]>
Commit | Line | Data |
---|---|---|
3a65329d | 1 | /* Motorola 68HC11/HC12-specific support for 32-bit ELF |
f13a99db | 2 | Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
b2a8e766 | 3 | Free Software Foundation, Inc. |
3a65329d SC |
4 | Contributed by Stephane Carrez ([email protected]) |
5 | ||
cd123cb7 NC |
6 | This file is part of BFD, the Binary File Descriptor library. |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
10 | the Free Software Foundation; either version 3 of the License, or | |
11 | (at your option) any later version. | |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
19 | along with this program; if not, write to the Free Software | |
20 | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | |
21 | MA 02110-1301, USA. */ | |
3a65329d | 22 | |
3a65329d | 23 | #include "sysdep.h" |
3db64b00 | 24 | #include "bfd.h" |
3a65329d SC |
25 | #include "bfdlink.h" |
26 | #include "libbfd.h" | |
27 | #include "elf-bfd.h" | |
28 | #include "elf32-m68hc1x.h" | |
29 | #include "elf/m68hc11.h" | |
30 | #include "opcode/m68hc11.h" | |
31 | ||
32 | ||
33 | #define m68hc12_stub_hash_lookup(table, string, create, copy) \ | |
34 | ((struct elf32_m68hc11_stub_hash_entry *) \ | |
35 | bfd_hash_lookup ((table), (string), (create), (copy))) | |
36 | ||
37 | static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub | |
0a6a3ebe SC |
38 | (const char *stub_name, |
39 | asection *section, | |
40 | struct m68hc11_elf_link_hash_table *htab); | |
3a65329d SC |
41 | |
42 | static struct bfd_hash_entry *stub_hash_newfunc | |
0a6a3ebe | 43 | (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); |
3a65329d | 44 | |
0a6a3ebe SC |
45 | static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, |
46 | const char* name, bfd_vma value, | |
47 | asection* sec); | |
3a65329d SC |
48 | |
49 | static bfd_boolean m68hc11_elf_export_one_stub | |
0a6a3ebe | 50 | (struct bfd_hash_entry *gen_entry, void *in_arg); |
3a65329d | 51 | |
0a6a3ebe | 52 | static void scan_sections_for_abi (bfd*, asection*, PTR); |
3a65329d SC |
53 | |
54 | struct m68hc11_scan_param | |
55 | { | |
56 | struct m68hc11_page_info* pinfo; | |
57 | bfd_boolean use_memory_banks; | |
58 | }; | |
59 | ||
60 | ||
61 | /* Create a 68HC11/68HC12 ELF linker hash table. */ | |
62 | ||
63 | struct m68hc11_elf_link_hash_table* | |
0a6a3ebe | 64 | m68hc11_elf_hash_table_create (bfd *abfd) |
3a65329d SC |
65 | { |
66 | struct m68hc11_elf_link_hash_table *ret; | |
67 | bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); | |
68 | ||
47247ced | 69 | ret = (struct m68hc11_elf_link_hash_table *) bfd_malloc (amt); |
3a65329d SC |
70 | if (ret == (struct m68hc11_elf_link_hash_table *) NULL) |
71 | return NULL; | |
72 | ||
47247ced | 73 | memset (ret, 0, amt); |
66eb6687 AM |
74 | if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, |
75 | _bfd_elf_link_hash_newfunc, | |
76 | sizeof (struct elf_link_hash_entry))) | |
3a65329d | 77 | { |
47247ced | 78 | free (ret); |
3a65329d SC |
79 | return NULL; |
80 | } | |
81 | ||
82 | /* Init the stub hash table too. */ | |
83 | amt = sizeof (struct bfd_hash_table); | |
84 | ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); | |
85 | if (ret->stub_hash_table == NULL) | |
86 | { | |
47247ced | 87 | free (ret); |
3a65329d SC |
88 | return NULL; |
89 | } | |
66eb6687 AM |
90 | if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, |
91 | sizeof (struct elf32_m68hc11_stub_hash_entry))) | |
3a65329d SC |
92 | return NULL; |
93 | ||
94 | ret->stub_bfd = NULL; | |
95 | ret->stub_section = 0; | |
96 | ret->add_stub_section = NULL; | |
97 | ret->sym_sec.abfd = NULL; | |
98 | ||
99 | return ret; | |
100 | } | |
101 | ||
102 | /* Free the derived linker hash table. */ | |
103 | ||
104 | void | |
0a6a3ebe | 105 | m68hc11_elf_bfd_link_hash_table_free (struct bfd_link_hash_table *hash) |
3a65329d SC |
106 | { |
107 | struct m68hc11_elf_link_hash_table *ret | |
108 | = (struct m68hc11_elf_link_hash_table *) hash; | |
109 | ||
110 | bfd_hash_table_free (ret->stub_hash_table); | |
111 | free (ret->stub_hash_table); | |
112 | _bfd_generic_link_hash_table_free (hash); | |
113 | } | |
114 | ||
115 | /* Assorted hash table functions. */ | |
116 | ||
117 | /* Initialize an entry in the stub hash table. */ | |
118 | ||
119 | static struct bfd_hash_entry * | |
0a6a3ebe SC |
120 | stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, |
121 | const char *string) | |
3a65329d SC |
122 | { |
123 | /* Allocate the structure if it has not already been allocated by a | |
124 | subclass. */ | |
125 | if (entry == NULL) | |
126 | { | |
127 | entry = bfd_hash_allocate (table, | |
128 | sizeof (struct elf32_m68hc11_stub_hash_entry)); | |
129 | if (entry == NULL) | |
130 | return entry; | |
131 | } | |
132 | ||
133 | /* Call the allocation method of the superclass. */ | |
134 | entry = bfd_hash_newfunc (entry, table, string); | |
135 | if (entry != NULL) | |
136 | { | |
137 | struct elf32_m68hc11_stub_hash_entry *eh; | |
138 | ||
139 | /* Initialize the local fields. */ | |
140 | eh = (struct elf32_m68hc11_stub_hash_entry *) entry; | |
141 | eh->stub_sec = NULL; | |
142 | eh->stub_offset = 0; | |
143 | eh->target_value = 0; | |
144 | eh->target_section = NULL; | |
145 | } | |
146 | ||
147 | return entry; | |
148 | } | |
149 | ||
150 | /* Add a new stub entry to the stub hash. Not all fields of the new | |
151 | stub entry are initialised. */ | |
152 | ||
153 | static struct elf32_m68hc11_stub_hash_entry * | |
0a6a3ebe SC |
154 | m68hc12_add_stub (const char *stub_name, asection *section, |
155 | struct m68hc11_elf_link_hash_table *htab) | |
3a65329d SC |
156 | { |
157 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
158 | ||
159 | /* Enter this entry into the linker stub hash table. */ | |
160 | stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, | |
161 | TRUE, FALSE); | |
162 | if (stub_entry == NULL) | |
163 | { | |
d003868e AM |
164 | (*_bfd_error_handler) (_("%B: cannot create stub entry %s"), |
165 | section->owner, stub_name); | |
3a65329d SC |
166 | return NULL; |
167 | } | |
168 | ||
169 | if (htab->stub_section == 0) | |
170 | { | |
171 | htab->stub_section = (*htab->add_stub_section) (".tramp", | |
172 | htab->tramp_section); | |
173 | } | |
174 | ||
175 | stub_entry->stub_sec = htab->stub_section; | |
176 | stub_entry->stub_offset = 0; | |
177 | return stub_entry; | |
178 | } | |
179 | ||
180 | /* Hook called by the linker routine which adds symbols from an object | |
181 | file. We use it for identify far symbols and force a loading of | |
182 | the trampoline handler. */ | |
183 | ||
184 | bfd_boolean | |
0a6a3ebe | 185 | elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, |
555cd476 | 186 | Elf_Internal_Sym *sym, |
0a6a3ebe SC |
187 | const char **namep ATTRIBUTE_UNUSED, |
188 | flagword *flagsp ATTRIBUTE_UNUSED, | |
189 | asection **secp ATTRIBUTE_UNUSED, | |
190 | bfd_vma *valp ATTRIBUTE_UNUSED) | |
3a65329d SC |
191 | { |
192 | if (sym->st_other & STO_M68HC12_FAR) | |
193 | { | |
194 | struct elf_link_hash_entry *h; | |
195 | ||
196 | h = (struct elf_link_hash_entry *) | |
197 | bfd_link_hash_lookup (info->hash, "__far_trampoline", | |
198 | FALSE, FALSE, FALSE); | |
199 | if (h == NULL) | |
200 | { | |
201 | struct bfd_link_hash_entry* entry = NULL; | |
202 | ||
203 | _bfd_generic_link_add_one_symbol (info, abfd, | |
204 | "__far_trampoline", | |
205 | BSF_GLOBAL, | |
206 | bfd_und_section_ptr, | |
207 | (bfd_vma) 0, (const char*) NULL, | |
208 | FALSE, FALSE, &entry); | |
209 | } | |
210 | ||
211 | } | |
212 | return TRUE; | |
213 | } | |
214 | ||
215 | /* External entry points for sizing and building linker stubs. */ | |
216 | ||
217 | /* Set up various things so that we can make a list of input sections | |
218 | for each output section included in the link. Returns -1 on error, | |
219 | 0 when no stubs will be needed, and 1 on success. */ | |
220 | ||
221 | int | |
0a6a3ebe | 222 | elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) |
3a65329d SC |
223 | { |
224 | bfd *input_bfd; | |
225 | unsigned int bfd_count; | |
226 | int top_id, top_index; | |
227 | asection *section; | |
228 | asection **input_list, **list; | |
229 | bfd_size_type amt; | |
230 | asection *text_section; | |
231 | struct m68hc11_elf_link_hash_table *htab; | |
232 | ||
233 | htab = m68hc11_elf_hash_table (info); | |
234 | ||
f13a99db | 235 | if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) |
3a65329d SC |
236 | return 0; |
237 | ||
238 | /* Count the number of input BFDs and find the top input section id. | |
239 | Also search for an existing ".tramp" section so that we know | |
240 | where generated trampolines must go. Default to ".text" if we | |
241 | can't find it. */ | |
242 | htab->tramp_section = 0; | |
243 | text_section = 0; | |
244 | for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; | |
245 | input_bfd != NULL; | |
246 | input_bfd = input_bfd->link_next) | |
247 | { | |
248 | bfd_count += 1; | |
249 | for (section = input_bfd->sections; | |
250 | section != NULL; | |
251 | section = section->next) | |
252 | { | |
253 | const char* name = bfd_get_section_name (input_bfd, section); | |
254 | ||
255 | if (!strcmp (name, ".tramp")) | |
256 | htab->tramp_section = section; | |
257 | ||
258 | if (!strcmp (name, ".text")) | |
259 | text_section = section; | |
260 | ||
261 | if (top_id < section->id) | |
262 | top_id = section->id; | |
263 | } | |
264 | } | |
265 | htab->bfd_count = bfd_count; | |
266 | if (htab->tramp_section == 0) | |
267 | htab->tramp_section = text_section; | |
268 | ||
269 | /* We can't use output_bfd->section_count here to find the top output | |
270 | section index as some sections may have been removed, and | |
8423293d | 271 | strip_excluded_output_sections doesn't renumber the indices. */ |
3a65329d SC |
272 | for (section = output_bfd->sections, top_index = 0; |
273 | section != NULL; | |
274 | section = section->next) | |
275 | { | |
276 | if (top_index < section->index) | |
277 | top_index = section->index; | |
278 | } | |
279 | ||
280 | htab->top_index = top_index; | |
281 | amt = sizeof (asection *) * (top_index + 1); | |
282 | input_list = (asection **) bfd_malloc (amt); | |
283 | htab->input_list = input_list; | |
284 | if (input_list == NULL) | |
285 | return -1; | |
286 | ||
287 | /* For sections we aren't interested in, mark their entries with a | |
288 | value we can check later. */ | |
289 | list = input_list + top_index; | |
290 | do | |
291 | *list = bfd_abs_section_ptr; | |
292 | while (list-- != input_list); | |
293 | ||
294 | for (section = output_bfd->sections; | |
295 | section != NULL; | |
296 | section = section->next) | |
297 | { | |
298 | if ((section->flags & SEC_CODE) != 0) | |
299 | input_list[section->index] = NULL; | |
300 | } | |
301 | ||
302 | return 1; | |
303 | } | |
304 | ||
305 | /* Determine and set the size of the stub section for a final link. | |
306 | ||
307 | The basic idea here is to examine all the relocations looking for | |
308 | PC-relative calls to a target that is unreachable with a "bl" | |
309 | instruction. */ | |
310 | ||
311 | bfd_boolean | |
0a6a3ebe SC |
312 | elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, |
313 | struct bfd_link_info *info, | |
314 | asection * (*add_stub_section) (const char*, asection*)) | |
3a65329d SC |
315 | { |
316 | bfd *input_bfd; | |
317 | asection *section; | |
318 | Elf_Internal_Sym *local_syms, **all_local_syms; | |
319 | unsigned int bfd_indx, bfd_count; | |
320 | bfd_size_type amt; | |
321 | asection *stub_sec; | |
322 | ||
323 | struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); | |
324 | ||
325 | /* Stash our params away. */ | |
326 | htab->stub_bfd = stub_bfd; | |
327 | htab->add_stub_section = add_stub_section; | |
328 | ||
329 | /* Count the number of input BFDs and find the top input section id. */ | |
330 | for (input_bfd = info->input_bfds, bfd_count = 0; | |
331 | input_bfd != NULL; | |
332 | input_bfd = input_bfd->link_next) | |
333 | { | |
334 | bfd_count += 1; | |
335 | } | |
336 | ||
337 | /* We want to read in symbol extension records only once. To do this | |
338 | we need to read in the local symbols in parallel and save them for | |
339 | later use; so hold pointers to the local symbols in an array. */ | |
340 | amt = sizeof (Elf_Internal_Sym *) * bfd_count; | |
341 | all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); | |
342 | if (all_local_syms == NULL) | |
343 | return FALSE; | |
344 | ||
345 | /* Walk over all the input BFDs, swapping in local symbols. */ | |
346 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
347 | input_bfd != NULL; | |
348 | input_bfd = input_bfd->link_next, bfd_indx++) | |
349 | { | |
350 | Elf_Internal_Shdr *symtab_hdr; | |
3a65329d SC |
351 | |
352 | /* We'll need the symbol table in a second. */ | |
353 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
354 | if (symtab_hdr->sh_info == 0) | |
355 | continue; | |
356 | ||
2a0e29b4 SC |
357 | /* We need an array of the local symbols attached to the input bfd. */ |
358 | local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; | |
359 | if (local_syms == NULL) | |
360 | { | |
361 | local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, | |
362 | symtab_hdr->sh_info, 0, | |
363 | NULL, NULL, NULL); | |
364 | /* Cache them for elf_link_input_bfd. */ | |
365 | symtab_hdr->contents = (unsigned char *) local_syms; | |
366 | } | |
3a65329d | 367 | if (local_syms == NULL) |
3a65329d | 368 | { |
2a0e29b4 SC |
369 | free (all_local_syms); |
370 | return FALSE; | |
3a65329d SC |
371 | } |
372 | ||
2a0e29b4 | 373 | all_local_syms[bfd_indx] = local_syms; |
3a65329d SC |
374 | } |
375 | ||
376 | for (input_bfd = info->input_bfds, bfd_indx = 0; | |
377 | input_bfd != NULL; | |
378 | input_bfd = input_bfd->link_next, bfd_indx++) | |
379 | { | |
380 | Elf_Internal_Shdr *symtab_hdr; | |
381 | Elf_Internal_Sym *local_syms; | |
382 | struct elf_link_hash_entry ** sym_hashes; | |
383 | ||
384 | sym_hashes = elf_sym_hashes (input_bfd); | |
385 | ||
386 | /* We'll need the symbol table in a second. */ | |
387 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
388 | if (symtab_hdr->sh_info == 0) | |
389 | continue; | |
390 | ||
391 | local_syms = all_local_syms[bfd_indx]; | |
392 | ||
393 | /* Walk over each section attached to the input bfd. */ | |
394 | for (section = input_bfd->sections; | |
395 | section != NULL; | |
396 | section = section->next) | |
397 | { | |
398 | Elf_Internal_Rela *internal_relocs, *irelaend, *irela; | |
399 | ||
400 | /* If there aren't any relocs, then there's nothing more | |
401 | to do. */ | |
402 | if ((section->flags & SEC_RELOC) == 0 | |
403 | || section->reloc_count == 0) | |
404 | continue; | |
405 | ||
406 | /* If this section is a link-once section that will be | |
407 | discarded, then don't create any stubs. */ | |
408 | if (section->output_section == NULL | |
409 | || section->output_section->owner != output_bfd) | |
410 | continue; | |
411 | ||
412 | /* Get the relocs. */ | |
413 | internal_relocs | |
45d6a902 AM |
414 | = _bfd_elf_link_read_relocs (input_bfd, section, NULL, |
415 | (Elf_Internal_Rela *) NULL, | |
416 | info->keep_memory); | |
3a65329d SC |
417 | if (internal_relocs == NULL) |
418 | goto error_ret_free_local; | |
419 | ||
420 | /* Now examine each relocation. */ | |
421 | irela = internal_relocs; | |
422 | irelaend = irela + section->reloc_count; | |
423 | for (; irela < irelaend; irela++) | |
424 | { | |
425 | unsigned int r_type, r_indx; | |
426 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
427 | asection *sym_sec; | |
428 | bfd_vma sym_value; | |
429 | struct elf_link_hash_entry *hash; | |
430 | const char *stub_name; | |
431 | Elf_Internal_Sym *sym; | |
432 | ||
433 | r_type = ELF32_R_TYPE (irela->r_info); | |
434 | ||
435 | /* Only look at 16-bit relocs. */ | |
436 | if (r_type != (unsigned int) R_M68HC11_16) | |
437 | continue; | |
438 | ||
439 | /* Now determine the call target, its name, value, | |
440 | section. */ | |
441 | r_indx = ELF32_R_SYM (irela->r_info); | |
442 | if (r_indx < symtab_hdr->sh_info) | |
443 | { | |
444 | /* It's a local symbol. */ | |
445 | Elf_Internal_Shdr *hdr; | |
446 | bfd_boolean is_far; | |
447 | ||
448 | sym = local_syms + r_indx; | |
3a65329d SC |
449 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); |
450 | if (!is_far) | |
451 | continue; | |
7f888330 | 452 | |
4fbb74a6 AM |
453 | if (sym->st_shndx >= elf_numsections (input_bfd)) |
454 | sym_sec = NULL; | |
455 | else | |
456 | { | |
457 | hdr = elf_elfsections (input_bfd)[sym->st_shndx]; | |
458 | sym_sec = hdr->bfd_section; | |
459 | } | |
3a65329d SC |
460 | stub_name = (bfd_elf_string_from_elf_section |
461 | (input_bfd, symtab_hdr->sh_link, | |
462 | sym->st_name)); | |
463 | sym_value = sym->st_value; | |
464 | hash = NULL; | |
465 | } | |
466 | else | |
467 | { | |
468 | /* It's an external symbol. */ | |
469 | int e_indx; | |
470 | ||
471 | e_indx = r_indx - symtab_hdr->sh_info; | |
472 | hash = (struct elf_link_hash_entry *) | |
473 | (sym_hashes[e_indx]); | |
474 | ||
475 | while (hash->root.type == bfd_link_hash_indirect | |
476 | || hash->root.type == bfd_link_hash_warning) | |
477 | hash = ((struct elf_link_hash_entry *) | |
478 | hash->root.u.i.link); | |
479 | ||
480 | if (hash->root.type == bfd_link_hash_defined | |
83774818 SC |
481 | || hash->root.type == bfd_link_hash_defweak |
482 | || hash->root.type == bfd_link_hash_new) | |
3a65329d SC |
483 | { |
484 | if (!(hash->other & STO_M68HC12_FAR)) | |
485 | continue; | |
486 | } | |
487 | else if (hash->root.type == bfd_link_hash_undefweak) | |
488 | { | |
489 | continue; | |
490 | } | |
491 | else if (hash->root.type == bfd_link_hash_undefined) | |
492 | { | |
493 | continue; | |
494 | } | |
495 | else | |
496 | { | |
497 | bfd_set_error (bfd_error_bad_value); | |
498 | goto error_ret_free_internal; | |
499 | } | |
500 | sym_sec = hash->root.u.def.section; | |
501 | sym_value = hash->root.u.def.value; | |
502 | stub_name = hash->root.root.string; | |
503 | } | |
504 | ||
505 | if (!stub_name) | |
506 | goto error_ret_free_internal; | |
507 | ||
508 | stub_entry = m68hc12_stub_hash_lookup | |
509 | (htab->stub_hash_table, | |
510 | stub_name, | |
511 | FALSE, FALSE); | |
512 | if (stub_entry == NULL) | |
513 | { | |
514 | if (add_stub_section == 0) | |
515 | continue; | |
516 | ||
517 | stub_entry = m68hc12_add_stub (stub_name, section, htab); | |
518 | if (stub_entry == NULL) | |
519 | { | |
520 | error_ret_free_internal: | |
521 | if (elf_section_data (section)->relocs == NULL) | |
522 | free (internal_relocs); | |
523 | goto error_ret_free_local; | |
524 | } | |
525 | } | |
526 | ||
527 | stub_entry->target_value = sym_value; | |
528 | stub_entry->target_section = sym_sec; | |
529 | } | |
530 | ||
531 | /* We're done with the internal relocs, free them. */ | |
532 | if (elf_section_data (section)->relocs == NULL) | |
533 | free (internal_relocs); | |
534 | } | |
535 | } | |
536 | ||
537 | if (add_stub_section) | |
538 | { | |
539 | /* OK, we've added some stubs. Find out the new size of the | |
540 | stub sections. */ | |
541 | for (stub_sec = htab->stub_bfd->sections; | |
542 | stub_sec != NULL; | |
543 | stub_sec = stub_sec->next) | |
544 | { | |
eea6121a | 545 | stub_sec->size = 0; |
3a65329d SC |
546 | } |
547 | ||
548 | bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); | |
549 | } | |
2a0e29b4 | 550 | free (all_local_syms); |
3a65329d SC |
551 | return TRUE; |
552 | ||
553 | error_ret_free_local: | |
2a0e29b4 | 554 | free (all_local_syms); |
3a65329d SC |
555 | return FALSE; |
556 | } | |
557 | ||
558 | /* Export the trampoline addresses in the symbol table. */ | |
559 | static bfd_boolean | |
0a6a3ebe | 560 | m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) |
3a65329d SC |
561 | { |
562 | struct bfd_link_info *info; | |
563 | struct m68hc11_elf_link_hash_table *htab; | |
564 | struct elf32_m68hc11_stub_hash_entry *stub_entry; | |
565 | char* name; | |
566 | bfd_boolean result; | |
567 | ||
568 | info = (struct bfd_link_info *) in_arg; | |
569 | htab = m68hc11_elf_hash_table (info); | |
570 | ||
571 | /* Massage our args to the form they really have. */ | |
572 | stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; | |
573 | ||
574 | /* Generate the trampoline according to HC11 or HC12. */ | |
575 | result = (* htab->build_one_stub) (gen_entry, in_arg); | |
576 | ||
577 | /* Make a printable name that does not conflict with the real function. */ | |
578 | name = alloca (strlen (stub_entry->root.string) + 16); | |
579 | sprintf (name, "tramp.%s", stub_entry->root.string); | |
580 | ||
581 | /* Export the symbol for debugging/disassembling. */ | |
582 | m68hc11_elf_set_symbol (htab->stub_bfd, info, name, | |
583 | stub_entry->stub_offset, | |
584 | stub_entry->stub_sec); | |
585 | return result; | |
586 | } | |
587 | ||
588 | /* Export a symbol or set its value and section. */ | |
589 | static void | |
0a6a3ebe SC |
590 | m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, |
591 | const char *name, bfd_vma value, asection *sec) | |
3a65329d SC |
592 | { |
593 | struct elf_link_hash_entry *h; | |
594 | ||
595 | h = (struct elf_link_hash_entry *) | |
596 | bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); | |
597 | if (h == NULL) | |
598 | { | |
599 | _bfd_generic_link_add_one_symbol (info, abfd, | |
600 | name, | |
601 | BSF_GLOBAL, | |
602 | sec, | |
603 | value, | |
604 | (const char*) NULL, | |
605 | TRUE, FALSE, NULL); | |
606 | } | |
607 | else | |
608 | { | |
609 | h->root.type = bfd_link_hash_defined; | |
610 | h->root.u.def.value = value; | |
611 | h->root.u.def.section = sec; | |
612 | } | |
613 | } | |
614 | ||
615 | ||
616 | /* Build all the stubs associated with the current output file. The | |
617 | stubs are kept in a hash table attached to the main linker hash | |
618 | table. This function is called via m68hc12elf_finish in the | |
619 | linker. */ | |
620 | ||
621 | bfd_boolean | |
0a6a3ebe | 622 | elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) |
3a65329d SC |
623 | { |
624 | asection *stub_sec; | |
625 | struct bfd_hash_table *table; | |
626 | struct m68hc11_elf_link_hash_table *htab; | |
627 | struct m68hc11_scan_param param; | |
628 | ||
629 | m68hc11_elf_get_bank_parameters (info); | |
630 | htab = m68hc11_elf_hash_table (info); | |
631 | ||
632 | for (stub_sec = htab->stub_bfd->sections; | |
633 | stub_sec != NULL; | |
634 | stub_sec = stub_sec->next) | |
635 | { | |
636 | bfd_size_type size; | |
637 | ||
638 | /* Allocate memory to hold the linker stubs. */ | |
eea6121a | 639 | size = stub_sec->size; |
3a65329d SC |
640 | stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); |
641 | if (stub_sec->contents == NULL && size != 0) | |
642 | return FALSE; | |
eea6121a | 643 | stub_sec->size = 0; |
3a65329d SC |
644 | } |
645 | ||
646 | /* Build the stubs as directed by the stub hash table. */ | |
647 | table = htab->stub_hash_table; | |
648 | bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); | |
649 | ||
650 | /* Scan the output sections to see if we use the memory banks. | |
651 | If so, export the symbols that define how the memory banks | |
652 | are mapped. This is used by gdb and the simulator to obtain | |
653 | the information. It can be used by programs to burn the eprom | |
654 | at the good addresses. */ | |
655 | param.use_memory_banks = FALSE; | |
656 | param.pinfo = &htab->pinfo; | |
657 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
658 | if (param.use_memory_banks) | |
659 | { | |
660 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, | |
661 | htab->pinfo.bank_physical, | |
662 | bfd_abs_section_ptr); | |
663 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
664 | htab->pinfo.bank_virtual, | |
665 | bfd_abs_section_ptr); | |
666 | m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, | |
667 | htab->pinfo.bank_size, | |
668 | bfd_abs_section_ptr); | |
669 | } | |
670 | ||
671 | return TRUE; | |
672 | } | |
673 | ||
674 | void | |
0a6a3ebe | 675 | m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) |
3a65329d SC |
676 | { |
677 | unsigned i; | |
678 | struct m68hc11_page_info *pinfo; | |
679 | struct bfd_link_hash_entry *h; | |
680 | ||
681 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
682 | if (pinfo->bank_param_initialized) | |
683 | return; | |
684 | ||
685 | pinfo->bank_virtual = M68HC12_BANK_VIRT; | |
686 | pinfo->bank_mask = M68HC12_BANK_MASK; | |
687 | pinfo->bank_physical = M68HC12_BANK_BASE; | |
688 | pinfo->bank_shift = M68HC12_BANK_SHIFT; | |
689 | pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; | |
690 | ||
691 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, | |
692 | FALSE, FALSE, TRUE); | |
693 | if (h != (struct bfd_link_hash_entry*) NULL | |
694 | && h->type == bfd_link_hash_defined) | |
695 | pinfo->bank_physical = (h->u.def.value | |
696 | + h->u.def.section->output_section->vma | |
697 | + h->u.def.section->output_offset); | |
698 | ||
699 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, | |
700 | FALSE, FALSE, TRUE); | |
701 | if (h != (struct bfd_link_hash_entry*) NULL | |
702 | && h->type == bfd_link_hash_defined) | |
703 | pinfo->bank_virtual = (h->u.def.value | |
704 | + h->u.def.section->output_section->vma | |
705 | + h->u.def.section->output_offset); | |
706 | ||
707 | h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, | |
708 | FALSE, FALSE, TRUE); | |
709 | if (h != (struct bfd_link_hash_entry*) NULL | |
710 | && h->type == bfd_link_hash_defined) | |
711 | pinfo->bank_size = (h->u.def.value | |
712 | + h->u.def.section->output_section->vma | |
713 | + h->u.def.section->output_offset); | |
714 | ||
715 | pinfo->bank_shift = 0; | |
716 | for (i = pinfo->bank_size; i != 0; i >>= 1) | |
717 | pinfo->bank_shift++; | |
718 | pinfo->bank_shift--; | |
719 | pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; | |
720 | pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; | |
721 | pinfo->bank_param_initialized = 1; | |
722 | ||
723 | h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, | |
724 | FALSE, TRUE); | |
725 | if (h != (struct bfd_link_hash_entry*) NULL | |
726 | && h->type == bfd_link_hash_defined) | |
727 | pinfo->trampoline_addr = (h->u.def.value | |
728 | + h->u.def.section->output_section->vma | |
729 | + h->u.def.section->output_offset); | |
730 | } | |
731 | ||
732 | /* Return 1 if the address is in banked memory. | |
733 | This can be applied to a virtual address and to a physical address. */ | |
734 | int | |
0a6a3ebe | 735 | m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
736 | { |
737 | if (addr >= pinfo->bank_virtual) | |
738 | return 1; | |
739 | ||
740 | if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) | |
741 | return 1; | |
742 | ||
743 | return 0; | |
744 | } | |
745 | ||
746 | /* Return the physical address seen by the processor, taking | |
747 | into account banked memory. */ | |
748 | bfd_vma | |
0a6a3ebe | 749 | m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
750 | { |
751 | if (addr < pinfo->bank_virtual) | |
752 | return addr; | |
753 | ||
754 | /* Map the address to the memory bank. */ | |
755 | addr -= pinfo->bank_virtual; | |
756 | addr &= pinfo->bank_mask; | |
757 | addr += pinfo->bank_physical; | |
758 | return addr; | |
759 | } | |
760 | ||
761 | /* Return the page number corresponding to an address in banked memory. */ | |
762 | bfd_vma | |
0a6a3ebe | 763 | m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) |
3a65329d SC |
764 | { |
765 | if (addr < pinfo->bank_virtual) | |
766 | return 0; | |
767 | ||
768 | /* Map the address to the memory bank. */ | |
769 | addr -= pinfo->bank_virtual; | |
770 | addr >>= pinfo->bank_shift; | |
771 | addr &= 0x0ff; | |
772 | return addr; | |
773 | } | |
774 | ||
775 | /* This function is used for relocs which are only used for relaxing, | |
776 | which the linker should otherwise ignore. */ | |
777 | ||
778 | bfd_reloc_status_type | |
0a6a3ebe SC |
779 | m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
780 | arelent *reloc_entry, | |
781 | asymbol *symbol ATTRIBUTE_UNUSED, | |
782 | void *data ATTRIBUTE_UNUSED, | |
783 | asection *input_section, | |
784 | bfd *output_bfd, | |
785 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
786 | { |
787 | if (output_bfd != NULL) | |
788 | reloc_entry->address += input_section->output_offset; | |
789 | return bfd_reloc_ok; | |
790 | } | |
791 | ||
792 | bfd_reloc_status_type | |
0a6a3ebe SC |
793 | m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
794 | arelent *reloc_entry, | |
795 | asymbol *symbol, | |
796 | void *data ATTRIBUTE_UNUSED, | |
797 | asection *input_section, | |
798 | bfd *output_bfd, | |
799 | char **error_message ATTRIBUTE_UNUSED) | |
3a65329d SC |
800 | { |
801 | if (output_bfd != (bfd *) NULL | |
802 | && (symbol->flags & BSF_SECTION_SYM) == 0 | |
803 | && (! reloc_entry->howto->partial_inplace | |
804 | || reloc_entry->addend == 0)) | |
805 | { | |
806 | reloc_entry->address += input_section->output_offset; | |
807 | return bfd_reloc_ok; | |
808 | } | |
809 | ||
810 | if (output_bfd != NULL) | |
811 | return bfd_reloc_continue; | |
812 | ||
07515404 | 813 | if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) |
3a65329d SC |
814 | return bfd_reloc_outofrange; |
815 | ||
816 | abort(); | |
817 | } | |
818 | ||
3a65329d SC |
819 | /* Look through the relocs for a section during the first phase. |
820 | Since we don't do .gots or .plts, we just need to consider the | |
821 | virtual table relocs for gc. */ | |
822 | ||
823 | bfd_boolean | |
0a6a3ebe SC |
824 | elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, |
825 | asection *sec, const Elf_Internal_Rela *relocs) | |
3a65329d SC |
826 | { |
827 | Elf_Internal_Shdr * symtab_hdr; | |
828 | struct elf_link_hash_entry ** sym_hashes; | |
3a65329d SC |
829 | const Elf_Internal_Rela * rel; |
830 | const Elf_Internal_Rela * rel_end; | |
831 | ||
1049f94e | 832 | if (info->relocatable) |
3a65329d SC |
833 | return TRUE; |
834 | ||
835 | symtab_hdr = & elf_tdata (abfd)->symtab_hdr; | |
836 | sym_hashes = elf_sym_hashes (abfd); | |
3a65329d SC |
837 | rel_end = relocs + sec->reloc_count; |
838 | ||
839 | for (rel = relocs; rel < rel_end; rel++) | |
840 | { | |
841 | struct elf_link_hash_entry * h; | |
842 | unsigned long r_symndx; | |
843 | ||
844 | r_symndx = ELF32_R_SYM (rel->r_info); | |
845 | ||
846 | if (r_symndx < symtab_hdr->sh_info) | |
847 | h = NULL; | |
848 | else | |
973a3492 L |
849 | { |
850 | h = sym_hashes [r_symndx - symtab_hdr->sh_info]; | |
851 | while (h->root.type == bfd_link_hash_indirect | |
852 | || h->root.type == bfd_link_hash_warning) | |
853 | h = (struct elf_link_hash_entry *) h->root.u.i.link; | |
854 | } | |
3a65329d SC |
855 | |
856 | switch (ELF32_R_TYPE (rel->r_info)) | |
857 | { | |
858 | /* This relocation describes the C++ object vtable hierarchy. | |
859 | Reconstruct it for later use during GC. */ | |
860 | case R_M68HC11_GNU_VTINHERIT: | |
c152c796 | 861 | if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
3a65329d SC |
862 | return FALSE; |
863 | break; | |
864 | ||
865 | /* This relocation describes which C++ vtable entries are actually | |
866 | used. Record for later use during GC. */ | |
867 | case R_M68HC11_GNU_VTENTRY: | |
d17e0c6e JB |
868 | BFD_ASSERT (h != NULL); |
869 | if (h != NULL | |
870 | && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) | |
3a65329d SC |
871 | return FALSE; |
872 | break; | |
873 | } | |
874 | } | |
875 | ||
876 | return TRUE; | |
877 | } | |
878 | ||
3a65329d SC |
879 | /* Relocate a 68hc11/68hc12 ELF section. */ |
880 | bfd_boolean | |
0a6a3ebe SC |
881 | elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, |
882 | struct bfd_link_info *info, | |
883 | bfd *input_bfd, asection *input_section, | |
884 | bfd_byte *contents, Elf_Internal_Rela *relocs, | |
885 | Elf_Internal_Sym *local_syms, | |
886 | asection **local_sections) | |
3a65329d SC |
887 | { |
888 | Elf_Internal_Shdr *symtab_hdr; | |
889 | struct elf_link_hash_entry **sym_hashes; | |
890 | Elf_Internal_Rela *rel, *relend; | |
9b69b847 | 891 | const char *name = NULL; |
3a65329d | 892 | struct m68hc11_page_info *pinfo; |
9c5bfbb7 | 893 | const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); |
3a65329d SC |
894 | |
895 | symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | |
896 | sym_hashes = elf_sym_hashes (input_bfd); | |
897 | ||
898 | /* Get memory bank parameters. */ | |
899 | m68hc11_elf_get_bank_parameters (info); | |
900 | pinfo = &m68hc11_elf_hash_table (info)->pinfo; | |
901 | ||
902 | rel = relocs; | |
903 | relend = relocs + input_section->reloc_count; | |
904 | for (; rel < relend; rel++) | |
905 | { | |
906 | int r_type; | |
907 | arelent arel; | |
908 | reloc_howto_type *howto; | |
909 | unsigned long r_symndx; | |
910 | Elf_Internal_Sym *sym; | |
911 | asection *sec; | |
9b69b847 | 912 | bfd_vma relocation = 0; |
3a65329d SC |
913 | bfd_reloc_status_type r = bfd_reloc_undefined; |
914 | bfd_vma phys_page; | |
915 | bfd_vma phys_addr; | |
916 | bfd_vma insn_addr; | |
917 | bfd_vma insn_page; | |
9b69b847 | 918 | bfd_boolean is_far = FALSE; |
ab96bf03 AM |
919 | struct elf_link_hash_entry *h; |
920 | const char* stub_name = 0; | |
3a65329d SC |
921 | |
922 | r_symndx = ELF32_R_SYM (rel->r_info); | |
923 | r_type = ELF32_R_TYPE (rel->r_info); | |
924 | ||
925 | if (r_type == R_M68HC11_GNU_VTENTRY | |
926 | || r_type == R_M68HC11_GNU_VTINHERIT ) | |
927 | continue; | |
928 | ||
ab96bf03 AM |
929 | (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel); |
930 | howto = arel.howto; | |
931 | ||
932 | h = NULL; | |
933 | sym = NULL; | |
934 | sec = NULL; | |
935 | if (r_symndx < symtab_hdr->sh_info) | |
936 | { | |
937 | sym = local_syms + r_symndx; | |
938 | sec = local_sections[r_symndx]; | |
939 | relocation = (sec->output_section->vma | |
940 | + sec->output_offset | |
941 | + sym->st_value); | |
942 | is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); | |
943 | if (is_far) | |
944 | stub_name = (bfd_elf_string_from_elf_section | |
945 | (input_bfd, symtab_hdr->sh_link, | |
946 | sym->st_name)); | |
947 | } | |
948 | else | |
949 | { | |
950 | bfd_boolean unresolved_reloc, warned; | |
951 | ||
952 | RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, | |
953 | r_symndx, symtab_hdr, sym_hashes, | |
954 | h, sec, relocation, unresolved_reloc, | |
955 | warned); | |
956 | ||
957 | is_far = (h && (h->other & STO_M68HC12_FAR)); | |
958 | stub_name = h->root.root.string; | |
959 | } | |
960 | ||
961 | if (sec != NULL && elf_discarded_section (sec)) | |
962 | { | |
963 | /* For relocs against symbols from removed linkonce sections, | |
964 | or sections discarded by a linker script, we just want the | |
965 | section contents zeroed. Avoid any special processing. */ | |
966 | _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset); | |
967 | rel->r_info = 0; | |
968 | rel->r_addend = 0; | |
969 | continue; | |
970 | } | |
971 | ||
1049f94e | 972 | if (info->relocatable) |
3a65329d | 973 | { |
1049f94e | 974 | /* This is a relocatable link. We don't have to change |
3a65329d SC |
975 | anything, unless the reloc is against a section symbol, |
976 | in which case we have to adjust according to where the | |
977 | section symbol winds up in the output section. */ | |
ab96bf03 AM |
978 | if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
979 | rel->r_addend += sec->output_offset; | |
3a65329d SC |
980 | continue; |
981 | } | |
3a65329d | 982 | |
ab96bf03 AM |
983 | if (h != NULL) |
984 | name = h->root.root.string; | |
985 | else | |
986 | { | |
987 | name = (bfd_elf_string_from_elf_section | |
988 | (input_bfd, symtab_hdr->sh_link, sym->st_name)); | |
989 | if (name == NULL || *name == '\0') | |
990 | name = bfd_section_name (input_bfd, sec); | |
991 | } | |
992 | ||
993 | if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) | |
994 | { | |
995 | struct elf32_m68hc11_stub_hash_entry* stub; | |
996 | struct m68hc11_elf_link_hash_table *htab; | |
997 | ||
998 | htab = m68hc11_elf_hash_table (info); | |
999 | stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, | |
1000 | name, FALSE, FALSE); | |
1001 | if (stub) | |
1002 | { | |
1003 | relocation = stub->stub_offset | |
1004 | + stub->stub_sec->output_section->vma | |
1005 | + stub->stub_sec->output_offset; | |
1006 | is_far = FALSE; | |
1007 | } | |
1008 | } | |
3a65329d SC |
1009 | |
1010 | /* Do the memory bank mapping. */ | |
1011 | phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); | |
1012 | phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); | |
1013 | switch (r_type) | |
1014 | { | |
1015 | case R_M68HC11_24: | |
1016 | /* Reloc used by 68HC12 call instruction. */ | |
1017 | bfd_put_16 (input_bfd, phys_addr, | |
1018 | (bfd_byte*) contents + rel->r_offset); | |
1019 | bfd_put_8 (input_bfd, phys_page, | |
1020 | (bfd_byte*) contents + rel->r_offset + 2); | |
1021 | r = bfd_reloc_ok; | |
1022 | r_type = R_M68HC11_NONE; | |
1023 | break; | |
1024 | ||
1025 | case R_M68HC11_NONE: | |
1026 | r = bfd_reloc_ok; | |
1027 | break; | |
1028 | ||
1029 | case R_M68HC11_LO16: | |
1030 | /* Reloc generated by %addr(expr) gas to obtain the | |
1031 | address as mapped in the memory bank window. */ | |
1032 | relocation = phys_addr; | |
1033 | break; | |
1034 | ||
1035 | case R_M68HC11_PAGE: | |
1036 | /* Reloc generated by %page(expr) gas to obtain the | |
1037 | page number associated with the address. */ | |
1038 | relocation = phys_page; | |
1039 | break; | |
1040 | ||
1041 | case R_M68HC11_16: | |
1042 | /* Get virtual address of instruction having the relocation. */ | |
1043 | if (is_far) | |
1044 | { | |
1045 | const char* msg; | |
1046 | char* buf; | |
1047 | msg = _("Reference to the far symbol `%s' using a wrong " | |
1048 | "relocation may result in incorrect execution"); | |
1049 | buf = alloca (strlen (msg) + strlen (name) + 10); | |
1050 | sprintf (buf, msg, name); | |
1051 | ||
1052 | (* info->callbacks->warning) | |
1053 | (info, buf, name, input_bfd, NULL, rel->r_offset); | |
1054 | } | |
1055 | ||
1056 | /* Get virtual address of instruction having the relocation. */ | |
1057 | insn_addr = input_section->output_section->vma | |
1058 | + input_section->output_offset | |
1059 | + rel->r_offset; | |
1060 | ||
1061 | insn_page = m68hc11_phys_page (pinfo, insn_addr); | |
1062 | ||
1063 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) | |
1064 | && m68hc11_addr_is_banked (pinfo, insn_addr) | |
1065 | && phys_page != insn_page) | |
1066 | { | |
1067 | const char* msg; | |
1068 | char* buf; | |
1069 | ||
1070 | msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " | |
1071 | "as current banked address [%lx:%04lx] (%lx)"); | |
1072 | ||
1073 | buf = alloca (strlen (msg) + 128); | |
1074 | sprintf (buf, msg, phys_page, phys_addr, | |
1075 | (long) (relocation + rel->r_addend), | |
1076 | insn_page, m68hc11_phys_addr (pinfo, insn_addr), | |
1077 | (long) (insn_addr)); | |
1078 | if (!((*info->callbacks->warning) | |
1079 | (info, buf, name, input_bfd, input_section, | |
1080 | rel->r_offset))) | |
1081 | return FALSE; | |
1082 | break; | |
1083 | } | |
1084 | if (phys_page != 0 && insn_page == 0) | |
1085 | { | |
1086 | const char* msg; | |
1087 | char* buf; | |
1088 | ||
1089 | msg = _("reference to a banked address [%lx:%04lx] in the " | |
1090 | "normal address space at %04lx"); | |
1091 | ||
1092 | buf = alloca (strlen (msg) + 128); | |
1093 | sprintf (buf, msg, phys_page, phys_addr, insn_addr); | |
1094 | if (!((*info->callbacks->warning) | |
1095 | (info, buf, name, input_bfd, input_section, | |
1096 | insn_addr))) | |
1097 | return FALSE; | |
1098 | ||
1099 | relocation = phys_addr; | |
1100 | break; | |
1101 | } | |
1102 | ||
1103 | /* If this is a banked address use the phys_addr so that | |
1104 | we stay in the banked window. */ | |
1105 | if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) | |
1106 | relocation = phys_addr; | |
1107 | break; | |
1108 | } | |
1109 | if (r_type != R_M68HC11_NONE) | |
1110 | r = _bfd_final_link_relocate (howto, input_bfd, input_section, | |
1111 | contents, rel->r_offset, | |
1112 | relocation, rel->r_addend); | |
1113 | ||
1114 | if (r != bfd_reloc_ok) | |
1115 | { | |
1116 | const char * msg = (const char *) 0; | |
1117 | ||
1118 | switch (r) | |
1119 | { | |
1120 | case bfd_reloc_overflow: | |
1121 | if (!((*info->callbacks->reloc_overflow) | |
dfeffb9f | 1122 | (info, NULL, name, howto->name, (bfd_vma) 0, |
3a65329d SC |
1123 | input_bfd, input_section, rel->r_offset))) |
1124 | return FALSE; | |
1125 | break; | |
1126 | ||
1127 | case bfd_reloc_undefined: | |
1128 | if (!((*info->callbacks->undefined_symbol) | |
1129 | (info, name, input_bfd, input_section, | |
1130 | rel->r_offset, TRUE))) | |
1131 | return FALSE; | |
1132 | break; | |
1133 | ||
1134 | case bfd_reloc_outofrange: | |
1135 | msg = _ ("internal error: out of range error"); | |
1136 | goto common_error; | |
1137 | ||
1138 | case bfd_reloc_notsupported: | |
1139 | msg = _ ("internal error: unsupported relocation error"); | |
1140 | goto common_error; | |
1141 | ||
1142 | case bfd_reloc_dangerous: | |
1143 | msg = _ ("internal error: dangerous error"); | |
1144 | goto common_error; | |
1145 | ||
1146 | default: | |
1147 | msg = _ ("internal error: unknown error"); | |
1148 | /* fall through */ | |
1149 | ||
1150 | common_error: | |
1151 | if (!((*info->callbacks->warning) | |
1152 | (info, msg, name, input_bfd, input_section, | |
1153 | rel->r_offset))) | |
1154 | return FALSE; | |
1155 | break; | |
1156 | } | |
1157 | } | |
1158 | } | |
1159 | ||
1160 | return TRUE; | |
1161 | } | |
1162 | ||
1163 | ||
1164 | \f | |
1165 | /* Set and control ELF flags in ELF header. */ | |
1166 | ||
1167 | bfd_boolean | |
0a6a3ebe | 1168 | _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) |
3a65329d SC |
1169 | { |
1170 | BFD_ASSERT (!elf_flags_init (abfd) | |
1171 | || elf_elfheader (abfd)->e_flags == flags); | |
1172 | ||
1173 | elf_elfheader (abfd)->e_flags = flags; | |
1174 | elf_flags_init (abfd) = TRUE; | |
1175 | return TRUE; | |
1176 | } | |
1177 | ||
1178 | /* Merge backend specific data from an object file to the output | |
1179 | object file when linking. */ | |
1180 | ||
1181 | bfd_boolean | |
0a6a3ebe | 1182 | _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) |
3a65329d SC |
1183 | { |
1184 | flagword old_flags; | |
1185 | flagword new_flags; | |
1186 | bfd_boolean ok = TRUE; | |
1187 | ||
1188 | /* Check if we have the same endianess */ | |
1189 | if (!_bfd_generic_verify_endian_match (ibfd, obfd)) | |
1190 | return FALSE; | |
1191 | ||
1192 | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | |
1193 | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | |
1194 | return TRUE; | |
1195 | ||
1196 | new_flags = elf_elfheader (ibfd)->e_flags; | |
1197 | elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; | |
1198 | old_flags = elf_elfheader (obfd)->e_flags; | |
1199 | ||
1200 | if (! elf_flags_init (obfd)) | |
1201 | { | |
1202 | elf_flags_init (obfd) = TRUE; | |
1203 | elf_elfheader (obfd)->e_flags = new_flags; | |
1204 | elf_elfheader (obfd)->e_ident[EI_CLASS] | |
1205 | = elf_elfheader (ibfd)->e_ident[EI_CLASS]; | |
1206 | ||
1207 | if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) | |
1208 | && bfd_get_arch_info (obfd)->the_default) | |
1209 | { | |
1210 | if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), | |
1211 | bfd_get_mach (ibfd))) | |
1212 | return FALSE; | |
1213 | } | |
1214 | ||
1215 | return TRUE; | |
1216 | } | |
1217 | ||
1218 | /* Check ABI compatibility. */ | |
1219 | if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) | |
1220 | { | |
1221 | (*_bfd_error_handler) | |
d003868e AM |
1222 | (_("%B: linking files compiled for 16-bit integers (-mshort) " |
1223 | "and others for 32-bit integers"), ibfd); | |
3a65329d SC |
1224 | ok = FALSE; |
1225 | } | |
1226 | if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) | |
1227 | { | |
1228 | (*_bfd_error_handler) | |
d003868e AM |
1229 | (_("%B: linking files compiled for 32-bit double (-fshort-double) " |
1230 | "and others for 64-bit double"), ibfd); | |
3a65329d SC |
1231 | ok = FALSE; |
1232 | } | |
47247ced SC |
1233 | |
1234 | /* Processor compatibility. */ | |
1235 | if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) | |
1236 | { | |
1237 | (*_bfd_error_handler) | |
d003868e AM |
1238 | (_("%B: linking files compiled for HCS12 with " |
1239 | "others compiled for HC12"), ibfd); | |
47247ced SC |
1240 | ok = FALSE; |
1241 | } | |
1242 | new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) | |
1243 | | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); | |
1244 | ||
1245 | elf_elfheader (obfd)->e_flags = new_flags; | |
1246 | ||
17e58af0 SC |
1247 | new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); |
1248 | old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); | |
3a65329d SC |
1249 | |
1250 | /* Warn about any other mismatches */ | |
1251 | if (new_flags != old_flags) | |
1252 | { | |
1253 | (*_bfd_error_handler) | |
d003868e AM |
1254 | (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
1255 | ibfd, (unsigned long) new_flags, (unsigned long) old_flags); | |
3a65329d SC |
1256 | ok = FALSE; |
1257 | } | |
1258 | ||
1259 | if (! ok) | |
1260 | { | |
1261 | bfd_set_error (bfd_error_bad_value); | |
1262 | return FALSE; | |
1263 | } | |
1264 | ||
1265 | return TRUE; | |
1266 | } | |
1267 | ||
1268 | bfd_boolean | |
0a6a3ebe | 1269 | _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) |
3a65329d SC |
1270 | { |
1271 | FILE *file = (FILE *) ptr; | |
1272 | ||
1273 | BFD_ASSERT (abfd != NULL && ptr != NULL); | |
1274 | ||
1275 | /* Print normal ELF private data. */ | |
1276 | _bfd_elf_print_private_bfd_data (abfd, ptr); | |
1277 | ||
1278 | /* xgettext:c-format */ | |
1279 | fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); | |
1280 | ||
1281 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) | |
1282 | fprintf (file, _("[abi=32-bit int, ")); | |
1283 | else | |
1284 | fprintf (file, _("[abi=16-bit int, ")); | |
1285 | ||
1286 | if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) | |
1287 | fprintf (file, _("64-bit double, ")); | |
1288 | else | |
1289 | fprintf (file, _("32-bit double, ")); | |
1290 | ||
1291 | if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) | |
1292 | fprintf (file, _("cpu=HC11]")); | |
1293 | else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) | |
1294 | fprintf (file, _("cpu=HCS12]")); | |
1295 | else | |
1296 | fprintf (file, _("cpu=HC12]")); | |
1297 | ||
1298 | if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) | |
1299 | fprintf (file, _(" [memory=bank-model]")); | |
1300 | else | |
1301 | fprintf (file, _(" [memory=flat]")); | |
1302 | ||
1303 | fputc ('\n', file); | |
1304 | ||
1305 | return TRUE; | |
1306 | } | |
1307 | ||
0a6a3ebe SC |
1308 | static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, |
1309 | asection *asect, void *arg) | |
3a65329d SC |
1310 | { |
1311 | struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; | |
1312 | ||
1313 | if (asect->vma >= p->pinfo->bank_virtual) | |
1314 | p->use_memory_banks = TRUE; | |
1315 | } | |
1316 | ||
1317 | /* Tweak the OSABI field of the elf header. */ | |
1318 | ||
1319 | void | |
0a6a3ebe | 1320 | elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) |
3a65329d SC |
1321 | { |
1322 | struct m68hc11_scan_param param; | |
1323 | ||
1324 | if (link_info == 0) | |
1325 | return; | |
1326 | ||
1327 | m68hc11_elf_get_bank_parameters (link_info); | |
1328 | ||
1329 | param.use_memory_banks = FALSE; | |
1330 | param.pinfo = &m68hc11_elf_hash_table (link_info)->pinfo; | |
1331 | bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); | |
1332 | if (param.use_memory_banks) | |
1333 | { | |
1334 | Elf_Internal_Ehdr * i_ehdrp; | |
1335 | ||
1336 | i_ehdrp = elf_elfheader (abfd); | |
1337 | i_ehdrp->e_flags |= E_M68HC12_BANKS; | |
1338 | } | |
1339 | } | |
1340 |