]>
Commit | Line | Data |
---|---|---|
3993f6b1 | 1 | /* GNU/Linux native-dependent code common to multiple platforms. |
dba24537 | 2 | |
9b254dd1 | 3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
e26af52f | 4 | Free Software Foundation, Inc. |
3993f6b1 DJ |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
3993f6b1 DJ |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
3993f6b1 DJ |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
23 | #include "target.h" | |
d6b0e80f | 24 | #include "gdb_string.h" |
3993f6b1 | 25 | #include "gdb_wait.h" |
d6b0e80f AC |
26 | #include "gdb_assert.h" |
27 | #ifdef HAVE_TKILL_SYSCALL | |
28 | #include <unistd.h> | |
29 | #include <sys/syscall.h> | |
30 | #endif | |
3993f6b1 | 31 | #include <sys/ptrace.h> |
0274a8ce | 32 | #include "linux-nat.h" |
ac264b3b | 33 | #include "linux-fork.h" |
d6b0e80f AC |
34 | #include "gdbthread.h" |
35 | #include "gdbcmd.h" | |
36 | #include "regcache.h" | |
4f844a66 | 37 | #include "regset.h" |
10d6c8cd DJ |
38 | #include "inf-ptrace.h" |
39 | #include "auxv.h" | |
dba24537 AC |
40 | #include <sys/param.h> /* for MAXPATHLEN */ |
41 | #include <sys/procfs.h> /* for elf_gregset etc. */ | |
42 | #include "elf-bfd.h" /* for elfcore_write_* */ | |
43 | #include "gregset.h" /* for gregset */ | |
44 | #include "gdbcore.h" /* for get_exec_file */ | |
45 | #include <ctype.h> /* for isdigit */ | |
46 | #include "gdbthread.h" /* for struct thread_info etc. */ | |
47 | #include "gdb_stat.h" /* for struct stat */ | |
48 | #include <fcntl.h> /* for O_RDONLY */ | |
b84876c2 PA |
49 | #include "inf-loop.h" |
50 | #include "event-loop.h" | |
51 | #include "event-top.h" | |
dba24537 | 52 | |
10568435 JK |
53 | #ifdef HAVE_PERSONALITY |
54 | # include <sys/personality.h> | |
55 | # if !HAVE_DECL_ADDR_NO_RANDOMIZE | |
56 | # define ADDR_NO_RANDOMIZE 0x0040000 | |
57 | # endif | |
58 | #endif /* HAVE_PERSONALITY */ | |
59 | ||
8a77dff3 VP |
60 | /* This comment documents high-level logic of this file. |
61 | ||
62 | Waiting for events in sync mode | |
63 | =============================== | |
64 | ||
65 | When waiting for an event in a specific thread, we just use waitpid, passing | |
66 | the specific pid, and not passing WNOHANG. | |
67 | ||
68 | When waiting for an event in all threads, waitpid is not quite good. Prior to | |
69 | version 2.4, Linux can either wait for event in main thread, or in secondary | |
70 | threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might | |
71 | miss an event. The solution is to use non-blocking waitpid, together with | |
72 | sigsuspend. First, we use non-blocking waitpid to get an event in the main | |
73 | process, if any. Second, we use non-blocking waitpid with the __WCLONED | |
74 | flag to check for events in cloned processes. If nothing is found, we use | |
75 | sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something | |
76 | happened to a child process -- and SIGCHLD will be delivered both for events | |
77 | in main debugged process and in cloned processes. As soon as we know there's | |
78 | an event, we get back to calling nonblocking waitpid with and without __WCLONED. | |
79 | ||
80 | Note that SIGCHLD should be blocked between waitpid and sigsuspend calls, | |
81 | so that we don't miss a signal. If SIGCHLD arrives in between, when it's | |
82 | blocked, the signal becomes pending and sigsuspend immediately | |
83 | notices it and returns. | |
84 | ||
85 | Waiting for events in async mode | |
86 | ================================ | |
87 | ||
88 | In async mode, GDB should always be ready to handle both user input and target | |
89 | events, so neither blocking waitpid nor sigsuspend are viable | |
90 | options. Instead, we should notify the GDB main event loop whenever there's | |
91 | unprocessed event from the target. The only way to notify this event loop is | |
92 | to make it wait on input from a pipe, and write something to the pipe whenever | |
93 | there's event. Obviously, if we fail to notify the event loop if there's | |
94 | target event, it's bad. If we notify the event loop when there's no event | |
95 | from target, linux-nat.c will detect that there's no event, actually, and | |
96 | report event of type TARGET_WAITKIND_IGNORE, but it will waste time and | |
97 | better avoided. | |
98 | ||
99 | The main design point is that every time GDB is outside linux-nat.c, we have a | |
100 | SIGCHLD handler installed that is called when something happens to the target | |
101 | and notifies the GDB event loop. Also, the event is extracted from the target | |
102 | using waitpid and stored for future use. Whenever GDB core decides to handle | |
103 | the event, and calls into linux-nat.c, we disable SIGCHLD and process things | |
104 | as in sync mode, except that before waitpid call we check if there are any | |
105 | previously read events. | |
106 | ||
107 | It could happen that during event processing, we'll try to get more events | |
108 | than there are events in the local queue, which will result to waitpid call. | |
109 | Those waitpid calls, while blocking, are guarantied to always have | |
110 | something for waitpid to return. E.g., stopping a thread with SIGSTOP, and | |
111 | waiting for the lwp to stop. | |
112 | ||
113 | The event loop is notified about new events using a pipe. SIGCHLD handler does | |
114 | waitpid and writes the results in to a pipe. GDB event loop has the other end | |
115 | of the pipe among the sources. When event loop starts to process the event | |
116 | and calls a function in linux-nat.c, all events from the pipe are transferred | |
117 | into a local queue and SIGCHLD is blocked. Further processing goes as in sync | |
118 | mode. Before we return from linux_nat_wait, we transfer all unprocessed events | |
119 | from local queue back to the pipe, so that when we get back to event loop, | |
120 | event loop will notice there's something more to do. | |
121 | ||
122 | SIGCHLD is blocked when we're inside target_wait, so that should we actually | |
123 | want to wait for some more events, SIGCHLD handler does not steal them from | |
124 | us. Technically, it would be possible to add new events to the local queue but | |
125 | it's about the same amount of work as blocking SIGCHLD. | |
126 | ||
127 | This moving of events from pipe into local queue and back into pipe when we | |
128 | enter/leave linux-nat.c is somewhat ugly. Unfortunately, GDB event loop is | |
129 | home-grown and incapable to wait on any queue. | |
130 | ||
131 | Use of signals | |
132 | ============== | |
133 | ||
134 | We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another | |
135 | signal is not entirely significant; we just need for a signal to be delivered, | |
136 | so that we can intercept it. SIGSTOP's advantage is that it can not be | |
137 | blocked. A disadvantage is that it is not a real-time signal, so it can only | |
138 | be queued once; we do not keep track of other sources of SIGSTOP. | |
139 | ||
140 | Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't | |
141 | use them, because they have special behavior when the signal is generated - | |
142 | not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL | |
143 | kills the entire thread group. | |
144 | ||
145 | A delivered SIGSTOP would stop the entire thread group, not just the thread we | |
146 | tkill'd. But we never let the SIGSTOP be delivered; we always intercept and | |
147 | cancel it (by PTRACE_CONT without passing SIGSTOP). | |
148 | ||
149 | We could use a real-time signal instead. This would solve those problems; we | |
150 | could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. | |
151 | But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH | |
152 | generates it, and there are races with trying to find a signal that is not | |
153 | blocked. */ | |
a0ef4274 | 154 | |
dba24537 AC |
155 | #ifndef O_LARGEFILE |
156 | #define O_LARGEFILE 0 | |
157 | #endif | |
0274a8ce | 158 | |
3993f6b1 DJ |
159 | /* If the system headers did not provide the constants, hard-code the normal |
160 | values. */ | |
161 | #ifndef PTRACE_EVENT_FORK | |
162 | ||
163 | #define PTRACE_SETOPTIONS 0x4200 | |
164 | #define PTRACE_GETEVENTMSG 0x4201 | |
165 | ||
166 | /* options set using PTRACE_SETOPTIONS */ | |
167 | #define PTRACE_O_TRACESYSGOOD 0x00000001 | |
168 | #define PTRACE_O_TRACEFORK 0x00000002 | |
169 | #define PTRACE_O_TRACEVFORK 0x00000004 | |
170 | #define PTRACE_O_TRACECLONE 0x00000008 | |
171 | #define PTRACE_O_TRACEEXEC 0x00000010 | |
9016a515 DJ |
172 | #define PTRACE_O_TRACEVFORKDONE 0x00000020 |
173 | #define PTRACE_O_TRACEEXIT 0x00000040 | |
3993f6b1 DJ |
174 | |
175 | /* Wait extended result codes for the above trace options. */ | |
176 | #define PTRACE_EVENT_FORK 1 | |
177 | #define PTRACE_EVENT_VFORK 2 | |
178 | #define PTRACE_EVENT_CLONE 3 | |
179 | #define PTRACE_EVENT_EXEC 4 | |
c874c7fc | 180 | #define PTRACE_EVENT_VFORK_DONE 5 |
9016a515 | 181 | #define PTRACE_EVENT_EXIT 6 |
3993f6b1 DJ |
182 | |
183 | #endif /* PTRACE_EVENT_FORK */ | |
184 | ||
185 | /* We can't always assume that this flag is available, but all systems | |
186 | with the ptrace event handlers also have __WALL, so it's safe to use | |
187 | here. */ | |
188 | #ifndef __WALL | |
189 | #define __WALL 0x40000000 /* Wait for any child. */ | |
190 | #endif | |
191 | ||
02d3ff8c UW |
192 | #ifndef PTRACE_GETSIGINFO |
193 | #define PTRACE_GETSIGINFO 0x4202 | |
194 | #endif | |
195 | ||
10d6c8cd DJ |
196 | /* The single-threaded native GNU/Linux target_ops. We save a pointer for |
197 | the use of the multi-threaded target. */ | |
198 | static struct target_ops *linux_ops; | |
f973ed9c | 199 | static struct target_ops linux_ops_saved; |
10d6c8cd | 200 | |
9f0bdab8 DJ |
201 | /* The method to call, if any, when a new thread is attached. */ |
202 | static void (*linux_nat_new_thread) (ptid_t); | |
203 | ||
ac264b3b MS |
204 | /* The saved to_xfer_partial method, inherited from inf-ptrace.c. |
205 | Called by our to_xfer_partial. */ | |
206 | static LONGEST (*super_xfer_partial) (struct target_ops *, | |
207 | enum target_object, | |
208 | const char *, gdb_byte *, | |
209 | const gdb_byte *, | |
10d6c8cd DJ |
210 | ULONGEST, LONGEST); |
211 | ||
d6b0e80f | 212 | static int debug_linux_nat; |
920d2a44 AC |
213 | static void |
214 | show_debug_linux_nat (struct ui_file *file, int from_tty, | |
215 | struct cmd_list_element *c, const char *value) | |
216 | { | |
217 | fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), | |
218 | value); | |
219 | } | |
d6b0e80f | 220 | |
b84876c2 PA |
221 | static int debug_linux_nat_async = 0; |
222 | static void | |
223 | show_debug_linux_nat_async (struct ui_file *file, int from_tty, | |
224 | struct cmd_list_element *c, const char *value) | |
225 | { | |
226 | fprintf_filtered (file, _("Debugging of GNU/Linux async lwp module is %s.\n"), | |
227 | value); | |
228 | } | |
229 | ||
10568435 JK |
230 | static int disable_randomization = 1; |
231 | ||
232 | static void | |
233 | show_disable_randomization (struct ui_file *file, int from_tty, | |
234 | struct cmd_list_element *c, const char *value) | |
235 | { | |
236 | #ifdef HAVE_PERSONALITY | |
237 | fprintf_filtered (file, _("\ | |
238 | Disabling randomization of debuggee's virtual address space is %s.\n"), | |
239 | value); | |
240 | #else /* !HAVE_PERSONALITY */ | |
241 | fputs_filtered (_("\ | |
242 | Disabling randomization of debuggee's virtual address space is unsupported on\n\ | |
243 | this platform.\n"), file); | |
244 | #endif /* !HAVE_PERSONALITY */ | |
245 | } | |
246 | ||
247 | static void | |
248 | set_disable_randomization (char *args, int from_tty, struct cmd_list_element *c) | |
249 | { | |
250 | #ifndef HAVE_PERSONALITY | |
251 | error (_("\ | |
252 | Disabling randomization of debuggee's virtual address space is unsupported on\n\ | |
253 | this platform.")); | |
254 | #endif /* !HAVE_PERSONALITY */ | |
255 | } | |
256 | ||
9016a515 DJ |
257 | static int linux_parent_pid; |
258 | ||
ae087d01 DJ |
259 | struct simple_pid_list |
260 | { | |
261 | int pid; | |
3d799a95 | 262 | int status; |
ae087d01 DJ |
263 | struct simple_pid_list *next; |
264 | }; | |
265 | struct simple_pid_list *stopped_pids; | |
266 | ||
3993f6b1 DJ |
267 | /* This variable is a tri-state flag: -1 for unknown, 0 if PTRACE_O_TRACEFORK |
268 | can not be used, 1 if it can. */ | |
269 | ||
270 | static int linux_supports_tracefork_flag = -1; | |
271 | ||
9016a515 DJ |
272 | /* If we have PTRACE_O_TRACEFORK, this flag indicates whether we also have |
273 | PTRACE_O_TRACEVFORKDONE. */ | |
274 | ||
275 | static int linux_supports_tracevforkdone_flag = -1; | |
276 | ||
b84876c2 PA |
277 | /* Async mode support */ |
278 | ||
b84876c2 PA |
279 | /* Zero if the async mode, although enabled, is masked, which means |
280 | linux_nat_wait should behave as if async mode was off. */ | |
281 | static int linux_nat_async_mask_value = 1; | |
282 | ||
283 | /* The read/write ends of the pipe registered as waitable file in the | |
284 | event loop. */ | |
285 | static int linux_nat_event_pipe[2] = { -1, -1 }; | |
286 | ||
287 | /* Number of queued events in the pipe. */ | |
288 | static volatile int linux_nat_num_queued_events; | |
289 | ||
84e46146 | 290 | /* The possible SIGCHLD handling states. */ |
b84876c2 | 291 | |
84e46146 PA |
292 | enum sigchld_state |
293 | { | |
294 | /* SIGCHLD disabled, with action set to sigchld_handler, for the | |
295 | sigsuspend in linux_nat_wait. */ | |
296 | sigchld_sync, | |
297 | /* SIGCHLD enabled, with action set to async_sigchld_handler. */ | |
298 | sigchld_async, | |
299 | /* Set SIGCHLD to default action. Used while creating an | |
300 | inferior. */ | |
301 | sigchld_default | |
302 | }; | |
303 | ||
304 | /* The current SIGCHLD handling state. */ | |
305 | static enum sigchld_state linux_nat_async_events_state; | |
306 | ||
307 | static enum sigchld_state linux_nat_async_events (enum sigchld_state enable); | |
b84876c2 PA |
308 | static void pipe_to_local_event_queue (void); |
309 | static void local_event_queue_to_pipe (void); | |
310 | static void linux_nat_event_pipe_push (int pid, int status, int options); | |
311 | static int linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options); | |
312 | static void linux_nat_set_async_mode (int on); | |
313 | static void linux_nat_async (void (*callback) | |
314 | (enum inferior_event_type event_type, void *context), | |
315 | void *context); | |
316 | static int linux_nat_async_mask (int mask); | |
a0ef4274 | 317 | static int kill_lwp (int lwpid, int signo); |
b84876c2 | 318 | |
4c28f408 PA |
319 | static int send_sigint_callback (struct lwp_info *lp, void *data); |
320 | static int stop_callback (struct lwp_info *lp, void *data); | |
321 | ||
b84876c2 PA |
322 | /* Captures the result of a successful waitpid call, along with the |
323 | options used in that call. */ | |
324 | struct waitpid_result | |
325 | { | |
326 | int pid; | |
327 | int status; | |
328 | int options; | |
329 | struct waitpid_result *next; | |
330 | }; | |
331 | ||
332 | /* A singly-linked list of the results of the waitpid calls performed | |
333 | in the async SIGCHLD handler. */ | |
334 | static struct waitpid_result *waitpid_queue = NULL; | |
335 | ||
336 | static int | |
337 | queued_waitpid (int pid, int *status, int flags) | |
338 | { | |
339 | struct waitpid_result *msg = waitpid_queue, *prev = NULL; | |
340 | ||
341 | if (debug_linux_nat_async) | |
342 | fprintf_unfiltered (gdb_stdlog, | |
343 | "\ | |
84e46146 PA |
344 | QWPID: linux_nat_async_events_state(%d), linux_nat_num_queued_events(%d)\n", |
345 | linux_nat_async_events_state, | |
b84876c2 PA |
346 | linux_nat_num_queued_events); |
347 | ||
348 | if (flags & __WALL) | |
349 | { | |
350 | for (; msg; prev = msg, msg = msg->next) | |
351 | if (pid == -1 || pid == msg->pid) | |
352 | break; | |
353 | } | |
354 | else if (flags & __WCLONE) | |
355 | { | |
356 | for (; msg; prev = msg, msg = msg->next) | |
357 | if (msg->options & __WCLONE | |
358 | && (pid == -1 || pid == msg->pid)) | |
359 | break; | |
360 | } | |
361 | else | |
362 | { | |
363 | for (; msg; prev = msg, msg = msg->next) | |
364 | if ((msg->options & __WCLONE) == 0 | |
365 | && (pid == -1 || pid == msg->pid)) | |
366 | break; | |
367 | } | |
368 | ||
369 | if (msg) | |
370 | { | |
371 | int pid; | |
372 | ||
373 | if (prev) | |
374 | prev->next = msg->next; | |
375 | else | |
376 | waitpid_queue = msg->next; | |
377 | ||
378 | msg->next = NULL; | |
379 | if (status) | |
380 | *status = msg->status; | |
381 | pid = msg->pid; | |
382 | ||
383 | if (debug_linux_nat_async) | |
384 | fprintf_unfiltered (gdb_stdlog, "QWPID: pid(%d), status(%x)\n", | |
385 | pid, msg->status); | |
386 | xfree (msg); | |
387 | ||
388 | return pid; | |
389 | } | |
390 | ||
391 | if (debug_linux_nat_async) | |
392 | fprintf_unfiltered (gdb_stdlog, "QWPID: miss\n"); | |
393 | ||
394 | if (status) | |
395 | *status = 0; | |
396 | return -1; | |
397 | } | |
398 | ||
399 | static void | |
400 | push_waitpid (int pid, int status, int options) | |
401 | { | |
402 | struct waitpid_result *event, *new_event; | |
403 | ||
404 | new_event = xmalloc (sizeof (*new_event)); | |
405 | new_event->pid = pid; | |
406 | new_event->status = status; | |
407 | new_event->options = options; | |
408 | new_event->next = NULL; | |
409 | ||
410 | if (waitpid_queue) | |
411 | { | |
412 | for (event = waitpid_queue; | |
413 | event && event->next; | |
414 | event = event->next) | |
415 | ; | |
416 | ||
417 | event->next = new_event; | |
418 | } | |
419 | else | |
420 | waitpid_queue = new_event; | |
421 | } | |
422 | ||
710151dd | 423 | /* Drain all queued events of PID. If PID is -1, the effect is of |
b84876c2 PA |
424 | draining all events. */ |
425 | static void | |
426 | drain_queued_events (int pid) | |
427 | { | |
428 | while (queued_waitpid (pid, NULL, __WALL) != -1) | |
429 | ; | |
430 | } | |
431 | ||
ae087d01 DJ |
432 | \f |
433 | /* Trivial list manipulation functions to keep track of a list of | |
434 | new stopped processes. */ | |
435 | static void | |
3d799a95 | 436 | add_to_pid_list (struct simple_pid_list **listp, int pid, int status) |
ae087d01 DJ |
437 | { |
438 | struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list)); | |
439 | new_pid->pid = pid; | |
3d799a95 | 440 | new_pid->status = status; |
ae087d01 DJ |
441 | new_pid->next = *listp; |
442 | *listp = new_pid; | |
443 | } | |
444 | ||
445 | static int | |
3d799a95 | 446 | pull_pid_from_list (struct simple_pid_list **listp, int pid, int *status) |
ae087d01 DJ |
447 | { |
448 | struct simple_pid_list **p; | |
449 | ||
450 | for (p = listp; *p != NULL; p = &(*p)->next) | |
451 | if ((*p)->pid == pid) | |
452 | { | |
453 | struct simple_pid_list *next = (*p)->next; | |
3d799a95 | 454 | *status = (*p)->status; |
ae087d01 DJ |
455 | xfree (*p); |
456 | *p = next; | |
457 | return 1; | |
458 | } | |
459 | return 0; | |
460 | } | |
461 | ||
3d799a95 DJ |
462 | static void |
463 | linux_record_stopped_pid (int pid, int status) | |
ae087d01 | 464 | { |
3d799a95 | 465 | add_to_pid_list (&stopped_pids, pid, status); |
ae087d01 DJ |
466 | } |
467 | ||
3993f6b1 DJ |
468 | \f |
469 | /* A helper function for linux_test_for_tracefork, called after fork (). */ | |
470 | ||
471 | static void | |
472 | linux_tracefork_child (void) | |
473 | { | |
474 | int ret; | |
475 | ||
476 | ptrace (PTRACE_TRACEME, 0, 0, 0); | |
477 | kill (getpid (), SIGSTOP); | |
478 | fork (); | |
48bb3cce | 479 | _exit (0); |
3993f6b1 DJ |
480 | } |
481 | ||
b84876c2 PA |
482 | /* Wrapper function for waitpid which handles EINTR, and checks for |
483 | locally queued events. */ | |
b957e937 DJ |
484 | |
485 | static int | |
486 | my_waitpid (int pid, int *status, int flags) | |
487 | { | |
488 | int ret; | |
b84876c2 PA |
489 | |
490 | /* There should be no concurrent calls to waitpid. */ | |
84e46146 | 491 | gdb_assert (linux_nat_async_events_state == sigchld_sync); |
b84876c2 PA |
492 | |
493 | ret = queued_waitpid (pid, status, flags); | |
494 | if (ret != -1) | |
495 | return ret; | |
496 | ||
b957e937 DJ |
497 | do |
498 | { | |
499 | ret = waitpid (pid, status, flags); | |
500 | } | |
501 | while (ret == -1 && errno == EINTR); | |
502 | ||
503 | return ret; | |
504 | } | |
505 | ||
506 | /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. | |
507 | ||
508 | First, we try to enable fork tracing on ORIGINAL_PID. If this fails, | |
509 | we know that the feature is not available. This may change the tracing | |
510 | options for ORIGINAL_PID, but we'll be setting them shortly anyway. | |
511 | ||
512 | However, if it succeeds, we don't know for sure that the feature is | |
513 | available; old versions of PTRACE_SETOPTIONS ignored unknown options. We | |
3993f6b1 | 514 | create a child process, attach to it, use PTRACE_SETOPTIONS to enable |
b957e937 DJ |
515 | fork tracing, and let it fork. If the process exits, we assume that we |
516 | can't use TRACEFORK; if we get the fork notification, and we can extract | |
517 | the new child's PID, then we assume that we can. */ | |
3993f6b1 DJ |
518 | |
519 | static void | |
b957e937 | 520 | linux_test_for_tracefork (int original_pid) |
3993f6b1 DJ |
521 | { |
522 | int child_pid, ret, status; | |
523 | long second_pid; | |
4c28f408 PA |
524 | enum sigchld_state async_events_original_state; |
525 | ||
526 | async_events_original_state = linux_nat_async_events (sigchld_sync); | |
3993f6b1 | 527 | |
b957e937 DJ |
528 | linux_supports_tracefork_flag = 0; |
529 | linux_supports_tracevforkdone_flag = 0; | |
530 | ||
531 | ret = ptrace (PTRACE_SETOPTIONS, original_pid, 0, PTRACE_O_TRACEFORK); | |
532 | if (ret != 0) | |
533 | return; | |
534 | ||
3993f6b1 DJ |
535 | child_pid = fork (); |
536 | if (child_pid == -1) | |
e2e0b3e5 | 537 | perror_with_name (("fork")); |
3993f6b1 DJ |
538 | |
539 | if (child_pid == 0) | |
540 | linux_tracefork_child (); | |
541 | ||
b957e937 | 542 | ret = my_waitpid (child_pid, &status, 0); |
3993f6b1 | 543 | if (ret == -1) |
e2e0b3e5 | 544 | perror_with_name (("waitpid")); |
3993f6b1 | 545 | else if (ret != child_pid) |
8a3fe4f8 | 546 | error (_("linux_test_for_tracefork: waitpid: unexpected result %d."), ret); |
3993f6b1 | 547 | if (! WIFSTOPPED (status)) |
8a3fe4f8 | 548 | error (_("linux_test_for_tracefork: waitpid: unexpected status %d."), status); |
3993f6b1 | 549 | |
3993f6b1 DJ |
550 | ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK); |
551 | if (ret != 0) | |
552 | { | |
b957e937 DJ |
553 | ret = ptrace (PTRACE_KILL, child_pid, 0, 0); |
554 | if (ret != 0) | |
555 | { | |
8a3fe4f8 | 556 | warning (_("linux_test_for_tracefork: failed to kill child")); |
4c28f408 | 557 | linux_nat_async_events (async_events_original_state); |
b957e937 DJ |
558 | return; |
559 | } | |
560 | ||
561 | ret = my_waitpid (child_pid, &status, 0); | |
562 | if (ret != child_pid) | |
8a3fe4f8 | 563 | warning (_("linux_test_for_tracefork: failed to wait for killed child")); |
b957e937 | 564 | else if (!WIFSIGNALED (status)) |
8a3fe4f8 AC |
565 | warning (_("linux_test_for_tracefork: unexpected wait status 0x%x from " |
566 | "killed child"), status); | |
b957e937 | 567 | |
4c28f408 | 568 | linux_nat_async_events (async_events_original_state); |
3993f6b1 DJ |
569 | return; |
570 | } | |
571 | ||
9016a515 DJ |
572 | /* Check whether PTRACE_O_TRACEVFORKDONE is available. */ |
573 | ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, | |
574 | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORKDONE); | |
575 | linux_supports_tracevforkdone_flag = (ret == 0); | |
576 | ||
b957e937 DJ |
577 | ret = ptrace (PTRACE_CONT, child_pid, 0, 0); |
578 | if (ret != 0) | |
8a3fe4f8 | 579 | warning (_("linux_test_for_tracefork: failed to resume child")); |
b957e937 DJ |
580 | |
581 | ret = my_waitpid (child_pid, &status, 0); | |
582 | ||
3993f6b1 DJ |
583 | if (ret == child_pid && WIFSTOPPED (status) |
584 | && status >> 16 == PTRACE_EVENT_FORK) | |
585 | { | |
586 | second_pid = 0; | |
587 | ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid); | |
588 | if (ret == 0 && second_pid != 0) | |
589 | { | |
590 | int second_status; | |
591 | ||
592 | linux_supports_tracefork_flag = 1; | |
b957e937 DJ |
593 | my_waitpid (second_pid, &second_status, 0); |
594 | ret = ptrace (PTRACE_KILL, second_pid, 0, 0); | |
595 | if (ret != 0) | |
8a3fe4f8 | 596 | warning (_("linux_test_for_tracefork: failed to kill second child")); |
97725dc4 | 597 | my_waitpid (second_pid, &status, 0); |
3993f6b1 DJ |
598 | } |
599 | } | |
b957e937 | 600 | else |
8a3fe4f8 AC |
601 | warning (_("linux_test_for_tracefork: unexpected result from waitpid " |
602 | "(%d, status 0x%x)"), ret, status); | |
3993f6b1 | 603 | |
b957e937 DJ |
604 | ret = ptrace (PTRACE_KILL, child_pid, 0, 0); |
605 | if (ret != 0) | |
8a3fe4f8 | 606 | warning (_("linux_test_for_tracefork: failed to kill child")); |
b957e937 | 607 | my_waitpid (child_pid, &status, 0); |
4c28f408 PA |
608 | |
609 | linux_nat_async_events (async_events_original_state); | |
3993f6b1 DJ |
610 | } |
611 | ||
612 | /* Return non-zero iff we have tracefork functionality available. | |
613 | This function also sets linux_supports_tracefork_flag. */ | |
614 | ||
615 | static int | |
b957e937 | 616 | linux_supports_tracefork (int pid) |
3993f6b1 DJ |
617 | { |
618 | if (linux_supports_tracefork_flag == -1) | |
b957e937 | 619 | linux_test_for_tracefork (pid); |
3993f6b1 DJ |
620 | return linux_supports_tracefork_flag; |
621 | } | |
622 | ||
9016a515 | 623 | static int |
b957e937 | 624 | linux_supports_tracevforkdone (int pid) |
9016a515 DJ |
625 | { |
626 | if (linux_supports_tracefork_flag == -1) | |
b957e937 | 627 | linux_test_for_tracefork (pid); |
9016a515 DJ |
628 | return linux_supports_tracevforkdone_flag; |
629 | } | |
630 | ||
3993f6b1 | 631 | \f |
4de4c07c DJ |
632 | void |
633 | linux_enable_event_reporting (ptid_t ptid) | |
634 | { | |
d3587048 | 635 | int pid = ptid_get_lwp (ptid); |
4de4c07c DJ |
636 | int options; |
637 | ||
d3587048 DJ |
638 | if (pid == 0) |
639 | pid = ptid_get_pid (ptid); | |
640 | ||
b957e937 | 641 | if (! linux_supports_tracefork (pid)) |
4de4c07c DJ |
642 | return; |
643 | ||
a2f23071 DJ |
644 | options = PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK | PTRACE_O_TRACEEXEC |
645 | | PTRACE_O_TRACECLONE; | |
b957e937 | 646 | if (linux_supports_tracevforkdone (pid)) |
9016a515 DJ |
647 | options |= PTRACE_O_TRACEVFORKDONE; |
648 | ||
649 | /* Do not enable PTRACE_O_TRACEEXIT until GDB is more prepared to support | |
650 | read-only process state. */ | |
4de4c07c DJ |
651 | |
652 | ptrace (PTRACE_SETOPTIONS, pid, 0, options); | |
653 | } | |
654 | ||
6d8fd2b7 UW |
655 | static void |
656 | linux_child_post_attach (int pid) | |
4de4c07c DJ |
657 | { |
658 | linux_enable_event_reporting (pid_to_ptid (pid)); | |
0ec9a092 | 659 | check_for_thread_db (); |
4de4c07c DJ |
660 | } |
661 | ||
10d6c8cd | 662 | static void |
4de4c07c DJ |
663 | linux_child_post_startup_inferior (ptid_t ptid) |
664 | { | |
665 | linux_enable_event_reporting (ptid); | |
0ec9a092 | 666 | check_for_thread_db (); |
4de4c07c DJ |
667 | } |
668 | ||
6d8fd2b7 UW |
669 | static int |
670 | linux_child_follow_fork (struct target_ops *ops, int follow_child) | |
3993f6b1 | 671 | { |
4de4c07c DJ |
672 | ptid_t last_ptid; |
673 | struct target_waitstatus last_status; | |
9016a515 | 674 | int has_vforked; |
4de4c07c DJ |
675 | int parent_pid, child_pid; |
676 | ||
b84876c2 PA |
677 | if (target_can_async_p ()) |
678 | target_async (NULL, 0); | |
679 | ||
4de4c07c | 680 | get_last_target_status (&last_ptid, &last_status); |
9016a515 | 681 | has_vforked = (last_status.kind == TARGET_WAITKIND_VFORKED); |
d3587048 DJ |
682 | parent_pid = ptid_get_lwp (last_ptid); |
683 | if (parent_pid == 0) | |
684 | parent_pid = ptid_get_pid (last_ptid); | |
3a3e9ee3 | 685 | child_pid = PIDGET (last_status.value.related_pid); |
4de4c07c DJ |
686 | |
687 | if (! follow_child) | |
688 | { | |
689 | /* We're already attached to the parent, by default. */ | |
690 | ||
691 | /* Before detaching from the child, remove all breakpoints from | |
692 | it. (This won't actually modify the breakpoint list, but will | |
693 | physically remove the breakpoints from the child.) */ | |
9016a515 DJ |
694 | /* If we vforked this will remove the breakpoints from the parent |
695 | also, but they'll be reinserted below. */ | |
4de4c07c DJ |
696 | detach_breakpoints (child_pid); |
697 | ||
ac264b3b MS |
698 | /* Detach new forked process? */ |
699 | if (detach_fork) | |
f75c00e4 | 700 | { |
e85a822c | 701 | if (info_verbose || debug_linux_nat) |
ac264b3b MS |
702 | { |
703 | target_terminal_ours (); | |
704 | fprintf_filtered (gdb_stdlog, | |
705 | "Detaching after fork from child process %d.\n", | |
706 | child_pid); | |
707 | } | |
4de4c07c | 708 | |
ac264b3b MS |
709 | ptrace (PTRACE_DETACH, child_pid, 0, 0); |
710 | } | |
711 | else | |
712 | { | |
713 | struct fork_info *fp; | |
714 | /* Retain child fork in ptrace (stopped) state. */ | |
715 | fp = find_fork_pid (child_pid); | |
716 | if (!fp) | |
717 | fp = add_fork (child_pid); | |
718 | fork_save_infrun_state (fp, 0); | |
719 | } | |
9016a515 DJ |
720 | |
721 | if (has_vforked) | |
722 | { | |
b957e937 DJ |
723 | gdb_assert (linux_supports_tracefork_flag >= 0); |
724 | if (linux_supports_tracevforkdone (0)) | |
9016a515 DJ |
725 | { |
726 | int status; | |
727 | ||
728 | ptrace (PTRACE_CONT, parent_pid, 0, 0); | |
58aecb61 | 729 | my_waitpid (parent_pid, &status, __WALL); |
c874c7fc | 730 | if ((status >> 16) != PTRACE_EVENT_VFORK_DONE) |
8a3fe4f8 AC |
731 | warning (_("Unexpected waitpid result %06x when waiting for " |
732 | "vfork-done"), status); | |
9016a515 DJ |
733 | } |
734 | else | |
735 | { | |
736 | /* We can't insert breakpoints until the child has | |
737 | finished with the shared memory region. We need to | |
738 | wait until that happens. Ideal would be to just | |
739 | call: | |
740 | - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); | |
741 | - waitpid (parent_pid, &status, __WALL); | |
742 | However, most architectures can't handle a syscall | |
743 | being traced on the way out if it wasn't traced on | |
744 | the way in. | |
745 | ||
746 | We might also think to loop, continuing the child | |
747 | until it exits or gets a SIGTRAP. One problem is | |
748 | that the child might call ptrace with PTRACE_TRACEME. | |
749 | ||
750 | There's no simple and reliable way to figure out when | |
751 | the vforked child will be done with its copy of the | |
752 | shared memory. We could step it out of the syscall, | |
753 | two instructions, let it go, and then single-step the | |
754 | parent once. When we have hardware single-step, this | |
755 | would work; with software single-step it could still | |
756 | be made to work but we'd have to be able to insert | |
757 | single-step breakpoints in the child, and we'd have | |
758 | to insert -just- the single-step breakpoint in the | |
759 | parent. Very awkward. | |
760 | ||
761 | In the end, the best we can do is to make sure it | |
762 | runs for a little while. Hopefully it will be out of | |
763 | range of any breakpoints we reinsert. Usually this | |
764 | is only the single-step breakpoint at vfork's return | |
765 | point. */ | |
766 | ||
767 | usleep (10000); | |
768 | } | |
769 | ||
770 | /* Since we vforked, breakpoints were removed in the parent | |
771 | too. Put them back. */ | |
772 | reattach_breakpoints (parent_pid); | |
773 | } | |
4de4c07c | 774 | } |
3993f6b1 | 775 | else |
4de4c07c | 776 | { |
4e1c45ea PA |
777 | struct thread_info *last_tp = find_thread_pid (last_ptid); |
778 | struct thread_info *tp; | |
4de4c07c DJ |
779 | char child_pid_spelling[40]; |
780 | ||
4e1c45ea PA |
781 | /* Copy user stepping state to the new inferior thread. */ |
782 | struct breakpoint *step_resume_breakpoint = last_tp->step_resume_breakpoint; | |
783 | CORE_ADDR step_range_start = last_tp->step_range_start; | |
784 | CORE_ADDR step_range_end = last_tp->step_range_end; | |
785 | struct frame_id step_frame_id = last_tp->step_frame_id; | |
786 | ||
787 | /* Otherwise, deleting the parent would get rid of this | |
788 | breakpoint. */ | |
789 | last_tp->step_resume_breakpoint = NULL; | |
790 | ||
4de4c07c | 791 | /* Needed to keep the breakpoint lists in sync. */ |
9016a515 DJ |
792 | if (! has_vforked) |
793 | detach_breakpoints (child_pid); | |
4de4c07c DJ |
794 | |
795 | /* Before detaching from the parent, remove all breakpoints from it. */ | |
796 | remove_breakpoints (); | |
797 | ||
e85a822c | 798 | if (info_verbose || debug_linux_nat) |
f75c00e4 DJ |
799 | { |
800 | target_terminal_ours (); | |
ac264b3b MS |
801 | fprintf_filtered (gdb_stdlog, |
802 | "Attaching after fork to child process %d.\n", | |
803 | child_pid); | |
f75c00e4 | 804 | } |
4de4c07c | 805 | |
9016a515 DJ |
806 | /* If we're vforking, we may want to hold on to the parent until |
807 | the child exits or execs. At exec time we can remove the old | |
808 | breakpoints from the parent and detach it; at exit time we | |
809 | could do the same (or even, sneakily, resume debugging it - the | |
810 | child's exec has failed, or something similar). | |
811 | ||
812 | This doesn't clean up "properly", because we can't call | |
813 | target_detach, but that's OK; if the current target is "child", | |
814 | then it doesn't need any further cleanups, and lin_lwp will | |
815 | generally not encounter vfork (vfork is defined to fork | |
816 | in libpthread.so). | |
817 | ||
818 | The holding part is very easy if we have VFORKDONE events; | |
819 | but keeping track of both processes is beyond GDB at the | |
820 | moment. So we don't expose the parent to the rest of GDB. | |
821 | Instead we quietly hold onto it until such time as we can | |
822 | safely resume it. */ | |
823 | ||
824 | if (has_vforked) | |
825 | linux_parent_pid = parent_pid; | |
ac264b3b MS |
826 | else if (!detach_fork) |
827 | { | |
828 | struct fork_info *fp; | |
829 | /* Retain parent fork in ptrace (stopped) state. */ | |
830 | fp = find_fork_pid (parent_pid); | |
831 | if (!fp) | |
832 | fp = add_fork (parent_pid); | |
833 | fork_save_infrun_state (fp, 0); | |
834 | } | |
9016a515 | 835 | else |
b84876c2 | 836 | target_detach (NULL, 0); |
4de4c07c | 837 | |
9f0bdab8 | 838 | inferior_ptid = ptid_build (child_pid, child_pid, 0); |
ee057212 DJ |
839 | |
840 | /* Reinstall ourselves, since we might have been removed in | |
841 | target_detach (which does other necessary cleanup). */ | |
ac264b3b | 842 | |
ee057212 | 843 | push_target (ops); |
9f0bdab8 | 844 | linux_nat_switch_fork (inferior_ptid); |
ef29ce1a | 845 | check_for_thread_db (); |
4de4c07c | 846 | |
4e1c45ea PA |
847 | tp = inferior_thread (); |
848 | tp->step_resume_breakpoint = step_resume_breakpoint; | |
849 | tp->step_range_start = step_range_start; | |
850 | tp->step_range_end = step_range_end; | |
851 | tp->step_frame_id = step_frame_id; | |
852 | ||
4de4c07c DJ |
853 | /* Reset breakpoints in the child as appropriate. */ |
854 | follow_inferior_reset_breakpoints (); | |
855 | } | |
856 | ||
b84876c2 PA |
857 | if (target_can_async_p ()) |
858 | target_async (inferior_event_handler, 0); | |
859 | ||
4de4c07c DJ |
860 | return 0; |
861 | } | |
862 | ||
4de4c07c | 863 | \f |
6d8fd2b7 UW |
864 | static void |
865 | linux_child_insert_fork_catchpoint (int pid) | |
4de4c07c | 866 | { |
b957e937 | 867 | if (! linux_supports_tracefork (pid)) |
8a3fe4f8 | 868 | error (_("Your system does not support fork catchpoints.")); |
3993f6b1 DJ |
869 | } |
870 | ||
6d8fd2b7 UW |
871 | static void |
872 | linux_child_insert_vfork_catchpoint (int pid) | |
3993f6b1 | 873 | { |
b957e937 | 874 | if (!linux_supports_tracefork (pid)) |
8a3fe4f8 | 875 | error (_("Your system does not support vfork catchpoints.")); |
3993f6b1 DJ |
876 | } |
877 | ||
6d8fd2b7 UW |
878 | static void |
879 | linux_child_insert_exec_catchpoint (int pid) | |
3993f6b1 | 880 | { |
b957e937 | 881 | if (!linux_supports_tracefork (pid)) |
8a3fe4f8 | 882 | error (_("Your system does not support exec catchpoints.")); |
3993f6b1 DJ |
883 | } |
884 | ||
d6b0e80f AC |
885 | /* On GNU/Linux there are no real LWP's. The closest thing to LWP's |
886 | are processes sharing the same VM space. A multi-threaded process | |
887 | is basically a group of such processes. However, such a grouping | |
888 | is almost entirely a user-space issue; the kernel doesn't enforce | |
889 | such a grouping at all (this might change in the future). In | |
890 | general, we'll rely on the threads library (i.e. the GNU/Linux | |
891 | Threads library) to provide such a grouping. | |
892 | ||
893 | It is perfectly well possible to write a multi-threaded application | |
894 | without the assistance of a threads library, by using the clone | |
895 | system call directly. This module should be able to give some | |
896 | rudimentary support for debugging such applications if developers | |
897 | specify the CLONE_PTRACE flag in the clone system call, and are | |
898 | using the Linux kernel 2.4 or above. | |
899 | ||
900 | Note that there are some peculiarities in GNU/Linux that affect | |
901 | this code: | |
902 | ||
903 | - In general one should specify the __WCLONE flag to waitpid in | |
904 | order to make it report events for any of the cloned processes | |
905 | (and leave it out for the initial process). However, if a cloned | |
906 | process has exited the exit status is only reported if the | |
907 | __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but | |
908 | we cannot use it since GDB must work on older systems too. | |
909 | ||
910 | - When a traced, cloned process exits and is waited for by the | |
911 | debugger, the kernel reassigns it to the original parent and | |
912 | keeps it around as a "zombie". Somehow, the GNU/Linux Threads | |
913 | library doesn't notice this, which leads to the "zombie problem": | |
914 | When debugged a multi-threaded process that spawns a lot of | |
915 | threads will run out of processes, even if the threads exit, | |
916 | because the "zombies" stay around. */ | |
917 | ||
918 | /* List of known LWPs. */ | |
9f0bdab8 | 919 | struct lwp_info *lwp_list; |
d6b0e80f AC |
920 | |
921 | /* Number of LWPs in the list. */ | |
922 | static int num_lwps; | |
d6b0e80f AC |
923 | \f |
924 | ||
d6b0e80f AC |
925 | /* Original signal mask. */ |
926 | static sigset_t normal_mask; | |
927 | ||
928 | /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in | |
929 | _initialize_linux_nat. */ | |
930 | static sigset_t suspend_mask; | |
931 | ||
b84876c2 PA |
932 | /* SIGCHLD action for synchronous mode. */ |
933 | struct sigaction sync_sigchld_action; | |
934 | ||
935 | /* SIGCHLD action for asynchronous mode. */ | |
936 | static struct sigaction async_sigchld_action; | |
84e46146 PA |
937 | |
938 | /* SIGCHLD default action, to pass to new inferiors. */ | |
939 | static struct sigaction sigchld_default_action; | |
d6b0e80f AC |
940 | \f |
941 | ||
942 | /* Prototypes for local functions. */ | |
943 | static int stop_wait_callback (struct lwp_info *lp, void *data); | |
944 | static int linux_nat_thread_alive (ptid_t ptid); | |
6d8fd2b7 | 945 | static char *linux_child_pid_to_exec_file (int pid); |
710151dd PA |
946 | static int cancel_breakpoint (struct lwp_info *lp); |
947 | ||
d6b0e80f AC |
948 | \f |
949 | /* Convert wait status STATUS to a string. Used for printing debug | |
950 | messages only. */ | |
951 | ||
952 | static char * | |
953 | status_to_str (int status) | |
954 | { | |
955 | static char buf[64]; | |
956 | ||
957 | if (WIFSTOPPED (status)) | |
958 | snprintf (buf, sizeof (buf), "%s (stopped)", | |
959 | strsignal (WSTOPSIG (status))); | |
960 | else if (WIFSIGNALED (status)) | |
961 | snprintf (buf, sizeof (buf), "%s (terminated)", | |
962 | strsignal (WSTOPSIG (status))); | |
963 | else | |
964 | snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status)); | |
965 | ||
966 | return buf; | |
967 | } | |
968 | ||
969 | /* Initialize the list of LWPs. Note that this module, contrary to | |
970 | what GDB's generic threads layer does for its thread list, | |
971 | re-initializes the LWP lists whenever we mourn or detach (which | |
972 | doesn't involve mourning) the inferior. */ | |
973 | ||
974 | static void | |
975 | init_lwp_list (void) | |
976 | { | |
977 | struct lwp_info *lp, *lpnext; | |
978 | ||
979 | for (lp = lwp_list; lp; lp = lpnext) | |
980 | { | |
981 | lpnext = lp->next; | |
982 | xfree (lp); | |
983 | } | |
984 | ||
985 | lwp_list = NULL; | |
986 | num_lwps = 0; | |
d6b0e80f AC |
987 | } |
988 | ||
f973ed9c | 989 | /* Add the LWP specified by PID to the list. Return a pointer to the |
9f0bdab8 DJ |
990 | structure describing the new LWP. The LWP should already be stopped |
991 | (with an exception for the very first LWP). */ | |
d6b0e80f AC |
992 | |
993 | static struct lwp_info * | |
994 | add_lwp (ptid_t ptid) | |
995 | { | |
996 | struct lwp_info *lp; | |
997 | ||
998 | gdb_assert (is_lwp (ptid)); | |
999 | ||
1000 | lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info)); | |
1001 | ||
1002 | memset (lp, 0, sizeof (struct lwp_info)); | |
1003 | ||
1004 | lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
1005 | ||
1006 | lp->ptid = ptid; | |
1007 | ||
1008 | lp->next = lwp_list; | |
1009 | lwp_list = lp; | |
f973ed9c | 1010 | ++num_lwps; |
d6b0e80f | 1011 | |
9f0bdab8 DJ |
1012 | if (num_lwps > 1 && linux_nat_new_thread != NULL) |
1013 | linux_nat_new_thread (ptid); | |
1014 | ||
d6b0e80f AC |
1015 | return lp; |
1016 | } | |
1017 | ||
1018 | /* Remove the LWP specified by PID from the list. */ | |
1019 | ||
1020 | static void | |
1021 | delete_lwp (ptid_t ptid) | |
1022 | { | |
1023 | struct lwp_info *lp, *lpprev; | |
1024 | ||
1025 | lpprev = NULL; | |
1026 | ||
1027 | for (lp = lwp_list; lp; lpprev = lp, lp = lp->next) | |
1028 | if (ptid_equal (lp->ptid, ptid)) | |
1029 | break; | |
1030 | ||
1031 | if (!lp) | |
1032 | return; | |
1033 | ||
d6b0e80f AC |
1034 | num_lwps--; |
1035 | ||
1036 | if (lpprev) | |
1037 | lpprev->next = lp->next; | |
1038 | else | |
1039 | lwp_list = lp->next; | |
1040 | ||
1041 | xfree (lp); | |
1042 | } | |
1043 | ||
1044 | /* Return a pointer to the structure describing the LWP corresponding | |
1045 | to PID. If no corresponding LWP could be found, return NULL. */ | |
1046 | ||
1047 | static struct lwp_info * | |
1048 | find_lwp_pid (ptid_t ptid) | |
1049 | { | |
1050 | struct lwp_info *lp; | |
1051 | int lwp; | |
1052 | ||
1053 | if (is_lwp (ptid)) | |
1054 | lwp = GET_LWP (ptid); | |
1055 | else | |
1056 | lwp = GET_PID (ptid); | |
1057 | ||
1058 | for (lp = lwp_list; lp; lp = lp->next) | |
1059 | if (lwp == GET_LWP (lp->ptid)) | |
1060 | return lp; | |
1061 | ||
1062 | return NULL; | |
1063 | } | |
1064 | ||
1065 | /* Call CALLBACK with its second argument set to DATA for every LWP in | |
1066 | the list. If CALLBACK returns 1 for a particular LWP, return a | |
1067 | pointer to the structure describing that LWP immediately. | |
1068 | Otherwise return NULL. */ | |
1069 | ||
1070 | struct lwp_info * | |
1071 | iterate_over_lwps (int (*callback) (struct lwp_info *, void *), void *data) | |
1072 | { | |
1073 | struct lwp_info *lp, *lpnext; | |
1074 | ||
1075 | for (lp = lwp_list; lp; lp = lpnext) | |
1076 | { | |
1077 | lpnext = lp->next; | |
1078 | if ((*callback) (lp, data)) | |
1079 | return lp; | |
1080 | } | |
1081 | ||
1082 | return NULL; | |
1083 | } | |
1084 | ||
f973ed9c DJ |
1085 | /* Update our internal state when changing from one fork (checkpoint, |
1086 | et cetera) to another indicated by NEW_PTID. We can only switch | |
1087 | single-threaded applications, so we only create one new LWP, and | |
1088 | the previous list is discarded. */ | |
1089 | ||
1090 | void | |
1091 | linux_nat_switch_fork (ptid_t new_ptid) | |
1092 | { | |
1093 | struct lwp_info *lp; | |
1094 | ||
1095 | init_lwp_list (); | |
1096 | lp = add_lwp (new_ptid); | |
1097 | lp->stopped = 1; | |
e26af52f | 1098 | |
4f8d22e3 PA |
1099 | init_thread_list (); |
1100 | add_thread_silent (new_ptid); | |
e26af52f DJ |
1101 | } |
1102 | ||
e26af52f DJ |
1103 | /* Handle the exit of a single thread LP. */ |
1104 | ||
1105 | static void | |
1106 | exit_lwp (struct lwp_info *lp) | |
1107 | { | |
063bfe2e VP |
1108 | struct thread_info *th = find_thread_pid (lp->ptid); |
1109 | ||
1110 | if (th) | |
e26af52f | 1111 | { |
17faa917 DJ |
1112 | if (print_thread_events) |
1113 | printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); | |
1114 | ||
4f8d22e3 | 1115 | delete_thread (lp->ptid); |
e26af52f DJ |
1116 | } |
1117 | ||
1118 | delete_lwp (lp->ptid); | |
1119 | } | |
1120 | ||
a0ef4274 DJ |
1121 | /* Detect `T (stopped)' in `/proc/PID/status'. |
1122 | Other states including `T (tracing stop)' are reported as false. */ | |
1123 | ||
1124 | static int | |
1125 | pid_is_stopped (pid_t pid) | |
1126 | { | |
1127 | FILE *status_file; | |
1128 | char buf[100]; | |
1129 | int retval = 0; | |
1130 | ||
1131 | snprintf (buf, sizeof (buf), "/proc/%d/status", (int) pid); | |
1132 | status_file = fopen (buf, "r"); | |
1133 | if (status_file != NULL) | |
1134 | { | |
1135 | int have_state = 0; | |
1136 | ||
1137 | while (fgets (buf, sizeof (buf), status_file)) | |
1138 | { | |
1139 | if (strncmp (buf, "State:", 6) == 0) | |
1140 | { | |
1141 | have_state = 1; | |
1142 | break; | |
1143 | } | |
1144 | } | |
1145 | if (have_state && strstr (buf, "T (stopped)") != NULL) | |
1146 | retval = 1; | |
1147 | fclose (status_file); | |
1148 | } | |
1149 | return retval; | |
1150 | } | |
1151 | ||
1152 | /* Wait for the LWP specified by LP, which we have just attached to. | |
1153 | Returns a wait status for that LWP, to cache. */ | |
1154 | ||
1155 | static int | |
1156 | linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned, | |
1157 | int *signalled) | |
1158 | { | |
1159 | pid_t new_pid, pid = GET_LWP (ptid); | |
1160 | int status; | |
1161 | ||
1162 | if (pid_is_stopped (pid)) | |
1163 | { | |
1164 | if (debug_linux_nat) | |
1165 | fprintf_unfiltered (gdb_stdlog, | |
1166 | "LNPAW: Attaching to a stopped process\n"); | |
1167 | ||
1168 | /* The process is definitely stopped. It is in a job control | |
1169 | stop, unless the kernel predates the TASK_STOPPED / | |
1170 | TASK_TRACED distinction, in which case it might be in a | |
1171 | ptrace stop. Make sure it is in a ptrace stop; from there we | |
1172 | can kill it, signal it, et cetera. | |
1173 | ||
1174 | First make sure there is a pending SIGSTOP. Since we are | |
1175 | already attached, the process can not transition from stopped | |
1176 | to running without a PTRACE_CONT; so we know this signal will | |
1177 | go into the queue. The SIGSTOP generated by PTRACE_ATTACH is | |
1178 | probably already in the queue (unless this kernel is old | |
1179 | enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP | |
1180 | is not an RT signal, it can only be queued once. */ | |
1181 | kill_lwp (pid, SIGSTOP); | |
1182 | ||
1183 | /* Finally, resume the stopped process. This will deliver the SIGSTOP | |
1184 | (or a higher priority signal, just like normal PTRACE_ATTACH). */ | |
1185 | ptrace (PTRACE_CONT, pid, 0, 0); | |
1186 | } | |
1187 | ||
1188 | /* Make sure the initial process is stopped. The user-level threads | |
1189 | layer might want to poke around in the inferior, and that won't | |
1190 | work if things haven't stabilized yet. */ | |
1191 | new_pid = my_waitpid (pid, &status, 0); | |
1192 | if (new_pid == -1 && errno == ECHILD) | |
1193 | { | |
1194 | if (first) | |
1195 | warning (_("%s is a cloned process"), target_pid_to_str (ptid)); | |
1196 | ||
1197 | /* Try again with __WCLONE to check cloned processes. */ | |
1198 | new_pid = my_waitpid (pid, &status, __WCLONE); | |
1199 | *cloned = 1; | |
1200 | } | |
1201 | ||
1202 | gdb_assert (pid == new_pid && WIFSTOPPED (status)); | |
1203 | ||
1204 | if (WSTOPSIG (status) != SIGSTOP) | |
1205 | { | |
1206 | *signalled = 1; | |
1207 | if (debug_linux_nat) | |
1208 | fprintf_unfiltered (gdb_stdlog, | |
1209 | "LNPAW: Received %s after attaching\n", | |
1210 | status_to_str (status)); | |
1211 | } | |
1212 | ||
1213 | return status; | |
1214 | } | |
1215 | ||
1216 | /* Attach to the LWP specified by PID. Return 0 if successful or -1 | |
1217 | if the new LWP could not be attached. */ | |
d6b0e80f | 1218 | |
9ee57c33 | 1219 | int |
93815fbf | 1220 | lin_lwp_attach_lwp (ptid_t ptid) |
d6b0e80f | 1221 | { |
9ee57c33 | 1222 | struct lwp_info *lp; |
84e46146 | 1223 | enum sigchld_state async_events_original_state; |
d6b0e80f AC |
1224 | |
1225 | gdb_assert (is_lwp (ptid)); | |
1226 | ||
84e46146 | 1227 | async_events_original_state = linux_nat_async_events (sigchld_sync); |
d6b0e80f | 1228 | |
9ee57c33 | 1229 | lp = find_lwp_pid (ptid); |
d6b0e80f AC |
1230 | |
1231 | /* We assume that we're already attached to any LWP that has an id | |
1232 | equal to the overall process id, and to any LWP that is already | |
1233 | in our list of LWPs. If we're not seeing exit events from threads | |
1234 | and we've had PID wraparound since we last tried to stop all threads, | |
1235 | this assumption might be wrong; fortunately, this is very unlikely | |
1236 | to happen. */ | |
9ee57c33 | 1237 | if (GET_LWP (ptid) != GET_PID (ptid) && lp == NULL) |
d6b0e80f | 1238 | { |
a0ef4274 | 1239 | int status, cloned = 0, signalled = 0; |
d6b0e80f AC |
1240 | |
1241 | if (ptrace (PTRACE_ATTACH, GET_LWP (ptid), 0, 0) < 0) | |
9ee57c33 DJ |
1242 | { |
1243 | /* If we fail to attach to the thread, issue a warning, | |
1244 | but continue. One way this can happen is if thread | |
e9efe249 | 1245 | creation is interrupted; as of Linux kernel 2.6.19, a |
9ee57c33 DJ |
1246 | bug may place threads in the thread list and then fail |
1247 | to create them. */ | |
1248 | warning (_("Can't attach %s: %s"), target_pid_to_str (ptid), | |
1249 | safe_strerror (errno)); | |
1250 | return -1; | |
1251 | } | |
1252 | ||
d6b0e80f AC |
1253 | if (debug_linux_nat) |
1254 | fprintf_unfiltered (gdb_stdlog, | |
1255 | "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n", | |
1256 | target_pid_to_str (ptid)); | |
1257 | ||
a0ef4274 DJ |
1258 | status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled); |
1259 | lp = add_lwp (ptid); | |
1260 | lp->stopped = 1; | |
1261 | lp->cloned = cloned; | |
1262 | lp->signalled = signalled; | |
1263 | if (WSTOPSIG (status) != SIGSTOP) | |
d6b0e80f | 1264 | { |
a0ef4274 DJ |
1265 | lp->resumed = 1; |
1266 | lp->status = status; | |
d6b0e80f AC |
1267 | } |
1268 | ||
a0ef4274 | 1269 | target_post_attach (GET_LWP (lp->ptid)); |
d6b0e80f AC |
1270 | |
1271 | if (debug_linux_nat) | |
1272 | { | |
1273 | fprintf_unfiltered (gdb_stdlog, | |
1274 | "LLAL: waitpid %s received %s\n", | |
1275 | target_pid_to_str (ptid), | |
1276 | status_to_str (status)); | |
1277 | } | |
1278 | } | |
1279 | else | |
1280 | { | |
1281 | /* We assume that the LWP representing the original process is | |
1282 | already stopped. Mark it as stopped in the data structure | |
155bd5d1 AC |
1283 | that the GNU/linux ptrace layer uses to keep track of |
1284 | threads. Note that this won't have already been done since | |
1285 | the main thread will have, we assume, been stopped by an | |
1286 | attach from a different layer. */ | |
9ee57c33 DJ |
1287 | if (lp == NULL) |
1288 | lp = add_lwp (ptid); | |
d6b0e80f AC |
1289 | lp->stopped = 1; |
1290 | } | |
9ee57c33 | 1291 | |
84e46146 | 1292 | linux_nat_async_events (async_events_original_state); |
9ee57c33 | 1293 | return 0; |
d6b0e80f AC |
1294 | } |
1295 | ||
b84876c2 PA |
1296 | static void |
1297 | linux_nat_create_inferior (char *exec_file, char *allargs, char **env, | |
1298 | int from_tty) | |
1299 | { | |
1300 | int saved_async = 0; | |
10568435 JK |
1301 | #ifdef HAVE_PERSONALITY |
1302 | int personality_orig = 0, personality_set = 0; | |
1303 | #endif /* HAVE_PERSONALITY */ | |
b84876c2 PA |
1304 | |
1305 | /* The fork_child mechanism is synchronous and calls target_wait, so | |
1306 | we have to mask the async mode. */ | |
1307 | ||
1308 | if (target_can_async_p ()) | |
84e46146 PA |
1309 | /* Mask async mode. Creating a child requires a loop calling |
1310 | wait_for_inferior currently. */ | |
b84876c2 PA |
1311 | saved_async = linux_nat_async_mask (0); |
1312 | else | |
1313 | { | |
1314 | /* Restore the original signal mask. */ | |
1315 | sigprocmask (SIG_SETMASK, &normal_mask, NULL); | |
1316 | /* Make sure we don't block SIGCHLD during a sigsuspend. */ | |
1317 | suspend_mask = normal_mask; | |
1318 | sigdelset (&suspend_mask, SIGCHLD); | |
1319 | } | |
1320 | ||
84e46146 PA |
1321 | /* Set SIGCHLD to the default action, until after execing the child, |
1322 | since the inferior inherits the superior's signal mask. It will | |
1323 | be blocked again in linux_nat_wait, which is only reached after | |
1324 | the inferior execing. */ | |
1325 | linux_nat_async_events (sigchld_default); | |
1326 | ||
10568435 JK |
1327 | #ifdef HAVE_PERSONALITY |
1328 | if (disable_randomization) | |
1329 | { | |
1330 | errno = 0; | |
1331 | personality_orig = personality (0xffffffff); | |
1332 | if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE)) | |
1333 | { | |
1334 | personality_set = 1; | |
1335 | personality (personality_orig | ADDR_NO_RANDOMIZE); | |
1336 | } | |
1337 | if (errno != 0 || (personality_set | |
1338 | && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE))) | |
1339 | warning (_("Error disabling address space randomization: %s"), | |
1340 | safe_strerror (errno)); | |
1341 | } | |
1342 | #endif /* HAVE_PERSONALITY */ | |
1343 | ||
b84876c2 PA |
1344 | linux_ops->to_create_inferior (exec_file, allargs, env, from_tty); |
1345 | ||
10568435 JK |
1346 | #ifdef HAVE_PERSONALITY |
1347 | if (personality_set) | |
1348 | { | |
1349 | errno = 0; | |
1350 | personality (personality_orig); | |
1351 | if (errno != 0) | |
1352 | warning (_("Error restoring address space randomization: %s"), | |
1353 | safe_strerror (errno)); | |
1354 | } | |
1355 | #endif /* HAVE_PERSONALITY */ | |
1356 | ||
b84876c2 PA |
1357 | if (saved_async) |
1358 | linux_nat_async_mask (saved_async); | |
1359 | } | |
1360 | ||
d6b0e80f AC |
1361 | static void |
1362 | linux_nat_attach (char *args, int from_tty) | |
1363 | { | |
1364 | struct lwp_info *lp; | |
d6b0e80f | 1365 | int status; |
af990527 | 1366 | ptid_t ptid; |
d6b0e80f AC |
1367 | |
1368 | /* FIXME: We should probably accept a list of process id's, and | |
1369 | attach all of them. */ | |
10d6c8cd | 1370 | linux_ops->to_attach (args, from_tty); |
d6b0e80f | 1371 | |
b84876c2 PA |
1372 | if (!target_can_async_p ()) |
1373 | { | |
1374 | /* Restore the original signal mask. */ | |
1375 | sigprocmask (SIG_SETMASK, &normal_mask, NULL); | |
1376 | /* Make sure we don't block SIGCHLD during a sigsuspend. */ | |
1377 | suspend_mask = normal_mask; | |
1378 | sigdelset (&suspend_mask, SIGCHLD); | |
1379 | } | |
1380 | ||
af990527 PA |
1381 | /* The ptrace base target adds the main thread with (pid,0,0) |
1382 | format. Decorate it with lwp info. */ | |
1383 | ptid = BUILD_LWP (GET_PID (inferior_ptid), GET_PID (inferior_ptid)); | |
1384 | thread_change_ptid (inferior_ptid, ptid); | |
1385 | ||
9f0bdab8 | 1386 | /* Add the initial process as the first LWP to the list. */ |
af990527 | 1387 | lp = add_lwp (ptid); |
a0ef4274 DJ |
1388 | |
1389 | status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned, | |
1390 | &lp->signalled); | |
1391 | lp->stopped = 1; | |
9f0bdab8 | 1392 | |
a0ef4274 | 1393 | /* Save the wait status to report later. */ |
d6b0e80f | 1394 | lp->resumed = 1; |
a0ef4274 DJ |
1395 | if (debug_linux_nat) |
1396 | fprintf_unfiltered (gdb_stdlog, | |
1397 | "LNA: waitpid %ld, saving status %s\n", | |
1398 | (long) GET_PID (lp->ptid), status_to_str (status)); | |
710151dd PA |
1399 | |
1400 | if (!target_can_async_p ()) | |
a0ef4274 | 1401 | lp->status = status; |
710151dd PA |
1402 | else |
1403 | { | |
1404 | /* We already waited for this LWP, so put the wait result on the | |
1405 | pipe. The event loop will wake up and gets us to handling | |
1406 | this event. */ | |
a0ef4274 DJ |
1407 | linux_nat_event_pipe_push (GET_PID (lp->ptid), status, |
1408 | lp->cloned ? __WCLONE : 0); | |
b84876c2 PA |
1409 | /* Register in the event loop. */ |
1410 | target_async (inferior_event_handler, 0); | |
d6b0e80f AC |
1411 | } |
1412 | } | |
1413 | ||
a0ef4274 DJ |
1414 | /* Get pending status of LP. */ |
1415 | static int | |
1416 | get_pending_status (struct lwp_info *lp, int *status) | |
1417 | { | |
1418 | struct target_waitstatus last; | |
1419 | ptid_t last_ptid; | |
1420 | ||
1421 | get_last_target_status (&last_ptid, &last); | |
1422 | ||
1423 | /* If this lwp is the ptid that GDB is processing an event from, the | |
1424 | signal will be in stop_signal. Otherwise, in all-stop + sync | |
1425 | mode, we may cache pending events in lp->status while trying to | |
1426 | stop all threads (see stop_wait_callback). In async mode, the | |
1427 | events are always cached in waitpid_queue. */ | |
1428 | ||
1429 | *status = 0; | |
4c28f408 PA |
1430 | |
1431 | if (non_stop) | |
a0ef4274 | 1432 | { |
4c28f408 PA |
1433 | enum target_signal signo = TARGET_SIGNAL_0; |
1434 | ||
1435 | if (is_executing (lp->ptid)) | |
1436 | { | |
1437 | /* If the core thought this lwp was executing --- e.g., the | |
1438 | executing property hasn't been updated yet, but the | |
1439 | thread has been stopped with a stop_callback / | |
1440 | stop_wait_callback sequence (see linux_nat_detach for | |
1441 | example) --- we can only have pending events in the local | |
1442 | queue. */ | |
1443 | if (queued_waitpid (GET_LWP (lp->ptid), status, __WALL) != -1) | |
1444 | { | |
1445 | if (WIFSTOPPED (status)) | |
1446 | signo = target_signal_from_host (WSTOPSIG (status)); | |
1447 | ||
1448 | /* If not stopped, then the lwp is gone, no use in | |
1449 | resending a signal. */ | |
1450 | } | |
1451 | } | |
1452 | else | |
1453 | { | |
1454 | /* If the core knows the thread is not executing, then we | |
1455 | have the last signal recorded in | |
2020b7ab | 1456 | thread_info->stop_signal. */ |
4c28f408 | 1457 | |
2020b7ab PA |
1458 | struct thread_info *tp = find_thread_pid (lp->ptid); |
1459 | signo = tp->stop_signal; | |
4c28f408 PA |
1460 | } |
1461 | ||
1462 | if (signo != TARGET_SIGNAL_0 | |
1463 | && !signal_pass_state (signo)) | |
1464 | { | |
1465 | if (debug_linux_nat) | |
1466 | fprintf_unfiltered (gdb_stdlog, "\ | |
1467 | GPT: lwp %s had signal %s, but it is in no pass state\n", | |
1468 | target_pid_to_str (lp->ptid), | |
1469 | target_signal_to_string (signo)); | |
1470 | } | |
1471 | else | |
1472 | { | |
1473 | if (signo != TARGET_SIGNAL_0) | |
1474 | *status = W_STOPCODE (target_signal_to_host (signo)); | |
1475 | ||
1476 | if (debug_linux_nat) | |
1477 | fprintf_unfiltered (gdb_stdlog, | |
1478 | "GPT: lwp %s as pending signal %s\n", | |
1479 | target_pid_to_str (lp->ptid), | |
1480 | target_signal_to_string (signo)); | |
1481 | } | |
a0ef4274 | 1482 | } |
a0ef4274 | 1483 | else |
4c28f408 PA |
1484 | { |
1485 | if (GET_LWP (lp->ptid) == GET_LWP (last_ptid)) | |
1486 | { | |
2020b7ab PA |
1487 | struct thread_info *tp = find_thread_pid (lp->ptid); |
1488 | if (tp->stop_signal != TARGET_SIGNAL_0 | |
1489 | && signal_pass_state (tp->stop_signal)) | |
1490 | *status = W_STOPCODE (target_signal_to_host (tp->stop_signal)); | |
4c28f408 PA |
1491 | } |
1492 | else if (target_can_async_p ()) | |
1493 | queued_waitpid (GET_LWP (lp->ptid), status, __WALL); | |
1494 | else | |
1495 | *status = lp->status; | |
1496 | } | |
a0ef4274 DJ |
1497 | |
1498 | return 0; | |
1499 | } | |
1500 | ||
d6b0e80f AC |
1501 | static int |
1502 | detach_callback (struct lwp_info *lp, void *data) | |
1503 | { | |
1504 | gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); | |
1505 | ||
1506 | if (debug_linux_nat && lp->status) | |
1507 | fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", | |
1508 | strsignal (WSTOPSIG (lp->status)), | |
1509 | target_pid_to_str (lp->ptid)); | |
1510 | ||
a0ef4274 DJ |
1511 | /* If there is a pending SIGSTOP, get rid of it. */ |
1512 | if (lp->signalled) | |
d6b0e80f | 1513 | { |
d6b0e80f AC |
1514 | if (debug_linux_nat) |
1515 | fprintf_unfiltered (gdb_stdlog, | |
a0ef4274 DJ |
1516 | "DC: Sending SIGCONT to %s\n", |
1517 | target_pid_to_str (lp->ptid)); | |
d6b0e80f | 1518 | |
a0ef4274 | 1519 | kill_lwp (GET_LWP (lp->ptid), SIGCONT); |
d6b0e80f | 1520 | lp->signalled = 0; |
d6b0e80f AC |
1521 | } |
1522 | ||
1523 | /* We don't actually detach from the LWP that has an id equal to the | |
1524 | overall process id just yet. */ | |
1525 | if (GET_LWP (lp->ptid) != GET_PID (lp->ptid)) | |
1526 | { | |
a0ef4274 DJ |
1527 | int status = 0; |
1528 | ||
1529 | /* Pass on any pending signal for this LWP. */ | |
1530 | get_pending_status (lp, &status); | |
1531 | ||
d6b0e80f AC |
1532 | errno = 0; |
1533 | if (ptrace (PTRACE_DETACH, GET_LWP (lp->ptid), 0, | |
a0ef4274 | 1534 | WSTOPSIG (status)) < 0) |
8a3fe4f8 | 1535 | error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), |
d6b0e80f AC |
1536 | safe_strerror (errno)); |
1537 | ||
1538 | if (debug_linux_nat) | |
1539 | fprintf_unfiltered (gdb_stdlog, | |
1540 | "PTRACE_DETACH (%s, %s, 0) (OK)\n", | |
1541 | target_pid_to_str (lp->ptid), | |
1542 | strsignal (WSTOPSIG (lp->status))); | |
1543 | ||
1544 | delete_lwp (lp->ptid); | |
1545 | } | |
1546 | ||
1547 | return 0; | |
1548 | } | |
1549 | ||
1550 | static void | |
1551 | linux_nat_detach (char *args, int from_tty) | |
1552 | { | |
b84876c2 | 1553 | int pid; |
a0ef4274 DJ |
1554 | int status; |
1555 | enum target_signal sig; | |
1556 | ||
b84876c2 PA |
1557 | if (target_can_async_p ()) |
1558 | linux_nat_async (NULL, 0); | |
1559 | ||
4c28f408 PA |
1560 | /* Stop all threads before detaching. ptrace requires that the |
1561 | thread is stopped to sucessfully detach. */ | |
1562 | iterate_over_lwps (stop_callback, NULL); | |
1563 | /* ... and wait until all of them have reported back that | |
1564 | they're no longer running. */ | |
1565 | iterate_over_lwps (stop_wait_callback, NULL); | |
1566 | ||
d6b0e80f AC |
1567 | iterate_over_lwps (detach_callback, NULL); |
1568 | ||
1569 | /* Only the initial process should be left right now. */ | |
1570 | gdb_assert (num_lwps == 1); | |
1571 | ||
a0ef4274 DJ |
1572 | /* Pass on any pending signal for the last LWP. */ |
1573 | if ((args == NULL || *args == '\0') | |
1574 | && get_pending_status (lwp_list, &status) != -1 | |
1575 | && WIFSTOPPED (status)) | |
1576 | { | |
1577 | /* Put the signal number in ARGS so that inf_ptrace_detach will | |
1578 | pass it along with PTRACE_DETACH. */ | |
1579 | args = alloca (8); | |
1580 | sprintf (args, "%d", (int) WSTOPSIG (status)); | |
1581 | fprintf_unfiltered (gdb_stdlog, | |
1582 | "LND: Sending signal %s to %s\n", | |
1583 | args, | |
1584 | target_pid_to_str (lwp_list->ptid)); | |
1585 | } | |
1586 | ||
d6b0e80f AC |
1587 | /* Destroy LWP info; it's no longer valid. */ |
1588 | init_lwp_list (); | |
1589 | ||
b84876c2 PA |
1590 | pid = GET_PID (inferior_ptid); |
1591 | inferior_ptid = pid_to_ptid (pid); | |
10d6c8cd | 1592 | linux_ops->to_detach (args, from_tty); |
b84876c2 PA |
1593 | |
1594 | if (target_can_async_p ()) | |
1595 | drain_queued_events (pid); | |
d6b0e80f AC |
1596 | } |
1597 | ||
1598 | /* Resume LP. */ | |
1599 | ||
1600 | static int | |
1601 | resume_callback (struct lwp_info *lp, void *data) | |
1602 | { | |
1603 | if (lp->stopped && lp->status == 0) | |
1604 | { | |
10d6c8cd DJ |
1605 | linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)), |
1606 | 0, TARGET_SIGNAL_0); | |
d6b0e80f AC |
1607 | if (debug_linux_nat) |
1608 | fprintf_unfiltered (gdb_stdlog, | |
1609 | "RC: PTRACE_CONT %s, 0, 0 (resume sibling)\n", | |
1610 | target_pid_to_str (lp->ptid)); | |
1611 | lp->stopped = 0; | |
1612 | lp->step = 0; | |
9f0bdab8 | 1613 | memset (&lp->siginfo, 0, sizeof (lp->siginfo)); |
d6b0e80f | 1614 | } |
57380f4e DJ |
1615 | else if (lp->stopped && debug_linux_nat) |
1616 | fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (has pending)\n", | |
1617 | target_pid_to_str (lp->ptid)); | |
1618 | else if (debug_linux_nat) | |
1619 | fprintf_unfiltered (gdb_stdlog, "RC: Not resuming sibling %s (not stopped)\n", | |
1620 | target_pid_to_str (lp->ptid)); | |
d6b0e80f AC |
1621 | |
1622 | return 0; | |
1623 | } | |
1624 | ||
1625 | static int | |
1626 | resume_clear_callback (struct lwp_info *lp, void *data) | |
1627 | { | |
1628 | lp->resumed = 0; | |
1629 | return 0; | |
1630 | } | |
1631 | ||
1632 | static int | |
1633 | resume_set_callback (struct lwp_info *lp, void *data) | |
1634 | { | |
1635 | lp->resumed = 1; | |
1636 | return 0; | |
1637 | } | |
1638 | ||
1639 | static void | |
1640 | linux_nat_resume (ptid_t ptid, int step, enum target_signal signo) | |
1641 | { | |
1642 | struct lwp_info *lp; | |
1643 | int resume_all; | |
1644 | ||
76f50ad1 DJ |
1645 | if (debug_linux_nat) |
1646 | fprintf_unfiltered (gdb_stdlog, | |
1647 | "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", | |
1648 | step ? "step" : "resume", | |
1649 | target_pid_to_str (ptid), | |
1650 | signo ? strsignal (signo) : "0", | |
1651 | target_pid_to_str (inferior_ptid)); | |
1652 | ||
b84876c2 PA |
1653 | if (target_can_async_p ()) |
1654 | /* Block events while we're here. */ | |
84e46146 | 1655 | linux_nat_async_events (sigchld_sync); |
b84876c2 | 1656 | |
d6b0e80f AC |
1657 | /* A specific PTID means `step only this process id'. */ |
1658 | resume_all = (PIDGET (ptid) == -1); | |
1659 | ||
4c28f408 PA |
1660 | if (non_stop && resume_all) |
1661 | internal_error (__FILE__, __LINE__, | |
1662 | "can't resume all in non-stop mode"); | |
1663 | ||
1664 | if (!non_stop) | |
1665 | { | |
1666 | if (resume_all) | |
1667 | iterate_over_lwps (resume_set_callback, NULL); | |
1668 | else | |
1669 | iterate_over_lwps (resume_clear_callback, NULL); | |
1670 | } | |
d6b0e80f AC |
1671 | |
1672 | /* If PID is -1, it's the current inferior that should be | |
1673 | handled specially. */ | |
1674 | if (PIDGET (ptid) == -1) | |
1675 | ptid = inferior_ptid; | |
1676 | ||
1677 | lp = find_lwp_pid (ptid); | |
9f0bdab8 | 1678 | gdb_assert (lp != NULL); |
d6b0e80f | 1679 | |
4c28f408 | 1680 | /* Convert to something the lower layer understands. */ |
9f0bdab8 | 1681 | ptid = pid_to_ptid (GET_LWP (lp->ptid)); |
d6b0e80f | 1682 | |
9f0bdab8 DJ |
1683 | /* Remember if we're stepping. */ |
1684 | lp->step = step; | |
d6b0e80f | 1685 | |
9f0bdab8 DJ |
1686 | /* Mark this LWP as resumed. */ |
1687 | lp->resumed = 1; | |
76f50ad1 | 1688 | |
9f0bdab8 DJ |
1689 | /* If we have a pending wait status for this thread, there is no |
1690 | point in resuming the process. But first make sure that | |
1691 | linux_nat_wait won't preemptively handle the event - we | |
1692 | should never take this short-circuit if we are going to | |
1693 | leave LP running, since we have skipped resuming all the | |
1694 | other threads. This bit of code needs to be synchronized | |
1695 | with linux_nat_wait. */ | |
76f50ad1 | 1696 | |
710151dd PA |
1697 | /* In async mode, we never have pending wait status. */ |
1698 | if (target_can_async_p () && lp->status) | |
1699 | internal_error (__FILE__, __LINE__, "Pending status in async mode"); | |
1700 | ||
9f0bdab8 DJ |
1701 | if (lp->status && WIFSTOPPED (lp->status)) |
1702 | { | |
1703 | int saved_signo = target_signal_from_host (WSTOPSIG (lp->status)); | |
76f50ad1 | 1704 | |
9f0bdab8 DJ |
1705 | if (signal_stop_state (saved_signo) == 0 |
1706 | && signal_print_state (saved_signo) == 0 | |
1707 | && signal_pass_state (saved_signo) == 1) | |
d6b0e80f | 1708 | { |
9f0bdab8 DJ |
1709 | if (debug_linux_nat) |
1710 | fprintf_unfiltered (gdb_stdlog, | |
1711 | "LLR: Not short circuiting for ignored " | |
1712 | "status 0x%x\n", lp->status); | |
1713 | ||
d6b0e80f AC |
1714 | /* FIXME: What should we do if we are supposed to continue |
1715 | this thread with a signal? */ | |
1716 | gdb_assert (signo == TARGET_SIGNAL_0); | |
9f0bdab8 DJ |
1717 | signo = saved_signo; |
1718 | lp->status = 0; | |
1719 | } | |
1720 | } | |
76f50ad1 | 1721 | |
9f0bdab8 DJ |
1722 | if (lp->status) |
1723 | { | |
1724 | /* FIXME: What should we do if we are supposed to continue | |
1725 | this thread with a signal? */ | |
1726 | gdb_assert (signo == TARGET_SIGNAL_0); | |
76f50ad1 | 1727 | |
9f0bdab8 DJ |
1728 | if (debug_linux_nat) |
1729 | fprintf_unfiltered (gdb_stdlog, | |
1730 | "LLR: Short circuiting for status 0x%x\n", | |
1731 | lp->status); | |
d6b0e80f | 1732 | |
9f0bdab8 | 1733 | return; |
d6b0e80f AC |
1734 | } |
1735 | ||
9f0bdab8 DJ |
1736 | /* Mark LWP as not stopped to prevent it from being continued by |
1737 | resume_callback. */ | |
1738 | lp->stopped = 0; | |
1739 | ||
d6b0e80f AC |
1740 | if (resume_all) |
1741 | iterate_over_lwps (resume_callback, NULL); | |
1742 | ||
10d6c8cd | 1743 | linux_ops->to_resume (ptid, step, signo); |
9f0bdab8 DJ |
1744 | memset (&lp->siginfo, 0, sizeof (lp->siginfo)); |
1745 | ||
d6b0e80f AC |
1746 | if (debug_linux_nat) |
1747 | fprintf_unfiltered (gdb_stdlog, | |
1748 | "LLR: %s %s, %s (resume event thread)\n", | |
1749 | step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
1750 | target_pid_to_str (ptid), | |
1751 | signo ? strsignal (signo) : "0"); | |
b84876c2 PA |
1752 | |
1753 | if (target_can_async_p ()) | |
8ea051c5 | 1754 | target_async (inferior_event_handler, 0); |
d6b0e80f AC |
1755 | } |
1756 | ||
1757 | /* Issue kill to specified lwp. */ | |
1758 | ||
1759 | static int tkill_failed; | |
1760 | ||
1761 | static int | |
1762 | kill_lwp (int lwpid, int signo) | |
1763 | { | |
1764 | errno = 0; | |
1765 | ||
1766 | /* Use tkill, if possible, in case we are using nptl threads. If tkill | |
1767 | fails, then we are not using nptl threads and we should be using kill. */ | |
1768 | ||
1769 | #ifdef HAVE_TKILL_SYSCALL | |
1770 | if (!tkill_failed) | |
1771 | { | |
1772 | int ret = syscall (__NR_tkill, lwpid, signo); | |
1773 | if (errno != ENOSYS) | |
1774 | return ret; | |
1775 | errno = 0; | |
1776 | tkill_failed = 1; | |
1777 | } | |
1778 | #endif | |
1779 | ||
1780 | return kill (lwpid, signo); | |
1781 | } | |
1782 | ||
3d799a95 DJ |
1783 | /* Handle a GNU/Linux extended wait response. If we see a clone |
1784 | event, we need to add the new LWP to our list (and not report the | |
1785 | trap to higher layers). This function returns non-zero if the | |
1786 | event should be ignored and we should wait again. If STOPPING is | |
1787 | true, the new LWP remains stopped, otherwise it is continued. */ | |
d6b0e80f AC |
1788 | |
1789 | static int | |
3d799a95 DJ |
1790 | linux_handle_extended_wait (struct lwp_info *lp, int status, |
1791 | int stopping) | |
d6b0e80f | 1792 | { |
3d799a95 DJ |
1793 | int pid = GET_LWP (lp->ptid); |
1794 | struct target_waitstatus *ourstatus = &lp->waitstatus; | |
1795 | struct lwp_info *new_lp = NULL; | |
1796 | int event = status >> 16; | |
d6b0e80f | 1797 | |
3d799a95 DJ |
1798 | if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK |
1799 | || event == PTRACE_EVENT_CLONE) | |
d6b0e80f | 1800 | { |
3d799a95 DJ |
1801 | unsigned long new_pid; |
1802 | int ret; | |
1803 | ||
1804 | ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); | |
6fc19103 | 1805 | |
3d799a95 DJ |
1806 | /* If we haven't already seen the new PID stop, wait for it now. */ |
1807 | if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) | |
1808 | { | |
1809 | /* The new child has a pending SIGSTOP. We can't affect it until it | |
1810 | hits the SIGSTOP, but we're already attached. */ | |
1811 | ret = my_waitpid (new_pid, &status, | |
1812 | (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0); | |
1813 | if (ret == -1) | |
1814 | perror_with_name (_("waiting for new child")); | |
1815 | else if (ret != new_pid) | |
1816 | internal_error (__FILE__, __LINE__, | |
1817 | _("wait returned unexpected PID %d"), ret); | |
1818 | else if (!WIFSTOPPED (status)) | |
1819 | internal_error (__FILE__, __LINE__, | |
1820 | _("wait returned unexpected status 0x%x"), status); | |
1821 | } | |
1822 | ||
3a3e9ee3 | 1823 | ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0); |
3d799a95 DJ |
1824 | |
1825 | if (event == PTRACE_EVENT_FORK) | |
1826 | ourstatus->kind = TARGET_WAITKIND_FORKED; | |
1827 | else if (event == PTRACE_EVENT_VFORK) | |
1828 | ourstatus->kind = TARGET_WAITKIND_VFORKED; | |
6fc19103 | 1829 | else |
3d799a95 | 1830 | { |
4c28f408 PA |
1831 | struct cleanup *old_chain; |
1832 | ||
3d799a95 DJ |
1833 | ourstatus->kind = TARGET_WAITKIND_IGNORE; |
1834 | new_lp = add_lwp (BUILD_LWP (new_pid, GET_PID (inferior_ptid))); | |
1835 | new_lp->cloned = 1; | |
4c28f408 | 1836 | new_lp->stopped = 1; |
d6b0e80f | 1837 | |
3d799a95 DJ |
1838 | if (WSTOPSIG (status) != SIGSTOP) |
1839 | { | |
1840 | /* This can happen if someone starts sending signals to | |
1841 | the new thread before it gets a chance to run, which | |
1842 | have a lower number than SIGSTOP (e.g. SIGUSR1). | |
1843 | This is an unlikely case, and harder to handle for | |
1844 | fork / vfork than for clone, so we do not try - but | |
1845 | we handle it for clone events here. We'll send | |
1846 | the other signal on to the thread below. */ | |
1847 | ||
1848 | new_lp->signalled = 1; | |
1849 | } | |
1850 | else | |
1851 | status = 0; | |
d6b0e80f | 1852 | |
4c28f408 | 1853 | if (non_stop) |
3d799a95 | 1854 | { |
4c28f408 PA |
1855 | /* Add the new thread to GDB's lists as soon as possible |
1856 | so that: | |
1857 | ||
1858 | 1) the frontend doesn't have to wait for a stop to | |
1859 | display them, and, | |
1860 | ||
1861 | 2) we tag it with the correct running state. */ | |
1862 | ||
1863 | /* If the thread_db layer is active, let it know about | |
1864 | this new thread, and add it to GDB's list. */ | |
1865 | if (!thread_db_attach_lwp (new_lp->ptid)) | |
1866 | { | |
1867 | /* We're not using thread_db. Add it to GDB's | |
1868 | list. */ | |
1869 | target_post_attach (GET_LWP (new_lp->ptid)); | |
1870 | add_thread (new_lp->ptid); | |
1871 | } | |
1872 | ||
1873 | if (!stopping) | |
1874 | { | |
1875 | set_running (new_lp->ptid, 1); | |
1876 | set_executing (new_lp->ptid, 1); | |
1877 | } | |
1878 | } | |
1879 | ||
1880 | if (!stopping) | |
1881 | { | |
1882 | new_lp->stopped = 0; | |
3d799a95 | 1883 | new_lp->resumed = 1; |
4c28f408 | 1884 | ptrace (PTRACE_CONT, new_pid, 0, |
3d799a95 DJ |
1885 | status ? WSTOPSIG (status) : 0); |
1886 | } | |
d6b0e80f | 1887 | |
3d799a95 DJ |
1888 | if (debug_linux_nat) |
1889 | fprintf_unfiltered (gdb_stdlog, | |
1890 | "LHEW: Got clone event from LWP %ld, resuming\n", | |
1891 | GET_LWP (lp->ptid)); | |
1892 | ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0); | |
1893 | ||
1894 | return 1; | |
1895 | } | |
1896 | ||
1897 | return 0; | |
d6b0e80f AC |
1898 | } |
1899 | ||
3d799a95 DJ |
1900 | if (event == PTRACE_EVENT_EXEC) |
1901 | { | |
1902 | ourstatus->kind = TARGET_WAITKIND_EXECD; | |
1903 | ourstatus->value.execd_pathname | |
6d8fd2b7 | 1904 | = xstrdup (linux_child_pid_to_exec_file (pid)); |
3d799a95 DJ |
1905 | |
1906 | if (linux_parent_pid) | |
1907 | { | |
1908 | detach_breakpoints (linux_parent_pid); | |
1909 | ptrace (PTRACE_DETACH, linux_parent_pid, 0, 0); | |
1910 | ||
1911 | linux_parent_pid = 0; | |
1912 | } | |
1913 | ||
25b22b0a PA |
1914 | /* At this point, all inserted breakpoints are gone. Doing this |
1915 | as soon as we detect an exec prevents the badness of deleting | |
1916 | a breakpoint writing the current "shadow contents" to lift | |
1917 | the bp. That shadow is NOT valid after an exec. | |
1918 | ||
1919 | Note that we have to do this after the detach_breakpoints | |
1920 | call above, otherwise breakpoints wouldn't be lifted from the | |
1921 | parent on a vfork, because detach_breakpoints would think | |
1922 | that breakpoints are not inserted. */ | |
1923 | mark_breakpoints_out (); | |
3d799a95 DJ |
1924 | return 0; |
1925 | } | |
1926 | ||
1927 | internal_error (__FILE__, __LINE__, | |
1928 | _("unknown ptrace event %d"), event); | |
d6b0e80f AC |
1929 | } |
1930 | ||
1931 | /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has | |
1932 | exited. */ | |
1933 | ||
1934 | static int | |
1935 | wait_lwp (struct lwp_info *lp) | |
1936 | { | |
1937 | pid_t pid; | |
1938 | int status; | |
1939 | int thread_dead = 0; | |
1940 | ||
1941 | gdb_assert (!lp->stopped); | |
1942 | gdb_assert (lp->status == 0); | |
1943 | ||
58aecb61 | 1944 | pid = my_waitpid (GET_LWP (lp->ptid), &status, 0); |
d6b0e80f AC |
1945 | if (pid == -1 && errno == ECHILD) |
1946 | { | |
58aecb61 | 1947 | pid = my_waitpid (GET_LWP (lp->ptid), &status, __WCLONE); |
d6b0e80f AC |
1948 | if (pid == -1 && errno == ECHILD) |
1949 | { | |
1950 | /* The thread has previously exited. We need to delete it | |
1951 | now because, for some vendor 2.4 kernels with NPTL | |
1952 | support backported, there won't be an exit event unless | |
1953 | it is the main thread. 2.6 kernels will report an exit | |
1954 | event for each thread that exits, as expected. */ | |
1955 | thread_dead = 1; | |
1956 | if (debug_linux_nat) | |
1957 | fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", | |
1958 | target_pid_to_str (lp->ptid)); | |
1959 | } | |
1960 | } | |
1961 | ||
1962 | if (!thread_dead) | |
1963 | { | |
1964 | gdb_assert (pid == GET_LWP (lp->ptid)); | |
1965 | ||
1966 | if (debug_linux_nat) | |
1967 | { | |
1968 | fprintf_unfiltered (gdb_stdlog, | |
1969 | "WL: waitpid %s received %s\n", | |
1970 | target_pid_to_str (lp->ptid), | |
1971 | status_to_str (status)); | |
1972 | } | |
1973 | } | |
1974 | ||
1975 | /* Check if the thread has exited. */ | |
1976 | if (WIFEXITED (status) || WIFSIGNALED (status)) | |
1977 | { | |
1978 | thread_dead = 1; | |
1979 | if (debug_linux_nat) | |
1980 | fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", | |
1981 | target_pid_to_str (lp->ptid)); | |
1982 | } | |
1983 | ||
1984 | if (thread_dead) | |
1985 | { | |
e26af52f | 1986 | exit_lwp (lp); |
d6b0e80f AC |
1987 | return 0; |
1988 | } | |
1989 | ||
1990 | gdb_assert (WIFSTOPPED (status)); | |
1991 | ||
1992 | /* Handle GNU/Linux's extended waitstatus for trace events. */ | |
1993 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0) | |
1994 | { | |
1995 | if (debug_linux_nat) | |
1996 | fprintf_unfiltered (gdb_stdlog, | |
1997 | "WL: Handling extended status 0x%06x\n", | |
1998 | status); | |
3d799a95 | 1999 | if (linux_handle_extended_wait (lp, status, 1)) |
d6b0e80f AC |
2000 | return wait_lwp (lp); |
2001 | } | |
2002 | ||
2003 | return status; | |
2004 | } | |
2005 | ||
9f0bdab8 DJ |
2006 | /* Save the most recent siginfo for LP. This is currently only called |
2007 | for SIGTRAP; some ports use the si_addr field for | |
2008 | target_stopped_data_address. In the future, it may also be used to | |
2009 | restore the siginfo of requeued signals. */ | |
2010 | ||
2011 | static void | |
2012 | save_siginfo (struct lwp_info *lp) | |
2013 | { | |
2014 | errno = 0; | |
2015 | ptrace (PTRACE_GETSIGINFO, GET_LWP (lp->ptid), | |
2016 | (PTRACE_TYPE_ARG3) 0, &lp->siginfo); | |
2017 | ||
2018 | if (errno != 0) | |
2019 | memset (&lp->siginfo, 0, sizeof (lp->siginfo)); | |
2020 | } | |
2021 | ||
d6b0e80f AC |
2022 | /* Send a SIGSTOP to LP. */ |
2023 | ||
2024 | static int | |
2025 | stop_callback (struct lwp_info *lp, void *data) | |
2026 | { | |
2027 | if (!lp->stopped && !lp->signalled) | |
2028 | { | |
2029 | int ret; | |
2030 | ||
2031 | if (debug_linux_nat) | |
2032 | { | |
2033 | fprintf_unfiltered (gdb_stdlog, | |
2034 | "SC: kill %s **<SIGSTOP>**\n", | |
2035 | target_pid_to_str (lp->ptid)); | |
2036 | } | |
2037 | errno = 0; | |
2038 | ret = kill_lwp (GET_LWP (lp->ptid), SIGSTOP); | |
2039 | if (debug_linux_nat) | |
2040 | { | |
2041 | fprintf_unfiltered (gdb_stdlog, | |
2042 | "SC: lwp kill %d %s\n", | |
2043 | ret, | |
2044 | errno ? safe_strerror (errno) : "ERRNO-OK"); | |
2045 | } | |
2046 | ||
2047 | lp->signalled = 1; | |
2048 | gdb_assert (lp->status == 0); | |
2049 | } | |
2050 | ||
2051 | return 0; | |
2052 | } | |
2053 | ||
57380f4e | 2054 | /* Return non-zero if LWP PID has a pending SIGINT. */ |
d6b0e80f AC |
2055 | |
2056 | static int | |
57380f4e DJ |
2057 | linux_nat_has_pending_sigint (int pid) |
2058 | { | |
2059 | sigset_t pending, blocked, ignored; | |
2060 | int i; | |
2061 | ||
2062 | linux_proc_pending_signals (pid, &pending, &blocked, &ignored); | |
2063 | ||
2064 | if (sigismember (&pending, SIGINT) | |
2065 | && !sigismember (&ignored, SIGINT)) | |
2066 | return 1; | |
2067 | ||
2068 | return 0; | |
2069 | } | |
2070 | ||
2071 | /* Set a flag in LP indicating that we should ignore its next SIGINT. */ | |
2072 | ||
2073 | static int | |
2074 | set_ignore_sigint (struct lwp_info *lp, void *data) | |
d6b0e80f | 2075 | { |
57380f4e DJ |
2076 | /* If a thread has a pending SIGINT, consume it; otherwise, set a |
2077 | flag to consume the next one. */ | |
2078 | if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) | |
2079 | && WSTOPSIG (lp->status) == SIGINT) | |
2080 | lp->status = 0; | |
2081 | else | |
2082 | lp->ignore_sigint = 1; | |
2083 | ||
2084 | return 0; | |
2085 | } | |
2086 | ||
2087 | /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. | |
2088 | This function is called after we know the LWP has stopped; if the LWP | |
2089 | stopped before the expected SIGINT was delivered, then it will never have | |
2090 | arrived. Also, if the signal was delivered to a shared queue and consumed | |
2091 | by a different thread, it will never be delivered to this LWP. */ | |
d6b0e80f | 2092 | |
57380f4e DJ |
2093 | static void |
2094 | maybe_clear_ignore_sigint (struct lwp_info *lp) | |
2095 | { | |
2096 | if (!lp->ignore_sigint) | |
2097 | return; | |
2098 | ||
2099 | if (!linux_nat_has_pending_sigint (GET_LWP (lp->ptid))) | |
2100 | { | |
2101 | if (debug_linux_nat) | |
2102 | fprintf_unfiltered (gdb_stdlog, | |
2103 | "MCIS: Clearing bogus flag for %s\n", | |
2104 | target_pid_to_str (lp->ptid)); | |
2105 | lp->ignore_sigint = 0; | |
2106 | } | |
2107 | } | |
2108 | ||
2109 | /* Wait until LP is stopped. */ | |
2110 | ||
2111 | static int | |
2112 | stop_wait_callback (struct lwp_info *lp, void *data) | |
2113 | { | |
d6b0e80f AC |
2114 | if (!lp->stopped) |
2115 | { | |
2116 | int status; | |
2117 | ||
2118 | status = wait_lwp (lp); | |
2119 | if (status == 0) | |
2120 | return 0; | |
2121 | ||
57380f4e DJ |
2122 | if (lp->ignore_sigint && WIFSTOPPED (status) |
2123 | && WSTOPSIG (status) == SIGINT) | |
d6b0e80f | 2124 | { |
57380f4e | 2125 | lp->ignore_sigint = 0; |
d6b0e80f AC |
2126 | |
2127 | errno = 0; | |
2128 | ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0); | |
2129 | if (debug_linux_nat) | |
2130 | fprintf_unfiltered (gdb_stdlog, | |
57380f4e | 2131 | "PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)\n", |
d6b0e80f AC |
2132 | target_pid_to_str (lp->ptid), |
2133 | errno ? safe_strerror (errno) : "OK"); | |
2134 | ||
57380f4e | 2135 | return stop_wait_callback (lp, NULL); |
d6b0e80f AC |
2136 | } |
2137 | ||
57380f4e DJ |
2138 | maybe_clear_ignore_sigint (lp); |
2139 | ||
d6b0e80f AC |
2140 | if (WSTOPSIG (status) != SIGSTOP) |
2141 | { | |
2142 | if (WSTOPSIG (status) == SIGTRAP) | |
2143 | { | |
2144 | /* If a LWP other than the LWP that we're reporting an | |
2145 | event for has hit a GDB breakpoint (as opposed to | |
2146 | some random trap signal), then just arrange for it to | |
2147 | hit it again later. We don't keep the SIGTRAP status | |
2148 | and don't forward the SIGTRAP signal to the LWP. We | |
2149 | will handle the current event, eventually we will | |
2150 | resume all LWPs, and this one will get its breakpoint | |
2151 | trap again. | |
2152 | ||
2153 | If we do not do this, then we run the risk that the | |
2154 | user will delete or disable the breakpoint, but the | |
2155 | thread will have already tripped on it. */ | |
2156 | ||
9f0bdab8 DJ |
2157 | /* Save the trap's siginfo in case we need it later. */ |
2158 | save_siginfo (lp); | |
2159 | ||
d6b0e80f AC |
2160 | /* Now resume this LWP and get the SIGSTOP event. */ |
2161 | errno = 0; | |
2162 | ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0); | |
2163 | if (debug_linux_nat) | |
2164 | { | |
2165 | fprintf_unfiltered (gdb_stdlog, | |
2166 | "PTRACE_CONT %s, 0, 0 (%s)\n", | |
2167 | target_pid_to_str (lp->ptid), | |
2168 | errno ? safe_strerror (errno) : "OK"); | |
2169 | ||
2170 | fprintf_unfiltered (gdb_stdlog, | |
2171 | "SWC: Candidate SIGTRAP event in %s\n", | |
2172 | target_pid_to_str (lp->ptid)); | |
2173 | } | |
710151dd PA |
2174 | /* Hold this event/waitstatus while we check to see if |
2175 | there are any more (we still want to get that SIGSTOP). */ | |
57380f4e | 2176 | stop_wait_callback (lp, NULL); |
710151dd PA |
2177 | |
2178 | if (target_can_async_p ()) | |
d6b0e80f | 2179 | { |
710151dd PA |
2180 | /* Don't leave a pending wait status in async mode. |
2181 | Retrigger the breakpoint. */ | |
2182 | if (!cancel_breakpoint (lp)) | |
d6b0e80f | 2183 | { |
710151dd PA |
2184 | /* There was no gdb breakpoint set at pc. Put |
2185 | the event back in the queue. */ | |
2186 | if (debug_linux_nat) | |
2187 | fprintf_unfiltered (gdb_stdlog, | |
2188 | "SWC: kill %s, %s\n", | |
2189 | target_pid_to_str (lp->ptid), | |
2190 | status_to_str ((int) status)); | |
2191 | kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status)); | |
2192 | } | |
2193 | } | |
2194 | else | |
2195 | { | |
2196 | /* Hold the SIGTRAP for handling by | |
2197 | linux_nat_wait. */ | |
2198 | /* If there's another event, throw it back into the | |
2199 | queue. */ | |
2200 | if (lp->status) | |
2201 | { | |
2202 | if (debug_linux_nat) | |
2203 | fprintf_unfiltered (gdb_stdlog, | |
2204 | "SWC: kill %s, %s\n", | |
2205 | target_pid_to_str (lp->ptid), | |
2206 | status_to_str ((int) status)); | |
2207 | kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (lp->status)); | |
d6b0e80f | 2208 | } |
710151dd PA |
2209 | /* Save the sigtrap event. */ |
2210 | lp->status = status; | |
d6b0e80f | 2211 | } |
d6b0e80f AC |
2212 | return 0; |
2213 | } | |
2214 | else | |
2215 | { | |
2216 | /* The thread was stopped with a signal other than | |
2217 | SIGSTOP, and didn't accidentally trip a breakpoint. */ | |
2218 | ||
2219 | if (debug_linux_nat) | |
2220 | { | |
2221 | fprintf_unfiltered (gdb_stdlog, | |
2222 | "SWC: Pending event %s in %s\n", | |
2223 | status_to_str ((int) status), | |
2224 | target_pid_to_str (lp->ptid)); | |
2225 | } | |
2226 | /* Now resume this LWP and get the SIGSTOP event. */ | |
2227 | errno = 0; | |
2228 | ptrace (PTRACE_CONT, GET_LWP (lp->ptid), 0, 0); | |
2229 | if (debug_linux_nat) | |
2230 | fprintf_unfiltered (gdb_stdlog, | |
2231 | "SWC: PTRACE_CONT %s, 0, 0 (%s)\n", | |
2232 | target_pid_to_str (lp->ptid), | |
2233 | errno ? safe_strerror (errno) : "OK"); | |
2234 | ||
2235 | /* Hold this event/waitstatus while we check to see if | |
2236 | there are any more (we still want to get that SIGSTOP). */ | |
57380f4e | 2237 | stop_wait_callback (lp, NULL); |
710151dd PA |
2238 | |
2239 | /* If the lp->status field is still empty, use it to | |
2240 | hold this event. If not, then this event must be | |
2241 | returned to the event queue of the LWP. */ | |
2242 | if (lp->status || target_can_async_p ()) | |
d6b0e80f AC |
2243 | { |
2244 | if (debug_linux_nat) | |
2245 | { | |
2246 | fprintf_unfiltered (gdb_stdlog, | |
2247 | "SWC: kill %s, %s\n", | |
2248 | target_pid_to_str (lp->ptid), | |
2249 | status_to_str ((int) status)); | |
2250 | } | |
2251 | kill_lwp (GET_LWP (lp->ptid), WSTOPSIG (status)); | |
2252 | } | |
710151dd PA |
2253 | else |
2254 | lp->status = status; | |
d6b0e80f AC |
2255 | return 0; |
2256 | } | |
2257 | } | |
2258 | else | |
2259 | { | |
2260 | /* We caught the SIGSTOP that we intended to catch, so | |
2261 | there's no SIGSTOP pending. */ | |
2262 | lp->stopped = 1; | |
2263 | lp->signalled = 0; | |
2264 | } | |
2265 | } | |
2266 | ||
2267 | return 0; | |
2268 | } | |
2269 | ||
d6b0e80f AC |
2270 | /* Return non-zero if LP has a wait status pending. */ |
2271 | ||
2272 | static int | |
2273 | status_callback (struct lwp_info *lp, void *data) | |
2274 | { | |
2275 | /* Only report a pending wait status if we pretend that this has | |
2276 | indeed been resumed. */ | |
2277 | return (lp->status != 0 && lp->resumed); | |
2278 | } | |
2279 | ||
2280 | /* Return non-zero if LP isn't stopped. */ | |
2281 | ||
2282 | static int | |
2283 | running_callback (struct lwp_info *lp, void *data) | |
2284 | { | |
2285 | return (lp->stopped == 0 || (lp->status != 0 && lp->resumed)); | |
2286 | } | |
2287 | ||
2288 | /* Count the LWP's that have had events. */ | |
2289 | ||
2290 | static int | |
2291 | count_events_callback (struct lwp_info *lp, void *data) | |
2292 | { | |
2293 | int *count = data; | |
2294 | ||
2295 | gdb_assert (count != NULL); | |
2296 | ||
e09490f1 DJ |
2297 | /* Count only resumed LWPs that have a SIGTRAP event pending. */ |
2298 | if (lp->status != 0 && lp->resumed | |
d6b0e80f AC |
2299 | && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP) |
2300 | (*count)++; | |
2301 | ||
2302 | return 0; | |
2303 | } | |
2304 | ||
2305 | /* Select the LWP (if any) that is currently being single-stepped. */ | |
2306 | ||
2307 | static int | |
2308 | select_singlestep_lwp_callback (struct lwp_info *lp, void *data) | |
2309 | { | |
2310 | if (lp->step && lp->status != 0) | |
2311 | return 1; | |
2312 | else | |
2313 | return 0; | |
2314 | } | |
2315 | ||
2316 | /* Select the Nth LWP that has had a SIGTRAP event. */ | |
2317 | ||
2318 | static int | |
2319 | select_event_lwp_callback (struct lwp_info *lp, void *data) | |
2320 | { | |
2321 | int *selector = data; | |
2322 | ||
2323 | gdb_assert (selector != NULL); | |
2324 | ||
e09490f1 DJ |
2325 | /* Select only resumed LWPs that have a SIGTRAP event pending. */ |
2326 | if (lp->status != 0 && lp->resumed | |
d6b0e80f AC |
2327 | && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP) |
2328 | if ((*selector)-- == 0) | |
2329 | return 1; | |
2330 | ||
2331 | return 0; | |
2332 | } | |
2333 | ||
710151dd PA |
2334 | static int |
2335 | cancel_breakpoint (struct lwp_info *lp) | |
2336 | { | |
2337 | /* Arrange for a breakpoint to be hit again later. We don't keep | |
2338 | the SIGTRAP status and don't forward the SIGTRAP signal to the | |
2339 | LWP. We will handle the current event, eventually we will resume | |
2340 | this LWP, and this breakpoint will trap again. | |
2341 | ||
2342 | If we do not do this, then we run the risk that the user will | |
2343 | delete or disable the breakpoint, but the LWP will have already | |
2344 | tripped on it. */ | |
2345 | ||
515630c5 UW |
2346 | struct regcache *regcache = get_thread_regcache (lp->ptid); |
2347 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
2348 | CORE_ADDR pc; | |
2349 | ||
2350 | pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch); | |
2351 | if (breakpoint_inserted_here_p (pc)) | |
710151dd PA |
2352 | { |
2353 | if (debug_linux_nat) | |
2354 | fprintf_unfiltered (gdb_stdlog, | |
2355 | "CB: Push back breakpoint for %s\n", | |
2356 | target_pid_to_str (lp->ptid)); | |
2357 | ||
2358 | /* Back up the PC if necessary. */ | |
515630c5 UW |
2359 | if (gdbarch_decr_pc_after_break (gdbarch)) |
2360 | regcache_write_pc (regcache, pc); | |
2361 | ||
710151dd PA |
2362 | return 1; |
2363 | } | |
2364 | return 0; | |
2365 | } | |
2366 | ||
d6b0e80f AC |
2367 | static int |
2368 | cancel_breakpoints_callback (struct lwp_info *lp, void *data) | |
2369 | { | |
2370 | struct lwp_info *event_lp = data; | |
2371 | ||
2372 | /* Leave the LWP that has been elected to receive a SIGTRAP alone. */ | |
2373 | if (lp == event_lp) | |
2374 | return 0; | |
2375 | ||
2376 | /* If a LWP other than the LWP that we're reporting an event for has | |
2377 | hit a GDB breakpoint (as opposed to some random trap signal), | |
2378 | then just arrange for it to hit it again later. We don't keep | |
2379 | the SIGTRAP status and don't forward the SIGTRAP signal to the | |
2380 | LWP. We will handle the current event, eventually we will resume | |
2381 | all LWPs, and this one will get its breakpoint trap again. | |
2382 | ||
2383 | If we do not do this, then we run the risk that the user will | |
2384 | delete or disable the breakpoint, but the LWP will have already | |
2385 | tripped on it. */ | |
2386 | ||
2387 | if (lp->status != 0 | |
2388 | && WIFSTOPPED (lp->status) && WSTOPSIG (lp->status) == SIGTRAP | |
710151dd PA |
2389 | && cancel_breakpoint (lp)) |
2390 | /* Throw away the SIGTRAP. */ | |
2391 | lp->status = 0; | |
d6b0e80f AC |
2392 | |
2393 | return 0; | |
2394 | } | |
2395 | ||
2396 | /* Select one LWP out of those that have events pending. */ | |
2397 | ||
2398 | static void | |
2399 | select_event_lwp (struct lwp_info **orig_lp, int *status) | |
2400 | { | |
2401 | int num_events = 0; | |
2402 | int random_selector; | |
2403 | struct lwp_info *event_lp; | |
2404 | ||
ac264b3b | 2405 | /* Record the wait status for the original LWP. */ |
d6b0e80f AC |
2406 | (*orig_lp)->status = *status; |
2407 | ||
2408 | /* Give preference to any LWP that is being single-stepped. */ | |
2409 | event_lp = iterate_over_lwps (select_singlestep_lwp_callback, NULL); | |
2410 | if (event_lp != NULL) | |
2411 | { | |
2412 | if (debug_linux_nat) | |
2413 | fprintf_unfiltered (gdb_stdlog, | |
2414 | "SEL: Select single-step %s\n", | |
2415 | target_pid_to_str (event_lp->ptid)); | |
2416 | } | |
2417 | else | |
2418 | { | |
2419 | /* No single-stepping LWP. Select one at random, out of those | |
2420 | which have had SIGTRAP events. */ | |
2421 | ||
2422 | /* First see how many SIGTRAP events we have. */ | |
2423 | iterate_over_lwps (count_events_callback, &num_events); | |
2424 | ||
2425 | /* Now randomly pick a LWP out of those that have had a SIGTRAP. */ | |
2426 | random_selector = (int) | |
2427 | ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); | |
2428 | ||
2429 | if (debug_linux_nat && num_events > 1) | |
2430 | fprintf_unfiltered (gdb_stdlog, | |
2431 | "SEL: Found %d SIGTRAP events, selecting #%d\n", | |
2432 | num_events, random_selector); | |
2433 | ||
2434 | event_lp = iterate_over_lwps (select_event_lwp_callback, | |
2435 | &random_selector); | |
2436 | } | |
2437 | ||
2438 | if (event_lp != NULL) | |
2439 | { | |
2440 | /* Switch the event LWP. */ | |
2441 | *orig_lp = event_lp; | |
2442 | *status = event_lp->status; | |
2443 | } | |
2444 | ||
2445 | /* Flush the wait status for the event LWP. */ | |
2446 | (*orig_lp)->status = 0; | |
2447 | } | |
2448 | ||
2449 | /* Return non-zero if LP has been resumed. */ | |
2450 | ||
2451 | static int | |
2452 | resumed_callback (struct lwp_info *lp, void *data) | |
2453 | { | |
2454 | return lp->resumed; | |
2455 | } | |
2456 | ||
d6b0e80f AC |
2457 | /* Stop an active thread, verify it still exists, then resume it. */ |
2458 | ||
2459 | static int | |
2460 | stop_and_resume_callback (struct lwp_info *lp, void *data) | |
2461 | { | |
2462 | struct lwp_info *ptr; | |
2463 | ||
2464 | if (!lp->stopped && !lp->signalled) | |
2465 | { | |
2466 | stop_callback (lp, NULL); | |
2467 | stop_wait_callback (lp, NULL); | |
2468 | /* Resume if the lwp still exists. */ | |
2469 | for (ptr = lwp_list; ptr; ptr = ptr->next) | |
2470 | if (lp == ptr) | |
2471 | { | |
2472 | resume_callback (lp, NULL); | |
2473 | resume_set_callback (lp, NULL); | |
2474 | } | |
2475 | } | |
2476 | return 0; | |
2477 | } | |
2478 | ||
02f3fc28 | 2479 | /* Check if we should go on and pass this event to common code. |
fa2c6a57 | 2480 | Return the affected lwp if we are, or NULL otherwise. */ |
02f3fc28 PA |
2481 | static struct lwp_info * |
2482 | linux_nat_filter_event (int lwpid, int status, int options) | |
2483 | { | |
2484 | struct lwp_info *lp; | |
2485 | ||
2486 | lp = find_lwp_pid (pid_to_ptid (lwpid)); | |
2487 | ||
2488 | /* Check for stop events reported by a process we didn't already | |
2489 | know about - anything not already in our LWP list. | |
2490 | ||
2491 | If we're expecting to receive stopped processes after | |
2492 | fork, vfork, and clone events, then we'll just add the | |
2493 | new one to our list and go back to waiting for the event | |
2494 | to be reported - the stopped process might be returned | |
2495 | from waitpid before or after the event is. */ | |
2496 | if (WIFSTOPPED (status) && !lp) | |
2497 | { | |
2498 | linux_record_stopped_pid (lwpid, status); | |
2499 | return NULL; | |
2500 | } | |
2501 | ||
2502 | /* Make sure we don't report an event for the exit of an LWP not in | |
2503 | our list, i.e. not part of the current process. This can happen | |
2504 | if we detach from a program we original forked and then it | |
2505 | exits. */ | |
2506 | if (!WIFSTOPPED (status) && !lp) | |
2507 | return NULL; | |
2508 | ||
2509 | /* NOTE drow/2003-06-17: This code seems to be meant for debugging | |
2510 | CLONE_PTRACE processes which do not use the thread library - | |
2511 | otherwise we wouldn't find the new LWP this way. That doesn't | |
2512 | currently work, and the following code is currently unreachable | |
2513 | due to the two blocks above. If it's fixed some day, this code | |
2514 | should be broken out into a function so that we can also pick up | |
2515 | LWPs from the new interface. */ | |
2516 | if (!lp) | |
2517 | { | |
2518 | lp = add_lwp (BUILD_LWP (lwpid, GET_PID (inferior_ptid))); | |
2519 | if (options & __WCLONE) | |
2520 | lp->cloned = 1; | |
2521 | ||
2522 | gdb_assert (WIFSTOPPED (status) | |
2523 | && WSTOPSIG (status) == SIGSTOP); | |
2524 | lp->signalled = 1; | |
2525 | ||
2526 | if (!in_thread_list (inferior_ptid)) | |
2527 | { | |
2528 | inferior_ptid = BUILD_LWP (GET_PID (inferior_ptid), | |
2529 | GET_PID (inferior_ptid)); | |
2530 | add_thread (inferior_ptid); | |
2531 | } | |
2532 | ||
2533 | add_thread (lp->ptid); | |
2534 | } | |
2535 | ||
2536 | /* Save the trap's siginfo in case we need it later. */ | |
2537 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP) | |
2538 | save_siginfo (lp); | |
2539 | ||
2540 | /* Handle GNU/Linux's extended waitstatus for trace events. */ | |
2541 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0) | |
2542 | { | |
2543 | if (debug_linux_nat) | |
2544 | fprintf_unfiltered (gdb_stdlog, | |
2545 | "LLW: Handling extended status 0x%06x\n", | |
2546 | status); | |
2547 | if (linux_handle_extended_wait (lp, status, 0)) | |
2548 | return NULL; | |
2549 | } | |
2550 | ||
2551 | /* Check if the thread has exited. */ | |
2552 | if ((WIFEXITED (status) || WIFSIGNALED (status)) && num_lwps > 1) | |
2553 | { | |
2554 | /* If this is the main thread, we must stop all threads and | |
2555 | verify if they are still alive. This is because in the nptl | |
2556 | thread model, there is no signal issued for exiting LWPs | |
2557 | other than the main thread. We only get the main thread exit | |
2558 | signal once all child threads have already exited. If we | |
2559 | stop all the threads and use the stop_wait_callback to check | |
2560 | if they have exited we can determine whether this signal | |
2561 | should be ignored or whether it means the end of the debugged | |
2562 | application, regardless of which threading model is being | |
2563 | used. */ | |
2564 | if (GET_PID (lp->ptid) == GET_LWP (lp->ptid)) | |
2565 | { | |
2566 | lp->stopped = 1; | |
2567 | iterate_over_lwps (stop_and_resume_callback, NULL); | |
2568 | } | |
2569 | ||
2570 | if (debug_linux_nat) | |
2571 | fprintf_unfiltered (gdb_stdlog, | |
2572 | "LLW: %s exited.\n", | |
2573 | target_pid_to_str (lp->ptid)); | |
2574 | ||
2575 | exit_lwp (lp); | |
2576 | ||
2577 | /* If there is at least one more LWP, then the exit signal was | |
2578 | not the end of the debugged application and should be | |
2579 | ignored. */ | |
2580 | if (num_lwps > 0) | |
4c28f408 | 2581 | return NULL; |
02f3fc28 PA |
2582 | } |
2583 | ||
2584 | /* Check if the current LWP has previously exited. In the nptl | |
2585 | thread model, LWPs other than the main thread do not issue | |
2586 | signals when they exit so we must check whenever the thread has | |
2587 | stopped. A similar check is made in stop_wait_callback(). */ | |
2588 | if (num_lwps > 1 && !linux_nat_thread_alive (lp->ptid)) | |
2589 | { | |
2590 | if (debug_linux_nat) | |
2591 | fprintf_unfiltered (gdb_stdlog, | |
2592 | "LLW: %s exited.\n", | |
2593 | target_pid_to_str (lp->ptid)); | |
2594 | ||
2595 | exit_lwp (lp); | |
2596 | ||
2597 | /* Make sure there is at least one thread running. */ | |
2598 | gdb_assert (iterate_over_lwps (running_callback, NULL)); | |
2599 | ||
2600 | /* Discard the event. */ | |
2601 | return NULL; | |
2602 | } | |
2603 | ||
2604 | /* Make sure we don't report a SIGSTOP that we sent ourselves in | |
2605 | an attempt to stop an LWP. */ | |
2606 | if (lp->signalled | |
2607 | && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) | |
2608 | { | |
2609 | if (debug_linux_nat) | |
2610 | fprintf_unfiltered (gdb_stdlog, | |
2611 | "LLW: Delayed SIGSTOP caught for %s.\n", | |
2612 | target_pid_to_str (lp->ptid)); | |
2613 | ||
2614 | /* This is a delayed SIGSTOP. */ | |
2615 | lp->signalled = 0; | |
2616 | ||
2617 | registers_changed (); | |
2618 | ||
2619 | linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)), | |
2620 | lp->step, TARGET_SIGNAL_0); | |
2621 | if (debug_linux_nat) | |
2622 | fprintf_unfiltered (gdb_stdlog, | |
2623 | "LLW: %s %s, 0, 0 (discard SIGSTOP)\n", | |
2624 | lp->step ? | |
2625 | "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
2626 | target_pid_to_str (lp->ptid)); | |
2627 | ||
2628 | lp->stopped = 0; | |
2629 | gdb_assert (lp->resumed); | |
2630 | ||
2631 | /* Discard the event. */ | |
2632 | return NULL; | |
2633 | } | |
2634 | ||
57380f4e DJ |
2635 | /* Make sure we don't report a SIGINT that we have already displayed |
2636 | for another thread. */ | |
2637 | if (lp->ignore_sigint | |
2638 | && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) | |
2639 | { | |
2640 | if (debug_linux_nat) | |
2641 | fprintf_unfiltered (gdb_stdlog, | |
2642 | "LLW: Delayed SIGINT caught for %s.\n", | |
2643 | target_pid_to_str (lp->ptid)); | |
2644 | ||
2645 | /* This is a delayed SIGINT. */ | |
2646 | lp->ignore_sigint = 0; | |
2647 | ||
2648 | registers_changed (); | |
2649 | linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)), | |
2650 | lp->step, TARGET_SIGNAL_0); | |
2651 | if (debug_linux_nat) | |
2652 | fprintf_unfiltered (gdb_stdlog, | |
2653 | "LLW: %s %s, 0, 0 (discard SIGINT)\n", | |
2654 | lp->step ? | |
2655 | "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
2656 | target_pid_to_str (lp->ptid)); | |
2657 | ||
2658 | lp->stopped = 0; | |
2659 | gdb_assert (lp->resumed); | |
2660 | ||
2661 | /* Discard the event. */ | |
2662 | return NULL; | |
2663 | } | |
2664 | ||
02f3fc28 PA |
2665 | /* An interesting event. */ |
2666 | gdb_assert (lp); | |
2667 | return lp; | |
2668 | } | |
2669 | ||
b84876c2 PA |
2670 | /* Get the events stored in the pipe into the local queue, so they are |
2671 | accessible to queued_waitpid. We need to do this, since it is not | |
2672 | always the case that the event at the head of the pipe is the event | |
2673 | we want. */ | |
2674 | ||
2675 | static void | |
2676 | pipe_to_local_event_queue (void) | |
2677 | { | |
2678 | if (debug_linux_nat_async) | |
2679 | fprintf_unfiltered (gdb_stdlog, | |
2680 | "PTLEQ: linux_nat_num_queued_events(%d)\n", | |
2681 | linux_nat_num_queued_events); | |
2682 | while (linux_nat_num_queued_events) | |
2683 | { | |
2684 | int lwpid, status, options; | |
b84876c2 | 2685 | lwpid = linux_nat_event_pipe_pop (&status, &options); |
b84876c2 PA |
2686 | gdb_assert (lwpid > 0); |
2687 | push_waitpid (lwpid, status, options); | |
2688 | } | |
2689 | } | |
2690 | ||
2691 | /* Get the unprocessed events stored in the local queue back into the | |
2692 | pipe, so the event loop realizes there's something else to | |
2693 | process. */ | |
2694 | ||
2695 | static void | |
2696 | local_event_queue_to_pipe (void) | |
2697 | { | |
2698 | struct waitpid_result *w = waitpid_queue; | |
2699 | while (w) | |
2700 | { | |
2701 | struct waitpid_result *next = w->next; | |
2702 | linux_nat_event_pipe_push (w->pid, | |
2703 | w->status, | |
2704 | w->options); | |
2705 | xfree (w); | |
2706 | w = next; | |
2707 | } | |
2708 | waitpid_queue = NULL; | |
2709 | ||
2710 | if (debug_linux_nat_async) | |
2711 | fprintf_unfiltered (gdb_stdlog, | |
2712 | "LEQTP: linux_nat_num_queued_events(%d)\n", | |
2713 | linux_nat_num_queued_events); | |
2714 | } | |
2715 | ||
d6b0e80f AC |
2716 | static ptid_t |
2717 | linux_nat_wait (ptid_t ptid, struct target_waitstatus *ourstatus) | |
2718 | { | |
2719 | struct lwp_info *lp = NULL; | |
2720 | int options = 0; | |
2721 | int status = 0; | |
2722 | pid_t pid = PIDGET (ptid); | |
d6b0e80f | 2723 | |
b84876c2 PA |
2724 | if (debug_linux_nat_async) |
2725 | fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); | |
2726 | ||
f973ed9c DJ |
2727 | /* The first time we get here after starting a new inferior, we may |
2728 | not have added it to the LWP list yet - this is the earliest | |
2729 | moment at which we know its PID. */ | |
2730 | if (num_lwps == 0) | |
2731 | { | |
2732 | gdb_assert (!is_lwp (inferior_ptid)); | |
2733 | ||
27c9d204 PA |
2734 | /* Upgrade the main thread's ptid. */ |
2735 | thread_change_ptid (inferior_ptid, | |
2736 | BUILD_LWP (GET_PID (inferior_ptid), | |
2737 | GET_PID (inferior_ptid))); | |
2738 | ||
f973ed9c DJ |
2739 | lp = add_lwp (inferior_ptid); |
2740 | lp->resumed = 1; | |
2741 | } | |
2742 | ||
84e46146 PA |
2743 | /* Block events while we're here. */ |
2744 | linux_nat_async_events (sigchld_sync); | |
d6b0e80f AC |
2745 | |
2746 | retry: | |
2747 | ||
f973ed9c DJ |
2748 | /* Make sure there is at least one LWP that has been resumed. */ |
2749 | gdb_assert (iterate_over_lwps (resumed_callback, NULL)); | |
d6b0e80f AC |
2750 | |
2751 | /* First check if there is a LWP with a wait status pending. */ | |
2752 | if (pid == -1) | |
2753 | { | |
2754 | /* Any LWP that's been resumed will do. */ | |
2755 | lp = iterate_over_lwps (status_callback, NULL); | |
2756 | if (lp) | |
2757 | { | |
710151dd PA |
2758 | if (target_can_async_p ()) |
2759 | internal_error (__FILE__, __LINE__, | |
2760 | "Found an LWP with a pending status in async mode."); | |
2761 | ||
d6b0e80f AC |
2762 | status = lp->status; |
2763 | lp->status = 0; | |
2764 | ||
2765 | if (debug_linux_nat && status) | |
2766 | fprintf_unfiltered (gdb_stdlog, | |
2767 | "LLW: Using pending wait status %s for %s.\n", | |
2768 | status_to_str (status), | |
2769 | target_pid_to_str (lp->ptid)); | |
2770 | } | |
2771 | ||
b84876c2 | 2772 | /* But if we don't find one, we'll have to wait, and check both |
d6b0e80f AC |
2773 | cloned and uncloned processes. We start with the cloned |
2774 | processes. */ | |
2775 | options = __WCLONE | WNOHANG; | |
2776 | } | |
2777 | else if (is_lwp (ptid)) | |
2778 | { | |
2779 | if (debug_linux_nat) | |
2780 | fprintf_unfiltered (gdb_stdlog, | |
2781 | "LLW: Waiting for specific LWP %s.\n", | |
2782 | target_pid_to_str (ptid)); | |
2783 | ||
2784 | /* We have a specific LWP to check. */ | |
2785 | lp = find_lwp_pid (ptid); | |
2786 | gdb_assert (lp); | |
2787 | status = lp->status; | |
2788 | lp->status = 0; | |
2789 | ||
2790 | if (debug_linux_nat && status) | |
2791 | fprintf_unfiltered (gdb_stdlog, | |
2792 | "LLW: Using pending wait status %s for %s.\n", | |
2793 | status_to_str (status), | |
2794 | target_pid_to_str (lp->ptid)); | |
2795 | ||
2796 | /* If we have to wait, take into account whether PID is a cloned | |
2797 | process or not. And we have to convert it to something that | |
2798 | the layer beneath us can understand. */ | |
2799 | options = lp->cloned ? __WCLONE : 0; | |
2800 | pid = GET_LWP (ptid); | |
2801 | } | |
2802 | ||
2803 | if (status && lp->signalled) | |
2804 | { | |
2805 | /* A pending SIGSTOP may interfere with the normal stream of | |
2806 | events. In a typical case where interference is a problem, | |
2807 | we have a SIGSTOP signal pending for LWP A while | |
2808 | single-stepping it, encounter an event in LWP B, and take the | |
2809 | pending SIGSTOP while trying to stop LWP A. After processing | |
2810 | the event in LWP B, LWP A is continued, and we'll never see | |
2811 | the SIGTRAP associated with the last time we were | |
2812 | single-stepping LWP A. */ | |
2813 | ||
2814 | /* Resume the thread. It should halt immediately returning the | |
2815 | pending SIGSTOP. */ | |
2816 | registers_changed (); | |
10d6c8cd DJ |
2817 | linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)), |
2818 | lp->step, TARGET_SIGNAL_0); | |
d6b0e80f AC |
2819 | if (debug_linux_nat) |
2820 | fprintf_unfiltered (gdb_stdlog, | |
2821 | "LLW: %s %s, 0, 0 (expect SIGSTOP)\n", | |
2822 | lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
2823 | target_pid_to_str (lp->ptid)); | |
2824 | lp->stopped = 0; | |
2825 | gdb_assert (lp->resumed); | |
2826 | ||
2827 | /* This should catch the pending SIGSTOP. */ | |
2828 | stop_wait_callback (lp, NULL); | |
2829 | } | |
2830 | ||
b84876c2 PA |
2831 | if (!target_can_async_p ()) |
2832 | { | |
2833 | /* Causes SIGINT to be passed on to the attached process. */ | |
2834 | set_sigint_trap (); | |
2835 | set_sigio_trap (); | |
2836 | } | |
d6b0e80f AC |
2837 | |
2838 | while (status == 0) | |
2839 | { | |
2840 | pid_t lwpid; | |
2841 | ||
b84876c2 PA |
2842 | if (target_can_async_p ()) |
2843 | /* In async mode, don't ever block. Only look at the locally | |
2844 | queued events. */ | |
2845 | lwpid = queued_waitpid (pid, &status, options); | |
2846 | else | |
2847 | lwpid = my_waitpid (pid, &status, options); | |
2848 | ||
d6b0e80f AC |
2849 | if (lwpid > 0) |
2850 | { | |
2851 | gdb_assert (pid == -1 || lwpid == pid); | |
2852 | ||
2853 | if (debug_linux_nat) | |
2854 | { | |
2855 | fprintf_unfiltered (gdb_stdlog, | |
2856 | "LLW: waitpid %ld received %s\n", | |
2857 | (long) lwpid, status_to_str (status)); | |
2858 | } | |
2859 | ||
02f3fc28 | 2860 | lp = linux_nat_filter_event (lwpid, status, options); |
d6b0e80f AC |
2861 | if (!lp) |
2862 | { | |
02f3fc28 | 2863 | /* A discarded event. */ |
d6b0e80f AC |
2864 | status = 0; |
2865 | continue; | |
2866 | } | |
2867 | ||
2868 | break; | |
2869 | } | |
2870 | ||
2871 | if (pid == -1) | |
2872 | { | |
2873 | /* Alternate between checking cloned and uncloned processes. */ | |
2874 | options ^= __WCLONE; | |
2875 | ||
b84876c2 PA |
2876 | /* And every time we have checked both: |
2877 | In async mode, return to event loop; | |
2878 | In sync mode, suspend waiting for a SIGCHLD signal. */ | |
d6b0e80f | 2879 | if (options & __WCLONE) |
b84876c2 PA |
2880 | { |
2881 | if (target_can_async_p ()) | |
2882 | { | |
2883 | /* No interesting event. */ | |
2884 | ourstatus->kind = TARGET_WAITKIND_IGNORE; | |
2885 | ||
2886 | /* Get ready for the next event. */ | |
2887 | target_async (inferior_event_handler, 0); | |
2888 | ||
2889 | if (debug_linux_nat_async) | |
2890 | fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); | |
2891 | ||
2892 | return minus_one_ptid; | |
2893 | } | |
2894 | ||
2895 | sigsuspend (&suspend_mask); | |
2896 | } | |
d6b0e80f AC |
2897 | } |
2898 | ||
2899 | /* We shouldn't end up here unless we want to try again. */ | |
2900 | gdb_assert (status == 0); | |
2901 | } | |
2902 | ||
b84876c2 PA |
2903 | if (!target_can_async_p ()) |
2904 | { | |
2905 | clear_sigio_trap (); | |
2906 | clear_sigint_trap (); | |
2907 | } | |
d6b0e80f AC |
2908 | |
2909 | gdb_assert (lp); | |
2910 | ||
2911 | /* Don't report signals that GDB isn't interested in, such as | |
2912 | signals that are neither printed nor stopped upon. Stopping all | |
2913 | threads can be a bit time-consuming so if we want decent | |
2914 | performance with heavily multi-threaded programs, especially when | |
2915 | they're using a high frequency timer, we'd better avoid it if we | |
2916 | can. */ | |
2917 | ||
2918 | if (WIFSTOPPED (status)) | |
2919 | { | |
2920 | int signo = target_signal_from_host (WSTOPSIG (status)); | |
2921 | ||
d539ed7e UW |
2922 | /* If we get a signal while single-stepping, we may need special |
2923 | care, e.g. to skip the signal handler. Defer to common code. */ | |
2924 | if (!lp->step | |
2925 | && signal_stop_state (signo) == 0 | |
d6b0e80f AC |
2926 | && signal_print_state (signo) == 0 |
2927 | && signal_pass_state (signo) == 1) | |
2928 | { | |
2929 | /* FIMXE: kettenis/2001-06-06: Should we resume all threads | |
2930 | here? It is not clear we should. GDB may not expect | |
2931 | other threads to run. On the other hand, not resuming | |
2932 | newly attached threads may cause an unwanted delay in | |
2933 | getting them running. */ | |
2934 | registers_changed (); | |
10d6c8cd DJ |
2935 | linux_ops->to_resume (pid_to_ptid (GET_LWP (lp->ptid)), |
2936 | lp->step, signo); | |
d6b0e80f AC |
2937 | if (debug_linux_nat) |
2938 | fprintf_unfiltered (gdb_stdlog, | |
2939 | "LLW: %s %s, %s (preempt 'handle')\n", | |
2940 | lp->step ? | |
2941 | "PTRACE_SINGLESTEP" : "PTRACE_CONT", | |
2942 | target_pid_to_str (lp->ptid), | |
2943 | signo ? strsignal (signo) : "0"); | |
2944 | lp->stopped = 0; | |
2945 | status = 0; | |
2946 | goto retry; | |
2947 | } | |
2948 | ||
1ad15515 | 2949 | if (!non_stop) |
d6b0e80f | 2950 | { |
1ad15515 PA |
2951 | /* Only do the below in all-stop, as we currently use SIGINT |
2952 | to implement target_stop (see linux_nat_stop) in | |
2953 | non-stop. */ | |
2954 | if (signo == TARGET_SIGNAL_INT && signal_pass_state (signo) == 0) | |
2955 | { | |
2956 | /* If ^C/BREAK is typed at the tty/console, SIGINT gets | |
2957 | forwarded to the entire process group, that is, all LWPs | |
2958 | will receive it - unless they're using CLONE_THREAD to | |
2959 | share signals. Since we only want to report it once, we | |
2960 | mark it as ignored for all LWPs except this one. */ | |
2961 | iterate_over_lwps (set_ignore_sigint, NULL); | |
2962 | lp->ignore_sigint = 0; | |
2963 | } | |
2964 | else | |
2965 | maybe_clear_ignore_sigint (lp); | |
d6b0e80f AC |
2966 | } |
2967 | } | |
2968 | ||
2969 | /* This LWP is stopped now. */ | |
2970 | lp->stopped = 1; | |
2971 | ||
2972 | if (debug_linux_nat) | |
2973 | fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n", | |
2974 | status_to_str (status), target_pid_to_str (lp->ptid)); | |
2975 | ||
4c28f408 PA |
2976 | if (!non_stop) |
2977 | { | |
2978 | /* Now stop all other LWP's ... */ | |
2979 | iterate_over_lwps (stop_callback, NULL); | |
2980 | ||
2981 | /* ... and wait until all of them have reported back that | |
2982 | they're no longer running. */ | |
57380f4e | 2983 | iterate_over_lwps (stop_wait_callback, NULL); |
4c28f408 PA |
2984 | |
2985 | /* If we're not waiting for a specific LWP, choose an event LWP | |
2986 | from among those that have had events. Giving equal priority | |
2987 | to all LWPs that have had events helps prevent | |
2988 | starvation. */ | |
2989 | if (pid == -1) | |
2990 | select_event_lwp (&lp, &status); | |
2991 | } | |
d6b0e80f AC |
2992 | |
2993 | /* Now that we've selected our final event LWP, cancel any | |
2994 | breakpoints in other LWPs that have hit a GDB breakpoint. See | |
2995 | the comment in cancel_breakpoints_callback to find out why. */ | |
2996 | iterate_over_lwps (cancel_breakpoints_callback, lp); | |
2997 | ||
d6b0e80f AC |
2998 | if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP) |
2999 | { | |
d6b0e80f AC |
3000 | if (debug_linux_nat) |
3001 | fprintf_unfiltered (gdb_stdlog, | |
4fdebdd0 PA |
3002 | "LLW: trap ptid is %s.\n", |
3003 | target_pid_to_str (lp->ptid)); | |
d6b0e80f | 3004 | } |
d6b0e80f AC |
3005 | |
3006 | if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) | |
3007 | { | |
3008 | *ourstatus = lp->waitstatus; | |
3009 | lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; | |
3010 | } | |
3011 | else | |
3012 | store_waitstatus (ourstatus, status); | |
3013 | ||
b84876c2 PA |
3014 | /* Get ready for the next event. */ |
3015 | if (target_can_async_p ()) | |
3016 | target_async (inferior_event_handler, 0); | |
3017 | ||
3018 | if (debug_linux_nat_async) | |
3019 | fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); | |
3020 | ||
f973ed9c | 3021 | return lp->ptid; |
d6b0e80f AC |
3022 | } |
3023 | ||
3024 | static int | |
3025 | kill_callback (struct lwp_info *lp, void *data) | |
3026 | { | |
3027 | errno = 0; | |
3028 | ptrace (PTRACE_KILL, GET_LWP (lp->ptid), 0, 0); | |
3029 | if (debug_linux_nat) | |
3030 | fprintf_unfiltered (gdb_stdlog, | |
3031 | "KC: PTRACE_KILL %s, 0, 0 (%s)\n", | |
3032 | target_pid_to_str (lp->ptid), | |
3033 | errno ? safe_strerror (errno) : "OK"); | |
3034 | ||
3035 | return 0; | |
3036 | } | |
3037 | ||
3038 | static int | |
3039 | kill_wait_callback (struct lwp_info *lp, void *data) | |
3040 | { | |
3041 | pid_t pid; | |
3042 | ||
3043 | /* We must make sure that there are no pending events (delayed | |
3044 | SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current | |
3045 | program doesn't interfere with any following debugging session. */ | |
3046 | ||
3047 | /* For cloned processes we must check both with __WCLONE and | |
3048 | without, since the exit status of a cloned process isn't reported | |
3049 | with __WCLONE. */ | |
3050 | if (lp->cloned) | |
3051 | { | |
3052 | do | |
3053 | { | |
58aecb61 | 3054 | pid = my_waitpid (GET_LWP (lp->ptid), NULL, __WCLONE); |
e85a822c | 3055 | if (pid != (pid_t) -1) |
d6b0e80f | 3056 | { |
e85a822c DJ |
3057 | if (debug_linux_nat) |
3058 | fprintf_unfiltered (gdb_stdlog, | |
3059 | "KWC: wait %s received unknown.\n", | |
3060 | target_pid_to_str (lp->ptid)); | |
3061 | /* The Linux kernel sometimes fails to kill a thread | |
3062 | completely after PTRACE_KILL; that goes from the stop | |
3063 | point in do_fork out to the one in | |
3064 | get_signal_to_deliever and waits again. So kill it | |
3065 | again. */ | |
3066 | kill_callback (lp, NULL); | |
d6b0e80f AC |
3067 | } |
3068 | } | |
3069 | while (pid == GET_LWP (lp->ptid)); | |
3070 | ||
3071 | gdb_assert (pid == -1 && errno == ECHILD); | |
3072 | } | |
3073 | ||
3074 | do | |
3075 | { | |
58aecb61 | 3076 | pid = my_waitpid (GET_LWP (lp->ptid), NULL, 0); |
e85a822c | 3077 | if (pid != (pid_t) -1) |
d6b0e80f | 3078 | { |
e85a822c DJ |
3079 | if (debug_linux_nat) |
3080 | fprintf_unfiltered (gdb_stdlog, | |
3081 | "KWC: wait %s received unk.\n", | |
3082 | target_pid_to_str (lp->ptid)); | |
3083 | /* See the call to kill_callback above. */ | |
3084 | kill_callback (lp, NULL); | |
d6b0e80f AC |
3085 | } |
3086 | } | |
3087 | while (pid == GET_LWP (lp->ptid)); | |
3088 | ||
3089 | gdb_assert (pid == -1 && errno == ECHILD); | |
3090 | return 0; | |
3091 | } | |
3092 | ||
3093 | static void | |
3094 | linux_nat_kill (void) | |
3095 | { | |
f973ed9c DJ |
3096 | struct target_waitstatus last; |
3097 | ptid_t last_ptid; | |
3098 | int status; | |
d6b0e80f | 3099 | |
b84876c2 PA |
3100 | if (target_can_async_p ()) |
3101 | target_async (NULL, 0); | |
3102 | ||
f973ed9c DJ |
3103 | /* If we're stopped while forking and we haven't followed yet, |
3104 | kill the other task. We need to do this first because the | |
3105 | parent will be sleeping if this is a vfork. */ | |
d6b0e80f | 3106 | |
f973ed9c | 3107 | get_last_target_status (&last_ptid, &last); |
d6b0e80f | 3108 | |
f973ed9c DJ |
3109 | if (last.kind == TARGET_WAITKIND_FORKED |
3110 | || last.kind == TARGET_WAITKIND_VFORKED) | |
3111 | { | |
3a3e9ee3 | 3112 | ptrace (PT_KILL, PIDGET (last.value.related_pid), 0, 0); |
f973ed9c DJ |
3113 | wait (&status); |
3114 | } | |
3115 | ||
3116 | if (forks_exist_p ()) | |
b84876c2 PA |
3117 | { |
3118 | linux_fork_killall (); | |
3119 | drain_queued_events (-1); | |
3120 | } | |
f973ed9c DJ |
3121 | else |
3122 | { | |
4c28f408 PA |
3123 | /* Stop all threads before killing them, since ptrace requires |
3124 | that the thread is stopped to sucessfully PTRACE_KILL. */ | |
3125 | iterate_over_lwps (stop_callback, NULL); | |
3126 | /* ... and wait until all of them have reported back that | |
3127 | they're no longer running. */ | |
3128 | iterate_over_lwps (stop_wait_callback, NULL); | |
3129 | ||
f973ed9c DJ |
3130 | /* Kill all LWP's ... */ |
3131 | iterate_over_lwps (kill_callback, NULL); | |
3132 | ||
3133 | /* ... and wait until we've flushed all events. */ | |
3134 | iterate_over_lwps (kill_wait_callback, NULL); | |
3135 | } | |
3136 | ||
3137 | target_mourn_inferior (); | |
d6b0e80f AC |
3138 | } |
3139 | ||
3140 | static void | |
3141 | linux_nat_mourn_inferior (void) | |
3142 | { | |
d6b0e80f AC |
3143 | /* Destroy LWP info; it's no longer valid. */ |
3144 | init_lwp_list (); | |
3145 | ||
f973ed9c | 3146 | if (! forks_exist_p ()) |
b84876c2 PA |
3147 | { |
3148 | /* Normal case, no other forks available. */ | |
3149 | if (target_can_async_p ()) | |
3150 | linux_nat_async (NULL, 0); | |
3151 | linux_ops->to_mourn_inferior (); | |
3152 | } | |
f973ed9c DJ |
3153 | else |
3154 | /* Multi-fork case. The current inferior_ptid has exited, but | |
3155 | there are other viable forks to debug. Delete the exiting | |
3156 | one and context-switch to the first available. */ | |
3157 | linux_fork_mourn_inferior (); | |
d6b0e80f AC |
3158 | } |
3159 | ||
10d6c8cd DJ |
3160 | static LONGEST |
3161 | linux_nat_xfer_partial (struct target_ops *ops, enum target_object object, | |
3162 | const char *annex, gdb_byte *readbuf, | |
3163 | const gdb_byte *writebuf, | |
3164 | ULONGEST offset, LONGEST len) | |
d6b0e80f AC |
3165 | { |
3166 | struct cleanup *old_chain = save_inferior_ptid (); | |
10d6c8cd | 3167 | LONGEST xfer; |
d6b0e80f AC |
3168 | |
3169 | if (is_lwp (inferior_ptid)) | |
3170 | inferior_ptid = pid_to_ptid (GET_LWP (inferior_ptid)); | |
3171 | ||
10d6c8cd DJ |
3172 | xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, |
3173 | offset, len); | |
d6b0e80f AC |
3174 | |
3175 | do_cleanups (old_chain); | |
3176 | return xfer; | |
3177 | } | |
3178 | ||
3179 | static int | |
3180 | linux_nat_thread_alive (ptid_t ptid) | |
3181 | { | |
4c28f408 PA |
3182 | int err; |
3183 | ||
d6b0e80f AC |
3184 | gdb_assert (is_lwp (ptid)); |
3185 | ||
4c28f408 PA |
3186 | /* Send signal 0 instead of anything ptrace, because ptracing a |
3187 | running thread errors out claiming that the thread doesn't | |
3188 | exist. */ | |
3189 | err = kill_lwp (GET_LWP (ptid), 0); | |
3190 | ||
d6b0e80f AC |
3191 | if (debug_linux_nat) |
3192 | fprintf_unfiltered (gdb_stdlog, | |
4c28f408 | 3193 | "LLTA: KILL(SIG0) %s (%s)\n", |
d6b0e80f | 3194 | target_pid_to_str (ptid), |
4c28f408 | 3195 | err ? safe_strerror (err) : "OK"); |
9c0dd46b | 3196 | |
4c28f408 | 3197 | if (err != 0) |
d6b0e80f AC |
3198 | return 0; |
3199 | ||
3200 | return 1; | |
3201 | } | |
3202 | ||
3203 | static char * | |
3204 | linux_nat_pid_to_str (ptid_t ptid) | |
3205 | { | |
3206 | static char buf[64]; | |
3207 | ||
a0ef4274 DJ |
3208 | if (is_lwp (ptid) |
3209 | && ((lwp_list && lwp_list->next) | |
3210 | || GET_PID (ptid) != GET_LWP (ptid))) | |
d6b0e80f AC |
3211 | { |
3212 | snprintf (buf, sizeof (buf), "LWP %ld", GET_LWP (ptid)); | |
3213 | return buf; | |
3214 | } | |
3215 | ||
3216 | return normal_pid_to_str (ptid); | |
3217 | } | |
3218 | ||
d6b0e80f AC |
3219 | static void |
3220 | sigchld_handler (int signo) | |
3221 | { | |
c6ebd6cf | 3222 | if (target_async_permitted |
84e46146 | 3223 | && linux_nat_async_events_state != sigchld_sync |
b84876c2 PA |
3224 | && signo == SIGCHLD) |
3225 | /* It is *always* a bug to hit this. */ | |
3226 | internal_error (__FILE__, __LINE__, | |
3227 | "sigchld_handler called when async events are enabled"); | |
3228 | ||
d6b0e80f AC |
3229 | /* Do nothing. The only reason for this handler is that it allows |
3230 | us to use sigsuspend in linux_nat_wait above to wait for the | |
3231 | arrival of a SIGCHLD. */ | |
3232 | } | |
3233 | ||
dba24537 AC |
3234 | /* Accepts an integer PID; Returns a string representing a file that |
3235 | can be opened to get the symbols for the child process. */ | |
3236 | ||
6d8fd2b7 UW |
3237 | static char * |
3238 | linux_child_pid_to_exec_file (int pid) | |
dba24537 AC |
3239 | { |
3240 | char *name1, *name2; | |
3241 | ||
3242 | name1 = xmalloc (MAXPATHLEN); | |
3243 | name2 = xmalloc (MAXPATHLEN); | |
3244 | make_cleanup (xfree, name1); | |
3245 | make_cleanup (xfree, name2); | |
3246 | memset (name2, 0, MAXPATHLEN); | |
3247 | ||
3248 | sprintf (name1, "/proc/%d/exe", pid); | |
3249 | if (readlink (name1, name2, MAXPATHLEN) > 0) | |
3250 | return name2; | |
3251 | else | |
3252 | return name1; | |
3253 | } | |
3254 | ||
3255 | /* Service function for corefiles and info proc. */ | |
3256 | ||
3257 | static int | |
3258 | read_mapping (FILE *mapfile, | |
3259 | long long *addr, | |
3260 | long long *endaddr, | |
3261 | char *permissions, | |
3262 | long long *offset, | |
3263 | char *device, long long *inode, char *filename) | |
3264 | { | |
3265 | int ret = fscanf (mapfile, "%llx-%llx %s %llx %s %llx", | |
3266 | addr, endaddr, permissions, offset, device, inode); | |
3267 | ||
2e14c2ea MS |
3268 | filename[0] = '\0'; |
3269 | if (ret > 0 && ret != EOF) | |
dba24537 AC |
3270 | { |
3271 | /* Eat everything up to EOL for the filename. This will prevent | |
3272 | weird filenames (such as one with embedded whitespace) from | |
3273 | confusing this code. It also makes this code more robust in | |
3274 | respect to annotations the kernel may add after the filename. | |
3275 | ||
3276 | Note the filename is used for informational purposes | |
3277 | only. */ | |
3278 | ret += fscanf (mapfile, "%[^\n]\n", filename); | |
3279 | } | |
2e14c2ea | 3280 | |
dba24537 AC |
3281 | return (ret != 0 && ret != EOF); |
3282 | } | |
3283 | ||
3284 | /* Fills the "to_find_memory_regions" target vector. Lists the memory | |
3285 | regions in the inferior for a corefile. */ | |
3286 | ||
3287 | static int | |
3288 | linux_nat_find_memory_regions (int (*func) (CORE_ADDR, | |
3289 | unsigned long, | |
3290 | int, int, int, void *), void *obfd) | |
3291 | { | |
3292 | long long pid = PIDGET (inferior_ptid); | |
3293 | char mapsfilename[MAXPATHLEN]; | |
3294 | FILE *mapsfile; | |
3295 | long long addr, endaddr, size, offset, inode; | |
3296 | char permissions[8], device[8], filename[MAXPATHLEN]; | |
3297 | int read, write, exec; | |
3298 | int ret; | |
3299 | ||
3300 | /* Compose the filename for the /proc memory map, and open it. */ | |
3301 | sprintf (mapsfilename, "/proc/%lld/maps", pid); | |
3302 | if ((mapsfile = fopen (mapsfilename, "r")) == NULL) | |
8a3fe4f8 | 3303 | error (_("Could not open %s."), mapsfilename); |
dba24537 AC |
3304 | |
3305 | if (info_verbose) | |
3306 | fprintf_filtered (gdb_stdout, | |
3307 | "Reading memory regions from %s\n", mapsfilename); | |
3308 | ||
3309 | /* Now iterate until end-of-file. */ | |
3310 | while (read_mapping (mapsfile, &addr, &endaddr, &permissions[0], | |
3311 | &offset, &device[0], &inode, &filename[0])) | |
3312 | { | |
3313 | size = endaddr - addr; | |
3314 | ||
3315 | /* Get the segment's permissions. */ | |
3316 | read = (strchr (permissions, 'r') != 0); | |
3317 | write = (strchr (permissions, 'w') != 0); | |
3318 | exec = (strchr (permissions, 'x') != 0); | |
3319 | ||
3320 | if (info_verbose) | |
3321 | { | |
3322 | fprintf_filtered (gdb_stdout, | |
3323 | "Save segment, %lld bytes at 0x%s (%c%c%c)", | |
3324 | size, paddr_nz (addr), | |
3325 | read ? 'r' : ' ', | |
3326 | write ? 'w' : ' ', exec ? 'x' : ' '); | |
b260b6c1 | 3327 | if (filename[0]) |
dba24537 AC |
3328 | fprintf_filtered (gdb_stdout, " for %s", filename); |
3329 | fprintf_filtered (gdb_stdout, "\n"); | |
3330 | } | |
3331 | ||
3332 | /* Invoke the callback function to create the corefile | |
3333 | segment. */ | |
3334 | func (addr, size, read, write, exec, obfd); | |
3335 | } | |
3336 | fclose (mapsfile); | |
3337 | return 0; | |
3338 | } | |
3339 | ||
2020b7ab PA |
3340 | static int |
3341 | find_signalled_thread (struct thread_info *info, void *data) | |
3342 | { | |
3343 | if (info->stop_signal != TARGET_SIGNAL_0 | |
3344 | && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid)) | |
3345 | return 1; | |
3346 | ||
3347 | return 0; | |
3348 | } | |
3349 | ||
3350 | static enum target_signal | |
3351 | find_stop_signal (void) | |
3352 | { | |
3353 | struct thread_info *info = | |
3354 | iterate_over_threads (find_signalled_thread, NULL); | |
3355 | ||
3356 | if (info) | |
3357 | return info->stop_signal; | |
3358 | else | |
3359 | return TARGET_SIGNAL_0; | |
3360 | } | |
3361 | ||
dba24537 AC |
3362 | /* Records the thread's register state for the corefile note |
3363 | section. */ | |
3364 | ||
3365 | static char * | |
3366 | linux_nat_do_thread_registers (bfd *obfd, ptid_t ptid, | |
2020b7ab PA |
3367 | char *note_data, int *note_size, |
3368 | enum target_signal stop_signal) | |
dba24537 AC |
3369 | { |
3370 | gdb_gregset_t gregs; | |
3371 | gdb_fpregset_t fpregs; | |
dba24537 | 3372 | unsigned long lwp = ptid_get_lwp (ptid); |
594f7785 UW |
3373 | struct regcache *regcache = get_thread_regcache (ptid); |
3374 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4f844a66 | 3375 | const struct regset *regset; |
55e969c1 | 3376 | int core_regset_p; |
594f7785 | 3377 | struct cleanup *old_chain; |
17ea7499 CES |
3378 | struct core_regset_section *sect_list; |
3379 | char *gdb_regset; | |
594f7785 UW |
3380 | |
3381 | old_chain = save_inferior_ptid (); | |
3382 | inferior_ptid = ptid; | |
3383 | target_fetch_registers (regcache, -1); | |
3384 | do_cleanups (old_chain); | |
4f844a66 DM |
3385 | |
3386 | core_regset_p = gdbarch_regset_from_core_section_p (gdbarch); | |
17ea7499 CES |
3387 | sect_list = gdbarch_core_regset_sections (gdbarch); |
3388 | ||
55e969c1 DM |
3389 | if (core_regset_p |
3390 | && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg", | |
3391 | sizeof (gregs))) != NULL | |
3392 | && regset->collect_regset != NULL) | |
594f7785 | 3393 | regset->collect_regset (regset, regcache, -1, |
55e969c1 | 3394 | &gregs, sizeof (gregs)); |
4f844a66 | 3395 | else |
594f7785 | 3396 | fill_gregset (regcache, &gregs, -1); |
4f844a66 | 3397 | |
55e969c1 DM |
3398 | note_data = (char *) elfcore_write_prstatus (obfd, |
3399 | note_data, | |
3400 | note_size, | |
3401 | lwp, | |
3402 | stop_signal, &gregs); | |
3403 | ||
17ea7499 CES |
3404 | /* The loop below uses the new struct core_regset_section, which stores |
3405 | the supported section names and sizes for the core file. Note that | |
3406 | note PRSTATUS needs to be treated specially. But the other notes are | |
3407 | structurally the same, so they can benefit from the new struct. */ | |
3408 | if (core_regset_p && sect_list != NULL) | |
3409 | while (sect_list->sect_name != NULL) | |
3410 | { | |
3411 | /* .reg was already handled above. */ | |
3412 | if (strcmp (sect_list->sect_name, ".reg") == 0) | |
3413 | { | |
3414 | sect_list++; | |
3415 | continue; | |
3416 | } | |
3417 | regset = gdbarch_regset_from_core_section (gdbarch, | |
3418 | sect_list->sect_name, | |
3419 | sect_list->size); | |
3420 | gdb_assert (regset && regset->collect_regset); | |
3421 | gdb_regset = xmalloc (sect_list->size); | |
3422 | regset->collect_regset (regset, regcache, -1, | |
3423 | gdb_regset, sect_list->size); | |
3424 | note_data = (char *) elfcore_write_register_note (obfd, | |
3425 | note_data, | |
3426 | note_size, | |
3427 | sect_list->sect_name, | |
3428 | gdb_regset, | |
3429 | sect_list->size); | |
3430 | xfree (gdb_regset); | |
3431 | sect_list++; | |
3432 | } | |
dba24537 | 3433 | |
17ea7499 CES |
3434 | /* For architectures that does not have the struct core_regset_section |
3435 | implemented, we use the old method. When all the architectures have | |
3436 | the new support, the code below should be deleted. */ | |
4f844a66 | 3437 | else |
17ea7499 CES |
3438 | { |
3439 | if (core_regset_p | |
3440 | && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2", | |
3441 | sizeof (fpregs))) != NULL | |
3442 | && regset->collect_regset != NULL) | |
3443 | regset->collect_regset (regset, regcache, -1, | |
3444 | &fpregs, sizeof (fpregs)); | |
3445 | else | |
3446 | fill_fpregset (regcache, &fpregs, -1); | |
3447 | ||
3448 | note_data = (char *) elfcore_write_prfpreg (obfd, | |
3449 | note_data, | |
3450 | note_size, | |
3451 | &fpregs, sizeof (fpregs)); | |
3452 | } | |
4f844a66 | 3453 | |
dba24537 AC |
3454 | return note_data; |
3455 | } | |
3456 | ||
3457 | struct linux_nat_corefile_thread_data | |
3458 | { | |
3459 | bfd *obfd; | |
3460 | char *note_data; | |
3461 | int *note_size; | |
3462 | int num_notes; | |
2020b7ab | 3463 | enum target_signal stop_signal; |
dba24537 AC |
3464 | }; |
3465 | ||
3466 | /* Called by gdbthread.c once per thread. Records the thread's | |
3467 | register state for the corefile note section. */ | |
3468 | ||
3469 | static int | |
3470 | linux_nat_corefile_thread_callback (struct lwp_info *ti, void *data) | |
3471 | { | |
3472 | struct linux_nat_corefile_thread_data *args = data; | |
dba24537 | 3473 | |
dba24537 AC |
3474 | args->note_data = linux_nat_do_thread_registers (args->obfd, |
3475 | ti->ptid, | |
3476 | args->note_data, | |
2020b7ab PA |
3477 | args->note_size, |
3478 | args->stop_signal); | |
dba24537 | 3479 | args->num_notes++; |
56be3814 | 3480 | |
dba24537 AC |
3481 | return 0; |
3482 | } | |
3483 | ||
dba24537 AC |
3484 | /* Fills the "to_make_corefile_note" target vector. Builds the note |
3485 | section for a corefile, and returns it in a malloc buffer. */ | |
3486 | ||
3487 | static char * | |
3488 | linux_nat_make_corefile_notes (bfd *obfd, int *note_size) | |
3489 | { | |
3490 | struct linux_nat_corefile_thread_data thread_args; | |
3491 | struct cleanup *old_chain; | |
d99148ef | 3492 | /* The variable size must be >= sizeof (prpsinfo_t.pr_fname). */ |
dba24537 | 3493 | char fname[16] = { '\0' }; |
d99148ef | 3494 | /* The variable size must be >= sizeof (prpsinfo_t.pr_psargs). */ |
dba24537 AC |
3495 | char psargs[80] = { '\0' }; |
3496 | char *note_data = NULL; | |
3497 | ptid_t current_ptid = inferior_ptid; | |
c6826062 | 3498 | gdb_byte *auxv; |
dba24537 AC |
3499 | int auxv_len; |
3500 | ||
3501 | if (get_exec_file (0)) | |
3502 | { | |
3503 | strncpy (fname, strrchr (get_exec_file (0), '/') + 1, sizeof (fname)); | |
3504 | strncpy (psargs, get_exec_file (0), sizeof (psargs)); | |
3505 | if (get_inferior_args ()) | |
3506 | { | |
d99148ef JK |
3507 | char *string_end; |
3508 | char *psargs_end = psargs + sizeof (psargs); | |
3509 | ||
3510 | /* linux_elfcore_write_prpsinfo () handles zero unterminated | |
3511 | strings fine. */ | |
3512 | string_end = memchr (psargs, 0, sizeof (psargs)); | |
3513 | if (string_end != NULL) | |
3514 | { | |
3515 | *string_end++ = ' '; | |
3516 | strncpy (string_end, get_inferior_args (), | |
3517 | psargs_end - string_end); | |
3518 | } | |
dba24537 AC |
3519 | } |
3520 | note_data = (char *) elfcore_write_prpsinfo (obfd, | |
3521 | note_data, | |
3522 | note_size, fname, psargs); | |
3523 | } | |
3524 | ||
3525 | /* Dump information for threads. */ | |
3526 | thread_args.obfd = obfd; | |
3527 | thread_args.note_data = note_data; | |
3528 | thread_args.note_size = note_size; | |
3529 | thread_args.num_notes = 0; | |
2020b7ab | 3530 | thread_args.stop_signal = find_stop_signal (); |
dba24537 | 3531 | iterate_over_lwps (linux_nat_corefile_thread_callback, &thread_args); |
2020b7ab PA |
3532 | gdb_assert (thread_args.num_notes != 0); |
3533 | note_data = thread_args.note_data; | |
dba24537 | 3534 | |
13547ab6 DJ |
3535 | auxv_len = target_read_alloc (¤t_target, TARGET_OBJECT_AUXV, |
3536 | NULL, &auxv); | |
dba24537 AC |
3537 | if (auxv_len > 0) |
3538 | { | |
3539 | note_data = elfcore_write_note (obfd, note_data, note_size, | |
3540 | "CORE", NT_AUXV, auxv, auxv_len); | |
3541 | xfree (auxv); | |
3542 | } | |
3543 | ||
3544 | make_cleanup (xfree, note_data); | |
3545 | return note_data; | |
3546 | } | |
3547 | ||
3548 | /* Implement the "info proc" command. */ | |
3549 | ||
3550 | static void | |
3551 | linux_nat_info_proc_cmd (char *args, int from_tty) | |
3552 | { | |
3553 | long long pid = PIDGET (inferior_ptid); | |
3554 | FILE *procfile; | |
3555 | char **argv = NULL; | |
3556 | char buffer[MAXPATHLEN]; | |
3557 | char fname1[MAXPATHLEN], fname2[MAXPATHLEN]; | |
3558 | int cmdline_f = 1; | |
3559 | int cwd_f = 1; | |
3560 | int exe_f = 1; | |
3561 | int mappings_f = 0; | |
3562 | int environ_f = 0; | |
3563 | int status_f = 0; | |
3564 | int stat_f = 0; | |
3565 | int all = 0; | |
3566 | struct stat dummy; | |
3567 | ||
3568 | if (args) | |
3569 | { | |
3570 | /* Break up 'args' into an argv array. */ | |
3571 | if ((argv = buildargv (args)) == NULL) | |
3572 | nomem (0); | |
3573 | else | |
3574 | make_cleanup_freeargv (argv); | |
3575 | } | |
3576 | while (argv != NULL && *argv != NULL) | |
3577 | { | |
3578 | if (isdigit (argv[0][0])) | |
3579 | { | |
3580 | pid = strtoul (argv[0], NULL, 10); | |
3581 | } | |
3582 | else if (strncmp (argv[0], "mappings", strlen (argv[0])) == 0) | |
3583 | { | |
3584 | mappings_f = 1; | |
3585 | } | |
3586 | else if (strcmp (argv[0], "status") == 0) | |
3587 | { | |
3588 | status_f = 1; | |
3589 | } | |
3590 | else if (strcmp (argv[0], "stat") == 0) | |
3591 | { | |
3592 | stat_f = 1; | |
3593 | } | |
3594 | else if (strcmp (argv[0], "cmd") == 0) | |
3595 | { | |
3596 | cmdline_f = 1; | |
3597 | } | |
3598 | else if (strncmp (argv[0], "exe", strlen (argv[0])) == 0) | |
3599 | { | |
3600 | exe_f = 1; | |
3601 | } | |
3602 | else if (strcmp (argv[0], "cwd") == 0) | |
3603 | { | |
3604 | cwd_f = 1; | |
3605 | } | |
3606 | else if (strncmp (argv[0], "all", strlen (argv[0])) == 0) | |
3607 | { | |
3608 | all = 1; | |
3609 | } | |
3610 | else | |
3611 | { | |
3612 | /* [...] (future options here) */ | |
3613 | } | |
3614 | argv++; | |
3615 | } | |
3616 | if (pid == 0) | |
8a3fe4f8 | 3617 | error (_("No current process: you must name one.")); |
dba24537 AC |
3618 | |
3619 | sprintf (fname1, "/proc/%lld", pid); | |
3620 | if (stat (fname1, &dummy) != 0) | |
8a3fe4f8 | 3621 | error (_("No /proc directory: '%s'"), fname1); |
dba24537 | 3622 | |
a3f17187 | 3623 | printf_filtered (_("process %lld\n"), pid); |
dba24537 AC |
3624 | if (cmdline_f || all) |
3625 | { | |
3626 | sprintf (fname1, "/proc/%lld/cmdline", pid); | |
d5d6fca5 | 3627 | if ((procfile = fopen (fname1, "r")) != NULL) |
dba24537 AC |
3628 | { |
3629 | fgets (buffer, sizeof (buffer), procfile); | |
3630 | printf_filtered ("cmdline = '%s'\n", buffer); | |
3631 | fclose (procfile); | |
3632 | } | |
3633 | else | |
8a3fe4f8 | 3634 | warning (_("unable to open /proc file '%s'"), fname1); |
dba24537 AC |
3635 | } |
3636 | if (cwd_f || all) | |
3637 | { | |
3638 | sprintf (fname1, "/proc/%lld/cwd", pid); | |
3639 | memset (fname2, 0, sizeof (fname2)); | |
3640 | if (readlink (fname1, fname2, sizeof (fname2)) > 0) | |
3641 | printf_filtered ("cwd = '%s'\n", fname2); | |
3642 | else | |
8a3fe4f8 | 3643 | warning (_("unable to read link '%s'"), fname1); |
dba24537 AC |
3644 | } |
3645 | if (exe_f || all) | |
3646 | { | |
3647 | sprintf (fname1, "/proc/%lld/exe", pid); | |
3648 | memset (fname2, 0, sizeof (fname2)); | |
3649 | if (readlink (fname1, fname2, sizeof (fname2)) > 0) | |
3650 | printf_filtered ("exe = '%s'\n", fname2); | |
3651 | else | |
8a3fe4f8 | 3652 | warning (_("unable to read link '%s'"), fname1); |
dba24537 AC |
3653 | } |
3654 | if (mappings_f || all) | |
3655 | { | |
3656 | sprintf (fname1, "/proc/%lld/maps", pid); | |
d5d6fca5 | 3657 | if ((procfile = fopen (fname1, "r")) != NULL) |
dba24537 AC |
3658 | { |
3659 | long long addr, endaddr, size, offset, inode; | |
3660 | char permissions[8], device[8], filename[MAXPATHLEN]; | |
3661 | ||
a3f17187 | 3662 | printf_filtered (_("Mapped address spaces:\n\n")); |
17a912b6 | 3663 | if (gdbarch_addr_bit (current_gdbarch) == 32) |
dba24537 AC |
3664 | { |
3665 | printf_filtered ("\t%10s %10s %10s %10s %7s\n", | |
3666 | "Start Addr", | |
3667 | " End Addr", | |
3668 | " Size", " Offset", "objfile"); | |
3669 | } | |
3670 | else | |
3671 | { | |
3672 | printf_filtered (" %18s %18s %10s %10s %7s\n", | |
3673 | "Start Addr", | |
3674 | " End Addr", | |
3675 | " Size", " Offset", "objfile"); | |
3676 | } | |
3677 | ||
3678 | while (read_mapping (procfile, &addr, &endaddr, &permissions[0], | |
3679 | &offset, &device[0], &inode, &filename[0])) | |
3680 | { | |
3681 | size = endaddr - addr; | |
3682 | ||
3683 | /* FIXME: carlton/2003-08-27: Maybe the printf_filtered | |
3684 | calls here (and possibly above) should be abstracted | |
3685 | out into their own functions? Andrew suggests using | |
3686 | a generic local_address_string instead to print out | |
3687 | the addresses; that makes sense to me, too. */ | |
3688 | ||
17a912b6 | 3689 | if (gdbarch_addr_bit (current_gdbarch) == 32) |
dba24537 AC |
3690 | { |
3691 | printf_filtered ("\t%#10lx %#10lx %#10x %#10x %7s\n", | |
3692 | (unsigned long) addr, /* FIXME: pr_addr */ | |
3693 | (unsigned long) endaddr, | |
3694 | (int) size, | |
3695 | (unsigned int) offset, | |
3696 | filename[0] ? filename : ""); | |
3697 | } | |
3698 | else | |
3699 | { | |
3700 | printf_filtered (" %#18lx %#18lx %#10x %#10x %7s\n", | |
3701 | (unsigned long) addr, /* FIXME: pr_addr */ | |
3702 | (unsigned long) endaddr, | |
3703 | (int) size, | |
3704 | (unsigned int) offset, | |
3705 | filename[0] ? filename : ""); | |
3706 | } | |
3707 | } | |
3708 | ||
3709 | fclose (procfile); | |
3710 | } | |
3711 | else | |
8a3fe4f8 | 3712 | warning (_("unable to open /proc file '%s'"), fname1); |
dba24537 AC |
3713 | } |
3714 | if (status_f || all) | |
3715 | { | |
3716 | sprintf (fname1, "/proc/%lld/status", pid); | |
d5d6fca5 | 3717 | if ((procfile = fopen (fname1, "r")) != NULL) |
dba24537 AC |
3718 | { |
3719 | while (fgets (buffer, sizeof (buffer), procfile) != NULL) | |
3720 | puts_filtered (buffer); | |
3721 | fclose (procfile); | |
3722 | } | |
3723 | else | |
8a3fe4f8 | 3724 | warning (_("unable to open /proc file '%s'"), fname1); |
dba24537 AC |
3725 | } |
3726 | if (stat_f || all) | |
3727 | { | |
3728 | sprintf (fname1, "/proc/%lld/stat", pid); | |
d5d6fca5 | 3729 | if ((procfile = fopen (fname1, "r")) != NULL) |
dba24537 AC |
3730 | { |
3731 | int itmp; | |
3732 | char ctmp; | |
a25694b4 | 3733 | long ltmp; |
dba24537 AC |
3734 | |
3735 | if (fscanf (procfile, "%d ", &itmp) > 0) | |
a3f17187 | 3736 | printf_filtered (_("Process: %d\n"), itmp); |
a25694b4 | 3737 | if (fscanf (procfile, "(%[^)]) ", &buffer[0]) > 0) |
a3f17187 | 3738 | printf_filtered (_("Exec file: %s\n"), buffer); |
dba24537 | 3739 | if (fscanf (procfile, "%c ", &ctmp) > 0) |
a3f17187 | 3740 | printf_filtered (_("State: %c\n"), ctmp); |
dba24537 | 3741 | if (fscanf (procfile, "%d ", &itmp) > 0) |
a3f17187 | 3742 | printf_filtered (_("Parent process: %d\n"), itmp); |
dba24537 | 3743 | if (fscanf (procfile, "%d ", &itmp) > 0) |
a3f17187 | 3744 | printf_filtered (_("Process group: %d\n"), itmp); |
dba24537 | 3745 | if (fscanf (procfile, "%d ", &itmp) > 0) |
a3f17187 | 3746 | printf_filtered (_("Session id: %d\n"), itmp); |
dba24537 | 3747 | if (fscanf (procfile, "%d ", &itmp) > 0) |
a3f17187 | 3748 | printf_filtered (_("TTY: %d\n"), itmp); |
dba24537 | 3749 | if (fscanf (procfile, "%d ", &itmp) > 0) |
a3f17187 | 3750 | printf_filtered (_("TTY owner process group: %d\n"), itmp); |
a25694b4 AS |
3751 | if (fscanf (procfile, "%lu ", <mp) > 0) |
3752 | printf_filtered (_("Flags: 0x%lx\n"), ltmp); | |
3753 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3754 | printf_filtered (_("Minor faults (no memory page): %lu\n"), | |
3755 | (unsigned long) ltmp); | |
3756 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3757 | printf_filtered (_("Minor faults, children: %lu\n"), | |
3758 | (unsigned long) ltmp); | |
3759 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3760 | printf_filtered (_("Major faults (memory page faults): %lu\n"), | |
3761 | (unsigned long) ltmp); | |
3762 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3763 | printf_filtered (_("Major faults, children: %lu\n"), | |
3764 | (unsigned long) ltmp); | |
3765 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3766 | printf_filtered (_("utime: %ld\n"), ltmp); | |
3767 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3768 | printf_filtered (_("stime: %ld\n"), ltmp); | |
3769 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3770 | printf_filtered (_("utime, children: %ld\n"), ltmp); | |
3771 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3772 | printf_filtered (_("stime, children: %ld\n"), ltmp); | |
3773 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3774 | printf_filtered (_("jiffies remaining in current time slice: %ld\n"), | |
3775 | ltmp); | |
3776 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3777 | printf_filtered (_("'nice' value: %ld\n"), ltmp); | |
3778 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3779 | printf_filtered (_("jiffies until next timeout: %lu\n"), | |
3780 | (unsigned long) ltmp); | |
3781 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3782 | printf_filtered (_("jiffies until next SIGALRM: %lu\n"), | |
3783 | (unsigned long) ltmp); | |
3784 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3785 | printf_filtered (_("start time (jiffies since system boot): %ld\n"), | |
3786 | ltmp); | |
3787 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3788 | printf_filtered (_("Virtual memory size: %lu\n"), | |
3789 | (unsigned long) ltmp); | |
3790 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3791 | printf_filtered (_("Resident set size: %lu\n"), (unsigned long) ltmp); | |
3792 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3793 | printf_filtered (_("rlim: %lu\n"), (unsigned long) ltmp); | |
3794 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3795 | printf_filtered (_("Start of text: 0x%lx\n"), ltmp); | |
3796 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3797 | printf_filtered (_("End of text: 0x%lx\n"), ltmp); | |
3798 | if (fscanf (procfile, "%lu ", <mp) > 0) | |
3799 | printf_filtered (_("Start of stack: 0x%lx\n"), ltmp); | |
dba24537 AC |
3800 | #if 0 /* Don't know how architecture-dependent the rest is... |
3801 | Anyway the signal bitmap info is available from "status". */ | |
a25694b4 AS |
3802 | if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */ |
3803 | printf_filtered (_("Kernel stack pointer: 0x%lx\n"), ltmp); | |
3804 | if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */ | |
3805 | printf_filtered (_("Kernel instr pointer: 0x%lx\n"), ltmp); | |
3806 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3807 | printf_filtered (_("Pending signals bitmap: 0x%lx\n"), ltmp); | |
3808 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3809 | printf_filtered (_("Blocked signals bitmap: 0x%lx\n"), ltmp); | |
3810 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3811 | printf_filtered (_("Ignored signals bitmap: 0x%lx\n"), ltmp); | |
3812 | if (fscanf (procfile, "%ld ", <mp) > 0) | |
3813 | printf_filtered (_("Catched signals bitmap: 0x%lx\n"), ltmp); | |
3814 | if (fscanf (procfile, "%lu ", <mp) > 0) /* FIXME arch? */ | |
3815 | printf_filtered (_("wchan (system call): 0x%lx\n"), ltmp); | |
dba24537 AC |
3816 | #endif |
3817 | fclose (procfile); | |
3818 | } | |
3819 | else | |
8a3fe4f8 | 3820 | warning (_("unable to open /proc file '%s'"), fname1); |
dba24537 AC |
3821 | } |
3822 | } | |
3823 | ||
10d6c8cd DJ |
3824 | /* Implement the to_xfer_partial interface for memory reads using the /proc |
3825 | filesystem. Because we can use a single read() call for /proc, this | |
3826 | can be much more efficient than banging away at PTRACE_PEEKTEXT, | |
3827 | but it doesn't support writes. */ | |
3828 | ||
3829 | static LONGEST | |
3830 | linux_proc_xfer_partial (struct target_ops *ops, enum target_object object, | |
3831 | const char *annex, gdb_byte *readbuf, | |
3832 | const gdb_byte *writebuf, | |
3833 | ULONGEST offset, LONGEST len) | |
dba24537 | 3834 | { |
10d6c8cd DJ |
3835 | LONGEST ret; |
3836 | int fd; | |
dba24537 AC |
3837 | char filename[64]; |
3838 | ||
10d6c8cd | 3839 | if (object != TARGET_OBJECT_MEMORY || !readbuf) |
dba24537 AC |
3840 | return 0; |
3841 | ||
3842 | /* Don't bother for one word. */ | |
3843 | if (len < 3 * sizeof (long)) | |
3844 | return 0; | |
3845 | ||
3846 | /* We could keep this file open and cache it - possibly one per | |
3847 | thread. That requires some juggling, but is even faster. */ | |
3848 | sprintf (filename, "/proc/%d/mem", PIDGET (inferior_ptid)); | |
3849 | fd = open (filename, O_RDONLY | O_LARGEFILE); | |
3850 | if (fd == -1) | |
3851 | return 0; | |
3852 | ||
3853 | /* If pread64 is available, use it. It's faster if the kernel | |
3854 | supports it (only one syscall), and it's 64-bit safe even on | |
3855 | 32-bit platforms (for instance, SPARC debugging a SPARC64 | |
3856 | application). */ | |
3857 | #ifdef HAVE_PREAD64 | |
10d6c8cd | 3858 | if (pread64 (fd, readbuf, len, offset) != len) |
dba24537 | 3859 | #else |
10d6c8cd | 3860 | if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len) |
dba24537 AC |
3861 | #endif |
3862 | ret = 0; | |
3863 | else | |
3864 | ret = len; | |
3865 | ||
3866 | close (fd); | |
3867 | return ret; | |
3868 | } | |
3869 | ||
3870 | /* Parse LINE as a signal set and add its set bits to SIGS. */ | |
3871 | ||
3872 | static void | |
3873 | add_line_to_sigset (const char *line, sigset_t *sigs) | |
3874 | { | |
3875 | int len = strlen (line) - 1; | |
3876 | const char *p; | |
3877 | int signum; | |
3878 | ||
3879 | if (line[len] != '\n') | |
8a3fe4f8 | 3880 | error (_("Could not parse signal set: %s"), line); |
dba24537 AC |
3881 | |
3882 | p = line; | |
3883 | signum = len * 4; | |
3884 | while (len-- > 0) | |
3885 | { | |
3886 | int digit; | |
3887 | ||
3888 | if (*p >= '0' && *p <= '9') | |
3889 | digit = *p - '0'; | |
3890 | else if (*p >= 'a' && *p <= 'f') | |
3891 | digit = *p - 'a' + 10; | |
3892 | else | |
8a3fe4f8 | 3893 | error (_("Could not parse signal set: %s"), line); |
dba24537 AC |
3894 | |
3895 | signum -= 4; | |
3896 | ||
3897 | if (digit & 1) | |
3898 | sigaddset (sigs, signum + 1); | |
3899 | if (digit & 2) | |
3900 | sigaddset (sigs, signum + 2); | |
3901 | if (digit & 4) | |
3902 | sigaddset (sigs, signum + 3); | |
3903 | if (digit & 8) | |
3904 | sigaddset (sigs, signum + 4); | |
3905 | ||
3906 | p++; | |
3907 | } | |
3908 | } | |
3909 | ||
3910 | /* Find process PID's pending signals from /proc/pid/status and set | |
3911 | SIGS to match. */ | |
3912 | ||
3913 | void | |
3914 | linux_proc_pending_signals (int pid, sigset_t *pending, sigset_t *blocked, sigset_t *ignored) | |
3915 | { | |
3916 | FILE *procfile; | |
3917 | char buffer[MAXPATHLEN], fname[MAXPATHLEN]; | |
3918 | int signum; | |
3919 | ||
3920 | sigemptyset (pending); | |
3921 | sigemptyset (blocked); | |
3922 | sigemptyset (ignored); | |
3923 | sprintf (fname, "/proc/%d/status", pid); | |
3924 | procfile = fopen (fname, "r"); | |
3925 | if (procfile == NULL) | |
8a3fe4f8 | 3926 | error (_("Could not open %s"), fname); |
dba24537 AC |
3927 | |
3928 | while (fgets (buffer, MAXPATHLEN, procfile) != NULL) | |
3929 | { | |
3930 | /* Normal queued signals are on the SigPnd line in the status | |
3931 | file. However, 2.6 kernels also have a "shared" pending | |
3932 | queue for delivering signals to a thread group, so check for | |
3933 | a ShdPnd line also. | |
3934 | ||
3935 | Unfortunately some Red Hat kernels include the shared pending | |
3936 | queue but not the ShdPnd status field. */ | |
3937 | ||
3938 | if (strncmp (buffer, "SigPnd:\t", 8) == 0) | |
3939 | add_line_to_sigset (buffer + 8, pending); | |
3940 | else if (strncmp (buffer, "ShdPnd:\t", 8) == 0) | |
3941 | add_line_to_sigset (buffer + 8, pending); | |
3942 | else if (strncmp (buffer, "SigBlk:\t", 8) == 0) | |
3943 | add_line_to_sigset (buffer + 8, blocked); | |
3944 | else if (strncmp (buffer, "SigIgn:\t", 8) == 0) | |
3945 | add_line_to_sigset (buffer + 8, ignored); | |
3946 | } | |
3947 | ||
3948 | fclose (procfile); | |
3949 | } | |
3950 | ||
10d6c8cd DJ |
3951 | static LONGEST |
3952 | linux_xfer_partial (struct target_ops *ops, enum target_object object, | |
3953 | const char *annex, gdb_byte *readbuf, | |
3954 | const gdb_byte *writebuf, ULONGEST offset, LONGEST len) | |
3955 | { | |
3956 | LONGEST xfer; | |
3957 | ||
3958 | if (object == TARGET_OBJECT_AUXV) | |
3959 | return procfs_xfer_auxv (ops, object, annex, readbuf, writebuf, | |
3960 | offset, len); | |
3961 | ||
3962 | xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf, | |
3963 | offset, len); | |
3964 | if (xfer != 0) | |
3965 | return xfer; | |
3966 | ||
3967 | return super_xfer_partial (ops, object, annex, readbuf, writebuf, | |
3968 | offset, len); | |
3969 | } | |
3970 | ||
e9efe249 | 3971 | /* Create a prototype generic GNU/Linux target. The client can override |
10d6c8cd DJ |
3972 | it with local methods. */ |
3973 | ||
910122bf UW |
3974 | static void |
3975 | linux_target_install_ops (struct target_ops *t) | |
10d6c8cd | 3976 | { |
6d8fd2b7 UW |
3977 | t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint; |
3978 | t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint; | |
3979 | t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint; | |
3980 | t->to_pid_to_exec_file = linux_child_pid_to_exec_file; | |
10d6c8cd | 3981 | t->to_post_startup_inferior = linux_child_post_startup_inferior; |
6d8fd2b7 UW |
3982 | t->to_post_attach = linux_child_post_attach; |
3983 | t->to_follow_fork = linux_child_follow_fork; | |
10d6c8cd DJ |
3984 | t->to_find_memory_regions = linux_nat_find_memory_regions; |
3985 | t->to_make_corefile_notes = linux_nat_make_corefile_notes; | |
3986 | ||
3987 | super_xfer_partial = t->to_xfer_partial; | |
3988 | t->to_xfer_partial = linux_xfer_partial; | |
910122bf UW |
3989 | } |
3990 | ||
3991 | struct target_ops * | |
3992 | linux_target (void) | |
3993 | { | |
3994 | struct target_ops *t; | |
3995 | ||
3996 | t = inf_ptrace_target (); | |
3997 | linux_target_install_ops (t); | |
3998 | ||
3999 | return t; | |
4000 | } | |
4001 | ||
4002 | struct target_ops * | |
7714d83a | 4003 | linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int)) |
910122bf UW |
4004 | { |
4005 | struct target_ops *t; | |
4006 | ||
4007 | t = inf_ptrace_trad_target (register_u_offset); | |
4008 | linux_target_install_ops (t); | |
10d6c8cd | 4009 | |
10d6c8cd DJ |
4010 | return t; |
4011 | } | |
4012 | ||
b84876c2 PA |
4013 | /* target_is_async_p implementation. */ |
4014 | ||
4015 | static int | |
4016 | linux_nat_is_async_p (void) | |
4017 | { | |
4018 | /* NOTE: palves 2008-03-21: We're only async when the user requests | |
c6ebd6cf | 4019 | it explicitly with the "maintenance set target-async" command. |
b84876c2 | 4020 | Someday, linux will always be async. */ |
c6ebd6cf | 4021 | if (!target_async_permitted) |
b84876c2 PA |
4022 | return 0; |
4023 | ||
4024 | return 1; | |
4025 | } | |
4026 | ||
4027 | /* target_can_async_p implementation. */ | |
4028 | ||
4029 | static int | |
4030 | linux_nat_can_async_p (void) | |
4031 | { | |
4032 | /* NOTE: palves 2008-03-21: We're only async when the user requests | |
c6ebd6cf | 4033 | it explicitly with the "maintenance set target-async" command. |
b84876c2 | 4034 | Someday, linux will always be async. */ |
c6ebd6cf | 4035 | if (!target_async_permitted) |
b84876c2 PA |
4036 | return 0; |
4037 | ||
4038 | /* See target.h/target_async_mask. */ | |
4039 | return linux_nat_async_mask_value; | |
4040 | } | |
4041 | ||
9908b566 VP |
4042 | static int |
4043 | linux_nat_supports_non_stop (void) | |
4044 | { | |
4045 | return 1; | |
4046 | } | |
4047 | ||
b84876c2 PA |
4048 | /* target_async_mask implementation. */ |
4049 | ||
4050 | static int | |
4051 | linux_nat_async_mask (int mask) | |
4052 | { | |
4053 | int current_state; | |
4054 | current_state = linux_nat_async_mask_value; | |
4055 | ||
4056 | if (current_state != mask) | |
4057 | { | |
4058 | if (mask == 0) | |
4059 | { | |
4060 | linux_nat_async (NULL, 0); | |
4061 | linux_nat_async_mask_value = mask; | |
b84876c2 PA |
4062 | } |
4063 | else | |
4064 | { | |
b84876c2 PA |
4065 | linux_nat_async_mask_value = mask; |
4066 | linux_nat_async (inferior_event_handler, 0); | |
4067 | } | |
4068 | } | |
4069 | ||
4070 | return current_state; | |
4071 | } | |
4072 | ||
4073 | /* Pop an event from the event pipe. */ | |
4074 | ||
4075 | static int | |
4076 | linux_nat_event_pipe_pop (int* ptr_status, int* ptr_options) | |
4077 | { | |
4078 | struct waitpid_result event = {0}; | |
4079 | int ret; | |
4080 | ||
4081 | do | |
4082 | { | |
4083 | ret = read (linux_nat_event_pipe[0], &event, sizeof (event)); | |
4084 | } | |
4085 | while (ret == -1 && errno == EINTR); | |
4086 | ||
4087 | gdb_assert (ret == sizeof (event)); | |
4088 | ||
4089 | *ptr_status = event.status; | |
4090 | *ptr_options = event.options; | |
4091 | ||
4092 | linux_nat_num_queued_events--; | |
4093 | ||
4094 | return event.pid; | |
4095 | } | |
4096 | ||
4097 | /* Push an event into the event pipe. */ | |
4098 | ||
4099 | static void | |
4100 | linux_nat_event_pipe_push (int pid, int status, int options) | |
4101 | { | |
4102 | int ret; | |
4103 | struct waitpid_result event = {0}; | |
4104 | event.pid = pid; | |
4105 | event.status = status; | |
4106 | event.options = options; | |
4107 | ||
4108 | do | |
4109 | { | |
4110 | ret = write (linux_nat_event_pipe[1], &event, sizeof (event)); | |
4111 | gdb_assert ((ret == -1 && errno == EINTR) || ret == sizeof (event)); | |
4112 | } while (ret == -1 && errno == EINTR); | |
4113 | ||
4114 | linux_nat_num_queued_events++; | |
4115 | } | |
4116 | ||
4117 | static void | |
4118 | get_pending_events (void) | |
4119 | { | |
4120 | int status, options, pid; | |
4121 | ||
c6ebd6cf | 4122 | if (!target_async_permitted |
84e46146 | 4123 | || linux_nat_async_events_state != sigchld_async) |
b84876c2 PA |
4124 | internal_error (__FILE__, __LINE__, |
4125 | "get_pending_events called with async masked"); | |
4126 | ||
4127 | while (1) | |
4128 | { | |
4129 | status = 0; | |
4130 | options = __WCLONE | WNOHANG; | |
4131 | ||
4132 | do | |
4133 | { | |
4134 | pid = waitpid (-1, &status, options); | |
4135 | } | |
4136 | while (pid == -1 && errno == EINTR); | |
4137 | ||
4138 | if (pid <= 0) | |
4139 | { | |
4140 | options = WNOHANG; | |
4141 | do | |
4142 | { | |
4143 | pid = waitpid (-1, &status, options); | |
4144 | } | |
4145 | while (pid == -1 && errno == EINTR); | |
4146 | } | |
4147 | ||
4148 | if (pid <= 0) | |
4149 | /* No more children reporting events. */ | |
4150 | break; | |
4151 | ||
4152 | if (debug_linux_nat_async) | |
4153 | fprintf_unfiltered (gdb_stdlog, "\ | |
4154 | get_pending_events: pid(%d), status(%x), options (%x)\n", | |
4155 | pid, status, options); | |
4156 | ||
4157 | linux_nat_event_pipe_push (pid, status, options); | |
4158 | } | |
4159 | ||
4160 | if (debug_linux_nat_async) | |
4161 | fprintf_unfiltered (gdb_stdlog, "\ | |
4162 | get_pending_events: linux_nat_num_queued_events(%d)\n", | |
4163 | linux_nat_num_queued_events); | |
4164 | } | |
4165 | ||
4166 | /* SIGCHLD handler for async mode. */ | |
4167 | ||
4168 | static void | |
4169 | async_sigchld_handler (int signo) | |
4170 | { | |
4171 | if (debug_linux_nat_async) | |
4172 | fprintf_unfiltered (gdb_stdlog, "async_sigchld_handler\n"); | |
4173 | ||
4174 | get_pending_events (); | |
4175 | } | |
4176 | ||
84e46146 | 4177 | /* Set SIGCHLD handling state to STATE. Returns previous state. */ |
b84876c2 | 4178 | |
84e46146 PA |
4179 | static enum sigchld_state |
4180 | linux_nat_async_events (enum sigchld_state state) | |
b84876c2 | 4181 | { |
84e46146 | 4182 | enum sigchld_state current_state = linux_nat_async_events_state; |
b84876c2 PA |
4183 | |
4184 | if (debug_linux_nat_async) | |
4185 | fprintf_unfiltered (gdb_stdlog, | |
84e46146 | 4186 | "LNAE: state(%d): linux_nat_async_events_state(%d), " |
b84876c2 | 4187 | "linux_nat_num_queued_events(%d)\n", |
84e46146 | 4188 | state, linux_nat_async_events_state, |
b84876c2 PA |
4189 | linux_nat_num_queued_events); |
4190 | ||
84e46146 | 4191 | if (current_state != state) |
b84876c2 PA |
4192 | { |
4193 | sigset_t mask; | |
4194 | sigemptyset (&mask); | |
4195 | sigaddset (&mask, SIGCHLD); | |
84e46146 PA |
4196 | |
4197 | /* Always block before changing state. */ | |
4198 | sigprocmask (SIG_BLOCK, &mask, NULL); | |
4199 | ||
4200 | /* Set new state. */ | |
4201 | linux_nat_async_events_state = state; | |
4202 | ||
4203 | switch (state) | |
b84876c2 | 4204 | { |
84e46146 PA |
4205 | case sigchld_sync: |
4206 | { | |
4207 | /* Block target events. */ | |
4208 | sigprocmask (SIG_BLOCK, &mask, NULL); | |
4209 | sigaction (SIGCHLD, &sync_sigchld_action, NULL); | |
4210 | /* Get events out of queue, and make them available to | |
4211 | queued_waitpid / my_waitpid. */ | |
4212 | pipe_to_local_event_queue (); | |
4213 | } | |
4214 | break; | |
4215 | case sigchld_async: | |
4216 | { | |
4217 | /* Unblock target events for async mode. */ | |
4218 | ||
4219 | sigprocmask (SIG_BLOCK, &mask, NULL); | |
4220 | ||
4221 | /* Put events we already waited on, in the pipe first, so | |
4222 | events are FIFO. */ | |
4223 | local_event_queue_to_pipe (); | |
4224 | /* While in masked async, we may have not collected all | |
4225 | the pending events. Get them out now. */ | |
4226 | get_pending_events (); | |
4227 | ||
4228 | /* Let'em come. */ | |
4229 | sigaction (SIGCHLD, &async_sigchld_action, NULL); | |
4230 | sigprocmask (SIG_UNBLOCK, &mask, NULL); | |
4231 | } | |
4232 | break; | |
4233 | case sigchld_default: | |
4234 | { | |
4235 | /* SIGCHLD default mode. */ | |
4236 | sigaction (SIGCHLD, &sigchld_default_action, NULL); | |
4237 | ||
4238 | /* Get events out of queue, and make them available to | |
4239 | queued_waitpid / my_waitpid. */ | |
4240 | pipe_to_local_event_queue (); | |
4241 | ||
4242 | /* Unblock SIGCHLD. */ | |
4243 | sigprocmask (SIG_UNBLOCK, &mask, NULL); | |
4244 | } | |
4245 | break; | |
b84876c2 PA |
4246 | } |
4247 | } | |
4248 | ||
4249 | return current_state; | |
4250 | } | |
4251 | ||
4252 | static int async_terminal_is_ours = 1; | |
4253 | ||
4254 | /* target_terminal_inferior implementation. */ | |
4255 | ||
4256 | static void | |
4257 | linux_nat_terminal_inferior (void) | |
4258 | { | |
4259 | if (!target_is_async_p ()) | |
4260 | { | |
4261 | /* Async mode is disabled. */ | |
4262 | terminal_inferior (); | |
4263 | return; | |
4264 | } | |
4265 | ||
4266 | /* GDB should never give the terminal to the inferior, if the | |
4267 | inferior is running in the background (run&, continue&, etc.). | |
4268 | This check can be removed when the common code is fixed. */ | |
4269 | if (!sync_execution) | |
4270 | return; | |
4271 | ||
4272 | terminal_inferior (); | |
4273 | ||
4274 | if (!async_terminal_is_ours) | |
4275 | return; | |
4276 | ||
4277 | delete_file_handler (input_fd); | |
4278 | async_terminal_is_ours = 0; | |
4279 | set_sigint_trap (); | |
4280 | } | |
4281 | ||
4282 | /* target_terminal_ours implementation. */ | |
4283 | ||
4284 | void | |
4285 | linux_nat_terminal_ours (void) | |
4286 | { | |
4287 | if (!target_is_async_p ()) | |
4288 | { | |
4289 | /* Async mode is disabled. */ | |
4290 | terminal_ours (); | |
4291 | return; | |
4292 | } | |
4293 | ||
4294 | /* GDB should never give the terminal to the inferior if the | |
4295 | inferior is running in the background (run&, continue&, etc.), | |
4296 | but claiming it sure should. */ | |
4297 | terminal_ours (); | |
4298 | ||
4299 | if (!sync_execution) | |
4300 | return; | |
4301 | ||
4302 | if (async_terminal_is_ours) | |
4303 | return; | |
4304 | ||
4305 | clear_sigint_trap (); | |
4306 | add_file_handler (input_fd, stdin_event_handler, 0); | |
4307 | async_terminal_is_ours = 1; | |
4308 | } | |
4309 | ||
4310 | static void (*async_client_callback) (enum inferior_event_type event_type, | |
4311 | void *context); | |
4312 | static void *async_client_context; | |
4313 | ||
4314 | static void | |
4315 | linux_nat_async_file_handler (int error, gdb_client_data client_data) | |
4316 | { | |
4317 | async_client_callback (INF_REG_EVENT, async_client_context); | |
4318 | } | |
4319 | ||
4320 | /* target_async implementation. */ | |
4321 | ||
4322 | static void | |
4323 | linux_nat_async (void (*callback) (enum inferior_event_type event_type, | |
4324 | void *context), void *context) | |
4325 | { | |
c6ebd6cf | 4326 | if (linux_nat_async_mask_value == 0 || !target_async_permitted) |
b84876c2 PA |
4327 | internal_error (__FILE__, __LINE__, |
4328 | "Calling target_async when async is masked"); | |
4329 | ||
4330 | if (callback != NULL) | |
4331 | { | |
4332 | async_client_callback = callback; | |
4333 | async_client_context = context; | |
4334 | add_file_handler (linux_nat_event_pipe[0], | |
4335 | linux_nat_async_file_handler, NULL); | |
4336 | ||
84e46146 | 4337 | linux_nat_async_events (sigchld_async); |
b84876c2 PA |
4338 | } |
4339 | else | |
4340 | { | |
4341 | async_client_callback = callback; | |
4342 | async_client_context = context; | |
4343 | ||
84e46146 | 4344 | linux_nat_async_events (sigchld_sync); |
b84876c2 PA |
4345 | delete_file_handler (linux_nat_event_pipe[0]); |
4346 | } | |
4347 | return; | |
4348 | } | |
4349 | ||
4c28f408 PA |
4350 | static int |
4351 | send_sigint_callback (struct lwp_info *lp, void *data) | |
4352 | { | |
4353 | /* Use is_running instead of !lp->stopped, because the lwp may be | |
4354 | stopped due to an internal event, and we want to interrupt it in | |
4355 | that case too. What we want is to check if the thread is stopped | |
4356 | from the point of view of the user. */ | |
4357 | if (is_running (lp->ptid)) | |
4358 | kill_lwp (GET_LWP (lp->ptid), SIGINT); | |
4359 | return 0; | |
4360 | } | |
4361 | ||
4362 | static void | |
4363 | linux_nat_stop (ptid_t ptid) | |
4364 | { | |
4365 | if (non_stop) | |
4366 | { | |
4367 | if (ptid_equal (ptid, minus_one_ptid)) | |
4368 | iterate_over_lwps (send_sigint_callback, &ptid); | |
4369 | else | |
4370 | { | |
4371 | struct lwp_info *lp = find_lwp_pid (ptid); | |
4372 | send_sigint_callback (lp, NULL); | |
4373 | } | |
4374 | } | |
4375 | else | |
4376 | linux_ops->to_stop (ptid); | |
4377 | } | |
4378 | ||
f973ed9c DJ |
4379 | void |
4380 | linux_nat_add_target (struct target_ops *t) | |
4381 | { | |
f973ed9c DJ |
4382 | /* Save the provided single-threaded target. We save this in a separate |
4383 | variable because another target we've inherited from (e.g. inf-ptrace) | |
4384 | may have saved a pointer to T; we want to use it for the final | |
4385 | process stratum target. */ | |
4386 | linux_ops_saved = *t; | |
4387 | linux_ops = &linux_ops_saved; | |
4388 | ||
4389 | /* Override some methods for multithreading. */ | |
b84876c2 | 4390 | t->to_create_inferior = linux_nat_create_inferior; |
f973ed9c DJ |
4391 | t->to_attach = linux_nat_attach; |
4392 | t->to_detach = linux_nat_detach; | |
4393 | t->to_resume = linux_nat_resume; | |
4394 | t->to_wait = linux_nat_wait; | |
4395 | t->to_xfer_partial = linux_nat_xfer_partial; | |
4396 | t->to_kill = linux_nat_kill; | |
4397 | t->to_mourn_inferior = linux_nat_mourn_inferior; | |
4398 | t->to_thread_alive = linux_nat_thread_alive; | |
4399 | t->to_pid_to_str = linux_nat_pid_to_str; | |
4400 | t->to_has_thread_control = tc_schedlock; | |
4401 | ||
b84876c2 PA |
4402 | t->to_can_async_p = linux_nat_can_async_p; |
4403 | t->to_is_async_p = linux_nat_is_async_p; | |
9908b566 | 4404 | t->to_supports_non_stop = linux_nat_supports_non_stop; |
b84876c2 PA |
4405 | t->to_async = linux_nat_async; |
4406 | t->to_async_mask = linux_nat_async_mask; | |
4407 | t->to_terminal_inferior = linux_nat_terminal_inferior; | |
4408 | t->to_terminal_ours = linux_nat_terminal_ours; | |
4409 | ||
4c28f408 PA |
4410 | /* Methods for non-stop support. */ |
4411 | t->to_stop = linux_nat_stop; | |
4412 | ||
f973ed9c DJ |
4413 | /* We don't change the stratum; this target will sit at |
4414 | process_stratum and thread_db will set at thread_stratum. This | |
4415 | is a little strange, since this is a multi-threaded-capable | |
4416 | target, but we want to be on the stack below thread_db, and we | |
4417 | also want to be used for single-threaded processes. */ | |
4418 | ||
4419 | add_target (t); | |
4420 | ||
4421 | /* TODO: Eliminate this and have libthread_db use | |
4422 | find_target_beneath. */ | |
4423 | thread_db_init (t); | |
4424 | } | |
4425 | ||
9f0bdab8 DJ |
4426 | /* Register a method to call whenever a new thread is attached. */ |
4427 | void | |
4428 | linux_nat_set_new_thread (struct target_ops *t, void (*new_thread) (ptid_t)) | |
4429 | { | |
4430 | /* Save the pointer. We only support a single registered instance | |
4431 | of the GNU/Linux native target, so we do not need to map this to | |
4432 | T. */ | |
4433 | linux_nat_new_thread = new_thread; | |
4434 | } | |
4435 | ||
4436 | /* Return the saved siginfo associated with PTID. */ | |
4437 | struct siginfo * | |
4438 | linux_nat_get_siginfo (ptid_t ptid) | |
4439 | { | |
4440 | struct lwp_info *lp = find_lwp_pid (ptid); | |
4441 | ||
4442 | gdb_assert (lp != NULL); | |
4443 | ||
4444 | return &lp->siginfo; | |
4445 | } | |
4446 | ||
c6ebd6cf VP |
4447 | /* Enable/Disable async mode. */ |
4448 | ||
4449 | static void | |
4450 | linux_nat_setup_async (void) | |
4451 | { | |
4452 | if (pipe (linux_nat_event_pipe) == -1) | |
4453 | internal_error (__FILE__, __LINE__, | |
4454 | "creating event pipe failed."); | |
4455 | fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); | |
4456 | fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); | |
4457 | } | |
4458 | ||
d6b0e80f AC |
4459 | void |
4460 | _initialize_linux_nat (void) | |
4461 | { | |
b84876c2 | 4462 | sigset_t mask; |
dba24537 | 4463 | |
1bedd215 AC |
4464 | add_info ("proc", linux_nat_info_proc_cmd, _("\ |
4465 | Show /proc process information about any running process.\n\ | |
dba24537 AC |
4466 | Specify any process id, or use the program being debugged by default.\n\ |
4467 | Specify any of the following keywords for detailed info:\n\ | |
4468 | mappings -- list of mapped memory regions.\n\ | |
4469 | stat -- list a bunch of random process info.\n\ | |
4470 | status -- list a different bunch of random process info.\n\ | |
1bedd215 | 4471 | all -- list all available /proc info.")); |
d6b0e80f | 4472 | |
b84876c2 PA |
4473 | add_setshow_zinteger_cmd ("lin-lwp", class_maintenance, |
4474 | &debug_linux_nat, _("\ | |
4475 | Set debugging of GNU/Linux lwp module."), _("\ | |
4476 | Show debugging of GNU/Linux lwp module."), _("\ | |
4477 | Enables printf debugging output."), | |
4478 | NULL, | |
4479 | show_debug_linux_nat, | |
4480 | &setdebuglist, &showdebuglist); | |
4481 | ||
4482 | add_setshow_zinteger_cmd ("lin-lwp-async", class_maintenance, | |
4483 | &debug_linux_nat_async, _("\ | |
4484 | Set debugging of GNU/Linux async lwp module."), _("\ | |
4485 | Show debugging of GNU/Linux async lwp module."), _("\ | |
4486 | Enables printf debugging output."), | |
4487 | NULL, | |
4488 | show_debug_linux_nat_async, | |
4489 | &setdebuglist, &showdebuglist); | |
4490 | ||
84e46146 PA |
4491 | /* Get the default SIGCHLD action. Used while forking an inferior |
4492 | (see linux_nat_create_inferior/linux_nat_async_events). */ | |
4493 | sigaction (SIGCHLD, NULL, &sigchld_default_action); | |
4494 | ||
b84876c2 PA |
4495 | /* Block SIGCHLD by default. Doing this early prevents it getting |
4496 | unblocked if an exception is thrown due to an error while the | |
4497 | inferior is starting (sigsetjmp/siglongjmp). */ | |
4498 | sigemptyset (&mask); | |
4499 | sigaddset (&mask, SIGCHLD); | |
4500 | sigprocmask (SIG_BLOCK, &mask, NULL); | |
4501 | ||
4502 | /* Save this mask as the default. */ | |
d6b0e80f AC |
4503 | sigprocmask (SIG_SETMASK, NULL, &normal_mask); |
4504 | ||
b84876c2 PA |
4505 | /* The synchronous SIGCHLD handler. */ |
4506 | sync_sigchld_action.sa_handler = sigchld_handler; | |
4507 | sigemptyset (&sync_sigchld_action.sa_mask); | |
4508 | sync_sigchld_action.sa_flags = SA_RESTART; | |
4509 | ||
4510 | /* Make it the default. */ | |
4511 | sigaction (SIGCHLD, &sync_sigchld_action, NULL); | |
d6b0e80f AC |
4512 | |
4513 | /* Make sure we don't block SIGCHLD during a sigsuspend. */ | |
4514 | sigprocmask (SIG_SETMASK, NULL, &suspend_mask); | |
4515 | sigdelset (&suspend_mask, SIGCHLD); | |
4516 | ||
b84876c2 PA |
4517 | /* SIGCHLD handler for async mode. */ |
4518 | async_sigchld_action.sa_handler = async_sigchld_handler; | |
4519 | sigemptyset (&async_sigchld_action.sa_mask); | |
4520 | async_sigchld_action.sa_flags = SA_RESTART; | |
d6b0e80f | 4521 | |
c6ebd6cf | 4522 | linux_nat_setup_async (); |
10568435 JK |
4523 | |
4524 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
4525 | &disable_randomization, _("\ | |
4526 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
4527 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
4528 | When this mode is on (which is the default), randomization of the virtual\n\ | |
4529 | address space is disabled. Standalone programs run with the randomization\n\ | |
4530 | enabled by default on some platforms."), | |
4531 | &set_disable_randomization, | |
4532 | &show_disable_randomization, | |
4533 | &setlist, &showlist); | |
d6b0e80f AC |
4534 | } |
4535 | \f | |
4536 | ||
4537 | /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to | |
4538 | the GNU/Linux Threads library and therefore doesn't really belong | |
4539 | here. */ | |
4540 | ||
4541 | /* Read variable NAME in the target and return its value if found. | |
4542 | Otherwise return zero. It is assumed that the type of the variable | |
4543 | is `int'. */ | |
4544 | ||
4545 | static int | |
4546 | get_signo (const char *name) | |
4547 | { | |
4548 | struct minimal_symbol *ms; | |
4549 | int signo; | |
4550 | ||
4551 | ms = lookup_minimal_symbol (name, NULL, NULL); | |
4552 | if (ms == NULL) | |
4553 | return 0; | |
4554 | ||
8e70166d | 4555 | if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo, |
d6b0e80f AC |
4556 | sizeof (signo)) != 0) |
4557 | return 0; | |
4558 | ||
4559 | return signo; | |
4560 | } | |
4561 | ||
4562 | /* Return the set of signals used by the threads library in *SET. */ | |
4563 | ||
4564 | void | |
4565 | lin_thread_get_thread_signals (sigset_t *set) | |
4566 | { | |
4567 | struct sigaction action; | |
4568 | int restart, cancel; | |
b84876c2 | 4569 | sigset_t blocked_mask; |
d6b0e80f | 4570 | |
b84876c2 | 4571 | sigemptyset (&blocked_mask); |
d6b0e80f AC |
4572 | sigemptyset (set); |
4573 | ||
4574 | restart = get_signo ("__pthread_sig_restart"); | |
17fbb0bd DJ |
4575 | cancel = get_signo ("__pthread_sig_cancel"); |
4576 | ||
4577 | /* LinuxThreads normally uses the first two RT signals, but in some legacy | |
4578 | cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does | |
4579 | not provide any way for the debugger to query the signal numbers - | |
4580 | fortunately they don't change! */ | |
4581 | ||
d6b0e80f | 4582 | if (restart == 0) |
17fbb0bd | 4583 | restart = __SIGRTMIN; |
d6b0e80f | 4584 | |
d6b0e80f | 4585 | if (cancel == 0) |
17fbb0bd | 4586 | cancel = __SIGRTMIN + 1; |
d6b0e80f AC |
4587 | |
4588 | sigaddset (set, restart); | |
4589 | sigaddset (set, cancel); | |
4590 | ||
4591 | /* The GNU/Linux Threads library makes terminating threads send a | |
4592 | special "cancel" signal instead of SIGCHLD. Make sure we catch | |
4593 | those (to prevent them from terminating GDB itself, which is | |
4594 | likely to be their default action) and treat them the same way as | |
4595 | SIGCHLD. */ | |
4596 | ||
4597 | action.sa_handler = sigchld_handler; | |
4598 | sigemptyset (&action.sa_mask); | |
58aecb61 | 4599 | action.sa_flags = SA_RESTART; |
d6b0e80f AC |
4600 | sigaction (cancel, &action, NULL); |
4601 | ||
4602 | /* We block the "cancel" signal throughout this code ... */ | |
4603 | sigaddset (&blocked_mask, cancel); | |
4604 | sigprocmask (SIG_BLOCK, &blocked_mask, NULL); | |
4605 | ||
4606 | /* ... except during a sigsuspend. */ | |
4607 | sigdelset (&suspend_mask, cancel); | |
4608 | } |