]>
Commit | Line | Data |
---|---|---|
8818c391 | 1 | /* Target-dependent code for Atmel AVR, for GDB. |
0fd88904 | 2 | |
6aba47ca | 3 | Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, |
7b6bb8da | 4 | 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc. |
8818c391 TR |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
8818c391 TR |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8818c391 | 20 | |
de18ac1f | 21 | /* Contributed by Theodore A. Roth, [email protected] */ |
8818c391 TR |
22 | |
23 | /* Portions of this file were taken from the original gdb-4.18 patch developed | |
24 | by Denis Chertykov, [email protected] */ | |
25 | ||
26 | #include "defs.h" | |
4add8633 TR |
27 | #include "frame.h" |
28 | #include "frame-unwind.h" | |
29 | #include "frame-base.h" | |
30 | #include "trad-frame.h" | |
8818c391 TR |
31 | #include "gdbcmd.h" |
32 | #include "gdbcore.h" | |
e6bb342a | 33 | #include "gdbtypes.h" |
8818c391 TR |
34 | #include "inferior.h" |
35 | #include "symfile.h" | |
36 | #include "arch-utils.h" | |
37 | #include "regcache.h" | |
5f8a3188 | 38 | #include "gdb_string.h" |
a89aa300 | 39 | #include "dis-asm.h" |
8818c391 TR |
40 | |
41 | /* AVR Background: | |
42 | ||
43 | (AVR micros are pure Harvard Architecture processors.) | |
44 | ||
45 | The AVR family of microcontrollers have three distinctly different memory | |
0963b4bd MS |
46 | spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for |
47 | the most part to store program instructions. The sram is 8 bits wide and is | |
48 | used for the stack and the heap. Some devices lack sram and some can have | |
8818c391 TR |
49 | an additional external sram added on as a peripheral. |
50 | ||
51 | The eeprom is 8 bits wide and is used to store data when the device is | |
0963b4bd MS |
52 | powered down. Eeprom is not directly accessible, it can only be accessed |
53 | via io-registers using a special algorithm. Accessing eeprom via gdb's | |
8818c391 TR |
54 | remote serial protocol ('m' or 'M' packets) looks difficult to do and is |
55 | not included at this time. | |
56 | ||
57 | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | |
58 | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to | |
59 | work, the remote target must be able to handle eeprom accesses and perform | |
60 | the address translation.] | |
61 | ||
0963b4bd | 62 | All three memory spaces have physical addresses beginning at 0x0. In |
8818c391 TR |
63 | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit |
64 | bytes instead of the 16 bit wide words used by the real device for the | |
65 | Program Counter. | |
66 | ||
67 | In order for remote targets to work correctly, extra bits must be added to | |
68 | addresses before they are send to the target or received from the target | |
0963b4bd MS |
69 | via the remote serial protocol. The extra bits are the MSBs and are used to |
70 | decode which memory space the address is referring to. */ | |
8818c391 TR |
71 | |
72 | #undef XMALLOC | |
73 | #define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE))) | |
74 | ||
8818c391 TR |
75 | /* Constants: prefixed with AVR_ to avoid name space clashes */ |
76 | ||
77 | enum | |
2e5ff58c TR |
78 | { |
79 | AVR_REG_W = 24, | |
80 | AVR_REG_X = 26, | |
81 | AVR_REG_Y = 28, | |
82 | AVR_FP_REGNUM = 28, | |
83 | AVR_REG_Z = 30, | |
84 | ||
85 | AVR_SREG_REGNUM = 32, | |
86 | AVR_SP_REGNUM = 33, | |
87 | AVR_PC_REGNUM = 34, | |
88 | ||
89 | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | |
90 | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | |
91 | ||
7d2552b4 TG |
92 | /* Pseudo registers. */ |
93 | AVR_PSEUDO_PC_REGNUM = 35, | |
94 | AVR_NUM_PSEUDO_REGS = 1, | |
95 | ||
2e5ff58c TR |
96 | AVR_PC_REG_INDEX = 35, /* index into array of registers */ |
97 | ||
4add8633 | 98 | AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ |
2e5ff58c | 99 | |
0963b4bd | 100 | /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ |
2e5ff58c TR |
101 | AVR_MAX_PUSHES = 18, |
102 | ||
0963b4bd | 103 | /* Number of the last pushed register. r17 for current avr-gcc */ |
2e5ff58c TR |
104 | AVR_LAST_PUSHED_REGNUM = 17, |
105 | ||
4add8633 TR |
106 | AVR_ARG1_REGNUM = 24, /* Single byte argument */ |
107 | AVR_ARGN_REGNUM = 25, /* Multi byte argments */ | |
108 | ||
109 | AVR_RET1_REGNUM = 24, /* Single byte return value */ | |
110 | AVR_RETN_REGNUM = 25, /* Multi byte return value */ | |
111 | ||
2e5ff58c | 112 | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 |
0963b4bd | 113 | bits? Do these have to match the bfd vma values? It sure would make |
2e5ff58c TR |
114 | things easier in the future if they didn't need to match. |
115 | ||
116 | Note: I chose these values so as to be consistent with bfd vma | |
117 | addresses. | |
118 | ||
119 | TRoth/2002-04-08: There is already a conflict with very large programs | |
0963b4bd | 120 | in the mega128. The mega128 has 128K instruction bytes (64K words), |
2e5ff58c TR |
121 | thus the Most Significant Bit is 0x10000 which gets masked off my |
122 | AVR_MEM_MASK. | |
123 | ||
124 | The problem manifests itself when trying to set a breakpoint in a | |
125 | function which resides in the upper half of the instruction space and | |
126 | thus requires a 17-bit address. | |
127 | ||
128 | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | |
0963b4bd | 129 | from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, |
2e5ff58c TR |
130 | but could be for some remote targets by just adding the correct offset |
131 | to the address and letting the remote target handle the low-level | |
0963b4bd | 132 | details of actually accessing the eeprom. */ |
2e5ff58c TR |
133 | |
134 | AVR_IMEM_START = 0x00000000, /* INSN memory */ | |
135 | AVR_SMEM_START = 0x00800000, /* SRAM memory */ | |
8818c391 | 136 | #if 1 |
2e5ff58c TR |
137 | /* No eeprom mask defined */ |
138 | AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ | |
8818c391 | 139 | #else |
2e5ff58c TR |
140 | AVR_EMEM_START = 0x00810000, /* EEPROM memory */ |
141 | AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ | |
8818c391 | 142 | #endif |
2e5ff58c | 143 | }; |
8818c391 | 144 | |
4add8633 TR |
145 | /* Prologue types: |
146 | ||
147 | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | |
148 | causes the generation of the CALL type prologues). */ | |
149 | ||
150 | enum { | |
151 | AVR_PROLOGUE_NONE, /* No prologue */ | |
152 | AVR_PROLOGUE_NORMAL, | |
153 | AVR_PROLOGUE_CALL, /* -mcall-prologues */ | |
154 | AVR_PROLOGUE_MAIN, | |
155 | AVR_PROLOGUE_INTR, /* interrupt handler */ | |
156 | AVR_PROLOGUE_SIG, /* signal handler */ | |
157 | }; | |
158 | ||
8818c391 TR |
159 | /* Any function with a frame looks like this |
160 | ....... <-SP POINTS HERE | |
161 | LOCALS1 <-FP POINTS HERE | |
162 | LOCALS0 | |
163 | SAVED FP | |
164 | SAVED R3 | |
165 | SAVED R2 | |
166 | RET PC | |
167 | FIRST ARG | |
168 | SECOND ARG */ | |
169 | ||
4add8633 | 170 | struct avr_unwind_cache |
2e5ff58c | 171 | { |
4add8633 TR |
172 | /* The previous frame's inner most stack address. Used as this |
173 | frame ID's stack_addr. */ | |
174 | CORE_ADDR prev_sp; | |
175 | /* The frame's base, optionally used by the high-level debug info. */ | |
176 | CORE_ADDR base; | |
177 | int size; | |
178 | int prologue_type; | |
179 | /* Table indicating the location of each and every register. */ | |
180 | struct trad_frame_saved_reg *saved_regs; | |
2e5ff58c | 181 | }; |
8818c391 TR |
182 | |
183 | struct gdbarch_tdep | |
2e5ff58c | 184 | { |
4e99ad69 TG |
185 | /* Number of bytes stored to the stack by call instructions. |
186 | 2 bytes for avr1-5, 3 bytes for avr6. */ | |
187 | int call_length; | |
7d2552b4 TG |
188 | |
189 | /* Type for void. */ | |
190 | struct type *void_type; | |
191 | /* Type for a function returning void. */ | |
192 | struct type *func_void_type; | |
193 | /* Type for a pointer to a function. Used for the type of PC. */ | |
194 | struct type *pc_type; | |
2e5ff58c | 195 | }; |
8818c391 | 196 | |
0963b4bd | 197 | /* Lookup the name of a register given it's number. */ |
8818c391 | 198 | |
fa88f677 | 199 | static const char * |
d93859e2 | 200 | avr_register_name (struct gdbarch *gdbarch, int regnum) |
8818c391 | 201 | { |
4e99ad69 | 202 | static const char * const register_names[] = { |
2e5ff58c TR |
203 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
204 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
8818c391 TR |
205 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
206 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
7d2552b4 TG |
207 | "SREG", "SP", "PC2", |
208 | "pc" | |
8818c391 TR |
209 | }; |
210 | if (regnum < 0) | |
211 | return NULL; | |
212 | if (regnum >= (sizeof (register_names) / sizeof (*register_names))) | |
213 | return NULL; | |
214 | return register_names[regnum]; | |
215 | } | |
216 | ||
8818c391 TR |
217 | /* Return the GDB type object for the "standard" data type |
218 | of data in register N. */ | |
219 | ||
220 | static struct type * | |
866b76ea | 221 | avr_register_type (struct gdbarch *gdbarch, int reg_nr) |
8818c391 | 222 | { |
866b76ea | 223 | if (reg_nr == AVR_PC_REGNUM) |
df4df182 | 224 | return builtin_type (gdbarch)->builtin_uint32; |
7d2552b4 TG |
225 | if (reg_nr == AVR_PSEUDO_PC_REGNUM) |
226 | return gdbarch_tdep (gdbarch)->pc_type; | |
866b76ea | 227 | if (reg_nr == AVR_SP_REGNUM) |
0dfff4cb | 228 | return builtin_type (gdbarch)->builtin_data_ptr; |
7d2552b4 | 229 | return builtin_type (gdbarch)->builtin_uint8; |
8818c391 TR |
230 | } |
231 | ||
0963b4bd | 232 | /* Instruction address checks and convertions. */ |
8818c391 TR |
233 | |
234 | static CORE_ADDR | |
235 | avr_make_iaddr (CORE_ADDR x) | |
236 | { | |
237 | return ((x) | AVR_IMEM_START); | |
238 | } | |
239 | ||
0963b4bd | 240 | /* FIXME: TRoth: Really need to use a larger mask for instructions. Some |
8818c391 TR |
241 | devices are already up to 128KBytes of flash space. |
242 | ||
0963b4bd | 243 | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ |
8818c391 TR |
244 | |
245 | static CORE_ADDR | |
246 | avr_convert_iaddr_to_raw (CORE_ADDR x) | |
247 | { | |
248 | return ((x) & 0xffffffff); | |
249 | } | |
250 | ||
0963b4bd | 251 | /* SRAM address checks and convertions. */ |
8818c391 TR |
252 | |
253 | static CORE_ADDR | |
254 | avr_make_saddr (CORE_ADDR x) | |
255 | { | |
ee143e81 TG |
256 | /* Return 0 for NULL. */ |
257 | if (x == 0) | |
258 | return 0; | |
259 | ||
8818c391 TR |
260 | return ((x) | AVR_SMEM_START); |
261 | } | |
262 | ||
8818c391 TR |
263 | static CORE_ADDR |
264 | avr_convert_saddr_to_raw (CORE_ADDR x) | |
265 | { | |
266 | return ((x) & 0xffffffff); | |
267 | } | |
268 | ||
0963b4bd MS |
269 | /* EEPROM address checks and convertions. I don't know if these will ever |
270 | actually be used, but I've added them just the same. TRoth */ | |
8818c391 TR |
271 | |
272 | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | |
0963b4bd | 273 | programs in the mega128. */ |
8818c391 TR |
274 | |
275 | /* static CORE_ADDR */ | |
276 | /* avr_make_eaddr (CORE_ADDR x) */ | |
277 | /* { */ | |
278 | /* return ((x) | AVR_EMEM_START); */ | |
279 | /* } */ | |
280 | ||
281 | /* static int */ | |
282 | /* avr_eaddr_p (CORE_ADDR x) */ | |
283 | /* { */ | |
284 | /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | |
285 | /* } */ | |
286 | ||
287 | /* static CORE_ADDR */ | |
288 | /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ | |
289 | /* { */ | |
290 | /* return ((x) & 0xffffffff); */ | |
291 | /* } */ | |
292 | ||
0963b4bd | 293 | /* Convert from address to pointer and vice-versa. */ |
8818c391 TR |
294 | |
295 | static void | |
9898f801 UW |
296 | avr_address_to_pointer (struct gdbarch *gdbarch, |
297 | struct type *type, gdb_byte *buf, CORE_ADDR addr) | |
8818c391 | 298 | { |
e17a4113 UW |
299 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
300 | ||
8818c391 TR |
301 | /* Is it a code address? */ |
302 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
303 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) | |
304 | { | |
e17a4113 | 305 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
4ea2465e | 306 | avr_convert_iaddr_to_raw (addr >> 1)); |
8818c391 TR |
307 | } |
308 | else | |
309 | { | |
310 | /* Strip off any upper segment bits. */ | |
e17a4113 | 311 | store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, |
2e5ff58c | 312 | avr_convert_saddr_to_raw (addr)); |
8818c391 TR |
313 | } |
314 | } | |
315 | ||
316 | static CORE_ADDR | |
9898f801 UW |
317 | avr_pointer_to_address (struct gdbarch *gdbarch, |
318 | struct type *type, const gdb_byte *buf) | |
8818c391 | 319 | { |
e17a4113 UW |
320 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
321 | CORE_ADDR addr | |
322 | = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); | |
8818c391 | 323 | |
8818c391 TR |
324 | /* Is it a code address? */ |
325 | if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC | |
326 | || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD | |
2e5ff58c | 327 | || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) |
4ea2465e | 328 | return avr_make_iaddr (addr << 1); |
8818c391 TR |
329 | else |
330 | return avr_make_saddr (addr); | |
331 | } | |
332 | ||
8a1d23b2 TG |
333 | static CORE_ADDR |
334 | avr_integer_to_address (struct gdbarch *gdbarch, | |
335 | struct type *type, const gdb_byte *buf) | |
336 | { | |
337 | ULONGEST addr = unpack_long (type, buf); | |
338 | ||
339 | return avr_make_saddr (addr); | |
340 | } | |
341 | ||
8818c391 | 342 | static CORE_ADDR |
61a1198a | 343 | avr_read_pc (struct regcache *regcache) |
8818c391 | 344 | { |
8619218d | 345 | ULONGEST pc; |
61a1198a UW |
346 | regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); |
347 | return avr_make_iaddr (pc); | |
8818c391 TR |
348 | } |
349 | ||
350 | static void | |
61a1198a | 351 | avr_write_pc (struct regcache *regcache, CORE_ADDR val) |
8818c391 | 352 | { |
61a1198a | 353 | regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, |
7d2552b4 TG |
354 | avr_convert_iaddr_to_raw (val)); |
355 | } | |
356 | ||
05d1431c | 357 | static enum register_status |
7d2552b4 TG |
358 | avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, |
359 | int regnum, gdb_byte *buf) | |
360 | { | |
361 | ULONGEST val; | |
05d1431c | 362 | enum register_status status; |
7d2552b4 TG |
363 | |
364 | switch (regnum) | |
365 | { | |
366 | case AVR_PSEUDO_PC_REGNUM: | |
05d1431c PA |
367 | status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val); |
368 | if (status != REG_VALID) | |
369 | return status; | |
7d2552b4 TG |
370 | val >>= 1; |
371 | store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); | |
05d1431c | 372 | return status; |
7d2552b4 TG |
373 | default: |
374 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
375 | } | |
376 | } | |
377 | ||
378 | static void | |
379 | avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
380 | int regnum, const gdb_byte *buf) | |
381 | { | |
382 | ULONGEST val; | |
383 | ||
384 | switch (regnum) | |
385 | { | |
386 | case AVR_PSEUDO_PC_REGNUM: | |
387 | val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); | |
388 | val <<= 1; | |
389 | regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); | |
390 | break; | |
391 | default: | |
392 | internal_error (__FILE__, __LINE__, _("invalid regnum")); | |
393 | } | |
8818c391 TR |
394 | } |
395 | ||
4add8633 | 396 | /* Function: avr_scan_prologue |
8818c391 | 397 | |
4add8633 | 398 | This function decodes an AVR function prologue to determine: |
8818c391 TR |
399 | 1) the size of the stack frame |
400 | 2) which registers are saved on it | |
401 | 3) the offsets of saved regs | |
4add8633 | 402 | This information is stored in the avr_unwind_cache structure. |
8818c391 | 403 | |
e3d8b004 TR |
404 | Some devices lack the sbiw instruction, so on those replace this: |
405 | sbiw r28, XX | |
406 | with this: | |
407 | subi r28,lo8(XX) | |
408 | sbci r29,hi8(XX) | |
409 | ||
410 | A typical AVR function prologue with a frame pointer might look like this: | |
411 | push rXX ; saved regs | |
412 | ... | |
413 | push r28 | |
414 | push r29 | |
415 | in r28,__SP_L__ | |
416 | in r29,__SP_H__ | |
417 | sbiw r28,<LOCALS_SIZE> | |
418 | in __tmp_reg__,__SREG__ | |
8818c391 | 419 | cli |
e3d8b004 | 420 | out __SP_H__,r29 |
72fab697 TR |
421 | out __SREG__,__tmp_reg__ |
422 | out __SP_L__,r28 | |
e3d8b004 TR |
423 | |
424 | A typical AVR function prologue without a frame pointer might look like | |
425 | this: | |
426 | push rXX ; saved regs | |
427 | ... | |
428 | ||
429 | A main function prologue looks like this: | |
430 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
431 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
432 | out __SP_H__,r29 | |
433 | out __SP_L__,r28 | |
434 | ||
435 | A signal handler prologue looks like this: | |
436 | push __zero_reg__ | |
437 | push __tmp_reg__ | |
438 | in __tmp_reg__, __SREG__ | |
439 | push __tmp_reg__ | |
440 | clr __zero_reg__ | |
441 | push rXX ; save registers r18:r27, r30:r31 | |
442 | ... | |
443 | push r28 ; save frame pointer | |
444 | push r29 | |
445 | in r28, __SP_L__ | |
446 | in r29, __SP_H__ | |
447 | sbiw r28, <LOCALS_SIZE> | |
448 | out __SP_H__, r29 | |
449 | out __SP_L__, r28 | |
450 | ||
451 | A interrupt handler prologue looks like this: | |
452 | sei | |
453 | push __zero_reg__ | |
454 | push __tmp_reg__ | |
455 | in __tmp_reg__, __SREG__ | |
456 | push __tmp_reg__ | |
457 | clr __zero_reg__ | |
458 | push rXX ; save registers r18:r27, r30:r31 | |
459 | ... | |
460 | push r28 ; save frame pointer | |
461 | push r29 | |
462 | in r28, __SP_L__ | |
463 | in r29, __SP_H__ | |
464 | sbiw r28, <LOCALS_SIZE> | |
465 | cli | |
466 | out __SP_H__, r29 | |
467 | sei | |
468 | out __SP_L__, r28 | |
469 | ||
470 | A `-mcall-prologues' prologue looks like this (Note that the megas use a | |
471 | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | |
472 | 32 bit insn and rjmp is a 16 bit insn): | |
473 | ldi r26,lo8(<LOCALS_SIZE>) | |
474 | ldi r27,hi8(<LOCALS_SIZE>) | |
475 | ldi r30,pm_lo8(.L_foo_body) | |
476 | ldi r31,pm_hi8(.L_foo_body) | |
477 | rjmp __prologue_saves__+RRR | |
478 | .L_foo_body: */ | |
8818c391 | 479 | |
4add8633 TR |
480 | /* Not really part of a prologue, but still need to scan for it, is when a |
481 | function prologue moves values passed via registers as arguments to new | |
0963b4bd MS |
482 | registers. In this case, all local variables live in registers, so there |
483 | may be some register saves. This is what it looks like: | |
4add8633 TR |
484 | movw rMM, rNN |
485 | ... | |
486 | ||
0963b4bd MS |
487 | There could be multiple movw's. If the target doesn't have a movw insn, it |
488 | will use two mov insns. This could be done after any of the above prologue | |
4add8633 TR |
489 | types. */ |
490 | ||
491 | static CORE_ADDR | |
e17a4113 | 492 | avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, |
4e99ad69 | 493 | struct avr_unwind_cache *info) |
8818c391 | 494 | { |
e17a4113 | 495 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
2e5ff58c TR |
496 | int i; |
497 | unsigned short insn; | |
2e5ff58c | 498 | int scan_stage = 0; |
8818c391 | 499 | struct minimal_symbol *msymbol; |
8818c391 TR |
500 | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; |
501 | int vpc = 0; | |
4e99ad69 TG |
502 | int len; |
503 | ||
504 | len = pc_end - pc_beg; | |
505 | if (len > AVR_MAX_PROLOGUE_SIZE) | |
506 | len = AVR_MAX_PROLOGUE_SIZE; | |
8818c391 | 507 | |
4add8633 | 508 | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only |
0963b4bd MS |
509 | reading in the bytes of the prologue. The problem is that the figuring |
510 | out where the end of the prologue is is a bit difficult. The old code | |
4add8633 | 511 | tried to do that, but failed quite often. */ |
4e99ad69 | 512 | read_memory (pc_beg, prologue, len); |
8818c391 TR |
513 | |
514 | /* Scanning main()'s prologue | |
515 | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | |
516 | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | |
517 | out __SP_H__,r29 | |
518 | out __SP_L__,r28 */ | |
519 | ||
4e99ad69 | 520 | if (len >= 4) |
8818c391 TR |
521 | { |
522 | CORE_ADDR locals; | |
4e99ad69 | 523 | static const unsigned char img[] = { |
2e5ff58c TR |
524 | 0xde, 0xbf, /* out __SP_H__,r29 */ |
525 | 0xcd, 0xbf /* out __SP_L__,r28 */ | |
8818c391 TR |
526 | }; |
527 | ||
e17a4113 | 528 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 529 | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
2e5ff58c TR |
530 | if ((insn & 0xf0f0) == 0xe0c0) |
531 | { | |
532 | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | |
e17a4113 | 533 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
2e5ff58c TR |
534 | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ |
535 | if ((insn & 0xf0f0) == 0xe0d0) | |
536 | { | |
537 | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | |
4e99ad69 TG |
538 | if (vpc + 4 + sizeof (img) < len |
539 | && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | |
2e5ff58c | 540 | { |
4add8633 TR |
541 | info->prologue_type = AVR_PROLOGUE_MAIN; |
542 | info->base = locals; | |
4e99ad69 | 543 | return pc_beg + 4; |
2e5ff58c TR |
544 | } |
545 | } | |
546 | } | |
8818c391 | 547 | } |
2e5ff58c | 548 | |
4add8633 TR |
549 | /* Scanning `-mcall-prologues' prologue |
550 | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | |
8818c391 | 551 | |
e3d8b004 | 552 | while (1) /* Using a while to avoid many goto's */ |
8818c391 TR |
553 | { |
554 | int loc_size; | |
555 | int body_addr; | |
556 | unsigned num_pushes; | |
4add8633 | 557 | int pc_offset = 0; |
2e5ff58c | 558 | |
4e99ad69 TG |
559 | /* At least the fifth instruction must have been executed to |
560 | modify frame shape. */ | |
561 | if (len < 10) | |
562 | break; | |
563 | ||
e17a4113 | 564 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
8818c391 | 565 | /* ldi r26,<LOCALS_SIZE> */ |
2e5ff58c TR |
566 | if ((insn & 0xf0f0) != 0xe0a0) |
567 | break; | |
8818c391 | 568 | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 569 | pc_offset += 2; |
2e5ff58c | 570 | |
e17a4113 | 571 | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); |
8818c391 TR |
572 | /* ldi r27,<LOCALS_SIZE> / 256 */ |
573 | if ((insn & 0xf0f0) != 0xe0b0) | |
2e5ff58c | 574 | break; |
8818c391 | 575 | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 576 | pc_offset += 2; |
2e5ff58c | 577 | |
e17a4113 | 578 | insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); |
8818c391 TR |
579 | /* ldi r30,pm_lo8(.L_foo_body) */ |
580 | if ((insn & 0xf0f0) != 0xe0e0) | |
2e5ff58c | 581 | break; |
8818c391 | 582 | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); |
4add8633 | 583 | pc_offset += 2; |
8818c391 | 584 | |
e17a4113 | 585 | insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); |
8818c391 TR |
586 | /* ldi r31,pm_hi8(.L_foo_body) */ |
587 | if ((insn & 0xf0f0) != 0xe0f0) | |
2e5ff58c | 588 | break; |
8818c391 | 589 | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; |
4add8633 | 590 | pc_offset += 2; |
8818c391 | 591 | |
8818c391 TR |
592 | msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); |
593 | if (!msymbol) | |
2e5ff58c | 594 | break; |
8818c391 | 595 | |
e17a4113 | 596 | insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); |
8818c391 | 597 | /* rjmp __prologue_saves__+RRR */ |
e3d8b004 TR |
598 | if ((insn & 0xf000) == 0xc000) |
599 | { | |
600 | /* Extract PC relative offset from RJMP */ | |
601 | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | |
602 | /* Convert offset to byte addressable mode */ | |
603 | i *= 2; | |
604 | /* Destination address */ | |
4e99ad69 | 605 | i += pc_beg + 10; |
e3d8b004 | 606 | |
4e99ad69 | 607 | if (body_addr != (pc_beg + 10)/2) |
e3d8b004 | 608 | break; |
4add8633 TR |
609 | |
610 | pc_offset += 2; | |
e3d8b004 | 611 | } |
e3d8b004 TR |
612 | else if ((insn & 0xfe0e) == 0x940c) |
613 | { | |
614 | /* Extract absolute PC address from JMP */ | |
615 | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | |
e17a4113 UW |
616 | | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) |
617 | & 0xffff)); | |
e3d8b004 TR |
618 | /* Convert address to byte addressable mode */ |
619 | i *= 2; | |
620 | ||
4e99ad69 | 621 | if (body_addr != (pc_beg + 12)/2) |
e3d8b004 | 622 | break; |
4add8633 TR |
623 | |
624 | pc_offset += 4; | |
e3d8b004 TR |
625 | } |
626 | else | |
627 | break; | |
2e5ff58c | 628 | |
4add8633 | 629 | /* Resolve offset (in words) from __prologue_saves__ symbol. |
8818c391 TR |
630 | Which is a pushes count in `-mcall-prologues' mode */ |
631 | num_pushes = AVR_MAX_PUSHES - (i - SYMBOL_VALUE_ADDRESS (msymbol)) / 2; | |
632 | ||
633 | if (num_pushes > AVR_MAX_PUSHES) | |
4add8633 | 634 | { |
edefbb7c | 635 | fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), |
4add8633 TR |
636 | num_pushes); |
637 | num_pushes = 0; | |
638 | } | |
2e5ff58c | 639 | |
8818c391 | 640 | if (num_pushes) |
2e5ff58c TR |
641 | { |
642 | int from; | |
4add8633 TR |
643 | |
644 | info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; | |
2e5ff58c | 645 | if (num_pushes >= 2) |
4add8633 TR |
646 | info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; |
647 | ||
2e5ff58c TR |
648 | i = 0; |
649 | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | |
650 | from <= AVR_LAST_PUSHED_REGNUM; ++from) | |
4add8633 | 651 | info->saved_regs [from].addr = ++i; |
2e5ff58c | 652 | } |
4add8633 TR |
653 | info->size = loc_size + num_pushes; |
654 | info->prologue_type = AVR_PROLOGUE_CALL; | |
655 | ||
4e99ad69 | 656 | return pc_beg + pc_offset; |
8818c391 TR |
657 | } |
658 | ||
4add8633 TR |
659 | /* Scan for the beginning of the prologue for an interrupt or signal |
660 | function. Note that we have to set the prologue type here since the | |
661 | third stage of the prologue may not be present (e.g. no saved registered | |
662 | or changing of the SP register). */ | |
8818c391 | 663 | |
4add8633 | 664 | if (1) |
8818c391 | 665 | { |
4e99ad69 | 666 | static const unsigned char img[] = { |
2e5ff58c TR |
667 | 0x78, 0x94, /* sei */ |
668 | 0x1f, 0x92, /* push r1 */ | |
669 | 0x0f, 0x92, /* push r0 */ | |
670 | 0x0f, 0xb6, /* in r0,0x3f SREG */ | |
671 | 0x0f, 0x92, /* push r0 */ | |
672 | 0x11, 0x24 /* clr r1 */ | |
8818c391 | 673 | }; |
4e99ad69 TG |
674 | if (len >= sizeof (img) |
675 | && memcmp (prologue, img, sizeof (img)) == 0) | |
2e5ff58c | 676 | { |
4add8633 | 677 | info->prologue_type = AVR_PROLOGUE_INTR; |
2e5ff58c | 678 | vpc += sizeof (img); |
4add8633 TR |
679 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; |
680 | info->saved_regs[0].addr = 2; | |
681 | info->saved_regs[1].addr = 1; | |
682 | info->size += 3; | |
2e5ff58c | 683 | } |
4e99ad69 TG |
684 | else if (len >= sizeof (img) - 2 |
685 | && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) | |
2e5ff58c | 686 | { |
4add8633 TR |
687 | info->prologue_type = AVR_PROLOGUE_SIG; |
688 | vpc += sizeof (img) - 2; | |
689 | info->saved_regs[AVR_SREG_REGNUM].addr = 3; | |
690 | info->saved_regs[0].addr = 2; | |
691 | info->saved_regs[1].addr = 1; | |
243e2c5d | 692 | info->size += 2; |
2e5ff58c | 693 | } |
8818c391 TR |
694 | } |
695 | ||
696 | /* First stage of the prologue scanning. | |
4add8633 | 697 | Scan pushes (saved registers) */ |
8818c391 | 698 | |
4e99ad69 | 699 | for (; vpc < len; vpc += 2) |
8818c391 | 700 | { |
e17a4113 | 701 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c TR |
702 | if ((insn & 0xfe0f) == 0x920f) /* push rXX */ |
703 | { | |
0963b4bd | 704 | /* Bits 4-9 contain a mask for registers R0-R32. */ |
4add8633 TR |
705 | int regno = (insn & 0x1f0) >> 4; |
706 | info->size++; | |
707 | info->saved_regs[regno].addr = info->size; | |
2e5ff58c TR |
708 | scan_stage = 1; |
709 | } | |
8818c391 | 710 | else |
2e5ff58c | 711 | break; |
8818c391 TR |
712 | } |
713 | ||
243e2c5d | 714 | gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); |
4add8633 | 715 | |
1bd0bb72 TG |
716 | /* Handle static small stack allocation using rcall or push. */ |
717 | ||
718 | while (scan_stage == 1 && vpc < len) | |
719 | { | |
720 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | |
721 | if (insn == 0xd000) /* rcall .+0 */ | |
722 | { | |
723 | info->size += gdbarch_tdep (gdbarch)->call_length; | |
724 | vpc += 2; | |
725 | } | |
726 | else if (insn == 0x920f) /* push r0 */ | |
727 | { | |
728 | info->size += 1; | |
729 | vpc += 2; | |
730 | } | |
731 | else | |
732 | break; | |
733 | } | |
734 | ||
8818c391 TR |
735 | /* Second stage of the prologue scanning. |
736 | Scan: | |
737 | in r28,__SP_L__ | |
738 | in r29,__SP_H__ */ | |
739 | ||
4e99ad69 | 740 | if (scan_stage == 1 && vpc < len) |
8818c391 | 741 | { |
4e99ad69 | 742 | static const unsigned char img[] = { |
2e5ff58c TR |
743 | 0xcd, 0xb7, /* in r28,__SP_L__ */ |
744 | 0xde, 0xb7 /* in r29,__SP_H__ */ | |
8818c391 TR |
745 | }; |
746 | unsigned short insn1; | |
2e5ff58c | 747 | |
4e99ad69 TG |
748 | if (vpc + sizeof (img) < len |
749 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
2e5ff58c TR |
750 | { |
751 | vpc += 4; | |
2e5ff58c TR |
752 | scan_stage = 2; |
753 | } | |
8818c391 TR |
754 | } |
755 | ||
0963b4bd | 756 | /* Third stage of the prologue scanning. (Really two stages). |
8818c391 TR |
757 | Scan for: |
758 | sbiw r28,XX or subi r28,lo8(XX) | |
72fab697 | 759 | sbci r29,hi8(XX) |
8818c391 TR |
760 | in __tmp_reg__,__SREG__ |
761 | cli | |
e3d8b004 | 762 | out __SP_H__,r29 |
8818c391 | 763 | out __SREG__,__tmp_reg__ |
e3d8b004 | 764 | out __SP_L__,r28 */ |
8818c391 | 765 | |
4e99ad69 | 766 | if (scan_stage == 2 && vpc < len) |
8818c391 TR |
767 | { |
768 | int locals_size = 0; | |
4e99ad69 | 769 | static const unsigned char img[] = { |
2e5ff58c TR |
770 | 0x0f, 0xb6, /* in r0,0x3f */ |
771 | 0xf8, 0x94, /* cli */ | |
e3d8b004 | 772 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 773 | 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ |
e3d8b004 | 774 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 775 | }; |
4e99ad69 | 776 | static const unsigned char img_sig[] = { |
e3d8b004 TR |
777 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
778 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ | |
8818c391 | 779 | }; |
4e99ad69 | 780 | static const unsigned char img_int[] = { |
2e5ff58c | 781 | 0xf8, 0x94, /* cli */ |
e3d8b004 | 782 | 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ |
2e5ff58c | 783 | 0x78, 0x94, /* sei */ |
e3d8b004 | 784 | 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ |
8818c391 | 785 | }; |
2e5ff58c | 786 | |
e17a4113 | 787 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 788 | if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ |
1bd0bb72 TG |
789 | { |
790 | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | |
791 | vpc += 2; | |
792 | } | |
2e5ff58c TR |
793 | else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ |
794 | { | |
795 | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | |
1bd0bb72 | 796 | vpc += 2; |
e17a4113 | 797 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
2e5ff58c | 798 | vpc += 2; |
1bd0bb72 | 799 | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; |
2e5ff58c | 800 | } |
8818c391 | 801 | else |
1bd0bb72 | 802 | return pc_beg + vpc; |
4add8633 | 803 | |
0963b4bd | 804 | /* Scan the last part of the prologue. May not be present for interrupt |
4add8633 TR |
805 | or signal handler functions, which is why we set the prologue type |
806 | when we saw the beginning of the prologue previously. */ | |
807 | ||
4e99ad69 TG |
808 | if (vpc + sizeof (img_sig) < len |
809 | && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | |
4add8633 TR |
810 | { |
811 | vpc += sizeof (img_sig); | |
812 | } | |
4e99ad69 TG |
813 | else if (vpc + sizeof (img_int) < len |
814 | && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | |
4add8633 TR |
815 | { |
816 | vpc += sizeof (img_int); | |
817 | } | |
4e99ad69 TG |
818 | if (vpc + sizeof (img) < len |
819 | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | |
4add8633 TR |
820 | { |
821 | info->prologue_type = AVR_PROLOGUE_NORMAL; | |
822 | vpc += sizeof (img); | |
823 | } | |
824 | ||
825 | info->size += locals_size; | |
826 | ||
4e99ad69 | 827 | /* Fall through. */ |
8818c391 | 828 | } |
4add8633 TR |
829 | |
830 | /* If we got this far, we could not scan the prologue, so just return the pc | |
831 | of the frame plus an adjustment for argument move insns. */ | |
832 | ||
4e99ad69 TG |
833 | for (; vpc < len; vpc += 2) |
834 | { | |
e17a4113 | 835 | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); |
4e99ad69 TG |
836 | if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ |
837 | continue; | |
838 | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | |
839 | continue; | |
840 | else | |
841 | break; | |
842 | } | |
843 | ||
844 | return pc_beg + vpc; | |
8818c391 TR |
845 | } |
846 | ||
4add8633 | 847 | static CORE_ADDR |
6093d2eb | 848 | avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
4add8633 TR |
849 | { |
850 | CORE_ADDR func_addr, func_end; | |
8c201e54 | 851 | CORE_ADDR post_prologue_pc; |
8818c391 | 852 | |
4add8633 | 853 | /* See what the symbol table says */ |
8818c391 | 854 | |
8c201e54 TG |
855 | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
856 | return pc; | |
2e5ff58c | 857 | |
8c201e54 TG |
858 | post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); |
859 | if (post_prologue_pc != 0) | |
860 | return max (pc, post_prologue_pc); | |
8818c391 | 861 | |
8c201e54 TG |
862 | { |
863 | CORE_ADDR prologue_end = pc; | |
864 | struct avr_unwind_cache info = {0}; | |
865 | struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | |
8818c391 | 866 | |
8c201e54 TG |
867 | info.saved_regs = saved_regs; |
868 | ||
869 | /* Need to run the prologue scanner to figure out if the function has a | |
870 | prologue and possibly skip over moving arguments passed via registers | |
871 | to other registers. */ | |
872 | ||
873 | prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); | |
874 | ||
875 | if (info.prologue_type != AVR_PROLOGUE_NONE) | |
876 | return prologue_end; | |
877 | } | |
2e5ff58c | 878 | |
4e99ad69 TG |
879 | /* Either we didn't find the start of this function (nothing we can do), |
880 | or there's no line info, or the line after the prologue is after | |
0963b4bd | 881 | the end of the function (there probably isn't a prologue). */ |
2e5ff58c | 882 | |
8c201e54 | 883 | return pc; |
4add8633 | 884 | } |
8818c391 | 885 | |
0963b4bd MS |
886 | /* Not all avr devices support the BREAK insn. Those that don't should treat |
887 | it as a NOP. Thus, it should be ok. Since the avr is currently a remote | |
888 | only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ | |
8818c391 | 889 | |
4add8633 | 890 | static const unsigned char * |
0963b4bd MS |
891 | avr_breakpoint_from_pc (struct gdbarch *gdbarch, |
892 | CORE_ADDR *pcptr, int *lenptr) | |
4add8633 | 893 | { |
4e99ad69 | 894 | static const unsigned char avr_break_insn [] = { 0x98, 0x95 }; |
4add8633 TR |
895 | *lenptr = sizeof (avr_break_insn); |
896 | return avr_break_insn; | |
8818c391 TR |
897 | } |
898 | ||
4c8b6ae0 UW |
899 | /* Determine, for architecture GDBARCH, how a return value of TYPE |
900 | should be returned. If it is supposed to be returned in registers, | |
901 | and READBUF is non-zero, read the appropriate value from REGCACHE, | |
902 | and copy it into READBUF. If WRITEBUF is non-zero, write the value | |
903 | from WRITEBUF into REGCACHE. */ | |
904 | ||
63807e1d | 905 | static enum return_value_convention |
c055b101 CV |
906 | avr_return_value (struct gdbarch *gdbarch, struct type *func_type, |
907 | struct type *valtype, struct regcache *regcache, | |
908 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 | 909 | { |
1bd0bb72 TG |
910 | int i; |
911 | /* Single byte are returned in r24. | |
912 | Otherwise, the MSB of the return value is always in r25, calculate which | |
913 | register holds the LSB. */ | |
914 | int lsb_reg; | |
915 | ||
916 | if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
917 | || TYPE_CODE (valtype) == TYPE_CODE_UNION | |
918 | || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) | |
919 | && TYPE_LENGTH (valtype) > 8) | |
920 | return RETURN_VALUE_STRUCT_CONVENTION; | |
921 | ||
922 | if (TYPE_LENGTH (valtype) <= 2) | |
923 | lsb_reg = 24; | |
924 | else if (TYPE_LENGTH (valtype) <= 4) | |
925 | lsb_reg = 22; | |
926 | else if (TYPE_LENGTH (valtype) <= 8) | |
927 | lsb_reg = 18; | |
928 | else | |
f3574227 | 929 | gdb_assert_not_reached ("unexpected type length"); |
4c8b6ae0 UW |
930 | |
931 | if (writebuf != NULL) | |
932 | { | |
1bd0bb72 TG |
933 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
934 | regcache_cooked_write (regcache, lsb_reg + i, writebuf + i); | |
4c8b6ae0 UW |
935 | } |
936 | ||
937 | if (readbuf != NULL) | |
938 | { | |
1bd0bb72 TG |
939 | for (i = 0; i < TYPE_LENGTH (valtype); i++) |
940 | regcache_cooked_read (regcache, lsb_reg + i, readbuf + i); | |
4c8b6ae0 UW |
941 | } |
942 | ||
1bd0bb72 | 943 | return RETURN_VALUE_REGISTER_CONVENTION; |
4c8b6ae0 UW |
944 | } |
945 | ||
946 | ||
4add8633 TR |
947 | /* Put here the code to store, into fi->saved_regs, the addresses of |
948 | the saved registers of frame described by FRAME_INFO. This | |
949 | includes special registers such as pc and fp saved in special ways | |
950 | in the stack frame. sp is even more special: the address we return | |
0963b4bd | 951 | for it IS the sp for the next frame. */ |
8818c391 | 952 | |
63807e1d | 953 | static struct avr_unwind_cache * |
94afd7a6 | 954 | avr_frame_unwind_cache (struct frame_info *this_frame, |
4add8633 | 955 | void **this_prologue_cache) |
8818c391 | 956 | { |
4e99ad69 | 957 | CORE_ADDR start_pc, current_pc; |
4add8633 TR |
958 | ULONGEST prev_sp; |
959 | ULONGEST this_base; | |
960 | struct avr_unwind_cache *info; | |
4e99ad69 TG |
961 | struct gdbarch *gdbarch; |
962 | struct gdbarch_tdep *tdep; | |
4add8633 TR |
963 | int i; |
964 | ||
4e99ad69 TG |
965 | if (*this_prologue_cache) |
966 | return *this_prologue_cache; | |
4add8633 TR |
967 | |
968 | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | |
4e99ad69 | 969 | *this_prologue_cache = info; |
94afd7a6 | 970 | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
4add8633 TR |
971 | |
972 | info->size = 0; | |
973 | info->prologue_type = AVR_PROLOGUE_NONE; | |
974 | ||
4e99ad69 TG |
975 | start_pc = get_frame_func (this_frame); |
976 | current_pc = get_frame_pc (this_frame); | |
977 | if ((start_pc > 0) && (start_pc <= current_pc)) | |
e17a4113 UW |
978 | avr_scan_prologue (get_frame_arch (this_frame), |
979 | start_pc, current_pc, info); | |
4add8633 | 980 | |
3b85b0f1 TR |
981 | if ((info->prologue_type != AVR_PROLOGUE_NONE) |
982 | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | |
4add8633 TR |
983 | { |
984 | ULONGEST high_base; /* High byte of FP */ | |
985 | ||
986 | /* The SP was moved to the FP. This indicates that a new frame | |
987 | was created. Get THIS frame's FP value by unwinding it from | |
988 | the next frame. */ | |
94afd7a6 | 989 | this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); |
4e99ad69 | 990 | high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); |
4add8633 TR |
991 | this_base += (high_base << 8); |
992 | ||
993 | /* The FP points at the last saved register. Adjust the FP back | |
994 | to before the first saved register giving the SP. */ | |
995 | prev_sp = this_base + info->size; | |
996 | } | |
8818c391 | 997 | else |
4add8633 TR |
998 | { |
999 | /* Assume that the FP is this frame's SP but with that pushed | |
1000 | stack space added back. */ | |
94afd7a6 | 1001 | this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
4add8633 TR |
1002 | prev_sp = this_base + info->size; |
1003 | } | |
1004 | ||
1005 | /* Add 1 here to adjust for the post-decrement nature of the push | |
1006 | instruction.*/ | |
4e99ad69 | 1007 | info->prev_sp = avr_make_saddr (prev_sp + 1); |
4add8633 TR |
1008 | info->base = avr_make_saddr (this_base); |
1009 | ||
4e99ad69 TG |
1010 | gdbarch = get_frame_arch (this_frame); |
1011 | ||
4add8633 | 1012 | /* Adjust all the saved registers so that they contain addresses and not |
3b85b0f1 | 1013 | offsets. */ |
4e99ad69 TG |
1014 | for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) |
1015 | if (info->saved_regs[i].addr > 0) | |
1016 | info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; | |
4add8633 TR |
1017 | |
1018 | /* Except for the main and startup code, the return PC is always saved on | |
0963b4bd | 1019 | the stack and is at the base of the frame. */ |
4add8633 TR |
1020 | |
1021 | if (info->prologue_type != AVR_PROLOGUE_MAIN) | |
4e99ad69 | 1022 | info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; |
4add8633 | 1023 | |
3b85b0f1 TR |
1024 | /* The previous frame's SP needed to be computed. Save the computed |
1025 | value. */ | |
4e99ad69 TG |
1026 | tdep = gdbarch_tdep (gdbarch); |
1027 | trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, | |
1028 | info->prev_sp - 1 + tdep->call_length); | |
3b85b0f1 | 1029 | |
4add8633 | 1030 | return info; |
8818c391 TR |
1031 | } |
1032 | ||
1033 | static CORE_ADDR | |
4add8633 | 1034 | avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
8818c391 | 1035 | { |
4add8633 TR |
1036 | ULONGEST pc; |
1037 | ||
11411de3 | 1038 | pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); |
4add8633 TR |
1039 | |
1040 | return avr_make_iaddr (pc); | |
8818c391 TR |
1041 | } |
1042 | ||
30244cd8 UW |
1043 | static CORE_ADDR |
1044 | avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1045 | { | |
1046 | ULONGEST sp; | |
1047 | ||
11411de3 | 1048 | sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); |
30244cd8 UW |
1049 | |
1050 | return avr_make_saddr (sp); | |
1051 | } | |
1052 | ||
4add8633 TR |
1053 | /* Given a GDB frame, determine the address of the calling function's |
1054 | frame. This will be used to create a new GDB frame struct. */ | |
8818c391 | 1055 | |
4add8633 | 1056 | static void |
94afd7a6 | 1057 | avr_frame_this_id (struct frame_info *this_frame, |
4add8633 TR |
1058 | void **this_prologue_cache, |
1059 | struct frame_id *this_id) | |
8818c391 | 1060 | { |
4add8633 | 1061 | struct avr_unwind_cache *info |
94afd7a6 | 1062 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
4add8633 TR |
1063 | CORE_ADDR base; |
1064 | CORE_ADDR func; | |
1065 | struct frame_id id; | |
1066 | ||
1067 | /* The FUNC is easy. */ | |
94afd7a6 | 1068 | func = get_frame_func (this_frame); |
4add8633 | 1069 | |
4add8633 TR |
1070 | /* Hopefully the prologue analysis either correctly determined the |
1071 | frame's base (which is the SP from the previous frame), or set | |
1072 | that base to "NULL". */ | |
1073 | base = info->prev_sp; | |
1074 | if (base == 0) | |
1075 | return; | |
1076 | ||
1077 | id = frame_id_build (base, func); | |
4add8633 | 1078 | (*this_id) = id; |
8818c391 TR |
1079 | } |
1080 | ||
94afd7a6 UW |
1081 | static struct value * |
1082 | avr_frame_prev_register (struct frame_info *this_frame, | |
4e99ad69 | 1083 | void **this_prologue_cache, int regnum) |
8818c391 | 1084 | { |
e17a4113 UW |
1085 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1086 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
4add8633 | 1087 | struct avr_unwind_cache *info |
94afd7a6 | 1088 | = avr_frame_unwind_cache (this_frame, this_prologue_cache); |
8818c391 | 1089 | |
7d2552b4 | 1090 | if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) |
3b85b0f1 | 1091 | { |
7d2552b4 | 1092 | if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) |
3b85b0f1 | 1093 | { |
94afd7a6 UW |
1094 | /* Reading the return PC from the PC register is slightly |
1095 | abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, | |
1096 | but in reality, only two bytes (3 in upcoming mega256) are | |
1097 | stored on the stack. | |
1098 | ||
1099 | Also, note that the value on the stack is an addr to a word | |
1100 | not a byte, so we will need to multiply it by two at some | |
1101 | point. | |
1102 | ||
1103 | And to confuse matters even more, the return address stored | |
1104 | on the stack is in big endian byte order, even though most | |
0963b4bd | 1105 | everything else about the avr is little endian. Ick! */ |
94afd7a6 | 1106 | ULONGEST pc; |
4e99ad69 TG |
1107 | int i; |
1108 | unsigned char buf[3]; | |
1109 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
1110 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
94afd7a6 | 1111 | |
7d2552b4 TG |
1112 | read_memory (info->saved_regs[AVR_PC_REGNUM].addr, |
1113 | buf, tdep->call_length); | |
94afd7a6 | 1114 | |
4e99ad69 TG |
1115 | /* Extract the PC read from memory as a big-endian. */ |
1116 | pc = 0; | |
1117 | for (i = 0; i < tdep->call_length; i++) | |
1118 | pc = (pc << 8) | buf[i]; | |
94afd7a6 | 1119 | |
7d2552b4 TG |
1120 | if (regnum == AVR_PC_REGNUM) |
1121 | pc <<= 1; | |
1122 | ||
1123 | return frame_unwind_got_constant (this_frame, regnum, pc); | |
3b85b0f1 | 1124 | } |
94afd7a6 UW |
1125 | |
1126 | return frame_unwind_got_optimized (this_frame, regnum); | |
3b85b0f1 | 1127 | } |
94afd7a6 UW |
1128 | |
1129 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
4add8633 | 1130 | } |
8818c391 | 1131 | |
4add8633 TR |
1132 | static const struct frame_unwind avr_frame_unwind = { |
1133 | NORMAL_FRAME, | |
8fbca658 | 1134 | default_frame_unwind_stop_reason, |
4add8633 | 1135 | avr_frame_this_id, |
94afd7a6 UW |
1136 | avr_frame_prev_register, |
1137 | NULL, | |
1138 | default_frame_sniffer | |
4add8633 TR |
1139 | }; |
1140 | ||
8818c391 | 1141 | static CORE_ADDR |
94afd7a6 | 1142 | avr_frame_base_address (struct frame_info *this_frame, void **this_cache) |
8818c391 | 1143 | { |
4add8633 | 1144 | struct avr_unwind_cache *info |
94afd7a6 | 1145 | = avr_frame_unwind_cache (this_frame, this_cache); |
8818c391 | 1146 | |
4add8633 TR |
1147 | return info->base; |
1148 | } | |
8818c391 | 1149 | |
4add8633 TR |
1150 | static const struct frame_base avr_frame_base = { |
1151 | &avr_frame_unwind, | |
1152 | avr_frame_base_address, | |
1153 | avr_frame_base_address, | |
1154 | avr_frame_base_address | |
1155 | }; | |
ced15480 | 1156 | |
94afd7a6 UW |
1157 | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy |
1158 | frame. The frame ID's base needs to match the TOS value saved by | |
1159 | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ | |
8818c391 | 1160 | |
4add8633 | 1161 | static struct frame_id |
94afd7a6 | 1162 | avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
4add8633 TR |
1163 | { |
1164 | ULONGEST base; | |
8818c391 | 1165 | |
94afd7a6 UW |
1166 | base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); |
1167 | return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); | |
8818c391 TR |
1168 | } |
1169 | ||
4add8633 | 1170 | /* When arguments must be pushed onto the stack, they go on in reverse |
0963b4bd | 1171 | order. The below implements a FILO (stack) to do this. */ |
8818c391 | 1172 | |
4add8633 TR |
1173 | struct stack_item |
1174 | { | |
1175 | int len; | |
1176 | struct stack_item *prev; | |
1177 | void *data; | |
1178 | }; | |
8818c391 | 1179 | |
4add8633 | 1180 | static struct stack_item * |
0fd88904 | 1181 | push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) |
8818c391 | 1182 | { |
4add8633 TR |
1183 | struct stack_item *si; |
1184 | si = xmalloc (sizeof (struct stack_item)); | |
1185 | si->data = xmalloc (len); | |
1186 | si->len = len; | |
1187 | si->prev = prev; | |
1188 | memcpy (si->data, contents, len); | |
1189 | return si; | |
8818c391 TR |
1190 | } |
1191 | ||
4add8633 TR |
1192 | static struct stack_item *pop_stack_item (struct stack_item *si); |
1193 | static struct stack_item * | |
1194 | pop_stack_item (struct stack_item *si) | |
8818c391 | 1195 | { |
4add8633 TR |
1196 | struct stack_item *dead = si; |
1197 | si = si->prev; | |
1198 | xfree (dead->data); | |
1199 | xfree (dead); | |
1200 | return si; | |
8818c391 TR |
1201 | } |
1202 | ||
8818c391 TR |
1203 | /* Setup the function arguments for calling a function in the inferior. |
1204 | ||
1205 | On the AVR architecture, there are 18 registers (R25 to R8) which are | |
1206 | dedicated for passing function arguments. Up to the first 18 arguments | |
1207 | (depending on size) may go into these registers. The rest go on the stack. | |
1208 | ||
4add8633 | 1209 | All arguments are aligned to start in even-numbered registers (odd-sized |
0963b4bd | 1210 | arguments, including char, have one free register above them). For example, |
4add8633 TR |
1211 | an int in arg1 and a char in arg2 would be passed as such: |
1212 | ||
1213 | arg1 -> r25:r24 | |
1214 | arg2 -> r22 | |
1215 | ||
1216 | Arguments that are larger than 2 bytes will be split between two or more | |
1217 | registers as available, but will NOT be split between a register and the | |
0963b4bd | 1218 | stack. Arguments that go onto the stack are pushed last arg first (this is |
4add8633 TR |
1219 | similar to the d10v). */ |
1220 | ||
1221 | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | |
1222 | inaccurate. | |
8818c391 TR |
1223 | |
1224 | An exceptional case exists for struct arguments (and possibly other | |
1225 | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | |
1226 | not a multiple of WORDSIZE bytes. In this case the argument is never split | |
1227 | between the registers and the stack, but instead is copied in its entirety | |
1228 | onto the stack, AND also copied into as many registers as there is room | |
1229 | for. In other words, space in registers permitting, two copies of the same | |
1230 | argument are passed in. As far as I can tell, only the one on the stack is | |
1231 | used, although that may be a function of the level of compiler | |
1232 | optimization. I suspect this is a compiler bug. Arguments of these odd | |
1233 | sizes are left-justified within the word (as opposed to arguments smaller | |
1234 | than WORDSIZE bytes, which are right-justified). | |
1235 | ||
1236 | If the function is to return an aggregate type such as a struct, the caller | |
1237 | must allocate space into which the callee will copy the return value. In | |
1238 | this case, a pointer to the return value location is passed into the callee | |
1239 | in register R0, which displaces one of the other arguments passed in via | |
0963b4bd | 1240 | registers R0 to R2. */ |
8818c391 TR |
1241 | |
1242 | static CORE_ADDR | |
7d9b040b | 1243 | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
4add8633 TR |
1244 | struct regcache *regcache, CORE_ADDR bp_addr, |
1245 | int nargs, struct value **args, CORE_ADDR sp, | |
1246 | int struct_return, CORE_ADDR struct_addr) | |
8818c391 | 1247 | { |
e17a4113 | 1248 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
4add8633 | 1249 | int i; |
6d1915d4 TG |
1250 | unsigned char buf[3]; |
1251 | int call_length = gdbarch_tdep (gdbarch)->call_length; | |
4add8633 TR |
1252 | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); |
1253 | int regnum = AVR_ARGN_REGNUM; | |
1254 | struct stack_item *si = NULL; | |
8818c391 | 1255 | |
4add8633 | 1256 | if (struct_return) |
8818c391 | 1257 | { |
fd6d6815 TG |
1258 | regcache_cooked_write_unsigned |
1259 | (regcache, regnum--, (struct_addr >> 8) & 0xff); | |
1260 | regcache_cooked_write_unsigned | |
1261 | (regcache, regnum--, struct_addr & 0xff); | |
1262 | /* SP being post decremented, we need to reserve one byte so that the | |
1263 | return address won't overwrite the result (or vice-versa). */ | |
1264 | if (sp == struct_addr) | |
1265 | sp--; | |
8818c391 TR |
1266 | } |
1267 | ||
4add8633 | 1268 | for (i = 0; i < nargs; i++) |
8818c391 | 1269 | { |
4add8633 TR |
1270 | int last_regnum; |
1271 | int j; | |
1272 | struct value *arg = args[i]; | |
4991999e | 1273 | struct type *type = check_typedef (value_type (arg)); |
0fd88904 | 1274 | const bfd_byte *contents = value_contents (arg); |
4add8633 TR |
1275 | int len = TYPE_LENGTH (type); |
1276 | ||
0963b4bd | 1277 | /* Calculate the potential last register needed. */ |
4add8633 TR |
1278 | last_regnum = regnum - (len + (len & 1)); |
1279 | ||
0963b4bd MS |
1280 | /* If there are registers available, use them. Once we start putting |
1281 | stuff on the stack, all subsequent args go on stack. */ | |
4add8633 TR |
1282 | if ((si == NULL) && (last_regnum >= 8)) |
1283 | { | |
1284 | ULONGEST val; | |
1285 | ||
0963b4bd | 1286 | /* Skip a register for odd length args. */ |
4add8633 TR |
1287 | if (len & 1) |
1288 | regnum--; | |
1289 | ||
e17a4113 | 1290 | val = extract_unsigned_integer (contents, len, byte_order); |
6d1915d4 TG |
1291 | for (j = 0; j < len; j++) |
1292 | regcache_cooked_write_unsigned | |
1293 | (regcache, regnum--, val >> (8 * (len - j - 1))); | |
4add8633 | 1294 | } |
0963b4bd | 1295 | /* No registers available, push the args onto the stack. */ |
4add8633 TR |
1296 | else |
1297 | { | |
0963b4bd | 1298 | /* From here on, we don't care about regnum. */ |
4add8633 TR |
1299 | si = push_stack_item (si, contents, len); |
1300 | } | |
8818c391 | 1301 | } |
909cd28e | 1302 | |
0963b4bd | 1303 | /* Push args onto the stack. */ |
4add8633 TR |
1304 | while (si) |
1305 | { | |
1306 | sp -= si->len; | |
0963b4bd | 1307 | /* Add 1 to sp here to account for post decr nature of pushes. */ |
4e99ad69 | 1308 | write_memory (sp + 1, si->data, si->len); |
4add8633 TR |
1309 | si = pop_stack_item (si); |
1310 | } | |
3605c34a | 1311 | |
4add8633 TR |
1312 | /* Set the return address. For the avr, the return address is the BP_ADDR. |
1313 | Need to push the return address onto the stack noting that it needs to be | |
1314 | in big-endian order on the stack. */ | |
6d1915d4 TG |
1315 | for (i = 1; i <= call_length; i++) |
1316 | { | |
1317 | buf[call_length - i] = return_pc & 0xff; | |
1318 | return_pc >>= 8; | |
1319 | } | |
3605c34a | 1320 | |
6d1915d4 | 1321 | sp -= call_length; |
0963b4bd | 1322 | /* Use 'sp + 1' since pushes are post decr ops. */ |
6d1915d4 | 1323 | write_memory (sp + 1, buf, call_length); |
3605c34a | 1324 | |
0963b4bd | 1325 | /* Finally, update the SP register. */ |
4add8633 TR |
1326 | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, |
1327 | avr_convert_saddr_to_raw (sp)); | |
3605c34a | 1328 | |
6d1915d4 TG |
1329 | /* Return SP value for the dummy frame, where the return address hasn't been |
1330 | pushed. */ | |
1331 | return sp + call_length; | |
3605c34a TR |
1332 | } |
1333 | ||
53f6a2c9 TG |
1334 | /* Unfortunately dwarf2 register for SP is 32. */ |
1335 | ||
1336 | static int | |
1337 | avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | |
1338 | { | |
1339 | if (reg >= 0 && reg < 32) | |
1340 | return reg; | |
1341 | if (reg == 32) | |
1342 | return AVR_SP_REGNUM; | |
1343 | ||
1344 | warning (_("Unmapped DWARF Register #%d encountered."), reg); | |
1345 | ||
1346 | return -1; | |
1347 | } | |
1348 | ||
0963b4bd | 1349 | /* Initialize the gdbarch structure for the AVR's. */ |
8818c391 TR |
1350 | |
1351 | static struct gdbarch * | |
2e5ff58c TR |
1352 | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
1353 | { | |
2e5ff58c TR |
1354 | struct gdbarch *gdbarch; |
1355 | struct gdbarch_tdep *tdep; | |
4e99ad69 TG |
1356 | struct gdbarch_list *best_arch; |
1357 | int call_length; | |
8818c391 | 1358 | |
4e99ad69 | 1359 | /* Avr-6 call instructions save 3 bytes. */ |
8818c391 TR |
1360 | switch (info.bfd_arch_info->mach) |
1361 | { | |
1362 | case bfd_mach_avr1: | |
1363 | case bfd_mach_avr2: | |
1364 | case bfd_mach_avr3: | |
1365 | case bfd_mach_avr4: | |
1366 | case bfd_mach_avr5: | |
4e99ad69 TG |
1367 | default: |
1368 | call_length = 2; | |
1369 | break; | |
1370 | case bfd_mach_avr6: | |
1371 | call_length = 3; | |
8818c391 TR |
1372 | break; |
1373 | } | |
1374 | ||
4e99ad69 TG |
1375 | /* If there is already a candidate, use it. */ |
1376 | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | |
1377 | best_arch != NULL; | |
1378 | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | |
1379 | { | |
1380 | if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) | |
1381 | return best_arch->gdbarch; | |
1382 | } | |
1383 | ||
0963b4bd | 1384 | /* None found, create a new architecture from the information provided. */ |
4e99ad69 TG |
1385 | tdep = XMALLOC (struct gdbarch_tdep); |
1386 | gdbarch = gdbarch_alloc (&info, tdep); | |
1387 | ||
1388 | tdep->call_length = call_length; | |
1389 | ||
7d2552b4 TG |
1390 | /* Create a type for PC. We can't use builtin types here, as they may not |
1391 | be defined. */ | |
1392 | tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); | |
1393 | tdep->func_void_type = make_function_type (tdep->void_type, NULL); | |
1394 | tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL); | |
1395 | TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type; | |
1396 | TYPE_UNSIGNED (tdep->pc_type) = 1; | |
1397 | ||
8818c391 TR |
1398 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); |
1399 | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1400 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1401 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
1402 | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
1403 | set_gdbarch_addr_bit (gdbarch, 32); | |
8818c391 TR |
1404 | |
1405 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1406 | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1407 | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
1408 | ||
8da61cc4 DJ |
1409 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); |
1410 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
1411 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
8818c391 TR |
1412 | |
1413 | set_gdbarch_read_pc (gdbarch, avr_read_pc); | |
1414 | set_gdbarch_write_pc (gdbarch, avr_write_pc); | |
8818c391 TR |
1415 | |
1416 | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | |
1417 | ||
1418 | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | |
8818c391 TR |
1419 | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); |
1420 | ||
1421 | set_gdbarch_register_name (gdbarch, avr_register_name); | |
866b76ea | 1422 | set_gdbarch_register_type (gdbarch, avr_register_type); |
8818c391 | 1423 | |
7d2552b4 TG |
1424 | set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); |
1425 | set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); | |
1426 | set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); | |
1427 | ||
4c8b6ae0 | 1428 | set_gdbarch_return_value (gdbarch, avr_return_value); |
8818c391 TR |
1429 | set_gdbarch_print_insn (gdbarch, print_insn_avr); |
1430 | ||
4add8633 | 1431 | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); |
8818c391 | 1432 | |
53f6a2c9 TG |
1433 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); |
1434 | ||
8818c391 TR |
1435 | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); |
1436 | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | |
8a1d23b2 | 1437 | set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); |
8818c391 | 1438 | |
8818c391 | 1439 | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); |
8818c391 TR |
1440 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
1441 | ||
909cd28e | 1442 | set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); |
8818c391 | 1443 | |
94afd7a6 | 1444 | frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); |
4add8633 TR |
1445 | frame_base_set_default (gdbarch, &avr_frame_base); |
1446 | ||
94afd7a6 | 1447 | set_gdbarch_dummy_id (gdbarch, avr_dummy_id); |
4add8633 TR |
1448 | |
1449 | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | |
30244cd8 | 1450 | set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); |
8818c391 | 1451 | |
8818c391 TR |
1452 | return gdbarch; |
1453 | } | |
1454 | ||
1455 | /* Send a query request to the avr remote target asking for values of the io | |
0963b4bd | 1456 | registers. If args parameter is not NULL, then the user has requested info |
8818c391 | 1457 | on a specific io register [This still needs implemented and is ignored for |
0963b4bd | 1458 | now]. The query string should be one of these forms: |
8818c391 TR |
1459 | |
1460 | "Ravr.io_reg" -> reply is "NN" number of io registers | |
1461 | ||
1462 | "Ravr.io_reg:addr,len" where addr is first register and len is number of | |
0963b4bd | 1463 | registers to be read. The reply should be "<NAME>,VV;" for each io register |
8818c391 TR |
1464 | where, <NAME> is a string, and VV is the hex value of the register. |
1465 | ||
0963b4bd | 1466 | All io registers are 8-bit. */ |
8818c391 TR |
1467 | |
1468 | static void | |
1469 | avr_io_reg_read_command (char *args, int from_tty) | |
1470 | { | |
1e3ff5ad | 1471 | LONGEST bufsiz = 0; |
13547ab6 | 1472 | gdb_byte *buf; |
2e5ff58c TR |
1473 | char query[400]; |
1474 | char *p; | |
1475 | unsigned int nreg = 0; | |
1476 | unsigned int val; | |
1477 | int i, j, k, step; | |
8818c391 | 1478 | |
0963b4bd | 1479 | /* Find out how many io registers the target has. */ |
13547ab6 DJ |
1480 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1481 | "avr.io_reg", &buf); | |
8818c391 | 1482 | |
13547ab6 | 1483 | if (bufsiz <= 0) |
8818c391 | 1484 | { |
2e5ff58c | 1485 | fprintf_unfiltered (gdb_stderr, |
13547ab6 DJ |
1486 | _("ERR: info io_registers NOT supported " |
1487 | "by current target\n")); | |
8818c391 TR |
1488 | return; |
1489 | } | |
1490 | ||
2e5ff58c | 1491 | if (sscanf (buf, "%x", &nreg) != 1) |
8818c391 | 1492 | { |
2e5ff58c | 1493 | fprintf_unfiltered (gdb_stderr, |
edefbb7c | 1494 | _("Error fetching number of io registers\n")); |
13547ab6 | 1495 | xfree (buf); |
8818c391 TR |
1496 | return; |
1497 | } | |
1498 | ||
13547ab6 DJ |
1499 | xfree (buf); |
1500 | ||
2e5ff58c | 1501 | reinitialize_more_filter (); |
8818c391 | 1502 | |
edefbb7c | 1503 | printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); |
8818c391 TR |
1504 | |
1505 | /* only fetch up to 8 registers at a time to keep the buffer small */ | |
1506 | step = 8; | |
1507 | ||
2e5ff58c | 1508 | for (i = 0; i < nreg; i += step) |
8818c391 | 1509 | { |
91ccbfc1 TR |
1510 | /* how many registers this round? */ |
1511 | j = step; | |
1512 | if ((i+j) >= nreg) | |
1513 | j = nreg - i; /* last block is less than 8 registers */ | |
8818c391 | 1514 | |
2e5ff58c | 1515 | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); |
13547ab6 DJ |
1516 | bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, |
1517 | query, &buf); | |
8818c391 TR |
1518 | |
1519 | p = buf; | |
2e5ff58c TR |
1520 | for (k = i; k < (i + j); k++) |
1521 | { | |
1522 | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | |
1523 | { | |
1524 | printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); | |
1525 | while ((*p != ';') && (*p != '\0')) | |
1526 | p++; | |
1527 | p++; /* skip over ';' */ | |
1528 | if (*p == '\0') | |
1529 | break; | |
1530 | } | |
1531 | } | |
13547ab6 DJ |
1532 | |
1533 | xfree (buf); | |
8818c391 TR |
1534 | } |
1535 | } | |
1536 | ||
a78f21af AC |
1537 | extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ |
1538 | ||
8818c391 TR |
1539 | void |
1540 | _initialize_avr_tdep (void) | |
1541 | { | |
1542 | register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); | |
1543 | ||
1544 | /* Add a new command to allow the user to query the avr remote target for | |
1545 | the values of the io space registers in a saner way than just using | |
0963b4bd | 1546 | `x/NNNb ADDR`. */ |
8818c391 TR |
1547 | |
1548 | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | |
0963b4bd | 1549 | io_registers' to signify it is not available on other platforms. */ |
8818c391 TR |
1550 | |
1551 | add_cmd ("io_registers", class_info, avr_io_reg_read_command, | |
1a966eab AC |
1552 | _("query remote avr target for io space register values"), |
1553 | &infolist); | |
8818c391 | 1554 | } |