]>
Commit | Line | Data |
---|---|---|
32178cab | 1 | /* Cache and manage the values of registers for GDB, the GNU debugger. |
3fadccb3 AC |
2 | |
3 | Copyright 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, | |
4 | 2001, 2002 Free Software Foundation, Inc. | |
32178cab MS |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 2 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 59 Temple Place - Suite 330, | |
21 | Boston, MA 02111-1307, USA. */ | |
22 | ||
23 | #include "defs.h" | |
32178cab MS |
24 | #include "inferior.h" |
25 | #include "target.h" | |
26 | #include "gdbarch.h" | |
705152c5 | 27 | #include "gdbcmd.h" |
4e052eda | 28 | #include "regcache.h" |
b59ff9d5 | 29 | #include "reggroups.h" |
61a0eb5b | 30 | #include "gdb_assert.h" |
b66d6d2e | 31 | #include "gdb_string.h" |
af030b9a | 32 | #include "gdbcmd.h" /* For maintenanceprintlist. */ |
32178cab MS |
33 | |
34 | /* | |
35 | * DATA STRUCTURE | |
36 | * | |
37 | * Here is the actual register cache. | |
38 | */ | |
39 | ||
3fadccb3 AC |
40 | /* Per-architecture object describing the layout of a register cache. |
41 | Computed once when the architecture is created */ | |
42 | ||
43 | struct gdbarch_data *regcache_descr_handle; | |
44 | ||
45 | struct regcache_descr | |
46 | { | |
47 | /* The architecture this descriptor belongs to. */ | |
48 | struct gdbarch *gdbarch; | |
49 | ||
50 | /* Is this a ``legacy'' register cache? Such caches reserve space | |
51 | for raw and pseudo registers and allow access to both. */ | |
52 | int legacy_p; | |
53 | ||
54 | /* The raw register cache. This should contain just [0 | |
55 | .. NUM_RAW_REGISTERS). However, for older targets, it contains | |
56 | space for the full [0 .. NUM_RAW_REGISTERS + | |
57 | NUM_PSEUDO_REGISTERS). */ | |
58 | int nr_raw_registers; | |
59 | long sizeof_raw_registers; | |
60 | long sizeof_raw_register_valid_p; | |
61 | ||
d138e37a AC |
62 | /* The cooked register space. Each cooked register in the range |
63 | [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw | |
64 | register. The remaining [NR_RAW_REGISTERS | |
65 | .. NR_COOKED_REGISTERS) (a.k.a. pseudo regiters) are mapped onto | |
66 | both raw registers and memory by the architecture methods | |
67 | gdbarch_register_read and gdbarch_register_write. */ | |
68 | int nr_cooked_registers; | |
067df2e5 AC |
69 | long sizeof_cooked_registers; |
70 | long sizeof_cooked_register_valid_p; | |
d138e37a AC |
71 | |
72 | /* Offset and size (in 8 bit bytes), of reach register in the | |
73 | register cache. All registers (including those in the range | |
74 | [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset. | |
75 | Assigning all registers an offset makes it possible to keep | |
76 | legacy code, such as that found in read_register_bytes() and | |
77 | write_register_bytes() working. */ | |
3fadccb3 | 78 | long *register_offset; |
3fadccb3 | 79 | long *sizeof_register; |
3fadccb3 | 80 | |
d138e37a AC |
81 | /* Useful constant. Largest of all the registers. */ |
82 | long max_register_size; | |
bb425013 AC |
83 | |
84 | /* Cached table containing the type of each register. */ | |
85 | struct type **register_type; | |
3fadccb3 AC |
86 | }; |
87 | ||
bb425013 AC |
88 | void |
89 | init_legacy_regcache_descr (struct gdbarch *gdbarch, | |
90 | struct regcache_descr *descr) | |
3fadccb3 AC |
91 | { |
92 | int i; | |
3fadccb3 AC |
93 | /* FIXME: cagney/2002-05-11: gdbarch_data() should take that |
94 | ``gdbarch'' as a parameter. */ | |
95 | gdb_assert (gdbarch != NULL); | |
96 | ||
3fadccb3 | 97 | /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers |
067df2e5 AC |
98 | in the register cache. Unfortunatly some architectures still |
99 | rely on this and the pseudo_register_write() method. */ | |
d138e37a | 100 | descr->nr_raw_registers = descr->nr_cooked_registers; |
067df2e5 AC |
101 | descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p; |
102 | ||
103 | /* Compute the offset of each register. Legacy architectures define | |
104 | REGISTER_BYTE() so use that. */ | |
105 | /* FIXME: cagney/2002-11-07: Instead of using REGISTER_BYTE() this | |
106 | code should, as is done in init_regcache_descr(), compute the | |
107 | offets at runtime. This currently isn't possible as some ISAs | |
108 | define overlapping register regions - see the mess in | |
109 | read_register_bytes() and write_register_bytes() registers. */ | |
d138e37a AC |
110 | descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long); |
111 | descr->register_offset = XCALLOC (descr->nr_cooked_registers, long); | |
3fadccb3 | 112 | descr->max_register_size = 0; |
d138e37a | 113 | for (i = 0; i < descr->nr_cooked_registers; i++) |
3fadccb3 | 114 | { |
067df2e5 AC |
115 | /* FIXME: cagney/2001-12-04: This code shouldn't need to use |
116 | REGISTER_BYTE(). Unfortunatly, legacy code likes to lay the | |
117 | buffer out so that certain registers just happen to overlap. | |
118 | Ulgh! New targets use gdbarch's register read/write and | |
119 | entirely avoid this uglyness. */ | |
3fadccb3 AC |
120 | descr->register_offset[i] = REGISTER_BYTE (i); |
121 | descr->sizeof_register[i] = REGISTER_RAW_SIZE (i); | |
122 | if (descr->max_register_size < REGISTER_RAW_SIZE (i)) | |
123 | descr->max_register_size = REGISTER_RAW_SIZE (i); | |
0ed04cce AC |
124 | if (descr->max_register_size < REGISTER_VIRTUAL_SIZE (i)) |
125 | descr->max_register_size = REGISTER_VIRTUAL_SIZE (i); | |
3fadccb3 AC |
126 | } |
127 | ||
067df2e5 AC |
128 | /* Compute the real size of the register buffer. Start out by |
129 | trusting REGISTER_BYTES, but then adjust it upwards should that | |
130 | be found to not be sufficient. */ | |
131 | /* FIXME: cagney/2002-11-05: Instead of using REGISTER_BYTES, this | |
132 | code should, as is done in init_regcache_descr(), compute the | |
133 | total number of register bytes using the accumulated offsets. */ | |
134 | descr->sizeof_cooked_registers = REGISTER_BYTES; /* OK use. */ | |
d138e37a | 135 | for (i = 0; i < descr->nr_cooked_registers; i++) |
3fadccb3 AC |
136 | { |
137 | long regend; | |
138 | /* Keep extending the buffer so that there is always enough | |
139 | space for all registers. The comparison is necessary since | |
140 | legacy code is free to put registers in random places in the | |
141 | buffer separated by holes. Once REGISTER_BYTE() is killed | |
142 | this can be greatly simplified. */ | |
3fadccb3 | 143 | regend = descr->register_offset[i] + descr->sizeof_register[i]; |
067df2e5 AC |
144 | if (descr->sizeof_cooked_registers < regend) |
145 | descr->sizeof_cooked_registers = regend; | |
3fadccb3 | 146 | } |
067df2e5 AC |
147 | /* FIXME: cagney/2002-05-11: Shouldn't be including pseudo-registers |
148 | in the register cache. Unfortunatly some architectures still | |
149 | rely on this and the pseudo_register_write() method. */ | |
150 | descr->sizeof_raw_registers = descr->sizeof_cooked_registers; | |
3fadccb3 AC |
151 | } |
152 | ||
153 | static void * | |
154 | init_regcache_descr (struct gdbarch *gdbarch) | |
155 | { | |
156 | int i; | |
157 | struct regcache_descr *descr; | |
158 | gdb_assert (gdbarch != NULL); | |
159 | ||
bb425013 AC |
160 | /* Create an initial, zero filled, table. */ |
161 | descr = XCALLOC (1, struct regcache_descr); | |
3fadccb3 | 162 | descr->gdbarch = gdbarch; |
3fadccb3 | 163 | |
d138e37a AC |
164 | /* Total size of the register space. The raw registers are mapped |
165 | directly onto the raw register cache while the pseudo's are | |
3fadccb3 | 166 | either mapped onto raw-registers or memory. */ |
d138e37a | 167 | descr->nr_cooked_registers = NUM_REGS + NUM_PSEUDO_REGS; |
067df2e5 | 168 | descr->sizeof_cooked_register_valid_p = NUM_REGS + NUM_PSEUDO_REGS; |
3fadccb3 | 169 | |
bb425013 AC |
170 | /* Fill in a table of register types. */ |
171 | descr->register_type = XCALLOC (descr->nr_cooked_registers, | |
172 | struct type *); | |
173 | for (i = 0; i < descr->nr_cooked_registers; i++) | |
174 | { | |
175 | descr->register_type[i] = REGISTER_VIRTUAL_TYPE (i); | |
176 | } | |
177 | ||
178 | /* If an old style architecture, fill in the remainder of the | |
179 | register cache descriptor using the register macros. */ | |
180 | if (!gdbarch_pseudo_register_read_p (gdbarch) | |
181 | && !gdbarch_pseudo_register_write_p (gdbarch)) | |
182 | { | |
183 | descr->legacy_p = 1; | |
184 | init_legacy_regcache_descr (gdbarch, descr); | |
185 | return descr; | |
186 | } | |
187 | ||
3fadccb3 AC |
188 | /* Construct a strictly RAW register cache. Don't allow pseudo's |
189 | into the register cache. */ | |
190 | descr->nr_raw_registers = NUM_REGS; | |
53826de9 AC |
191 | |
192 | /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p | |
193 | array. This pretects GDB from erant code that accesses elements | |
194 | of the global register_valid_p[] array in the range [NUM_REGS | |
195 | .. NUM_REGS + NUM_PSEUDO_REGS). */ | |
067df2e5 | 196 | descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p; |
3fadccb3 | 197 | |
067df2e5 | 198 | /* Lay out the register cache. |
3fadccb3 | 199 | |
bb425013 AC |
200 | NOTE: cagney/2002-05-22: Only register_type() is used when |
201 | constructing the register cache. It is assumed that the | |
202 | register's raw size, virtual size and type length are all the | |
203 | same. */ | |
3fadccb3 AC |
204 | |
205 | { | |
206 | long offset = 0; | |
d138e37a AC |
207 | descr->sizeof_register = XCALLOC (descr->nr_cooked_registers, long); |
208 | descr->register_offset = XCALLOC (descr->nr_cooked_registers, long); | |
3fadccb3 | 209 | descr->max_register_size = 0; |
d138e37a | 210 | for (i = 0; i < descr->nr_cooked_registers; i++) |
3fadccb3 | 211 | { |
bb425013 | 212 | descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]); |
3fadccb3 AC |
213 | descr->register_offset[i] = offset; |
214 | offset += descr->sizeof_register[i]; | |
215 | if (descr->max_register_size < descr->sizeof_register[i]) | |
216 | descr->max_register_size = descr->sizeof_register[i]; | |
217 | } | |
218 | /* Set the real size of the register cache buffer. */ | |
067df2e5 | 219 | descr->sizeof_cooked_registers = offset; |
3fadccb3 AC |
220 | } |
221 | ||
067df2e5 AC |
222 | /* FIXME: cagney/2002-05-22: Should only need to allocate space for |
223 | the raw registers. Unfortunatly some code still accesses the | |
224 | register array directly using the global registers[]. Until that | |
225 | code has been purged, play safe and over allocating the register | |
226 | buffer. Ulgh! */ | |
227 | descr->sizeof_raw_registers = descr->sizeof_cooked_registers; | |
228 | ||
3fadccb3 AC |
229 | #if 0 |
230 | /* Sanity check. Confirm that the assumptions about gdbarch are | |
231 | true. The REGCACHE_DESCR_HANDLE is set before doing the checks | |
232 | so that targets using the generic methods supplied by regcache | |
233 | don't go into infinite recursion trying to, again, create the | |
234 | regcache. */ | |
235 | set_gdbarch_data (gdbarch, regcache_descr_handle, descr); | |
d138e37a | 236 | for (i = 0; i < descr->nr_cooked_registers; i++) |
3fadccb3 AC |
237 | { |
238 | gdb_assert (descr->sizeof_register[i] == REGISTER_RAW_SIZE (i)); | |
239 | gdb_assert (descr->sizeof_register[i] == REGISTER_VIRTUAL_SIZE (i)); | |
240 | gdb_assert (descr->register_offset[i] == REGISTER_BYTE (i)); | |
241 | } | |
242 | /* gdb_assert (descr->sizeof_raw_registers == REGISTER_BYTES (i)); */ | |
243 | #endif | |
244 | ||
245 | return descr; | |
246 | } | |
247 | ||
248 | static struct regcache_descr * | |
249 | regcache_descr (struct gdbarch *gdbarch) | |
250 | { | |
251 | return gdbarch_data (gdbarch, regcache_descr_handle); | |
252 | } | |
253 | ||
254 | static void | |
255 | xfree_regcache_descr (struct gdbarch *gdbarch, void *ptr) | |
256 | { | |
257 | struct regcache_descr *descr = ptr; | |
258 | if (descr == NULL) | |
259 | return; | |
260 | xfree (descr->register_offset); | |
261 | xfree (descr->sizeof_register); | |
262 | descr->register_offset = NULL; | |
263 | descr->sizeof_register = NULL; | |
264 | xfree (descr); | |
265 | } | |
266 | ||
bb425013 AC |
267 | /* Utility functions returning useful register attributes stored in |
268 | the regcache descr. */ | |
269 | ||
270 | struct type * | |
271 | register_type (struct gdbarch *gdbarch, int regnum) | |
272 | { | |
273 | struct regcache_descr *descr = regcache_descr (gdbarch); | |
274 | gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); | |
275 | return descr->register_type[regnum]; | |
276 | } | |
277 | ||
0ed04cce AC |
278 | /* Utility functions returning useful register attributes stored in |
279 | the regcache descr. */ | |
280 | ||
281 | int | |
282 | max_register_size (struct gdbarch *gdbarch) | |
283 | { | |
284 | struct regcache_descr *descr = regcache_descr (gdbarch); | |
285 | return descr->max_register_size; | |
286 | } | |
287 | ||
3fadccb3 AC |
288 | /* The register cache for storing raw register values. */ |
289 | ||
290 | struct regcache | |
291 | { | |
292 | struct regcache_descr *descr; | |
51b1fe4e AC |
293 | /* The register buffers. A read-only register cache can hold the |
294 | full [0 .. NUM_REGS + NUM_PSEUDO_REGS) while a read/write | |
295 | register cache can only hold [0 .. NUM_REGS). */ | |
296 | char *registers; | |
297 | char *register_valid_p; | |
2d28509a AC |
298 | /* Is this a read-only cache? A read-only cache is used for saving |
299 | the target's register state (e.g, across an inferior function | |
300 | call or just before forcing a function return). A read-only | |
301 | cache can only be updated via the methods regcache_dup() and | |
302 | regcache_cpy(). The actual contents are determined by the | |
303 | reggroup_save and reggroup_restore methods. */ | |
304 | int readonly_p; | |
3fadccb3 AC |
305 | }; |
306 | ||
307 | struct regcache * | |
308 | regcache_xmalloc (struct gdbarch *gdbarch) | |
309 | { | |
310 | struct regcache_descr *descr; | |
311 | struct regcache *regcache; | |
312 | gdb_assert (gdbarch != NULL); | |
313 | descr = regcache_descr (gdbarch); | |
314 | regcache = XMALLOC (struct regcache); | |
315 | regcache->descr = descr; | |
51b1fe4e | 316 | regcache->registers |
3fadccb3 | 317 | = XCALLOC (descr->sizeof_raw_registers, char); |
51b1fe4e | 318 | regcache->register_valid_p |
3fadccb3 | 319 | = XCALLOC (descr->sizeof_raw_register_valid_p, char); |
2d28509a | 320 | regcache->readonly_p = 1; |
3fadccb3 AC |
321 | return regcache; |
322 | } | |
323 | ||
324 | void | |
325 | regcache_xfree (struct regcache *regcache) | |
326 | { | |
327 | if (regcache == NULL) | |
328 | return; | |
51b1fe4e AC |
329 | xfree (regcache->registers); |
330 | xfree (regcache->register_valid_p); | |
3fadccb3 AC |
331 | xfree (regcache); |
332 | } | |
333 | ||
36160dc4 AC |
334 | void |
335 | do_regcache_xfree (void *data) | |
336 | { | |
337 | regcache_xfree (data); | |
338 | } | |
339 | ||
340 | struct cleanup * | |
341 | make_cleanup_regcache_xfree (struct regcache *regcache) | |
342 | { | |
343 | return make_cleanup (do_regcache_xfree, regcache); | |
344 | } | |
345 | ||
51b1fe4e AC |
346 | /* Return a pointer to register REGNUM's buffer cache. */ |
347 | ||
348 | static char * | |
349 | register_buffer (struct regcache *regcache, int regnum) | |
350 | { | |
351 | return regcache->registers + regcache->descr->register_offset[regnum]; | |
352 | } | |
353 | ||
2d28509a AC |
354 | void |
355 | regcache_save (struct regcache *dst, struct regcache *src) | |
356 | { | |
357 | struct gdbarch *gdbarch = dst->descr->gdbarch; | |
358 | int regnum; | |
359 | /* The SRC and DST register caches had better belong to the same | |
360 | architecture. */ | |
361 | gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); | |
362 | /* The DST should be `read-only', if it wasn't then the save would | |
363 | end up trying to write the register values out through to the | |
364 | target. */ | |
365 | gdb_assert (!src->readonly_p); | |
366 | gdb_assert (dst->readonly_p); | |
367 | /* Clear the dest. */ | |
368 | memset (dst->registers, 0, dst->descr->sizeof_cooked_registers); | |
369 | memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p); | |
370 | /* Copy over any registers (identified by their membership in the | |
371 | save_reggroup) and mark them as valid. The full [0 | |
372 | .. NUM_REGS+NUM_PSEUDO_REGS) range is checked since some | |
373 | architectures need to save/restore `cooked' registers that live | |
374 | in memory. */ | |
375 | for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++) | |
376 | { | |
377 | if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup)) | |
378 | { | |
379 | regcache_cooked_read (src, regnum, register_buffer (dst, regnum)); | |
380 | dst->register_valid_p[regnum] = 1; | |
381 | } | |
382 | } | |
383 | } | |
384 | ||
385 | void | |
386 | regcache_restore (struct regcache *dst, struct regcache *src) | |
387 | { | |
388 | struct gdbarch *gdbarch = dst->descr->gdbarch; | |
389 | int regnum; | |
390 | gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); | |
391 | gdb_assert (!dst->readonly_p); | |
392 | gdb_assert (src->readonly_p); | |
393 | /* Copy over any registers, being careful to only restore those that | |
394 | were both saved and need to be restored. The full [0 | |
395 | .. NUM_REGS+NUM_PSEUDO_REGS) range is checked since some | |
396 | architectures need to save/restore `cooked' registers that live | |
397 | in memory. */ | |
398 | for (regnum = 0; regnum < src->descr->nr_cooked_registers; regnum++) | |
399 | { | |
400 | if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup) | |
401 | && src->register_valid_p[regnum]) | |
402 | { | |
403 | regcache_cooked_write (dst, regnum, register_buffer (src, regnum)); | |
404 | } | |
405 | } | |
406 | } | |
407 | ||
3fadccb3 AC |
408 | void |
409 | regcache_cpy (struct regcache *dst, struct regcache *src) | |
410 | { | |
411 | int i; | |
412 | char *buf; | |
413 | gdb_assert (src != NULL && dst != NULL); | |
414 | gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); | |
415 | gdb_assert (src != dst); | |
2d28509a AC |
416 | gdb_assert (src->readonly_p || dst->readonly_p); |
417 | if (!src->readonly_p) | |
418 | regcache_save (dst, src); | |
419 | else if (!dst->readonly_p) | |
420 | regcache_restore (dst, src); | |
421 | else | |
422 | regcache_cpy_no_passthrough (dst, src); | |
3fadccb3 AC |
423 | } |
424 | ||
425 | void | |
426 | regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src) | |
427 | { | |
428 | int i; | |
429 | gdb_assert (src != NULL && dst != NULL); | |
430 | gdb_assert (src->descr->gdbarch == dst->descr->gdbarch); | |
431 | /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough | |
432 | move of data into the current_regcache(). Doing this would be | |
433 | silly - it would mean that valid_p would be completly invalid. */ | |
434 | gdb_assert (dst != current_regcache); | |
51b1fe4e AC |
435 | memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers); |
436 | memcpy (dst->register_valid_p, src->register_valid_p, | |
3fadccb3 AC |
437 | dst->descr->sizeof_raw_register_valid_p); |
438 | } | |
439 | ||
440 | struct regcache * | |
441 | regcache_dup (struct regcache *src) | |
442 | { | |
443 | struct regcache *newbuf; | |
444 | gdb_assert (current_regcache != NULL); | |
445 | newbuf = regcache_xmalloc (src->descr->gdbarch); | |
446 | regcache_cpy (newbuf, src); | |
447 | return newbuf; | |
448 | } | |
449 | ||
450 | struct regcache * | |
451 | regcache_dup_no_passthrough (struct regcache *src) | |
452 | { | |
453 | struct regcache *newbuf; | |
454 | gdb_assert (current_regcache != NULL); | |
455 | newbuf = regcache_xmalloc (src->descr->gdbarch); | |
456 | regcache_cpy_no_passthrough (newbuf, src); | |
457 | return newbuf; | |
458 | } | |
459 | ||
460 | int | |
461 | regcache_valid_p (struct regcache *regcache, int regnum) | |
462 | { | |
463 | gdb_assert (regcache != NULL); | |
464 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
51b1fe4e | 465 | return regcache->register_valid_p[regnum]; |
3fadccb3 AC |
466 | } |
467 | ||
3fadccb3 AC |
468 | char * |
469 | deprecated_grub_regcache_for_registers (struct regcache *regcache) | |
470 | { | |
51b1fe4e | 471 | return regcache->registers; |
3fadccb3 AC |
472 | } |
473 | ||
474 | char * | |
475 | deprecated_grub_regcache_for_register_valid (struct regcache *regcache) | |
476 | { | |
51b1fe4e | 477 | return regcache->register_valid_p; |
3fadccb3 AC |
478 | } |
479 | ||
480 | /* Global structure containing the current regcache. */ | |
481 | /* FIXME: cagney/2002-05-11: The two global arrays registers[] and | |
8262ee23 | 482 | deprecated_register_valid[] currently point into this structure. */ |
3fadccb3 AC |
483 | struct regcache *current_regcache; |
484 | ||
5ebd2499 | 485 | /* NOTE: this is a write-through cache. There is no "dirty" bit for |
32178cab MS |
486 | recording if the register values have been changed (eg. by the |
487 | user). Therefore all registers must be written back to the | |
488 | target when appropriate. */ | |
489 | ||
490 | /* REGISTERS contains the cached register values (in target byte order). */ | |
491 | ||
524d7c18 | 492 | char *deprecated_registers; |
32178cab | 493 | |
8262ee23 | 494 | /* DEPRECATED_REGISTER_VALID is 0 if the register needs to be fetched, |
32178cab MS |
495 | 1 if it has been fetched, and |
496 | -1 if the register value was not available. | |
c97dcfc7 AC |
497 | |
498 | "Not available" indicates that the target is not not able to supply | |
499 | the register at this state. The register may become available at a | |
500 | later time (after the next resume). This often occures when GDB is | |
501 | manipulating a target that contains only a snapshot of the entire | |
502 | system being debugged - some of the registers in such a system may | |
503 | not have been saved. */ | |
32178cab | 504 | |
8262ee23 | 505 | signed char *deprecated_register_valid; |
32178cab | 506 | |
39f77062 | 507 | /* The thread/process associated with the current set of registers. */ |
32178cab | 508 | |
39f77062 | 509 | static ptid_t registers_ptid; |
32178cab MS |
510 | |
511 | /* | |
512 | * FUNCTIONS: | |
513 | */ | |
514 | ||
515 | /* REGISTER_CACHED() | |
516 | ||
517 | Returns 0 if the value is not in the cache (needs fetch). | |
518 | >0 if the value is in the cache. | |
519 | <0 if the value is permanently unavailable (don't ask again). */ | |
520 | ||
521 | int | |
522 | register_cached (int regnum) | |
523 | { | |
8262ee23 | 524 | return deprecated_register_valid[regnum]; |
32178cab MS |
525 | } |
526 | ||
7302a204 ND |
527 | /* Record that REGNUM's value is cached if STATE is >0, uncached but |
528 | fetchable if STATE is 0, and uncached and unfetchable if STATE is <0. */ | |
529 | ||
530 | void | |
531 | set_register_cached (int regnum, int state) | |
532 | { | |
53826de9 AC |
533 | gdb_assert (regnum >= 0); |
534 | gdb_assert (regnum < current_regcache->descr->nr_raw_registers); | |
51b1fe4e | 535 | current_regcache->register_valid_p[regnum] = state; |
7302a204 ND |
536 | } |
537 | ||
538 | /* Return whether register REGNUM is a real register. */ | |
539 | ||
540 | static int | |
541 | real_register (int regnum) | |
542 | { | |
543 | return regnum >= 0 && regnum < NUM_REGS; | |
544 | } | |
545 | ||
32178cab MS |
546 | /* Low level examining and depositing of registers. |
547 | ||
548 | The caller is responsible for making sure that the inferior is | |
549 | stopped before calling the fetching routines, or it will get | |
550 | garbage. (a change from GDB version 3, in which the caller got the | |
551 | value from the last stop). */ | |
552 | ||
553 | /* REGISTERS_CHANGED () | |
554 | ||
555 | Indicate that registers may have changed, so invalidate the cache. */ | |
556 | ||
557 | void | |
558 | registers_changed (void) | |
559 | { | |
560 | int i; | |
32178cab | 561 | |
39f77062 | 562 | registers_ptid = pid_to_ptid (-1); |
32178cab MS |
563 | |
564 | /* Force cleanup of any alloca areas if using C alloca instead of | |
565 | a builtin alloca. This particular call is used to clean up | |
566 | areas allocated by low level target code which may build up | |
567 | during lengthy interactions between gdb and the target before | |
568 | gdb gives control to the user (ie watchpoints). */ | |
569 | alloca (0); | |
570 | ||
53826de9 | 571 | for (i = 0; i < current_regcache->descr->nr_raw_registers; i++) |
7302a204 | 572 | set_register_cached (i, 0); |
32178cab MS |
573 | |
574 | if (registers_changed_hook) | |
575 | registers_changed_hook (); | |
576 | } | |
577 | ||
2b9e5f3f | 578 | /* DEPRECATED_REGISTERS_FETCHED () |
32178cab MS |
579 | |
580 | Indicate that all registers have been fetched, so mark them all valid. */ | |
581 | ||
31e9866e AC |
582 | /* NOTE: cagney/2001-12-04: This function does not set valid on the |
583 | pseudo-register range since pseudo registers are always supplied | |
584 | using supply_register(). */ | |
585 | /* FIXME: cagney/2001-12-04: This function is DEPRECATED. The target | |
586 | code was blatting the registers[] array and then calling this. | |
587 | Since targets should only be using supply_register() the need for | |
588 | this function/hack is eliminated. */ | |
32178cab MS |
589 | |
590 | void | |
2b9e5f3f | 591 | deprecated_registers_fetched (void) |
32178cab MS |
592 | { |
593 | int i; | |
32178cab | 594 | |
a728f042 | 595 | for (i = 0; i < NUM_REGS; i++) |
7302a204 | 596 | set_register_cached (i, 1); |
fcdc5976 | 597 | /* Do not assume that the pseudo-regs have also been fetched. |
31e9866e | 598 | Fetching all real regs NEVER accounts for pseudo-regs. */ |
32178cab MS |
599 | } |
600 | ||
73937e03 AC |
601 | /* deprecated_read_register_bytes and deprecated_write_register_bytes |
602 | are generally a *BAD* idea. They are inefficient because they need | |
603 | to check for partial updates, which can only be done by scanning | |
604 | through all of the registers and seeing if the bytes that are being | |
605 | read/written fall inside of an invalid register. [The main reason | |
606 | this is necessary is that register sizes can vary, so a simple | |
607 | index won't suffice.] It is far better to call read_register_gen | |
608 | and write_register_gen if you want to get at the raw register | |
609 | contents, as it only takes a regnum as an argument, and therefore | |
610 | can't do a partial register update. | |
32178cab MS |
611 | |
612 | Prior to the recent fixes to check for partial updates, both read | |
73937e03 AC |
613 | and deprecated_write_register_bytes always checked to see if any |
614 | registers were stale, and then called target_fetch_registers (-1) | |
615 | to update the whole set. This caused really slowed things down for | |
616 | remote targets. */ | |
32178cab MS |
617 | |
618 | /* Copy INLEN bytes of consecutive data from registers | |
619 | starting with the INREGBYTE'th byte of register data | |
620 | into memory at MYADDR. */ | |
621 | ||
622 | void | |
73937e03 | 623 | deprecated_read_register_bytes (int in_start, char *in_buf, int in_len) |
32178cab | 624 | { |
61a0eb5b | 625 | int in_end = in_start + in_len; |
5ebd2499 | 626 | int regnum; |
61a0eb5b | 627 | char *reg_buf = alloca (MAX_REGISTER_RAW_SIZE); |
32178cab MS |
628 | |
629 | /* See if we are trying to read bytes from out-of-date registers. If so, | |
630 | update just those registers. */ | |
631 | ||
5ebd2499 | 632 | for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
32178cab | 633 | { |
61a0eb5b AC |
634 | int reg_start; |
635 | int reg_end; | |
636 | int reg_len; | |
637 | int start; | |
638 | int end; | |
639 | int byte; | |
32178cab | 640 | |
61a0eb5b AC |
641 | reg_start = REGISTER_BYTE (regnum); |
642 | reg_len = REGISTER_RAW_SIZE (regnum); | |
643 | reg_end = reg_start + reg_len; | |
32178cab | 644 | |
61a0eb5b | 645 | if (reg_end <= in_start || in_end <= reg_start) |
5ebd2499 | 646 | /* The range the user wants to read doesn't overlap with regnum. */ |
32178cab MS |
647 | continue; |
648 | ||
275f450c AC |
649 | if (REGISTER_NAME (regnum) != NULL && *REGISTER_NAME (regnum) != '\0') |
650 | /* Force the cache to fetch the entire register. */ | |
4caf0990 | 651 | deprecated_read_register_gen (regnum, reg_buf); |
275f450c AC |
652 | else |
653 | /* Legacy note: even though this register is ``invalid'' we | |
654 | still need to return something. It would appear that some | |
655 | code relies on apparent gaps in the register array also | |
656 | being returned. */ | |
657 | /* FIXME: cagney/2001-08-18: This is just silly. It defeats | |
658 | the entire register read/write flow of control. Must | |
659 | resist temptation to return 0xdeadbeef. */ | |
524d7c18 | 660 | memcpy (reg_buf, &deprecated_registers[reg_start], reg_len); |
32178cab | 661 | |
61a0eb5b AC |
662 | /* Legacy note: This function, for some reason, allows a NULL |
663 | input buffer. If the buffer is NULL, the registers are still | |
664 | fetched, just the final transfer is skipped. */ | |
665 | if (in_buf == NULL) | |
666 | continue; | |
667 | ||
668 | /* start = max (reg_start, in_start) */ | |
669 | if (reg_start > in_start) | |
670 | start = reg_start; | |
671 | else | |
672 | start = in_start; | |
673 | ||
674 | /* end = min (reg_end, in_end) */ | |
675 | if (reg_end < in_end) | |
676 | end = reg_end; | |
677 | else | |
678 | end = in_end; | |
679 | ||
680 | /* Transfer just the bytes common to both IN_BUF and REG_BUF */ | |
681 | for (byte = start; byte < end; byte++) | |
165cd47f | 682 | { |
61a0eb5b | 683 | in_buf[byte - in_start] = reg_buf[byte - reg_start]; |
165cd47f | 684 | } |
32178cab | 685 | } |
32178cab MS |
686 | } |
687 | ||
5ebd2499 ND |
688 | /* Read register REGNUM into memory at MYADDR, which must be large |
689 | enough for REGISTER_RAW_BYTES (REGNUM). Target byte-order. If the | |
32178cab MS |
690 | register is known to be the size of a CORE_ADDR or smaller, |
691 | read_register can be used instead. */ | |
692 | ||
61a0eb5b AC |
693 | static void |
694 | legacy_read_register_gen (int regnum, char *myaddr) | |
32178cab | 695 | { |
61a0eb5b | 696 | gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS)); |
39f77062 | 697 | if (! ptid_equal (registers_ptid, inferior_ptid)) |
32178cab MS |
698 | { |
699 | registers_changed (); | |
39f77062 | 700 | registers_ptid = inferior_ptid; |
32178cab MS |
701 | } |
702 | ||
7302a204 | 703 | if (!register_cached (regnum)) |
5c27f28a | 704 | target_fetch_registers (regnum); |
7302a204 | 705 | |
3fadccb3 | 706 | memcpy (myaddr, register_buffer (current_regcache, regnum), |
5ebd2499 | 707 | REGISTER_RAW_SIZE (regnum)); |
32178cab MS |
708 | } |
709 | ||
61a0eb5b | 710 | void |
1aaa5f99 | 711 | regcache_raw_read (struct regcache *regcache, int regnum, void *buf) |
61a0eb5b | 712 | { |
3fadccb3 AC |
713 | gdb_assert (regcache != NULL && buf != NULL); |
714 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
715 | if (regcache->descr->legacy_p | |
2d28509a | 716 | && !regcache->readonly_p) |
3fadccb3 AC |
717 | { |
718 | gdb_assert (regcache == current_regcache); | |
719 | /* For moment, just use underlying legacy code. Ulgh!!! This | |
720 | silently and very indirectly updates the regcache's regcache | |
8262ee23 | 721 | via the global deprecated_register_valid[]. */ |
3fadccb3 AC |
722 | legacy_read_register_gen (regnum, buf); |
723 | return; | |
724 | } | |
725 | /* Make certain that the register cache is up-to-date with respect | |
726 | to the current thread. This switching shouldn't be necessary | |
727 | only there is still only one target side register cache. Sigh! | |
728 | On the bright side, at least there is a regcache object. */ | |
2d28509a | 729 | if (!regcache->readonly_p) |
3fadccb3 AC |
730 | { |
731 | gdb_assert (regcache == current_regcache); | |
732 | if (! ptid_equal (registers_ptid, inferior_ptid)) | |
733 | { | |
734 | registers_changed (); | |
735 | registers_ptid = inferior_ptid; | |
736 | } | |
737 | if (!register_cached (regnum)) | |
5c27f28a | 738 | target_fetch_registers (regnum); |
3fadccb3 AC |
739 | } |
740 | /* Copy the value directly into the register cache. */ | |
51b1fe4e | 741 | memcpy (buf, register_buffer (regcache, regnum), |
3fadccb3 | 742 | regcache->descr->sizeof_register[regnum]); |
61a0eb5b AC |
743 | } |
744 | ||
28fc6740 AC |
745 | void |
746 | regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val) | |
747 | { | |
748 | char *buf; | |
749 | gdb_assert (regcache != NULL); | |
750 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
751 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
752 | regcache_raw_read (regcache, regnum, buf); | |
753 | (*val) = extract_signed_integer (buf, | |
754 | regcache->descr->sizeof_register[regnum]); | |
755 | } | |
756 | ||
757 | void | |
758 | regcache_raw_read_unsigned (struct regcache *regcache, int regnum, | |
759 | ULONGEST *val) | |
760 | { | |
761 | char *buf; | |
762 | gdb_assert (regcache != NULL); | |
763 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
764 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
765 | regcache_raw_read (regcache, regnum, buf); | |
766 | (*val) = extract_unsigned_integer (buf, | |
767 | regcache->descr->sizeof_register[regnum]); | |
768 | } | |
769 | ||
c00dcbe9 MK |
770 | void |
771 | regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val) | |
772 | { | |
773 | void *buf; | |
774 | gdb_assert (regcache != NULL); | |
775 | gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); | |
776 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
777 | store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val); | |
778 | regcache_raw_write (regcache, regnum, buf); | |
779 | } | |
780 | ||
781 | void | |
782 | regcache_raw_write_unsigned (struct regcache *regcache, int regnum, | |
783 | ULONGEST val) | |
784 | { | |
785 | void *buf; | |
786 | gdb_assert (regcache != NULL); | |
787 | gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers); | |
788 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
789 | store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val); | |
790 | regcache_raw_write (regcache, regnum, buf); | |
791 | } | |
792 | ||
61a0eb5b | 793 | void |
4caf0990 | 794 | deprecated_read_register_gen (int regnum, char *buf) |
61a0eb5b | 795 | { |
3fadccb3 AC |
796 | gdb_assert (current_regcache != NULL); |
797 | gdb_assert (current_regcache->descr->gdbarch == current_gdbarch); | |
798 | if (current_regcache->descr->legacy_p) | |
61a0eb5b AC |
799 | { |
800 | legacy_read_register_gen (regnum, buf); | |
801 | return; | |
802 | } | |
68365089 AC |
803 | regcache_cooked_read (current_regcache, regnum, buf); |
804 | } | |
805 | ||
806 | void | |
29e1842b | 807 | regcache_cooked_read (struct regcache *regcache, int regnum, void *buf) |
68365089 | 808 | { |
d138e37a | 809 | gdb_assert (regnum >= 0); |
68365089 AC |
810 | gdb_assert (regnum < regcache->descr->nr_cooked_registers); |
811 | if (regnum < regcache->descr->nr_raw_registers) | |
812 | regcache_raw_read (regcache, regnum, buf); | |
2d28509a AC |
813 | else if (regcache->readonly_p |
814 | && regnum < regcache->descr->nr_cooked_registers | |
815 | && regcache->register_valid_p[regnum]) | |
816 | /* Read-only register cache, perhaphs the cooked value was cached? */ | |
817 | memcpy (buf, register_buffer (regcache, regnum), | |
818 | regcache->descr->sizeof_register[regnum]); | |
d138e37a | 819 | else |
68365089 AC |
820 | gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache, |
821 | regnum, buf); | |
61a0eb5b AC |
822 | } |
823 | ||
a378f419 AC |
824 | void |
825 | regcache_cooked_read_signed (struct regcache *regcache, int regnum, | |
826 | LONGEST *val) | |
827 | { | |
828 | char *buf; | |
829 | gdb_assert (regcache != NULL); | |
830 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
831 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
832 | regcache_cooked_read (regcache, regnum, buf); | |
833 | (*val) = extract_signed_integer (buf, | |
834 | regcache->descr->sizeof_register[regnum]); | |
835 | } | |
836 | ||
837 | void | |
838 | regcache_cooked_read_unsigned (struct regcache *regcache, int regnum, | |
839 | ULONGEST *val) | |
840 | { | |
841 | char *buf; | |
842 | gdb_assert (regcache != NULL); | |
843 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
844 | buf = alloca (regcache->descr->sizeof_register[regnum]); | |
845 | regcache_cooked_read (regcache, regnum, buf); | |
846 | (*val) = extract_unsigned_integer (buf, | |
847 | regcache->descr->sizeof_register[regnum]); | |
848 | } | |
849 | ||
5ebd2499 ND |
850 | /* Write register REGNUM at MYADDR to the target. MYADDR points at |
851 | REGISTER_RAW_BYTES(REGNUM), which must be in target byte-order. */ | |
32178cab | 852 | |
61a0eb5b | 853 | static void |
1aaa5f99 | 854 | legacy_write_register_gen (int regnum, const void *myaddr) |
32178cab MS |
855 | { |
856 | int size; | |
61a0eb5b | 857 | gdb_assert (regnum >= 0 && regnum < (NUM_REGS + NUM_PSEUDO_REGS)); |
32178cab MS |
858 | |
859 | /* On the sparc, writing %g0 is a no-op, so we don't even want to | |
860 | change the registers array if something writes to this register. */ | |
5ebd2499 | 861 | if (CANNOT_STORE_REGISTER (regnum)) |
32178cab MS |
862 | return; |
863 | ||
39f77062 | 864 | if (! ptid_equal (registers_ptid, inferior_ptid)) |
32178cab MS |
865 | { |
866 | registers_changed (); | |
39f77062 | 867 | registers_ptid = inferior_ptid; |
32178cab MS |
868 | } |
869 | ||
5ebd2499 | 870 | size = REGISTER_RAW_SIZE (regnum); |
32178cab | 871 | |
7302a204 | 872 | if (real_register (regnum)) |
1297a2f0 MS |
873 | { |
874 | /* If we have a valid copy of the register, and new value == old | |
875 | value, then don't bother doing the actual store. */ | |
876 | if (register_cached (regnum) | |
3fadccb3 AC |
877 | && (memcmp (register_buffer (current_regcache, regnum), myaddr, size) |
878 | == 0)) | |
1297a2f0 MS |
879 | return; |
880 | else | |
881 | target_prepare_to_store (); | |
882 | } | |
32178cab | 883 | |
3fadccb3 | 884 | memcpy (register_buffer (current_regcache, regnum), myaddr, size); |
32178cab | 885 | |
7302a204 | 886 | set_register_cached (regnum, 1); |
5c27f28a | 887 | target_store_registers (regnum); |
32178cab MS |
888 | } |
889 | ||
61a0eb5b | 890 | void |
1aaa5f99 | 891 | regcache_raw_write (struct regcache *regcache, int regnum, const void *buf) |
61a0eb5b | 892 | { |
3fadccb3 AC |
893 | gdb_assert (regcache != NULL && buf != NULL); |
894 | gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers); | |
2d28509a | 895 | gdb_assert (!regcache->readonly_p); |
3fadccb3 | 896 | |
2d28509a | 897 | if (regcache->descr->legacy_p) |
3fadccb3 AC |
898 | { |
899 | /* For moment, just use underlying legacy code. Ulgh!!! This | |
900 | silently and very indirectly updates the regcache's buffers | |
8262ee23 | 901 | via the globals deprecated_register_valid[] and registers[]. */ |
3fadccb3 AC |
902 | gdb_assert (regcache == current_regcache); |
903 | legacy_write_register_gen (regnum, buf); | |
904 | return; | |
905 | } | |
906 | ||
907 | /* On the sparc, writing %g0 is a no-op, so we don't even want to | |
908 | change the registers array if something writes to this register. */ | |
909 | if (CANNOT_STORE_REGISTER (regnum)) | |
910 | return; | |
911 | ||
3fadccb3 AC |
912 | /* Make certain that the correct cache is selected. */ |
913 | gdb_assert (regcache == current_regcache); | |
914 | if (! ptid_equal (registers_ptid, inferior_ptid)) | |
915 | { | |
916 | registers_changed (); | |
917 | registers_ptid = inferior_ptid; | |
918 | } | |
919 | ||
920 | /* If we have a valid copy of the register, and new value == old | |
921 | value, then don't bother doing the actual store. */ | |
922 | if (regcache_valid_p (regcache, regnum) | |
923 | && (memcmp (register_buffer (regcache, regnum), buf, | |
924 | regcache->descr->sizeof_register[regnum]) == 0)) | |
925 | return; | |
926 | ||
927 | target_prepare_to_store (); | |
928 | memcpy (register_buffer (regcache, regnum), buf, | |
929 | regcache->descr->sizeof_register[regnum]); | |
51b1fe4e | 930 | regcache->register_valid_p[regnum] = 1; |
5c27f28a | 931 | target_store_registers (regnum); |
61a0eb5b AC |
932 | } |
933 | ||
934 | void | |
4caf0990 | 935 | deprecated_write_register_gen (int regnum, char *buf) |
61a0eb5b | 936 | { |
3fadccb3 AC |
937 | gdb_assert (current_regcache != NULL); |
938 | gdb_assert (current_regcache->descr->gdbarch == current_gdbarch); | |
939 | if (current_regcache->descr->legacy_p) | |
61a0eb5b AC |
940 | { |
941 | legacy_write_register_gen (regnum, buf); | |
942 | return; | |
943 | } | |
68365089 AC |
944 | regcache_cooked_write (current_regcache, regnum, buf); |
945 | } | |
946 | ||
947 | void | |
29e1842b | 948 | regcache_cooked_write (struct regcache *regcache, int regnum, const void *buf) |
68365089 | 949 | { |
d138e37a | 950 | gdb_assert (regnum >= 0); |
68365089 AC |
951 | gdb_assert (regnum < regcache->descr->nr_cooked_registers); |
952 | if (regnum < regcache->descr->nr_raw_registers) | |
953 | regcache_raw_write (regcache, regnum, buf); | |
d138e37a | 954 | else |
68365089 | 955 | gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache, |
d8124050 | 956 | regnum, buf); |
61a0eb5b AC |
957 | } |
958 | ||
32178cab MS |
959 | /* Copy INLEN bytes of consecutive data from memory at MYADDR |
960 | into registers starting with the MYREGSTART'th byte of register data. */ | |
961 | ||
962 | void | |
73937e03 | 963 | deprecated_write_register_bytes (int myregstart, char *myaddr, int inlen) |
32178cab MS |
964 | { |
965 | int myregend = myregstart + inlen; | |
5ebd2499 | 966 | int regnum; |
32178cab MS |
967 | |
968 | target_prepare_to_store (); | |
969 | ||
970 | /* Scan through the registers updating any that are covered by the | |
971 | range myregstart<=>myregend using write_register_gen, which does | |
972 | nice things like handling threads, and avoiding updates when the | |
973 | new and old contents are the same. */ | |
974 | ||
5ebd2499 | 975 | for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++) |
32178cab MS |
976 | { |
977 | int regstart, regend; | |
978 | ||
5ebd2499 ND |
979 | regstart = REGISTER_BYTE (regnum); |
980 | regend = regstart + REGISTER_RAW_SIZE (regnum); | |
32178cab MS |
981 | |
982 | /* Is this register completely outside the range the user is writing? */ | |
983 | if (myregend <= regstart || regend <= myregstart) | |
984 | /* do nothing */ ; | |
985 | ||
986 | /* Is this register completely within the range the user is writing? */ | |
987 | else if (myregstart <= regstart && regend <= myregend) | |
4caf0990 | 988 | deprecated_write_register_gen (regnum, myaddr + (regstart - myregstart)); |
32178cab MS |
989 | |
990 | /* The register partially overlaps the range being written. */ | |
991 | else | |
992 | { | |
e6cbd02a | 993 | char *regbuf = (char*) alloca (MAX_REGISTER_RAW_SIZE); |
32178cab MS |
994 | /* What's the overlap between this register's bytes and |
995 | those the caller wants to write? */ | |
996 | int overlapstart = max (regstart, myregstart); | |
997 | int overlapend = min (regend, myregend); | |
998 | ||
999 | /* We may be doing a partial update of an invalid register. | |
1000 | Update it from the target before scribbling on it. */ | |
4caf0990 | 1001 | deprecated_read_register_gen (regnum, regbuf); |
32178cab | 1002 | |
524d7c18 | 1003 | memcpy (&deprecated_registers[overlapstart], |
32178cab MS |
1004 | myaddr + (overlapstart - myregstart), |
1005 | overlapend - overlapstart); | |
1006 | ||
5c27f28a | 1007 | target_store_registers (regnum); |
32178cab MS |
1008 | } |
1009 | } | |
1010 | } | |
1011 | ||
06c0b04e AC |
1012 | /* Perform a partial register transfer using a read, modify, write |
1013 | operation. */ | |
1014 | ||
1015 | typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum, | |
1016 | void *buf); | |
1017 | typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum, | |
1018 | const void *buf); | |
1019 | ||
1020 | void | |
1021 | regcache_xfer_part (struct regcache *regcache, int regnum, | |
1022 | int offset, int len, void *in, const void *out, | |
1023 | regcache_read_ftype *read, regcache_write_ftype *write) | |
1024 | { | |
1025 | struct regcache_descr *descr = regcache->descr; | |
1026 | bfd_byte *reg = alloca (descr->max_register_size); | |
1027 | gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]); | |
1028 | gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]); | |
1029 | /* Something to do? */ | |
1030 | if (offset + len == 0) | |
1031 | return; | |
1032 | /* Read (when needed) ... */ | |
1033 | if (in != NULL | |
1034 | || offset > 0 | |
1035 | || offset + len < descr->sizeof_register[regnum]) | |
1036 | { | |
1037 | gdb_assert (read != NULL); | |
1038 | read (regcache, regnum, reg); | |
1039 | } | |
1040 | /* ... modify ... */ | |
1041 | if (in != NULL) | |
1042 | memcpy (in, reg + offset, len); | |
1043 | if (out != NULL) | |
1044 | memcpy (reg + offset, out, len); | |
1045 | /* ... write (when needed). */ | |
1046 | if (out != NULL) | |
1047 | { | |
1048 | gdb_assert (write != NULL); | |
1049 | write (regcache, regnum, reg); | |
1050 | } | |
1051 | } | |
1052 | ||
1053 | void | |
1054 | regcache_raw_read_part (struct regcache *regcache, int regnum, | |
1055 | int offset, int len, void *buf) | |
1056 | { | |
1057 | struct regcache_descr *descr = regcache->descr; | |
1058 | gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); | |
1059 | regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, | |
1060 | regcache_raw_read, regcache_raw_write); | |
1061 | } | |
1062 | ||
1063 | void | |
1064 | regcache_raw_write_part (struct regcache *regcache, int regnum, | |
1065 | int offset, int len, const void *buf) | |
1066 | { | |
1067 | struct regcache_descr *descr = regcache->descr; | |
1068 | gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers); | |
1069 | regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, | |
1070 | regcache_raw_read, regcache_raw_write); | |
1071 | } | |
1072 | ||
1073 | void | |
1074 | regcache_cooked_read_part (struct regcache *regcache, int regnum, | |
1075 | int offset, int len, void *buf) | |
1076 | { | |
1077 | struct regcache_descr *descr = regcache->descr; | |
1078 | gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); | |
1079 | regcache_xfer_part (regcache, regnum, offset, len, buf, NULL, | |
1080 | regcache_cooked_read, regcache_cooked_write); | |
1081 | } | |
1082 | ||
1083 | void | |
1084 | regcache_cooked_write_part (struct regcache *regcache, int regnum, | |
1085 | int offset, int len, const void *buf) | |
1086 | { | |
1087 | struct regcache_descr *descr = regcache->descr; | |
1088 | gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); | |
1089 | regcache_xfer_part (regcache, regnum, offset, len, NULL, buf, | |
1090 | regcache_cooked_read, regcache_cooked_write); | |
1091 | } | |
32178cab | 1092 | |
d3b22ed5 AC |
1093 | /* Hack to keep code that view the register buffer as raw bytes |
1094 | working. */ | |
1095 | ||
1096 | int | |
1097 | register_offset_hack (struct gdbarch *gdbarch, int regnum) | |
1098 | { | |
1099 | struct regcache_descr *descr = regcache_descr (gdbarch); | |
1100 | gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers); | |
1101 | return descr->register_offset[regnum]; | |
1102 | } | |
1103 | ||
5ebd2499 | 1104 | /* Return the contents of register REGNUM as an unsigned integer. */ |
32178cab | 1105 | |
173155e8 | 1106 | ULONGEST |
5ebd2499 | 1107 | read_register (int regnum) |
32178cab | 1108 | { |
61a0eb5b | 1109 | char *buf = alloca (REGISTER_RAW_SIZE (regnum)); |
4caf0990 | 1110 | deprecated_read_register_gen (regnum, buf); |
61a0eb5b | 1111 | return (extract_unsigned_integer (buf, REGISTER_RAW_SIZE (regnum))); |
32178cab MS |
1112 | } |
1113 | ||
173155e8 | 1114 | ULONGEST |
39f77062 | 1115 | read_register_pid (int regnum, ptid_t ptid) |
32178cab | 1116 | { |
39f77062 | 1117 | ptid_t save_ptid; |
32178cab MS |
1118 | int save_pid; |
1119 | CORE_ADDR retval; | |
1120 | ||
39f77062 | 1121 | if (ptid_equal (ptid, inferior_ptid)) |
5ebd2499 | 1122 | return read_register (regnum); |
32178cab | 1123 | |
39f77062 | 1124 | save_ptid = inferior_ptid; |
32178cab | 1125 | |
39f77062 | 1126 | inferior_ptid = ptid; |
32178cab | 1127 | |
5ebd2499 | 1128 | retval = read_register (regnum); |
32178cab | 1129 | |
39f77062 | 1130 | inferior_ptid = save_ptid; |
32178cab MS |
1131 | |
1132 | return retval; | |
1133 | } | |
1134 | ||
5ebd2499 | 1135 | /* Return the contents of register REGNUM as a signed integer. */ |
173155e8 AC |
1136 | |
1137 | LONGEST | |
5ebd2499 | 1138 | read_signed_register (int regnum) |
173155e8 | 1139 | { |
61a0eb5b | 1140 | void *buf = alloca (REGISTER_RAW_SIZE (regnum)); |
4caf0990 | 1141 | deprecated_read_register_gen (regnum, buf); |
61a0eb5b | 1142 | return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum))); |
173155e8 AC |
1143 | } |
1144 | ||
1145 | LONGEST | |
39f77062 | 1146 | read_signed_register_pid (int regnum, ptid_t ptid) |
173155e8 | 1147 | { |
39f77062 | 1148 | ptid_t save_ptid; |
173155e8 AC |
1149 | LONGEST retval; |
1150 | ||
39f77062 | 1151 | if (ptid_equal (ptid, inferior_ptid)) |
5ebd2499 | 1152 | return read_signed_register (regnum); |
173155e8 | 1153 | |
39f77062 | 1154 | save_ptid = inferior_ptid; |
173155e8 | 1155 | |
39f77062 | 1156 | inferior_ptid = ptid; |
173155e8 | 1157 | |
5ebd2499 | 1158 | retval = read_signed_register (regnum); |
173155e8 | 1159 | |
39f77062 | 1160 | inferior_ptid = save_ptid; |
173155e8 AC |
1161 | |
1162 | return retval; | |
1163 | } | |
1164 | ||
5ebd2499 | 1165 | /* Store VALUE into the raw contents of register number REGNUM. */ |
32178cab MS |
1166 | |
1167 | void | |
5ebd2499 | 1168 | write_register (int regnum, LONGEST val) |
32178cab | 1169 | { |
61a0eb5b | 1170 | void *buf; |
32178cab | 1171 | int size; |
5ebd2499 | 1172 | size = REGISTER_RAW_SIZE (regnum); |
32178cab MS |
1173 | buf = alloca (size); |
1174 | store_signed_integer (buf, size, (LONGEST) val); | |
4caf0990 | 1175 | deprecated_write_register_gen (regnum, buf); |
32178cab MS |
1176 | } |
1177 | ||
1178 | void | |
39f77062 | 1179 | write_register_pid (int regnum, CORE_ADDR val, ptid_t ptid) |
32178cab | 1180 | { |
39f77062 | 1181 | ptid_t save_ptid; |
32178cab | 1182 | |
39f77062 | 1183 | if (ptid_equal (ptid, inferior_ptid)) |
32178cab | 1184 | { |
5ebd2499 | 1185 | write_register (regnum, val); |
32178cab MS |
1186 | return; |
1187 | } | |
1188 | ||
39f77062 | 1189 | save_ptid = inferior_ptid; |
32178cab | 1190 | |
39f77062 | 1191 | inferior_ptid = ptid; |
32178cab | 1192 | |
5ebd2499 | 1193 | write_register (regnum, val); |
32178cab | 1194 | |
39f77062 | 1195 | inferior_ptid = save_ptid; |
32178cab MS |
1196 | } |
1197 | ||
1198 | /* SUPPLY_REGISTER() | |
1199 | ||
5ebd2499 | 1200 | Record that register REGNUM contains VAL. This is used when the |
32178cab MS |
1201 | value is obtained from the inferior or core dump, so there is no |
1202 | need to store the value there. | |
1203 | ||
1204 | If VAL is a NULL pointer, then it's probably an unsupported register. | |
5ebd2499 | 1205 | We just set its value to all zeros. We might want to record this |
32178cab MS |
1206 | fact, and report it to the users of read_register and friends. */ |
1207 | ||
1208 | void | |
1aaa5f99 | 1209 | supply_register (int regnum, const void *val) |
32178cab MS |
1210 | { |
1211 | #if 1 | |
39f77062 | 1212 | if (! ptid_equal (registers_ptid, inferior_ptid)) |
32178cab MS |
1213 | { |
1214 | registers_changed (); | |
39f77062 | 1215 | registers_ptid = inferior_ptid; |
32178cab MS |
1216 | } |
1217 | #endif | |
1218 | ||
7302a204 | 1219 | set_register_cached (regnum, 1); |
32178cab | 1220 | if (val) |
3fadccb3 | 1221 | memcpy (register_buffer (current_regcache, regnum), val, |
5ebd2499 | 1222 | REGISTER_RAW_SIZE (regnum)); |
32178cab | 1223 | else |
3fadccb3 | 1224 | memset (register_buffer (current_regcache, regnum), '\000', |
5ebd2499 | 1225 | REGISTER_RAW_SIZE (regnum)); |
32178cab MS |
1226 | |
1227 | /* On some architectures, e.g. HPPA, there are a few stray bits in | |
1228 | some registers, that the rest of the code would like to ignore. */ | |
1229 | ||
61a0eb5b AC |
1230 | /* NOTE: cagney/2001-03-16: The macro CLEAN_UP_REGISTER_VALUE is |
1231 | going to be deprecated. Instead architectures will leave the raw | |
1232 | register value as is and instead clean things up as they pass | |
d8124050 | 1233 | through the method gdbarch_pseudo_register_read() clean up the |
61a0eb5b AC |
1234 | values. */ |
1235 | ||
4ee3352d | 1236 | #ifdef DEPRECATED_CLEAN_UP_REGISTER_VALUE |
0b434a00 AC |
1237 | DEPRECATED_CLEAN_UP_REGISTER_VALUE \ |
1238 | (regnum, register_buffer (current_regcache, regnum)); | |
32178cab MS |
1239 | #endif |
1240 | } | |
1241 | ||
193cb69f AC |
1242 | void |
1243 | regcache_collect (int regnum, void *buf) | |
1244 | { | |
3fadccb3 AC |
1245 | memcpy (buf, register_buffer (current_regcache, regnum), |
1246 | REGISTER_RAW_SIZE (regnum)); | |
193cb69f AC |
1247 | } |
1248 | ||
1249 | ||
8227c0ff AC |
1250 | /* read_pc, write_pc, read_sp, write_sp, read_fp, etc. Special |
1251 | handling for registers PC, SP, and FP. */ | |
32178cab | 1252 | |
4e052eda AC |
1253 | /* NOTE: cagney/2001-02-18: The functions generic_target_read_pc(), |
1254 | read_pc_pid(), read_pc(), generic_target_write_pc(), | |
1255 | write_pc_pid(), write_pc(), generic_target_read_sp(), read_sp(), | |
8227c0ff AC |
1256 | generic_target_write_sp(), write_sp(), generic_target_read_fp() and |
1257 | read_fp(), will eventually be moved out of the reg-cache into | |
1258 | either frame.[hc] or to the multi-arch framework. The are not part | |
1259 | of the raw register cache. */ | |
4e052eda | 1260 | |
32178cab MS |
1261 | /* This routine is getting awfully cluttered with #if's. It's probably |
1262 | time to turn this into READ_PC and define it in the tm.h file. | |
1263 | Ditto for write_pc. | |
1264 | ||
1265 | 1999-06-08: The following were re-written so that it assumes the | |
8e1a459b | 1266 | existence of a TARGET_READ_PC et.al. macro. A default generic |
32178cab MS |
1267 | version of that macro is made available where needed. |
1268 | ||
1269 | Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled | |
1270 | by the multi-arch framework, it will eventually be possible to | |
1271 | eliminate the intermediate read_pc_pid(). The client would call | |
1272 | TARGET_READ_PC directly. (cagney). */ | |
1273 | ||
32178cab | 1274 | CORE_ADDR |
39f77062 | 1275 | generic_target_read_pc (ptid_t ptid) |
32178cab MS |
1276 | { |
1277 | #ifdef PC_REGNUM | |
1278 | if (PC_REGNUM >= 0) | |
1279 | { | |
39f77062 | 1280 | CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, ptid)); |
32178cab MS |
1281 | return pc_val; |
1282 | } | |
1283 | #endif | |
8e65ff28 AC |
1284 | internal_error (__FILE__, __LINE__, |
1285 | "generic_target_read_pc"); | |
32178cab MS |
1286 | return 0; |
1287 | } | |
1288 | ||
1289 | CORE_ADDR | |
39f77062 | 1290 | read_pc_pid (ptid_t ptid) |
32178cab | 1291 | { |
39f77062 | 1292 | ptid_t saved_inferior_ptid; |
32178cab MS |
1293 | CORE_ADDR pc_val; |
1294 | ||
39f77062 KB |
1295 | /* In case ptid != inferior_ptid. */ |
1296 | saved_inferior_ptid = inferior_ptid; | |
1297 | inferior_ptid = ptid; | |
32178cab | 1298 | |
39f77062 | 1299 | pc_val = TARGET_READ_PC (ptid); |
32178cab | 1300 | |
39f77062 | 1301 | inferior_ptid = saved_inferior_ptid; |
32178cab MS |
1302 | return pc_val; |
1303 | } | |
1304 | ||
1305 | CORE_ADDR | |
1306 | read_pc (void) | |
1307 | { | |
39f77062 | 1308 | return read_pc_pid (inferior_ptid); |
32178cab MS |
1309 | } |
1310 | ||
32178cab | 1311 | void |
39f77062 | 1312 | generic_target_write_pc (CORE_ADDR pc, ptid_t ptid) |
32178cab MS |
1313 | { |
1314 | #ifdef PC_REGNUM | |
1315 | if (PC_REGNUM >= 0) | |
39f77062 | 1316 | write_register_pid (PC_REGNUM, pc, ptid); |
32178cab | 1317 | if (NPC_REGNUM >= 0) |
39f77062 | 1318 | write_register_pid (NPC_REGNUM, pc + 4, ptid); |
32178cab | 1319 | #else |
8e65ff28 AC |
1320 | internal_error (__FILE__, __LINE__, |
1321 | "generic_target_write_pc"); | |
32178cab MS |
1322 | #endif |
1323 | } | |
1324 | ||
1325 | void | |
39f77062 | 1326 | write_pc_pid (CORE_ADDR pc, ptid_t ptid) |
32178cab | 1327 | { |
39f77062 | 1328 | ptid_t saved_inferior_ptid; |
32178cab | 1329 | |
39f77062 KB |
1330 | /* In case ptid != inferior_ptid. */ |
1331 | saved_inferior_ptid = inferior_ptid; | |
1332 | inferior_ptid = ptid; | |
32178cab | 1333 | |
39f77062 | 1334 | TARGET_WRITE_PC (pc, ptid); |
32178cab | 1335 | |
39f77062 | 1336 | inferior_ptid = saved_inferior_ptid; |
32178cab MS |
1337 | } |
1338 | ||
1339 | void | |
1340 | write_pc (CORE_ADDR pc) | |
1341 | { | |
39f77062 | 1342 | write_pc_pid (pc, inferior_ptid); |
32178cab MS |
1343 | } |
1344 | ||
1345 | /* Cope with strage ways of getting to the stack and frame pointers */ | |
1346 | ||
32178cab MS |
1347 | CORE_ADDR |
1348 | generic_target_read_sp (void) | |
1349 | { | |
1350 | #ifdef SP_REGNUM | |
1351 | if (SP_REGNUM >= 0) | |
1352 | return read_register (SP_REGNUM); | |
1353 | #endif | |
8e65ff28 AC |
1354 | internal_error (__FILE__, __LINE__, |
1355 | "generic_target_read_sp"); | |
32178cab MS |
1356 | } |
1357 | ||
1358 | CORE_ADDR | |
1359 | read_sp (void) | |
1360 | { | |
1361 | return TARGET_READ_SP (); | |
1362 | } | |
1363 | ||
32178cab MS |
1364 | void |
1365 | generic_target_write_sp (CORE_ADDR val) | |
1366 | { | |
1367 | #ifdef SP_REGNUM | |
1368 | if (SP_REGNUM >= 0) | |
1369 | { | |
1370 | write_register (SP_REGNUM, val); | |
1371 | return; | |
1372 | } | |
1373 | #endif | |
8e65ff28 AC |
1374 | internal_error (__FILE__, __LINE__, |
1375 | "generic_target_write_sp"); | |
32178cab MS |
1376 | } |
1377 | ||
1378 | void | |
1379 | write_sp (CORE_ADDR val) | |
1380 | { | |
1381 | TARGET_WRITE_SP (val); | |
1382 | } | |
1383 | ||
32178cab MS |
1384 | CORE_ADDR |
1385 | generic_target_read_fp (void) | |
1386 | { | |
1387 | #ifdef FP_REGNUM | |
1388 | if (FP_REGNUM >= 0) | |
1389 | return read_register (FP_REGNUM); | |
1390 | #endif | |
8e65ff28 AC |
1391 | internal_error (__FILE__, __LINE__, |
1392 | "generic_target_read_fp"); | |
32178cab MS |
1393 | } |
1394 | ||
1395 | CORE_ADDR | |
1396 | read_fp (void) | |
1397 | { | |
1398 | return TARGET_READ_FP (); | |
1399 | } | |
1400 | ||
705152c5 MS |
1401 | /* ARGSUSED */ |
1402 | static void | |
1403 | reg_flush_command (char *command, int from_tty) | |
1404 | { | |
1405 | /* Force-flush the register cache. */ | |
1406 | registers_changed (); | |
1407 | if (from_tty) | |
1408 | printf_filtered ("Register cache flushed.\n"); | |
1409 | } | |
1410 | ||
32178cab MS |
1411 | static void |
1412 | build_regcache (void) | |
3fadccb3 AC |
1413 | { |
1414 | current_regcache = regcache_xmalloc (current_gdbarch); | |
2d28509a | 1415 | current_regcache->readonly_p = 0; |
524d7c18 | 1416 | deprecated_registers = deprecated_grub_regcache_for_registers (current_regcache); |
8262ee23 | 1417 | deprecated_register_valid = deprecated_grub_regcache_for_register_valid (current_regcache); |
3fadccb3 AC |
1418 | } |
1419 | ||
af030b9a AC |
1420 | static void |
1421 | dump_endian_bytes (struct ui_file *file, enum bfd_endian endian, | |
1422 | const unsigned char *buf, long len) | |
1423 | { | |
1424 | int i; | |
1425 | switch (endian) | |
1426 | { | |
1427 | case BFD_ENDIAN_BIG: | |
1428 | for (i = 0; i < len; i++) | |
1429 | fprintf_unfiltered (file, "%02x", buf[i]); | |
1430 | break; | |
1431 | case BFD_ENDIAN_LITTLE: | |
1432 | for (i = len - 1; i >= 0; i--) | |
1433 | fprintf_unfiltered (file, "%02x", buf[i]); | |
1434 | break; | |
1435 | default: | |
1436 | internal_error (__FILE__, __LINE__, "Bad switch"); | |
1437 | } | |
1438 | } | |
1439 | ||
1440 | enum regcache_dump_what | |
1441 | { | |
b59ff9d5 | 1442 | regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups |
af030b9a AC |
1443 | }; |
1444 | ||
1445 | static void | |
1446 | regcache_dump (struct regcache *regcache, struct ui_file *file, | |
1447 | enum regcache_dump_what what_to_dump) | |
1448 | { | |
1449 | struct cleanup *cleanups = make_cleanup (null_cleanup, NULL); | |
b59ff9d5 AC |
1450 | struct gdbarch *gdbarch = regcache->descr->gdbarch; |
1451 | struct reggroup *const *groups = reggroups (gdbarch); | |
af030b9a AC |
1452 | int regnum; |
1453 | int footnote_nr = 0; | |
1454 | int footnote_register_size = 0; | |
1455 | int footnote_register_offset = 0; | |
1456 | int footnote_register_type_name_null = 0; | |
1457 | long register_offset = 0; | |
1458 | unsigned char *buf = alloca (regcache->descr->max_register_size); | |
1459 | ||
1460 | #if 0 | |
1461 | fprintf_unfiltered (file, "legacy_p %d\n", regcache->descr->legacy_p); | |
1462 | fprintf_unfiltered (file, "nr_raw_registers %d\n", | |
1463 | regcache->descr->nr_raw_registers); | |
1464 | fprintf_unfiltered (file, "nr_cooked_registers %d\n", | |
1465 | regcache->descr->nr_cooked_registers); | |
1466 | fprintf_unfiltered (file, "sizeof_raw_registers %ld\n", | |
1467 | regcache->descr->sizeof_raw_registers); | |
1468 | fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n", | |
1469 | regcache->descr->sizeof_raw_register_valid_p); | |
1470 | fprintf_unfiltered (file, "max_register_size %ld\n", | |
1471 | regcache->descr->max_register_size); | |
1472 | fprintf_unfiltered (file, "NUM_REGS %d\n", NUM_REGS); | |
1473 | fprintf_unfiltered (file, "NUM_PSEUDO_REGS %d\n", NUM_PSEUDO_REGS); | |
1474 | #endif | |
1475 | ||
1476 | gdb_assert (regcache->descr->nr_cooked_registers | |
1477 | == (NUM_REGS + NUM_PSEUDO_REGS)); | |
1478 | ||
1479 | for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++) | |
1480 | { | |
1481 | /* Name. */ | |
1482 | if (regnum < 0) | |
1483 | fprintf_unfiltered (file, " %-10s", "Name"); | |
1484 | else | |
1485 | { | |
1486 | const char *p = REGISTER_NAME (regnum); | |
1487 | if (p == NULL) | |
1488 | p = ""; | |
1489 | else if (p[0] == '\0') | |
1490 | p = "''"; | |
1491 | fprintf_unfiltered (file, " %-10s", p); | |
1492 | } | |
1493 | ||
1494 | /* Number. */ | |
1495 | if (regnum < 0) | |
1496 | fprintf_unfiltered (file, " %4s", "Nr"); | |
1497 | else | |
1498 | fprintf_unfiltered (file, " %4d", regnum); | |
1499 | ||
1500 | /* Relative number. */ | |
1501 | if (regnum < 0) | |
1502 | fprintf_unfiltered (file, " %4s", "Rel"); | |
1503 | else if (regnum < NUM_REGS) | |
1504 | fprintf_unfiltered (file, " %4d", regnum); | |
1505 | else | |
1506 | fprintf_unfiltered (file, " %4d", (regnum - NUM_REGS)); | |
1507 | ||
1508 | /* Offset. */ | |
1509 | if (regnum < 0) | |
1510 | fprintf_unfiltered (file, " %6s ", "Offset"); | |
1511 | else | |
1512 | { | |
1513 | fprintf_unfiltered (file, " %6ld", | |
1514 | regcache->descr->register_offset[regnum]); | |
a7e3c2ad | 1515 | if (register_offset != regcache->descr->register_offset[regnum] |
d3b22ed5 AC |
1516 | || register_offset != REGISTER_BYTE (regnum) |
1517 | || (regnum > 0 | |
1518 | && (regcache->descr->register_offset[regnum] | |
1519 | != (regcache->descr->register_offset[regnum - 1] | |
1520 | + regcache->descr->sizeof_register[regnum - 1]))) | |
1521 | ) | |
af030b9a AC |
1522 | { |
1523 | if (!footnote_register_offset) | |
1524 | footnote_register_offset = ++footnote_nr; | |
1525 | fprintf_unfiltered (file, "*%d", footnote_register_offset); | |
1526 | } | |
1527 | else | |
1528 | fprintf_unfiltered (file, " "); | |
1529 | register_offset = (regcache->descr->register_offset[regnum] | |
1530 | + regcache->descr->sizeof_register[regnum]); | |
1531 | } | |
1532 | ||
1533 | /* Size. */ | |
1534 | if (regnum < 0) | |
1535 | fprintf_unfiltered (file, " %5s ", "Size"); | |
1536 | else | |
1537 | { | |
1538 | fprintf_unfiltered (file, " %5ld", | |
1539 | regcache->descr->sizeof_register[regnum]); | |
1540 | if ((regcache->descr->sizeof_register[regnum] | |
1541 | != REGISTER_RAW_SIZE (regnum)) | |
1542 | || (regcache->descr->sizeof_register[regnum] | |
1543 | != REGISTER_VIRTUAL_SIZE (regnum)) | |
1544 | || (regcache->descr->sizeof_register[regnum] | |
bb425013 AC |
1545 | != TYPE_LENGTH (register_type (regcache->descr->gdbarch, |
1546 | regnum))) | |
af030b9a AC |
1547 | ) |
1548 | { | |
1549 | if (!footnote_register_size) | |
1550 | footnote_register_size = ++footnote_nr; | |
1551 | fprintf_unfiltered (file, "*%d", footnote_register_size); | |
1552 | } | |
1553 | else | |
1554 | fprintf_unfiltered (file, " "); | |
1555 | } | |
1556 | ||
1557 | /* Type. */ | |
b59ff9d5 AC |
1558 | { |
1559 | const char *t; | |
1560 | if (regnum < 0) | |
1561 | t = "Type"; | |
1562 | else | |
1563 | { | |
1564 | static const char blt[] = "builtin_type"; | |
1565 | t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum)); | |
1566 | if (t == NULL) | |
1567 | { | |
1568 | char *n; | |
1569 | if (!footnote_register_type_name_null) | |
1570 | footnote_register_type_name_null = ++footnote_nr; | |
1571 | xasprintf (&n, "*%d", footnote_register_type_name_null); | |
1572 | make_cleanup (xfree, n); | |
1573 | t = n; | |
1574 | } | |
1575 | /* Chop a leading builtin_type. */ | |
1576 | if (strncmp (t, blt, strlen (blt)) == 0) | |
1577 | t += strlen (blt); | |
1578 | } | |
1579 | fprintf_unfiltered (file, " %-15s", t); | |
1580 | } | |
1581 | ||
1582 | /* Leading space always present. */ | |
1583 | fprintf_unfiltered (file, " "); | |
af030b9a AC |
1584 | |
1585 | /* Value, raw. */ | |
1586 | if (what_to_dump == regcache_dump_raw) | |
1587 | { | |
1588 | if (regnum < 0) | |
1589 | fprintf_unfiltered (file, "Raw value"); | |
1590 | else if (regnum >= regcache->descr->nr_raw_registers) | |
1591 | fprintf_unfiltered (file, "<cooked>"); | |
1592 | else if (!regcache_valid_p (regcache, regnum)) | |
1593 | fprintf_unfiltered (file, "<invalid>"); | |
1594 | else | |
1595 | { | |
1596 | regcache_raw_read (regcache, regnum, buf); | |
1597 | fprintf_unfiltered (file, "0x"); | |
1598 | dump_endian_bytes (file, TARGET_BYTE_ORDER, buf, | |
1599 | REGISTER_RAW_SIZE (regnum)); | |
1600 | } | |
1601 | } | |
1602 | ||
1603 | /* Value, cooked. */ | |
1604 | if (what_to_dump == regcache_dump_cooked) | |
1605 | { | |
1606 | if (regnum < 0) | |
1607 | fprintf_unfiltered (file, "Cooked value"); | |
1608 | else | |
1609 | { | |
1610 | regcache_cooked_read (regcache, regnum, buf); | |
1611 | fprintf_unfiltered (file, "0x"); | |
1612 | dump_endian_bytes (file, TARGET_BYTE_ORDER, buf, | |
1613 | REGISTER_VIRTUAL_SIZE (regnum)); | |
1614 | } | |
1615 | } | |
1616 | ||
b59ff9d5 AC |
1617 | /* Group members. */ |
1618 | if (what_to_dump == regcache_dump_groups) | |
1619 | { | |
1620 | if (regnum < 0) | |
1621 | fprintf_unfiltered (file, "Groups"); | |
1622 | else | |
1623 | { | |
1624 | int i; | |
1625 | const char *sep = ""; | |
1626 | for (i = 0; groups[i] != NULL; i++) | |
1627 | { | |
1628 | if (gdbarch_register_reggroup_p (gdbarch, regnum, groups[i])) | |
1629 | { | |
1630 | fprintf_unfiltered (file, "%s%s", sep, reggroup_name (groups[i])); | |
1631 | sep = ","; | |
1632 | } | |
1633 | } | |
1634 | } | |
1635 | } | |
1636 | ||
af030b9a AC |
1637 | fprintf_unfiltered (file, "\n"); |
1638 | } | |
1639 | ||
1640 | if (footnote_register_size) | |
1641 | fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n", | |
1642 | footnote_register_size); | |
1643 | if (footnote_register_offset) | |
1644 | fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n", | |
1645 | footnote_register_offset); | |
1646 | if (footnote_register_type_name_null) | |
1647 | fprintf_unfiltered (file, | |
1648 | "*%d: Register type's name NULL.\n", | |
1649 | footnote_register_type_name_null); | |
1650 | do_cleanups (cleanups); | |
1651 | } | |
1652 | ||
1653 | static void | |
1654 | regcache_print (char *args, enum regcache_dump_what what_to_dump) | |
1655 | { | |
1656 | if (args == NULL) | |
1657 | regcache_dump (current_regcache, gdb_stdout, what_to_dump); | |
1658 | else | |
1659 | { | |
1660 | struct ui_file *file = gdb_fopen (args, "w"); | |
1661 | if (file == NULL) | |
1662 | perror_with_name ("maintenance print architecture"); | |
1663 | regcache_dump (current_regcache, file, what_to_dump); | |
1664 | ui_file_delete (file); | |
1665 | } | |
1666 | } | |
1667 | ||
1668 | static void | |
1669 | maintenance_print_registers (char *args, int from_tty) | |
1670 | { | |
1671 | regcache_print (args, regcache_dump_none); | |
1672 | } | |
1673 | ||
1674 | static void | |
1675 | maintenance_print_raw_registers (char *args, int from_tty) | |
1676 | { | |
1677 | regcache_print (args, regcache_dump_raw); | |
1678 | } | |
1679 | ||
1680 | static void | |
1681 | maintenance_print_cooked_registers (char *args, int from_tty) | |
1682 | { | |
1683 | regcache_print (args, regcache_dump_cooked); | |
1684 | } | |
1685 | ||
b59ff9d5 AC |
1686 | static void |
1687 | maintenance_print_register_groups (char *args, int from_tty) | |
1688 | { | |
1689 | regcache_print (args, regcache_dump_groups); | |
1690 | } | |
1691 | ||
32178cab MS |
1692 | void |
1693 | _initialize_regcache (void) | |
1694 | { | |
3fadccb3 AC |
1695 | regcache_descr_handle = register_gdbarch_data (init_regcache_descr, |
1696 | xfree_regcache_descr); | |
1697 | REGISTER_GDBARCH_SWAP (current_regcache); | |
524d7c18 | 1698 | register_gdbarch_swap (&deprecated_registers, sizeof (deprecated_registers), NULL); |
8262ee23 | 1699 | register_gdbarch_swap (&deprecated_register_valid, sizeof (deprecated_register_valid), NULL); |
32178cab | 1700 | register_gdbarch_swap (NULL, 0, build_regcache); |
705152c5 MS |
1701 | |
1702 | add_com ("flushregs", class_maintenance, reg_flush_command, | |
1703 | "Force gdb to flush its register cache (maintainer command)"); | |
39f77062 KB |
1704 | |
1705 | /* Initialize the thread/process associated with the current set of | |
1706 | registers. For now, -1 is special, and means `no current process'. */ | |
1707 | registers_ptid = pid_to_ptid (-1); | |
af030b9a AC |
1708 | |
1709 | add_cmd ("registers", class_maintenance, | |
1710 | maintenance_print_registers, | |
1711 | "Print the internal register configuration.\ | |
1712 | Takes an optional file parameter.", | |
1713 | &maintenanceprintlist); | |
1714 | add_cmd ("raw-registers", class_maintenance, | |
1715 | maintenance_print_raw_registers, | |
1716 | "Print the internal register configuration including raw values.\ | |
1717 | Takes an optional file parameter.", | |
1718 | &maintenanceprintlist); | |
1719 | add_cmd ("cooked-registers", class_maintenance, | |
1720 | maintenance_print_cooked_registers, | |
1721 | "Print the internal register configuration including cooked values.\ | |
b59ff9d5 AC |
1722 | Takes an optional file parameter.", |
1723 | &maintenanceprintlist); | |
1724 | add_cmd ("register-groups", class_maintenance, | |
1725 | maintenance_print_register_groups, | |
1726 | "Print the internal register configuration including each register's group.\ | |
af030b9a AC |
1727 | Takes an optional file parameter.", |
1728 | &maintenanceprintlist); | |
1729 | ||
32178cab | 1730 | } |