]>
Commit | Line | Data |
---|---|---|
16461d7d KB |
1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
2 | Copyright 1999, 2000 | |
3 | Free Software Foundation, Inc. | |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "inferior.h" | |
24 | #include "symfile.h" /* for entry_point_address */ | |
25 | #include "gdbcore.h" | |
8064c6ae | 26 | #include "arch-utils.h" |
16461d7d KB |
27 | #include "floatformat.h" |
28 | ||
29 | #include "objfiles.h" | |
30 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 31 | #include "elf-bfd.h" |
16461d7d KB |
32 | |
33 | typedef enum instruction_type | |
34 | { | |
35 | A, /* Integer ALU ; I-unit or M-unit */ | |
36 | I, /* Non-ALU integer; I-unit */ | |
37 | M, /* Memory ; M-unit */ | |
38 | F, /* Floating-point ; F-unit */ | |
39 | B, /* Branch ; B-unit */ | |
40 | L, /* Extended (L+X) ; I-unit */ | |
41 | X, /* Extended (L+X) ; I-unit */ | |
42 | undefined /* undefined or reserved */ | |
43 | } instruction_type; | |
44 | ||
45 | /* We represent IA-64 PC addresses as the value of the instruction | |
46 | pointer or'd with some bit combination in the low nibble which | |
47 | represents the slot number in the bundle addressed by the | |
48 | instruction pointer. The problem is that the Linux kernel | |
49 | multiplies its slot numbers (for exceptions) by one while the | |
50 | disassembler multiplies its slot numbers by 6. In addition, I've | |
51 | heard it said that the simulator uses 1 as the multiplier. | |
52 | ||
53 | I've fixed the disassembler so that the bytes_per_line field will | |
54 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
55 | is set to six (which is how it was set up initially). -- objdump | |
56 | displays pretty disassembly dumps with this value. For our purposes, | |
57 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
58 | never want to also display the raw bytes the way objdump does. */ | |
59 | ||
60 | #define SLOT_MULTIPLIER 1 | |
61 | ||
62 | /* Length in bytes of an instruction bundle */ | |
63 | ||
64 | #define BUNDLE_LEN 16 | |
65 | ||
66 | extern void _initialize_ia64_tdep (void); | |
67 | ||
244bc108 KB |
68 | extern CORE_ADDR ia64_linux_sigcontext_register_address (CORE_ADDR, int); |
69 | ||
16461d7d KB |
70 | static gdbarch_init_ftype ia64_gdbarch_init; |
71 | ||
72 | static gdbarch_register_name_ftype ia64_register_name; | |
73 | static gdbarch_register_raw_size_ftype ia64_register_raw_size; | |
74 | static gdbarch_register_virtual_size_ftype ia64_register_virtual_size; | |
75 | static gdbarch_register_virtual_type_ftype ia64_register_virtual_type; | |
76 | static gdbarch_register_byte_ftype ia64_register_byte; | |
77 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; | |
78 | static gdbarch_frame_chain_ftype ia64_frame_chain; | |
79 | static gdbarch_frame_saved_pc_ftype ia64_frame_saved_pc; | |
80 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; | |
81 | static gdbarch_frame_init_saved_regs_ftype ia64_frame_init_saved_regs; | |
82 | static gdbarch_get_saved_register_ftype ia64_get_saved_register; | |
83 | static gdbarch_extract_return_value_ftype ia64_extract_return_value; | |
84 | static gdbarch_extract_struct_value_address_ftype ia64_extract_struct_value_address; | |
85 | static gdbarch_use_struct_convention_ftype ia64_use_struct_convention; | |
86 | static gdbarch_frameless_function_invocation_ftype ia64_frameless_function_invocation; | |
87 | static gdbarch_init_extra_frame_info_ftype ia64_init_extra_frame_info; | |
88 | static gdbarch_store_return_value_ftype ia64_store_return_value; | |
89 | static gdbarch_store_struct_return_ftype ia64_store_struct_return; | |
90 | static gdbarch_push_arguments_ftype ia64_push_arguments; | |
91 | static gdbarch_push_return_address_ftype ia64_push_return_address; | |
92 | static gdbarch_pop_frame_ftype ia64_pop_frame; | |
93 | static gdbarch_saved_pc_after_call_ftype ia64_saved_pc_after_call; | |
16461d7d | 94 | static void ia64_pop_frame_regular (struct frame_info *frame); |
64a5b29c | 95 | static struct type *is_float_or_hfa_type (struct type *t); |
16461d7d KB |
96 | |
97 | static int ia64_num_regs = 590; | |
98 | ||
99 | static int pc_regnum = IA64_IP_REGNUM; | |
100 | static int sp_regnum = IA64_GR12_REGNUM; | |
101 | static int fp_regnum = IA64_VFP_REGNUM; | |
102 | static int lr_regnum = IA64_VRAP_REGNUM; | |
103 | ||
104 | static LONGEST ia64_call_dummy_words[] = {0}; | |
105 | ||
106 | /* Array of register names; There should be ia64_num_regs strings in | |
107 | the initializer. */ | |
108 | ||
109 | static char *ia64_register_names[] = | |
110 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
111 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
112 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
113 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
114 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
115 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
116 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
117 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
118 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
119 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
120 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
121 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
122 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
123 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
124 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
125 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
126 | ||
127 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
128 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
129 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
130 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
131 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
132 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
133 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
134 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
135 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
136 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
137 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
138 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
139 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
140 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
141 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
142 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
143 | ||
144 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
145 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
146 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
147 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
148 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
149 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
150 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
151 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
152 | ||
153 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
154 | ||
155 | "vfp", "vrap", | |
156 | ||
157 | "pr", "ip", "psr", "cfm", | |
158 | ||
159 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
160 | "", "", "", "", "", "", "", "", | |
161 | "rsc", "bsp", "bspstore", "rnat", | |
162 | "", "fcr", "", "", | |
163 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
164 | "ccv", "", "", "", "unat", "", "", "", | |
165 | "fpsr", "", "", "", "itc", | |
166 | "", "", "", "", "", "", "", "", "", "", | |
167 | "", "", "", "", "", "", "", "", "", | |
168 | "pfs", "lc", "ec", | |
169 | "", "", "", "", "", "", "", "", "", "", | |
170 | "", "", "", "", "", "", "", "", "", "", | |
171 | "", "", "", "", "", "", "", "", "", "", | |
172 | "", "", "", "", "", "", "", "", "", "", | |
173 | "", "", "", "", "", "", "", "", "", "", | |
174 | "", "", "", "", "", "", "", "", "", "", | |
175 | "", | |
176 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
177 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
178 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
179 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
180 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
181 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
182 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
183 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
184 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
185 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
186 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
187 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
188 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
189 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
190 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
191 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
192 | }; | |
193 | ||
194 | struct frame_extra_info | |
244bc108 KB |
195 | { |
196 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
197 | CORE_ADDR cfm; /* cfm value for current frame */ | |
198 | int sof; /* Size of frame (decoded from cfm value) */ | |
199 | int sol; /* Size of locals (decoded from cfm value) */ | |
200 | CORE_ADDR after_prologue; | |
201 | /* Address of first instruction after the last | |
16461d7d KB |
202 | prologue instruction; Note that there may |
203 | be instructions from the function's body | |
204 | intermingled with the prologue. */ | |
244bc108 KB |
205 | int mem_stack_frame_size; |
206 | /* Size of the memory stack frame (may be zero), | |
16461d7d | 207 | or -1 if it has not been determined yet. */ |
244bc108 KB |
208 | int fp_reg; /* Register number (if any) used a frame pointer |
209 | for this frame. 0 if no register is being used | |
16461d7d | 210 | as the frame pointer. */ |
244bc108 KB |
211 | }; |
212 | ||
213 | struct gdbarch_tdep | |
214 | { | |
215 | int os_ident; /* From the ELF header, one of the ELFOSABI_ | |
216 | constants: ELFOSABI_LINUX, ELFOSABI_MONTEREY, | |
217 | etc. */ | |
218 | CORE_ADDR (*sigcontext_register_address) (CORE_ADDR, int); | |
219 | /* OS specific function which, given a frame address | |
220 | and register number, returns the offset to the | |
221 | given register from the start of the frame. */ | |
222 | }; | |
223 | ||
224 | #define SIGCONTEXT_REGISTER_ADDRESS (gdbarch_tdep (current_gdbarch)->sigcontext_register_address) | |
16461d7d KB |
225 | |
226 | static char * | |
227 | ia64_register_name (int reg) | |
228 | { | |
229 | return ia64_register_names[reg]; | |
230 | } | |
231 | ||
232 | int | |
233 | ia64_register_raw_size (int reg) | |
234 | { | |
235 | return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8; | |
236 | } | |
237 | ||
238 | int | |
239 | ia64_register_virtual_size (int reg) | |
240 | { | |
241 | return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8; | |
242 | } | |
243 | ||
244 | /* Return true iff register N's virtual format is different from | |
245 | its raw format. */ | |
246 | int | |
247 | ia64_register_convertible (int nr) | |
248 | { | |
249 | return (IA64_FR0_REGNUM <= nr && nr <= IA64_FR127_REGNUM); | |
250 | } | |
251 | ||
252 | const struct floatformat floatformat_ia64_ext = | |
253 | { | |
254 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
255 | floatformat_intbit_yes | |
256 | }; | |
257 | ||
258 | void | |
259 | ia64_register_convert_to_virtual (int regnum, struct type *type, | |
260 | char *from, char *to) | |
261 | { | |
262 | if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM) | |
263 | { | |
264 | DOUBLEST val; | |
265 | floatformat_to_doublest (&floatformat_ia64_ext, from, &val); | |
266 | store_floating(to, TYPE_LENGTH(type), val); | |
267 | } | |
268 | else | |
269 | error("ia64_register_convert_to_virtual called with non floating point register number"); | |
270 | } | |
271 | ||
272 | void | |
273 | ia64_register_convert_to_raw (struct type *type, int regnum, | |
274 | char *from, char *to) | |
275 | { | |
276 | if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM) | |
277 | { | |
278 | DOUBLEST val = extract_floating (from, TYPE_LENGTH(type)); | |
279 | floatformat_from_doublest (&floatformat_ia64_ext, &val, to); | |
280 | } | |
281 | else | |
282 | error("ia64_register_convert_to_raw called with non floating point register number"); | |
283 | } | |
284 | ||
285 | struct type * | |
286 | ia64_register_virtual_type (int reg) | |
287 | { | |
288 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) | |
289 | return builtin_type_long_double; | |
290 | else | |
291 | return builtin_type_long; | |
292 | } | |
293 | ||
294 | int | |
295 | ia64_register_byte (int reg) | |
296 | { | |
297 | return (8 * reg) + | |
298 | (reg <= IA64_FR0_REGNUM ? 0 : 8 * ((reg > IA64_FR127_REGNUM) ? 128 : reg - IA64_FR0_REGNUM)); | |
299 | } | |
300 | ||
244bc108 KB |
301 | /* Read the given register from a sigcontext structure in the |
302 | specified frame. */ | |
303 | ||
304 | static CORE_ADDR | |
305 | read_sigcontext_register (struct frame_info *frame, int regnum) | |
306 | { | |
307 | CORE_ADDR regaddr; | |
308 | ||
309 | if (frame == NULL) | |
310 | internal_error ("read_sigcontext_register: NULL frame"); | |
311 | if (!frame->signal_handler_caller) | |
312 | internal_error ( | |
313 | "read_sigcontext_register: frame not a signal_handler_caller"); | |
314 | if (SIGCONTEXT_REGISTER_ADDRESS == 0) | |
315 | internal_error ( | |
316 | "read_sigcontext_register: SIGCONTEXT_REGISTER_ADDRESS is 0"); | |
317 | ||
318 | regaddr = SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regnum); | |
319 | if (regaddr) | |
320 | return read_memory_integer (regaddr, REGISTER_RAW_SIZE (regnum)); | |
321 | else | |
322 | internal_error ( | |
323 | "read_sigcontext_register: Register %d not in struct sigcontext", regnum); | |
324 | } | |
325 | ||
16461d7d KB |
326 | /* Extract ``len'' bits from an instruction bundle starting at |
327 | bit ``from''. */ | |
328 | ||
244bc108 | 329 | static long long |
16461d7d KB |
330 | extract_bit_field (char *bundle, int from, int len) |
331 | { | |
332 | long long result = 0LL; | |
333 | int to = from + len; | |
334 | int from_byte = from / 8; | |
335 | int to_byte = to / 8; | |
336 | unsigned char *b = (unsigned char *) bundle; | |
337 | unsigned char c; | |
338 | int lshift; | |
339 | int i; | |
340 | ||
341 | c = b[from_byte]; | |
342 | if (from_byte == to_byte) | |
343 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
344 | result = c >> (from % 8); | |
345 | lshift = 8 - (from % 8); | |
346 | ||
347 | for (i = from_byte+1; i < to_byte; i++) | |
348 | { | |
349 | result |= ((long long) b[i]) << lshift; | |
350 | lshift += 8; | |
351 | } | |
352 | ||
353 | if (from_byte < to_byte && (to % 8 != 0)) | |
354 | { | |
355 | c = b[to_byte]; | |
356 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
357 | result |= ((long long) c) << lshift; | |
358 | } | |
359 | ||
360 | return result; | |
361 | } | |
362 | ||
363 | /* Replace the specified bits in an instruction bundle */ | |
364 | ||
244bc108 | 365 | static void |
16461d7d KB |
366 | replace_bit_field (char *bundle, long long val, int from, int len) |
367 | { | |
368 | int to = from + len; | |
369 | int from_byte = from / 8; | |
370 | int to_byte = to / 8; | |
371 | unsigned char *b = (unsigned char *) bundle; | |
372 | unsigned char c; | |
373 | ||
374 | if (from_byte == to_byte) | |
375 | { | |
376 | unsigned char left, right; | |
377 | c = b[from_byte]; | |
378 | left = (c >> (to % 8)) << (to % 8); | |
379 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
380 | c = (unsigned char) (val & 0xff); | |
381 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
382 | c |= right | left; | |
383 | b[from_byte] = c; | |
384 | } | |
385 | else | |
386 | { | |
387 | int i; | |
388 | c = b[from_byte]; | |
389 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
390 | c = c | (val << (from % 8)); | |
391 | b[from_byte] = c; | |
392 | val >>= 8 - from % 8; | |
393 | ||
394 | for (i = from_byte+1; i < to_byte; i++) | |
395 | { | |
396 | c = val & 0xff; | |
397 | val >>= 8; | |
398 | b[i] = c; | |
399 | } | |
400 | ||
401 | if (to % 8 != 0) | |
402 | { | |
403 | unsigned char cv = (unsigned char) val; | |
404 | c = b[to_byte]; | |
405 | c = c >> (to % 8) << (to % 8); | |
406 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
407 | b[to_byte] = c; | |
408 | } | |
409 | } | |
410 | } | |
411 | ||
412 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
413 | and instruction bundle */ | |
414 | ||
244bc108 | 415 | static long long |
16461d7d KB |
416 | slotN_contents (unsigned char *bundle, int slotnum) |
417 | { | |
418 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
419 | } | |
420 | ||
421 | /* Store an instruction in an instruction bundle */ | |
422 | ||
244bc108 | 423 | static void |
16461d7d KB |
424 | replace_slotN_contents (unsigned char *bundle, long long instr, int slotnum) |
425 | { | |
426 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
427 | } | |
428 | ||
64a5b29c | 429 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
430 | { |
431 | { M, I, I }, /* 00 */ | |
432 | { M, I, I }, /* 01 */ | |
433 | { M, I, I }, /* 02 */ | |
434 | { M, I, I }, /* 03 */ | |
435 | { M, L, X }, /* 04 */ | |
436 | { M, L, X }, /* 05 */ | |
437 | { undefined, undefined, undefined }, /* 06 */ | |
438 | { undefined, undefined, undefined }, /* 07 */ | |
439 | { M, M, I }, /* 08 */ | |
440 | { M, M, I }, /* 09 */ | |
441 | { M, M, I }, /* 0A */ | |
442 | { M, M, I }, /* 0B */ | |
443 | { M, F, I }, /* 0C */ | |
444 | { M, F, I }, /* 0D */ | |
445 | { M, M, F }, /* 0E */ | |
446 | { M, M, F }, /* 0F */ | |
447 | { M, I, B }, /* 10 */ | |
448 | { M, I, B }, /* 11 */ | |
449 | { M, B, B }, /* 12 */ | |
450 | { M, B, B }, /* 13 */ | |
451 | { undefined, undefined, undefined }, /* 14 */ | |
452 | { undefined, undefined, undefined }, /* 15 */ | |
453 | { B, B, B }, /* 16 */ | |
454 | { B, B, B }, /* 17 */ | |
455 | { M, M, B }, /* 18 */ | |
456 | { M, M, B }, /* 19 */ | |
457 | { undefined, undefined, undefined }, /* 1A */ | |
458 | { undefined, undefined, undefined }, /* 1B */ | |
459 | { M, F, B }, /* 1C */ | |
460 | { M, F, B }, /* 1D */ | |
461 | { undefined, undefined, undefined }, /* 1E */ | |
462 | { undefined, undefined, undefined }, /* 1F */ | |
463 | }; | |
464 | ||
465 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
466 | address of the next instruction to fetch. */ | |
467 | ||
468 | static CORE_ADDR | |
469 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
470 | { | |
471 | char bundle[BUNDLE_LEN]; | |
472 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
473 | long long template; | |
474 | int val; | |
475 | ||
476 | if (slotnum > 2) | |
477 | error("Can't fetch instructions for slot numbers greater than 2."); | |
478 | ||
479 | addr &= ~0x0f; | |
480 | ||
481 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
482 | ||
483 | if (val != 0) | |
484 | return 0; | |
485 | ||
486 | *instr = slotN_contents (bundle, slotnum); | |
487 | template = extract_bit_field (bundle, 0, 5); | |
488 | *it = template_encoding_table[(int)template][slotnum]; | |
489 | ||
64a5b29c | 490 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
491 | addr += 16; |
492 | else | |
493 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
494 | ||
495 | return addr; | |
496 | } | |
497 | ||
498 | /* There are 5 different break instructions (break.i, break.b, | |
499 | break.m, break.f, and break.x), but they all have the same | |
500 | encoding. (The five bit template in the low five bits of the | |
501 | instruction bundle distinguishes one from another.) | |
502 | ||
503 | The runtime architecture manual specifies that break instructions | |
504 | used for debugging purposes must have the upper two bits of the 21 | |
505 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
506 | instruction encodes the most significant bit of its 21 bit | |
507 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
508 | is at bit 25 which leads to the pattern below. | |
509 | ||
510 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
511 | it turns out that 0x80000 was used as the syscall break in the early | |
512 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
513 | instead. But that didn't work either (I later found out that this | |
514 | pattern was used by the simulator that I was using.) So I ended up | |
515 | using the pattern seen below. */ | |
516 | ||
517 | #if 0 | |
518 | #define BREAKPOINT 0x00002000040LL | |
519 | #endif | |
520 | #define BREAKPOINT 0x00003333300LL | |
521 | ||
522 | static int | |
523 | ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) | |
524 | { | |
525 | char bundle[BUNDLE_LEN]; | |
526 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
527 | long long instr; | |
528 | int val; | |
529 | ||
530 | if (slotnum > 2) | |
531 | error("Can't insert breakpoint for slot numbers greater than 2."); | |
532 | ||
533 | addr &= ~0x0f; | |
534 | ||
535 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
536 | instr = slotN_contents (bundle, slotnum); | |
537 | memcpy(contents_cache, &instr, sizeof(instr)); | |
538 | replace_slotN_contents (bundle, BREAKPOINT, slotnum); | |
539 | if (val == 0) | |
540 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
541 | ||
542 | return val; | |
543 | } | |
544 | ||
545 | static int | |
546 | ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) | |
547 | { | |
548 | char bundle[BUNDLE_LEN]; | |
549 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
550 | long long instr; | |
551 | int val; | |
552 | ||
553 | addr &= ~0x0f; | |
554 | ||
555 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
556 | memcpy (&instr, contents_cache, sizeof instr); | |
557 | replace_slotN_contents (bundle, instr, slotnum); | |
558 | if (val == 0) | |
559 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
560 | ||
561 | return val; | |
562 | } | |
563 | ||
564 | /* We don't really want to use this, but remote.c needs to call it in order | |
565 | to figure out if Z-packets are supported or not. Oh, well. */ | |
566 | unsigned char * | |
567 | ia64_breakpoint_from_pc (pcptr, lenptr) | |
568 | CORE_ADDR *pcptr; | |
569 | int *lenptr; | |
570 | { | |
571 | static unsigned char breakpoint[] = | |
572 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
573 | *lenptr = sizeof (breakpoint); | |
574 | #if 0 | |
575 | *pcptr &= ~0x0f; | |
576 | #endif | |
577 | return breakpoint; | |
578 | } | |
579 | ||
580 | CORE_ADDR | |
581 | ia64_read_pc (int pid) | |
582 | { | |
583 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid); | |
584 | CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, pid); | |
585 | int slot_num = (psr_value >> 41) & 3; | |
586 | ||
587 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
588 | } | |
589 | ||
590 | void | |
591 | ia64_write_pc (CORE_ADDR new_pc, int pid) | |
592 | { | |
593 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
594 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid); | |
595 | psr_value &= ~(3LL << 41); | |
596 | psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41; | |
597 | ||
598 | new_pc &= ~0xfLL; | |
599 | ||
600 | write_register_pid (IA64_PSR_REGNUM, psr_value, pid); | |
601 | write_register_pid (IA64_IP_REGNUM, new_pc, pid); | |
602 | } | |
603 | ||
604 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
605 | ||
606 | /* Returns the address of the slot that's NSLOTS slots away from | |
607 | the address ADDR. NSLOTS may be positive or negative. */ | |
608 | static CORE_ADDR | |
609 | rse_address_add(CORE_ADDR addr, int nslots) | |
610 | { | |
611 | CORE_ADDR new_addr; | |
612 | int mandatory_nat_slots = nslots / 63; | |
613 | int direction = nslots < 0 ? -1 : 1; | |
614 | ||
615 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
616 | ||
617 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
618 | new_addr += 8 * direction; | |
619 | ||
620 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
621 | new_addr += 8 * direction; | |
622 | ||
623 | return new_addr; | |
624 | } | |
625 | ||
626 | /* The IA-64 frame chain is a bit odd. We won't always have a frame | |
627 | pointer, so we use the SP value as the FP for the purpose of | |
628 | creating a frame. There is sometimes a register (not fixed) which | |
629 | is used as a frame pointer. When this register exists, it is not | |
630 | especially hard to determine which one is being used. It isn't | |
631 | even really hard to compute the frame chain, but it can be | |
632 | computationally expensive. So, instead of making life difficult | |
633 | (and slow), we pick a more convenient representation of the frame | |
634 | chain, knowing that we'll have to make some small adjustments | |
635 | in other places. (E.g, note that read_fp() and write_fp() are | |
636 | actually read_sp() and write_sp() below in ia64_gdbarch_init() | |
637 | below.) | |
638 | ||
639 | Okay, so what is the frame chain exactly? It'll be the SP value | |
640 | at the time that the function in question was entered. | |
641 | ||
642 | Note that this *should* actually the frame pointer for the current | |
643 | function! But as I note above, if we were to attempt to find the | |
644 | address of the beginning of the previous frame, we'd waste a lot | |
645 | of cycles for no good reason. So instead, we simply choose to | |
646 | represent the frame chain as the end of the previous frame instead | |
647 | of the beginning. */ | |
648 | ||
649 | CORE_ADDR | |
650 | ia64_frame_chain (struct frame_info *frame) | |
651 | { | |
244bc108 KB |
652 | if (frame->signal_handler_caller) |
653 | return read_sigcontext_register (frame, sp_regnum); | |
654 | else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
655 | return frame->frame; | |
16461d7d | 656 | else |
244bc108 KB |
657 | { |
658 | FRAME_INIT_SAVED_REGS (frame); | |
659 | if (frame->saved_regs[IA64_VFP_REGNUM]) | |
660 | return read_memory_integer (frame->saved_regs[IA64_VFP_REGNUM], 8); | |
661 | else | |
662 | return frame->frame + frame->extra_info->mem_stack_frame_size; | |
663 | } | |
16461d7d KB |
664 | } |
665 | ||
666 | CORE_ADDR | |
667 | ia64_frame_saved_pc (struct frame_info *frame) | |
668 | { | |
244bc108 KB |
669 | if (frame->signal_handler_caller) |
670 | return read_sigcontext_register (frame, pc_regnum); | |
671 | else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
672 | return generic_read_register_dummy (frame->pc, frame->frame, pc_regnum); | |
673 | else | |
674 | { | |
675 | FRAME_INIT_SAVED_REGS (frame); | |
16461d7d | 676 | |
244bc108 KB |
677 | if (frame->saved_regs[IA64_VRAP_REGNUM]) |
678 | return read_memory_integer (frame->saved_regs[IA64_VRAP_REGNUM], 8); | |
679 | else if (frame->next && frame->next->signal_handler_caller) | |
680 | return read_sigcontext_register (frame->next, IA64_BR0_REGNUM); | |
681 | else /* either frameless, or not far enough along in the prologue... */ | |
682 | return ia64_saved_pc_after_call (frame); | |
683 | } | |
16461d7d KB |
684 | } |
685 | ||
686 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ | |
687 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
688 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
689 | #define imm9(_instr_) \ | |
690 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
691 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
692 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
693 | ||
694 | static CORE_ADDR | |
695 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *frame) | |
696 | { | |
697 | CORE_ADDR next_pc; | |
698 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
699 | instruction_type it; |
700 | long long instr; | |
701 | int do_fsr_stuff = 0; | |
702 | ||
703 | int cfm_reg = 0; | |
704 | int ret_reg = 0; | |
705 | int fp_reg = 0; | |
706 | int unat_save_reg = 0; | |
707 | int pr_save_reg = 0; | |
708 | int mem_stack_frame_size = 0; | |
709 | int spill_reg = 0; | |
710 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
711 | char instores[8]; |
712 | char infpstores[8]; | |
713 | ||
714 | memset (instores, 0, sizeof instores); | |
715 | memset (infpstores, 0, sizeof infpstores); | |
16461d7d KB |
716 | |
717 | if (frame && !frame->saved_regs) | |
718 | { | |
719 | frame_saved_regs_zalloc (frame); | |
720 | do_fsr_stuff = 1; | |
721 | } | |
722 | ||
723 | if (frame | |
724 | && !do_fsr_stuff | |
725 | && frame->extra_info->after_prologue != 0 | |
726 | && frame->extra_info->after_prologue <= lim_pc) | |
727 | return frame->extra_info->after_prologue; | |
728 | ||
729 | /* Must start with an alloc instruction */ | |
730 | next_pc = fetch_instruction (pc, &it, &instr); | |
731 | if (pc < lim_pc && next_pc | |
732 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
733 | { | |
734 | /* alloc */ | |
735 | int sor = (int) ((instr & 0x00078000000LL) >> 27); | |
736 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
737 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
738 | /* Okay, so sor, sol, and sof aren't used right now; but perhaps | |
739 | we could compare against the size given to us via the cfm as | |
740 | either a sanity check or possibly to see if the frame has been | |
741 | changed by a later alloc instruction... */ | |
742 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
743 | cfm_reg = rN; | |
744 | last_prologue_pc = next_pc; | |
745 | pc = next_pc; | |
746 | } | |
747 | else | |
748 | pc = lim_pc; /* We're done early */ | |
749 | ||
750 | /* Loop, looking for prologue instructions, keeping track of | |
751 | where preserved registers were spilled. */ | |
752 | while (pc < lim_pc) | |
753 | { | |
754 | next_pc = fetch_instruction (pc, &it, &instr); | |
755 | if (next_pc == 0) | |
756 | break; | |
757 | ||
0927a22b KB |
758 | if (it == B || ((instr & 0x3fLL) != 0LL)) |
759 | { | |
760 | /* Exit loop upon hitting a branch instruction or a predicated | |
761 | instruction. */ | |
762 | break; | |
763 | } | |
764 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
765 | { |
766 | /* Move from BR */ | |
767 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
768 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
769 | int qp = (int) (instr & 0x0000000003f); | |
770 | ||
771 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
772 | { | |
773 | ret_reg = rN; | |
774 | last_prologue_pc = next_pc; | |
775 | } | |
776 | } | |
777 | else if ((it == I || it == M) | |
778 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
779 | { | |
780 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
781 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
782 | | ((instr & 0x001f8000000LL) >> 20) | |
783 | | ((instr & 0x000000fe000LL) >> 13)); | |
784 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
785 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
786 | int qp = (int) (instr & 0x0000000003fLL); | |
787 | ||
788 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
789 | { | |
790 | /* mov rN, r12 */ | |
791 | fp_reg = rN; | |
792 | last_prologue_pc = next_pc; | |
793 | } | |
794 | else if (qp == 0 && rN == 12 && rM == 12) | |
795 | { | |
796 | /* adds r12, -mem_stack_frame_size, r12 */ | |
797 | mem_stack_frame_size -= imm; | |
798 | last_prologue_pc = next_pc; | |
799 | } | |
800 | else if (qp == 0 && rN == 2 | |
801 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
802 | { | |
803 | /* adds r2, spilloffset, rFramePointer | |
804 | or | |
805 | adds r2, spilloffset, r12 | |
806 | ||
807 | Get ready for stf.spill or st8.spill instructions. | |
808 | The address to start spilling at is loaded into r2. | |
809 | FIXME: Why r2? That's what gcc currently uses; it | |
810 | could well be different for other compilers. */ | |
811 | ||
812 | /* Hmm... whether or not this will work will depend on | |
813 | where the pc is. If it's still early in the prologue | |
814 | this'll be wrong. FIXME */ | |
815 | spill_addr = (frame ? frame->frame : 0) | |
816 | + (rM == 12 ? 0 : mem_stack_frame_size) | |
817 | + imm; | |
818 | spill_reg = rN; | |
819 | last_prologue_pc = next_pc; | |
820 | } | |
821 | } | |
822 | else if (it == M | |
823 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
824 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
825 | { | |
826 | /* stf.spill [rN] = fM, imm9 | |
827 | or | |
828 | stf.spill [rN] = fM */ | |
829 | ||
830 | int imm = imm9(instr); | |
831 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
832 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
833 | int qp = (int) (instr & 0x0000000003fLL); | |
834 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
835 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
836 | { | |
837 | if (do_fsr_stuff) | |
838 | frame->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; | |
839 | ||
840 | if ((instr & 0x1efc0000000) == 0x0eec0000000) | |
841 | spill_addr += imm; | |
842 | else | |
843 | spill_addr = 0; /* last one; must be done */ | |
844 | last_prologue_pc = next_pc; | |
845 | } | |
846 | } | |
847 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
848 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
849 | { | |
850 | /* mov.m rN = arM | |
851 | or | |
852 | mov.i rN = arM */ | |
853 | ||
854 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
855 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
856 | int qp = (int) (instr & 0x0000000003fLL); | |
857 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
858 | { | |
859 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
860 | r3 (or whatever) and watch for a store of this register... */ | |
861 | unat_save_reg = rN; | |
862 | last_prologue_pc = next_pc; | |
863 | } | |
864 | } | |
865 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
866 | { | |
867 | /* mov rN = pr */ | |
868 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
869 | int qp = (int) (instr & 0x0000000003fLL); | |
870 | if (qp == 0 && isScratch (rN)) | |
871 | { | |
872 | pr_save_reg = rN; | |
873 | last_prologue_pc = next_pc; | |
874 | } | |
875 | } | |
876 | else if (it == M | |
877 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
878 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
879 | { | |
880 | /* st8 [rN] = rM | |
881 | or | |
882 | st8 [rN] = rM, imm9 */ | |
883 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
884 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
885 | int qp = (int) (instr & 0x0000000003fLL); | |
886 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
887 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
888 | { | |
889 | /* We've found a spill of either the UNAT register or the PR | |
890 | register. (Well, not exactly; what we've actually found is | |
891 | a spill of the register that UNAT or PR was moved to). | |
892 | Record that fact and move on... */ | |
893 | if (rM == unat_save_reg) | |
894 | { | |
895 | /* Track UNAT register */ | |
896 | if (do_fsr_stuff) | |
897 | frame->saved_regs[IA64_UNAT_REGNUM] = spill_addr; | |
898 | unat_save_reg = 0; | |
899 | } | |
900 | else | |
901 | { | |
902 | /* Track PR register */ | |
903 | if (do_fsr_stuff) | |
904 | frame->saved_regs[IA64_PR_REGNUM] = spill_addr; | |
905 | pr_save_reg = 0; | |
906 | } | |
907 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
908 | /* st8 [rN] = rM, imm9 */ | |
909 | spill_addr += imm9(instr); | |
910 | else | |
911 | spill_addr = 0; /* must be done spilling */ | |
912 | last_prologue_pc = next_pc; | |
913 | } | |
0927a22b KB |
914 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
915 | { | |
916 | /* Allow up to one store of each input register. */ | |
917 | instores[rM-32] = 1; | |
918 | last_prologue_pc = next_pc; | |
919 | } | |
920 | } | |
921 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
922 | { | |
923 | /* One of | |
924 | st1 [rN] = rM | |
925 | st2 [rN] = rM | |
926 | st4 [rN] = rM | |
927 | st8 [rN] = rM | |
928 | Note that the st8 case is handled in the clause above. | |
929 | ||
930 | Advance over stores of input registers. One store per input | |
931 | register is permitted. */ | |
932 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
933 | int qp = (int) (instr & 0x0000000003fLL); | |
934 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) | |
935 | { | |
936 | instores[rM-32] = 1; | |
937 | last_prologue_pc = next_pc; | |
938 | } | |
939 | } | |
940 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
941 | { | |
942 | /* Either | |
943 | stfs [rN] = fM | |
944 | or | |
945 | stfd [rN] = fM | |
946 | ||
947 | Advance over stores of floating point input registers. Again | |
948 | one store per register is permitted */ | |
949 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
950 | int qp = (int) (instr & 0x0000000003fLL); | |
951 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
952 | { | |
953 | infpstores[fM-8] = 1; | |
954 | last_prologue_pc = next_pc; | |
955 | } | |
16461d7d KB |
956 | } |
957 | else if (it == M | |
958 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
959 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
960 | { | |
961 | /* st8.spill [rN] = rM | |
962 | or | |
963 | st8.spill [rN] = rM, imm9 */ | |
964 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
965 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
966 | int qp = (int) (instr & 0x0000000003fLL); | |
967 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
968 | { | |
969 | /* We've found a spill of one of the preserved general purpose | |
970 | regs. Record the spill address and advance the spill | |
971 | register if appropriate. */ | |
972 | if (do_fsr_stuff) | |
973 | frame->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; | |
974 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) | |
975 | /* st8.spill [rN] = rM, imm9 */ | |
976 | spill_addr += imm9(instr); | |
977 | else | |
978 | spill_addr = 0; /* Done spilling */ | |
979 | last_prologue_pc = next_pc; | |
980 | } | |
981 | } | |
16461d7d KB |
982 | |
983 | pc = next_pc; | |
984 | } | |
985 | ||
986 | if (do_fsr_stuff) { | |
987 | int i; | |
988 | CORE_ADDR addr; | |
989 | ||
990 | for (i = 0, addr = frame->extra_info->bsp; | |
991 | i < frame->extra_info->sof; | |
992 | i++, addr += 8) | |
993 | { | |
994 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
995 | { | |
996 | addr += 8; | |
997 | } | |
998 | frame->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
999 | ||
1000 | if (i+32 == cfm_reg) | |
1001 | frame->saved_regs[IA64_CFM_REGNUM] = addr; | |
1002 | if (i+32 == ret_reg) | |
1003 | frame->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1004 | if (i+32 == fp_reg) | |
1005 | frame->saved_regs[IA64_VFP_REGNUM] = addr; | |
1006 | } | |
1007 | } | |
1008 | ||
1009 | if (frame && frame->extra_info) { | |
1010 | frame->extra_info->after_prologue = last_prologue_pc; | |
1011 | frame->extra_info->mem_stack_frame_size = mem_stack_frame_size; | |
1012 | frame->extra_info->fp_reg = fp_reg; | |
1013 | } | |
1014 | ||
1015 | return last_prologue_pc; | |
1016 | } | |
1017 | ||
1018 | CORE_ADDR | |
1019 | ia64_skip_prologue (CORE_ADDR pc) | |
1020 | { | |
1021 | return examine_prologue (pc, pc+1024, 0); | |
1022 | } | |
1023 | ||
1024 | void | |
1025 | ia64_frame_init_saved_regs (struct frame_info *frame) | |
1026 | { | |
16461d7d KB |
1027 | if (frame->saved_regs) |
1028 | return; | |
1029 | ||
244bc108 KB |
1030 | if (frame->signal_handler_caller && SIGCONTEXT_REGISTER_ADDRESS) |
1031 | { | |
1032 | int regno; | |
16461d7d | 1033 | |
244bc108 | 1034 | frame_saved_regs_zalloc (frame); |
16461d7d | 1035 | |
244bc108 KB |
1036 | frame->saved_regs[IA64_VRAP_REGNUM] = |
1037 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_IP_REGNUM); | |
1038 | frame->saved_regs[IA64_CFM_REGNUM] = | |
1039 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CFM_REGNUM); | |
1040 | frame->saved_regs[IA64_PSR_REGNUM] = | |
1041 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PSR_REGNUM); | |
1042 | #if 0 | |
1043 | frame->saved_regs[IA64_BSP_REGNUM] = | |
1044 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_BSP_REGNUM); | |
1045 | #endif | |
1046 | frame->saved_regs[IA64_RNAT_REGNUM] = | |
1047 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_RNAT_REGNUM); | |
1048 | frame->saved_regs[IA64_CCV_REGNUM] = | |
1049 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CCV_REGNUM); | |
1050 | frame->saved_regs[IA64_UNAT_REGNUM] = | |
1051 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_UNAT_REGNUM); | |
1052 | frame->saved_regs[IA64_FPSR_REGNUM] = | |
1053 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_FPSR_REGNUM); | |
1054 | frame->saved_regs[IA64_PFS_REGNUM] = | |
1055 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PFS_REGNUM); | |
1056 | frame->saved_regs[IA64_LC_REGNUM] = | |
1057 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_LC_REGNUM); | |
1058 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) | |
1059 | if (regno != sp_regnum) | |
1060 | frame->saved_regs[regno] = | |
1061 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
1062 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) | |
1063 | frame->saved_regs[regno] = | |
1064 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
1065 | for (regno = IA64_FR2_REGNUM; regno <= IA64_BR7_REGNUM; regno++) | |
1066 | frame->saved_regs[regno] = | |
1067 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
16461d7d KB |
1068 | } |
1069 | else | |
1070 | { | |
244bc108 | 1071 | CORE_ADDR func_start; |
16461d7d | 1072 | |
244bc108 KB |
1073 | func_start = get_pc_function_start (frame->pc); |
1074 | examine_prologue (func_start, frame->pc, frame); | |
1075 | } | |
16461d7d KB |
1076 | } |
1077 | ||
1078 | void | |
1079 | ia64_get_saved_register (char *raw_buffer, | |
1080 | int *optimized, | |
1081 | CORE_ADDR *addrp, | |
1082 | struct frame_info *frame, | |
1083 | int regnum, | |
1084 | enum lval_type *lval) | |
1085 | { | |
244bc108 | 1086 | int is_dummy_frame; |
16461d7d KB |
1087 | |
1088 | if (!target_has_registers) | |
1089 | error ("No registers."); | |
1090 | ||
1091 | if (optimized != NULL) | |
1092 | *optimized = 0; | |
244bc108 KB |
1093 | |
1094 | if (addrp != NULL) | |
1095 | *addrp = 0; | |
1096 | ||
1097 | if (lval != NULL) | |
1098 | *lval = not_lval; | |
1099 | ||
1100 | is_dummy_frame = PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame); | |
1101 | ||
1102 | if (regnum == SP_REGNUM && frame->next) | |
16461d7d KB |
1103 | { |
1104 | /* Handle SP values for all frames but the topmost. */ | |
16461d7d KB |
1105 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame); |
1106 | } | |
1107 | else if (regnum == IA64_BSP_REGNUM) | |
1108 | { | |
16461d7d KB |
1109 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), |
1110 | frame->extra_info->bsp); | |
1111 | } | |
1112 | else if (regnum == IA64_VFP_REGNUM) | |
1113 | { | |
1114 | /* If the function in question uses an automatic register (r32-r127) | |
1115 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1116 | above. If the function lacks one of these frame pointers, we can | |
1117 | still provide a value since we know the size of the frame */ | |
1118 | CORE_ADDR vfp = frame->frame + frame->extra_info->mem_stack_frame_size; | |
16461d7d KB |
1119 | store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_VFP_REGNUM), vfp); |
1120 | } | |
1121 | else if (IA64_PR0_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM) | |
1122 | { | |
1123 | char pr_raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1124 | int pr_optim; | |
1125 | enum lval_type pr_lval; | |
1126 | CORE_ADDR pr_addr; | |
1127 | int prN_val; | |
1128 | ia64_get_saved_register (pr_raw_buffer, &pr_optim, &pr_addr, | |
1129 | frame, IA64_PR_REGNUM, &pr_lval); | |
1130 | prN_val = extract_bit_field ((unsigned char *) pr_raw_buffer, | |
1131 | regnum - IA64_PR0_REGNUM, 1); | |
1132 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), prN_val); | |
16461d7d KB |
1133 | } |
1134 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1135 | { | |
1136 | char unat_raw_buffer[MAX_REGISTER_RAW_SIZE]; | |
1137 | int unat_optim; | |
1138 | enum lval_type unat_lval; | |
1139 | CORE_ADDR unat_addr; | |
1140 | int unatN_val; | |
1141 | ia64_get_saved_register (unat_raw_buffer, &unat_optim, &unat_addr, | |
1142 | frame, IA64_UNAT_REGNUM, &unat_lval); | |
1143 | unatN_val = extract_bit_field ((unsigned char *) unat_raw_buffer, | |
1144 | regnum - IA64_NAT0_REGNUM, 1); | |
1145 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
1146 | unatN_val); | |
16461d7d KB |
1147 | } |
1148 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1149 | { | |
1150 | int natval = 0; | |
1151 | /* Find address of general register corresponding to nat bit we're | |
1152 | interested in. */ | |
244bc108 KB |
1153 | CORE_ADDR gr_addr = 0; |
1154 | ||
1155 | if (!is_dummy_frame) | |
1156 | { | |
1157 | FRAME_INIT_SAVED_REGS (frame); | |
1158 | gr_addr = frame->saved_regs[ regnum - IA64_NAT0_REGNUM | |
1159 | + IA64_GR0_REGNUM]; | |
1160 | } | |
16461d7d KB |
1161 | if (gr_addr) |
1162 | { | |
1163 | /* Compute address of nat collection bits */ | |
1164 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
1165 | CORE_ADDR bsp = read_register (IA64_BSP_REGNUM); | |
1166 | CORE_ADDR nat_collection; | |
1167 | int nat_bit; | |
1168 | /* If our nat collection address is bigger than bsp, we have to get | |
1169 | the nat collection from rnat. Otherwise, we fetch the nat | |
1170 | collection from the computed address. */ | |
1171 | if (nat_addr >= bsp) | |
1172 | nat_collection = read_register (IA64_RNAT_REGNUM); | |
1173 | else | |
1174 | nat_collection = read_memory_integer (nat_addr, 8); | |
1175 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1176 | natval = (nat_collection >> nat_bit) & 1; | |
1177 | } | |
1178 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), natval); | |
244bc108 KB |
1179 | } |
1180 | else if (regnum == IA64_IP_REGNUM) | |
1181 | { | |
1182 | CORE_ADDR pc; | |
1183 | if (frame->next) | |
1184 | { | |
1185 | /* FIXME: Set *addrp, *lval when possible. */ | |
1186 | pc = ia64_frame_saved_pc (frame->next); | |
1187 | } | |
1188 | else | |
1189 | { | |
1190 | pc = read_pc (); | |
1191 | } | |
1192 | store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_IP_REGNUM), pc); | |
1193 | } | |
1194 | else if (IA64_GR32_REGNUM <= regnum && regnum <= IA64_GR127_REGNUM) | |
1195 | { | |
1196 | CORE_ADDR addr = 0; | |
1197 | if (!is_dummy_frame) | |
1198 | { | |
1199 | FRAME_INIT_SAVED_REGS (frame); | |
1200 | addr = frame->saved_regs[regnum]; | |
1201 | } | |
1202 | ||
1203 | if (addr != 0) | |
1204 | { | |
1205 | if (lval != NULL) | |
1206 | *lval = lval_memory; | |
1207 | if (addrp != NULL) | |
1208 | *addrp = addr; | |
1209 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
1210 | } | |
1211 | else | |
1212 | { | |
1213 | /* r32 - r127 must be fetchable via memory. If they aren't, | |
1214 | then the register is unavailable */ | |
1215 | memset (raw_buffer, 0, REGISTER_RAW_SIZE (regnum)); | |
1216 | } | |
16461d7d KB |
1217 | } |
1218 | else | |
1219 | { | |
244bc108 KB |
1220 | generic_get_saved_register (raw_buffer, optimized, addrp, frame, |
1221 | regnum, lval); | |
16461d7d | 1222 | } |
16461d7d KB |
1223 | } |
1224 | ||
1225 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1226 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1227 | and TYPE is the type (which is known to be struct, union or array). */ | |
1228 | int | |
1229 | ia64_use_struct_convention (int gcc_p, struct type *type) | |
1230 | { | |
64a5b29c KB |
1231 | struct type *float_elt_type; |
1232 | ||
1233 | /* HFAs are structures (or arrays) consisting entirely of floating | |
1234 | point values of the same length. Up to 8 of these are returned | |
1235 | in registers. Don't use the struct convention when this is the | |
1236 | case. */ | |
1237 | float_elt_type = is_float_or_hfa_type (type); | |
1238 | if (float_elt_type != NULL | |
1239 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
1240 | return 0; | |
1241 | ||
1242 | /* Other structs of length 32 or less are returned in r8-r11. | |
1243 | Don't use the struct convention for those either. */ | |
16461d7d KB |
1244 | return TYPE_LENGTH (type) > 32; |
1245 | } | |
1246 | ||
1247 | void | |
1248 | ia64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
1249 | { | |
64a5b29c KB |
1250 | struct type *float_elt_type; |
1251 | ||
1252 | float_elt_type = is_float_or_hfa_type (type); | |
1253 | if (float_elt_type != NULL) | |
1254 | { | |
1255 | int offset = 0; | |
1256 | int regnum = IA64_FR8_REGNUM; | |
1257 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
1258 | ||
1259 | while (n-- > 0) | |
1260 | { | |
1261 | ia64_register_convert_to_virtual (regnum, float_elt_type, | |
1262 | ®buf[REGISTER_BYTE (regnum)], valbuf + offset); | |
1263 | offset += TYPE_LENGTH (float_elt_type); | |
1264 | regnum++; | |
1265 | } | |
1266 | } | |
16461d7d | 1267 | else |
64a5b29c KB |
1268 | memcpy (valbuf, ®buf[REGISTER_BYTE (IA64_GR8_REGNUM)], |
1269 | TYPE_LENGTH (type)); | |
16461d7d KB |
1270 | } |
1271 | ||
1272 | /* FIXME: Turn this into a stack of some sort. Unfortunately, something | |
1273 | like this is necessary though since the IA-64 calling conventions specify | |
1274 | that r8 is not preserved. */ | |
1275 | static CORE_ADDR struct_return_address; | |
1276 | ||
1277 | CORE_ADDR | |
1278 | ia64_extract_struct_value_address (char *regbuf) | |
1279 | { | |
1280 | /* FIXME: See above. */ | |
1281 | return struct_return_address; | |
1282 | } | |
1283 | ||
1284 | void | |
1285 | ia64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1286 | { | |
1287 | /* FIXME: See above. */ | |
1288 | /* Note that most of the work was done in ia64_push_arguments() */ | |
1289 | struct_return_address = addr; | |
1290 | } | |
1291 | ||
1292 | int | |
1293 | ia64_frameless_function_invocation (struct frame_info *frame) | |
1294 | { | |
1295 | /* FIXME: Implement */ | |
1296 | return 0; | |
1297 | } | |
1298 | ||
1299 | CORE_ADDR | |
1300 | ia64_saved_pc_after_call (struct frame_info *frame) | |
1301 | { | |
1302 | return read_register (IA64_BR0_REGNUM); | |
1303 | } | |
1304 | ||
1305 | CORE_ADDR | |
1306 | ia64_frame_args_address (struct frame_info *frame) | |
1307 | { | |
1308 | /* frame->frame points at the SP for this frame; But we want the start | |
1309 | of the frame, not the end. Calling frame chain will get his for us. */ | |
1310 | return ia64_frame_chain (frame); | |
1311 | } | |
1312 | ||
1313 | CORE_ADDR | |
1314 | ia64_frame_locals_address (struct frame_info *frame) | |
1315 | { | |
1316 | /* frame->frame points at the SP for this frame; But we want the start | |
1317 | of the frame, not the end. Calling frame chain will get his for us. */ | |
1318 | return ia64_frame_chain (frame); | |
1319 | } | |
1320 | ||
1321 | void | |
1322 | ia64_init_extra_frame_info (int fromleaf, struct frame_info *frame) | |
1323 | { | |
1324 | CORE_ADDR bsp, cfm; | |
244bc108 KB |
1325 | int next_frame_is_call_dummy = ((frame->next != NULL) |
1326 | && PC_IN_CALL_DUMMY (frame->next->pc, frame->next->frame, | |
1327 | frame->next->frame)); | |
16461d7d KB |
1328 | |
1329 | frame->extra_info = (struct frame_extra_info *) | |
1330 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1331 | ||
1332 | if (frame->next == 0) | |
1333 | { | |
1334 | bsp = read_register (IA64_BSP_REGNUM); | |
1335 | cfm = read_register (IA64_CFM_REGNUM); | |
1336 | ||
1337 | } | |
244bc108 KB |
1338 | else if (frame->next->signal_handler_caller) |
1339 | { | |
1340 | bsp = read_sigcontext_register (frame->next, IA64_BSP_REGNUM); | |
1341 | cfm = read_sigcontext_register (frame->next, IA64_CFM_REGNUM); | |
1342 | } | |
1343 | else if (next_frame_is_call_dummy) | |
1344 | { | |
1345 | bsp = generic_read_register_dummy (frame->next->pc, frame->next->frame, | |
1346 | IA64_BSP_REGNUM); | |
1347 | cfm = generic_read_register_dummy (frame->next->pc, frame->next->frame, | |
1348 | IA64_CFM_REGNUM); | |
1349 | } | |
16461d7d KB |
1350 | else |
1351 | { | |
1352 | struct frame_info *frn = frame->next; | |
16461d7d KB |
1353 | |
1354 | FRAME_INIT_SAVED_REGS (frn); | |
1355 | ||
1356 | if (frn->saved_regs[IA64_CFM_REGNUM] != 0) | |
1357 | cfm = read_memory_integer (frn->saved_regs[IA64_CFM_REGNUM], 8); | |
244bc108 KB |
1358 | else if (frn->next && frn->next->signal_handler_caller) |
1359 | cfm = read_sigcontext_register (frn->next, IA64_PFS_REGNUM); | |
1360 | else if (frn->next | |
1361 | && PC_IN_CALL_DUMMY (frn->next->pc, frn->next->frame, | |
1362 | frn->next->frame)) | |
1363 | cfm = generic_read_register_dummy (frn->next->pc, frn->next->frame, | |
1364 | IA64_PFS_REGNUM); | |
16461d7d | 1365 | else |
76d689a6 | 1366 | cfm = read_register (IA64_PFS_REGNUM); |
16461d7d KB |
1367 | |
1368 | bsp = frn->extra_info->bsp; | |
1369 | } | |
1370 | frame->extra_info->cfm = cfm; | |
1371 | frame->extra_info->sof = cfm & 0x7f; | |
1372 | frame->extra_info->sol = (cfm >> 7) & 0x7f; | |
244bc108 KB |
1373 | if (frame->next == 0 |
1374 | || frame->next->signal_handler_caller | |
1375 | || next_frame_is_call_dummy) | |
16461d7d KB |
1376 | frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sof); |
1377 | else | |
1378 | frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sol); | |
1379 | ||
1380 | frame->extra_info->after_prologue = 0; | |
1381 | frame->extra_info->mem_stack_frame_size = -1; /* Not yet determined */ | |
1382 | frame->extra_info->fp_reg = 0; | |
1383 | } | |
1384 | ||
64a5b29c KB |
1385 | static int |
1386 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
1387 | { | |
1388 | switch (TYPE_CODE (t)) | |
1389 | { | |
1390 | case TYPE_CODE_FLT: | |
1391 | if (*etp) | |
1392 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
1393 | else | |
1394 | { | |
1395 | *etp = t; | |
1396 | return 1; | |
1397 | } | |
1398 | break; | |
1399 | case TYPE_CODE_ARRAY: | |
1400 | return is_float_or_hfa_type_recurse (TYPE_TARGET_TYPE (t), etp); | |
1401 | break; | |
1402 | case TYPE_CODE_STRUCT: | |
1403 | { | |
1404 | int i; | |
1405 | ||
1406 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
1407 | if (!is_float_or_hfa_type_recurse (TYPE_FIELD_TYPE (t, i), etp)) | |
1408 | return 0; | |
1409 | return 1; | |
1410 | } | |
1411 | break; | |
1412 | default: | |
1413 | return 0; | |
1414 | break; | |
1415 | } | |
1416 | } | |
1417 | ||
1418 | /* Determine if the given type is one of the floating point types or | |
1419 | and HFA (which is a struct, array, or combination thereof whose | |
1420 | bottom-most elements are all of the same floating point type.) */ | |
1421 | ||
1422 | static struct type * | |
1423 | is_float_or_hfa_type (struct type *t) | |
1424 | { | |
1425 | struct type *et = 0; | |
1426 | ||
1427 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
1428 | } | |
1429 | ||
1430 | ||
1431 | /* Attempt to find (and return) the global pointer for the given | |
1432 | function. | |
1433 | ||
1434 | This is a rather nasty bit of code searchs for the .dynamic section | |
1435 | in the objfile corresponding to the pc of the function we're trying | |
1436 | to call. Once it finds the addresses at which the .dynamic section | |
1437 | lives in the child process, it scans the Elf64_Dyn entries for a | |
1438 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
1439 | d_un.d_ptr value is the global pointer. */ | |
1440 | ||
1441 | static CORE_ADDR | |
1442 | find_global_pointer (CORE_ADDR faddr) | |
1443 | { | |
76d689a6 | 1444 | struct obj_section *faddr_sect; |
64a5b29c | 1445 | |
76d689a6 KB |
1446 | faddr_sect = find_pc_section (faddr); |
1447 | if (faddr_sect != NULL) | |
64a5b29c KB |
1448 | { |
1449 | struct obj_section *osect; | |
1450 | ||
76d689a6 | 1451 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
1452 | { |
1453 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
1454 | break; | |
1455 | } | |
1456 | ||
76d689a6 | 1457 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
1458 | { |
1459 | CORE_ADDR addr; | |
1460 | ||
1461 | addr = osect->addr; | |
1462 | while (addr < osect->endaddr) | |
1463 | { | |
1464 | int status; | |
1465 | LONGEST tag; | |
1466 | char buf[8]; | |
1467 | ||
1468 | status = target_read_memory (addr, buf, sizeof (buf)); | |
1469 | if (status != 0) | |
1470 | break; | |
1471 | tag = extract_signed_integer (buf, sizeof (buf)); | |
1472 | ||
1473 | if (tag == DT_PLTGOT) | |
1474 | { | |
1475 | CORE_ADDR global_pointer; | |
1476 | ||
1477 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
1478 | if (status != 0) | |
1479 | break; | |
1480 | global_pointer = extract_address (buf, sizeof (buf)); | |
1481 | ||
1482 | /* The payoff... */ | |
1483 | return global_pointer; | |
1484 | } | |
1485 | ||
1486 | if (tag == DT_NULL) | |
1487 | break; | |
1488 | ||
1489 | addr += 16; | |
1490 | } | |
1491 | } | |
1492 | } | |
1493 | return 0; | |
1494 | } | |
1495 | ||
1496 | /* Given a function's address, attempt to find (and return) the | |
1497 | corresponding (canonical) function descriptor. Return 0 if | |
1498 | not found. */ | |
1499 | static CORE_ADDR | |
1500 | find_extant_func_descr (CORE_ADDR faddr) | |
1501 | { | |
76d689a6 | 1502 | struct obj_section *faddr_sect; |
64a5b29c KB |
1503 | |
1504 | /* Return early if faddr is already a function descriptor */ | |
76d689a6 KB |
1505 | faddr_sect = find_pc_section (faddr); |
1506 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
1507 | return faddr; |
1508 | ||
76d689a6 | 1509 | if (faddr_sect != NULL) |
64a5b29c | 1510 | { |
76d689a6 KB |
1511 | struct obj_section *osect; |
1512 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
1513 | { |
1514 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
1515 | break; | |
1516 | } | |
1517 | ||
76d689a6 | 1518 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
1519 | { |
1520 | CORE_ADDR addr; | |
1521 | ||
1522 | addr = osect->addr; | |
1523 | while (addr < osect->endaddr) | |
1524 | { | |
1525 | int status; | |
1526 | LONGEST faddr2; | |
1527 | char buf[8]; | |
1528 | ||
1529 | status = target_read_memory (addr, buf, sizeof (buf)); | |
1530 | if (status != 0) | |
1531 | break; | |
1532 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
1533 | ||
1534 | if (faddr == faddr2) | |
1535 | return addr; | |
1536 | ||
1537 | addr += 16; | |
1538 | } | |
1539 | } | |
1540 | } | |
1541 | return 0; | |
1542 | } | |
1543 | ||
1544 | /* Attempt to find a function descriptor corresponding to the | |
1545 | given address. If none is found, construct one on the | |
1546 | stack using the address at fdaptr */ | |
1547 | ||
1548 | static CORE_ADDR | |
1549 | find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr) | |
1550 | { | |
1551 | CORE_ADDR fdesc; | |
1552 | ||
1553 | fdesc = find_extant_func_descr (faddr); | |
1554 | ||
1555 | if (fdesc == 0) | |
1556 | { | |
1557 | CORE_ADDR global_pointer; | |
1558 | char buf[16]; | |
1559 | ||
1560 | fdesc = *fdaptr; | |
1561 | *fdaptr += 16; | |
1562 | ||
1563 | global_pointer = find_global_pointer (faddr); | |
1564 | ||
1565 | if (global_pointer == 0) | |
1566 | global_pointer = read_register (IA64_GR1_REGNUM); | |
1567 | ||
1568 | store_address (buf, 8, faddr); | |
1569 | store_address (buf + 8, 8, global_pointer); | |
1570 | ||
1571 | write_memory (fdesc, buf, 16); | |
1572 | } | |
1573 | ||
1574 | return fdesc; | |
1575 | } | |
16461d7d KB |
1576 | |
1577 | CORE_ADDR | |
1578 | ia64_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp, | |
1579 | int struct_return, CORE_ADDR struct_addr) | |
1580 | { | |
1581 | int argno; | |
1582 | value_ptr arg; | |
1583 | struct type *type; | |
1584 | int len, argoffset; | |
64a5b29c | 1585 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 1586 | int floatreg; |
64a5b29c | 1587 | CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr; |
16461d7d KB |
1588 | |
1589 | nslots = 0; | |
64a5b29c | 1590 | nfuncargs = 0; |
16461d7d KB |
1591 | /* Count the number of slots needed for the arguments */ |
1592 | for (argno = 0; argno < nargs; argno++) | |
1593 | { | |
1594 | arg = args[argno]; | |
1595 | type = check_typedef (VALUE_TYPE (arg)); | |
1596 | len = TYPE_LENGTH (type); | |
1597 | ||
1598 | /* FIXME: This is crude and it is wrong (IMO), but it matches | |
1599 | what gcc does, I think. */ | |
1600 | if (len > 8 && (nslots & 1)) | |
1601 | nslots++; | |
1602 | ||
64a5b29c KB |
1603 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
1604 | nfuncargs++; | |
1605 | ||
16461d7d KB |
1606 | nslots += (len + 7) / 8; |
1607 | } | |
1608 | ||
64a5b29c | 1609 | /* Divvy up the slots between the RSE and the memory stack */ |
16461d7d KB |
1610 | rseslots = (nslots > 8) ? 8 : nslots; |
1611 | memslots = nslots - rseslots; | |
1612 | ||
64a5b29c | 1613 | /* Allocate a new RSE frame */ |
16461d7d KB |
1614 | cfm = read_register (IA64_CFM_REGNUM); |
1615 | ||
1616 | bsp = read_register (IA64_BSP_REGNUM); | |
1617 | bsp = rse_address_add (bsp, cfm & 0x7f); | |
1618 | new_bsp = rse_address_add (bsp, rseslots); | |
1619 | write_register (IA64_BSP_REGNUM, new_bsp); | |
1620 | ||
1621 | pfs = read_register (IA64_PFS_REGNUM); | |
1622 | pfs &= 0xc000000000000000LL; | |
1623 | pfs |= (cfm & 0xffffffffffffLL); | |
1624 | write_register (IA64_PFS_REGNUM, pfs); | |
1625 | ||
1626 | cfm &= 0xc000000000000000LL; | |
1627 | cfm |= rseslots; | |
1628 | write_register (IA64_CFM_REGNUM, cfm); | |
1629 | ||
64a5b29c KB |
1630 | /* We will attempt to find function descriptors in the .opd segment, |
1631 | but if we can't we'll construct them ourselves. That being the | |
1632 | case, we'll need to reserve space on the stack for them. */ | |
1633 | funcdescaddr = sp - nfuncargs * 16; | |
1634 | funcdescaddr &= ~0xfLL; | |
1635 | ||
1636 | /* Adjust the stack pointer to it's new value. The calling conventions | |
1637 | require us to have 16 bytes of scratch, plus whatever space is | |
1638 | necessary for the memory slots and our function descriptors */ | |
1639 | sp = sp - 16 - (memslots + nfuncargs) * 8; | |
16461d7d KB |
1640 | sp &= ~0xfLL; /* Maintain 16 byte alignment */ |
1641 | ||
64a5b29c KB |
1642 | /* Place the arguments where they belong. The arguments will be |
1643 | either placed in the RSE backing store or on the memory stack. | |
1644 | In addition, floating point arguments or HFAs are placed in | |
1645 | floating point registers. */ | |
16461d7d KB |
1646 | slotnum = 0; |
1647 | floatreg = IA64_FR8_REGNUM; | |
1648 | for (argno = 0; argno < nargs; argno++) | |
1649 | { | |
64a5b29c KB |
1650 | struct type *float_elt_type; |
1651 | ||
16461d7d KB |
1652 | arg = args[argno]; |
1653 | type = check_typedef (VALUE_TYPE (arg)); | |
1654 | len = TYPE_LENGTH (type); | |
64a5b29c KB |
1655 | |
1656 | /* Special handling for function parameters */ | |
1657 | if (len == 8 | |
1658 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
1659 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1660 | { | |
1661 | char val_buf[8]; | |
1662 | ||
1663 | store_address (val_buf, 8, | |
1664 | find_func_descr (extract_address (VALUE_CONTENTS (arg), 8), | |
1665 | &funcdescaddr)); | |
1666 | if (slotnum < rseslots) | |
1667 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
1668 | else | |
1669 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
1670 | slotnum++; | |
1671 | continue; | |
1672 | } | |
1673 | ||
1674 | /* Normal slots */ | |
16461d7d KB |
1675 | if (len > 8 && (slotnum & 1)) |
1676 | slotnum++; | |
1677 | argoffset = 0; | |
1678 | while (len > 0) | |
1679 | { | |
1680 | char val_buf[8]; | |
1681 | ||
1682 | memset (val_buf, 0, 8); | |
1683 | memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len); | |
1684 | ||
1685 | if (slotnum < rseslots) | |
1686 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
1687 | else | |
1688 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
1689 | ||
1690 | argoffset += 8; | |
1691 | len -= 8; | |
1692 | slotnum++; | |
1693 | } | |
64a5b29c KB |
1694 | |
1695 | /* Handle floating point types (including HFAs) */ | |
1696 | float_elt_type = is_float_or_hfa_type (type); | |
1697 | if (float_elt_type != NULL) | |
1698 | { | |
1699 | argoffset = 0; | |
1700 | len = TYPE_LENGTH (type); | |
1701 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
1702 | { | |
1703 | ia64_register_convert_to_raw ( | |
1704 | float_elt_type, | |
1705 | floatreg, | |
1706 | VALUE_CONTENTS (arg) + argoffset, | |
1707 | ®isters[REGISTER_BYTE (floatreg)]); | |
1708 | floatreg++; | |
1709 | argoffset += TYPE_LENGTH (float_elt_type); | |
1710 | len -= TYPE_LENGTH (float_elt_type); | |
1711 | } | |
16461d7d KB |
1712 | } |
1713 | } | |
1714 | ||
64a5b29c | 1715 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
1716 | if (struct_return) |
1717 | { | |
1718 | store_address (®isters[REGISTER_BYTE (IA64_GR8_REGNUM)], | |
1719 | REGISTER_RAW_SIZE (IA64_GR8_REGNUM), | |
1720 | struct_addr); | |
1721 | } | |
1722 | ||
64a5b29c | 1723 | /* Sync gdb's idea of what the registers are with the target. */ |
16461d7d KB |
1724 | target_store_registers (-1); |
1725 | ||
1726 | /* FIXME: This doesn't belong here! Instead, SAVE_DUMMY_FRAME_TOS needs | |
1727 | to be defined to call generic_save_dummy_frame_tos(). But at the | |
1728 | time of this writing, SAVE_DUMMY_FRAME_TOS wasn't gdbarch'd, so | |
1729 | I chose to put this call here instead of using the old mechanisms. | |
1730 | Once SAVE_DUMMY_FRAME_TOS is gdbarch'd, all we need to do is add the | |
1731 | line | |
1732 | ||
1733 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); | |
1734 | ||
1735 | to ia64_gdbarch_init() and remove the line below. */ | |
1736 | generic_save_dummy_frame_tos (sp); | |
1737 | ||
1738 | return sp; | |
1739 | } | |
1740 | ||
1741 | CORE_ADDR | |
1742 | ia64_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
1743 | { | |
64a5b29c | 1744 | CORE_ADDR global_pointer = find_global_pointer (pc); |
16461d7d | 1745 | |
64a5b29c KB |
1746 | if (global_pointer != 0) |
1747 | write_register (IA64_GR1_REGNUM, global_pointer); | |
16461d7d KB |
1748 | |
1749 | write_register (IA64_BR0_REGNUM, CALL_DUMMY_ADDRESS ()); | |
1750 | return sp; | |
1751 | } | |
1752 | ||
1753 | void | |
1754 | ia64_store_return_value (struct type *type, char *valbuf) | |
1755 | { | |
1756 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1757 | { | |
1758 | ia64_register_convert_to_raw (type, IA64_FR8_REGNUM, valbuf, | |
1759 | ®isters[REGISTER_BYTE (IA64_FR8_REGNUM)]); | |
1760 | target_store_registers (IA64_FR8_REGNUM); | |
1761 | } | |
1762 | else | |
1763 | write_register_bytes (REGISTER_BYTE (IA64_GR8_REGNUM), | |
1764 | valbuf, TYPE_LENGTH (type)); | |
1765 | } | |
1766 | ||
1767 | void | |
1768 | ia64_pop_frame (void) | |
1769 | { | |
1770 | generic_pop_current_frame (ia64_pop_frame_regular); | |
1771 | } | |
1772 | ||
1773 | static void | |
1774 | ia64_pop_frame_regular (struct frame_info *frame) | |
1775 | { | |
1776 | int regno; | |
1777 | CORE_ADDR bsp, cfm, pfs; | |
1778 | ||
1779 | FRAME_INIT_SAVED_REGS (frame); | |
1780 | ||
1781 | for (regno = 0; regno < ia64_num_regs; regno++) | |
1782 | { | |
1783 | if (frame->saved_regs[regno] | |
1784 | && (!(IA64_GR32_REGNUM <= regno && regno <= IA64_GR127_REGNUM)) | |
1785 | && regno != pc_regnum | |
1786 | && regno != sp_regnum | |
1787 | && regno != IA64_PFS_REGNUM | |
1788 | && regno != IA64_CFM_REGNUM | |
1789 | && regno != IA64_BSP_REGNUM | |
1790 | && regno != IA64_BSPSTORE_REGNUM) | |
1791 | { | |
1792 | write_register (regno, | |
1793 | read_memory_integer (frame->saved_regs[regno], | |
1794 | REGISTER_RAW_SIZE (regno))); | |
1795 | } | |
1796 | } | |
1797 | ||
1798 | write_register (sp_regnum, FRAME_CHAIN (frame)); | |
1799 | write_pc (FRAME_SAVED_PC (frame)); | |
1800 | ||
1801 | cfm = read_register (IA64_CFM_REGNUM); | |
1802 | ||
1803 | if (frame->saved_regs[IA64_PFS_REGNUM]) | |
1804 | { | |
1805 | pfs = read_memory_integer (frame->saved_regs[IA64_PFS_REGNUM], | |
1806 | REGISTER_RAW_SIZE (IA64_PFS_REGNUM)); | |
1807 | } | |
1808 | else | |
1809 | pfs = read_register (IA64_PFS_REGNUM); | |
1810 | ||
1811 | /* Compute the new bsp by *adding* the difference between the | |
1812 | size of the frame and the size of the locals (both wrt the | |
1813 | frame that we're going back to). This seems kind of strange, | |
1814 | especially since it seems like we ought to be subtracting the | |
1815 | size of the locals... and we should; but the linux kernel | |
1816 | wants bsp to be set at the end of all used registers. It's | |
1817 | likely that this code will need to be revised to accomodate | |
1818 | other operating systems. */ | |
1819 | bsp = rse_address_add (frame->extra_info->bsp, | |
1820 | (pfs & 0x7f) - ((pfs >> 7) & 0x7f)); | |
1821 | write_register (IA64_BSP_REGNUM, bsp); | |
1822 | ||
1823 | /* FIXME: What becomes of the epilog count in the PFS? */ | |
1824 | cfm = (cfm & ~0xffffffffffffLL) | (pfs & 0xffffffffffffLL); | |
1825 | write_register (IA64_CFM_REGNUM, cfm); | |
1826 | ||
1827 | flush_cached_frames (); | |
1828 | } | |
1829 | ||
1830 | static void | |
1831 | ia64_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes, | |
1832 | CORE_ADDR *targ_addr, int *targ_len) | |
1833 | { | |
1834 | *targ_addr = memaddr; | |
1835 | *targ_len = nr_bytes; | |
1836 | } | |
1837 | ||
244bc108 KB |
1838 | static void |
1839 | process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj) | |
1840 | { | |
1841 | int *os_ident_ptr = obj; | |
1842 | const char *name; | |
1843 | unsigned int sectsize; | |
1844 | ||
1845 | name = bfd_get_section_name (abfd, sect); | |
1846 | sectsize = bfd_section_size (abfd, sect); | |
1847 | if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0) | |
1848 | { | |
1849 | unsigned int name_length, data_length, note_type; | |
1850 | char *note = alloca (sectsize); | |
1851 | ||
1852 | bfd_get_section_contents (abfd, sect, note, | |
1853 | (file_ptr) 0, (bfd_size_type) sectsize); | |
1854 | ||
1855 | name_length = bfd_h_get_32 (abfd, note); | |
1856 | data_length = bfd_h_get_32 (abfd, note + 4); | |
1857 | note_type = bfd_h_get_32 (abfd, note + 8); | |
1858 | ||
1859 | if (name_length == 4 && data_length == 16 && note_type == 1 | |
1860 | && strcmp (note + 12, "GNU") == 0) | |
1861 | { | |
1862 | int os_number = bfd_h_get_32 (abfd, note + 16); | |
1863 | ||
1864 | /* The case numbers are from abi-tags in glibc */ | |
1865 | switch (os_number) | |
1866 | { | |
1867 | case 0 : | |
1868 | *os_ident_ptr = ELFOSABI_LINUX; | |
1869 | break; | |
1870 | #if 0 /* FIXME: Enable after internal repository is synced with sourceware */ | |
1871 | case 1 : | |
1872 | *os_ident_ptr = ELFOSABI_HURD; | |
1873 | break; | |
1874 | case 2 : | |
1875 | *os_ident_ptr = ELFOSABI_SOLARIS; | |
1876 | break; | |
1877 | #endif | |
1878 | default : | |
1879 | internal_error ( | |
1880 | "process_note_abi_sections: unknown OS number %d", os_number); | |
1881 | break; | |
1882 | } | |
1883 | } | |
1884 | } | |
1885 | } | |
1886 | ||
16461d7d KB |
1887 | static struct gdbarch * |
1888 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1889 | { | |
1890 | struct gdbarch *gdbarch; | |
244bc108 KB |
1891 | struct gdbarch_tdep *tdep; |
1892 | int os_ident; | |
1893 | ||
1894 | if (info.abfd != NULL | |
1895 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1896 | { | |
1897 | os_ident = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
1898 | ||
1899 | /* If os_ident is 0, it is not necessarily the case that we're on a | |
02240683 | 1900 | SYSV system. (ELFOSABI_NONE is defined to be 0.) GNU/Linux uses |
244bc108 KB |
1901 | a note section to record OS/ABI info, but leaves e_ident[EI_OSABI] |
1902 | zero. So we have to check for note sections too. */ | |
1903 | if (os_ident == 0) | |
1904 | { | |
1905 | bfd_map_over_sections (info.abfd, | |
1906 | process_note_abi_tag_sections, | |
1907 | &os_ident); | |
1908 | } | |
1909 | } | |
1910 | else | |
1911 | os_ident = -1; | |
16461d7d | 1912 | |
244bc108 KB |
1913 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
1914 | arches != NULL; | |
1915 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1916 | { | |
1917 | if (gdbarch_tdep (current_gdbarch)->os_ident != os_ident) | |
1918 | continue; | |
1919 | return arches->gdbarch; | |
1920 | } | |
16461d7d | 1921 | |
244bc108 KB |
1922 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
1923 | gdbarch = gdbarch_alloc (&info, tdep); | |
1924 | tdep->os_ident = os_ident; | |
1925 | ||
1926 | if (os_ident == ELFOSABI_LINUX) | |
1927 | tdep->sigcontext_register_address = ia64_linux_sigcontext_register_address; | |
1928 | else | |
1929 | tdep->sigcontext_register_address = 0; | |
16461d7d KB |
1930 | |
1931 | set_gdbarch_short_bit (gdbarch, 16); | |
1932 | set_gdbarch_int_bit (gdbarch, 32); | |
1933 | set_gdbarch_long_bit (gdbarch, 64); | |
1934 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1935 | set_gdbarch_float_bit (gdbarch, 32); | |
1936 | set_gdbarch_double_bit (gdbarch, 64); | |
1937 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1938 | set_gdbarch_ptr_bit (gdbarch, 64); | |
1939 | ||
1940 | set_gdbarch_num_regs (gdbarch, ia64_num_regs); | |
1941 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); | |
1942 | set_gdbarch_fp_regnum (gdbarch, fp_regnum); | |
1943 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); | |
1944 | ||
1945 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
1946 | set_gdbarch_register_size (gdbarch, 8); | |
1947 | set_gdbarch_register_bytes (gdbarch, ia64_num_regs * 8 + 128*8); | |
1948 | set_gdbarch_register_byte (gdbarch, ia64_register_byte); | |
1949 | set_gdbarch_register_raw_size (gdbarch, ia64_register_raw_size); | |
1950 | set_gdbarch_max_register_raw_size (gdbarch, 16); | |
1951 | set_gdbarch_register_virtual_size (gdbarch, ia64_register_virtual_size); | |
1952 | set_gdbarch_max_register_virtual_size (gdbarch, 16); | |
1953 | set_gdbarch_register_virtual_type (gdbarch, ia64_register_virtual_type); | |
1954 | ||
1955 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); | |
1956 | ||
1957 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
1958 | set_gdbarch_frameless_function_invocation (gdbarch, ia64_frameless_function_invocation); | |
1959 | ||
1960 | set_gdbarch_saved_pc_after_call (gdbarch, ia64_saved_pc_after_call); | |
1961 | ||
1962 | set_gdbarch_frame_chain (gdbarch, ia64_frame_chain); | |
244bc108 | 1963 | set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid); |
16461d7d KB |
1964 | set_gdbarch_frame_saved_pc (gdbarch, ia64_frame_saved_pc); |
1965 | ||
1966 | set_gdbarch_frame_init_saved_regs (gdbarch, ia64_frame_init_saved_regs); | |
1967 | set_gdbarch_get_saved_register (gdbarch, ia64_get_saved_register); | |
1968 | ||
1969 | set_gdbarch_register_convertible (gdbarch, ia64_register_convertible); | |
1970 | set_gdbarch_register_convert_to_virtual (gdbarch, ia64_register_convert_to_virtual); | |
1971 | set_gdbarch_register_convert_to_raw (gdbarch, ia64_register_convert_to_raw); | |
1972 | ||
1973 | set_gdbarch_use_struct_convention (gdbarch, ia64_use_struct_convention); | |
1974 | set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); | |
1975 | ||
1976 | set_gdbarch_store_struct_return (gdbarch, ia64_store_struct_return); | |
1977 | set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); | |
1978 | set_gdbarch_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address); | |
1979 | ||
1980 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
1981 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
1982 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
1983 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
1984 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); | |
1985 | ||
1986 | /* Settings for calling functions in the inferior. */ | |
1987 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
1988 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
1989 | set_gdbarch_push_arguments (gdbarch, ia64_push_arguments); | |
1990 | set_gdbarch_push_return_address (gdbarch, ia64_push_return_address); | |
1991 | set_gdbarch_pop_frame (gdbarch, ia64_pop_frame); | |
1992 | ||
1993 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
1994 | set_gdbarch_call_dummy_words (gdbarch, ia64_call_dummy_words); | |
1995 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (ia64_call_dummy_words)); | |
1996 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
1997 | set_gdbarch_init_extra_frame_info (gdbarch, ia64_init_extra_frame_info); | |
1998 | set_gdbarch_frame_args_address (gdbarch, ia64_frame_args_address); | |
1999 | set_gdbarch_frame_locals_address (gdbarch, ia64_frame_locals_address); | |
2000 | ||
2001 | /* We won't necessarily have a frame pointer and even if we do, | |
2002 | it winds up being extraordinarly messy when attempting to find | |
2003 | the frame chain. So for the purposes of creating frames (which | |
2004 | is all read_fp() is used for), simply use the stack pointer value | |
2005 | instead. */ | |
2006 | set_gdbarch_read_fp (gdbarch, generic_target_read_sp); | |
2007 | set_gdbarch_write_fp (gdbarch, generic_target_write_sp); | |
2008 | ||
2009 | /* Settings that should be unnecessary. */ | |
2010 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2011 | ||
2012 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
2013 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
2014 | ||
2015 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
2016 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
2017 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
2018 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
2019 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); | |
2020 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2021 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
2022 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
2023 | ||
2024 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2025 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2026 | ||
2027 | set_gdbarch_remote_translate_xfer_address ( | |
2028 | gdbarch, ia64_remote_translate_xfer_address); | |
2029 | ||
2030 | return gdbarch; | |
2031 | } | |
2032 | ||
2033 | void | |
2034 | _initialize_ia64_tdep (void) | |
2035 | { | |
2036 | register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init); | |
2037 | ||
2038 | tm_print_insn = print_insn_ia64; | |
2039 | tm_print_insn_info.bytes_per_line = SLOT_MULTIPLIER; | |
2040 | } |