]> Git Repo - binutils.git/blame - gas/doc/c-i386.texi
MIPS/GAS: Correct `as --help' always reporting `o32' as the default ABI
[binutils.git] / gas / doc / c-i386.texi
CommitLineData
219d1afa 1@c Copyright (C) 1991-2018 Free Software Foundation, Inc.
252b5132
RH
2@c This is part of the GAS manual.
3@c For copying conditions, see the file as.texinfo.
731caf76
L
4@c man end
5
252b5132
RH
6@ifset GENERIC
7@page
8@node i386-Dependent
9@chapter 80386 Dependent Features
10@end ifset
11@ifclear GENERIC
12@node Machine Dependencies
13@chapter 80386 Dependent Features
14@end ifclear
15
16@cindex i386 support
b6169b20 17@cindex i80386 support
55b62671
AJ
18@cindex x86-64 support
19
20The i386 version @code{@value{AS}} supports both the original Intel 386
21architecture in both 16 and 32-bit mode as well as AMD x86-64 architecture
22extending the Intel architecture to 64-bits.
23
252b5132
RH
24@menu
25* i386-Options:: Options
a6c24e68 26* i386-Directives:: X86 specific directives
7c31ae13 27* i386-Syntax:: Syntactical considerations
252b5132
RH
28* i386-Mnemonics:: Instruction Naming
29* i386-Regs:: Register Naming
30* i386-Prefixes:: Instruction Prefixes
31* i386-Memory:: Memory References
fddf5b5b 32* i386-Jumps:: Handling of Jump Instructions
252b5132
RH
33* i386-Float:: Floating Point
34* i386-SIMD:: Intel's MMX and AMD's 3DNow! SIMD Operations
f88c9eb0 35* i386-LWP:: AMD's Lightweight Profiling Instructions
87973e9f 36* i386-BMI:: Bit Manipulation Instruction
2a2a0f38 37* i386-TBM:: AMD's Trailing Bit Manipulation Instructions
252b5132 38* i386-16bit:: Writing 16-bit Code
e413e4e9 39* i386-Arch:: Specifying an x86 CPU architecture
252b5132
RH
40* i386-Bugs:: AT&T Syntax bugs
41* i386-Notes:: Notes
42@end menu
43
44@node i386-Options
45@section Options
46
55b62671
AJ
47@cindex options for i386
48@cindex options for x86-64
49@cindex i386 options
34bca508 50@cindex x86-64 options
55b62671
AJ
51
52The i386 version of @code{@value{AS}} has a few machine
53dependent options:
54
731caf76
L
55@c man begin OPTIONS
56@table @gcctabopt
55b62671
AJ
57@cindex @samp{--32} option, i386
58@cindex @samp{--32} option, x86-64
570561f7
L
59@cindex @samp{--x32} option, i386
60@cindex @samp{--x32} option, x86-64
55b62671
AJ
61@cindex @samp{--64} option, i386
62@cindex @samp{--64} option, x86-64
570561f7 63@item --32 | --x32 | --64
35cc6a0b 64Select the word size, either 32 bits or 64 bits. @samp{--32}
570561f7 65implies Intel i386 architecture, while @samp{--x32} and @samp{--64}
35cc6a0b
L
66imply AMD x86-64 architecture with 32-bit or 64-bit word-size
67respectively.
55b62671
AJ
68
69These options are only available with the ELF object file format, and
70require that the necessary BFD support has been included (on a 32-bit
71platform you have to add --enable-64-bit-bfd to configure enable 64-bit
72usage and use x86-64 as target platform).
12b55ccc
L
73
74@item -n
75By default, x86 GAS replaces multiple nop instructions used for
76alignment within code sections with multi-byte nop instructions such
f9233288
JW
77as leal 0(%esi,1),%esi. This switch disables the optimization if a single
78byte nop (0x90) is explicitly specified as the fill byte for alignment.
b3b91714
AM
79
80@cindex @samp{--divide} option, i386
81@item --divide
82On SVR4-derived platforms, the character @samp{/} is treated as a comment
83character, which means that it cannot be used in expressions. The
84@samp{--divide} option turns @samp{/} into a normal character. This does
85not disable @samp{/} at the beginning of a line starting a comment, or
86affect using @samp{#} for starting a comment.
87
9103f4f4
L
88@cindex @samp{-march=} option, i386
89@cindex @samp{-march=} option, x86-64
6305a203
L
90@item -march=@var{CPU}[+@var{EXTENSION}@dots{}]
91This option specifies the target processor. The assembler will
92issue an error message if an attempt is made to assemble an instruction
93which will not execute on the target processor. The following
34bca508 94processor names are recognized:
9103f4f4
L
95@code{i8086},
96@code{i186},
97@code{i286},
98@code{i386},
99@code{i486},
100@code{i586},
101@code{i686},
102@code{pentium},
103@code{pentiumpro},
104@code{pentiumii},
105@code{pentiumiii},
106@code{pentium4},
107@code{prescott},
108@code{nocona},
ef05d495
L
109@code{core},
110@code{core2},
bd5295b2 111@code{corei7},
8a9036a4 112@code{l1om},
7a9068fe 113@code{k1om},
81486035 114@code{iamcu},
9103f4f4
L
115@code{k6},
116@code{k6_2},
117@code{athlon},
9103f4f4
L
118@code{opteron},
119@code{k8},
1ceab344 120@code{amdfam10},
68339fdf 121@code{bdver1},
af2f724e 122@code{bdver2},
5e5c50d3 123@code{bdver3},
c7b0bd56 124@code{bdver4},
029f3522 125@code{znver1},
7b458c12
L
126@code{btver1},
127@code{btver2},
9103f4f4
L
128@code{generic32} and
129@code{generic64}.
130
34bca508 131In addition to the basic instruction set, the assembler can be told to
6305a203
L
132accept various extension mnemonics. For example,
133@code{-march=i686+sse4+vmx} extends @var{i686} with @var{sse4} and
134@var{vmx}. The following extensions are currently supported:
309d3373
JB
135@code{8087},
136@code{287},
137@code{387},
1848e567 138@code{687},
309d3373 139@code{no87},
1848e567
L
140@code{no287},
141@code{no387},
142@code{no687},
6305a203 143@code{mmx},
309d3373 144@code{nommx},
6305a203
L
145@code{sse},
146@code{sse2},
147@code{sse3},
148@code{ssse3},
149@code{sse4.1},
150@code{sse4.2},
151@code{sse4},
309d3373 152@code{nosse},
1848e567
L
153@code{nosse2},
154@code{nosse3},
155@code{nossse3},
156@code{nosse4.1},
157@code{nosse4.2},
158@code{nosse4},
c0f3af97 159@code{avx},
6c30d220 160@code{avx2},
1848e567
L
161@code{noavx},
162@code{noavx2},
e2e1fcde
L
163@code{adx},
164@code{rdseed},
165@code{prfchw},
5c111e37 166@code{smap},
7e8b059b 167@code{mpx},
a0046408 168@code{sha},
8bc52696 169@code{rdpid},
6b40c462 170@code{ptwrite},
603555e5 171@code{cet},
48521003 172@code{gfni},
8dcf1fad 173@code{vaes},
ff1982d5 174@code{vpclmulqdq},
1dfc6506
L
175@code{prefetchwt1},
176@code{clflushopt},
177@code{se1},
c5e7287a 178@code{clwb},
43234a1e
L
179@code{avx512f},
180@code{avx512cd},
181@code{avx512er},
182@code{avx512pf},
1dfc6506
L
183@code{avx512vl},
184@code{avx512bw},
185@code{avx512dq},
2cc1b5aa 186@code{avx512ifma},
14f195c9 187@code{avx512vbmi},
920d2ddc 188@code{avx512_4fmaps},
47acf0bd 189@code{avx512_4vnniw},
620214f7 190@code{avx512_vpopcntdq},
53467f57 191@code{avx512_vbmi2},
8cfcb765 192@code{avx512_vnni},
ee6872be 193@code{avx512_bitalg},
144b71e2
L
194@code{noavx512f},
195@code{noavx512cd},
196@code{noavx512er},
197@code{noavx512pf},
198@code{noavx512vl},
199@code{noavx512bw},
200@code{noavx512dq},
201@code{noavx512ifma},
202@code{noavx512vbmi},
920d2ddc 203@code{noavx512_4fmaps},
47acf0bd 204@code{noavx512_4vnniw},
620214f7 205@code{noavx512_vpopcntdq},
53467f57 206@code{noavx512_vbmi2},
8cfcb765 207@code{noavx512_vnni},
ee6872be 208@code{noavx512_bitalg},
6305a203 209@code{vmx},
8729a6f6 210@code{vmfunc},
6305a203 211@code{smx},
f03fe4c1 212@code{xsave},
c7b8aa3a 213@code{xsaveopt},
1dfc6506
L
214@code{xsavec},
215@code{xsaves},
c0f3af97 216@code{aes},
594ab6a3 217@code{pclmul},
c7b8aa3a
L
218@code{fsgsbase},
219@code{rdrnd},
220@code{f16c},
6c30d220 221@code{bmi2},
c0f3af97 222@code{fma},
f1f8f695
L
223@code{movbe},
224@code{ept},
6c30d220 225@code{lzcnt},
42164a71
L
226@code{hle},
227@code{rtm},
6c30d220 228@code{invpcid},
bd5295b2 229@code{clflush},
9916071f 230@code{mwaitx},
029f3522 231@code{clzero},
f88c9eb0 232@code{lwp},
5dd85c99
SP
233@code{fma4},
234@code{xop},
60aa667e 235@code{cx16},
bd5295b2 236@code{syscall},
1b7f3fb0 237@code{rdtscp},
6305a203
L
238@code{3dnow},
239@code{3dnowa},
240@code{sse4a},
241@code{sse5},
242@code{svme},
243@code{abm} and
244@code{padlock}.
309d3373
JB
245Note that rather than extending a basic instruction set, the extension
246mnemonics starting with @code{no} revoke the respective functionality.
6305a203
L
247
248When the @code{.arch} directive is used with @option{-march}, the
9103f4f4
L
249@code{.arch} directive will take precedent.
250
251@cindex @samp{-mtune=} option, i386
252@cindex @samp{-mtune=} option, x86-64
253@item -mtune=@var{CPU}
254This option specifies a processor to optimize for. When used in
255conjunction with the @option{-march} option, only instructions
256of the processor specified by the @option{-march} option will be
257generated.
258
6305a203
L
259Valid @var{CPU} values are identical to the processor list of
260@option{-march=@var{CPU}}.
9103f4f4 261
c0f3af97
L
262@cindex @samp{-msse2avx} option, i386
263@cindex @samp{-msse2avx} option, x86-64
264@item -msse2avx
265This option specifies that the assembler should encode SSE instructions
266with VEX prefix.
267
daf50ae7
L
268@cindex @samp{-msse-check=} option, i386
269@cindex @samp{-msse-check=} option, x86-64
270@item -msse-check=@var{none}
1f9bb1ca
AS
271@itemx -msse-check=@var{warning}
272@itemx -msse-check=@var{error}
9aff4b7a 273These options control if the assembler should check SSE instructions.
daf50ae7
L
274@option{-msse-check=@var{none}} will make the assembler not to check SSE
275instructions, which is the default. @option{-msse-check=@var{warning}}
9aff4b7a 276will make the assembler issue a warning for any SSE instruction.
daf50ae7 277@option{-msse-check=@var{error}} will make the assembler issue an error
9aff4b7a 278for any SSE instruction.
daf50ae7 279
539f890d
L
280@cindex @samp{-mavxscalar=} option, i386
281@cindex @samp{-mavxscalar=} option, x86-64
282@item -mavxscalar=@var{128}
1f9bb1ca 283@itemx -mavxscalar=@var{256}
2aab8acd 284These options control how the assembler should encode scalar AVX
539f890d
L
285instructions. @option{-mavxscalar=@var{128}} will encode scalar
286AVX instructions with 128bit vector length, which is the default.
287@option{-mavxscalar=@var{256}} will encode scalar AVX instructions
288with 256bit vector length.
289
43234a1e
L
290@cindex @samp{-mevexlig=} option, i386
291@cindex @samp{-mevexlig=} option, x86-64
292@item -mevexlig=@var{128}
293@itemx -mevexlig=@var{256}
294@itemx -mevexlig=@var{512}
295These options control how the assembler should encode length-ignored
296(LIG) EVEX instructions. @option{-mevexlig=@var{128}} will encode LIG
297EVEX instructions with 128bit vector length, which is the default.
298@option{-mevexlig=@var{256}} and @option{-mevexlig=@var{512}} will
299encode LIG EVEX instructions with 256bit and 512bit vector length,
300respectively.
301
302@cindex @samp{-mevexwig=} option, i386
303@cindex @samp{-mevexwig=} option, x86-64
304@item -mevexwig=@var{0}
305@itemx -mevexwig=@var{1}
306These options control how the assembler should encode w-ignored (WIG)
307EVEX instructions. @option{-mevexwig=@var{0}} will encode WIG
308EVEX instructions with evex.w = 0, which is the default.
309@option{-mevexwig=@var{1}} will encode WIG EVEX instructions with
310evex.w = 1.
311
1efbbeb4
L
312@cindex @samp{-mmnemonic=} option, i386
313@cindex @samp{-mmnemonic=} option, x86-64
314@item -mmnemonic=@var{att}
1f9bb1ca 315@itemx -mmnemonic=@var{intel}
34bca508 316This option specifies instruction mnemonic for matching instructions.
1efbbeb4
L
317The @code{.att_mnemonic} and @code{.intel_mnemonic} directives will
318take precedent.
319
320@cindex @samp{-msyntax=} option, i386
321@cindex @samp{-msyntax=} option, x86-64
322@item -msyntax=@var{att}
1f9bb1ca 323@itemx -msyntax=@var{intel}
34bca508 324This option specifies instruction syntax when processing instructions.
1efbbeb4
L
325The @code{.att_syntax} and @code{.intel_syntax} directives will
326take precedent.
327
328@cindex @samp{-mnaked-reg} option, i386
329@cindex @samp{-mnaked-reg} option, x86-64
330@item -mnaked-reg
33eaf5de 331This option specifies that registers don't require a @samp{%} prefix.
e1d4d893 332The @code{.att_syntax} and @code{.intel_syntax} directives will take precedent.
1efbbeb4 333
7e8b059b
L
334@cindex @samp{-madd-bnd-prefix} option, i386
335@cindex @samp{-madd-bnd-prefix} option, x86-64
336@item -madd-bnd-prefix
337This option forces the assembler to add BND prefix to all branches, even
338if such prefix was not explicitly specified in the source code.
339
8dcea932
L
340@cindex @samp{-mshared} option, i386
341@cindex @samp{-mshared} option, x86-64
342@item -mno-shared
343On ELF target, the assembler normally optimizes out non-PLT relocations
344against defined non-weak global branch targets with default visibility.
345The @samp{-mshared} option tells the assembler to generate code which
346may go into a shared library where all non-weak global branch targets
347with default visibility can be preempted. The resulting code is
348slightly bigger. This option only affects the handling of branch
349instructions.
350
167ad85b
TG
351@cindex @samp{-mbig-obj} option, x86-64
352@item -mbig-obj
353On x86-64 PE/COFF target this option forces the use of big object file
354format, which allows more than 32768 sections.
355
d022bddd
IT
356@cindex @samp{-momit-lock-prefix=} option, i386
357@cindex @samp{-momit-lock-prefix=} option, x86-64
358@item -momit-lock-prefix=@var{no}
359@itemx -momit-lock-prefix=@var{yes}
360These options control how the assembler should encode lock prefix.
361This option is intended as a workaround for processors, that fail on
362lock prefix. This option can only be safely used with single-core,
363single-thread computers
364@option{-momit-lock-prefix=@var{yes}} will omit all lock prefixes.
365@option{-momit-lock-prefix=@var{no}} will encode lock prefix as usual,
366which is the default.
367
e4e00185
AS
368@cindex @samp{-mfence-as-lock-add=} option, i386
369@cindex @samp{-mfence-as-lock-add=} option, x86-64
370@item -mfence-as-lock-add=@var{no}
371@itemx -mfence-as-lock-add=@var{yes}
372These options control how the assembler should encode lfence, mfence and
373sfence.
374@option{-mfence-as-lock-add=@var{yes}} will encode lfence, mfence and
375sfence as @samp{lock addl $0x0, (%rsp)} in 64-bit mode and
376@samp{lock addl $0x0, (%esp)} in 32-bit mode.
377@option{-mfence-as-lock-add=@var{no}} will encode lfence, mfence and
378sfence as usual, which is the default.
379
0cb4071e
L
380@cindex @samp{-mrelax-relocations=} option, i386
381@cindex @samp{-mrelax-relocations=} option, x86-64
382@item -mrelax-relocations=@var{no}
383@itemx -mrelax-relocations=@var{yes}
384These options control whether the assembler should generate relax
385relocations, R_386_GOT32X, in 32-bit mode, or R_X86_64_GOTPCRELX and
386R_X86_64_REX_GOTPCRELX, in 64-bit mode.
387@option{-mrelax-relocations=@var{yes}} will generate relax relocations.
388@option{-mrelax-relocations=@var{no}} will not generate relax
389relocations. The default can be controlled by a configure option
390@option{--enable-x86-relax-relocations}.
391
d3d3c6db
IT
392@cindex @samp{-mevexrcig=} option, i386
393@cindex @samp{-mevexrcig=} option, x86-64
394@item -mevexrcig=@var{rne}
395@itemx -mevexrcig=@var{rd}
396@itemx -mevexrcig=@var{ru}
397@itemx -mevexrcig=@var{rz}
398These options control how the assembler should encode SAE-only
399EVEX instructions. @option{-mevexrcig=@var{rne}} will encode RC bits
400of EVEX instruction with 00, which is the default.
401@option{-mevexrcig=@var{rd}}, @option{-mevexrcig=@var{ru}}
402and @option{-mevexrcig=@var{rz}} will encode SAE-only EVEX instructions
403with 01, 10 and 11 RC bits, respectively.
404
5db04b09
L
405@cindex @samp{-mamd64} option, x86-64
406@cindex @samp{-mintel64} option, x86-64
407@item -mamd64
408@itemx -mintel64
409This option specifies that the assembler should accept only AMD64 or
410Intel64 ISA in 64-bit mode. The default is to accept both.
411
55b62671 412@end table
731caf76 413@c man end
e413e4e9 414
a6c24e68
NC
415@node i386-Directives
416@section x86 specific Directives
417
418@cindex machine directives, x86
419@cindex x86 machine directives
420@table @code
421
422@cindex @code{lcomm} directive, COFF
423@item .lcomm @var{symbol} , @var{length}[, @var{alignment}]
424Reserve @var{length} (an absolute expression) bytes for a local common
425denoted by @var{symbol}. The section and value of @var{symbol} are
426those of the new local common. The addresses are allocated in the bss
704209c0
NC
427section, so that at run-time the bytes start off zeroed. Since
428@var{symbol} is not declared global, it is normally not visible to
429@code{@value{LD}}. The optional third parameter, @var{alignment},
430specifies the desired alignment of the symbol in the bss section.
a6c24e68
NC
431
432This directive is only available for COFF based x86 targets.
433
102e9361
NC
434@cindex @code{largecomm} directive, ELF
435@item .largecomm @var{symbol} , @var{length}[, @var{alignment}]
436This directive behaves in the same way as the @code{comm} directive
437except that the data is placed into the @var{.lbss} section instead of
438the @var{.bss} section @ref{Comm}.
439
440The directive is intended to be used for data which requires a large
441amount of space, and it is only available for ELF based x86_64
442targets.
443
a6c24e68 444@c FIXME: Document other x86 specific directives ? Eg: .code16gcc,
a6c24e68
NC
445
446@end table
447
252b5132 448@node i386-Syntax
7c31ae13
NC
449@section i386 Syntactical Considerations
450@menu
451* i386-Variations:: AT&T Syntax versus Intel Syntax
452* i386-Chars:: Special Characters
453@end menu
454
455@node i386-Variations
456@subsection AT&T Syntax versus Intel Syntax
252b5132 457
e413e4e9
AM
458@cindex i386 intel_syntax pseudo op
459@cindex intel_syntax pseudo op, i386
460@cindex i386 att_syntax pseudo op
461@cindex att_syntax pseudo op, i386
252b5132
RH
462@cindex i386 syntax compatibility
463@cindex syntax compatibility, i386
55b62671
AJ
464@cindex x86-64 intel_syntax pseudo op
465@cindex intel_syntax pseudo op, x86-64
466@cindex x86-64 att_syntax pseudo op
467@cindex att_syntax pseudo op, x86-64
468@cindex x86-64 syntax compatibility
469@cindex syntax compatibility, x86-64
e413e4e9
AM
470
471@code{@value{AS}} now supports assembly using Intel assembler syntax.
472@code{.intel_syntax} selects Intel mode, and @code{.att_syntax} switches
473back to the usual AT&T mode for compatibility with the output of
474@code{@value{GCC}}. Either of these directives may have an optional
475argument, @code{prefix}, or @code{noprefix} specifying whether registers
476require a @samp{%} prefix. AT&T System V/386 assembler syntax is quite
252b5132
RH
477different from Intel syntax. We mention these differences because
478almost all 80386 documents use Intel syntax. Notable differences
479between the two syntaxes are:
480
481@cindex immediate operands, i386
482@cindex i386 immediate operands
483@cindex register operands, i386
484@cindex i386 register operands
485@cindex jump/call operands, i386
486@cindex i386 jump/call operands
487@cindex operand delimiters, i386
55b62671
AJ
488
489@cindex immediate operands, x86-64
490@cindex x86-64 immediate operands
491@cindex register operands, x86-64
492@cindex x86-64 register operands
493@cindex jump/call operands, x86-64
494@cindex x86-64 jump/call operands
495@cindex operand delimiters, x86-64
252b5132
RH
496@itemize @bullet
497@item
498AT&T immediate operands are preceded by @samp{$}; Intel immediate
499operands are undelimited (Intel @samp{push 4} is AT&T @samp{pushl $4}).
500AT&T register operands are preceded by @samp{%}; Intel register operands
501are undelimited. AT&T absolute (as opposed to PC relative) jump/call
502operands are prefixed by @samp{*}; they are undelimited in Intel syntax.
503
504@cindex i386 source, destination operands
505@cindex source, destination operands; i386
55b62671
AJ
506@cindex x86-64 source, destination operands
507@cindex source, destination operands; x86-64
252b5132
RH
508@item
509AT&T and Intel syntax use the opposite order for source and destination
510operands. Intel @samp{add eax, 4} is @samp{addl $4, %eax}. The
511@samp{source, dest} convention is maintained for compatibility with
96ef6e0f
L
512previous Unix assemblers. Note that @samp{bound}, @samp{invlpga}, and
513instructions with 2 immediate operands, such as the @samp{enter}
514instruction, do @emph{not} have reversed order. @ref{i386-Bugs}.
252b5132
RH
515
516@cindex mnemonic suffixes, i386
517@cindex sizes operands, i386
518@cindex i386 size suffixes
55b62671
AJ
519@cindex mnemonic suffixes, x86-64
520@cindex sizes operands, x86-64
521@cindex x86-64 size suffixes
252b5132
RH
522@item
523In AT&T syntax the size of memory operands is determined from the last
524character of the instruction mnemonic. Mnemonic suffixes of @samp{b},
55b62671
AJ
525@samp{w}, @samp{l} and @samp{q} specify byte (8-bit), word (16-bit), long
526(32-bit) and quadruple word (64-bit) memory references. Intel syntax accomplishes
527this by prefixing memory operands (@emph{not} the instruction mnemonics) with
528@samp{byte ptr}, @samp{word ptr}, @samp{dword ptr} and @samp{qword ptr}. Thus,
529Intel @samp{mov al, byte ptr @var{foo}} is @samp{movb @var{foo}, %al} in AT&T
530syntax.
252b5132 531
4b06377f
L
532In 64-bit code, @samp{movabs} can be used to encode the @samp{mov}
533instruction with the 64-bit displacement or immediate operand.
534
252b5132
RH
535@cindex return instructions, i386
536@cindex i386 jump, call, return
55b62671
AJ
537@cindex return instructions, x86-64
538@cindex x86-64 jump, call, return
252b5132
RH
539@item
540Immediate form long jumps and calls are
541@samp{lcall/ljmp $@var{section}, $@var{offset}} in AT&T syntax; the
542Intel syntax is
543@samp{call/jmp far @var{section}:@var{offset}}. Also, the far return
544instruction
545is @samp{lret $@var{stack-adjust}} in AT&T syntax; Intel syntax is
546@samp{ret far @var{stack-adjust}}.
547
548@cindex sections, i386
549@cindex i386 sections
55b62671
AJ
550@cindex sections, x86-64
551@cindex x86-64 sections
252b5132
RH
552@item
553The AT&T assembler does not provide support for multiple section
554programs. Unix style systems expect all programs to be single sections.
555@end itemize
556
7c31ae13
NC
557@node i386-Chars
558@subsection Special Characters
559
560@cindex line comment character, i386
561@cindex i386 line comment character
562The presence of a @samp{#} appearing anywhere on a line indicates the
563start of a comment that extends to the end of that line.
564
565If a @samp{#} appears as the first character of a line then the whole
566line is treated as a comment, but in this case the line can also be a
567logical line number directive (@pxref{Comments}) or a preprocessor
568control command (@pxref{Preprocessing}).
569
570If the @option{--divide} command line option has not been specified
571then the @samp{/} character appearing anywhere on a line also
572introduces a line comment.
573
574@cindex line separator, i386
575@cindex statement separator, i386
576@cindex i386 line separator
577The @samp{;} character can be used to separate statements on the same
578line.
579
252b5132 580@node i386-Mnemonics
d3b47e2b
L
581@section i386-Mnemonics
582@subsection Instruction Naming
252b5132
RH
583
584@cindex i386 instruction naming
585@cindex instruction naming, i386
55b62671
AJ
586@cindex x86-64 instruction naming
587@cindex instruction naming, x86-64
588
252b5132 589Instruction mnemonics are suffixed with one character modifiers which
55b62671
AJ
590specify the size of operands. The letters @samp{b}, @samp{w}, @samp{l}
591and @samp{q} specify byte, word, long and quadruple word operands. If
592no suffix is specified by an instruction then @code{@value{AS}} tries to
593fill in the missing suffix based on the destination register operand
594(the last one by convention). Thus, @samp{mov %ax, %bx} is equivalent
595to @samp{movw %ax, %bx}; also, @samp{mov $1, %bx} is equivalent to
596@samp{movw $1, bx}. Note that this is incompatible with the AT&T Unix
597assembler which assumes that a missing mnemonic suffix implies long
598operand size. (This incompatibility does not affect compiler output
599since compilers always explicitly specify the mnemonic suffix.)
252b5132
RH
600
601Almost all instructions have the same names in AT&T and Intel format.
602There are a few exceptions. The sign extend and zero extend
603instructions need two sizes to specify them. They need a size to
604sign/zero extend @emph{from} and a size to zero extend @emph{to}. This
605is accomplished by using two instruction mnemonic suffixes in AT&T
606syntax. Base names for sign extend and zero extend are
607@samp{movs@dots{}} and @samp{movz@dots{}} in AT&T syntax (@samp{movsx}
608and @samp{movzx} in Intel syntax). The instruction mnemonic suffixes
609are tacked on to this base name, the @emph{from} suffix before the
610@emph{to} suffix. Thus, @samp{movsbl %al, %edx} is AT&T syntax for
611``move sign extend @emph{from} %al @emph{to} %edx.'' Possible suffixes,
612thus, are @samp{bl} (from byte to long), @samp{bw} (from byte to word),
55b62671
AJ
613@samp{wl} (from word to long), @samp{bq} (from byte to quadruple word),
614@samp{wq} (from word to quadruple word), and @samp{lq} (from long to
615quadruple word).
252b5132 616
b6169b20
L
617@cindex encoding options, i386
618@cindex encoding options, x86-64
619
86fa6981
L
620Different encoding options can be specified via pseudo prefixes:
621
622@itemize @bullet
623@item
624@samp{@{disp8@}} -- prefer 8-bit displacement.
625
626@item
627@samp{@{disp32@}} -- prefer 32-bit displacement.
628
629@item
630@samp{@{load@}} -- prefer load-form instruction.
631
632@item
633@samp{@{store@}} -- prefer store-form instruction.
634
635@item
636@samp{@{vex2@}} -- prefer 2-byte VEX prefix for VEX instruction.
637
638@item
639@samp{@{vex3@}} -- prefer 3-byte VEX prefix for VEX instruction.
640
641@item
642@samp{@{evex@}} -- encode with EVEX prefix.
643@end itemize
b6169b20 644
252b5132
RH
645@cindex conversion instructions, i386
646@cindex i386 conversion instructions
55b62671
AJ
647@cindex conversion instructions, x86-64
648@cindex x86-64 conversion instructions
252b5132
RH
649The Intel-syntax conversion instructions
650
651@itemize @bullet
652@item
653@samp{cbw} --- sign-extend byte in @samp{%al} to word in @samp{%ax},
654
655@item
656@samp{cwde} --- sign-extend word in @samp{%ax} to long in @samp{%eax},
657
658@item
659@samp{cwd} --- sign-extend word in @samp{%ax} to long in @samp{%dx:%ax},
660
661@item
662@samp{cdq} --- sign-extend dword in @samp{%eax} to quad in @samp{%edx:%eax},
55b62671
AJ
663
664@item
665@samp{cdqe} --- sign-extend dword in @samp{%eax} to quad in @samp{%rax}
666(x86-64 only),
667
668@item
d5f0cf92 669@samp{cqo} --- sign-extend quad in @samp{%rax} to octuple in
55b62671 670@samp{%rdx:%rax} (x86-64 only),
252b5132
RH
671@end itemize
672
673@noindent
55b62671
AJ
674are called @samp{cbtw}, @samp{cwtl}, @samp{cwtd}, @samp{cltd}, @samp{cltq}, and
675@samp{cqto} in AT&T naming. @code{@value{AS}} accepts either naming for these
676instructions.
252b5132
RH
677
678@cindex jump instructions, i386
679@cindex call instructions, i386
55b62671
AJ
680@cindex jump instructions, x86-64
681@cindex call instructions, x86-64
252b5132
RH
682Far call/jump instructions are @samp{lcall} and @samp{ljmp} in
683AT&T syntax, but are @samp{call far} and @samp{jump far} in Intel
684convention.
685
d3b47e2b 686@subsection AT&T Mnemonic versus Intel Mnemonic
1efbbeb4
L
687
688@cindex i386 mnemonic compatibility
689@cindex mnemonic compatibility, i386
690
691@code{@value{AS}} supports assembly using Intel mnemonic.
692@code{.intel_mnemonic} selects Intel mnemonic with Intel syntax, and
693@code{.att_mnemonic} switches back to the usual AT&T mnemonic with AT&T
694syntax for compatibility with the output of @code{@value{GCC}}.
1efbbeb4
L
695Several x87 instructions, @samp{fadd}, @samp{fdiv}, @samp{fdivp},
696@samp{fdivr}, @samp{fdivrp}, @samp{fmul}, @samp{fsub}, @samp{fsubp},
697@samp{fsubr} and @samp{fsubrp}, are implemented in AT&T System V/386
698assembler with different mnemonics from those in Intel IA32 specification.
699@code{@value{GCC}} generates those instructions with AT&T mnemonic.
700
252b5132
RH
701@node i386-Regs
702@section Register Naming
703
704@cindex i386 registers
705@cindex registers, i386
55b62671
AJ
706@cindex x86-64 registers
707@cindex registers, x86-64
252b5132
RH
708Register operands are always prefixed with @samp{%}. The 80386 registers
709consist of
710
711@itemize @bullet
712@item
713the 8 32-bit registers @samp{%eax} (the accumulator), @samp{%ebx},
714@samp{%ecx}, @samp{%edx}, @samp{%edi}, @samp{%esi}, @samp{%ebp} (the
715frame pointer), and @samp{%esp} (the stack pointer).
716
717@item
718the 8 16-bit low-ends of these: @samp{%ax}, @samp{%bx}, @samp{%cx},
719@samp{%dx}, @samp{%di}, @samp{%si}, @samp{%bp}, and @samp{%sp}.
720
721@item
722the 8 8-bit registers: @samp{%ah}, @samp{%al}, @samp{%bh},
723@samp{%bl}, @samp{%ch}, @samp{%cl}, @samp{%dh}, and @samp{%dl} (These
724are the high-bytes and low-bytes of @samp{%ax}, @samp{%bx},
725@samp{%cx}, and @samp{%dx})
726
727@item
728the 6 section registers @samp{%cs} (code section), @samp{%ds}
729(data section), @samp{%ss} (stack section), @samp{%es}, @samp{%fs},
730and @samp{%gs}.
731
732@item
4bde3cdd
UD
733the 5 processor control registers @samp{%cr0}, @samp{%cr2},
734@samp{%cr3}, @samp{%cr4}, and @samp{%cr8}.
252b5132
RH
735
736@item
737the 6 debug registers @samp{%db0}, @samp{%db1}, @samp{%db2},
738@samp{%db3}, @samp{%db6}, and @samp{%db7}.
739
740@item
741the 2 test registers @samp{%tr6} and @samp{%tr7}.
742
743@item
744the 8 floating point register stack @samp{%st} or equivalently
745@samp{%st(0)}, @samp{%st(1)}, @samp{%st(2)}, @samp{%st(3)},
746@samp{%st(4)}, @samp{%st(5)}, @samp{%st(6)}, and @samp{%st(7)}.
55b62671
AJ
747These registers are overloaded by 8 MMX registers @samp{%mm0},
748@samp{%mm1}, @samp{%mm2}, @samp{%mm3}, @samp{%mm4}, @samp{%mm5},
749@samp{%mm6} and @samp{%mm7}.
750
751@item
4bde3cdd 752the 8 128-bit SSE registers registers @samp{%xmm0}, @samp{%xmm1}, @samp{%xmm2},
55b62671
AJ
753@samp{%xmm3}, @samp{%xmm4}, @samp{%xmm5}, @samp{%xmm6} and @samp{%xmm7}.
754@end itemize
755
756The AMD x86-64 architecture extends the register set by:
757
758@itemize @bullet
759@item
760enhancing the 8 32-bit registers to 64-bit: @samp{%rax} (the
761accumulator), @samp{%rbx}, @samp{%rcx}, @samp{%rdx}, @samp{%rdi},
762@samp{%rsi}, @samp{%rbp} (the frame pointer), @samp{%rsp} (the stack
763pointer)
764
765@item
766the 8 extended registers @samp{%r8}--@samp{%r15}.
767
768@item
4bde3cdd 769the 8 32-bit low ends of the extended registers: @samp{%r8d}--@samp{%r15d}.
55b62671
AJ
770
771@item
4bde3cdd 772the 8 16-bit low ends of the extended registers: @samp{%r8w}--@samp{%r15w}.
55b62671
AJ
773
774@item
4bde3cdd 775the 8 8-bit low ends of the extended registers: @samp{%r8b}--@samp{%r15b}.
55b62671
AJ
776
777@item
778the 4 8-bit registers: @samp{%sil}, @samp{%dil}, @samp{%bpl}, @samp{%spl}.
779
780@item
781the 8 debug registers: @samp{%db8}--@samp{%db15}.
782
783@item
4bde3cdd
UD
784the 8 128-bit SSE registers: @samp{%xmm8}--@samp{%xmm15}.
785@end itemize
786
787With the AVX extensions more registers were made available:
788
789@itemize @bullet
790
791@item
792the 16 256-bit SSE @samp{%ymm0}--@samp{%ymm15} (only the first 8
793available in 32-bit mode). The bottom 128 bits are overlaid with the
794@samp{xmm0}--@samp{xmm15} registers.
795
796@end itemize
797
798The AVX2 extensions made in 64-bit mode more registers available:
799
800@itemize @bullet
801
802@item
803the 16 128-bit registers @samp{%xmm16}--@samp{%xmm31} and the 16 256-bit
804registers @samp{%ymm16}--@samp{%ymm31}.
805
806@end itemize
807
808The AVX512 extensions added the following registers:
809
810@itemize @bullet
811
812@item
813the 32 512-bit registers @samp{%zmm0}--@samp{%zmm31} (only the first 8
814available in 32-bit mode). The bottom 128 bits are overlaid with the
815@samp{%xmm0}--@samp{%xmm31} registers and the first 256 bits are
816overlaid with the @samp{%ymm0}--@samp{%ymm31} registers.
817
818@item
819the 8 mask registers @samp{%k0}--@samp{%k7}.
820
252b5132
RH
821@end itemize
822
823@node i386-Prefixes
824@section Instruction Prefixes
825
826@cindex i386 instruction prefixes
827@cindex instruction prefixes, i386
828@cindex prefixes, i386
829Instruction prefixes are used to modify the following instruction. They
830are used to repeat string instructions, to provide section overrides, to
831perform bus lock operations, and to change operand and address sizes.
832(Most instructions that normally operate on 32-bit operands will use
83316-bit operands if the instruction has an ``operand size'' prefix.)
834Instruction prefixes are best written on the same line as the instruction
835they act upon. For example, the @samp{scas} (scan string) instruction is
836repeated with:
837
838@smallexample
839 repne scas %es:(%edi),%al
840@end smallexample
841
842You may also place prefixes on the lines immediately preceding the
843instruction, but this circumvents checks that @code{@value{AS}} does
844with prefixes, and will not work with all prefixes.
845
846Here is a list of instruction prefixes:
847
848@cindex section override prefixes, i386
849@itemize @bullet
850@item
851Section override prefixes @samp{cs}, @samp{ds}, @samp{ss}, @samp{es},
852@samp{fs}, @samp{gs}. These are automatically added by specifying
853using the @var{section}:@var{memory-operand} form for memory references.
854
855@cindex size prefixes, i386
856@item
857Operand/Address size prefixes @samp{data16} and @samp{addr16}
858change 32-bit operands/addresses into 16-bit operands/addresses,
859while @samp{data32} and @samp{addr32} change 16-bit ones (in a
860@code{.code16} section) into 32-bit operands/addresses. These prefixes
861@emph{must} appear on the same line of code as the instruction they
862modify. For example, in a 16-bit @code{.code16} section, you might
863write:
864
865@smallexample
866 addr32 jmpl *(%ebx)
867@end smallexample
868
869@cindex bus lock prefixes, i386
870@cindex inhibiting interrupts, i386
871@item
872The bus lock prefix @samp{lock} inhibits interrupts during execution of
873the instruction it precedes. (This is only valid with certain
874instructions; see a 80386 manual for details).
875
876@cindex coprocessor wait, i386
877@item
878The wait for coprocessor prefix @samp{wait} waits for the coprocessor to
879complete the current instruction. This should never be needed for the
88080386/80387 combination.
881
882@cindex repeat prefixes, i386
883@item
884The @samp{rep}, @samp{repe}, and @samp{repne} prefixes are added
885to string instructions to make them repeat @samp{%ecx} times (@samp{%cx}
886times if the current address size is 16-bits).
55b62671
AJ
887@cindex REX prefixes, i386
888@item
889The @samp{rex} family of prefixes is used by x86-64 to encode
890extensions to i386 instruction set. The @samp{rex} prefix has four
891bits --- an operand size overwrite (@code{64}) used to change operand size
892from 32-bit to 64-bit and X, Y and Z extensions bits used to extend the
893register set.
894
895You may write the @samp{rex} prefixes directly. The @samp{rex64xyz}
896instruction emits @samp{rex} prefix with all the bits set. By omitting
897the @code{64}, @code{x}, @code{y} or @code{z} you may write other
898prefixes as well. Normally, there is no need to write the prefixes
899explicitly, since gas will automatically generate them based on the
900instruction operands.
252b5132
RH
901@end itemize
902
903@node i386-Memory
904@section Memory References
905
906@cindex i386 memory references
907@cindex memory references, i386
55b62671
AJ
908@cindex x86-64 memory references
909@cindex memory references, x86-64
252b5132
RH
910An Intel syntax indirect memory reference of the form
911
912@smallexample
913@var{section}:[@var{base} + @var{index}*@var{scale} + @var{disp}]
914@end smallexample
915
916@noindent
917is translated into the AT&T syntax
918
919@smallexample
920@var{section}:@var{disp}(@var{base}, @var{index}, @var{scale})
921@end smallexample
922
923@noindent
924where @var{base} and @var{index} are the optional 32-bit base and
925index registers, @var{disp} is the optional displacement, and
926@var{scale}, taking the values 1, 2, 4, and 8, multiplies @var{index}
927to calculate the address of the operand. If no @var{scale} is
928specified, @var{scale} is taken to be 1. @var{section} specifies the
929optional section register for the memory operand, and may override the
930default section register (see a 80386 manual for section register
931defaults). Note that section overrides in AT&T syntax @emph{must}
932be preceded by a @samp{%}. If you specify a section override which
933coincides with the default section register, @code{@value{AS}} does @emph{not}
934output any section register override prefixes to assemble the given
935instruction. Thus, section overrides can be specified to emphasize which
936section register is used for a given memory operand.
937
938Here are some examples of Intel and AT&T style memory references:
939
940@table @asis
941@item AT&T: @samp{-4(%ebp)}, Intel: @samp{[ebp - 4]}
942@var{base} is @samp{%ebp}; @var{disp} is @samp{-4}. @var{section} is
943missing, and the default section is used (@samp{%ss} for addressing with
944@samp{%ebp} as the base register). @var{index}, @var{scale} are both missing.
945
946@item AT&T: @samp{foo(,%eax,4)}, Intel: @samp{[foo + eax*4]}
947@var{index} is @samp{%eax} (scaled by a @var{scale} 4); @var{disp} is
948@samp{foo}. All other fields are missing. The section register here
949defaults to @samp{%ds}.
950
951@item AT&T: @samp{foo(,1)}; Intel @samp{[foo]}
952This uses the value pointed to by @samp{foo} as a memory operand.
953Note that @var{base} and @var{index} are both missing, but there is only
954@emph{one} @samp{,}. This is a syntactic exception.
955
956@item AT&T: @samp{%gs:foo}; Intel @samp{gs:foo}
957This selects the contents of the variable @samp{foo} with section
958register @var{section} being @samp{%gs}.
959@end table
960
961Absolute (as opposed to PC relative) call and jump operands must be
962prefixed with @samp{*}. If no @samp{*} is specified, @code{@value{AS}}
963always chooses PC relative addressing for jump/call labels.
964
965Any instruction that has a memory operand, but no register operand,
55b62671
AJ
966@emph{must} specify its size (byte, word, long, or quadruple) with an
967instruction mnemonic suffix (@samp{b}, @samp{w}, @samp{l} or @samp{q},
968respectively).
969
970The x86-64 architecture adds an RIP (instruction pointer relative)
971addressing. This addressing mode is specified by using @samp{rip} as a
972base register. Only constant offsets are valid. For example:
973
974@table @asis
975@item AT&T: @samp{1234(%rip)}, Intel: @samp{[rip + 1234]}
976Points to the address 1234 bytes past the end of the current
977instruction.
978
979@item AT&T: @samp{symbol(%rip)}, Intel: @samp{[rip + symbol]}
980Points to the @code{symbol} in RIP relative way, this is shorter than
981the default absolute addressing.
982@end table
983
984Other addressing modes remain unchanged in x86-64 architecture, except
985registers used are 64-bit instead of 32-bit.
252b5132 986
fddf5b5b 987@node i386-Jumps
252b5132
RH
988@section Handling of Jump Instructions
989
990@cindex jump optimization, i386
991@cindex i386 jump optimization
55b62671
AJ
992@cindex jump optimization, x86-64
993@cindex x86-64 jump optimization
252b5132
RH
994Jump instructions are always optimized to use the smallest possible
995displacements. This is accomplished by using byte (8-bit) displacement
996jumps whenever the target is sufficiently close. If a byte displacement
fddf5b5b 997is insufficient a long displacement is used. We do not support
252b5132
RH
998word (16-bit) displacement jumps in 32-bit mode (i.e. prefixing the jump
999instruction with the @samp{data16} instruction prefix), since the 80386
1000insists upon masking @samp{%eip} to 16 bits after the word displacement
fddf5b5b 1001is added. (See also @pxref{i386-Arch})
252b5132
RH
1002
1003Note that the @samp{jcxz}, @samp{jecxz}, @samp{loop}, @samp{loopz},
1004@samp{loope}, @samp{loopnz} and @samp{loopne} instructions only come in byte
1005displacements, so that if you use these instructions (@code{@value{GCC}} does
1006not use them) you may get an error message (and incorrect code). The AT&T
100780386 assembler tries to get around this problem by expanding @samp{jcxz foo}
1008to
1009
1010@smallexample
1011 jcxz cx_zero
1012 jmp cx_nonzero
1013cx_zero: jmp foo
1014cx_nonzero:
1015@end smallexample
1016
1017@node i386-Float
1018@section Floating Point
1019
1020@cindex i386 floating point
1021@cindex floating point, i386
55b62671
AJ
1022@cindex x86-64 floating point
1023@cindex floating point, x86-64
252b5132
RH
1024All 80387 floating point types except packed BCD are supported.
1025(BCD support may be added without much difficulty). These data
1026types are 16-, 32-, and 64- bit integers, and single (32-bit),
1027double (64-bit), and extended (80-bit) precision floating point.
1028Each supported type has an instruction mnemonic suffix and a constructor
1029associated with it. Instruction mnemonic suffixes specify the operand's
1030data type. Constructors build these data types into memory.
1031
1032@cindex @code{float} directive, i386
1033@cindex @code{single} directive, i386
1034@cindex @code{double} directive, i386
1035@cindex @code{tfloat} directive, i386
55b62671
AJ
1036@cindex @code{float} directive, x86-64
1037@cindex @code{single} directive, x86-64
1038@cindex @code{double} directive, x86-64
1039@cindex @code{tfloat} directive, x86-64
252b5132
RH
1040@itemize @bullet
1041@item
1042Floating point constructors are @samp{.float} or @samp{.single},
1043@samp{.double}, and @samp{.tfloat} for 32-, 64-, and 80-bit formats.
1044These correspond to instruction mnemonic suffixes @samp{s}, @samp{l},
1045and @samp{t}. @samp{t} stands for 80-bit (ten byte) real. The 80387
1046only supports this format via the @samp{fldt} (load 80-bit real to stack
1047top) and @samp{fstpt} (store 80-bit real and pop stack) instructions.
1048
1049@cindex @code{word} directive, i386
1050@cindex @code{long} directive, i386
1051@cindex @code{int} directive, i386
1052@cindex @code{quad} directive, i386
55b62671
AJ
1053@cindex @code{word} directive, x86-64
1054@cindex @code{long} directive, x86-64
1055@cindex @code{int} directive, x86-64
1056@cindex @code{quad} directive, x86-64
252b5132
RH
1057@item
1058Integer constructors are @samp{.word}, @samp{.long} or @samp{.int}, and
1059@samp{.quad} for the 16-, 32-, and 64-bit integer formats. The
1060corresponding instruction mnemonic suffixes are @samp{s} (single),
1061@samp{l} (long), and @samp{q} (quad). As with the 80-bit real format,
1062the 64-bit @samp{q} format is only present in the @samp{fildq} (load
1063quad integer to stack top) and @samp{fistpq} (store quad integer and pop
1064stack) instructions.
1065@end itemize
1066
1067Register to register operations should not use instruction mnemonic suffixes.
1068@samp{fstl %st, %st(1)} will give a warning, and be assembled as if you
1069wrote @samp{fst %st, %st(1)}, since all register to register operations
1070use 80-bit floating point operands. (Contrast this with @samp{fstl %st, mem},
1071which converts @samp{%st} from 80-bit to 64-bit floating point format,
1072then stores the result in the 4 byte location @samp{mem})
1073
1074@node i386-SIMD
1075@section Intel's MMX and AMD's 3DNow! SIMD Operations
1076
1077@cindex MMX, i386
1078@cindex 3DNow!, i386
1079@cindex SIMD, i386
55b62671
AJ
1080@cindex MMX, x86-64
1081@cindex 3DNow!, x86-64
1082@cindex SIMD, x86-64
252b5132
RH
1083
1084@code{@value{AS}} supports Intel's MMX instruction set (SIMD
1085instructions for integer data), available on Intel's Pentium MMX
1086processors and Pentium II processors, AMD's K6 and K6-2 processors,
b45619c0 1087Cyrix' M2 processor, and probably others. It also supports AMD's 3DNow!@:
252b5132
RH
1088instruction set (SIMD instructions for 32-bit floating point data)
1089available on AMD's K6-2 processor and possibly others in the future.
1090
1091Currently, @code{@value{AS}} does not support Intel's floating point
1092SIMD, Katmai (KNI).
1093
1094The eight 64-bit MMX operands, also used by 3DNow!, are called @samp{%mm0},
1095@samp{%mm1}, ... @samp{%mm7}. They contain eight 8-bit integers, four
109616-bit integers, two 32-bit integers, one 64-bit integer, or two 32-bit
1097floating point values. The MMX registers cannot be used at the same time
1098as the floating point stack.
1099
1100See Intel and AMD documentation, keeping in mind that the operand order in
1101instructions is reversed from the Intel syntax.
1102
f88c9eb0
SP
1103@node i386-LWP
1104@section AMD's Lightweight Profiling Instructions
1105
1106@cindex LWP, i386
1107@cindex LWP, x86-64
1108
1109@code{@value{AS}} supports AMD's Lightweight Profiling (LWP)
1110instruction set, available on AMD's Family 15h (Orochi) processors.
1111
1112LWP enables applications to collect and manage performance data, and
1113react to performance events. The collection of performance data
1114requires no context switches. LWP runs in the context of a thread and
1115so several counters can be used independently across multiple threads.
1116LWP can be used in both 64-bit and legacy 32-bit modes.
1117
1118For detailed information on the LWP instruction set, see the
1119@cite{AMD Lightweight Profiling Specification} available at
1120@uref{http://developer.amd.com/cpu/LWP,Lightweight Profiling Specification}.
1121
87973e9f
QN
1122@node i386-BMI
1123@section Bit Manipulation Instructions
1124
1125@cindex BMI, i386
1126@cindex BMI, x86-64
1127
1128@code{@value{AS}} supports the Bit Manipulation (BMI) instruction set.
1129
1130BMI instructions provide several instructions implementing individual
1131bit manipulation operations such as isolation, masking, setting, or
34bca508 1132resetting.
87973e9f
QN
1133
1134@c Need to add a specification citation here when available.
1135
2a2a0f38
QN
1136@node i386-TBM
1137@section AMD's Trailing Bit Manipulation Instructions
1138
1139@cindex TBM, i386
1140@cindex TBM, x86-64
1141
1142@code{@value{AS}} supports AMD's Trailing Bit Manipulation (TBM)
1143instruction set, available on AMD's BDVER2 processors (Trinity and
1144Viperfish).
1145
1146TBM instructions provide instructions implementing individual bit
1147manipulation operations such as isolating, masking, setting, resetting,
1148complementing, and operations on trailing zeros and ones.
1149
1150@c Need to add a specification citation here when available.
87973e9f 1151
252b5132
RH
1152@node i386-16bit
1153@section Writing 16-bit Code
1154
1155@cindex i386 16-bit code
1156@cindex 16-bit code, i386
1157@cindex real-mode code, i386
eecb386c 1158@cindex @code{code16gcc} directive, i386
252b5132
RH
1159@cindex @code{code16} directive, i386
1160@cindex @code{code32} directive, i386
55b62671
AJ
1161@cindex @code{code64} directive, i386
1162@cindex @code{code64} directive, x86-64
1163While @code{@value{AS}} normally writes only ``pure'' 32-bit i386 code
1164or 64-bit x86-64 code depending on the default configuration,
252b5132 1165it also supports writing code to run in real mode or in 16-bit protected
eecb386c
AM
1166mode code segments. To do this, put a @samp{.code16} or
1167@samp{.code16gcc} directive before the assembly language instructions to
995cef8c
L
1168be run in 16-bit mode. You can switch @code{@value{AS}} to writing
116932-bit code with the @samp{.code32} directive or 64-bit code with the
1170@samp{.code64} directive.
eecb386c
AM
1171
1172@samp{.code16gcc} provides experimental support for generating 16-bit
1173code from gcc, and differs from @samp{.code16} in that @samp{call},
1174@samp{ret}, @samp{enter}, @samp{leave}, @samp{push}, @samp{pop},
1175@samp{pusha}, @samp{popa}, @samp{pushf}, and @samp{popf} instructions
1176default to 32-bit size. This is so that the stack pointer is
1177manipulated in the same way over function calls, allowing access to
1178function parameters at the same stack offsets as in 32-bit mode.
1179@samp{.code16gcc} also automatically adds address size prefixes where
1180necessary to use the 32-bit addressing modes that gcc generates.
252b5132
RH
1181
1182The code which @code{@value{AS}} generates in 16-bit mode will not
1183necessarily run on a 16-bit pre-80386 processor. To write code that
1184runs on such a processor, you must refrain from using @emph{any} 32-bit
1185constructs which require @code{@value{AS}} to output address or operand
1186size prefixes.
1187
1188Note that writing 16-bit code instructions by explicitly specifying a
1189prefix or an instruction mnemonic suffix within a 32-bit code section
1190generates different machine instructions than those generated for a
119116-bit code segment. In a 32-bit code section, the following code
1192generates the machine opcode bytes @samp{66 6a 04}, which pushes the
1193value @samp{4} onto the stack, decrementing @samp{%esp} by 2.
1194
1195@smallexample
1196 pushw $4
1197@end smallexample
1198
1199The same code in a 16-bit code section would generate the machine
b45619c0 1200opcode bytes @samp{6a 04} (i.e., without the operand size prefix), which
252b5132
RH
1201is correct since the processor default operand size is assumed to be 16
1202bits in a 16-bit code section.
1203
e413e4e9
AM
1204@node i386-Arch
1205@section Specifying CPU Architecture
1206
1207@cindex arch directive, i386
1208@cindex i386 arch directive
55b62671
AJ
1209@cindex arch directive, x86-64
1210@cindex x86-64 arch directive
e413e4e9
AM
1211
1212@code{@value{AS}} may be told to assemble for a particular CPU
5c6af06e 1213(sub-)architecture with the @code{.arch @var{cpu_type}} directive. This
e413e4e9
AM
1214directive enables a warning when gas detects an instruction that is not
1215supported on the CPU specified. The choices for @var{cpu_type} are:
1216
1217@multitable @columnfractions .20 .20 .20 .20
1218@item @samp{i8086} @tab @samp{i186} @tab @samp{i286} @tab @samp{i386}
1219@item @samp{i486} @tab @samp{i586} @tab @samp{i686} @tab @samp{pentium}
5c6af06e 1220@item @samp{pentiumpro} @tab @samp{pentiumii} @tab @samp{pentiumiii} @tab @samp{pentium4}
ef05d495 1221@item @samp{prescott} @tab @samp{nocona} @tab @samp{core} @tab @samp{core2}
81486035 1222@item @samp{corei7} @tab @samp{l1om} @tab @samp{k1om} @samp{iamcu}
1543849b 1223@item @samp{k6} @tab @samp{k6_2} @tab @samp{athlon} @tab @samp{k8}
5e5c50d3 1224@item @samp{amdfam10} @tab @samp{bdver1} @tab @samp{bdver2} @tab @samp{bdver3}
029f3522 1225@item @samp{bdver4} @tab @samp{znver1} @tab @samp{btver1} @tab @samp{btver2}
1ceab344 1226@item @samp{generic32} @tab @samp{generic64}
9103f4f4 1227@item @samp{.mmx} @tab @samp{.sse} @tab @samp{.sse2} @tab @samp{.sse3}
d76f7bc1 1228@item @samp{.ssse3} @tab @samp{.sse4.1} @tab @samp{.sse4.2} @tab @samp{.sse4}
c7b8aa3a
L
1229@item @samp{.avx} @tab @samp{.vmx} @tab @samp{.smx} @tab @samp{.ept}
1230@item @samp{.clflush} @tab @samp{.movbe} @tab @samp{.xsave} @tab @samp{.xsaveopt}
1231@item @samp{.aes} @tab @samp{.pclmul} @tab @samp{.fma} @tab @samp{.fsgsbase}
6c30d220 1232@item @samp{.rdrnd} @tab @samp{.f16c} @tab @samp{.avx2} @tab @samp{.bmi2}
42164a71 1233@item @samp{.lzcnt} @tab @samp{.invpcid} @tab @samp{.vmfunc} @tab @samp{.hle}
e2e1fcde 1234@item @samp{.rtm} @tab @samp{.adx} @tab @samp{.rdseed} @tab @samp{.prfchw}
1dfc6506
L
1235@item @samp{.smap} @tab @samp{.mpx} @tab @samp{.sha} @tab @samp{.prefetchwt1}
1236@item @samp{.clflushopt} @tab @samp{.xsavec} @tab @samp{.xsaves} @tab @samp{.se1}
1237@item @samp{.avx512f} @tab @samp{.avx512cd} @tab @samp{.avx512er} @tab @samp{.avx512pf}
2cc1b5aa 1238@item @samp{.avx512vl} @tab @samp{.avx512bw} @tab @samp{.avx512dq} @tab @samp{.avx512ifma}
47acf0bd 1239@item @samp{.avx512vbmi} @tab @samp{.avx512_4fmaps} @tab @samp{.avx512_4vnniw}
8cfcb765 1240@item @samp{.avx512_vpopcntdq} @tab @samp{.avx512_vbmi2} @tab @samp{.avx512_vnni}
ee6872be 1241@item @samp{.avx512_bitalg}
d777820b
IT
1242@item @samp{.clwb} @tab @samp{.rdpid} @tab @samp{.ptwrite} @tab @item @samp{.ibt}
1243@item @samp{.shstk} @tab @samp{.gfni} @tab @samp{.vaes} @tab @samp{.vpclmulqdq}
1ceab344 1244@item @samp{.3dnow} @tab @samp{.3dnowa} @tab @samp{.sse4a} @tab @samp{.sse5}
f72d7f29 1245@item @samp{.syscall} @tab @samp{.rdtscp} @tab @samp{.svme} @tab @samp{.abm}
60aa667e 1246@item @samp{.lwp} @tab @samp{.fma4} @tab @samp{.xop} @tab @samp{.cx16}
d777820b 1247@item @samp{.padlock} @tab @samp{.clzero} @tab @samp{.mwaitx}
e413e4e9
AM
1248@end multitable
1249
fddf5b5b
AM
1250Apart from the warning, there are only two other effects on
1251@code{@value{AS}} operation; Firstly, if you specify a CPU other than
e413e4e9
AM
1252@samp{i486}, then shift by one instructions such as @samp{sarl $1, %eax}
1253will automatically use a two byte opcode sequence. The larger three
1254byte opcode sequence is used on the 486 (and when no architecture is
1255specified) because it executes faster on the 486. Note that you can
1256explicitly request the two byte opcode by writing @samp{sarl %eax}.
fddf5b5b
AM
1257Secondly, if you specify @samp{i8086}, @samp{i186}, or @samp{i286},
1258@emph{and} @samp{.code16} or @samp{.code16gcc} then byte offset
1259conditional jumps will be promoted when necessary to a two instruction
1260sequence consisting of a conditional jump of the opposite sense around
1261an unconditional jump to the target.
1262
5c6af06e
JB
1263Following the CPU architecture (but not a sub-architecture, which are those
1264starting with a dot), you may specify @samp{jumps} or @samp{nojumps} to
1265control automatic promotion of conditional jumps. @samp{jumps} is the
1266default, and enables jump promotion; All external jumps will be of the long
1267variety, and file-local jumps will be promoted as necessary.
1268(@pxref{i386-Jumps}) @samp{nojumps} leaves external conditional jumps as
1269byte offset jumps, and warns about file-local conditional jumps that
1270@code{@value{AS}} promotes.
fddf5b5b
AM
1271Unconditional jumps are treated as for @samp{jumps}.
1272
1273For example
1274
1275@smallexample
1276 .arch i8086,nojumps
1277@end smallexample
e413e4e9 1278
5c9352f3
AM
1279@node i386-Bugs
1280@section AT&T Syntax bugs
1281
1282The UnixWare assembler, and probably other AT&T derived ix86 Unix
1283assemblers, generate floating point instructions with reversed source
1284and destination registers in certain cases. Unfortunately, gcc and
1285possibly many other programs use this reversed syntax, so we're stuck
1286with it.
1287
1288For example
1289
1290@smallexample
1291 fsub %st,%st(3)
1292@end smallexample
1293@noindent
1294results in @samp{%st(3)} being updated to @samp{%st - %st(3)} rather
1295than the expected @samp{%st(3) - %st}. This happens with all the
1296non-commutative arithmetic floating point operations with two register
1297operands where the source register is @samp{%st} and the destination
1298register is @samp{%st(i)}.
1299
252b5132
RH
1300@node i386-Notes
1301@section Notes
1302
1303@cindex i386 @code{mul}, @code{imul} instructions
1304@cindex @code{mul} instruction, i386
1305@cindex @code{imul} instruction, i386
55b62671
AJ
1306@cindex @code{mul} instruction, x86-64
1307@cindex @code{imul} instruction, x86-64
252b5132 1308There is some trickery concerning the @samp{mul} and @samp{imul}
55b62671 1309instructions that deserves mention. The 16-, 32-, 64- and 128-bit expanding
252b5132
RH
1310multiplies (base opcode @samp{0xf6}; extension 4 for @samp{mul} and 5
1311for @samp{imul}) can be output only in the one operand form. Thus,
1312@samp{imul %ebx, %eax} does @emph{not} select the expanding multiply;
1313the expanding multiply would clobber the @samp{%edx} register, and this
1314would confuse @code{@value{GCC}} output. Use @samp{imul %ebx} to get the
131564-bit product in @samp{%edx:%eax}.
1316
1317We have added a two operand form of @samp{imul} when the first operand
1318is an immediate mode expression and the second operand is a register.
1319This is just a shorthand, so that, multiplying @samp{%eax} by 69, for
1320example, can be done with @samp{imul $69, %eax} rather than @samp{imul
1321$69, %eax, %eax}.
1322
This page took 1.667274 seconds and 4 git commands to generate.