1); | |
4513 | for (i = 0; i < len; i += 1) | |
4514 | lower_name[i] = tolower (name[i]); | |
4515 | lower_name[len] = '\000'; | |
4516 | } | |
4517 | ||
4518 | n_matches = 0; | |
4519 | if (lower_name != NULL) | |
4520 | n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block, | |
4521 | VAR_NAMESPACE, &symbols, &blocks); | |
4522 | if (n_matches == 0) | |
4523 | n_matches = ada_lookup_symbol_list (unquoted_name, block, | |
4524 | VAR_NAMESPACE, &symbols, &blocks); | |
4525 | if (n_matches == 0 && line_num >= 0) | |
4526 | error ("No line number information found for %s.", unquoted_name); | |
4527 | else if (n_matches == 0) | |
4528 | { | |
4529 | #ifdef HPPA_COMPILER_BUG | |
4530 | /* FIXME: See comment in symtab.c::decode_line_1 */ | |
4531 | #undef volatile | |
4532 | volatile struct symtab_and_line val; | |
4533 | #define volatile /*nothing*/ | |
4534 | #else | |
4535 | struct symtab_and_line val; | |
4536 | #endif | |
4537 | struct minimal_symbol* msymbol; | |
4538 | ||
4539 | INIT_SAL (&val); | |
4540 | ||
4541 | msymbol = NULL; | |
4542 | if (lower_name != NULL) | |
4543 | msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name)); | |
4544 | if (msymbol == NULL) | |
4545 | msymbol = ada_lookup_minimal_symbol (unquoted_name); | |
4546 | if (msymbol != NULL) | |
4547 | { | |
4548 | val.pc = SYMBOL_VALUE_ADDRESS (msymbol); | |
4549 | val.section = SYMBOL_BFD_SECTION (msymbol); | |
4550 | if (funfirstline) | |
4551 | { | |
4552 | val.pc += FUNCTION_START_OFFSET; | |
4553 | SKIP_PROLOGUE (val.pc); | |
4554 | } | |
4555 | selected.sals = (struct symtab_and_line *) | |
4556 | xmalloc (sizeof (struct symtab_and_line)); | |
4557 | selected.sals[0] = val; | |
4558 | selected.nelts = 1; | |
4559 | return selected; | |
4560 | } | |
4561 | ||
4562 | if (!have_full_symbols () && | |
4563 | !have_partial_symbols () && !have_minimal_symbols ()) | |
4564 | error (no_symtab_msg); | |
4565 | ||
4566 | error ("Function \"%s\" not defined.", unquoted_name); | |
4567 | return selected; /* for lint */ | |
4568 | } | |
4569 | ||
4570 | if (line_num >= 0) | |
4571 | { | |
4572 | return | |
4573 | find_sal_from_funcs_and_line (file_table->filename, line_num, | |
4574 | symbols, n_matches); | |
4575 | } | |
4576 | else | |
4577 | { | |
4578 | selected.nelts = user_select_syms (symbols, blocks, n_matches, n_matches); | |
4579 | } | |
4580 | ||
4581 | selected.sals = (struct symtab_and_line*) | |
4582 | xmalloc (sizeof (struct symtab_and_line) * selected.nelts); | |
4583 | memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i])); | |
4584 | make_cleanup (free, selected.sals); | |
4585 | ||
4586 | i = 0; | |
4587 | while (i < selected.nelts) | |
4588 | { | |
4589 | if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK) | |
4590 | selected.sals[i] = find_function_start_sal (symbols[i], funfirstline); | |
4591 | else if (SYMBOL_LINE (symbols[i]) != 0) | |
4592 | { | |
4593 | selected.sals[i].symtab = symtab_for_sym (symbols[i]); | |
4594 | selected.sals[i].line = SYMBOL_LINE (symbols[i]); | |
4595 | } | |
4596 | else if (line_num >= 0) | |
4597 | { | |
4598 | /* Ignore this choice */ | |
4599 | symbols[i] = symbols[selected.nelts-1]; | |
4600 | blocks[i] = blocks[selected.nelts-1]; | |
4601 | selected.nelts -= 1; | |
4602 | continue; | |
4603 | } | |
4604 | else | |
4605 | error ("Line number not known for symbol \"%s\"", unquoted_name); | |
4606 | i += 1; | |
4607 | } | |
4608 | ||
4609 | if (canonical != NULL && (line_num >= 0 || n_matches > 1)) | |
4610 | { | |
4611 | *canonical = (char**) xmalloc (sizeof(char*) * selected.nelts); | |
4612 | for (i = 0; i < selected.nelts; i += 1) | |
4613 | (*canonical)[i] = | |
4614 | extended_canonical_line_spec (selected.sals[i], | |
4615 | SYMBOL_SOURCE_NAME (symbols[i])); | |
4616 | } | |
4617 | ||
4618 | discard_cleanups (old_chain); | |
4619 | return selected; | |
4620 | } | |
4621 | ||
4622 | /* The (single) sal corresponding to line LINE_NUM in a symbol table | |
4623 | with file name FILENAME that occurs in one of the functions listed | |
4624 | in SYMBOLS[0 .. NSYMS-1]. */ | |
4625 | static struct symtabs_and_lines | |
4626 | find_sal_from_funcs_and_line (filename, line_num, symbols, nsyms) | |
4627 | const char* filename; | |
4628 | int line_num; | |
4629 | struct symbol** symbols; | |
4630 | int nsyms; | |
4631 | { | |
4632 | struct symtabs_and_lines sals; | |
4633 | int best_index, best; | |
4634 | struct linetable* best_linetable; | |
4635 | struct objfile* objfile; | |
4636 | struct symtab* s; | |
4637 | struct symtab* best_symtab; | |
4638 | ||
4639 | read_all_symtabs (filename); | |
4640 | ||
4641 | best_index = 0; best_linetable = NULL; best_symtab = NULL; | |
4642 | best = 0; | |
4643 | ALL_SYMTABS (objfile, s) | |
4644 | { | |
4645 | struct linetable *l; | |
4646 | int ind, exact; | |
4647 | ||
4648 | QUIT; | |
4649 | ||
4650 | if (!STREQ (filename, s->filename)) | |
4651 | continue; | |
4652 | l = LINETABLE (s); | |
4653 | ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact); | |
4654 | if (ind >= 0) | |
4655 | { | |
4656 | if (exact) | |
4657 | { | |
4658 | best_index = ind; | |
4659 | best_linetable = l; | |
4660 | best_symtab = s; | |
4661 | goto done; | |
4662 | } | |
4663 | if (best == 0 || l->item[ind].line < best) | |
4664 | { | |
4665 | best = l->item[ind].line; | |
4666 | best_index = ind; | |
4667 | best_linetable = l; | |
4668 | best_symtab = s; | |
4669 | } | |
4670 | } | |
4671 | } | |
4672 | ||
4673 | if (best == 0) | |
4674 | error ("Line number not found in designated function."); | |
4675 | ||
4676 | done: | |
4677 | ||
4678 | sals.nelts = 1; | |
4679 | sals.sals = (struct symtab_and_line*) xmalloc (sizeof (sals.sals[0])); | |
4680 | ||
4681 | INIT_SAL (&sals.sals[0]); | |
4682 | ||
4683 | sals.sals[0].line = best_linetable->item[best_index].line; | |
4684 | sals.sals[0].pc = best_linetable->item[best_index].pc; | |
4685 | sals.sals[0].symtab = best_symtab; | |
4686 | ||
4687 | return sals; | |
4688 | } | |
4689 | ||
4690 | /* Return the index in LINETABLE of the best match for LINE_NUM whose | |
4691 | pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1]. | |
4692 | Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */ | |
4693 | static int | |
4694 | find_line_in_linetable (linetable, line_num, symbols, nsyms, exactp) | |
4695 | struct linetable* linetable; | |
4696 | int line_num; | |
4697 | struct symbol** symbols; | |
4698 | int nsyms; | |
4699 | int* exactp; | |
4700 | { | |
4701 | int i, len, best_index, best; | |
4702 | ||
4703 | if (line_num <= 0 || linetable == NULL) | |
4704 | return -1; | |
4705 | ||
4706 | len = linetable->nitems; | |
4707 | for (i = 0, best_index = -1, best = 0; i < len; i += 1) | |
4708 | { | |
4709 | int k; | |
4710 | struct linetable_entry* item = &(linetable->item[i]); | |
4711 | ||
4712 | for (k = 0; k < nsyms; k += 1) | |
4713 | { | |
4714 | if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK | |
4715 | && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k])) | |
4716 | && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k]))) | |
4717 | goto candidate; | |
4718 | } | |
4719 | continue; | |
4720 | ||
4721 | candidate: | |
4722 | ||
4723 | if (item->line == line_num) | |
4724 | { | |
4725 | *exactp = 1; | |
4726 | return i; | |
4727 | } | |
4728 | ||
4729 | if (item->line > line_num && (best == 0 || item->line < best)) | |
4730 | { | |
4731 | best = item->line; | |
4732 | best_index = i; | |
4733 | } | |
4734 | } | |
4735 | ||
4736 | *exactp = 0; | |
4737 | return best_index; | |
4738 | } | |
4739 | ||
4740 | /* Find the smallest k >= LINE_NUM such that k is a line number in | |
4741 | LINETABLE, and k falls strictly within a named function that begins at | |
4742 | or before LINE_NUM. Return -1 if there is no such k. */ | |
4743 | static int | |
4744 | nearest_line_number_in_linetable (linetable, line_num) | |
4745 | struct linetable* linetable; | |
4746 | int line_num; | |
4747 | { | |
4748 | int i, len, best; | |
4749 | ||
4750 | if (line_num <= 0 || linetable == NULL || linetable->nitems == 0) | |
4751 | return -1; | |
4752 | len = linetable->nitems; | |
4753 | ||
4754 | i = 0; best = INT_MAX; | |
4755 | while (i < len) | |
4756 | { | |
4757 | int k; | |
4758 | struct linetable_entry* item = &(linetable->item[i]); | |
4759 | ||
4760 | if (item->line >= line_num && item->line < best) | |
4761 | { | |
4762 | char* func_name; | |
4763 | CORE_ADDR start, end; | |
4764 | ||
4765 | func_name = NULL; | |
4766 | find_pc_partial_function (item->pc, &func_name, &start, &end); | |
4767 | ||
4768 | if (func_name != NULL && item->pc < end) | |
4769 | { | |
4770 | if (item->line == line_num) | |
4771 | return line_num; | |
4772 | else | |
4773 | { | |
4774 | struct symbol* sym = | |
4775 | standard_lookup (func_name, VAR_NAMESPACE); | |
4776 | if (is_plausible_func_for_line (sym, line_num)) | |
4777 | best = item->line; | |
4778 | else | |
4779 | { | |
4780 | do | |
4781 | i += 1; | |
4782 | while (i < len && linetable->item[i].pc < end); | |
4783 | continue; | |
4784 | } | |
4785 | } | |
4786 | } | |
4787 | } | |
4788 | ||
4789 | i += 1; | |
4790 | } | |
4791 | ||
4792 | return (best == INT_MAX) ? -1 : best; | |
4793 | } | |
4794 | ||
4795 | ||
4796 | /* Return the next higher index, k, into LINETABLE such that k > IND, | |
4797 | entry k in LINETABLE has a line number equal to LINE_NUM, k | |
4798 | corresponds to a PC that is in a function different from that | |
4799 | corresponding to IND, and falls strictly within a named function | |
4800 | that begins at a line at or preceding STARTING_LINE. | |
4801 | Return -1 if there is no such k. | |
4802 | IND == -1 corresponds to no function. */ | |
4803 | ||
4804 | static int | |
4805 | find_next_line_in_linetable (linetable, line_num, starting_line, ind) | |
4806 | struct linetable* linetable; | |
4807 | int line_num; | |
4808 | int starting_line; | |
4809 | int ind; | |
4810 | { | |
4811 | int i, len; | |
4812 | ||
4813 | if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems) | |
4814 | return -1; | |
4815 | len = linetable->nitems; | |
4816 | ||
4817 | if (ind >= 0) | |
4818 | { | |
4819 | CORE_ADDR start, end; | |
4820 | ||
4821 | if (find_pc_partial_function (linetable->item[ind].pc, | |
4822 | (char**) NULL, &start, &end)) | |
4823 | { | |
4824 | while (ind < len && linetable->item[ind].pc < end) | |
4825 | ind += 1; | |
4826 | } | |
4827 | else | |
4828 | ind += 1; | |
4829 | } | |
4830 | else | |
4831 | ind = 0; | |
4832 | ||
4833 | i = ind; | |
4834 | while (i < len) | |
4835 | { | |
4836 | int k; | |
4837 | struct linetable_entry* item = &(linetable->item[i]); | |
4838 | ||
4839 | if (item->line >= line_num) | |
4840 | { | |
4841 | char* func_name; | |
4842 | CORE_ADDR start, end; | |
4843 | ||
4844 | func_name = NULL; | |
4845 | find_pc_partial_function (item->pc, &func_name, &start, &end); | |
4846 | ||
4847 | if (func_name != NULL && item->pc < end) | |
4848 | { | |
4849 | if (item->line == line_num) | |
4850 | { | |
4851 | struct symbol* sym = | |
4852 | standard_lookup (func_name, VAR_NAMESPACE); | |
4853 | if (is_plausible_func_for_line (sym, starting_line)) | |
4854 | return i; | |
4855 | else | |
4856 | { | |
4857 | while ((i+1) < len && linetable->item[i+1].pc < end) | |
4858 | i += 1; | |
4859 | } | |
4860 | } | |
4861 | } | |
4862 | } | |
4863 | i += 1; | |
4864 | } | |
4865 | ||
4866 | return -1; | |
4867 | } | |
4868 | ||
4869 | /* True iff function symbol SYM starts somewhere at or before line # | |
4870 | LINE_NUM. */ | |
4871 | static int | |
4872 | is_plausible_func_for_line (sym, line_num) | |
4873 | struct symbol* sym; | |
4874 | int line_num; | |
4875 | { | |
4876 | struct symtab_and_line start_sal; | |
4877 | ||
4878 | if (sym == NULL) | |
4879 | return 0; | |
4880 | ||
4881 | start_sal = find_function_start_sal (sym, 0); | |
4882 | ||
4883 | return (start_sal.line != 0 && line_num >= start_sal.line); | |
4884 | } | |
4885 | ||
4886 | static void | |
4887 | debug_print_lines (lt) | |
4888 | struct linetable* lt; | |
4889 | { | |
4890 | int i; | |
4891 | ||
4892 | if (lt == NULL) | |
4893 | return; | |
4894 | ||
4895 | fprintf (stderr, "\t"); | |
4896 | for (i = 0; i < lt->nitems; i += 1) | |
4897 | fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc); | |
4898 | fprintf (stderr, "\n"); | |
4899 | } | |
4900 | ||
4901 | static void | |
4902 | debug_print_block (b) | |
4903 | struct block* b; | |
4904 | { | |
4905 | int i; | |
4906 | fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]", | |
4907 | b, BLOCK_START(b), BLOCK_END(b)); | |
4908 | if (BLOCK_FUNCTION(b) != NULL) | |
4909 | fprintf (stderr, " Function: %s", SYMBOL_NAME (BLOCK_FUNCTION(b))); | |
4910 | fprintf (stderr, "\n"); | |
4911 | fprintf (stderr, "\t Superblock: %p\n", BLOCK_SUPERBLOCK(b)); | |
4912 | fprintf (stderr, "\t Symbols:"); | |
4913 | for (i = 0; i < BLOCK_NSYMS (b); i += 1) | |
4914 | { | |
4915 | if (i > 0 && i % 4 == 0) | |
4916 | fprintf (stderr, "\n\t\t "); | |
4917 | fprintf (stderr, " %s", SYMBOL_NAME (BLOCK_SYM (b, i))); | |
4918 | } | |
4919 | fprintf (stderr, "\n"); | |
4920 | } | |
4921 | ||
4922 | static void | |
4923 | debug_print_blocks (bv) | |
4924 | struct blockvector* bv; | |
4925 | { | |
4926 | int i; | |
4927 | ||
4928 | if (bv == NULL) | |
4929 | return; | |
4930 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1) { | |
4931 | fprintf (stderr, "%6d. ", i); | |
4932 | debug_print_block (BLOCKVECTOR_BLOCK (bv, i)); | |
4933 | } | |
4934 | } | |
4935 | ||
4936 | static void | |
4937 | debug_print_symtab (s) | |
4938 | struct symtab* s; | |
4939 | { | |
4940 | fprintf (stderr, "Symtab %p\n File: %s; Dir: %s\n", s, | |
4941 | s->filename, s->dirname); | |
4942 | fprintf (stderr, " Blockvector: %p, Primary: %d\n", | |
4943 | BLOCKVECTOR(s), s->primary); | |
4944 | debug_print_blocks (BLOCKVECTOR(s)); | |
4945 | fprintf (stderr, " Line table: %p\n", LINETABLE (s)); | |
4946 | debug_print_lines (LINETABLE(s)); | |
4947 | } | |
4948 | ||
4949 | /* Read in all symbol tables corresponding to partial symbol tables | |
4950 | with file name FILENAME. */ | |
4951 | static void | |
4952 | read_all_symtabs (filename) | |
4953 | const char* filename; | |
4954 | { | |
4955 | struct partial_symtab* ps; | |
4956 | struct objfile* objfile; | |
4957 | ||
4958 | ALL_PSYMTABS (objfile, ps) | |
4959 | { | |
4960 | QUIT; | |
4961 | ||
4962 | if (STREQ (filename, ps->filename)) | |
4963 | PSYMTAB_TO_SYMTAB (ps); | |
4964 | } | |
4965 | } | |
4966 | ||
4967 | /* All sals corresponding to line LINE_NUM in a symbol table from file | |
4968 | FILENAME, as filtered by the user. If CANONICAL is not null, set | |
4969 | it to a corresponding array of canonical line specs. */ | |
4970 | static struct symtabs_and_lines | |
4971 | all_sals_for_line (filename, line_num, canonical) | |
4972 | const char* filename; | |
4973 | int line_num; | |
4974 | char*** canonical; | |
4975 | { | |
4976 | struct symtabs_and_lines result; | |
4977 | struct objfile* objfile; | |
4978 | struct symtab* s; | |
4979 | struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); | |
4980 | size_t len; | |
4981 | ||
4982 | read_all_symtabs (filename); | |
4983 | ||
4984 | result.sals = (struct symtab_and_line*) xmalloc (4 * sizeof (result.sals[0])); | |
4985 | result.nelts = 0; | |
4986 | len = 4; | |
4987 | make_cleanup (free_current_contents, &result.sals); | |
4988 | ||
4989 | ALL_SYMTABS (objfile, s) | |
4990 | { | |
4991 | int ind, target_line_num; | |
4992 | ||
4993 | QUIT; | |
4994 | ||
4995 | if (!STREQ (s->filename, filename)) | |
4996 | continue; | |
4997 | ||
4998 | target_line_num = | |
4999 | nearest_line_number_in_linetable (LINETABLE (s), line_num); | |
5000 | if (target_line_num == -1) | |
5001 | continue; | |
5002 | ||
5003 | ind = -1; | |
5004 | while (1) | |
5005 | { | |
5006 | ind = | |
5007 | find_next_line_in_linetable (LINETABLE (s), | |
5008 | target_line_num, line_num, ind); | |
5009 | ||
5010 | if (ind < 0) | |
5011 | break; | |
5012 | ||
5013 | GROW_VECT (result.sals, len, result.nelts+1); | |
5014 | INIT_SAL (&result.sals[result.nelts]); | |
5015 | result.sals[result.nelts].line = LINETABLE(s)->item[ind].line; | |
5016 | result.sals[result.nelts].pc = LINETABLE(s)->item[ind].pc; | |
5017 | result.sals[result.nelts].symtab = s; | |
5018 | result.nelts += 1; | |
5019 | } | |
5020 | } | |
5021 | ||
5022 | if (canonical != NULL || result.nelts > 1) | |
5023 | { | |
5024 | int k; | |
5025 | char** func_names = (char**) alloca (result.nelts * sizeof (char*)); | |
5026 | int first_choice = (result.nelts > 1) ? 2 : 1; | |
5027 | int n; | |
5028 | int* choices = (int*) alloca (result.nelts * sizeof (int)); | |
5029 | ||
5030 | for (k = 0; k < result.nelts; k += 1) | |
5031 | { | |
5032 | find_pc_partial_function (result.sals[k].pc, &func_names[k], | |
5033 | (CORE_ADDR*) NULL, (CORE_ADDR*) NULL); | |
5034 | if (func_names[k] == NULL) | |
5035 | error ("Could not find function for one or more breakpoints."); | |
5036 | } | |
5037 | ||
5038 | if (result.nelts > 1) | |
5039 | { | |
5040 | printf_unfiltered("[0] cancel\n"); | |
5041 | if (result.nelts > 1) | |
5042 | printf_unfiltered("[1] all\n"); | |
5043 | for (k = 0; k < result.nelts; k += 1) | |
5044 | printf_unfiltered ("[%d] %s\n", k + first_choice, | |
5045 | ada_demangle (func_names[k])); | |
5046 | ||
5047 | n = get_selections (choices, result.nelts, result.nelts, | |
5048 | result.nelts > 1, "instance-choice"); | |
5049 | ||
5050 | for (k = 0; k < n; k += 1) | |
5051 | { | |
5052 | result.sals[k] = result.sals[choices[k]]; | |
5053 | func_names[k] = func_names[choices[k]]; | |
5054 | } | |
5055 | result.nelts = n; | |
5056 | } | |
5057 | ||
5058 | if (canonical != NULL) | |
5059 | { | |
5060 | *canonical = (char**) xmalloc (result.nelts * sizeof (char**)); | |
5061 | make_cleanup (free, *canonical); | |
5062 | for (k = 0; k < result.nelts; k += 1) | |
5063 | { | |
5064 | (*canonical)[k] = | |
5065 | extended_canonical_line_spec (result.sals[k], func_names[k]); | |
5066 | if ((*canonical)[k] == NULL) | |
5067 | error ("Could not locate one or more breakpoints."); | |
5068 | make_cleanup (free, (*canonical)[k]); | |
5069 | } | |
5070 | } | |
5071 | } | |
5072 | ||
5073 | discard_cleanups (old_chain); | |
5074 | return result; | |
5075 | } | |
5076 | ||
5077 | ||
5078 | /* A canonical line specification of the form FILE:NAME:LINENUM for | |
5079 | symbol table and line data SAL. NULL if insufficient | |
5080 | information. The caller is responsible for releasing any space | |
5081 | allocated. */ | |
5082 | ||
5083 | static char* | |
5084 | extended_canonical_line_spec (sal, name) | |
5085 | struct symtab_and_line sal; | |
5086 | const char* name; | |
5087 | { | |
5088 | char* r; | |
5089 | ||
5090 | if (sal.symtab == NULL || sal.symtab->filename == NULL || | |
5091 | sal.line <= 0) | |
5092 | return NULL; | |
5093 | ||
5094 | r = (char*) xmalloc (strlen (name) + strlen (sal.symtab->filename) | |
5095 | + sizeof(sal.line)*3 + 3); | |
5096 | sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line); | |
5097 | return r; | |
5098 | } | |
5099 | ||
5100 | #if 0 | |
5101 | int begin_bnum = -1; | |
5102 | #endif | |
5103 | int begin_annotate_level = 0; | |
5104 | ||
5105 | static void | |
5106 | begin_cleanup (void* dummy) | |
5107 | { | |
5108 | begin_annotate_level = 0; | |
5109 | } | |
5110 | ||
5111 | static void | |
5112 | begin_command (args, from_tty) | |
5113 | char *args; | |
5114 | int from_tty; | |
5115 | { | |
5116 | struct minimal_symbol *msym; | |
5117 | CORE_ADDR main_program_name_addr; | |
5118 | char main_program_name[1024]; | |
5119 | struct cleanup* old_chain = make_cleanup (begin_cleanup, NULL); | |
5120 | begin_annotate_level = 2; | |
5121 | ||
5122 | /* Check that there is a program to debug */ | |
5123 | if (!have_full_symbols () && !have_partial_symbols ()) | |
5124 | error ("No symbol table is loaded. Use the \"file\" command."); | |
5125 | ||
5126 | /* Check that we are debugging an Ada program */ | |
5127 | /* if (ada_update_initial_language (language_unknown, NULL) != language_ada) | |
5128 | error ("Cannot find the Ada initialization procedure. Is this an Ada main program?"); | |
5129 | */ | |
5130 | /* FIXME: language_ada should be defined in defs.h */ | |
5131 | ||
5132 | /* Get the address of the name of the main procedure */ | |
5133 | msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); | |
5134 | ||
5135 | if (msym != NULL) | |
5136 | { | |
5137 | main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); | |
5138 | if (main_program_name_addr == 0) | |
5139 | error ("Invalid address for Ada main program name."); | |
5140 | ||
5141 | /* Read the name of the main procedure */ | |
5142 | extract_string (main_program_name_addr, main_program_name); | |
5143 | ||
5144 | /* Put a temporary breakpoint in the Ada main program and run */ | |
5145 | do_command ("tbreak ", main_program_name, 0); | |
5146 | do_command ("run ", args, 0); | |
5147 | } | |
5148 | else | |
5149 | { | |
5150 | /* If we could not find the symbol containing the name of the | |
5151 | main program, that means that the compiler that was used to build | |
5152 | was not recent enough. In that case, we fallback to the previous | |
5153 | mechanism, which is a little bit less reliable, but has proved to work | |
5154 | in most cases. The only cases where it will fail is when the user | |
5155 | has set some breakpoints which will be hit before the end of the | |
5156 | begin command processing (eg in the initialization code). | |
5157 | ||
5158 | The begining of the main Ada subprogram is located by breaking | |
5159 | on the adainit procedure. Since we know that the binder generates | |
5160 | the call to this procedure exactly 2 calls before the call to the | |
5161 | Ada main subprogram, it is then easy to put a breakpoint on this | |
5162 | Ada main subprogram once we hit adainit. | |
5163 | */ | |
5164 | do_command ("tbreak adainit", 0); | |
5165 | do_command ("run ", args, 0); | |
5166 | do_command ("up", 0); | |
5167 | do_command ("tbreak +2", 0); | |
5168 | do_command ("continue", 0); | |
5169 | do_command ("step", 0); | |
5170 | } | |
5171 | ||
5172 | do_cleanups (old_chain); | |
5173 | } | |
5174 | ||
5175 | int | |
5176 | is_ada_runtime_file (filename) | |
5177 | char *filename; | |
5178 | { | |
5179 | return (STREQN (filename, "s-", 2) || | |
5180 | STREQN (filename, "a-", 2) || | |
5181 | STREQN (filename, "g-", 2) || | |
5182 | STREQN (filename, "i-", 2)); | |
5183 | } | |
5184 | ||
5185 | /* find the first frame that contains debugging information and that is not | |
5186 | part of the Ada run-time, starting from fi and moving upward. */ | |
5187 | ||
5188 | int | |
5189 | find_printable_frame (fi, level) | |
5190 | struct frame_info *fi; | |
5191 | int level; | |
5192 | { | |
5193 | struct symtab_and_line sal; | |
5194 | ||
5195 | for (; fi != NULL; level += 1, fi = get_prev_frame (fi)) | |
5196 | { | |
5197 | /* If fi is not the innermost frame, that normally means that fi->pc | |
5198 | points to *after* the call instruction, and we want to get the line | |
5199 | containing the call, never the next line. But if the next frame is | |
5200 | a signal_handler_caller or a dummy frame, then the next frame was | |
5201 | not entered as the result of a call, and we want to get the line | |
5202 | containing fi->pc. */ | |
5203 | sal = | |
5204 | find_pc_line (fi->pc, | |
5205 | fi->next != NULL | |
5206 | && !fi->next->signal_handler_caller | |
5207 | && !frame_in_dummy (fi->next)); | |
5208 | if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename)) | |
5209 | { | |
5210 | #if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET) | |
5211 | /* libpthread.so contains some debugging information that prevents us | |
5212 | from finding the right frame */ | |
5213 | ||
5214 | if (sal.symtab->objfile && | |
5215 | STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so")) | |
5216 | continue; | |
5217 | #endif | |
5218 | selected_frame = fi; | |
5219 | break; | |
5220 | } | |
5221 | } | |
5222 | ||
5223 | return level; | |
5224 | } | |
5225 | ||
5226 | void | |
5227 | ada_report_exception_break (b) | |
5228 | struct breakpoint *b; | |
5229 | { | |
5230 | #ifdef UI_OUT | |
5231 | /* FIXME: break_on_exception should be defined in breakpoint.h */ | |
5232 | /* if (b->break_on_exception == 1) | |
5233 | { | |
5234 | /* Assume that cond has 16 elements, the 15th | |
5235 | being the exception */ /* | |
5236 | if (b->cond && b->cond->nelts == 16) | |
5237 | { | |
5238 | ui_out_text (uiout, "on "); | |
5239 | ui_out_field_string (uiout, "exception", | |
5240 | SYMBOL_NAME (b->cond->elts[14].symbol)); | |
5241 | } | |
5242 | else | |
5243 | ui_out_text (uiout, "on all exceptions"); | |
5244 | } | |
5245 | else if (b->break_on_exception == 2) | |
5246 | ui_out_text (uiout, "on unhandled exception"); | |
5247 | else if (b->break_on_exception == 3) | |
5248 | ui_out_text (uiout, "on assert failure"); | |
5249 | #else | |
5250 | if (b->break_on_exception == 1) | |
5251 | {*/ | |
5252 | /* Assume that cond has 16 elements, the 15th | |
5253 | being the exception */ /* | |
5254 | if (b->cond && b->cond->nelts == 16) | |
5255 | { | |
5256 | fputs_filtered ("on ", gdb_stdout); | |
5257 | fputs_filtered (SYMBOL_NAME | |
5258 | (b->cond->elts[14].symbol), gdb_stdout); | |
5259 | } | |
5260 | else | |
5261 | fputs_filtered ("on all exceptions", gdb_stdout); | |
5262 | } | |
5263 | else if (b->break_on_exception == 2) | |
5264 | fputs_filtered ("on unhandled exception", gdb_stdout); | |
5265 | else if (b->break_on_exception == 3) | |
5266 | fputs_filtered ("on assert failure", gdb_stdout); | |
5267 | */ | |
5268 | #endif | |
5269 | } | |
5270 | ||
5271 | int | |
5272 | ada_is_exception_sym (struct symbol* sym) | |
5273 | { | |
5274 | char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); | |
5275 | ||
5276 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
5277 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
5278 | && SYMBOL_CLASS (sym) != LOC_CONST | |
5279 | && type_name != NULL | |
5280 | && STREQ (type_name, "exception")); | |
5281 | } | |
5282 | ||
5283 | int | |
5284 | ada_maybe_exception_partial_symbol (struct partial_symbol* sym) | |
5285 | { | |
5286 | return (SYMBOL_CLASS (sym) != LOC_TYPEDEF | |
5287 | && SYMBOL_CLASS (sym) != LOC_BLOCK | |
5288 | && SYMBOL_CLASS (sym) != LOC_CONST); | |
5289 | } | |
5290 | ||
5291 | /* If ARG points to an Ada exception or assert breakpoint, rewrite | |
5292 | into equivalent form. Return resulting argument string. Set | |
5293 | *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for | |
5294 | break on unhandled, 3 for assert, 0 otherwise. */ | |
5295 | char* ada_breakpoint_rewrite (char* arg, int* break_on_exceptionp) | |
5296 | { | |
5297 | if (arg == NULL) | |
5298 | return arg; | |
5299 | *break_on_exceptionp = 0; | |
5300 | /* FIXME: language_ada should be defined in defs.h */ | |
5301 | /* if (current_language->la_language == language_ada | |
5302 | && STREQN (arg, "exception", 9) && | |
5303 | (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0')) | |
5304 | { | |
5305 | char *tok, *end_tok; | |
5306 | int toklen; | |
5307 | ||
5308 | *break_on_exceptionp = 1; | |
5309 | ||
5310 | tok = arg+9; | |
5311 | while (*tok == ' ' || *tok == '\t') | |
5312 | tok += 1; | |
5313 | ||
5314 | end_tok = tok; | |
5315 | ||
5316 | while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000') | |
5317 | end_tok += 1; | |
5318 | ||
5319 | toklen = end_tok - tok; | |
5320 | ||
5321 | arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if " | |
5322 | "long_integer(e) = long_integer(&)") | |
5323 | + toklen + 1); | |
5324 | make_cleanup (free, arg); | |
5325 | if (toklen == 0) | |
5326 | strcpy (arg, "__gnat_raise_nodefer_with_msg"); | |
5327 | else if (STREQN (tok, "unhandled", toklen)) | |
5328 | { | |
5329 | *break_on_exceptionp = 2; | |
5330 | strcpy (arg, "__gnat_unhandled_exception"); | |
5331 | } | |
5332 | else | |
5333 | { | |
5334 | sprintf (arg, "__gnat_raise_nodefer_with_msg if " | |
5335 | "long_integer(e) = long_integer(&%.*s)", | |
5336 | toklen, tok); | |
5337 | } | |
5338 | } | |
5339 | else if (current_language->la_language == language_ada | |
5340 | && STREQN (arg, "assert", 6) && | |
5341 | (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0')) | |
5342 | { | |
5343 | char *tok = arg + 6; | |
5344 | ||
5345 | *break_on_exceptionp = 3; | |
5346 | ||
5347 | arg = (char*) | |
5348 | xmalloc (sizeof ("system__assertions__raise_assert_failure") | |
5349 | + strlen (tok) + 1); | |
5350 | make_cleanup (free, arg); | |
5351 | sprintf (arg, "system__assertions__raise_assert_failure%s", tok); | |
5352 | } | |
5353 | */ | |
5354 | return arg; | |
5355 | } | |
5356 | ||
5357 | \f | |
5358 | /* Field Access */ | |
5359 | ||
5360 | /* True if field number FIELD_NUM in struct or union type TYPE is supposed | |
5361 | to be invisible to users. */ | |
5362 | ||
5363 | int | |
5364 | ada_is_ignored_field (type, field_num) | |
5365 | struct type *type; | |
5366 | int field_num; | |
5367 | { | |
5368 | if (field_num < 0 || field_num > TYPE_NFIELDS (type)) | |
5369 | return 1; | |
5370 | else | |
5371 | { | |
5372 | const char* name = TYPE_FIELD_NAME (type, field_num); | |
5373 | return (name == NULL | |
5374 | || (name[0] == '_' && ! STREQN (name, "_parent", 7))); | |
5375 | } | |
5376 | } | |
5377 | ||
5378 | /* True iff structure type TYPE has a tag field. */ | |
5379 | ||
5380 | int | |
5381 | ada_is_tagged_type (type) | |
5382 | struct type *type; | |
5383 | { | |
5384 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5385 | return 0; | |
5386 | ||
5387 | return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL); | |
5388 | } | |
5389 | ||
5390 | /* The type of the tag on VAL. */ | |
5391 | ||
5392 | struct type* | |
5393 | ada_tag_type (val) | |
5394 | struct value* val; | |
5395 | { | |
5396 | return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL); | |
5397 | } | |
5398 | ||
5399 | /* The value of the tag on VAL. */ | |
5400 | ||
5401 | struct value* | |
5402 | ada_value_tag (val) | |
5403 | struct value* val; | |
5404 | { | |
5405 | return ada_value_struct_elt (val, "_tag", "record"); | |
5406 | } | |
5407 | ||
5408 | /* The parent type of TYPE, or NULL if none. */ | |
5409 | ||
5410 | struct type* | |
5411 | ada_parent_type (type) | |
5412 | struct type *type; | |
5413 | { | |
5414 | int i; | |
5415 | ||
5416 | CHECK_TYPEDEF (type); | |
5417 | ||
5418 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) | |
5419 | return NULL; | |
5420 | ||
5421 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5422 | if (ada_is_parent_field (type, i)) | |
5423 | return check_typedef (TYPE_FIELD_TYPE (type, i)); | |
5424 | ||
5425 | return NULL; | |
5426 | } | |
5427 | ||
5428 | /* True iff field number FIELD_NUM of structure type TYPE contains the | |
5429 | parent-type (inherited) fields of a derived type. Assumes TYPE is | |
5430 | a structure type with at least FIELD_NUM+1 fields. */ | |
5431 | ||
5432 | int | |
5433 | ada_is_parent_field (type, field_num) | |
5434 | struct type *type; | |
5435 | int field_num; | |
5436 | { | |
5437 | const char* name = TYPE_FIELD_NAME (check_typedef (type), field_num); | |
5438 | return (name != NULL && | |
5439 | (STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7))); | |
5440 | } | |
5441 | ||
5442 | /* True iff field number FIELD_NUM of structure type TYPE is a | |
5443 | transparent wrapper field (which should be silently traversed when doing | |
5444 | field selection and flattened when printing). Assumes TYPE is a | |
5445 | structure type with at least FIELD_NUM+1 fields. Such fields are always | |
5446 | structures. */ | |
5447 | ||
5448 | int | |
5449 | ada_is_wrapper_field (type, field_num) | |
5450 | struct type *type; | |
5451 | int field_num; | |
5452 | { | |
5453 | const char* name = TYPE_FIELD_NAME (type, field_num); | |
5454 | return (name != NULL | |
5455 | && (STREQN (name, "PARENT", 6) || STREQ (name, "REP") | |
5456 | || STREQN (name, "_parent", 7) | |
5457 | || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); | |
5458 | } | |
5459 | ||
5460 | /* True iff field number FIELD_NUM of structure or union type TYPE | |
5461 | is a variant wrapper. Assumes TYPE is a structure type with at least | |
5462 | FIELD_NUM+1 fields. */ | |
5463 | ||
5464 | int | |
5465 | ada_is_variant_part (type, field_num) | |
5466 | struct type *type; | |
5467 | int field_num; | |
5468 | { | |
5469 | struct type* field_type = TYPE_FIELD_TYPE (type, field_num); | |
5470 | return (TYPE_CODE (field_type) == TYPE_CODE_UNION | |
5471 | || (is_dynamic_field (type, field_num) | |
5472 | && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) == TYPE_CODE_UNION)); | |
5473 | } | |
5474 | ||
5475 | /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) | |
5476 | whose discriminants are contained in the record type OUTER_TYPE, | |
5477 | returns the type of the controlling discriminant for the variant. */ | |
5478 | ||
5479 | struct type* | |
5480 | ada_variant_discrim_type (var_type, outer_type) | |
5481 | struct type *var_type; | |
5482 | struct type *outer_type; | |
5483 | { | |
5484 | char* name = ada_variant_discrim_name (var_type); | |
5485 | struct type *type = | |
5486 | ada_lookup_struct_elt_type (outer_type, name, 1, NULL); | |
5487 | if (type == NULL) | |
5488 | return builtin_type_int; | |
5489 | else | |
5490 | return type; | |
5491 | } | |
5492 | ||
5493 | /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a | |
5494 | valid field number within it, returns 1 iff field FIELD_NUM of TYPE | |
5495 | represents a 'when others' clause; otherwise 0. */ | |
5496 | ||
5497 | int | |
5498 | ada_is_others_clause (type, field_num) | |
5499 | struct type *type; | |
5500 | int field_num; | |
5501 | { | |
5502 | const char* name = TYPE_FIELD_NAME (type, field_num); | |
5503 | return (name != NULL && name[0] == 'O'); | |
5504 | } | |
5505 | ||
5506 | /* Assuming that TYPE0 is the type of the variant part of a record, | |
5507 | returns the name of the discriminant controlling the variant. The | |
5508 | value is valid until the next call to ada_variant_discrim_name. */ | |
5509 | ||
5510 | char * | |
5511 | ada_variant_discrim_name (type0) | |
5512 | struct type *type0; | |
5513 | { | |
5514 | static char* result = NULL; | |
5515 | static size_t result_len = 0; | |
5516 | struct type* type; | |
5517 | const char* name; | |
5518 | const char* discrim_end; | |
5519 | const char* discrim_start; | |
5520 | ||
5521 | if (TYPE_CODE (type0) == TYPE_CODE_PTR) | |
5522 | type = TYPE_TARGET_TYPE (type0); | |
5523 | else | |
5524 | type = type0; | |
5525 | ||
5526 | name = ada_type_name (type); | |
5527 | ||
5528 | if (name == NULL || name[0] == '\000') | |
5529 | return ""; | |
5530 | ||
5531 | for (discrim_end = name + strlen (name) - 6; discrim_end != name; | |
5532 | discrim_end -= 1) | |
5533 | { | |
5534 | if (STREQN (discrim_end, "___XVN", 6)) | |
5535 | break; | |
5536 | } | |
5537 | if (discrim_end == name) | |
5538 | return ""; | |
5539 | ||
5540 | for (discrim_start = discrim_end; discrim_start != name+3; | |
5541 | discrim_start -= 1) | |
5542 | { | |
5543 | if (discrim_start == name+1) | |
5544 | return ""; | |
5545 | if ((discrim_start > name+3 && STREQN (discrim_start-3, "___", 3)) | |
5546 | || discrim_start[-1] == '.') | |
5547 | break; | |
5548 | } | |
5549 | ||
5550 | GROW_VECT (result, result_len, discrim_end - discrim_start + 1); | |
5551 | strncpy (result, discrim_start, discrim_end - discrim_start); | |
5552 | result[discrim_end-discrim_start] = '\0'; | |
5553 | return result; | |
5554 | } | |
5555 | ||
5556 | /* Scan STR for a subtype-encoded number, beginning at position K. Put the | |
5557 | position of the character just past the number scanned in *NEW_K, | |
5558 | if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. Return 1 | |
5559 | if there was a valid number at the given position, and 0 otherwise. A | |
5560 | "subtype-encoded" number consists of the absolute value in decimal, | |
5561 | followed by the letter 'm' to indicate a negative number. Assumes 0m | |
5562 | does not occur. */ | |
5563 | ||
5564 | int | |
5565 | ada_scan_number (str, k, R, new_k) | |
5566 | const char str[]; | |
5567 | int k; | |
5568 | LONGEST *R; | |
5569 | int *new_k; | |
5570 | { | |
5571 | ULONGEST RU; | |
5572 | ||
5573 | if (! isdigit (str[k])) | |
5574 | return 0; | |
5575 | ||
5576 | /* Do it the hard way so as not to make any assumption about | |
5577 | the relationship of unsigned long (%lu scan format code) and | |
5578 | LONGEST. */ | |
5579 | RU = 0; | |
5580 | while (isdigit (str[k])) | |
5581 | { | |
5582 | RU = RU*10 + (str[k] - '0'); | |
5583 | k += 1; | |
5584 | } | |
5585 | ||
5586 | if (str[k] == 'm') | |
5587 | { | |
5588 | if (R != NULL) | |
5589 | *R = (- (LONGEST) (RU-1)) - 1; | |
5590 | k += 1; | |
5591 | } | |
5592 | else if (R != NULL) | |
5593 | *R = (LONGEST) RU; | |
5594 | ||
5595 | /* NOTE on the above: Technically, C does not say what the results of | |
5596 | - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive | |
5597 | number representable as a LONGEST (although either would probably work | |
5598 | in most implementations). When RU>0, the locution in the then branch | |
5599 | above is always equivalent to the negative of RU. */ | |
5600 | ||
5601 | if (new_k != NULL) | |
5602 | *new_k = k; | |
5603 | return 1; | |
5604 | } | |
5605 | ||
5606 | /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), | |
5607 | and FIELD_NUM is a valid field number within it, returns 1 iff VAL is | |
5608 | in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ | |
5609 | ||
5610 | int | |
5611 | ada_in_variant (val, type, field_num) | |
5612 | LONGEST val; | |
5613 | struct type *type; | |
5614 | int field_num; | |
5615 | { | |
5616 | const char* name = TYPE_FIELD_NAME (type, field_num); | |
5617 | int p; | |
5618 | ||
5619 | p = 0; | |
5620 | while (1) | |
5621 | { | |
5622 | switch (name[p]) | |
5623 | { | |
5624 | case '\0': | |
5625 | return 0; | |
5626 | case 'S': | |
5627 | { | |
5628 | LONGEST W; | |
5629 | if (! ada_scan_number (name, p + 1, &W, &p)) | |
5630 | return 0; | |
5631 | if (val == W) | |
5632 | return 1; | |
5633 | break; | |
5634 | } | |
5635 | case 'R': | |
5636 | { | |
5637 | LONGEST L, U; | |
5638 | if (! ada_scan_number (name, p + 1, &L, &p) | |
5639 | || name[p] != 'T' | |
5640 | || ! ada_scan_number (name, p + 1, &U, &p)) | |
5641 | return 0; | |
5642 | if (val >= L && val <= U) | |
5643 | return 1; | |
5644 | break; | |
5645 | } | |
5646 | case 'O': | |
5647 | return 1; | |
5648 | default: | |
5649 | return 0; | |
5650 | } | |
5651 | } | |
5652 | } | |
5653 | ||
5654 | /* Given a value ARG1 (offset by OFFSET bytes) | |
5655 | of a struct or union type ARG_TYPE, | |
5656 | extract and return the value of one of its (non-static) fields. | |
5657 | FIELDNO says which field. Differs from value_primitive_field only | |
5658 | in that it can handle packed values of arbitrary type. */ | |
5659 | ||
5660 | struct value* | |
5661 | ada_value_primitive_field (arg1, offset, fieldno, arg_type) | |
5662 | struct value* arg1; | |
5663 | int offset; | |
5664 | int fieldno; | |
5665 | struct type *arg_type; | |
5666 | { | |
5667 | struct value* v; | |
5668 | struct type *type; | |
5669 | ||
5670 | CHECK_TYPEDEF (arg_type); | |
5671 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
5672 | ||
5673 | /* Handle packed fields */ | |
5674 | ||
5675 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) | |
5676 | { | |
5677 | int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
5678 | int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
5679 | ||
5680 | return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1), | |
5681 | offset + bit_pos/8, bit_pos % 8, | |
5682 | bit_size, type); | |
5683 | } | |
5684 | else | |
5685 | return value_primitive_field (arg1, offset, fieldno, arg_type); | |
5686 | } | |
5687 | ||
5688 | ||
5689 | /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, | |
5690 | and search in it assuming it has (class) type TYPE. | |
5691 | If found, return value, else return NULL. | |
5692 | ||
5693 | Searches recursively through wrapper fields (e.g., '_parent'). */ | |
5694 | ||
5695 | struct value* | |
5696 | ada_search_struct_field (name, arg, offset, type) | |
5697 | char *name; | |
5698 | struct value* arg; | |
5699 | int offset; | |
5700 | struct type *type; | |
5701 | { | |
5702 | int i; | |
5703 | CHECK_TYPEDEF (type); | |
5704 | ||
5705 | for (i = TYPE_NFIELDS (type)-1; i >= 0; i -= 1) | |
5706 | { | |
5707 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5708 | ||
5709 | if (t_field_name == NULL) | |
5710 | continue; | |
5711 | ||
5712 | else if (field_name_match (t_field_name, name)) | |
5713 | return ada_value_primitive_field (arg, offset, i, type); | |
5714 | ||
5715 | else if (ada_is_wrapper_field (type, i)) | |
5716 | { | |
5717 | struct value* v = | |
5718 | ada_search_struct_field (name, arg, | |
5719 | offset + TYPE_FIELD_BITPOS (type, i) / 8, | |
5720 | TYPE_FIELD_TYPE (type, i)); | |
5721 | if (v != NULL) | |
5722 | return v; | |
5723 | } | |
5724 | ||
5725 | else if (ada_is_variant_part (type, i)) | |
5726 | { | |
5727 | int j; | |
5728 | struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i)); | |
5729 | int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; | |
5730 | ||
5731 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
5732 | { | |
5733 | struct value* v = | |
5734 | ada_search_struct_field (name, arg, | |
5735 | var_offset | |
5736 | + TYPE_FIELD_BITPOS (field_type, j)/8, | |
5737 | TYPE_FIELD_TYPE (field_type, j)); | |
5738 | if (v != NULL) | |
5739 | return v; | |
5740 | } | |
5741 | } | |
5742 | } | |
5743 | return NULL; | |
5744 | } | |
5745 | ||
5746 | /* Given ARG, a value of type (pointer to a)* structure/union, | |
5747 | extract the component named NAME from the ultimate target structure/union | |
5748 | and return it as a value with its appropriate type. | |
5749 | ||
5750 | The routine searches for NAME among all members of the structure itself | |
5751 | and (recursively) among all members of any wrapper members | |
5752 | (e.g., '_parent'). | |
5753 | ||
5754 | ERR is a name (for use in error messages) that identifies the class | |
5755 | of entity that ARG is supposed to be. */ | |
5756 | ||
5757 | struct value* | |
5758 | ada_value_struct_elt (arg, name, err) | |
5759 | struct value* arg; | |
5760 | char *name; | |
5761 | char *err; | |
5762 | { | |
5763 | struct type *t; | |
5764 | struct value* v; | |
5765 | ||
5766 | arg = ada_coerce_ref (arg); | |
5767 | t = check_typedef (VALUE_TYPE (arg)); | |
5768 | ||
5769 | /* Follow pointers until we get to a non-pointer. */ | |
5770 | ||
5771 | while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) | |
5772 | { | |
5773 | arg = ada_value_ind (arg); | |
5774 | t = check_typedef (VALUE_TYPE (arg)); | |
5775 | } | |
5776 | ||
5777 | if ( TYPE_CODE (t) != TYPE_CODE_STRUCT | |
5778 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
5779 | error ("Attempt to extract a component of a value that is not a %s.", err); | |
5780 | ||
5781 | v = ada_search_struct_field (name, arg, 0, t); | |
5782 | if (v == NULL) | |
5783 | error ("There is no member named %s.", name); | |
5784 | ||
5785 | return v; | |
5786 | } | |
5787 | ||
5788 | /* Given a type TYPE, look up the type of the component of type named NAME. | |
5789 | If DISPP is non-null, add its byte displacement from the beginning of a | |
5790 | structure (pointed to by a value) of type TYPE to *DISPP (does not | |
5791 | work for packed fields). | |
5792 | ||
5793 | Matches any field whose name has NAME as a prefix, possibly | |
5794 | followed by "___". | |
5795 | ||
5796 | TYPE can be either a struct or union, or a pointer or reference to | |
5797 | a struct or union. If it is a pointer or reference, its target | |
5798 | type is automatically used. | |
5799 | ||
5800 | Looks recursively into variant clauses and parent types. | |
5801 | ||
5802 | If NOERR is nonzero, return NULL if NAME is not suitably defined. */ | |
5803 | ||
5804 | struct type * | |
5805 | ada_lookup_struct_elt_type (type, name, noerr, dispp) | |
5806 | struct type *type; | |
5807 | char *name; | |
5808 | int noerr; | |
5809 | int *dispp; | |
5810 | { | |
5811 | int i; | |
5812 | ||
5813 | if (name == NULL) | |
5814 | goto BadName; | |
5815 | ||
5816 | while (1) | |
5817 | { | |
5818 | CHECK_TYPEDEF (type); | |
5819 | if (TYPE_CODE (type) != TYPE_CODE_PTR | |
5820 | && TYPE_CODE (type) != TYPE_CODE_REF) | |
5821 | break; | |
5822 | type = TYPE_TARGET_TYPE (type); | |
5823 | } | |
5824 | ||
5825 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT && | |
5826 | TYPE_CODE (type) != TYPE_CODE_UNION) | |
5827 | { | |
5828 | target_terminal_ours (); | |
5829 | gdb_flush (gdb_stdout); | |
5830 | fprintf_unfiltered (gdb_stderr, "Type "); | |
5831 | type_print (type, "", gdb_stderr, -1); | |
5832 | error (" is not a structure or union type"); | |
5833 | } | |
5834 | ||
5835 | type = to_static_fixed_type (type); | |
5836 | ||
5837 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
5838 | { | |
5839 | char *t_field_name = TYPE_FIELD_NAME (type, i); | |
5840 | struct type *t; | |
5841 | int disp; | |
5842 | ||
5843 | if (t_field_name == NULL) | |
5844 | continue; | |
5845 | ||
5846 | else if (field_name_match (t_field_name, name)) | |
5847 | { | |
5848 | if (dispp != NULL) | |
5849 | *dispp += TYPE_FIELD_BITPOS (type, i) / 8; | |
5850 | return check_typedef (TYPE_FIELD_TYPE (type, i)); | |
5851 | } | |
5852 | ||
5853 | else if (ada_is_wrapper_field (type, i)) | |
5854 | { | |
5855 | disp = 0; | |
5856 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, | |
5857 | 1, &disp); | |
5858 | if (t != NULL) | |
5859 | { | |
5860 | if (dispp != NULL) | |
5861 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
5862 | return t; | |
5863 | } | |
5864 | } | |
5865 | ||
5866 | else if (ada_is_variant_part (type, i)) | |
5867 | { | |
5868 | int j; | |
5869 | struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i)); | |
5870 | ||
5871 | for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) | |
5872 | { | |
5873 | disp = 0; | |
5874 | t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), | |
5875 | name, 1, &disp); | |
5876 | if (t != NULL) | |
5877 | { | |
5878 | if (dispp != NULL) | |
5879 | *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; | |
5880 | return t; | |
5881 | } | |
5882 | } | |
5883 | } | |
5884 | ||
5885 | } | |
5886 | ||
5887 | BadName: | |
5888 | if (! noerr) | |
5889 | { | |
5890 | target_terminal_ours (); | |
5891 | gdb_flush (gdb_stdout); | |
5892 | fprintf_unfiltered (gdb_stderr, "Type "); | |
5893 | type_print (type, "", gdb_stderr, -1); | |
5894 | fprintf_unfiltered (gdb_stderr, " has no component named "); | |
5895 | error ("%s", name == NULL ? "<null>" : name); | |
5896 | } | |
5897 | ||
5898 | return NULL; | |
5899 | } | |
5900 | ||
5901 | /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), | |
5902 | within a value of type OUTER_TYPE that is stored in GDB at | |
5903 | OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, | |
5904 | numbering from 0) is applicable. Returns -1 if none are. */ | |
5905 | ||
5906 | int | |
5907 | ada_which_variant_applies (var_type, outer_type, outer_valaddr) | |
5908 | struct type *var_type; | |
5909 | struct type *outer_type; | |
5910 | char* outer_valaddr; | |
5911 | { | |
5912 | int others_clause; | |
5913 | int i; | |
5914 | int disp; | |
5915 | struct type* discrim_type; | |
5916 | char* discrim_name = ada_variant_discrim_name (var_type); | |
5917 | LONGEST discrim_val; | |
5918 | ||
5919 | disp = 0; | |
5920 | discrim_type = | |
5921 | ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp); | |
5922 | if (discrim_type == NULL) | |
5923 | return -1; | |
5924 | discrim_val = unpack_long (discrim_type, outer_valaddr + disp); | |
5925 | ||
5926 | others_clause = -1; | |
5927 | for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) | |
5928 | { | |
5929 | if (ada_is_others_clause (var_type, i)) | |
5930 | others_clause = i; | |
5931 | else if (ada_in_variant (discrim_val, var_type, i)) | |
5932 | return i; | |
5933 | } | |
5934 | ||
5935 | return others_clause; | |
5936 | } | |
5937 | ||
5938 | ||
5939 | \f | |
5940 | /* Dynamic-Sized Records */ | |
5941 | ||
5942 | /* Strategy: The type ostensibly attached to a value with dynamic size | |
5943 | (i.e., a size that is not statically recorded in the debugging | |
5944 | data) does not accurately reflect the size or layout of the value. | |
5945 | Our strategy is to convert these values to values with accurate, | |
5946 | conventional types that are constructed on the fly. */ | |
5947 | ||
5948 | /* There is a subtle and tricky problem here. In general, we cannot | |
5949 | determine the size of dynamic records without its data. However, | |
5950 | the 'struct value' data structure, which GDB uses to represent | |
5951 | quantities in the inferior process (the target), requires the size | |
5952 | of the type at the time of its allocation in order to reserve space | |
5953 | for GDB's internal copy of the data. That's why the | |
5954 | 'to_fixed_xxx_type' routines take (target) addresses as parameters, | |
5955 | rather than struct value*s. | |
5956 | ||
5957 | However, GDB's internal history variables ($1, $2, etc.) are | |
5958 | struct value*s containing internal copies of the data that are not, in | |
5959 | general, the same as the data at their corresponding addresses in | |
5960 | the target. Fortunately, the types we give to these values are all | |
5961 | conventional, fixed-size types (as per the strategy described | |
5962 | above), so that we don't usually have to perform the | |
5963 | 'to_fixed_xxx_type' conversions to look at their values. | |
5964 | Unfortunately, there is one exception: if one of the internal | |
5965 | history variables is an array whose elements are unconstrained | |
5966 | records, then we will need to create distinct fixed types for each | |
5967 | element selected. */ | |
5968 | ||
5969 | /* The upshot of all of this is that many routines take a (type, host | |
5970 | address, target address) triple as arguments to represent a value. | |
5971 | The host address, if non-null, is supposed to contain an internal | |
5972 | copy of the relevant data; otherwise, the program is to consult the | |
5973 | target at the target address. */ | |
5974 | ||
5975 | /* Assuming that VAL0 represents a pointer value, the result of | |
5976 | dereferencing it. Differs from value_ind in its treatment of | |
5977 | dynamic-sized types. */ | |
5978 | ||
5979 | struct value* | |
5980 | ada_value_ind (val0) | |
5981 | struct value* val0; | |
5982 | { | |
5983 | struct value* val = unwrap_value (value_ind (val0)); | |
5984 | return ada_to_fixed_value (VALUE_TYPE (val), 0, | |
5985 | VALUE_ADDRESS (val) + VALUE_OFFSET (val), | |
5986 | val); | |
5987 | } | |
5988 | ||
5989 | /* The value resulting from dereferencing any "reference to" | |
5990 | * qualifiers on VAL0. */ | |
5991 | static struct value* | |
5992 | ada_coerce_ref (val0) | |
5993 | struct value* val0; | |
5994 | { | |
5995 | if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF) { | |
5996 | struct value* val = val0; | |
5997 | COERCE_REF (val); | |
5998 | val = unwrap_value (val); | |
5999 | return ada_to_fixed_value (VALUE_TYPE (val), 0, | |
6000 | VALUE_ADDRESS (val) + VALUE_OFFSET (val), | |
6001 | val); | |
6002 | } else | |
6003 | return val0; | |
6004 | } | |
6005 | ||
6006 | /* Return OFF rounded upward if necessary to a multiple of | |
6007 | ALIGNMENT (a power of 2). */ | |
6008 | ||
6009 | static unsigned int | |
6010 | align_value (off, alignment) | |
6011 | unsigned int off; | |
6012 | unsigned int alignment; | |
6013 | { | |
6014 | return (off + alignment - 1) & ~(alignment - 1); | |
6015 | } | |
6016 | ||
6017 | /* Return the additional bit offset required by field F of template | |
6018 | type TYPE. */ | |
6019 | ||
6020 | static unsigned int | |
6021 | field_offset (type, f) | |
6022 | struct type *type; | |
6023 | int f; | |
6024 | { | |
6025 | int n = TYPE_FIELD_BITPOS (type, f); | |
6026 | /* Kludge (temporary?) to fix problem with dwarf output. */ | |
6027 | if (n < 0) | |
6028 | return (unsigned int) n & 0xffff; | |
6029 | else | |
6030 | return n; | |
6031 | } | |
6032 | ||
6033 | ||
6034 | /* Return the bit alignment required for field #F of template type TYPE. */ | |
6035 | ||
6036 | static unsigned int | |
6037 | field_alignment (type, f) | |
6038 | struct type *type; | |
6039 | int f; | |
6040 | { | |
6041 | const char* name = TYPE_FIELD_NAME (type, f); | |
6042 | int len = (name == NULL) ? 0 : strlen (name); | |
6043 | int align_offset; | |
6044 | ||
6045 | if (len < 8 || ! isdigit (name[len-1])) | |
6046 | return TARGET_CHAR_BIT; | |
6047 | ||
6048 | if (isdigit (name[len-2])) | |
6049 | align_offset = len - 2; | |
6050 | else | |
6051 | align_offset = len - 1; | |
6052 | ||
6053 | if (align_offset < 7 || ! STREQN ("___XV", name+align_offset-6, 5)) | |
6054 | return TARGET_CHAR_BIT; | |
6055 | ||
6056 | return atoi (name+align_offset) * TARGET_CHAR_BIT; | |
6057 | } | |
6058 | ||
6059 | /* Find a type named NAME. Ignores ambiguity. */ | |
6060 | struct type* | |
6061 | ada_find_any_type (name) | |
6062 | const char *name; | |
6063 | { | |
6064 | struct symbol* sym; | |
6065 | ||
6066 | sym = standard_lookup (name, VAR_NAMESPACE); | |
6067 | if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) | |
6068 | return SYMBOL_TYPE (sym); | |
6069 | ||
6070 | sym = standard_lookup (name, STRUCT_NAMESPACE); | |
6071 | if (sym != NULL) | |
6072 | return SYMBOL_TYPE (sym); | |
6073 | ||
6074 | return NULL; | |
6075 | } | |
6076 | ||
6077 | /* Because of GNAT encoding conventions, several GDB symbols may match a | |
6078 | given type name. If the type denoted by TYPE0 is to be preferred to | |
6079 | that of TYPE1 for purposes of type printing, return non-zero; | |
6080 | otherwise return 0. */ | |
6081 | int | |
6082 | ada_prefer_type (type0, type1) | |
6083 | struct type* type0; | |
6084 | struct type* type1; | |
6085 | { | |
6086 | if (type1 == NULL) | |
6087 | return 1; | |
6088 | else if (type0 == NULL) | |
6089 | return 0; | |
6090 | else if (TYPE_CODE (type1) == TYPE_CODE_VOID) | |
6091 | return 1; | |
6092 | else if (TYPE_CODE (type0) == TYPE_CODE_VOID) | |
6093 | return 0; | |
6094 | else if (ada_is_packed_array_type (type0)) | |
6095 | return 1; | |
6096 | else if (ada_is_array_descriptor (type0) && ! ada_is_array_descriptor (type1)) | |
6097 | return 1; | |
6098 | else if (ada_renaming_type (type0) != NULL | |
6099 | && ada_renaming_type (type1) == NULL) | |
6100 | return 1; | |
6101 | return 0; | |
6102 | } | |
6103 | ||
6104 | /* The name of TYPE, which is either its TYPE_NAME, or, if that is | |
6105 | null, its TYPE_TAG_NAME. Null if TYPE is null. */ | |
6106 | char* | |
6107 | ada_type_name (type) | |
6108 | struct type* type; | |
6109 | { | |
6110 | if (type == NULL) | |
6111 | return NULL; | |
6112 | else if (TYPE_NAME (type) != NULL) | |
6113 | return TYPE_NAME (type); | |
6114 | else | |
6115 | return TYPE_TAG_NAME (type); | |
6116 | } | |
6117 | ||
6118 | /* Find a parallel type to TYPE whose name is formed by appending | |
6119 | SUFFIX to the name of TYPE. */ | |
6120 | ||
6121 | struct type* | |
6122 | ada_find_parallel_type (type, suffix) | |
6123 | struct type *type; | |
6124 | const char *suffix; | |
6125 | { | |
6126 | static char* name; | |
6127 | static size_t name_len = 0; | |
6128 | struct symbol** syms; | |
6129 | struct block** blocks; | |
6130 | int nsyms; | |
6131 | int len; | |
6132 | char* typename = ada_type_name (type); | |
6133 | ||
6134 | if (typename == NULL) | |
6135 | return NULL; | |
6136 | ||
6137 | len = strlen (typename); | |
6138 | ||
6139 | GROW_VECT (name, name_len, len+strlen (suffix)+1); | |
6140 | ||
6141 | strcpy (name, typename); | |
6142 | strcpy (name + len, suffix); | |
6143 | ||
6144 | return ada_find_any_type (name); | |
6145 | } | |
6146 | ||
6147 | ||
6148 | /* If TYPE is a variable-size record type, return the corresponding template | |
6149 | type describing its fields. Otherwise, return NULL. */ | |
6150 | ||
6151 | static struct type* | |
6152 | dynamic_template_type (type) | |
6153 | struct type* type; | |
6154 | { | |
6155 | CHECK_TYPEDEF (type); | |
6156 | ||
6157 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
6158 | || ada_type_name (type) == NULL) | |
6159 | return NULL; | |
6160 | else | |
6161 | { | |
6162 | int len = strlen (ada_type_name (type)); | |
6163 | if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE")) | |
6164 | return type; | |
6165 | else | |
6166 | return ada_find_parallel_type (type, "___XVE"); | |
6167 | } | |
6168 | } | |
6169 | ||
6170 | /* Assuming that TEMPL_TYPE is a union or struct type, returns | |
6171 | non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ | |
6172 | ||
6173 | static int | |
6174 | is_dynamic_field (templ_type, field_num) | |
6175 | struct type* templ_type; | |
6176 | int field_num; | |
6177 | { | |
6178 | const char *name = TYPE_FIELD_NAME (templ_type, field_num); | |
6179 | return name != NULL | |
6180 | && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR | |
6181 | && strstr (name, "___XVL") != NULL; | |
6182 | } | |
6183 | ||
6184 | /* Assuming that TYPE is a struct type, returns non-zero iff TYPE | |
6185 | contains a variant part. */ | |
6186 | ||
6187 | static int | |
6188 | contains_variant_part (type) | |
6189 | struct type* type; | |
6190 | { | |
6191 | int f; | |
6192 | ||
6193 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT | |
6194 | || TYPE_NFIELDS (type) <= 0) | |
6195 | return 0; | |
6196 | return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1); | |
6197 | } | |
6198 | ||
6199 | /* A record type with no fields, . */ | |
6200 | static struct type* | |
6201 | empty_record (objfile) | |
6202 | struct objfile* objfile; | |
6203 | { | |
6204 | struct type* type = alloc_type (objfile); | |
6205 | TYPE_CODE (type) = TYPE_CODE_STRUCT; | |
6206 | TYPE_NFIELDS (type) = 0; | |
6207 | TYPE_FIELDS (type) = NULL; | |
6208 | TYPE_NAME (type) = "<empty>"; | |
6209 | TYPE_TAG_NAME (type) = NULL; | |
6210 | TYPE_FLAGS (type) = 0; | |
6211 | TYPE_LENGTH (type) = 0; | |
6212 | return type; | |
6213 | } | |
6214 | ||
6215 | /* An ordinary record type (with fixed-length fields) that describes | |
6216 | the value of type TYPE at VALADDR or ADDRESS (see comments at | |
6217 | the beginning of this section) VAL according to GNAT conventions. | |
6218 | DVAL0 should describe the (portion of a) record that contains any | |
6219 | necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is | |
6220 | an outer-level type (i.e., as opposed to a branch of a variant.) A | |
6221 | variant field (unless unchecked) is replaced by a particular branch | |
6222 | of the variant. */ | |
6223 | /* NOTE: Limitations: For now, we assume that dynamic fields and | |
6224 | * variants occupy whole numbers of bytes. However, they need not be | |
6225 | * byte-aligned. */ | |
6226 | ||
6227 | static struct type* | |
6228 | template_to_fixed_record_type (type, valaddr, address, dval0) | |
6229 | struct type* type; | |
6230 | char* valaddr; | |
6231 | CORE_ADDR address; | |
6232 | struct value* dval0; | |
6233 | ||
6234 | { | |
6235 | struct value* mark = value_mark(); | |
6236 | struct value* dval; | |
6237 | struct type* rtype; | |
6238 | int nfields, bit_len; | |
6239 | long off; | |
6240 | int f; | |
6241 | ||
6242 | nfields = TYPE_NFIELDS (type); | |
6243 | rtype = alloc_type (TYPE_OBJFILE (type)); | |
6244 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6245 | INIT_CPLUS_SPECIFIC (rtype); | |
6246 | TYPE_NFIELDS (rtype) = nfields; | |
6247 | TYPE_FIELDS (rtype) = (struct field*) | |
6248 | TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
6249 | memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); | |
6250 | TYPE_NAME (rtype) = ada_type_name (type); | |
6251 | TYPE_TAG_NAME (rtype) = NULL; | |
6252 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in | |
6253 | gdbtypes.h */ | |
6254 | /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;*/ | |
6255 | ||
6256 | off = 0; bit_len = 0; | |
6257 | for (f = 0; f < nfields; f += 1) | |
6258 | { | |
6259 | int fld_bit_len, bit_incr; | |
6260 | off = | |
6261 | align_value (off, field_alignment (type, f))+TYPE_FIELD_BITPOS (type,f); | |
6262 | /* NOTE: used to use field_offset above, but that causes | |
6263 | * problems with really negative bit positions. So, let's | |
6264 | * rediscover why we needed field_offset and fix it properly. */ | |
6265 | TYPE_FIELD_BITPOS (rtype, f) = off; | |
6266 | TYPE_FIELD_BITSIZE (rtype, f) = 0; | |
6267 | ||
6268 | if (ada_is_variant_part (type, f)) | |
6269 | { | |
6270 | struct type *branch_type; | |
6271 | ||
6272 | if (dval0 == NULL) | |
6273 | dval = | |
6274 | value_from_contents_and_address (rtype, valaddr, address); | |
6275 | else | |
6276 | dval = dval0; | |
6277 | ||
6278 | branch_type = | |
6279 | to_fixed_variant_branch_type | |
6280 | (TYPE_FIELD_TYPE (type, f), | |
6281 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6282 | cond_offset_target (address, off / TARGET_CHAR_BIT), | |
6283 | dval); | |
6284 | if (branch_type == NULL) | |
6285 | TYPE_NFIELDS (rtype) -= 1; | |
6286 | else | |
6287 | { | |
6288 | TYPE_FIELD_TYPE (rtype, f) = branch_type; | |
6289 | TYPE_FIELD_NAME (rtype, f) = "S"; | |
6290 | } | |
6291 | bit_incr = 0; | |
6292 | fld_bit_len = | |
6293 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6294 | } | |
6295 | else if (is_dynamic_field (type, f)) | |
6296 | { | |
6297 | if (dval0 == NULL) | |
6298 | dval = | |
6299 | value_from_contents_and_address (rtype, valaddr, address); | |
6300 | else | |
6301 | dval = dval0; | |
6302 | ||
6303 | TYPE_FIELD_TYPE (rtype, f) = | |
6304 | ada_to_fixed_type | |
6305 | (ada_get_base_type | |
6306 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))), | |
6307 | cond_offset_host (valaddr, off / TARGET_CHAR_BIT), | |
6308 | cond_offset_target (address, off / TARGET_CHAR_BIT), | |
6309 | dval); | |
6310 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6311 | bit_incr = fld_bit_len = | |
6312 | TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; | |
6313 | } | |
6314 | else | |
6315 | { | |
6316 | TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); | |
6317 | TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); | |
6318 | if (TYPE_FIELD_BITSIZE (type, f) > 0) | |
6319 | bit_incr = fld_bit_len = | |
6320 | TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); | |
6321 | else | |
6322 | bit_incr = fld_bit_len = | |
6323 | TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; | |
6324 | } | |
6325 | if (off + fld_bit_len > bit_len) | |
6326 | bit_len = off + fld_bit_len; | |
6327 | off += bit_incr; | |
6328 | TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT; | |
6329 | } | |
6330 | TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type)); | |
6331 | ||
6332 | value_free_to_mark (mark); | |
6333 | if (TYPE_LENGTH (rtype) > varsize_limit) | |
6334 | error ("record type with dynamic size is larger than varsize-limit"); | |
6335 | return rtype; | |
6336 | } | |
6337 | ||
6338 | /* As for template_to_fixed_record_type, but uses no run-time values. | |
6339 | As a result, this type can only be approximate, but that's OK, | |
6340 | since it is used only for type determinations. Works on both | |
6341 | structs and unions. | |
6342 | Representation note: to save space, we memoize the result of this | |
6343 | function in the TYPE_TARGET_TYPE of the template type. */ | |
6344 | ||
6345 | static struct type* | |
6346 | template_to_static_fixed_type (templ_type) | |
6347 | struct type* templ_type; | |
6348 | { | |
6349 | struct type *type; | |
6350 | int nfields; | |
6351 | int f; | |
6352 | ||
6353 | if (TYPE_TARGET_TYPE (templ_type) != NULL) | |
6354 | return TYPE_TARGET_TYPE (templ_type); | |
6355 | ||
6356 | nfields = TYPE_NFIELDS (templ_type); | |
6357 | TYPE_TARGET_TYPE (templ_type) = type = alloc_type (TYPE_OBJFILE (templ_type)); | |
6358 | TYPE_CODE (type) = TYPE_CODE (templ_type); | |
6359 | INIT_CPLUS_SPECIFIC (type); | |
6360 | TYPE_NFIELDS (type) = nfields; | |
6361 | TYPE_FIELDS (type) = (struct field*) | |
6362 | TYPE_ALLOC (type, nfields * sizeof (struct field)); | |
6363 | memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields); | |
6364 | TYPE_NAME (type) = ada_type_name (templ_type); | |
6365 | TYPE_TAG_NAME (type) = NULL; | |
6366 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6367 | /* TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */ | |
6368 | TYPE_LENGTH (type) = 0; | |
6369 | ||
6370 | for (f = 0; f < nfields; f += 1) | |
6371 | { | |
6372 | TYPE_FIELD_BITPOS (type, f) = 0; | |
6373 | TYPE_FIELD_BITSIZE (type, f) = 0; | |
6374 | ||
6375 | if (is_dynamic_field (templ_type, f)) | |
6376 | { | |
6377 | TYPE_FIELD_TYPE (type, f) = | |
6378 | to_static_fixed_type (TYPE_TARGET_TYPE | |
6379 | (TYPE_FIELD_TYPE (templ_type, f))); | |
6380 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f); | |
6381 | } | |
6382 | else | |
6383 | { | |
6384 | TYPE_FIELD_TYPE (type, f) = | |
6385 | check_typedef (TYPE_FIELD_TYPE (templ_type, f)); | |
6386 | TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f); | |
6387 | } | |
6388 | } | |
6389 | ||
6390 | return type; | |
6391 | } | |
6392 | ||
6393 | /* A revision of TYPE0 -- a non-dynamic-sized record with a variant | |
6394 | part -- in which the variant part is replaced with the appropriate | |
6395 | branch. */ | |
6396 | static struct type* | |
6397 | to_record_with_fixed_variant_part (type, valaddr, address, dval) | |
6398 | struct type* type; | |
6399 | char* valaddr; | |
6400 | CORE_ADDR address; | |
6401 | struct value* dval; | |
6402 | { | |
6403 | struct value* mark = value_mark(); | |
6404 | struct type* rtype; | |
6405 | struct type *branch_type; | |
6406 | int nfields = TYPE_NFIELDS (type); | |
6407 | ||
6408 | if (dval == NULL) | |
6409 | return type; | |
6410 | ||
6411 | rtype = alloc_type (TYPE_OBJFILE (type)); | |
6412 | TYPE_CODE (rtype) = TYPE_CODE_STRUCT; | |
6413 | INIT_CPLUS_SPECIFIC (type); | |
6414 | TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type); | |
6415 | TYPE_FIELDS (rtype) = | |
6416 | (struct field*) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); | |
6417 | memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), | |
6418 | sizeof (struct field) * nfields); | |
6419 | TYPE_NAME (rtype) = ada_type_name (type); | |
6420 | TYPE_TAG_NAME (rtype) = NULL; | |
6421 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6422 | /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */ | |
6423 | TYPE_LENGTH (rtype) = TYPE_LENGTH (type); | |
6424 | ||
6425 | branch_type = | |
6426 | to_fixed_variant_branch_type | |
6427 | (TYPE_FIELD_TYPE (type, nfields - 1), | |
6428 | cond_offset_host (valaddr, | |
6429 | TYPE_FIELD_BITPOS (type, nfields-1) / TARGET_CHAR_BIT), | |
6430 | cond_offset_target (address, | |
6431 | TYPE_FIELD_BITPOS (type, nfields-1) / TARGET_CHAR_BIT), | |
6432 | dval); | |
6433 | if (branch_type == NULL) | |
6434 | { | |
6435 | TYPE_NFIELDS (rtype) -= 1; | |
6436 | TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1)); | |
6437 | } | |
6438 | else | |
6439 | { | |
6440 | TYPE_FIELD_TYPE (rtype, nfields-1) = branch_type; | |
6441 | TYPE_FIELD_NAME (rtype, nfields-1) = "S"; | |
6442 | TYPE_FIELD_BITSIZE (rtype, nfields-1) = 0; | |
6443 | TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); | |
6444 | - TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1)); | |
6445 | } | |
6446 | ||
6447 | return rtype; | |
6448 | } | |
6449 | ||
6450 | /* An ordinary record type (with fixed-length fields) that describes | |
6451 | the value at (TYPE0, VALADDR, ADDRESS) [see explanation at | |
6452 | beginning of this section]. Any necessary discriminants' values | |
6453 | should be in DVAL, a record value; it should be NULL if the object | |
6454 | at ADDR itself contains any necessary discriminant values. A | |
6455 | variant field (unless unchecked) is replaced by a particular branch | |
6456 | of the variant. */ | |
6457 | ||
6458 | static struct type* | |
6459 | to_fixed_record_type (type0, valaddr, address, dval) | |
6460 | struct type* type0; | |
6461 | char* valaddr; | |
6462 | CORE_ADDR address; | |
6463 | struct value* dval; | |
6464 | { | |
6465 | struct type* templ_type; | |
6466 | ||
6467 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6468 | /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) | |
6469 | return type0; | |
6470 | */ | |
6471 | templ_type = dynamic_template_type (type0); | |
6472 | ||
6473 | if (templ_type != NULL) | |
6474 | return template_to_fixed_record_type (templ_type, valaddr, address, dval); | |
6475 | else if (contains_variant_part (type0)) | |
6476 | return to_record_with_fixed_variant_part (type0, valaddr, address, dval); | |
6477 | else | |
6478 | { | |
6479 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6480 | /* TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */ | |
6481 | return type0; | |
6482 | } | |
6483 | ||
6484 | } | |
6485 | ||
6486 | /* An ordinary record type (with fixed-length fields) that describes | |
6487 | the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a | |
6488 | union type. Any necessary discriminants' values should be in DVAL, | |
6489 | a record value. That is, this routine selects the appropriate | |
6490 | branch of the union at ADDR according to the discriminant value | |
6491 | indicated in the union's type name. */ | |
6492 | ||
6493 | static struct type* | |
6494 | to_fixed_variant_branch_type (var_type0, valaddr, address, dval) | |
6495 | struct type* var_type0; | |
6496 | char* valaddr; | |
6497 | CORE_ADDR address; | |
6498 | struct value* dval; | |
6499 | { | |
6500 | int which; | |
6501 | struct type* templ_type; | |
6502 | struct type* var_type; | |
6503 | ||
6504 | if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) | |
6505 | var_type = TYPE_TARGET_TYPE (var_type0); | |
6506 | else | |
6507 | var_type = var_type0; | |
6508 | ||
6509 | templ_type = ada_find_parallel_type (var_type, "___XVU"); | |
6510 | ||
6511 | if (templ_type != NULL) | |
6512 | var_type = templ_type; | |
6513 | ||
6514 | which = | |
6515 | ada_which_variant_applies (var_type, | |
6516 | VALUE_TYPE (dval), VALUE_CONTENTS (dval)); | |
6517 | ||
6518 | if (which < 0) | |
6519 | return empty_record (TYPE_OBJFILE (var_type)); | |
6520 | else if (is_dynamic_field (var_type, which)) | |
6521 | return | |
6522 | to_fixed_record_type | |
6523 | (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), | |
6524 | valaddr, address, dval); | |
6525 | else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which))) | |
6526 | return | |
6527 | to_fixed_record_type | |
6528 | (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); | |
6529 | else | |
6530 | return TYPE_FIELD_TYPE (var_type, which); | |
6531 | } | |
6532 | ||
6533 | /* Assuming that TYPE0 is an array type describing the type of a value | |
6534 | at ADDR, and that DVAL describes a record containing any | |
6535 | discriminants used in TYPE0, returns a type for the value that | |
6536 | contains no dynamic components (that is, no components whose sizes | |
6537 | are determined by run-time quantities). Unless IGNORE_TOO_BIG is | |
6538 | true, gives an error message if the resulting type's size is over | |
6539 | varsize_limit. | |
6540 | */ | |
6541 | ||
6542 | static struct type* | |
6543 | to_fixed_array_type (type0, dval, ignore_too_big) | |
6544 | struct type* type0; | |
6545 | struct value* dval; | |
6546 | int ignore_too_big; | |
6547 | { | |
6548 | struct type* index_type_desc; | |
6549 | struct type* result; | |
6550 | ||
6551 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6552 | /* if (ada_is_packed_array_type (type0) /* revisit? */ /* | |
6553 | || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)) | |
6554 | return type0;*/ | |
6555 | ||
6556 | index_type_desc = ada_find_parallel_type (type0, "___XA"); | |
6557 | if (index_type_desc == NULL) | |
6558 | { | |
6559 | struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0)); | |
6560 | /* NOTE: elt_type---the fixed version of elt_type0---should never | |
6561 | * depend on the contents of the array in properly constructed | |
6562 | * debugging data. */ | |
6563 | struct type *elt_type = | |
6564 | ada_to_fixed_type (elt_type0, 0, 0, dval); | |
6565 | ||
6566 | if (elt_type0 == elt_type) | |
6567 | result = type0; | |
6568 | else | |
6569 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
6570 | elt_type, TYPE_INDEX_TYPE (type0)); | |
6571 | } | |
6572 | else | |
6573 | { | |
6574 | int i; | |
6575 | struct type *elt_type0; | |
6576 | ||
6577 | elt_type0 = type0; | |
6578 | for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) | |
6579 | elt_type0 = TYPE_TARGET_TYPE (elt_type0); | |
6580 | ||
6581 | /* NOTE: result---the fixed version of elt_type0---should never | |
6582 | * depend on the contents of the array in properly constructed | |
6583 | * debugging data. */ | |
6584 | result = | |
6585 | ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval); | |
6586 | for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) | |
6587 | { | |
6588 | struct type *range_type = | |
6589 | to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), | |
6590 | dval, TYPE_OBJFILE (type0)); | |
6591 | result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), | |
6592 | result, range_type); | |
6593 | } | |
6594 | if (! ignore_too_big && TYPE_LENGTH (result) > varsize_limit) | |
6595 | error ("array type with dynamic size is larger than varsize-limit"); | |
6596 | } | |
6597 | ||
6598 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6599 | /* TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */ | |
6600 | return result; | |
6601 | } | |
6602 | ||
6603 | ||
6604 | /* A standard type (containing no dynamically sized components) | |
6605 | corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) | |
6606 | DVAL describes a record containing any discriminants used in TYPE0, | |
6607 | and may be NULL if there are none. */ | |
6608 | ||
6609 | struct type* | |
6610 | ada_to_fixed_type (type, valaddr, address, dval) | |
6611 | struct type* type; | |
6612 | char* valaddr; | |
6613 | CORE_ADDR address; | |
6614 | struct value* dval; | |
6615 | { | |
6616 | CHECK_TYPEDEF (type); | |
6617 | switch (TYPE_CODE (type)) { | |
6618 | default: | |
6619 | return type; | |
6620 | case TYPE_CODE_STRUCT: | |
6621 | return to_fixed_record_type (type, valaddr, address, NULL); | |
6622 | case TYPE_CODE_ARRAY: | |
6623 | return to_fixed_array_type (type, dval, 0); | |
6624 | case TYPE_CODE_UNION: | |
6625 | if (dval == NULL) | |
6626 | return type; | |
6627 | else | |
6628 | return to_fixed_variant_branch_type (type, valaddr, address, dval); | |
6629 | } | |
6630 | } | |
6631 | ||
6632 | /* A standard (static-sized) type corresponding as well as possible to | |
6633 | TYPE0, but based on no runtime data. */ | |
6634 | ||
6635 | static struct type* | |
6636 | to_static_fixed_type (type0) | |
6637 | struct type* type0; | |
6638 | { | |
6639 | struct type* type; | |
6640 | ||
6641 | if (type0 == NULL) | |
6642 | return NULL; | |
6643 | ||
6644 | /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ | |
6645 | /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) | |
6646 | return type0; | |
6647 | */ | |
6648 | CHECK_TYPEDEF (type0); | |
6649 | ||
6650 | switch (TYPE_CODE (type0)) | |
6651 | { | |
6652 | default: | |
6653 | return type0; | |
6654 | case TYPE_CODE_STRUCT: | |
6655 | type = dynamic_template_type (type0); | |
6656 | if (type != NULL) | |
6657 | return template_to_static_fixed_type (type); | |
6658 | return type0; | |
6659 | case TYPE_CODE_UNION: | |
6660 | type = ada_find_parallel_type (type0, "___XVU"); | |
6661 | if (type != NULL) | |
6662 | return template_to_static_fixed_type (type); | |
6663 | return type0; | |
6664 | } | |
6665 | } | |
6666 | ||
6667 | /* A static approximation of TYPE with all type wrappers removed. */ | |
6668 | static struct type* | |
6669 | static_unwrap_type (type) | |
6670 | struct type* type; | |
6671 | { | |
6672 | if (ada_is_aligner_type (type)) | |
6673 | { | |
6674 | struct type* type1 = TYPE_FIELD_TYPE (check_typedef (type), 0); | |
6675 | if (ada_type_name (type1) == NULL) | |
6676 | TYPE_NAME (type1) = ada_type_name (type); | |
6677 | ||
6678 | return static_unwrap_type (type1); | |
6679 | } | |
6680 | else | |
6681 | { | |
6682 | struct type* raw_real_type = ada_get_base_type (type); | |
6683 | if (raw_real_type == type) | |
6684 | return type; | |
6685 | else | |
6686 | return to_static_fixed_type (raw_real_type); | |
6687 | } | |
6688 | } | |
6689 | ||
6690 | /* In some cases, incomplete and private types require | |
6691 | cross-references that are not resolved as records (for example, | |
6692 | type Foo; | |
6693 | type FooP is access Foo; | |
6694 | V: FooP; | |
6695 | type Foo is array ...; | |
6696 | ). In these cases, since there is no mechanism for producing | |
6697 | cross-references to such types, we instead substitute for FooP a | |
6698 | stub enumeration type that is nowhere resolved, and whose tag is | |
6699 | the name of the actual type. Call these types "non-record stubs". */ | |
6700 | ||
6701 | /* A type equivalent to TYPE that is not a non-record stub, if one | |
6702 | exists, otherwise TYPE. */ | |
6703 | struct type* | |
6704 | ada_completed_type (type) | |
6705 | struct type* type; | |
6706 | { | |
6707 | CHECK_TYPEDEF (type); | |
6708 | if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM | |
6709 | || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0 | |
6710 | || TYPE_TAG_NAME (type) == NULL) | |
6711 | return type; | |
6712 | else | |
6713 | { | |
6714 | char* name = TYPE_TAG_NAME (type); | |
6715 | struct type* type1 = ada_find_any_type (name); | |
6716 | return (type1 == NULL) ? type : type1; | |
6717 | } | |
6718 | } | |
6719 | ||
6720 | /* A value representing the data at VALADDR/ADDRESS as described by | |
6721 | type TYPE0, but with a standard (static-sized) type that correctly | |
6722 | describes it. If VAL0 is not NULL and TYPE0 already is a standard | |
6723 | type, then return VAL0 [this feature is simply to avoid redundant | |
6724 | creation of struct values]. */ | |
6725 | ||
6726 | struct value* | |
6727 | ada_to_fixed_value (type0, valaddr, address, val0) | |
6728 | struct type* type0; | |
6729 | char* valaddr; | |
6730 | CORE_ADDR address; | |
6731 | struct value* val0; | |
6732 | { | |
6733 | struct type* type = ada_to_fixed_type (type0, valaddr, address, NULL); | |
6734 | if (type == type0 && val0 != NULL) | |
6735 | return val0; | |
6736 | else return value_from_contents_and_address (type, valaddr, address); | |
6737 | } | |
6738 | ||
6739 | /* A value representing VAL, but with a standard (static-sized) type | |
6740 | chosen to approximate the real type of VAL as well as possible, but | |
6741 | without consulting any runtime values. For Ada dynamic-sized | |
6742 | types, therefore, the type of the result is likely to be inaccurate. */ | |
6743 | ||
6744 | struct value* | |
6745 | ada_to_static_fixed_value (val) | |
6746 | struct value* val; | |
6747 | { | |
6748 | struct type *type = | |
6749 | to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val))); | |
6750 | if (type == VALUE_TYPE (val)) | |
6751 | return val; | |
6752 | else | |
6753 | return coerce_unspec_val_to_type (val, 0, type); | |
6754 | } | |
6755 | ||
6756 | ||
6757 | \f | |
6758 | ||
6759 | ||
6760 | /* Attributes */ | |
6761 | ||
6762 | /* Table mapping attribute numbers to names */ | |
6763 | /* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */ | |
6764 | ||
6765 | static const char* attribute_names[] = { | |
6766 | "<?>", | |
6767 | ||
6768 | "first", | |
6769 | "last", | |
6770 | "length", | |
6771 | "image", | |
6772 | "img", | |
6773 | "max", | |
6774 | "min", | |
6775 | "pos" | |
6776 | "tag", | |
6777 | "val", | |
6778 | ||
6779 | 0 | |
6780 | }; | |
6781 | ||
6782 | const char* | |
6783 | ada_attribute_name (n) | |
6784 | int n; | |
6785 | { | |
6786 | if (n > 0 && n < (int) ATR_END) | |
6787 | return attribute_names[n]; | |
6788 | else | |
6789 | return attribute_names[0]; | |
6790 | } | |
6791 | ||
6792 | /* Evaluate the 'POS attribute applied to ARG. */ | |
6793 | ||
6794 | static struct value* | |
6795 | value_pos_atr (arg) | |
6796 | struct value* arg; | |
6797 | { | |
6798 | struct type *type = VALUE_TYPE (arg); | |
6799 | ||
6800 | if (! discrete_type_p (type)) | |
6801 | error ("'POS only defined on discrete types"); | |
6802 | ||
6803 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
6804 | { | |
6805 | int i; | |
6806 | LONGEST v = value_as_long (arg); | |
6807 | ||
6808 | for (i = 0; i < TYPE_NFIELDS (type); i += 1) | |
6809 | { | |
6810 | if (v == TYPE_FIELD_BITPOS (type, i)) | |
6811 | return value_from_longest (builtin_type_ada_int, i); | |
6812 | } | |
6813 | error ("enumeration value is invalid: can't find 'POS"); | |
6814 | } | |
6815 | else | |
6816 | return value_from_longest (builtin_type_ada_int, value_as_long (arg)); | |
6817 | } | |
6818 | ||
6819 | /* Evaluate the TYPE'VAL attribute applied to ARG. */ | |
6820 | ||
6821 | static struct value* | |
6822 | value_val_atr (type, arg) | |
6823 | struct type *type; | |
6824 | struct value* arg; | |
6825 | { | |
6826 | if (! discrete_type_p (type)) | |
6827 | error ("'VAL only defined on discrete types"); | |
6828 | if (! integer_type_p (VALUE_TYPE (arg))) | |
6829 | error ("'VAL requires integral argument"); | |
6830 | ||
6831 | if (TYPE_CODE (type) == TYPE_CODE_ENUM) | |
6832 | { | |
6833 | long pos = value_as_long (arg); | |
6834 | if (pos < 0 || pos >= TYPE_NFIELDS (type)) | |
6835 | error ("argument to 'VAL out of range"); | |
6836 | return | |
6837 | value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); | |
6838 | } | |
6839 | else | |
6840 | return value_from_longest (type, value_as_long (arg)); | |
6841 | } | |
6842 | ||
6843 | \f | |
6844 | /* Evaluation */ | |
6845 | ||
6846 | /* True if TYPE appears to be an Ada character type. | |
6847 | * [At the moment, this is true only for Character and Wide_Character; | |
6848 | * It is a heuristic test that could stand improvement]. */ | |
6849 | ||
6850 | int | |
6851 | ada_is_character_type (type) | |
6852 | struct type* type; | |
6853 | { | |
6854 | const char* name = ada_type_name (type); | |
6855 | return | |
6856 | name != NULL | |
6857 | && (TYPE_CODE (type) == TYPE_CODE_CHAR | |
6858 | || TYPE_CODE (type) == TYPE_CODE_INT | |
6859 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
6860 | && (STREQ (name, "character") || STREQ (name, "wide_character") | |
6861 | || STREQ (name, "unsigned char")); | |
6862 | } | |
6863 | ||
6864 | /* True if TYPE appears to be an Ada string type. */ | |
6865 | ||
6866 | int | |
6867 | ada_is_string_type (type) | |
6868 | struct type *type; | |
6869 | { | |
6870 | CHECK_TYPEDEF (type); | |
6871 | if (type != NULL | |
6872 | && TYPE_CODE (type) != TYPE_CODE_PTR | |
6873 | && (ada_is_simple_array (type) || ada_is_array_descriptor (type)) | |
6874 | && ada_array_arity (type) == 1) | |
6875 | { | |
6876 | struct type *elttype = ada_array_element_type (type, 1); | |
6877 | ||
6878 | return ada_is_character_type (elttype); | |
6879 | } | |
6880 | else | |
6881 | return 0; | |
6882 | } | |
6883 | ||
6884 | ||
6885 | /* True if TYPE is a struct type introduced by the compiler to force the | |
6886 | alignment of a value. Such types have a single field with a | |
6887 | distinctive name. */ | |
6888 | ||
6889 | int | |
6890 | ada_is_aligner_type (type) | |
6891 | struct type *type; | |
6892 | { | |
6893 | CHECK_TYPEDEF (type); | |
6894 | return (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
6895 | && TYPE_NFIELDS (type) == 1 | |
6896 | && STREQ (TYPE_FIELD_NAME (type, 0), "F")); | |
6897 | } | |
6898 | ||
6899 | /* If there is an ___XVS-convention type parallel to SUBTYPE, return | |
6900 | the parallel type. */ | |
6901 | ||
6902 | struct type* | |
6903 | ada_get_base_type (raw_type) | |
6904 | struct type* raw_type; | |
6905 | { | |
6906 | struct type* real_type_namer; | |
6907 | struct type* raw_real_type; | |
6908 | struct type* real_type; | |
6909 | ||
6910 | if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) | |
6911 | return raw_type; | |
6912 | ||
6913 | real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); | |
6914 | if (real_type_namer == NULL | |
6915 | || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT | |
6916 | || TYPE_NFIELDS (real_type_namer) != 1) | |
6917 | return raw_type; | |
6918 | ||
6919 | raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); | |
6920 | if (raw_real_type == NULL) | |
6921 | return raw_type; | |
6922 | else | |
6923 | return raw_real_type; | |
6924 | } | |
6925 | ||
6926 | /* The type of value designated by TYPE, with all aligners removed. */ | |
6927 | ||
6928 | struct type* | |
6929 | ada_aligned_type (type) | |
6930 | struct type* type; | |
6931 | { | |
6932 | if (ada_is_aligner_type (type)) | |
6933 | return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); | |
6934 | else | |
6935 | return ada_get_base_type (type); | |
6936 | } | |
6937 | ||
6938 | ||
6939 | /* The address of the aligned value in an object at address VALADDR | |
6940 | having type TYPE. Assumes ada_is_aligner_type (TYPE). */ | |
6941 | ||
6942 | char* | |
6943 | ada_aligned_value_addr (type, valaddr) | |
6944 | struct type *type; | |
6945 | char *valaddr; | |
6946 | { | |
6947 | if (ada_is_aligner_type (type)) | |
6948 | return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), | |
6949 | valaddr + | |
6950 | TYPE_FIELD_BITPOS (type, 0)/TARGET_CHAR_BIT); | |
6951 | else | |
6952 | return valaddr; | |
6953 | } | |
6954 | ||
6955 | /* The printed representation of an enumeration literal with encoded | |
6956 | name NAME. The value is good to the next call of ada_enum_name. */ | |
6957 | const char* | |
6958 | ada_enum_name (name) | |
6959 | const char* name; | |
6960 | { | |
6961 | char* tmp; | |
6962 | ||
6963 | while (1) | |
6964 | { | |
6965 | if ((tmp = strstr (name, "__")) != NULL) | |
6966 | name = tmp+2; | |
6967 | else if ((tmp = strchr (name, '.')) != NULL) | |
6968 | name = tmp+1; | |
6969 | else | |
6970 | break; | |
6971 | } | |
6972 | ||
6973 | if (name[0] == 'Q') | |
6974 | { | |
6975 | static char result[16]; | |
6976 | int v; | |
6977 | if (name[1] == 'U' || name[1] == 'W') | |
6978 | { | |
6979 | if (sscanf (name+2, "%x", &v) != 1) | |
6980 | return name; | |
6981 | } | |
6982 | else | |
6983 | return name; | |
6984 | ||
6985 | if (isascii (v) && isprint (v)) | |
6986 | sprintf (result, "'%c'", v); | |
6987 | else if (name[1] == 'U') | |
6988 | sprintf (result, "[\"%02x\"]", v); | |
6989 | else | |
6990 | sprintf (result, "[\"%04x\"]", v); | |
6991 | ||
6992 | return result; | |
6993 | } | |
6994 | else | |
6995 | return name; | |
6996 | } | |
6997 | ||
6998 | static struct value* | |
6999 | evaluate_subexp (expect_type, exp, pos, noside) | |
7000 | struct type *expect_type; | |
7001 | struct expression *exp; | |
7002 | int *pos; | |
7003 | enum noside noside; | |
7004 | { | |
7005 | return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside); | |
7006 | } | |
7007 | ||
7008 | /* Evaluate the subexpression of EXP starting at *POS as for | |
7009 | evaluate_type, updating *POS to point just past the evaluated | |
7010 | expression. */ | |
7011 | ||
7012 | static struct value* | |
7013 | evaluate_subexp_type (exp, pos) | |
7014 | struct expression* exp; | |
7015 | int* pos; | |
7016 | { | |
7017 | return (*exp->language_defn->evaluate_exp) | |
7018 | (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); | |
7019 | } | |
7020 | ||
7021 | /* If VAL is wrapped in an aligner or subtype wrapper, return the | |
7022 | value it wraps. */ | |
7023 | ||
7024 | static struct value* | |
7025 | unwrap_value (val) | |
7026 | struct value* val; | |
7027 | { | |
7028 | struct type* type = check_typedef (VALUE_TYPE (val)); | |
7029 | if (ada_is_aligner_type (type)) | |
7030 | { | |
7031 | struct value* v = value_struct_elt (&val, NULL, "F", | |
7032 | NULL, "internal structure"); | |
7033 | struct type* val_type = check_typedef (VALUE_TYPE (v)); | |
7034 | if (ada_type_name (val_type) == NULL) | |
7035 | TYPE_NAME (val_type) = ada_type_name (type); | |
7036 | ||
7037 | return unwrap_value (v); | |
7038 | } | |
7039 | else | |
7040 | { | |
7041 | struct type* raw_real_type = | |
7042 | ada_completed_type (ada_get_base_type (type)); | |
7043 | ||
7044 | if (type == raw_real_type) | |
7045 | return val; | |
7046 | ||
7047 | return | |
7048 | coerce_unspec_val_to_type | |
7049 | (val, 0, ada_to_fixed_type (raw_real_type, 0, | |
7050 | VALUE_ADDRESS (val) + VALUE_OFFSET (val), | |
7051 | NULL)); | |
7052 | } | |
7053 | } | |
7054 | ||
7055 | static struct value* | |
7056 | cast_to_fixed (type, arg) | |
7057 | struct type *type; | |
7058 | struct value* arg; | |
7059 | { | |
7060 | LONGEST val; | |
7061 | ||
7062 | if (type == VALUE_TYPE (arg)) | |
7063 | return arg; | |
7064 | else if (ada_is_fixed_point_type (VALUE_TYPE (arg))) | |
7065 | val = ada_float_to_fixed (type, | |
7066 | ada_fixed_to_float (VALUE_TYPE (arg), | |
7067 | value_as_long (arg))); | |
7068 | else | |
7069 | { | |
7070 | DOUBLEST argd = | |
7071 | value_as_double (value_cast (builtin_type_double, value_copy (arg))); | |
7072 | val = ada_float_to_fixed (type, argd); | |
7073 | } | |
7074 | ||
7075 | return value_from_longest (type, val); | |
7076 | } | |
7077 | ||
7078 | static struct value* | |
7079 | cast_from_fixed_to_double (arg) | |
7080 | struct value* arg; | |
7081 | { | |
7082 | DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg), | |
7083 | value_as_long (arg)); | |
7084 | return value_from_double (builtin_type_double, val); | |
7085 | } | |
7086 | ||
7087 | /* Coerce VAL as necessary for assignment to an lval of type TYPE, and | |
7088 | * return the converted value. */ | |
7089 | static struct value* | |
7090 | coerce_for_assign (type, val) | |
7091 | struct type* type; | |
7092 | struct value* val; | |
7093 | { | |
7094 | struct type* type2 = VALUE_TYPE (val); | |
7095 | if (type == type2) | |
7096 | return val; | |
7097 | ||
7098 | CHECK_TYPEDEF (type2); | |
7099 | CHECK_TYPEDEF (type); | |
7100 | ||
7101 | if (TYPE_CODE (type2) == TYPE_CODE_PTR && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
7102 | { | |
7103 | val = ada_value_ind (val); | |
7104 | type2 = VALUE_TYPE (val); | |
7105 | } | |
7106 | ||
7107 | if (TYPE_CODE (type2) == TYPE_CODE_ARRAY | |
7108 | && TYPE_CODE (type) == TYPE_CODE_ARRAY) | |
7109 | { | |
7110 | if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) | |
7111 | || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) | |
7112 | != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) | |
7113 | error ("Incompatible types in assignment"); | |
7114 | VALUE_TYPE (val) = type; | |
7115 | } | |
7116 | return val; | |
7117 | } | |
7118 | ||
7119 | struct value* | |
7120 | ada_evaluate_subexp (expect_type, exp, pos, noside) | |
7121 | struct type *expect_type; | |
7122 | struct expression *exp; | |
7123 | int *pos; | |
7124 | enum noside noside; | |
7125 | { | |
7126 | enum exp_opcode op; | |
7127 | enum ada_attribute atr; | |
7128 | int tem, tem2, tem3; | |
7129 | int pc; | |
7130 | struct value *arg1 = NULL, *arg2 = NULL, *arg3; | |
7131 | struct type *type; | |
7132 | int nargs; | |
7133 | struct value* *argvec; | |
7134 | ||
7135 | pc = *pos; *pos += 1; | |
7136 | op = exp->elts[pc].opcode; | |
7137 | ||
7138 | switch (op) | |
7139 | { | |
7140 | default: | |
7141 | *pos -= 1; | |
7142 | return unwrap_value (evaluate_subexp_standard (expect_type, exp, pos, noside)); | |
7143 | ||
7144 | case UNOP_CAST: | |
7145 | (*pos) += 2; | |
7146 | type = exp->elts[pc + 1].type; | |
7147 | arg1 = evaluate_subexp (type, exp, pos, noside); | |
7148 | if (noside == EVAL_SKIP) | |
7149 | goto nosideret; | |
7150 | if (type != check_typedef (VALUE_TYPE (arg1))) | |
7151 | { | |
7152 | if (ada_is_fixed_point_type (type)) | |
7153 | arg1 = cast_to_fixed (type, arg1); | |
7154 | else if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) | |
7155 | arg1 = value_cast (type, cast_from_fixed_to_double (arg1)); | |
7156 | else if (VALUE_LVAL (arg1) == lval_memory) | |
7157 | { | |
7158 | /* This is in case of the really obscure (and undocumented, | |
7159 | but apparently expected) case of (Foo) Bar.all, where Bar | |
7160 | is an integer constant and Foo is a dynamic-sized type. | |
7161 | If we don't do this, ARG1 will simply be relabeled with | |
7162 | TYPE. */ | |
7163 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7164 | return value_zero (to_static_fixed_type (type), not_lval); | |
7165 | arg1 = | |
7166 | ada_to_fixed_value | |
7167 | (type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0); | |
7168 | } | |
7169 | else | |
7170 | arg1 = value_cast (type, arg1); | |
7171 | } | |
7172 | return arg1; | |
7173 | ||
7174 | /* FIXME: UNOP_QUAL should be defined in expression.h */ | |
7175 | /* case UNOP_QUAL: | |
7176 | (*pos) += 2; | |
7177 | type = exp->elts[pc + 1].type; | |
7178 | return ada_evaluate_subexp (type, exp, pos, noside); | |
7179 | */ | |
7180 | case BINOP_ASSIGN: | |
7181 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7182 | arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); | |
7183 | if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) | |
7184 | return arg1; | |
7185 | if (binop_user_defined_p (op, arg1, arg2)) | |
7186 | return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); | |
7187 | else | |
7188 | { | |
7189 | if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) | |
7190 | arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2); | |
7191 | else if (ada_is_fixed_point_type (VALUE_TYPE (arg2))) | |
7192 | error ("Fixed-point values must be assigned to fixed-point variables"); | |
7193 | else | |
7194 | arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2); | |
7195 | return ada_value_assign (arg1, arg2); | |
7196 | } | |
7197 | ||
7198 | case BINOP_ADD: | |
7199 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
7200 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
7201 | if (noside == EVAL_SKIP) | |
7202 | goto nosideret; | |
7203 | if (binop_user_defined_p (op, arg1, arg2)) | |
7204 | return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); | |
7205 | else | |
7206 | { | |
7207 | if ((ada_is_fixed_point_type (VALUE_TYPE (arg1)) | |
7208 | || ada_is_fixed_point_type (VALUE_TYPE (arg2))) | |
7209 | && VALUE_TYPE (arg1) != VALUE_TYPE (arg2)) | |
7210 | error ("Operands of fixed-point addition must have the same type"); | |
7211 | return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2)); | |
7212 | } | |
7213 | ||
7214 | case BINOP_SUB: | |
7215 | arg1 = evaluate_subexp_with_coercion (exp, pos, noside); | |
7216 | arg2 = evaluate_subexp_with_coercion (exp, pos, noside); | |
7217 | if (noside == EVAL_SKIP) | |
7218 | goto nosideret; | |
7219 | if (binop_user_defined_p (op, arg1, arg2)) | |
7220 | return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); | |
7221 | else | |
7222 | { | |
7223 | if ((ada_is_fixed_point_type (VALUE_TYPE (arg1)) | |
7224 | || ada_is_fixed_point_type (VALUE_TYPE (arg2))) | |
7225 | && VALUE_TYPE (arg1) != VALUE_TYPE (arg2)) | |
7226 | error ("Operands of fixed-point subtraction must have the same type"); | |
7227 | return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2)); | |
7228 | } | |
7229 | ||
7230 | case BINOP_MUL: | |
7231 | case BINOP_DIV: | |
7232 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7233 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7234 | if (noside == EVAL_SKIP) | |
7235 | goto nosideret; | |
7236 | if (binop_user_defined_p (op, arg1, arg2)) | |
7237 | return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); | |
7238 | else | |
7239 | if (noside == EVAL_AVOID_SIDE_EFFECTS | |
7240 | && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) | |
7241 | return value_zero (VALUE_TYPE (arg1), not_lval); | |
7242 | else | |
7243 | { | |
7244 | if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) | |
7245 | arg1 = cast_from_fixed_to_double (arg1); | |
7246 | if (ada_is_fixed_point_type (VALUE_TYPE (arg2))) | |
7247 | arg2 = cast_from_fixed_to_double (arg2); | |
7248 | return value_binop (arg1, arg2, op); | |
7249 | } | |
7250 | ||
7251 | case UNOP_NEG: | |
7252 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7253 | if (noside == EVAL_SKIP) | |
7254 | goto nosideret; | |
7255 | if (unop_user_defined_p (op, arg1)) | |
7256 | return value_x_unop (arg1, op, EVAL_NORMAL); | |
7257 | else if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) | |
7258 | return value_cast (VALUE_TYPE (arg1), value_neg (arg1)); | |
7259 | else | |
7260 | return value_neg (arg1); | |
7261 | ||
7262 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
7263 | /* case OP_UNRESOLVED_VALUE: | |
7264 | /* Only encountered when an unresolved symbol occurs in a | |
7265 | context other than a function call, in which case, it is | |
7266 | illegal. *//* | |
7267 | (*pos) += 3; | |
7268 | if (noside == EVAL_SKIP) | |
7269 | goto nosideret; | |
7270 | else | |
7271 | error ("Unexpected unresolved symbol, %s, during evaluation", | |
7272 | ada_demangle (exp->elts[pc + 2].name)); | |
7273 | */ | |
7274 | case OP_VAR_VALUE: | |
7275 | *pos -= 1; | |
7276 | if (noside == EVAL_SKIP) | |
7277 | { | |
7278 | *pos += 4; | |
7279 | goto nosideret; | |
7280 | } | |
7281 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7282 | { | |
7283 | *pos += 4; | |
7284 | return value_zero | |
7285 | (to_static_fixed_type | |
7286 | (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc+2].symbol))), | |
7287 | not_lval); | |
7288 | } | |
7289 | else | |
7290 | { | |
7291 | arg1 = unwrap_value (evaluate_subexp_standard (expect_type, exp, pos, | |
7292 | noside)); | |
7293 | return ada_to_fixed_value (VALUE_TYPE (arg1), 0, | |
7294 | VALUE_ADDRESS (arg1) + VALUE_OFFSET(arg1), | |
7295 | arg1); | |
7296 | } | |
7297 | ||
7298 | case OP_ARRAY: | |
7299 | (*pos) += 3; | |
7300 | tem2 = longest_to_int (exp->elts[pc + 1].longconst); | |
7301 | tem3 = longest_to_int (exp->elts[pc + 2].longconst); | |
7302 | nargs = tem3 - tem2 + 1; | |
7303 | type = expect_type ? check_typedef (expect_type) : NULL_TYPE; | |
7304 | ||
7305 | argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); | |
7306 | for (tem = 0; tem == 0 || tem < nargs; tem += 1) | |
7307 | /* At least one element gets inserted for the type */ | |
7308 | { | |
7309 | /* Ensure that array expressions are coerced into pointer objects. */ | |
7310 | argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); | |
7311 | } | |
7312 | if (noside == EVAL_SKIP) | |
7313 | goto nosideret; | |
7314 | return value_array (tem2, tem3, argvec); | |
7315 | ||
7316 | case OP_FUNCALL: | |
7317 | (*pos) += 2; | |
7318 | ||
7319 | /* Allocate arg vector, including space for the function to be | |
7320 | called in argvec[0] and a terminating NULL */ | |
7321 | nargs = longest_to_int (exp->elts[pc + 1].longconst); | |
7322 | argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 2)); | |
7323 | ||
7324 | /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ | |
7325 | /* FIXME: name should be defined in expresion.h */ | |
7326 | /* if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE) | |
7327 | error ("Unexpected unresolved symbol, %s, during evaluation", | |
7328 | ada_demangle (exp->elts[pc + 5].name)); | |
7329 | */ | |
7330 | if (0) | |
7331 | { | |
7332 | error ("unexpected code path, FIXME"); | |
7333 | } | |
7334 | else | |
7335 | { | |
7336 | for (tem = 0; tem <= nargs; tem += 1) | |
7337 | argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7338 | argvec[tem] = 0; | |
7339 | ||
7340 | if (noside == EVAL_SKIP) | |
7341 | goto nosideret; | |
7342 | } | |
7343 | ||
7344 | if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF) | |
7345 | argvec[0] = value_addr (argvec[0]); | |
7346 | ||
7347 | if (ada_is_packed_array_type (VALUE_TYPE (argvec[0]))) | |
7348 | argvec[0] = ada_coerce_to_simple_array (argvec[0]); | |
7349 | ||
7350 | type = check_typedef (VALUE_TYPE (argvec[0])); | |
7351 | if (TYPE_CODE (type) == TYPE_CODE_PTR) | |
7352 | { | |
7353 | switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type)))) | |
7354 | { | |
7355 | case TYPE_CODE_FUNC: | |
7356 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
7357 | break; | |
7358 | case TYPE_CODE_ARRAY: | |
7359 | break; | |
7360 | case TYPE_CODE_STRUCT: | |
7361 | if (noside != EVAL_AVOID_SIDE_EFFECTS) | |
7362 | argvec[0] = ada_value_ind (argvec[0]); | |
7363 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
7364 | break; | |
7365 | default: | |
7366 | error ("cannot subscript or call something of type `%s'", | |
7367 | ada_type_name (VALUE_TYPE (argvec[0]))); | |
7368 | break; | |
7369 | } | |
7370 | } | |
7371 | ||
7372 | switch (TYPE_CODE (type)) | |
7373 | { | |
7374 | case TYPE_CODE_FUNC: | |
7375 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7376 | return allocate_value (TYPE_TARGET_TYPE (type)); | |
7377 | return call_function_by_hand (argvec[0], nargs, argvec + 1); | |
7378 | case TYPE_CODE_STRUCT: | |
7379 | { | |
7380 | int arity = ada_array_arity (type); | |
7381 | type = ada_array_element_type (type, nargs); | |
7382 | if (type == NULL) | |
7383 | error ("cannot subscript or call a record"); | |
7384 | if (arity != nargs) | |
7385 | error ("wrong number of subscripts; expecting %d", arity); | |
7386 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7387 | return allocate_value (ada_aligned_type (type)); | |
7388 | return unwrap_value (ada_value_subscript (argvec[0], nargs, argvec+1)); | |
7389 | } | |
7390 | case TYPE_CODE_ARRAY: | |
7391 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7392 | { | |
7393 | type = ada_array_element_type (type, nargs); | |
7394 | if (type == NULL) | |
7395 | error ("element type of array unknown"); | |
7396 | else | |
7397 | return allocate_value (ada_aligned_type (type)); | |
7398 | } | |
7399 | return | |
7400 | unwrap_value (ada_value_subscript | |
7401 | (ada_coerce_to_simple_array (argvec[0]), | |
7402 | nargs, argvec+1)); | |
7403 | case TYPE_CODE_PTR: /* Pointer to array */ | |
7404 | type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); | |
7405 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7406 | { | |
7407 | type = ada_array_element_type (type, nargs); | |
7408 | if (type == NULL) | |
7409 | error ("element type of array unknown"); | |
7410 | else | |
7411 | return allocate_value (ada_aligned_type (type)); | |
7412 | } | |
7413 | return | |
7414 | unwrap_value (ada_value_ptr_subscript (argvec[0], type, | |
7415 | nargs, argvec+1)); | |
7416 | ||
7417 | default: | |
7418 | error ("Internal error in evaluate_subexp"); | |
7419 | } | |
7420 | ||
7421 | case TERNOP_SLICE: | |
7422 | { | |
7423 | struct value* array = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7424 | int lowbound | |
7425 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
7426 | int upper | |
7427 | = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); | |
7428 | if (noside == EVAL_SKIP) | |
7429 | goto nosideret; | |
7430 | ||
7431 | /* If this is a reference to an array, then dereference it */ | |
7432 | if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF | |
7433 | && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL | |
7434 | && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) == | |
7435 | TYPE_CODE_ARRAY | |
7436 | && !ada_is_array_descriptor (check_typedef (VALUE_TYPE | |
7437 | (array)))) | |
7438 | { | |
7439 | array = ada_coerce_ref (array); | |
7440 | } | |
7441 | ||
7442 | if (noside == EVAL_AVOID_SIDE_EFFECTS && | |
7443 | ada_is_array_descriptor (check_typedef (VALUE_TYPE (array)))) | |
7444 | { | |
7445 | /* Try to dereference the array, in case it is an access to array */ | |
7446 | struct type * arrType = ada_type_of_array (array, 0); | |
7447 | if (arrType != NULL) | |
7448 | array = value_at_lazy (arrType, 0, NULL); | |
7449 | } | |
7450 | if (ada_is_array_descriptor (VALUE_TYPE (array))) | |
7451 | array = ada_coerce_to_simple_array (array); | |
7452 | ||
7453 | /* If at this point we have a pointer to an array, it means that | |
7454 | it is a pointer to a simple (non-ada) array. We just then | |
7455 | dereference it */ | |
7456 | if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR | |
7457 | && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL | |
7458 | && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) == | |
7459 | TYPE_CODE_ARRAY) | |
7460 | { | |
7461 | array = ada_value_ind (array); | |
7462 | } | |
7463 | ||
7464 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7465 | /* The following will get the bounds wrong, but only in contexts | |
7466 | where the value is not being requested (FIXME?). */ | |
7467 | return array; | |
7468 | else | |
7469 | return value_slice (array, lowbound, upper - lowbound + 1); | |
7470 | } | |
7471 | ||
7472 | /* FIXME: UNOP_MBR should be defined in expression.h */ | |
7473 | /* case UNOP_MBR: | |
7474 | (*pos) += 2; | |
7475 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7476 | type = exp->elts[pc + 1].type; | |
7477 | ||
7478 | if (noside == EVAL_SKIP) | |
7479 | goto nosideret; | |
7480 | ||
7481 | switch (TYPE_CODE (type)) | |
7482 | { | |
7483 | default: | |
7484 | warning ("Membership test incompletely implemented; always returns true"); | |
7485 | return value_from_longest (builtin_type_int, (LONGEST) 1); | |
7486 | ||
7487 | case TYPE_CODE_RANGE: | |
7488 | arg2 = value_from_longest (builtin_type_int, | |
7489 | (LONGEST) TYPE_LOW_BOUND (type)); | |
7490 | arg3 = value_from_longest (builtin_type_int, | |
7491 | (LONGEST) TYPE_HIGH_BOUND (type)); | |
7492 | return | |
7493 | value_from_longest (builtin_type_int, | |
7494 | (value_less (arg1,arg3) | |
7495 | || value_equal (arg1,arg3)) | |
7496 | && (value_less (arg2,arg1) | |
7497 | || value_equal (arg2,arg1))); | |
7498 | } | |
7499 | */ | |
7500 | /* FIXME: BINOP_MBR should be defined in expression.h */ | |
7501 | /* case BINOP_MBR: | |
7502 | (*pos) += 2; | |
7503 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7504 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7505 | ||
7506 | if (noside == EVAL_SKIP) | |
7507 | goto nosideret; | |
7508 | ||
7509 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7510 | return value_zero (builtin_type_int, not_lval); | |
7511 | ||
7512 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
7513 | ||
7514 | if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2))) | |
7515 | error ("invalid dimension number to '%s", "range"); | |
7516 | ||
7517 | arg3 = ada_array_bound (arg2, tem, 1); | |
7518 | arg2 = ada_array_bound (arg2, tem, 0); | |
7519 | ||
7520 | return | |
7521 | value_from_longest (builtin_type_int, | |
7522 | (value_less (arg1,arg3) | |
7523 | || value_equal (arg1,arg3)) | |
7524 | && (value_less (arg2,arg1) | |
7525 | || value_equal (arg2,arg1))); | |
7526 | */ | |
7527 | /* FIXME: TERNOP_MBR should be defined in expression.h */ | |
7528 | /* case TERNOP_MBR: | |
7529 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7530 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7531 | arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7532 | ||
7533 | if (noside == EVAL_SKIP) | |
7534 | goto nosideret; | |
7535 | ||
7536 | return | |
7537 | value_from_longest (builtin_type_int, | |
7538 | (value_less (arg1,arg3) | |
7539 | || value_equal (arg1,arg3)) | |
7540 | && (value_less (arg2,arg1) | |
7541 | || value_equal (arg2,arg1))); | |
7542 | */ | |
7543 | /* FIXME: OP_ATTRIBUTE should be defined in expression.h */ | |
7544 | /* case OP_ATTRIBUTE: | |
7545 | *pos += 3; | |
7546 | atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst); | |
7547 | switch (atr) | |
7548 | { | |
7549 | default: | |
7550 | error ("unexpected attribute encountered"); | |
7551 | ||
7552 | case ATR_FIRST: | |
7553 | case ATR_LAST: | |
7554 | case ATR_LENGTH: | |
7555 | { | |
7556 | struct type* type_arg; | |
7557 | if (exp->elts[*pos].opcode == OP_TYPE) | |
7558 | { | |
7559 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
7560 | arg1 = NULL; | |
7561 | type_arg = exp->elts[pc + 5].type; | |
7562 | } | |
7563 | else | |
7564 | { | |
7565 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7566 | type_arg = NULL; | |
7567 | } | |
7568 | ||
7569 | if (exp->elts[*pos].opcode != OP_LONG) | |
7570 | error ("illegal operand to '%s", ada_attribute_name (atr)); | |
7571 | tem = longest_to_int (exp->elts[*pos+2].longconst); | |
7572 | *pos += 4; | |
7573 | ||
7574 | if (noside == EVAL_SKIP) | |
7575 | goto nosideret; | |
7576 | ||
7577 | if (type_arg == NULL) | |
7578 | { | |
7579 | arg1 = ada_coerce_ref (arg1); | |
7580 | ||
7581 | if (ada_is_packed_array_type (VALUE_TYPE (arg1))) | |
7582 | arg1 = ada_coerce_to_simple_array (arg1); | |
7583 | ||
7584 | if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1))) | |
7585 | error ("invalid dimension number to '%s", | |
7586 | ada_attribute_name (atr)); | |
7587 | ||
7588 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7589 | { | |
7590 | type = ada_index_type (VALUE_TYPE (arg1), tem); | |
7591 | if (type == NULL) | |
7592 | error ("attempt to take bound of something that is not an array"); | |
7593 | return allocate_value (type); | |
7594 | } | |
7595 | ||
7596 | switch (atr) | |
7597 | { | |
7598 | default: | |
7599 | error ("unexpected attribute encountered"); | |
7600 | case ATR_FIRST: | |
7601 | return ada_array_bound (arg1, tem, 0); | |
7602 | case ATR_LAST: | |
7603 | return ada_array_bound (arg1, tem, 1); | |
7604 | case ATR_LENGTH: | |
7605 | return ada_array_length (arg1, tem); | |
7606 | } | |
7607 | } | |
7608 | else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE | |
7609 | || TYPE_CODE (type_arg) == TYPE_CODE_INT) | |
7610 | { | |
7611 | struct type* range_type; | |
7612 | char* name = ada_type_name (type_arg); | |
7613 | if (name == NULL) | |
7614 | { | |
7615 | if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE) | |
7616 | range_type = type_arg; | |
7617 | else | |
7618 | error ("unimplemented type attribute"); | |
7619 | } | |
7620 | else | |
7621 | range_type = | |
7622 | to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); | |
7623 | switch (atr) | |
7624 | { | |
7625 | default: | |
7626 | error ("unexpected attribute encountered"); | |
7627 | case ATR_FIRST: | |
7628 | return value_from_longest (TYPE_TARGET_TYPE (range_type), | |
7629 | TYPE_LOW_BOUND (range_type)); | |
7630 | case ATR_LAST: | |
7631 | return value_from_longest (TYPE_TARGET_TYPE (range_type), | |
7632 | TYPE_HIGH_BOUND (range_type)); | |
7633 | } | |
7634 | } | |
7635 | else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM) | |
7636 | { | |
7637 | switch (atr) | |
7638 | { | |
7639 | default: | |
7640 | error ("unexpected attribute encountered"); | |
7641 | case ATR_FIRST: | |
7642 | return value_from_longest | |
7643 | (type_arg, TYPE_FIELD_BITPOS (type_arg, 0)); | |
7644 | case ATR_LAST: | |
7645 | return value_from_longest | |
7646 | (type_arg, | |
7647 | TYPE_FIELD_BITPOS (type_arg, | |
7648 | TYPE_NFIELDS (type_arg) - 1)); | |
7649 | } | |
7650 | } | |
7651 | else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) | |
7652 | error ("unimplemented type attribute"); | |
7653 | else | |
7654 | { | |
7655 | LONGEST low, high; | |
7656 | ||
7657 | if (ada_is_packed_array_type (type_arg)) | |
7658 | type_arg = decode_packed_array_type (type_arg); | |
7659 | ||
7660 | if (tem < 1 || tem > ada_array_arity (type_arg)) | |
7661 | error ("invalid dimension number to '%s", | |
7662 | ada_attribute_name (atr)); | |
7663 | ||
7664 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7665 | { | |
7666 | type = ada_index_type (type_arg, tem); | |
7667 | if (type == NULL) | |
7668 | error ("attempt to take bound of something that is not an array"); | |
7669 | return allocate_value (type); | |
7670 | } | |
7671 | ||
7672 | switch (atr) | |
7673 | { | |
7674 | default: | |
7675 | error ("unexpected attribute encountered"); | |
7676 | case ATR_FIRST: | |
7677 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
7678 | return value_from_longest (type, low); | |
7679 | case ATR_LAST: | |
7680 | high = ada_array_bound_from_type (type_arg, tem, 1, &type); | |
7681 | return value_from_longest (type, high); | |
7682 | case ATR_LENGTH: | |
7683 | low = ada_array_bound_from_type (type_arg, tem, 0, &type); | |
7684 | high = ada_array_bound_from_type (type_arg, tem, 1, NULL); | |
7685 | return value_from_longest (type, high-low+1); | |
7686 | } | |
7687 | } | |
7688 | } | |
7689 | ||
7690 | case ATR_TAG: | |
7691 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7692 | if (noside == EVAL_SKIP) | |
7693 | goto nosideret; | |
7694 | ||
7695 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7696 | return | |
7697 | value_zero (ada_tag_type (arg1), not_lval); | |
7698 | ||
7699 | return ada_value_tag (arg1); | |
7700 | ||
7701 | case ATR_MIN: | |
7702 | case ATR_MAX: | |
7703 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
7704 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7705 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7706 | if (noside == EVAL_SKIP) | |
7707 | goto nosideret; | |
7708 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7709 | return value_zero (VALUE_TYPE (arg1), not_lval); | |
7710 | else | |
7711 | return value_binop (arg1, arg2, | |
7712 | atr == ATR_MIN ? BINOP_MIN : BINOP_MAX); | |
7713 | ||
7714 | case ATR_MODULUS: | |
7715 | { | |
7716 | struct type* type_arg = exp->elts[pc + 5].type; | |
7717 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
7718 | *pos += 4; | |
7719 | ||
7720 | if (noside == EVAL_SKIP) | |
7721 | goto nosideret; | |
7722 | ||
7723 | if (! ada_is_modular_type (type_arg)) | |
7724 | error ("'modulus must be applied to modular type"); | |
7725 | ||
7726 | return value_from_longest (TYPE_TARGET_TYPE (type_arg), | |
7727 | ada_modulus (type_arg)); | |
7728 | } | |
7729 | ||
7730 | ||
7731 | case ATR_POS: | |
7732 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
7733 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7734 | if (noside == EVAL_SKIP) | |
7735 | goto nosideret; | |
7736 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7737 | return value_zero (builtin_type_ada_int, not_lval); | |
7738 | else | |
7739 | return value_pos_atr (arg1); | |
7740 | ||
7741 | case ATR_SIZE: | |
7742 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7743 | if (noside == EVAL_SKIP) | |
7744 | goto nosideret; | |
7745 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7746 | return value_zero (builtin_type_ada_int, not_lval); | |
7747 | else | |
7748 | return value_from_longest (builtin_type_ada_int, | |
7749 | TARGET_CHAR_BIT | |
7750 | * TYPE_LENGTH (VALUE_TYPE (arg1))); | |
7751 | ||
7752 | case ATR_VAL: | |
7753 | evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); | |
7754 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7755 | type = exp->elts[pc + 5].type; | |
7756 | if (noside == EVAL_SKIP) | |
7757 | goto nosideret; | |
7758 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7759 | return value_zero (type, not_lval); | |
7760 | else | |
7761 | return value_val_atr (type, arg1); | |
7762 | }*/ | |
7763 | case BINOP_EXP: | |
7764 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7765 | arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7766 | if (noside == EVAL_SKIP) | |
7767 | goto nosideret; | |
7768 | if (binop_user_defined_p (op, arg1, arg2)) | |
7769 | return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL, | |
7770 | EVAL_NORMAL)); | |
7771 | else | |
7772 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7773 | return value_zero (VALUE_TYPE (arg1), not_lval); | |
7774 | else | |
7775 | return value_binop (arg1, arg2, op); | |
7776 | ||
7777 | case UNOP_PLUS: | |
7778 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7779 | if (noside == EVAL_SKIP) | |
7780 | goto nosideret; | |
7781 | if (unop_user_defined_p (op, arg1)) | |
7782 | return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL)); | |
7783 | else | |
7784 | return arg1; | |
7785 | ||
7786 | case UNOP_ABS: | |
7787 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7788 | if (noside == EVAL_SKIP) | |
7789 | goto nosideret; | |
7790 | if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval))) | |
7791 | return value_neg (arg1); | |
7792 | else | |
7793 | return arg1; | |
7794 | ||
7795 | case UNOP_IND: | |
7796 | if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) | |
7797 | expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); | |
7798 | arg1 = evaluate_subexp (expect_type, exp, pos, noside); | |
7799 | if (noside == EVAL_SKIP) | |
7800 | goto nosideret; | |
7801 | type = check_typedef (VALUE_TYPE (arg1)); | |
7802 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7803 | { | |
7804 | if (ada_is_array_descriptor (type)) | |
7805 | /* GDB allows dereferencing GNAT array descriptors. */ | |
7806 | { | |
7807 | struct type* arrType = ada_type_of_array (arg1, 0); | |
7808 | if (arrType == NULL) | |
7809 | error ("Attempt to dereference null array pointer."); | |
7810 | return value_at_lazy (arrType, 0, NULL); | |
7811 | } | |
7812 | else if (TYPE_CODE (type) == TYPE_CODE_PTR | |
7813 | || TYPE_CODE (type) == TYPE_CODE_REF | |
7814 | /* In C you can dereference an array to get the 1st elt. */ | |
7815 | || TYPE_CODE (type) == TYPE_CODE_ARRAY | |
7816 | ) | |
7817 | return | |
7818 | value_zero | |
7819 | (to_static_fixed_type | |
7820 | (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))), | |
7821 | lval_memory); | |
7822 | else if (TYPE_CODE (type) == TYPE_CODE_INT) | |
7823 | /* GDB allows dereferencing an int. */ | |
7824 | return value_zero (builtin_type_int, lval_memory); | |
7825 | else | |
7826 | error ("Attempt to take contents of a non-pointer value."); | |
7827 | } | |
7828 | arg1 = ada_coerce_ref (arg1); | |
7829 | type = check_typedef (VALUE_TYPE (arg1)); | |
7830 | ||
7831 | if (ada_is_array_descriptor (type)) | |
7832 | /* GDB allows dereferencing GNAT array descriptors. */ | |
7833 | return ada_coerce_to_simple_array (arg1); | |
7834 | else | |
7835 | return ada_value_ind (arg1); | |
7836 | ||
7837 | case STRUCTOP_STRUCT: | |
7838 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
7839 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
7840 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7841 | if (noside == EVAL_SKIP) | |
7842 | goto nosideret; | |
7843 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7844 | return value_zero (ada_aligned_type | |
7845 | (ada_lookup_struct_elt_type (VALUE_TYPE (arg1), | |
7846 | &exp->elts[pc + 2].string, | |
7847 | 0, NULL)), | |
7848 | lval_memory); | |
7849 | else | |
7850 | return unwrap_value (ada_value_struct_elt (arg1, | |
7851 | &exp->elts[pc + 2].string, | |
7852 | "record")); | |
7853 | case OP_TYPE: | |
7854 | /* The value is not supposed to be used. This is here to make it | |
7855 | easier to accommodate expressions that contain types. */ | |
7856 | (*pos) += 2; | |
7857 | if (noside == EVAL_SKIP) | |
7858 | goto nosideret; | |
7859 | else if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7860 | return allocate_value (builtin_type_void); | |
7861 | else | |
7862 | error ("Attempt to use a type name as an expression"); | |
7863 | ||
7864 | case STRUCTOP_PTR: | |
7865 | tem = longest_to_int (exp->elts[pc + 1].longconst); | |
7866 | (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); | |
7867 | arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); | |
7868 | if (noside == EVAL_SKIP) | |
7869 | goto nosideret; | |
7870 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
7871 | return value_zero (ada_aligned_type | |
7872 | (ada_lookup_struct_elt_type (VALUE_TYPE (arg1), | |
7873 | &exp->elts[pc + 2].string, | |
7874 | 0, NULL)), | |
7875 | lval_memory); | |
7876 | else | |
7877 | return unwrap_value (ada_value_struct_elt (arg1, | |
7878 | &exp->elts[pc + 2].string, | |
7879 | "record access")); | |
7880 | } | |
7881 | ||
7882 | nosideret: | |
7883 | return value_from_longest (builtin_type_long, (LONGEST) 1); | |
7884 | } | |
7885 | ||
7886 | \f | |
7887 | /* Fixed point */ | |
7888 | ||
7889 | /* If TYPE encodes an Ada fixed-point type, return the suffix of the | |
7890 | type name that encodes the 'small and 'delta information. | |
7891 | Otherwise, return NULL. */ | |
7892 | ||
7893 | static const char* | |
7894 | fixed_type_info (type) | |
7895 | struct type *type; | |
7896 | { | |
7897 | const char* name = ada_type_name (type); | |
7898 | enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); | |
7899 | ||
7900 | if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) | |
7901 | && name != NULL) | |
7902 | { | |
7903 | const char *tail = strstr (name, "___XF_"); | |
7904 | if (tail == NULL) | |
7905 | return NULL; | |
7906 | else | |
7907 | return tail + 5; | |
7908 | } | |
7909 | else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) | |
7910 | return fixed_type_info (TYPE_TARGET_TYPE (type)); | |
7911 | else | |
7912 | return NULL; | |
7913 | } | |
7914 | ||
7915 | /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ | |
7916 | ||
7917 | int | |
7918 | ada_is_fixed_point_type (type) | |
7919 | struct type *type; | |
7920 | { | |
7921 | return fixed_type_info (type) != NULL; | |
7922 | } | |
7923 | ||
7924 | /* Assuming that TYPE is the representation of an Ada fixed-point | |
7925 | type, return its delta, or -1 if the type is malformed and the | |
7926 | delta cannot be determined. */ | |
7927 | ||
7928 | DOUBLEST | |
7929 | ada_delta (type) | |
7930 | struct type *type; | |
7931 | { | |
7932 | const char *encoding = fixed_type_info (type); | |
7933 | long num, den; | |
7934 | ||
7935 | if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2) | |
7936 | return -1.0; | |
7937 | else | |
7938 | return (DOUBLEST) num / (DOUBLEST) den; | |
7939 | } | |
7940 | ||
7941 | /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling | |
7942 | factor ('SMALL value) associated with the type. */ | |
7943 | ||
7944 | static DOUBLEST | |
7945 | scaling_factor (type) | |
7946 | struct type *type; | |
7947 | { | |
7948 | const char *encoding = fixed_type_info (type); | |
7949 | unsigned long num0, den0, num1, den1; | |
7950 | int n; | |
7951 | ||
7952 | n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1); | |
7953 | ||
7954 | if (n < 2) | |
7955 | return 1.0; | |
7956 | else if (n == 4) | |
7957 | return (DOUBLEST) num1 / (DOUBLEST) den1; | |
7958 | else | |
7959 | return (DOUBLEST) num0 / (DOUBLEST) den0; | |
7960 | } | |
7961 | ||
7962 | ||
7963 | /* Assuming that X is the representation of a value of fixed-point | |
7964 | type TYPE, return its floating-point equivalent. */ | |
7965 | ||
7966 | DOUBLEST | |
7967 | ada_fixed_to_float (type, x) | |
7968 | struct type *type; | |
7969 | LONGEST x; | |
7970 | { | |
7971 | return (DOUBLEST) x * scaling_factor (type); | |
7972 | } | |
7973 | ||
7974 | /* The representation of a fixed-point value of type TYPE | |
7975 | corresponding to the value X. */ | |
7976 | ||
7977 | LONGEST | |
7978 | ada_float_to_fixed (type, x) | |
7979 | struct type *type; | |
7980 | DOUBLEST x; | |
7981 | { | |
7982 | return (LONGEST) (x / scaling_factor (type) + 0.5); | |
7983 | } | |
7984 | ||
7985 | ||
7986 | /* VAX floating formats */ | |
7987 | ||
7988 | /* Non-zero iff TYPE represents one of the special VAX floating-point | |
7989 | types. */ | |
7990 | int | |
7991 | ada_is_vax_floating_type (type) | |
7992 | struct type* type; | |
7993 | { | |
7994 | int name_len = | |
7995 | (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); | |
7996 | return | |
7997 | name_len > 6 | |
7998 | && (TYPE_CODE (type) == TYPE_CODE_INT | |
7999 | || TYPE_CODE (type) == TYPE_CODE_RANGE) | |
8000 | && STREQN (ada_type_name (type) + name_len - 6, "___XF", 5); | |
8001 | } | |
8002 | ||
8003 | /* The type of special VAX floating-point type this is, assuming | |
8004 | ada_is_vax_floating_point */ | |
8005 | int | |
8006 | ada_vax_float_type_suffix (type) | |
8007 | struct type* type; | |
8008 | { | |
8009 | return ada_type_name (type)[strlen (ada_type_name (type))-1]; | |
8010 | } | |
8011 | ||
8012 | /* A value representing the special debugging function that outputs | |
8013 | VAX floating-point values of the type represented by TYPE. Assumes | |
8014 | ada_is_vax_floating_type (TYPE). */ | |
8015 | struct value* | |
8016 | ada_vax_float_print_function (type) | |
8017 | ||
8018 | struct type* type; | |
8019 | { | |
8020 | switch (ada_vax_float_type_suffix (type)) { | |
8021 | case 'F': | |
8022 | return | |
8023 | get_var_value ("DEBUG_STRING_F", 0); | |
8024 | case 'D': | |
8025 | return | |
8026 | get_var_value ("DEBUG_STRING_D", 0); | |
8027 | case 'G': | |
8028 | return | |
8029 | get_var_value ("DEBUG_STRING_G", 0); | |
8030 | default: | |
8031 | error ("invalid VAX floating-point type"); | |
8032 | } | |
8033 | } | |
8034 | ||
8035 | \f | |
8036 | /* Range types */ | |
8037 | ||
8038 | /* Scan STR beginning at position K for a discriminant name, and | |
8039 | return the value of that discriminant field of DVAL in *PX. If | |
8040 | PNEW_K is not null, put the position of the character beyond the | |
8041 | name scanned in *PNEW_K. Return 1 if successful; return 0 and do | |
8042 | not alter *PX and *PNEW_K if unsuccessful. */ | |
8043 | ||
8044 | static int | |
8045 | scan_discrim_bound (str, k, dval, px, pnew_k) | |
8046 | char *str; | |
8047 | int k; | |
8048 | struct value* dval; | |
8049 | LONGEST *px; | |
8050 | int *pnew_k; | |
8051 | { | |
8052 | static char *bound_buffer = NULL; | |
8053 | static size_t bound_buffer_len = 0; | |
8054 | char *bound; | |
8055 | char *pend; | |
8056 | struct value* bound_val; | |
8057 | ||
8058 | if (dval == NULL || str == NULL || str[k] == '\0') | |
8059 | return 0; | |
8060 | ||
8061 | pend = strstr (str+k, "__"); | |
8062 | if (pend == NULL) | |
8063 | { | |
8064 | bound = str+k; | |
8065 | k += strlen (bound); | |
8066 | } | |
8067 | else | |
8068 | { | |
8069 | GROW_VECT (bound_buffer, bound_buffer_len, pend - (str+k) + 1); | |
8070 | bound = bound_buffer; | |
8071 | strncpy (bound_buffer, str+k, pend-(str+k)); | |
8072 | bound[pend-(str+k)] = '\0'; | |
8073 | k = pend-str; | |
8074 | } | |
8075 | ||
8076 | bound_val = | |
8077 | ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval)); | |
8078 | if (bound_val == NULL) | |
8079 | return 0; | |
8080 | ||
8081 | *px = value_as_long (bound_val); | |
8082 | if (pnew_k != NULL) | |
8083 | *pnew_k = k; | |
8084 | return 1; | |
8085 | } | |
8086 | ||
8087 | /* Value of variable named NAME in the current environment. If | |
8088 | no such variable found, then if ERR_MSG is null, returns 0, and | |
8089 | otherwise causes an error with message ERR_MSG. */ | |
8090 | static struct value* | |
8091 | get_var_value (name, err_msg) | |
8092 | char* name; | |
8093 | char* err_msg; | |
8094 | { | |
8095 | struct symbol** syms; | |
8096 | struct block** blocks; | |
8097 | int nsyms; | |
8098 | ||
8099 | nsyms = ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_NAMESPACE, | |
8100 | &syms, &blocks); | |
8101 | ||
8102 | if (nsyms != 1) | |
8103 | { | |
8104 | if (err_msg == NULL) | |
8105 | return 0; | |
8106 | else | |
8107 | error ("%s", err_msg); | |
8108 | } | |
8109 | ||
8110 | return value_of_variable (syms[0], blocks[0]); | |
8111 | } | |
8112 | ||
8113 | /* Value of integer variable named NAME in the current environment. If | |
8114 | no such variable found, then if ERR_MSG is null, returns 0, and sets | |
8115 | *FLAG to 0. If successful, sets *FLAG to 1. */ | |
8116 | LONGEST | |
8117 | get_int_var_value (name, err_msg, flag) | |
8118 | char* name; | |
8119 | char* err_msg; | |
8120 | int* flag; | |
8121 | { | |
8122 | struct value* var_val = get_var_value (name, err_msg); | |
8123 | ||
8124 | if (var_val == 0) | |
8125 | { | |
8126 | if (flag != NULL) | |
8127 | *flag = 0; | |
8128 | return 0; | |
8129 | } | |
8130 | else | |
8131 | { | |
8132 | if (flag != NULL) | |
8133 | *flag = 1; | |
8134 | return value_as_long (var_val); | |
8135 | } | |
8136 | } | |
8137 | ||
8138 | ||
8139 | /* Return a range type whose base type is that of the range type named | |
8140 | NAME in the current environment, and whose bounds are calculated | |
8141 | from NAME according to the GNAT range encoding conventions. | |
8142 | Extract discriminant values, if needed, from DVAL. If a new type | |
8143 | must be created, allocate in OBJFILE's space. The bounds | |
8144 | information, in general, is encoded in NAME, the base type given in | |
8145 | the named range type. */ | |
8146 | ||
8147 | static struct type* | |
8148 | to_fixed_range_type (name, dval, objfile) | |
8149 | char *name; | |
8150 | struct value *dval; | |
8151 | struct objfile *objfile; | |
8152 | { | |
8153 | struct type *raw_type = ada_find_any_type (name); | |
8154 | struct type *base_type; | |
8155 | LONGEST low, high; | |
8156 | char* subtype_info; | |
8157 | ||
8158 | if (raw_type == NULL) | |
8159 | base_type = builtin_type_int; | |
8160 | else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) | |
8161 | base_type = TYPE_TARGET_TYPE (raw_type); | |
8162 | else | |
8163 | base_type = raw_type; | |
8164 | ||
8165 | subtype_info = strstr (name, "___XD"); | |
8166 | if (subtype_info == NULL) | |
8167 | return raw_type; | |
8168 | else | |
8169 | { | |
8170 | static char *name_buf = NULL; | |
8171 | static size_t name_len = 0; | |
8172 | int prefix_len = subtype_info - name; | |
8173 | LONGEST L, U; | |
8174 | struct type *type; | |
8175 | char *bounds_str; | |
8176 | int n; | |
8177 | ||
8178 | GROW_VECT (name_buf, name_len, prefix_len + 5); | |
8179 | strncpy (name_buf, name, prefix_len); | |
8180 | name_buf[prefix_len] = '\0'; | |
8181 | ||
8182 | subtype_info += 5; | |
8183 | bounds_str = strchr (subtype_info, '_'); | |
8184 | n = 1; | |
8185 | ||
8186 | if (*subtype_info == 'L') | |
8187 | { | |
8188 | if (! ada_scan_number (bounds_str, n, &L, &n) | |
8189 | && ! scan_discrim_bound (bounds_str, n, dval, &L, &n)) | |
8190 | return raw_type; | |
8191 | if (bounds_str[n] == '_') | |
8192 | n += 2; | |
8193 | else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ | |
8194 | n += 1; | |
8195 | subtype_info += 1; | |
8196 | } | |
8197 | else | |
8198 | { | |
8199 | strcpy (name_buf+prefix_len, "___L"); | |
8200 | L = get_int_var_value (name_buf, "Index bound unknown.", NULL); | |
8201 | } | |
8202 | ||
8203 | if (*subtype_info == 'U') | |
8204 | { | |
8205 | if (! ada_scan_number (bounds_str, n, &U, &n) | |
8206 | && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) | |
8207 | return raw_type; | |
8208 | } | |
8209 | else | |
8210 | { | |
8211 | strcpy (name_buf+prefix_len, "___U"); | |
8212 | U = get_int_var_value (name_buf, "Index bound unknown.", NULL); | |
8213 | } | |
8214 | ||
8215 | if (objfile == NULL) | |
8216 | objfile = TYPE_OBJFILE (base_type); | |
8217 | type = create_range_type (alloc_type (objfile), base_type, L, U); | |
8218 | TYPE_NAME (type) = name; | |
8219 | return type; | |
8220 | } | |
8221 | } | |
8222 | ||
8223 | /* True iff NAME is the name of a range type. */ | |
8224 | int | |
8225 | ada_is_range_type_name (name) | |
8226 | const char* name; | |
8227 | { | |
8228 | return (name != NULL && strstr (name, "___XD")); | |
8229 | } | |
8230 | ||
8231 | \f | |
8232 | /* Modular types */ | |
8233 | ||
8234 | /* True iff TYPE is an Ada modular type. */ | |
8235 | int | |
8236 | ada_is_modular_type (type) | |
8237 | struct type* type; | |
8238 | { | |
8239 | /* FIXME: base_type should be declared in gdbtypes.h, implemented in | |
8240 | valarith.c */ | |
8241 | struct type* subranged_type; /* = base_type (type);*/ | |
8242 | ||
8243 | return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE | |
8244 | && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM | |
8245 | && TYPE_UNSIGNED (subranged_type)); | |
8246 | } | |
8247 | ||
8248 | /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ | |
8249 | LONGEST | |
8250 | ada_modulus (type) | |
8251 | struct type* type; | |
8252 | { | |
8253 | return TYPE_HIGH_BOUND (type) + 1; | |
8254 | } | |
8255 | ||
8256 | ||
8257 | \f | |
8258 | /* Operators */ | |
8259 | ||
8260 | /* Table mapping opcodes into strings for printing operators | |
8261 | and precedences of the operators. */ | |
8262 | ||
8263 | static const struct op_print ada_op_print_tab[] = | |
8264 | { | |
8265 | {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, | |
8266 | {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, | |
8267 | {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, | |
8268 | {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, | |
8269 | {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, | |
8270 | {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, | |
8271 | {"=", BINOP_EQUAL, PREC_EQUAL, 0}, | |
8272 | {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, | |
8273 | {"<=", BINOP_LEQ, PREC_ORDER, 0}, | |
8274 | {">=", BINOP_GEQ, PREC_ORDER, 0}, | |
8275 | {">", BINOP_GTR, PREC_ORDER, 0}, | |
8276 | {"<", BINOP_LESS, PREC_ORDER, 0}, | |
8277 | {">>", BINOP_RSH, PREC_SHIFT, 0}, | |
8278 | {"<<", BINOP_LSH, PREC_SHIFT, 0}, | |
8279 | {"+", BINOP_ADD, PREC_ADD, 0}, | |
8280 | {"-", BINOP_SUB, PREC_ADD, 0}, | |
8281 | {"&", BINOP_CONCAT, PREC_ADD, 0}, | |
8282 | {"*", BINOP_MUL, PREC_MUL, 0}, | |
8283 | {"/", BINOP_DIV, PREC_MUL, 0}, | |
8284 | {"rem", BINOP_REM, PREC_MUL, 0}, | |
8285 | {"mod", BINOP_MOD, PREC_MUL, 0}, | |
8286 | {"**", BINOP_EXP, PREC_REPEAT, 0 }, | |
8287 | {"@", BINOP_REPEAT, PREC_REPEAT, 0}, | |
8288 | {"-", UNOP_NEG, PREC_PREFIX, 0}, | |
8289 | {"+", UNOP_PLUS, PREC_PREFIX, 0}, | |
8290 | {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, | |
8291 | {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, | |
8292 | {"abs ", UNOP_ABS, PREC_PREFIX, 0}, | |
8293 | {".all", UNOP_IND, PREC_SUFFIX, 1}, /* FIXME: postfix .ALL */ | |
8294 | {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, /* FIXME: postfix 'ACCESS */ | |
8295 | {NULL, 0, 0, 0} | |
8296 | }; | |
8297 | \f | |
8298 | /* Assorted Types and Interfaces */ | |
8299 | ||
8300 | struct type* builtin_type_ada_int; | |
8301 | struct type* builtin_type_ada_short; | |
8302 | struct type* builtin_type_ada_long; | |
8303 | struct type* builtin_type_ada_long_long; | |
8304 | struct type* builtin_type_ada_char; | |
8305 | struct type* builtin_type_ada_float; | |
8306 | struct type* builtin_type_ada_double; | |
8307 | struct type* builtin_type_ada_long_double; | |
8308 | struct type* builtin_type_ada_natural; | |
8309 | struct type* builtin_type_ada_positive; | |
8310 | struct type* builtin_type_ada_system_address; | |
8311 | ||
8312 | struct type ** const (ada_builtin_types[]) = | |
8313 | { | |
8314 | ||
8315 | &builtin_type_ada_int, | |
8316 | &builtin_type_ada_long, | |
8317 | &builtin_type_ada_short, | |
8318 | &builtin_type_ada_char, | |
8319 | &builtin_type_ada_float, | |
8320 | &builtin_type_ada_double, | |
8321 | &builtin_type_ada_long_long, | |
8322 | &builtin_type_ada_long_double, | |
8323 | &builtin_type_ada_natural, | |
8324 | &builtin_type_ada_positive, | |
8325 | ||
8326 | /* The following types are carried over from C for convenience. */ | |
8327 | &builtin_type_int, | |
8328 | &builtin_type_long, | |
8329 | &builtin_type_short, | |
8330 | &builtin_type_char, | |
8331 | &builtin_type_float, | |
8332 | &builtin_type_double, | |
8333 | &builtin_type_long_long, | |
8334 | &builtin_type_void, | |
8335 | &builtin_type_signed_char, | |
8336 | &builtin_type_unsigned_char, | |
8337 | &builtin_type_unsigned_short, | |
8338 | &builtin_type_unsigned_int, | |
8339 | &builtin_type_unsigned_long, | |
8340 | &builtin_type_unsigned_long_long, | |
8341 | &builtin_type_long_double, | |
8342 | &builtin_type_complex, | |
8343 | &builtin_type_double_complex, | |
8344 | 0 | |
8345 | }; | |
8346 | ||
8347 | /* Not really used, but needed in the ada_language_defn. */ | |
8348 | static void emit_char (int c, struct ui_file* stream, int quoter) | |
8349 | { | |
8350 | ada_emit_char (c, stream, quoter, 1); | |
8351 | } | |
8352 | ||
8353 | const struct language_defn ada_language_defn = { | |
8354 | "ada", /* Language name */ | |
8355 | /* language_ada, */ | |
8356 | language_unknown, | |
8357 | /* FIXME: language_ada should be defined in defs.h */ | |
8358 | ada_builtin_types, | |
8359 | range_check_off, | |
8360 | type_check_off, | |
8361 | case_sensitive_on, /* Yes, Ada is case-insensitive, but | |
8362 | * that's not quite what this means. */ | |
8363 | ada_parse, | |
8364 | ada_error, | |
8365 | ada_evaluate_subexp, | |
8366 | ada_printchar, /* Print a character constant */ | |
8367 | ada_printstr, /* Function to print string constant */ | |
8368 | emit_char, /* Function to print single char (not used) */ | |
8369 | ada_create_fundamental_type, /* Create fundamental type in this language */ | |
8370 | ada_print_type, /* Print a type using appropriate syntax */ | |
8371 | ada_val_print, /* Print a value using appropriate syntax */ | |
8372 | ada_value_print, /* Print a top-level value */ | |
8373 | {"", "", "", ""}, /* Binary format info */ | |
8374 | #if 0 | |
8375 | {"8#%lo#", "8#", "o", "#"}, /* Octal format info */ | |
8376 | {"%ld", "", "d", ""}, /* Decimal format info */ | |
8377 | {"16#%lx#", "16#", "x", "#"}, /* Hex format info */ | |
8378 | #else | |
8379 | /* Copied from c-lang.c. */ | |
8380 | {"0%lo", "0", "o", ""}, /* Octal format info */ | |
8381 | {"%ld", "", "d", ""}, /* Decimal format info */ | |
8382 | {"0x%lx", "0x", "x", ""}, /* Hex format info */ | |
8383 | #endif | |
8384 | ada_op_print_tab, /* expression operators for printing */ | |
8385 | 1, /* c-style arrays (FIXME?) */ | |
8386 | 0, /* String lower bound (FIXME?) */ | |
8387 | &builtin_type_ada_char, | |
8388 | LANG_MAGIC | |
8389 | }; | |
8390 | ||
8391 | void | |
8392 | _initialize_ada_language () | |
8393 | { | |
8394 | builtin_type_ada_int = | |
8395 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8396 | 0, | |
8397 | "integer", (struct objfile *) NULL); | |
8398 | builtin_type_ada_long = | |
8399 | init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
8400 | 0, | |
8401 | "long_integer", (struct objfile *) NULL); | |
8402 | builtin_type_ada_short = | |
8403 | init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
8404 | 0, | |
8405 | "short_integer", (struct objfile *) NULL); | |
8406 | builtin_type_ada_char = | |
8407 | init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
8408 | 0, | |
8409 | "character", (struct objfile *) NULL); | |
8410 | builtin_type_ada_float = | |
8411 | init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, | |
8412 | 0, | |
8413 | "float", (struct objfile *) NULL); | |
8414 | builtin_type_ada_double = | |
8415 | init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, | |
8416 | 0, | |
8417 | "long_float", (struct objfile *) NULL); | |
8418 | builtin_type_ada_long_long = | |
8419 | init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
8420 | 0, | |
8421 | "long_long_integer", (struct objfile *) NULL); | |
8422 | builtin_type_ada_long_double = | |
8423 | init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, | |
8424 | 0, | |
8425 | "long_long_float", (struct objfile *) NULL); | |
8426 | builtin_type_ada_natural = | |
8427 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8428 | 0, | |
8429 | "natural", (struct objfile *) NULL); | |
8430 | builtin_type_ada_positive = | |
8431 | init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8432 | 0, | |
8433 | "positive", (struct objfile *) NULL); | |
8434 | ||
8435 | ||
8436 | builtin_type_ada_system_address = | |
8437 | lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", | |
8438 | (struct objfile *) NULL)); | |
8439 | TYPE_NAME (builtin_type_ada_system_address) = "system__address"; | |
8440 | ||
8441 | add_language (&ada_language_defn); | |
8442 | ||
8443 | add_show_from_set | |
8444 | (add_set_cmd ("varsize-limit", class_support, var_uinteger, | |
8445 | (char*) &varsize_limit, | |
8446 | "Set maximum bytes in dynamic-sized object.", | |
8447 | &setlist), | |
8448 | &showlist); | |
8449 | varsize_limit = 65536; | |
8450 | ||
8451 | add_com ("begin", class_breakpoint, begin_command, | |
8452 | "Start the debugged program, stopping at the beginning of the\n\ | |
8453 | main program. You may specify command-line arguments to give it, as for\n\ | |
8454 | the \"run\" command (q.v.)."); | |
8455 | } | |
8456 | ||
8457 | ||
8458 | /* Create a fundamental Ada type using default reasonable for the current | |
8459 | target machine. | |
8460 | ||
8461 | Some object/debugging file formats (DWARF version 1, COFF, etc) do not | |
8462 | define fundamental types such as "int" or "double". Others (stabs or | |
8463 | DWARF version 2, etc) do define fundamental types. For the formats which | |
8464 | don't provide fundamental types, gdb can create such types using this | |
8465 | function. | |
8466 | ||
8467 | FIXME: Some compilers distinguish explicitly signed integral types | |
8468 | (signed short, signed int, signed long) from "regular" integral types | |
8469 | (short, int, long) in the debugging information. There is some dis- | |
8470 | agreement as to how useful this feature is. In particular, gcc does | |
8471 | not support this. Also, only some debugging formats allow the | |
8472 | distinction to be passed on to a debugger. For now, we always just | |
8473 | use "short", "int", or "long" as the type name, for both the implicit | |
8474 | and explicitly signed types. This also makes life easier for the | |
8475 | gdb test suite since we don't have to account for the differences | |
8476 | in output depending upon what the compiler and debugging format | |
8477 | support. We will probably have to re-examine the issue when gdb | |
8478 | starts taking it's fundamental type information directly from the | |
8479 | debugging information supplied by the compiler. [email protected] */ | |
8480 | ||
8481 | static struct type * | |
8482 | ada_create_fundamental_type (objfile, typeid) | |
8483 | struct objfile *objfile; | |
8484 | int typeid; | |
8485 | { | |
8486 | struct type *type = NULL; | |
8487 | ||
8488 | switch (typeid) | |
8489 | { | |
8490 | default: | |
8491 | /* FIXME: For now, if we are asked to produce a type not in this | |
8492 | language, create the equivalent of a C integer type with the | |
8493 | name "<?type?>". When all the dust settles from the type | |
8494 | reconstruction work, this should probably become an error. */ | |
8495 | type = init_type (TYPE_CODE_INT, | |
8496 | TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8497 | 0, "<?type?>", objfile); | |
8498 | warning ("internal error: no Ada fundamental type %d", typeid); | |
8499 | break; | |
8500 | case FT_VOID: | |
8501 | type = init_type (TYPE_CODE_VOID, | |
8502 | TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
8503 | 0, "void", objfile); | |
8504 | break; | |
8505 | case FT_CHAR: | |
8506 | type = init_type (TYPE_CODE_INT, | |
8507 | TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
8508 | 0, "character", objfile); | |
8509 | break; | |
8510 | case FT_SIGNED_CHAR: | |
8511 | type = init_type (TYPE_CODE_INT, | |
8512 | TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
8513 | 0, "signed char", objfile); | |
8514 | break; | |
8515 | case FT_UNSIGNED_CHAR: | |
8516 | type = init_type (TYPE_CODE_INT, | |
8517 | TARGET_CHAR_BIT / TARGET_CHAR_BIT, | |
8518 | TYPE_FLAG_UNSIGNED, "unsigned char", objfile); | |
8519 | break; | |
8520 | case FT_SHORT: | |
8521 | type = init_type (TYPE_CODE_INT, | |
8522 | TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
8523 | 0, "short_integer", objfile); | |
8524 | break; | |
8525 | case FT_SIGNED_SHORT: | |
8526 | type = init_type (TYPE_CODE_INT, | |
8527 | TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
8528 | 0, "short_integer", objfile); | |
8529 | break; | |
8530 | case FT_UNSIGNED_SHORT: | |
8531 | type = init_type (TYPE_CODE_INT, | |
8532 | TARGET_SHORT_BIT / TARGET_CHAR_BIT, | |
8533 | TYPE_FLAG_UNSIGNED, "unsigned short", objfile); | |
8534 | break; | |
8535 | case FT_INTEGER: | |
8536 | type = init_type (TYPE_CODE_INT, | |
8537 | TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8538 | 0, "integer", objfile); | |
8539 | break; | |
8540 | case FT_SIGNED_INTEGER: | |
8541 | type = init_type (TYPE_CODE_INT, | |
8542 | TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8543 | 0, "integer", objfile); /* FIXME -fnf */ | |
8544 | break; | |
8545 | case FT_UNSIGNED_INTEGER: | |
8546 | type = init_type (TYPE_CODE_INT, | |
8547 | TARGET_INT_BIT / TARGET_CHAR_BIT, | |
8548 | TYPE_FLAG_UNSIGNED, "unsigned int", objfile); | |
8549 | break; | |
8550 | case FT_LONG: | |
8551 | type = init_type (TYPE_CODE_INT, | |
8552 | TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
8553 | 0, "long_integer", objfile); | |
8554 | break; | |
8555 | case FT_SIGNED_LONG: | |
8556 | type = init_type (TYPE_CODE_INT, | |
8557 | TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
8558 | 0, "long_integer", objfile); | |
8559 | break; | |
8560 | case FT_UNSIGNED_LONG: | |
8561 | type = init_type (TYPE_CODE_INT, | |
8562 | TARGET_LONG_BIT / TARGET_CHAR_BIT, | |
8563 | TYPE_FLAG_UNSIGNED, "unsigned long", objfile); | |
8564 | break; | |
8565 | case FT_LONG_LONG: | |
8566 | type = init_type (TYPE_CODE_INT, | |
8567 | TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
8568 | 0, "long_long_integer", objfile); | |
8569 | break; | |
8570 | case FT_SIGNED_LONG_LONG: | |
8571 | type = init_type (TYPE_CODE_INT, | |
8572 | TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
8573 | 0, "long_long_integer", objfile); | |
8574 | break; | |
8575 | case FT_UNSIGNED_LONG_LONG: | |
8576 | type = init_type (TYPE_CODE_INT, | |
8577 | TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, | |
8578 | TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); | |
8579 | break; | |
8580 | case FT_FLOAT: | |
8581 | type = init_type (TYPE_CODE_FLT, | |
8582 | TARGET_FLOAT_BIT / TARGET_CHAR_BIT, | |
8583 | 0, "float", objfile); | |
8584 | break; | |
8585 | case FT_DBL_PREC_FLOAT: | |
8586 | type = init_type (TYPE_CODE_FLT, | |
8587 | TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, | |
8588 | 0, "long_float", objfile); | |
8589 | break; | |
8590 | case FT_EXT_PREC_FLOAT: | |
8591 | type = init_type (TYPE_CODE_FLT, | |
8592 | TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, | |
8593 | 0, "long_long_float", objfile); | |
8594 | break; | |
8595 | } | |
8596 | return (type); | |
8597 | } | |
8598 | ||
8599 | void ada_dump_symtab (struct symtab* s) | |
8600 | { | |
8601 | int i; | |
8602 | fprintf (stderr, "New symtab: [\n"); | |
8603 | fprintf (stderr, " Name: %s/%s;\n", | |
8604 | s->dirname ? s->dirname : "?", | |
8605 | s->filename ? s->filename : "?"); | |
8606 | fprintf (stderr, " Format: %s;\n", s->debugformat); | |
8607 | if (s->linetable != NULL) | |
8608 | { | |
8609 | fprintf (stderr, " Line table (section %d):\n", s->block_line_section); | |
8610 | for (i = 0; i < s->linetable->nitems; i += 1) | |
8611 | { | |
8612 | struct linetable_entry* e = s->linetable->item + i; | |
8613 | fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc); | |
8614 | } | |
8615 | } | |
8616 | fprintf (stderr, "]\n"); | |
8617 | } | |
8618 |