]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* GDB routines for manipulating objfiles. |
2 | Copyright 1992, 1993, 1994, 1995 Free Software Foundation, Inc. | |
3 | Contributed by Cygnus Support, using pieces from other GDB modules. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | /* This file contains support routines for creating, manipulating, and | |
23 | destroying objfile structures. */ | |
24 | ||
25 | #include "defs.h" | |
26 | #include "bfd.h" /* Binary File Description */ | |
27 | #include "symtab.h" | |
28 | #include "symfile.h" | |
29 | #include "objfiles.h" | |
30 | #include "gdb-stabs.h" | |
31 | #include "target.h" | |
32 | ||
33 | #include <sys/types.h> | |
34 | #include "gdb_stat.h" | |
35 | #include <fcntl.h> | |
36 | #include "obstack.h" | |
37 | #include "gdb_string.h" | |
38 | ||
7a292a7a SS |
39 | #include "breakpoint.h" |
40 | ||
c906108c SS |
41 | /* Prototypes for local functions */ |
42 | ||
43 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
44 | ||
a14ed312 | 45 | static int open_existing_mapped_file (char *, long, int); |
c906108c | 46 | |
a14ed312 | 47 | static int open_mapped_file (char *filename, long mtime, int flags); |
c906108c | 48 | |
a14ed312 | 49 | static PTR map_to_file (int); |
c906108c | 50 | |
c5aa993b | 51 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c | 52 | |
a14ed312 | 53 | static void add_to_objfile_sections (bfd *, sec_ptr, PTR); |
c906108c SS |
54 | |
55 | /* Externally visible variables that are owned by this module. | |
56 | See declarations in objfile.h for more info. */ | |
57 | ||
c5aa993b | 58 | struct objfile *object_files; /* Linked list of all objfiles */ |
c906108c SS |
59 | struct objfile *current_objfile; /* For symbol file being read in */ |
60 | struct objfile *symfile_objfile; /* Main symbol table loaded from */ | |
61 | struct objfile *rt_common_objfile; /* For runtime common symbols */ | |
62 | ||
c5aa993b | 63 | int mapped_symbol_files; /* Try to use mapped symbol files */ |
c906108c SS |
64 | |
65 | /* Locate all mappable sections of a BFD file. | |
66 | objfile_p_char is a char * to get it through | |
67 | bfd_map_over_sections; we cast it back to its proper type. */ | |
68 | ||
69 | #ifndef TARGET_KEEP_SECTION | |
70 | #define TARGET_KEEP_SECTION(ASECT) 0 | |
71 | #endif | |
72 | ||
96baa820 JM |
73 | /* Called via bfd_map_over_sections to build up the section table that |
74 | the objfile references. The objfile contains pointers to the start | |
75 | of the table (objfile->sections) and to the first location after | |
76 | the end of the table (objfile->sections_end). */ | |
77 | ||
c906108c SS |
78 | static void |
79 | add_to_objfile_sections (abfd, asect, objfile_p_char) | |
80 | bfd *abfd; | |
81 | sec_ptr asect; | |
82 | PTR objfile_p_char; | |
83 | { | |
84 | struct objfile *objfile = (struct objfile *) objfile_p_char; | |
85 | struct obj_section section; | |
86 | flagword aflag; | |
87 | ||
88 | aflag = bfd_get_section_flags (abfd, asect); | |
89 | ||
c5aa993b | 90 | if (!(aflag & SEC_ALLOC) && !(TARGET_KEEP_SECTION (asect))) |
c906108c SS |
91 | return; |
92 | ||
93 | if (0 == bfd_section_size (abfd, asect)) | |
94 | return; | |
95 | section.offset = 0; | |
96 | section.objfile = objfile; | |
97 | section.the_bfd_section = asect; | |
98 | section.ovly_mapped = 0; | |
99 | section.addr = bfd_section_vma (abfd, asect); | |
100 | section.endaddr = section.addr + bfd_section_size (abfd, asect); | |
c5aa993b | 101 | obstack_grow (&objfile->psymbol_obstack, (char *) §ion, sizeof (section)); |
c906108c SS |
102 | objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1); |
103 | } | |
104 | ||
105 | /* Builds a section table for OBJFILE. | |
106 | Returns 0 if OK, 1 on error (in which case bfd_error contains the | |
96baa820 JM |
107 | error). |
108 | ||
109 | Note that while we are building the table, which goes into the | |
110 | psymbol obstack, we hijack the sections_end pointer to instead hold | |
111 | a count of the number of sections. When bfd_map_over_sections | |
112 | returns, this count is used to compute the pointer to the end of | |
113 | the sections table, which then overwrites the count. | |
114 | ||
115 | Also note that the OFFSET and OVLY_MAPPED in each table entry | |
116 | are initialized to zero. | |
117 | ||
118 | Also note that if anything else writes to the psymbol obstack while | |
119 | we are building the table, we're pretty much hosed. */ | |
c906108c SS |
120 | |
121 | int | |
122 | build_objfile_section_table (objfile) | |
123 | struct objfile *objfile; | |
124 | { | |
125 | /* objfile->sections can be already set when reading a mapped symbol | |
126 | file. I believe that we do need to rebuild the section table in | |
127 | this case (we rebuild other things derived from the bfd), but we | |
128 | can't free the old one (it's in the psymbol_obstack). So we just | |
129 | waste some memory. */ | |
130 | ||
131 | objfile->sections_end = 0; | |
c5aa993b | 132 | bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *) objfile); |
c906108c SS |
133 | objfile->sections = (struct obj_section *) |
134 | obstack_finish (&objfile->psymbol_obstack); | |
135 | objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end; | |
c5aa993b | 136 | return (0); |
c906108c SS |
137 | } |
138 | ||
2df3850c JM |
139 | /* Given a pointer to an initialized bfd (ABFD) and some flag bits |
140 | allocate a new objfile struct, fill it in as best we can, link it | |
141 | into the list of all known objfiles, and return a pointer to the | |
142 | new objfile struct. | |
c906108c | 143 | |
2df3850c JM |
144 | The FLAGS word contains various bits (OBJF_*) that can be taken as |
145 | requests for specific operations, like trying to open a mapped | |
146 | version of the objfile (OBJF_MAPPED). Other bits like | |
147 | OBJF_SHARED are simply copied through to the new objfile flags | |
148 | member. */ | |
c906108c SS |
149 | |
150 | struct objfile * | |
2df3850c | 151 | allocate_objfile (abfd, flags) |
c906108c | 152 | bfd *abfd; |
2df3850c | 153 | int flags; |
c906108c SS |
154 | { |
155 | struct objfile *objfile = NULL; | |
156 | struct objfile *last_one = NULL; | |
157 | ||
2df3850c JM |
158 | if (mapped_symbol_files) |
159 | flags |= OBJF_MAPPED; | |
c906108c SS |
160 | |
161 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
162 | if (abfd != NULL) | |
c5aa993b | 163 | { |
c906108c | 164 | |
c5aa993b JM |
165 | /* If we can support mapped symbol files, try to open/reopen the |
166 | mapped file that corresponds to the file from which we wish to | |
167 | read symbols. If the objfile is to be mapped, we must malloc | |
168 | the structure itself using the mmap version, and arrange that | |
169 | all memory allocation for the objfile uses the mmap routines. | |
170 | If we are reusing an existing mapped file, from which we get | |
171 | our objfile pointer, we have to make sure that we update the | |
172 | pointers to the alloc/free functions in the obstack, in case | |
173 | these functions have moved within the current gdb. */ | |
174 | ||
175 | int fd; | |
176 | ||
177 | fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd), | |
2df3850c | 178 | flags); |
c5aa993b JM |
179 | if (fd >= 0) |
180 | { | |
181 | PTR md; | |
c906108c | 182 | |
c5aa993b JM |
183 | if ((md = map_to_file (fd)) == NULL) |
184 | { | |
185 | close (fd); | |
186 | } | |
187 | else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL) | |
188 | { | |
189 | /* Update memory corruption handler function addresses. */ | |
190 | init_malloc (md); | |
191 | objfile->md = md; | |
192 | objfile->mmfd = fd; | |
193 | /* Update pointers to functions to *our* copies */ | |
194 | obstack_chunkfun (&objfile->psymbol_cache.cache, xmmalloc); | |
195 | obstack_freefun (&objfile->psymbol_cache.cache, mfree); | |
196 | obstack_chunkfun (&objfile->psymbol_obstack, xmmalloc); | |
197 | obstack_freefun (&objfile->psymbol_obstack, mfree); | |
198 | obstack_chunkfun (&objfile->symbol_obstack, xmmalloc); | |
199 | obstack_freefun (&objfile->symbol_obstack, mfree); | |
200 | obstack_chunkfun (&objfile->type_obstack, xmmalloc); | |
201 | obstack_freefun (&objfile->type_obstack, mfree); | |
202 | /* If already in objfile list, unlink it. */ | |
203 | unlink_objfile (objfile); | |
204 | /* Forget things specific to a particular gdb, may have changed. */ | |
205 | objfile->sf = NULL; | |
206 | } | |
207 | else | |
208 | { | |
c906108c | 209 | |
c5aa993b JM |
210 | /* Set up to detect internal memory corruption. MUST be |
211 | done before the first malloc. See comments in | |
212 | init_malloc() and mmcheck(). */ | |
213 | ||
214 | init_malloc (md); | |
215 | ||
216 | objfile = (struct objfile *) | |
217 | xmmalloc (md, sizeof (struct objfile)); | |
218 | memset (objfile, 0, sizeof (struct objfile)); | |
219 | objfile->md = md; | |
220 | objfile->mmfd = fd; | |
221 | objfile->flags |= OBJF_MAPPED; | |
222 | mmalloc_setkey (objfile->md, 0, objfile); | |
223 | obstack_specify_allocation_with_arg (&objfile->psymbol_cache.cache, | |
224 | 0, 0, xmmalloc, mfree, | |
225 | objfile->md); | |
226 | obstack_specify_allocation_with_arg (&objfile->psymbol_obstack, | |
227 | 0, 0, xmmalloc, mfree, | |
228 | objfile->md); | |
229 | obstack_specify_allocation_with_arg (&objfile->symbol_obstack, | |
230 | 0, 0, xmmalloc, mfree, | |
231 | objfile->md); | |
232 | obstack_specify_allocation_with_arg (&objfile->type_obstack, | |
233 | 0, 0, xmmalloc, mfree, | |
234 | objfile->md); | |
235 | } | |
236 | } | |
c906108c | 237 | |
2df3850c | 238 | if ((flags & OBJF_MAPPED) && (objfile == NULL)) |
c5aa993b JM |
239 | { |
240 | warning ("symbol table for '%s' will not be mapped", | |
241 | bfd_get_filename (abfd)); | |
2df3850c | 242 | flags &= ~OBJF_MAPPED; |
c5aa993b JM |
243 | } |
244 | } | |
245 | #else /* !defined(USE_MMALLOC) || !defined(HAVE_MMAP) */ | |
c906108c | 246 | |
2df3850c | 247 | if (flags & OBJF_MAPPED) |
c906108c SS |
248 | { |
249 | warning ("mapped symbol tables are not supported on this machine; missing or broken mmap()."); | |
250 | ||
251 | /* Turn off the global flag so we don't try to do mapped symbol tables | |
c5aa993b JM |
252 | any more, which shuts up gdb unless the user specifically gives the |
253 | "mapped" keyword again. */ | |
c906108c SS |
254 | |
255 | mapped_symbol_files = 0; | |
2df3850c | 256 | flags &= ~OBJF_MAPPED; |
c906108c SS |
257 | } |
258 | ||
c5aa993b | 259 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
260 | |
261 | /* If we don't support mapped symbol files, didn't ask for the file to be | |
262 | mapped, or failed to open the mapped file for some reason, then revert | |
263 | back to an unmapped objfile. */ | |
264 | ||
265 | if (objfile == NULL) | |
266 | { | |
267 | objfile = (struct objfile *) xmalloc (sizeof (struct objfile)); | |
268 | memset (objfile, 0, sizeof (struct objfile)); | |
c5aa993b JM |
269 | objfile->md = NULL; |
270 | obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0, | |
c906108c | 271 | xmalloc, free); |
c5aa993b | 272 | obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0, xmalloc, |
c906108c | 273 | free); |
c5aa993b | 274 | obstack_specify_allocation (&objfile->symbol_obstack, 0, 0, xmalloc, |
c906108c | 275 | free); |
c5aa993b | 276 | obstack_specify_allocation (&objfile->type_obstack, 0, 0, xmalloc, |
c906108c | 277 | free); |
2df3850c | 278 | flags &= ~OBJF_MAPPED; |
c906108c SS |
279 | } |
280 | ||
281 | /* Update the per-objfile information that comes from the bfd, ensuring | |
282 | that any data that is reference is saved in the per-objfile data | |
283 | region. */ | |
284 | ||
c5aa993b JM |
285 | objfile->obfd = abfd; |
286 | if (objfile->name != NULL) | |
c906108c | 287 | { |
c5aa993b | 288 | mfree (objfile->md, objfile->name); |
c906108c SS |
289 | } |
290 | if (abfd != NULL) | |
291 | { | |
c5aa993b JM |
292 | objfile->name = mstrsave (objfile->md, bfd_get_filename (abfd)); |
293 | objfile->mtime = bfd_get_mtime (abfd); | |
c906108c SS |
294 | |
295 | /* Build section table. */ | |
296 | ||
297 | if (build_objfile_section_table (objfile)) | |
298 | { | |
c5aa993b JM |
299 | error ("Can't find the file sections in `%s': %s", |
300 | objfile->name, bfd_errmsg (bfd_get_error ())); | |
c906108c SS |
301 | } |
302 | } | |
303 | ||
b8fbeb18 EZ |
304 | /* Initialize the section indexes for this objfile, so that we can |
305 | later detect if they are used w/o being properly assigned to. */ | |
306 | ||
307 | objfile->sect_index_text = -1; | |
308 | objfile->sect_index_data = -1; | |
309 | objfile->sect_index_bss = -1; | |
310 | objfile->sect_index_rodata = -1; | |
311 | ||
c906108c SS |
312 | /* Add this file onto the tail of the linked list of other such files. */ |
313 | ||
c5aa993b | 314 | objfile->next = NULL; |
c906108c SS |
315 | if (object_files == NULL) |
316 | object_files = objfile; | |
317 | else | |
318 | { | |
319 | for (last_one = object_files; | |
c5aa993b JM |
320 | last_one->next; |
321 | last_one = last_one->next); | |
322 | last_one->next = objfile; | |
c906108c SS |
323 | } |
324 | ||
2df3850c JM |
325 | /* Save passed in flag bits. */ |
326 | objfile->flags |= flags; | |
c906108c SS |
327 | |
328 | return (objfile); | |
329 | } | |
330 | ||
331 | /* Put OBJFILE at the front of the list. */ | |
332 | ||
333 | void | |
334 | objfile_to_front (objfile) | |
335 | struct objfile *objfile; | |
336 | { | |
337 | struct objfile **objp; | |
338 | for (objp = &object_files; *objp != NULL; objp = &((*objp)->next)) | |
339 | { | |
340 | if (*objp == objfile) | |
341 | { | |
342 | /* Unhook it from where it is. */ | |
343 | *objp = objfile->next; | |
344 | /* Put it in the front. */ | |
345 | objfile->next = object_files; | |
346 | object_files = objfile; | |
347 | break; | |
348 | } | |
349 | } | |
350 | } | |
351 | ||
352 | /* Unlink OBJFILE from the list of known objfiles, if it is found in the | |
353 | list. | |
354 | ||
355 | It is not a bug, or error, to call this function if OBJFILE is not known | |
356 | to be in the current list. This is done in the case of mapped objfiles, | |
357 | for example, just to ensure that the mapped objfile doesn't appear twice | |
358 | in the list. Since the list is threaded, linking in a mapped objfile | |
359 | twice would create a circular list. | |
360 | ||
361 | If OBJFILE turns out to be in the list, we zap it's NEXT pointer after | |
362 | unlinking it, just to ensure that we have completely severed any linkages | |
363 | between the OBJFILE and the list. */ | |
364 | ||
365 | void | |
366 | unlink_objfile (objfile) | |
367 | struct objfile *objfile; | |
368 | { | |
c5aa993b | 369 | struct objfile **objpp; |
c906108c | 370 | |
c5aa993b | 371 | for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next)) |
c906108c | 372 | { |
c5aa993b | 373 | if (*objpp == objfile) |
c906108c | 374 | { |
c5aa993b JM |
375 | *objpp = (*objpp)->next; |
376 | objfile->next = NULL; | |
07cd4b97 | 377 | return; |
c906108c SS |
378 | } |
379 | } | |
07cd4b97 JB |
380 | |
381 | internal_error ("objfiles.c (unlink_objfile): objfile already unlinked"); | |
c906108c SS |
382 | } |
383 | ||
384 | ||
385 | /* Destroy an objfile and all the symtabs and psymtabs under it. Note | |
386 | that as much as possible is allocated on the symbol_obstack and | |
387 | psymbol_obstack, so that the memory can be efficiently freed. | |
388 | ||
389 | Things which we do NOT free because they are not in malloc'd memory | |
390 | or not in memory specific to the objfile include: | |
391 | ||
c5aa993b | 392 | objfile -> sf |
c906108c SS |
393 | |
394 | FIXME: If the objfile is using reusable symbol information (via mmalloc), | |
395 | then we need to take into account the fact that more than one process | |
396 | may be using the symbol information at the same time (when mmalloc is | |
397 | extended to support cooperative locking). When more than one process | |
398 | is using the mapped symbol info, we need to be more careful about when | |
399 | we free objects in the reusable area. */ | |
400 | ||
401 | void | |
402 | free_objfile (objfile) | |
403 | struct objfile *objfile; | |
404 | { | |
405 | /* First do any symbol file specific actions required when we are | |
406 | finished with a particular symbol file. Note that if the objfile | |
407 | is using reusable symbol information (via mmalloc) then each of | |
408 | these routines is responsible for doing the correct thing, either | |
409 | freeing things which are valid only during this particular gdb | |
410 | execution, or leaving them to be reused during the next one. */ | |
411 | ||
c5aa993b | 412 | if (objfile->sf != NULL) |
c906108c | 413 | { |
c5aa993b | 414 | (*objfile->sf->sym_finish) (objfile); |
c906108c SS |
415 | } |
416 | ||
417 | /* We always close the bfd. */ | |
418 | ||
c5aa993b | 419 | if (objfile->obfd != NULL) |
c906108c SS |
420 | { |
421 | char *name = bfd_get_filename (objfile->obfd); | |
c5aa993b | 422 | if (!bfd_close (objfile->obfd)) |
c906108c SS |
423 | warning ("cannot close \"%s\": %s", |
424 | name, bfd_errmsg (bfd_get_error ())); | |
425 | free (name); | |
426 | } | |
427 | ||
428 | /* Remove it from the chain of all objfiles. */ | |
429 | ||
430 | unlink_objfile (objfile); | |
431 | ||
432 | /* If we are going to free the runtime common objfile, mark it | |
433 | as unallocated. */ | |
434 | ||
435 | if (objfile == rt_common_objfile) | |
436 | rt_common_objfile = NULL; | |
437 | ||
438 | /* Before the symbol table code was redone to make it easier to | |
439 | selectively load and remove information particular to a specific | |
440 | linkage unit, gdb used to do these things whenever the monolithic | |
441 | symbol table was blown away. How much still needs to be done | |
442 | is unknown, but we play it safe for now and keep each action until | |
443 | it is shown to be no longer needed. */ | |
c5aa993b | 444 | |
c906108c SS |
445 | /* I *think* all our callers call clear_symtab_users. If so, no need |
446 | to call this here. */ | |
447 | clear_pc_function_cache (); | |
448 | ||
449 | /* The last thing we do is free the objfile struct itself for the | |
450 | non-reusable case, or detach from the mapped file for the reusable | |
451 | case. Note that the mmalloc_detach or the mfree is the last thing | |
452 | we can do with this objfile. */ | |
453 | ||
454 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
455 | ||
c5aa993b | 456 | if (objfile->flags & OBJF_MAPPED) |
c906108c SS |
457 | { |
458 | /* Remember the fd so we can close it. We can't close it before | |
c5aa993b | 459 | doing the detach, and after the detach the objfile is gone. */ |
c906108c SS |
460 | int mmfd; |
461 | ||
c5aa993b JM |
462 | mmfd = objfile->mmfd; |
463 | mmalloc_detach (objfile->md); | |
c906108c SS |
464 | objfile = NULL; |
465 | close (mmfd); | |
466 | } | |
467 | ||
c5aa993b | 468 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
469 | |
470 | /* If we still have an objfile, then either we don't support reusable | |
471 | objfiles or this one was not reusable. So free it normally. */ | |
472 | ||
473 | if (objfile != NULL) | |
474 | { | |
c5aa993b | 475 | if (objfile->name != NULL) |
c906108c | 476 | { |
c5aa993b | 477 | mfree (objfile->md, objfile->name); |
c906108c SS |
478 | } |
479 | if (objfile->global_psymbols.list) | |
480 | mfree (objfile->md, objfile->global_psymbols.list); | |
481 | if (objfile->static_psymbols.list) | |
482 | mfree (objfile->md, objfile->static_psymbols.list); | |
483 | /* Free the obstacks for non-reusable objfiles */ | |
c2d11a7d | 484 | free_bcache (&objfile->psymbol_cache); |
c5aa993b JM |
485 | obstack_free (&objfile->psymbol_obstack, 0); |
486 | obstack_free (&objfile->symbol_obstack, 0); | |
487 | obstack_free (&objfile->type_obstack, 0); | |
488 | mfree (objfile->md, objfile); | |
c906108c SS |
489 | objfile = NULL; |
490 | } | |
491 | } | |
492 | ||
74b7792f AC |
493 | static void |
494 | do_free_objfile_cleanup (void *obj) | |
495 | { | |
496 | free_objfile (obj); | |
497 | } | |
498 | ||
499 | struct cleanup * | |
500 | make_cleanup_free_objfile (struct objfile *obj) | |
501 | { | |
502 | return make_cleanup (do_free_objfile_cleanup, obj); | |
503 | } | |
c906108c SS |
504 | |
505 | /* Free all the object files at once and clean up their users. */ | |
506 | ||
507 | void | |
508 | free_all_objfiles () | |
509 | { | |
510 | struct objfile *objfile, *temp; | |
511 | ||
512 | ALL_OBJFILES_SAFE (objfile, temp) | |
c5aa993b JM |
513 | { |
514 | free_objfile (objfile); | |
515 | } | |
c906108c SS |
516 | clear_symtab_users (); |
517 | } | |
518 | \f | |
519 | /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS | |
520 | entries in new_offsets. */ | |
521 | void | |
522 | objfile_relocate (objfile, new_offsets) | |
523 | struct objfile *objfile; | |
524 | struct section_offsets *new_offsets; | |
525 | { | |
d4f3574e SS |
526 | struct section_offsets *delta = |
527 | (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS); | |
c906108c SS |
528 | |
529 | { | |
530 | int i; | |
531 | int something_changed = 0; | |
532 | for (i = 0; i < objfile->num_sections; ++i) | |
533 | { | |
534 | ANOFFSET (delta, i) = | |
535 | ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i); | |
536 | if (ANOFFSET (delta, i) != 0) | |
537 | something_changed = 1; | |
538 | } | |
539 | if (!something_changed) | |
540 | return; | |
541 | } | |
542 | ||
543 | /* OK, get all the symtabs. */ | |
544 | { | |
545 | struct symtab *s; | |
546 | ||
547 | ALL_OBJFILE_SYMTABS (objfile, s) | |
c5aa993b JM |
548 | { |
549 | struct linetable *l; | |
550 | struct blockvector *bv; | |
551 | int i; | |
552 | ||
553 | /* First the line table. */ | |
554 | l = LINETABLE (s); | |
555 | if (l) | |
556 | { | |
557 | for (i = 0; i < l->nitems; ++i) | |
558 | l->item[i].pc += ANOFFSET (delta, s->block_line_section); | |
559 | } | |
c906108c | 560 | |
c5aa993b JM |
561 | /* Don't relocate a shared blockvector more than once. */ |
562 | if (!s->primary) | |
563 | continue; | |
c906108c | 564 | |
c5aa993b JM |
565 | bv = BLOCKVECTOR (s); |
566 | for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i) | |
567 | { | |
568 | struct block *b; | |
569 | int j; | |
570 | ||
571 | b = BLOCKVECTOR_BLOCK (bv, i); | |
572 | BLOCK_START (b) += ANOFFSET (delta, s->block_line_section); | |
573 | BLOCK_END (b) += ANOFFSET (delta, s->block_line_section); | |
574 | ||
575 | for (j = 0; j < BLOCK_NSYMS (b); ++j) | |
576 | { | |
577 | struct symbol *sym = BLOCK_SYM (b, j); | |
578 | /* The RS6000 code from which this was taken skipped | |
579 | any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE. | |
580 | But I'm leaving out that test, on the theory that | |
581 | they can't possibly pass the tests below. */ | |
582 | if ((SYMBOL_CLASS (sym) == LOC_LABEL | |
583 | || SYMBOL_CLASS (sym) == LOC_STATIC | |
584 | || SYMBOL_CLASS (sym) == LOC_INDIRECT) | |
585 | && SYMBOL_SECTION (sym) >= 0) | |
586 | { | |
587 | SYMBOL_VALUE_ADDRESS (sym) += | |
588 | ANOFFSET (delta, SYMBOL_SECTION (sym)); | |
589 | } | |
c906108c | 590 | #ifdef MIPS_EFI_SYMBOL_NAME |
c5aa993b | 591 | /* Relocate Extra Function Info for ecoff. */ |
c906108c | 592 | |
c5aa993b JM |
593 | else if (SYMBOL_CLASS (sym) == LOC_CONST |
594 | && SYMBOL_NAMESPACE (sym) == LABEL_NAMESPACE | |
595 | && STRCMP (SYMBOL_NAME (sym), MIPS_EFI_SYMBOL_NAME) == 0) | |
596 | ecoff_relocate_efi (sym, ANOFFSET (delta, | |
c906108c SS |
597 | s->block_line_section)); |
598 | #endif | |
c5aa993b JM |
599 | } |
600 | } | |
601 | } | |
c906108c SS |
602 | } |
603 | ||
604 | { | |
605 | struct partial_symtab *p; | |
606 | ||
607 | ALL_OBJFILE_PSYMTABS (objfile, p) | |
c5aa993b | 608 | { |
b8fbeb18 EZ |
609 | p->textlow += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
610 | p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c5aa993b | 611 | } |
c906108c SS |
612 | } |
613 | ||
614 | { | |
615 | struct partial_symbol **psym; | |
616 | ||
617 | for (psym = objfile->global_psymbols.list; | |
618 | psym < objfile->global_psymbols.next; | |
619 | psym++) | |
620 | if (SYMBOL_SECTION (*psym) >= 0) | |
c5aa993b | 621 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, |
c906108c SS |
622 | SYMBOL_SECTION (*psym)); |
623 | for (psym = objfile->static_psymbols.list; | |
624 | psym < objfile->static_psymbols.next; | |
625 | psym++) | |
626 | if (SYMBOL_SECTION (*psym) >= 0) | |
c5aa993b | 627 | SYMBOL_VALUE_ADDRESS (*psym) += ANOFFSET (delta, |
c906108c SS |
628 | SYMBOL_SECTION (*psym)); |
629 | } | |
630 | ||
631 | { | |
632 | struct minimal_symbol *msym; | |
633 | ALL_OBJFILE_MSYMBOLS (objfile, msym) | |
634 | if (SYMBOL_SECTION (msym) >= 0) | |
c5aa993b | 635 | SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym)); |
c906108c SS |
636 | } |
637 | /* Relocating different sections by different amounts may cause the symbols | |
638 | to be out of order. */ | |
639 | msymbols_sort (objfile); | |
640 | ||
641 | { | |
642 | int i; | |
643 | for (i = 0; i < objfile->num_sections; ++i) | |
644 | ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i); | |
645 | } | |
646 | ||
647 | { | |
648 | struct obj_section *s; | |
649 | bfd *abfd; | |
650 | ||
651 | abfd = objfile->obfd; | |
652 | ||
96baa820 | 653 | ALL_OBJFILE_OSECTIONS (objfile, s) |
c906108c SS |
654 | { |
655 | flagword flags; | |
656 | ||
657 | flags = bfd_get_section_flags (abfd, s->the_bfd_section); | |
658 | ||
659 | if (flags & SEC_CODE) | |
660 | { | |
b8fbeb18 EZ |
661 | s->addr += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
662 | s->endaddr += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
663 | } |
664 | else if (flags & (SEC_DATA | SEC_LOAD)) | |
665 | { | |
b8fbeb18 EZ |
666 | s->addr += ANOFFSET (delta, SECT_OFF_DATA (objfile)); |
667 | s->endaddr += ANOFFSET (delta, SECT_OFF_DATA (objfile)); | |
c906108c SS |
668 | } |
669 | else if (flags & SEC_ALLOC) | |
670 | { | |
b8fbeb18 EZ |
671 | s->addr += ANOFFSET (delta, SECT_OFF_BSS (objfile)); |
672 | s->endaddr += ANOFFSET (delta, SECT_OFF_BSS (objfile)); | |
c906108c SS |
673 | } |
674 | } | |
675 | } | |
676 | ||
c5aa993b | 677 | if (objfile->ei.entry_point != ~(CORE_ADDR) 0) |
b8fbeb18 | 678 | objfile->ei.entry_point += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
c906108c SS |
679 | |
680 | if (objfile->ei.entry_func_lowpc != INVALID_ENTRY_LOWPC) | |
681 | { | |
b8fbeb18 EZ |
682 | objfile->ei.entry_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
683 | objfile->ei.entry_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
684 | } |
685 | ||
686 | if (objfile->ei.entry_file_lowpc != INVALID_ENTRY_LOWPC) | |
687 | { | |
b8fbeb18 EZ |
688 | objfile->ei.entry_file_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
689 | objfile->ei.entry_file_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
690 | } |
691 | ||
692 | if (objfile->ei.main_func_lowpc != INVALID_ENTRY_LOWPC) | |
693 | { | |
b8fbeb18 EZ |
694 | objfile->ei.main_func_lowpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); |
695 | objfile->ei.main_func_highpc += ANOFFSET (delta, SECT_OFF_TEXT (objfile)); | |
c906108c SS |
696 | } |
697 | ||
698 | /* Relocate breakpoints as necessary, after things are relocated. */ | |
699 | breakpoint_re_set (); | |
700 | } | |
701 | \f | |
702 | /* Many places in gdb want to test just to see if we have any partial | |
703 | symbols available. This function returns zero if none are currently | |
704 | available, nonzero otherwise. */ | |
705 | ||
706 | int | |
707 | have_partial_symbols () | |
708 | { | |
709 | struct objfile *ofp; | |
710 | ||
711 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
712 | { |
713 | if (ofp->psymtabs != NULL) | |
714 | { | |
715 | return 1; | |
716 | } | |
717 | } | |
c906108c SS |
718 | return 0; |
719 | } | |
720 | ||
721 | /* Many places in gdb want to test just to see if we have any full | |
722 | symbols available. This function returns zero if none are currently | |
723 | available, nonzero otherwise. */ | |
724 | ||
725 | int | |
726 | have_full_symbols () | |
727 | { | |
728 | struct objfile *ofp; | |
729 | ||
730 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
731 | { |
732 | if (ofp->symtabs != NULL) | |
733 | { | |
734 | return 1; | |
735 | } | |
736 | } | |
c906108c SS |
737 | return 0; |
738 | } | |
739 | ||
740 | ||
741 | /* This operations deletes all objfile entries that represent solibs that | |
742 | weren't explicitly loaded by the user, via e.g., the add-symbol-file | |
743 | command. | |
c5aa993b | 744 | */ |
c906108c SS |
745 | void |
746 | objfile_purge_solibs () | |
747 | { | |
c5aa993b JM |
748 | struct objfile *objf; |
749 | struct objfile *temp; | |
c906108c SS |
750 | |
751 | ALL_OBJFILES_SAFE (objf, temp) | |
752 | { | |
753 | /* We assume that the solib package has been purged already, or will | |
754 | be soon. | |
c5aa993b | 755 | */ |
2df3850c | 756 | if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED)) |
c906108c SS |
757 | free_objfile (objf); |
758 | } | |
759 | } | |
760 | ||
761 | ||
762 | /* Many places in gdb want to test just to see if we have any minimal | |
763 | symbols available. This function returns zero if none are currently | |
764 | available, nonzero otherwise. */ | |
765 | ||
766 | int | |
767 | have_minimal_symbols () | |
768 | { | |
769 | struct objfile *ofp; | |
770 | ||
771 | ALL_OBJFILES (ofp) | |
c5aa993b JM |
772 | { |
773 | if (ofp->msymbols != NULL) | |
774 | { | |
775 | return 1; | |
776 | } | |
777 | } | |
c906108c SS |
778 | return 0; |
779 | } | |
780 | ||
781 | #if defined(USE_MMALLOC) && defined(HAVE_MMAP) | |
782 | ||
783 | /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp | |
784 | of the corresponding symbol file in MTIME, try to open an existing file | |
785 | with the name SYMSFILENAME and verify it is more recent than the base | |
786 | file by checking it's timestamp against MTIME. | |
787 | ||
788 | If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1. | |
789 | ||
790 | If SYMSFILENAME does exist, but is out of date, we check to see if the | |
791 | user has specified creation of a mapped file. If so, we don't issue | |
792 | any warning message because we will be creating a new mapped file anyway, | |
793 | overwriting the old one. If not, then we issue a warning message so that | |
794 | the user will know why we aren't using this existing mapped symbol file. | |
795 | In either case, we return -1. | |
796 | ||
797 | If SYMSFILENAME does exist and is not out of date, but can't be opened for | |
798 | some reason, then prints an appropriate system error message and returns -1. | |
799 | ||
800 | Otherwise, returns the open file descriptor. */ | |
801 | ||
802 | static int | |
2df3850c | 803 | open_existing_mapped_file (symsfilename, mtime, flags) |
c906108c SS |
804 | char *symsfilename; |
805 | long mtime; | |
2df3850c | 806 | int flags; |
c906108c SS |
807 | { |
808 | int fd = -1; | |
809 | struct stat sbuf; | |
810 | ||
811 | if (stat (symsfilename, &sbuf) == 0) | |
812 | { | |
813 | if (sbuf.st_mtime < mtime) | |
814 | { | |
2df3850c | 815 | if (!(flags & OBJF_MAPPED)) |
c906108c SS |
816 | { |
817 | warning ("mapped symbol file `%s' is out of date, ignored it", | |
818 | symsfilename); | |
819 | } | |
820 | } | |
821 | else if ((fd = open (symsfilename, O_RDWR)) < 0) | |
822 | { | |
823 | if (error_pre_print) | |
824 | { | |
825 | printf_unfiltered (error_pre_print); | |
826 | } | |
827 | print_sys_errmsg (symsfilename, errno); | |
828 | } | |
829 | } | |
830 | return (fd); | |
831 | } | |
832 | ||
833 | /* Look for a mapped symbol file that corresponds to FILENAME and is more | |
834 | recent than MTIME. If MAPPED is nonzero, the user has asked that gdb | |
835 | use a mapped symbol file for this file, so create a new one if one does | |
836 | not currently exist. | |
837 | ||
838 | If found, then return an open file descriptor for the file, otherwise | |
839 | return -1. | |
840 | ||
841 | This routine is responsible for implementing the policy that generates | |
842 | the name of the mapped symbol file from the name of a file containing | |
843 | symbols that gdb would like to read. Currently this policy is to append | |
844 | ".syms" to the name of the file. | |
845 | ||
846 | This routine is also responsible for implementing the policy that | |
847 | determines where the mapped symbol file is found (the search path). | |
848 | This policy is that when reading an existing mapped file, a file of | |
849 | the correct name in the current directory takes precedence over a | |
850 | file of the correct name in the same directory as the symbol file. | |
851 | When creating a new mapped file, it is always created in the current | |
852 | directory. This helps to minimize the chances of a user unknowingly | |
853 | creating big mapped files in places like /bin and /usr/local/bin, and | |
854 | allows a local copy to override a manually installed global copy (in | |
855 | /bin for example). */ | |
856 | ||
857 | static int | |
2df3850c | 858 | open_mapped_file (filename, mtime, flags) |
c906108c SS |
859 | char *filename; |
860 | long mtime; | |
2df3850c | 861 | int flags; |
c906108c SS |
862 | { |
863 | int fd; | |
864 | char *symsfilename; | |
865 | ||
866 | /* First try to open an existing file in the current directory, and | |
867 | then try the directory where the symbol file is located. */ | |
868 | ||
869 | symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL); | |
2df3850c | 870 | if ((fd = open_existing_mapped_file (symsfilename, mtime, flags)) < 0) |
c906108c SS |
871 | { |
872 | free (symsfilename); | |
873 | symsfilename = concat (filename, ".syms", (char *) NULL); | |
2fc18c15 | 874 | fd = open_existing_mapped_file (symsfilename, mtime, flags); |
c906108c SS |
875 | } |
876 | ||
877 | /* If we don't have an open file by now, then either the file does not | |
878 | already exist, or the base file has changed since it was created. In | |
879 | either case, if the user has specified use of a mapped file, then | |
880 | create a new mapped file, truncating any existing one. If we can't | |
881 | create one, print a system error message saying why we can't. | |
882 | ||
883 | By default the file is rw for everyone, with the user's umask taking | |
884 | care of turning off the permissions the user wants off. */ | |
885 | ||
2fc18c15 | 886 | if ((fd < 0) && (flags & OBJF_MAPPED)) |
c906108c SS |
887 | { |
888 | free (symsfilename); | |
889 | symsfilename = concat ("./", basename (filename), ".syms", | |
890 | (char *) NULL); | |
891 | if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0) | |
892 | { | |
893 | if (error_pre_print) | |
894 | { | |
895 | printf_unfiltered (error_pre_print); | |
896 | } | |
897 | print_sys_errmsg (symsfilename, errno); | |
898 | } | |
899 | } | |
900 | ||
901 | free (symsfilename); | |
902 | return (fd); | |
903 | } | |
904 | ||
905 | static PTR | |
906 | map_to_file (fd) | |
907 | int fd; | |
908 | { | |
909 | PTR md; | |
910 | CORE_ADDR mapto; | |
911 | ||
912 | md = mmalloc_attach (fd, (PTR) 0); | |
913 | if (md != NULL) | |
914 | { | |
915 | mapto = (CORE_ADDR) mmalloc_getkey (md, 1); | |
916 | md = mmalloc_detach (md); | |
917 | if (md != NULL) | |
918 | { | |
919 | /* FIXME: should figure out why detach failed */ | |
920 | md = NULL; | |
921 | } | |
922 | else if (mapto != (CORE_ADDR) NULL) | |
923 | { | |
924 | /* This mapping file needs to be remapped at "mapto" */ | |
925 | md = mmalloc_attach (fd, (PTR) mapto); | |
926 | } | |
927 | else | |
928 | { | |
929 | /* This is a freshly created mapping file. */ | |
930 | mapto = (CORE_ADDR) mmalloc_findbase (20 * 1024 * 1024); | |
931 | if (mapto != 0) | |
932 | { | |
933 | /* To avoid reusing the freshly created mapping file, at the | |
c5aa993b JM |
934 | address selected by mmap, we must truncate it before trying |
935 | to do an attach at the address we want. */ | |
c906108c SS |
936 | ftruncate (fd, 0); |
937 | md = mmalloc_attach (fd, (PTR) mapto); | |
938 | if (md != NULL) | |
939 | { | |
940 | mmalloc_setkey (md, 1, (PTR) mapto); | |
941 | } | |
942 | } | |
943 | } | |
944 | } | |
945 | return (md); | |
946 | } | |
947 | ||
c5aa993b | 948 | #endif /* defined(USE_MMALLOC) && defined(HAVE_MMAP) */ |
c906108c SS |
949 | |
950 | /* Returns a section whose range includes PC and SECTION, | |
951 | or NULL if none found. Note the distinction between the return type, | |
952 | struct obj_section (which is defined in gdb), and the input type | |
953 | struct sec (which is a bfd-defined data type). The obj_section | |
954 | contains a pointer to the bfd struct sec section. */ | |
955 | ||
956 | struct obj_section * | |
957 | find_pc_sect_section (pc, section) | |
958 | CORE_ADDR pc; | |
959 | struct sec *section; | |
960 | { | |
961 | struct obj_section *s; | |
962 | struct objfile *objfile; | |
c5aa993b | 963 | |
96baa820 | 964 | ALL_OBJSECTIONS (objfile, s) |
c5aa993b JM |
965 | if ((section == 0 || section == s->the_bfd_section) && |
966 | s->addr <= pc && pc < s->endaddr) | |
c5aa993b | 967 | return (s); |
c906108c | 968 | |
c5aa993b | 969 | return (NULL); |
c906108c SS |
970 | } |
971 | ||
972 | /* Returns a section whose range includes PC or NULL if none found. | |
973 | Backward compatibility, no section. */ | |
974 | ||
975 | struct obj_section * | |
c5aa993b | 976 | find_pc_section (pc) |
c906108c SS |
977 | CORE_ADDR pc; |
978 | { | |
979 | return find_pc_sect_section (pc, find_pc_mapped_section (pc)); | |
980 | } | |
c5aa993b | 981 | |
c906108c SS |
982 | |
983 | /* In SVR4, we recognize a trampoline by it's section name. | |
984 | That is, if the pc is in a section named ".plt" then we are in | |
985 | a trampoline. */ | |
986 | ||
987 | int | |
c5aa993b | 988 | in_plt_section (pc, name) |
c906108c SS |
989 | CORE_ADDR pc; |
990 | char *name; | |
991 | { | |
992 | struct obj_section *s; | |
993 | int retval = 0; | |
c5aa993b JM |
994 | |
995 | s = find_pc_section (pc); | |
996 | ||
c906108c SS |
997 | retval = (s != NULL |
998 | && s->the_bfd_section->name != NULL | |
999 | && STREQ (s->the_bfd_section->name, ".plt")); | |
c5aa993b | 1000 | return (retval); |
c906108c | 1001 | } |
7be570e7 JM |
1002 | |
1003 | /* Return nonzero if NAME is in the import list of OBJFILE. Else | |
1004 | return zero. */ | |
1005 | ||
1006 | int | |
1007 | is_in_import_list (name, objfile) | |
1008 | char *name; | |
1009 | struct objfile *objfile; | |
1010 | { | |
1011 | register int i; | |
1012 | ||
1013 | if (!objfile || !name || !*name) | |
1014 | return 0; | |
1015 | ||
1016 | for (i = 0; i < objfile->import_list_size; i++) | |
1017 | if (objfile->import_list[i] && STREQ (name, objfile->import_list[i])) | |
1018 | return 1; | |
1019 | return 0; | |
1020 | } | |
1021 |