]>
Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for the SPARC for GDB, the GNU debugger. |
b6ba6518 KB |
2 | Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, |
3 | 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. | |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | /* ??? Support for calling functions from gdb in sparc64 is unfinished. */ | |
23 | ||
24 | #include "defs.h" | |
5af923b0 | 25 | #include "arch-utils.h" |
c906108c SS |
26 | #include "frame.h" |
27 | #include "inferior.h" | |
28 | #include "obstack.h" | |
29 | #include "target.h" | |
30 | #include "value.h" | |
31 | #include "bfd.h" | |
32 | #include "gdb_string.h" | |
4e052eda | 33 | #include "regcache.h" |
c906108c SS |
34 | |
35 | #ifdef USE_PROC_FS | |
36 | #include <sys/procfs.h> | |
13437d4b KB |
37 | /* Prototypes for supply_gregset etc. */ |
38 | #include "gregset.h" | |
c906108c SS |
39 | #endif |
40 | ||
41 | #include "gdbcore.h" | |
42 | ||
5af923b0 MS |
43 | #include "symfile.h" /* for 'entry_point_address' */ |
44 | ||
45 | /* | |
46 | * Some local macros that have multi-arch and non-multi-arch versions: | |
47 | */ | |
48 | ||
49 | #if (GDB_MULTI_ARCH > 0) | |
50 | ||
51 | /* Does the target have Floating Point registers? */ | |
52 | #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu) | |
53 | /* Number of bytes devoted to Floating Point registers: */ | |
54 | #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes) | |
55 | /* Highest numbered Floating Point register. */ | |
56 | #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum) | |
57 | /* Size of a general (integer) register: */ | |
58 | #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size) | |
59 | /* Offset within the call dummy stack of the saved registers. */ | |
60 | #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset) | |
61 | ||
62 | #else /* non-multi-arch */ | |
63 | ||
64 | ||
65 | /* Does the target have Floating Point registers? */ | |
c906108c SS |
66 | #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE) |
67 | #define SPARC_HAS_FPU 0 | |
68 | #else | |
69 | #define SPARC_HAS_FPU 1 | |
70 | #endif | |
71 | ||
5af923b0 MS |
72 | /* Number of bytes devoted to Floating Point registers: */ |
73 | #if (GDB_TARGET_IS_SPARC64) | |
c906108c | 74 | #define FP_REGISTER_BYTES (64 * 4) |
5af923b0 | 75 | #else |
60054393 | 76 | #if (SPARC_HAS_FPU) |
c906108c | 77 | #define FP_REGISTER_BYTES (32 * 4) |
60054393 MS |
78 | #else |
79 | #define FP_REGISTER_BYTES 0 | |
80 | #endif | |
c906108c SS |
81 | #endif |
82 | ||
5af923b0 MS |
83 | /* Highest numbered Floating Point register. */ |
84 | #if (GDB_TARGET_IS_SPARC64) | |
85 | #define FP_MAX_REGNUM (FP0_REGNUM + 48) | |
86 | #else | |
c906108c SS |
87 | #define FP_MAX_REGNUM (FP0_REGNUM + 32) |
88 | #endif | |
89 | ||
5af923b0 | 90 | /* Size of a general (integer) register: */ |
c906108c SS |
91 | #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM)) |
92 | ||
5af923b0 MS |
93 | /* Offset within the call dummy stack of the saved registers. */ |
94 | #if (GDB_TARGET_IS_SPARC64) | |
95 | #define DUMMY_REG_SAVE_OFFSET (128 + 16) | |
96 | #else | |
97 | #define DUMMY_REG_SAVE_OFFSET 0x60 | |
98 | #endif | |
99 | ||
100 | #endif /* GDB_MULTI_ARCH */ | |
101 | ||
102 | struct gdbarch_tdep | |
103 | { | |
104 | int has_fpu; | |
105 | int fp_register_bytes; | |
106 | int y_regnum; | |
107 | int fp_max_regnum; | |
108 | int intreg_size; | |
109 | int reg_save_offset; | |
110 | int call_dummy_call_offset; | |
111 | int print_insn_mach; | |
112 | }; | |
113 | ||
114 | /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */ | |
115 | /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ... | |
116 | * define GDB_TARGET_IS_SPARC64 \ | |
117 | * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \ | |
118 | * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \ | |
119 | * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a)) | |
120 | */ | |
121 | ||
c906108c SS |
122 | /* From infrun.c */ |
123 | extern int stop_after_trap; | |
124 | ||
125 | /* We don't store all registers immediately when requested, since they | |
126 | get sent over in large chunks anyway. Instead, we accumulate most | |
127 | of the changes and send them over once. "deferred_stores" keeps | |
128 | track of which sets of registers we have locally-changed copies of, | |
129 | so we only need send the groups that have changed. */ | |
130 | ||
5af923b0 | 131 | int deferred_stores = 0; /* Accumulated stores we want to do eventually. */ |
c906108c SS |
132 | |
133 | ||
134 | /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode | |
135 | where instructions are big-endian and data are little-endian. | |
136 | This flag is set when we detect that the target is of this type. */ | |
137 | ||
138 | int bi_endian = 0; | |
139 | ||
140 | ||
141 | /* Fetch a single instruction. Even on bi-endian machines | |
142 | such as sparc86x, instructions are always big-endian. */ | |
143 | ||
144 | static unsigned long | |
fba45db2 | 145 | fetch_instruction (CORE_ADDR pc) |
c906108c SS |
146 | { |
147 | unsigned long retval; | |
148 | int i; | |
149 | unsigned char buf[4]; | |
150 | ||
151 | read_memory (pc, buf, sizeof (buf)); | |
152 | ||
153 | /* Start at the most significant end of the integer, and work towards | |
154 | the least significant. */ | |
155 | retval = 0; | |
156 | for (i = 0; i < sizeof (buf); ++i) | |
157 | retval = (retval << 8) | buf[i]; | |
158 | return retval; | |
159 | } | |
160 | ||
161 | ||
162 | /* Branches with prediction are treated like their non-predicting cousins. */ | |
163 | /* FIXME: What about floating point branches? */ | |
164 | ||
165 | /* Macros to extract fields from sparc instructions. */ | |
166 | #define X_OP(i) (((i) >> 30) & 0x3) | |
167 | #define X_RD(i) (((i) >> 25) & 0x1f) | |
168 | #define X_A(i) (((i) >> 29) & 1) | |
169 | #define X_COND(i) (((i) >> 25) & 0xf) | |
170 | #define X_OP2(i) (((i) >> 22) & 0x7) | |
171 | #define X_IMM22(i) ((i) & 0x3fffff) | |
172 | #define X_OP3(i) (((i) >> 19) & 0x3f) | |
173 | #define X_RS1(i) (((i) >> 14) & 0x1f) | |
174 | #define X_I(i) (((i) >> 13) & 1) | |
175 | #define X_IMM13(i) ((i) & 0x1fff) | |
176 | /* Sign extension macros. */ | |
177 | #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000) | |
178 | #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000) | |
179 | #define X_CC(i) (((i) >> 20) & 3) | |
180 | #define X_P(i) (((i) >> 19) & 1) | |
181 | #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000) | |
182 | #define X_RCOND(i) (((i) >> 25) & 7) | |
183 | #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000) | |
184 | #define X_FCN(i) (((i) >> 25) & 31) | |
185 | ||
186 | typedef enum | |
187 | { | |
5af923b0 MS |
188 | Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry |
189 | } branch_type; | |
c906108c SS |
190 | |
191 | /* Simulate single-step ptrace call for sun4. Code written by Gary | |
192 | Beihl ([email protected]). */ | |
193 | ||
194 | /* npc4 and next_pc describe the situation at the time that the | |
195 | step-breakpoint was set, not necessary the current value of NPC_REGNUM. */ | |
196 | static CORE_ADDR next_pc, npc4, target; | |
197 | static int brknpc4, brktrg; | |
198 | typedef char binsn_quantum[BREAKPOINT_MAX]; | |
199 | static binsn_quantum break_mem[3]; | |
200 | ||
5af923b0 | 201 | static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *); |
c906108c SS |
202 | |
203 | /* single_step() is called just before we want to resume the inferior, | |
204 | if we want to single-step it but there is no hardware or kernel single-step | |
205 | support (as on all SPARCs). We find all the possible targets of the | |
206 | coming instruction and breakpoint them. | |
207 | ||
208 | single_step is also called just after the inferior stops. If we had | |
209 | set up a simulated single-step, we undo our damage. */ | |
210 | ||
211 | void | |
fba45db2 KB |
212 | sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */ |
213 | int insert_breakpoints_p) | |
c906108c SS |
214 | { |
215 | branch_type br; | |
216 | CORE_ADDR pc; | |
217 | long pc_instruction; | |
218 | ||
219 | if (insert_breakpoints_p) | |
220 | { | |
221 | /* Always set breakpoint for NPC. */ | |
222 | next_pc = read_register (NPC_REGNUM); | |
c5aa993b | 223 | npc4 = next_pc + 4; /* branch not taken */ |
c906108c SS |
224 | |
225 | target_insert_breakpoint (next_pc, break_mem[0]); | |
226 | /* printf_unfiltered ("set break at %x\n",next_pc); */ | |
227 | ||
228 | pc = read_register (PC_REGNUM); | |
229 | pc_instruction = fetch_instruction (pc); | |
230 | br = isbranch (pc_instruction, pc, &target); | |
231 | brknpc4 = brktrg = 0; | |
232 | ||
233 | if (br == bicca) | |
234 | { | |
235 | /* Conditional annulled branch will either end up at | |
236 | npc (if taken) or at npc+4 (if not taken). | |
237 | Trap npc+4. */ | |
238 | brknpc4 = 1; | |
239 | target_insert_breakpoint (npc4, break_mem[1]); | |
240 | } | |
241 | else if (br == baa && target != next_pc) | |
242 | { | |
243 | /* Unconditional annulled branch will always end up at | |
244 | the target. */ | |
245 | brktrg = 1; | |
246 | target_insert_breakpoint (target, break_mem[2]); | |
247 | } | |
5af923b0 | 248 | else if (GDB_TARGET_IS_SPARC64 && br == done_retry) |
c906108c SS |
249 | { |
250 | brktrg = 1; | |
251 | target_insert_breakpoint (target, break_mem[2]); | |
252 | } | |
c906108c SS |
253 | } |
254 | else | |
255 | { | |
256 | /* Remove breakpoints */ | |
257 | target_remove_breakpoint (next_pc, break_mem[0]); | |
258 | ||
259 | if (brknpc4) | |
260 | target_remove_breakpoint (npc4, break_mem[1]); | |
261 | ||
262 | if (brktrg) | |
263 | target_remove_breakpoint (target, break_mem[2]); | |
264 | } | |
265 | } | |
266 | \f | |
5af923b0 MS |
267 | struct frame_extra_info |
268 | { | |
269 | CORE_ADDR bottom; | |
270 | int in_prologue; | |
271 | int flat; | |
272 | /* Following fields only relevant for flat frames. */ | |
273 | CORE_ADDR pc_addr; | |
274 | CORE_ADDR fp_addr; | |
275 | /* Add this to ->frame to get the value of the stack pointer at the | |
276 | time of the register saves. */ | |
277 | int sp_offset; | |
278 | }; | |
279 | ||
280 | /* Call this for each newly created frame. For SPARC, we need to | |
281 | calculate the bottom of the frame, and do some extra work if the | |
282 | prologue has been generated via the -mflat option to GCC. In | |
283 | particular, we need to know where the previous fp and the pc have | |
284 | been stashed, since their exact position within the frame may vary. */ | |
c906108c SS |
285 | |
286 | void | |
fba45db2 | 287 | sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi) |
c906108c SS |
288 | { |
289 | char *name; | |
290 | CORE_ADDR prologue_start, prologue_end; | |
291 | int insn; | |
292 | ||
5af923b0 MS |
293 | fi->extra_info = (struct frame_extra_info *) |
294 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
295 | frame_saved_regs_zalloc (fi); | |
296 | ||
297 | fi->extra_info->bottom = | |
c906108c | 298 | (fi->next ? |
5af923b0 MS |
299 | (fi->frame == fi->next->frame ? fi->next->extra_info->bottom : |
300 | fi->next->frame) : read_sp ()); | |
c906108c SS |
301 | |
302 | /* If fi->next is NULL, then we already set ->frame by passing read_fp() | |
303 | to create_new_frame. */ | |
304 | if (fi->next) | |
305 | { | |
5af923b0 MS |
306 | char *buf; |
307 | ||
308 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
309 | |
310 | /* Compute ->frame as if not flat. If it is flat, we'll change | |
c5aa993b | 311 | it later. */ |
c906108c SS |
312 | if (fi->next->next != NULL |
313 | && (fi->next->next->signal_handler_caller | |
314 | || frame_in_dummy (fi->next->next)) | |
315 | && frameless_look_for_prologue (fi->next)) | |
316 | { | |
317 | /* A frameless function interrupted by a signal did not change | |
318 | the frame pointer, fix up frame pointer accordingly. */ | |
319 | fi->frame = FRAME_FP (fi->next); | |
5af923b0 | 320 | fi->extra_info->bottom = fi->next->extra_info->bottom; |
c906108c SS |
321 | } |
322 | else | |
323 | { | |
324 | /* Should we adjust for stack bias here? */ | |
325 | get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0); | |
326 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)); | |
c5aa993b | 327 | |
5af923b0 MS |
328 | if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) |
329 | fi->frame += 2047; | |
c906108c SS |
330 | } |
331 | } | |
332 | ||
333 | /* Decide whether this is a function with a ``flat register window'' | |
334 | frame. For such functions, the frame pointer is actually in %i7. */ | |
5af923b0 MS |
335 | fi->extra_info->flat = 0; |
336 | fi->extra_info->in_prologue = 0; | |
c906108c SS |
337 | if (find_pc_partial_function (fi->pc, &name, &prologue_start, &prologue_end)) |
338 | { | |
339 | /* See if the function starts with an add (which will be of a | |
c5aa993b JM |
340 | negative number if a flat frame) to the sp. FIXME: Does not |
341 | handle large frames which will need more than one instruction | |
342 | to adjust the sp. */ | |
d0901120 | 343 | insn = fetch_instruction (prologue_start); |
c906108c SS |
344 | if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0 |
345 | && X_I (insn) && X_SIMM13 (insn) < 0) | |
346 | { | |
347 | int offset = X_SIMM13 (insn); | |
348 | ||
349 | /* Then look for a save of %i7 into the frame. */ | |
350 | insn = fetch_instruction (prologue_start + 4); | |
351 | if (X_OP (insn) == 3 | |
352 | && X_RD (insn) == 31 | |
353 | && X_OP3 (insn) == 4 | |
354 | && X_RS1 (insn) == 14) | |
355 | { | |
5af923b0 MS |
356 | char *buf; |
357 | ||
358 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
359 | |
360 | /* We definitely have a flat frame now. */ | |
5af923b0 | 361 | fi->extra_info->flat = 1; |
c906108c | 362 | |
5af923b0 | 363 | fi->extra_info->sp_offset = offset; |
c906108c SS |
364 | |
365 | /* Overwrite the frame's address with the value in %i7. */ | |
366 | get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0); | |
367 | fi->frame = extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)); | |
5af923b0 MS |
368 | |
369 | if (GDB_TARGET_IS_SPARC64 && (fi->frame & 1)) | |
c906108c | 370 | fi->frame += 2047; |
5af923b0 | 371 | |
c906108c | 372 | /* Record where the fp got saved. */ |
5af923b0 MS |
373 | fi->extra_info->fp_addr = |
374 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
375 | |
376 | /* Also try to collect where the pc got saved to. */ | |
5af923b0 | 377 | fi->extra_info->pc_addr = 0; |
c906108c SS |
378 | insn = fetch_instruction (prologue_start + 12); |
379 | if (X_OP (insn) == 3 | |
380 | && X_RD (insn) == 15 | |
381 | && X_OP3 (insn) == 4 | |
382 | && X_RS1 (insn) == 14) | |
5af923b0 MS |
383 | fi->extra_info->pc_addr = |
384 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
385 | } |
386 | } | |
c5aa993b JM |
387 | else |
388 | { | |
389 | /* Check if the PC is in the function prologue before a SAVE | |
390 | instruction has been executed yet. If so, set the frame | |
391 | to the current value of the stack pointer and set | |
392 | the in_prologue flag. */ | |
393 | CORE_ADDR addr; | |
394 | struct symtab_and_line sal; | |
395 | ||
396 | sal = find_pc_line (prologue_start, 0); | |
397 | if (sal.line == 0) /* no line info, use PC */ | |
398 | prologue_end = fi->pc; | |
399 | else if (sal.end < prologue_end) | |
400 | prologue_end = sal.end; | |
401 | if (fi->pc < prologue_end) | |
402 | { | |
403 | for (addr = prologue_start; addr < fi->pc; addr += 4) | |
404 | { | |
405 | insn = read_memory_integer (addr, 4); | |
406 | if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c) | |
407 | break; /* SAVE seen, stop searching */ | |
408 | } | |
409 | if (addr >= fi->pc) | |
410 | { | |
5af923b0 | 411 | fi->extra_info->in_prologue = 1; |
c5aa993b JM |
412 | fi->frame = read_register (SP_REGNUM); |
413 | } | |
414 | } | |
415 | } | |
c906108c SS |
416 | } |
417 | if (fi->next && fi->frame == 0) | |
418 | { | |
419 | /* Kludge to cause init_prev_frame_info to destroy the new frame. */ | |
420 | fi->frame = fi->next->frame; | |
421 | fi->pc = fi->next->pc; | |
422 | } | |
423 | } | |
424 | ||
425 | CORE_ADDR | |
fba45db2 | 426 | sparc_frame_chain (struct frame_info *frame) |
c906108c SS |
427 | { |
428 | /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain | |
8140e7ac | 429 | value. If it really is zero, we detect it later in |
c906108c | 430 | sparc_init_prev_frame. */ |
c5aa993b | 431 | return (CORE_ADDR) 1; |
c906108c SS |
432 | } |
433 | ||
434 | CORE_ADDR | |
fba45db2 | 435 | sparc_extract_struct_value_address (char *regbuf) |
c906108c SS |
436 | { |
437 | return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM), | |
438 | REGISTER_RAW_SIZE (O0_REGNUM)); | |
439 | } | |
440 | ||
441 | /* Find the pc saved in frame FRAME. */ | |
442 | ||
443 | CORE_ADDR | |
fba45db2 | 444 | sparc_frame_saved_pc (struct frame_info *frame) |
c906108c | 445 | { |
5af923b0 | 446 | char *buf; |
c906108c SS |
447 | CORE_ADDR addr; |
448 | ||
5af923b0 | 449 | buf = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
450 | if (frame->signal_handler_caller) |
451 | { | |
452 | /* This is the signal trampoline frame. | |
c5aa993b | 453 | Get the saved PC from the sigcontext structure. */ |
c906108c SS |
454 | |
455 | #ifndef SIGCONTEXT_PC_OFFSET | |
456 | #define SIGCONTEXT_PC_OFFSET 12 | |
457 | #endif | |
458 | ||
459 | CORE_ADDR sigcontext_addr; | |
5af923b0 | 460 | char *scbuf; |
c906108c SS |
461 | int saved_pc_offset = SIGCONTEXT_PC_OFFSET; |
462 | char *name = NULL; | |
463 | ||
5af923b0 MS |
464 | scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT); |
465 | ||
c906108c | 466 | /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext |
c5aa993b | 467 | as the third parameter. The offset to the saved pc is 12. */ |
c906108c | 468 | find_pc_partial_function (frame->pc, &name, |
c5aa993b | 469 | (CORE_ADDR *) NULL, (CORE_ADDR *) NULL); |
c906108c SS |
470 | if (name && STREQ (name, "ucbsigvechandler")) |
471 | saved_pc_offset = 12; | |
472 | ||
473 | /* The sigcontext address is contained in register O2. */ | |
c5aa993b JM |
474 | get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, |
475 | frame, O0_REGNUM + 2, (enum lval_type *) NULL); | |
c906108c SS |
476 | sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2)); |
477 | ||
478 | /* Don't cause a memory_error when accessing sigcontext in case the | |
c5aa993b | 479 | stack layout has changed or the stack is corrupt. */ |
c906108c SS |
480 | target_read_memory (sigcontext_addr + saved_pc_offset, |
481 | scbuf, sizeof (scbuf)); | |
482 | return extract_address (scbuf, sizeof (scbuf)); | |
483 | } | |
5af923b0 MS |
484 | else if (frame->extra_info->in_prologue || |
485 | (frame->next != NULL && | |
486 | (frame->next->signal_handler_caller || | |
487 | frame_in_dummy (frame->next)) && | |
488 | frameless_look_for_prologue (frame))) | |
c906108c SS |
489 | { |
490 | /* A frameless function interrupted by a signal did not save | |
c5aa993b JM |
491 | the PC, it is still in %o7. */ |
492 | get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL, | |
493 | frame, O7_REGNUM, (enum lval_type *) NULL); | |
c906108c SS |
494 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); |
495 | } | |
5af923b0 MS |
496 | if (frame->extra_info->flat) |
497 | addr = frame->extra_info->pc_addr; | |
c906108c | 498 | else |
5af923b0 | 499 | addr = frame->extra_info->bottom + FRAME_SAVED_I0 + |
c906108c SS |
500 | SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM); |
501 | ||
502 | if (addr == 0) | |
503 | /* A flat frame leaf function might not save the PC anywhere, | |
504 | just leave it in %o7. */ | |
505 | return PC_ADJUST (read_register (O7_REGNUM)); | |
506 | ||
507 | read_memory (addr, buf, SPARC_INTREG_SIZE); | |
508 | return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE)); | |
509 | } | |
510 | ||
511 | /* Since an individual frame in the frame cache is defined by two | |
512 | arguments (a frame pointer and a stack pointer), we need two | |
513 | arguments to get info for an arbitrary stack frame. This routine | |
514 | takes two arguments and makes the cached frames look as if these | |
515 | two arguments defined a frame on the cache. This allows the rest | |
516 | of info frame to extract the important arguments without | |
517 | difficulty. */ | |
518 | ||
519 | struct frame_info * | |
fba45db2 | 520 | setup_arbitrary_frame (int argc, CORE_ADDR *argv) |
c906108c SS |
521 | { |
522 | struct frame_info *frame; | |
523 | ||
524 | if (argc != 2) | |
525 | error ("Sparc frame specifications require two arguments: fp and sp"); | |
526 | ||
527 | frame = create_new_frame (argv[0], 0); | |
528 | ||
529 | if (!frame) | |
8e65ff28 AC |
530 | internal_error (__FILE__, __LINE__, |
531 | "create_new_frame returned invalid frame"); | |
c5aa993b | 532 | |
5af923b0 | 533 | frame->extra_info->bottom = argv[1]; |
c906108c SS |
534 | frame->pc = FRAME_SAVED_PC (frame); |
535 | return frame; | |
536 | } | |
537 | ||
538 | /* Given a pc value, skip it forward past the function prologue by | |
539 | disassembling instructions that appear to be a prologue. | |
540 | ||
541 | If FRAMELESS_P is set, we are only testing to see if the function | |
542 | is frameless. This allows a quicker answer. | |
543 | ||
544 | This routine should be more specific in its actions; making sure | |
545 | that it uses the same register in the initial prologue section. */ | |
546 | ||
5af923b0 MS |
547 | static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *, |
548 | CORE_ADDR *); | |
c906108c | 549 | |
c5aa993b | 550 | static CORE_ADDR |
fba45db2 KB |
551 | examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi, |
552 | CORE_ADDR *saved_regs) | |
c906108c SS |
553 | { |
554 | int insn; | |
555 | int dest = -1; | |
556 | CORE_ADDR pc = start_pc; | |
557 | int is_flat = 0; | |
558 | ||
559 | insn = fetch_instruction (pc); | |
560 | ||
561 | /* Recognize the `sethi' insn and record its destination. */ | |
562 | if (X_OP (insn) == 0 && X_OP2 (insn) == 4) | |
563 | { | |
564 | dest = X_RD (insn); | |
565 | pc += 4; | |
566 | insn = fetch_instruction (pc); | |
567 | } | |
568 | ||
569 | /* Recognize an add immediate value to register to either %g1 or | |
570 | the destination register recorded above. Actually, this might | |
571 | well recognize several different arithmetic operations. | |
572 | It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1" | |
573 | followed by "save %sp, %g1, %sp" is a valid prologue (Not that | |
574 | I imagine any compiler really does that, however). */ | |
575 | if (X_OP (insn) == 2 | |
576 | && X_I (insn) | |
577 | && (X_RD (insn) == 1 || X_RD (insn) == dest)) | |
578 | { | |
579 | pc += 4; | |
580 | insn = fetch_instruction (pc); | |
581 | } | |
582 | ||
583 | /* Recognize any SAVE insn. */ | |
584 | if (X_OP (insn) == 2 && X_OP3 (insn) == 60) | |
585 | { | |
586 | pc += 4; | |
c5aa993b JM |
587 | if (frameless_p) /* If the save is all we care about, */ |
588 | return pc; /* return before doing more work */ | |
c906108c SS |
589 | insn = fetch_instruction (pc); |
590 | } | |
591 | /* Recognize add to %sp. */ | |
592 | else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0) | |
593 | { | |
594 | pc += 4; | |
c5aa993b JM |
595 | if (frameless_p) /* If the add is all we care about, */ |
596 | return pc; /* return before doing more work */ | |
c906108c SS |
597 | is_flat = 1; |
598 | insn = fetch_instruction (pc); | |
599 | /* Recognize store of frame pointer (i7). */ | |
600 | if (X_OP (insn) == 3 | |
601 | && X_RD (insn) == 31 | |
602 | && X_OP3 (insn) == 4 | |
603 | && X_RS1 (insn) == 14) | |
604 | { | |
605 | pc += 4; | |
606 | insn = fetch_instruction (pc); | |
607 | ||
608 | /* Recognize sub %sp, <anything>, %i7. */ | |
c5aa993b | 609 | if (X_OP (insn) == 2 |
c906108c SS |
610 | && X_OP3 (insn) == 4 |
611 | && X_RS1 (insn) == 14 | |
612 | && X_RD (insn) == 31) | |
613 | { | |
614 | pc += 4; | |
615 | insn = fetch_instruction (pc); | |
616 | } | |
617 | else | |
618 | return pc; | |
619 | } | |
620 | else | |
621 | return pc; | |
622 | } | |
623 | else | |
624 | /* Without a save or add instruction, it's not a prologue. */ | |
625 | return start_pc; | |
626 | ||
627 | while (1) | |
628 | { | |
629 | /* Recognize stores into the frame from the input registers. | |
5af923b0 MS |
630 | This recognizes all non alternate stores of an input register, |
631 | into a location offset from the frame pointer between | |
632 | +68 and +92. */ | |
633 | ||
634 | /* The above will fail for arguments that are promoted | |
635 | (eg. shorts to ints or floats to doubles), because the compiler | |
636 | will pass them in positive-offset frame space, but the prologue | |
637 | will save them (after conversion) in negative frame space at an | |
638 | unpredictable offset. Therefore I am going to remove the | |
639 | restriction on the target-address of the save, on the theory | |
640 | that any unbroken sequence of saves from input registers must | |
641 | be part of the prologue. In un-optimized code (at least), I'm | |
642 | fairly sure that the compiler would emit SOME other instruction | |
643 | (eg. a move or add) before emitting another save that is actually | |
644 | a part of the function body. | |
645 | ||
646 | Besides, the reserved stack space is different for SPARC64 anyway. | |
647 | ||
648 | MVS 4/23/2000 */ | |
649 | ||
650 | if (X_OP (insn) == 3 | |
651 | && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */ | |
652 | && (X_RD (insn) & 0x18) == 0x18 /* Input register. */ | |
653 | && X_I (insn) /* Immediate mode. */ | |
654 | && X_RS1 (insn) == 30) /* Off of frame pointer. */ | |
655 | ; /* empty statement -- fall thru to end of loop */ | |
656 | else if (GDB_TARGET_IS_SPARC64 | |
657 | && X_OP (insn) == 3 | |
658 | && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */ | |
659 | && (X_RD (insn) & 0x18) == 0x18 /* input register */ | |
660 | && X_I (insn) /* immediate mode */ | |
661 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
662 | ; /* empty statement -- fall thru to end of loop */ | |
663 | else if (X_OP (insn) == 3 | |
664 | && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */ | |
665 | && X_I (insn) /* immediate mode */ | |
666 | && X_RS1 (insn) == 30) /* off of frame pointer */ | |
667 | ; /* empty statement -- fall thru to end of loop */ | |
c906108c SS |
668 | else if (is_flat |
669 | && X_OP (insn) == 3 | |
5af923b0 MS |
670 | && X_OP3 (insn) == 4 /* store? */ |
671 | && X_RS1 (insn) == 14) /* off of frame pointer */ | |
c906108c SS |
672 | { |
673 | if (saved_regs && X_I (insn)) | |
5af923b0 MS |
674 | saved_regs[X_RD (insn)] = |
675 | fi->frame + fi->extra_info->sp_offset + X_SIMM13 (insn); | |
c906108c SS |
676 | } |
677 | else | |
678 | break; | |
679 | pc += 4; | |
680 | insn = fetch_instruction (pc); | |
681 | } | |
682 | ||
683 | return pc; | |
684 | } | |
685 | ||
c5aa993b | 686 | CORE_ADDR |
fba45db2 | 687 | sparc_skip_prologue (CORE_ADDR start_pc, int frameless_p) |
c906108c SS |
688 | { |
689 | return examine_prologue (start_pc, frameless_p, NULL, NULL); | |
690 | } | |
691 | ||
692 | /* Check instruction at ADDR to see if it is a branch. | |
693 | All non-annulled instructions will go to NPC or will trap. | |
694 | Set *TARGET if we find a candidate branch; set to zero if not. | |
695 | ||
696 | This isn't static as it's used by remote-sa.sparc.c. */ | |
697 | ||
698 | static branch_type | |
fba45db2 | 699 | isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target) |
c906108c SS |
700 | { |
701 | branch_type val = not_branch; | |
702 | long int offset = 0; /* Must be signed for sign-extend. */ | |
703 | ||
704 | *target = 0; | |
705 | ||
706 | if (X_OP (instruction) == 0 | |
707 | && (X_OP2 (instruction) == 2 | |
708 | || X_OP2 (instruction) == 6 | |
709 | || X_OP2 (instruction) == 1 | |
710 | || X_OP2 (instruction) == 3 | |
711 | || X_OP2 (instruction) == 5 | |
5af923b0 | 712 | || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7))) |
c906108c SS |
713 | { |
714 | if (X_COND (instruction) == 8) | |
715 | val = X_A (instruction) ? baa : ba; | |
716 | else | |
717 | val = X_A (instruction) ? bicca : bicc; | |
718 | switch (X_OP2 (instruction)) | |
719 | { | |
5af923b0 MS |
720 | case 7: |
721 | if (!GDB_TARGET_IS_SPARC64) | |
722 | break; | |
723 | /* else fall thru */ | |
c906108c SS |
724 | case 2: |
725 | case 6: | |
c906108c SS |
726 | offset = 4 * X_DISP22 (instruction); |
727 | break; | |
728 | case 1: | |
729 | case 5: | |
730 | offset = 4 * X_DISP19 (instruction); | |
731 | break; | |
732 | case 3: | |
733 | offset = 4 * X_DISP16 (instruction); | |
734 | break; | |
735 | } | |
736 | *target = addr + offset; | |
737 | } | |
5af923b0 MS |
738 | else if (GDB_TARGET_IS_SPARC64 |
739 | && X_OP (instruction) == 2 | |
c906108c SS |
740 | && X_OP3 (instruction) == 62) |
741 | { | |
742 | if (X_FCN (instruction) == 0) | |
743 | { | |
744 | /* done */ | |
745 | *target = read_register (TNPC_REGNUM); | |
746 | val = done_retry; | |
747 | } | |
748 | else if (X_FCN (instruction) == 1) | |
749 | { | |
750 | /* retry */ | |
751 | *target = read_register (TPC_REGNUM); | |
752 | val = done_retry; | |
753 | } | |
754 | } | |
c906108c SS |
755 | |
756 | return val; | |
757 | } | |
758 | \f | |
759 | /* Find register number REGNUM relative to FRAME and put its | |
760 | (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable | |
761 | was optimized out (and thus can't be fetched). If the variable | |
762 | was fetched from memory, set *ADDRP to where it was fetched from, | |
763 | otherwise it was fetched from a register. | |
764 | ||
765 | The argument RAW_BUFFER must point to aligned memory. */ | |
766 | ||
767 | void | |
fba45db2 KB |
768 | sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp, |
769 | struct frame_info *frame, int regnum, | |
770 | enum lval_type *lval) | |
c906108c SS |
771 | { |
772 | struct frame_info *frame1; | |
773 | CORE_ADDR addr; | |
774 | ||
775 | if (!target_has_registers) | |
776 | error ("No registers."); | |
777 | ||
778 | if (optimized) | |
779 | *optimized = 0; | |
780 | ||
781 | addr = 0; | |
782 | ||
783 | /* FIXME This code extracted from infcmd.c; should put elsewhere! */ | |
784 | if (frame == NULL) | |
785 | { | |
786 | /* error ("No selected frame."); */ | |
787 | if (!target_has_registers) | |
c5aa993b JM |
788 | error ("The program has no registers now."); |
789 | if (selected_frame == NULL) | |
790 | error ("No selected frame."); | |
c906108c | 791 | /* Try to use selected frame */ |
c5aa993b | 792 | frame = get_prev_frame (selected_frame); |
c906108c | 793 | if (frame == 0) |
c5aa993b | 794 | error ("Cmd not meaningful in the outermost frame."); |
c906108c SS |
795 | } |
796 | ||
797 | ||
798 | frame1 = frame->next; | |
799 | ||
800 | /* Get saved PC from the frame info if not in innermost frame. */ | |
801 | if (regnum == PC_REGNUM && frame1 != NULL) | |
802 | { | |
803 | if (lval != NULL) | |
804 | *lval = not_lval; | |
805 | if (raw_buffer != NULL) | |
806 | { | |
807 | /* Put it back in target format. */ | |
808 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->pc); | |
809 | } | |
810 | if (addrp != NULL) | |
811 | *addrp = 0; | |
812 | return; | |
813 | } | |
814 | ||
815 | while (frame1 != NULL) | |
816 | { | |
5af923b0 MS |
817 | /* FIXME MVS: wrong test for dummy frame at entry. */ |
818 | ||
819 | if (frame1->pc >= (frame1->extra_info->bottom ? | |
820 | frame1->extra_info->bottom : read_sp ()) | |
c906108c SS |
821 | && frame1->pc <= FRAME_FP (frame1)) |
822 | { | |
823 | /* Dummy frame. All but the window regs are in there somewhere. | |
824 | The window registers are saved on the stack, just like in a | |
825 | normal frame. */ | |
826 | if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7) | |
827 | addr = frame1->frame + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE | |
828 | - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE); | |
829 | else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
5af923b0 | 830 | addr = (frame1->prev->extra_info->bottom |
c906108c SS |
831 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
832 | + FRAME_SAVED_I0); | |
833 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
5af923b0 | 834 | addr = (frame1->prev->extra_info->bottom |
c906108c SS |
835 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
836 | + FRAME_SAVED_L0); | |
837 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
838 | addr = frame1->frame + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
839 | - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE); | |
5af923b0 | 840 | else if (SPARC_HAS_FPU && |
60054393 | 841 | regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32) |
c906108c SS |
842 | addr = frame1->frame + (regnum - FP0_REGNUM) * 4 |
843 | - (FP_REGISTER_BYTES); | |
5af923b0 | 844 | else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU && |
60054393 | 845 | regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM) |
c906108c SS |
846 | addr = frame1->frame + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8 |
847 | - (FP_REGISTER_BYTES); | |
c906108c SS |
848 | else if (regnum >= Y_REGNUM && regnum < NUM_REGS) |
849 | addr = frame1->frame + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE | |
850 | - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE); | |
851 | } | |
5af923b0 | 852 | else if (frame1->extra_info->flat) |
c906108c SS |
853 | { |
854 | ||
855 | if (regnum == RP_REGNUM) | |
5af923b0 | 856 | addr = frame1->extra_info->pc_addr; |
c906108c | 857 | else if (regnum == I7_REGNUM) |
5af923b0 | 858 | addr = frame1->extra_info->fp_addr; |
c906108c SS |
859 | else |
860 | { | |
861 | CORE_ADDR func_start; | |
5af923b0 MS |
862 | CORE_ADDR *regs; |
863 | ||
864 | regs = alloca (NUM_REGS * sizeof (CORE_ADDR)); | |
865 | memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR)); | |
c906108c SS |
866 | |
867 | find_pc_partial_function (frame1->pc, NULL, &func_start, NULL); | |
5af923b0 MS |
868 | examine_prologue (func_start, 0, frame1, regs); |
869 | addr = regs[regnum]; | |
c906108c SS |
870 | } |
871 | } | |
872 | else | |
873 | { | |
874 | /* Normal frame. Local and In registers are saved on stack. */ | |
875 | if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8) | |
5af923b0 | 876 | addr = (frame1->prev->extra_info->bottom |
c906108c SS |
877 | + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
878 | + FRAME_SAVED_I0); | |
879 | else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8) | |
5af923b0 | 880 | addr = (frame1->prev->extra_info->bottom |
c906108c SS |
881 | + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
882 | + FRAME_SAVED_L0); | |
883 | else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8) | |
884 | { | |
885 | /* Outs become ins. */ | |
886 | get_saved_register (raw_buffer, optimized, addrp, frame1, | |
887 | (regnum - O0_REGNUM + I0_REGNUM), lval); | |
888 | return; | |
889 | } | |
890 | } | |
891 | if (addr != 0) | |
892 | break; | |
893 | frame1 = frame1->next; | |
894 | } | |
895 | if (addr != 0) | |
896 | { | |
897 | if (lval != NULL) | |
898 | *lval = lval_memory; | |
899 | if (regnum == SP_REGNUM) | |
900 | { | |
901 | if (raw_buffer != NULL) | |
902 | { | |
903 | /* Put it back in target format. */ | |
904 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr); | |
905 | } | |
906 | if (addrp != NULL) | |
907 | *addrp = 0; | |
908 | return; | |
909 | } | |
910 | if (raw_buffer != NULL) | |
911 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
912 | } | |
913 | else | |
914 | { | |
915 | if (lval != NULL) | |
916 | *lval = lval_register; | |
917 | addr = REGISTER_BYTE (regnum); | |
918 | if (raw_buffer != NULL) | |
919 | read_register_gen (regnum, raw_buffer); | |
920 | } | |
921 | if (addrp != NULL) | |
922 | *addrp = addr; | |
923 | } | |
924 | ||
925 | /* Push an empty stack frame, and record in it the current PC, regs, etc. | |
926 | ||
927 | We save the non-windowed registers and the ins. The locals and outs | |
928 | are new; they don't need to be saved. The i's and l's of | |
929 | the last frame were already saved on the stack. */ | |
930 | ||
931 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
932 | ||
c906108c | 933 | /* See tm-sparc.h for how this is calculated. */ |
5af923b0 | 934 | |
c906108c | 935 | #define DUMMY_STACK_REG_BUF_SIZE \ |
60054393 | 936 | (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES) |
5af923b0 MS |
937 | #define DUMMY_STACK_SIZE \ |
938 | (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET) | |
c906108c SS |
939 | |
940 | void | |
fba45db2 | 941 | sparc_push_dummy_frame (void) |
c906108c SS |
942 | { |
943 | CORE_ADDR sp, old_sp; | |
5af923b0 MS |
944 | char *register_temp; |
945 | ||
946 | register_temp = alloca (DUMMY_STACK_SIZE); | |
c906108c SS |
947 | |
948 | old_sp = sp = read_sp (); | |
949 | ||
5af923b0 MS |
950 | if (GDB_TARGET_IS_SPARC64) |
951 | { | |
952 | /* PC, NPC, CCR, FSR, FPRS, Y, ASI */ | |
953 | read_register_bytes (REGISTER_BYTE (PC_REGNUM), ®ister_temp[0], | |
954 | REGISTER_RAW_SIZE (PC_REGNUM) * 7); | |
955 | read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM), | |
956 | ®ister_temp[7 * SPARC_INTREG_SIZE], | |
957 | REGISTER_RAW_SIZE (PSTATE_REGNUM)); | |
958 | /* FIXME: not sure what needs to be saved here. */ | |
959 | } | |
960 | else | |
961 | { | |
962 | /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */ | |
963 | read_register_bytes (REGISTER_BYTE (Y_REGNUM), ®ister_temp[0], | |
964 | REGISTER_RAW_SIZE (Y_REGNUM) * 8); | |
965 | } | |
c906108c SS |
966 | |
967 | read_register_bytes (REGISTER_BYTE (O0_REGNUM), | |
968 | ®ister_temp[8 * SPARC_INTREG_SIZE], | |
969 | SPARC_INTREG_SIZE * 8); | |
970 | ||
971 | read_register_bytes (REGISTER_BYTE (G0_REGNUM), | |
972 | ®ister_temp[16 * SPARC_INTREG_SIZE], | |
973 | SPARC_INTREG_SIZE * 8); | |
974 | ||
5af923b0 | 975 | if (SPARC_HAS_FPU) |
60054393 MS |
976 | read_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
977 | ®ister_temp[24 * SPARC_INTREG_SIZE], | |
978 | FP_REGISTER_BYTES); | |
c906108c SS |
979 | |
980 | sp -= DUMMY_STACK_SIZE; | |
981 | ||
982 | write_sp (sp); | |
983 | ||
984 | write_memory (sp + DUMMY_REG_SAVE_OFFSET, ®ister_temp[0], | |
985 | DUMMY_STACK_REG_BUF_SIZE); | |
986 | ||
987 | if (strcmp (target_shortname, "sim") != 0) | |
988 | { | |
989 | write_fp (old_sp); | |
990 | ||
991 | /* Set return address register for the call dummy to the current PC. */ | |
c5aa993b | 992 | write_register (I7_REGNUM, read_pc () - 8); |
c906108c SS |
993 | } |
994 | else | |
995 | { | |
996 | /* The call dummy will write this value to FP before executing | |
997 | the 'save'. This ensures that register window flushes work | |
c5aa993b JM |
998 | correctly in the simulator. */ |
999 | write_register (G0_REGNUM + 1, read_register (FP_REGNUM)); | |
1000 | ||
c906108c SS |
1001 | /* The call dummy will write this value to FP after executing |
1002 | the 'save'. */ | |
c5aa993b JM |
1003 | write_register (G0_REGNUM + 2, old_sp); |
1004 | ||
c906108c | 1005 | /* The call dummy will write this value to the return address (%i7) after |
c5aa993b JM |
1006 | executing the 'save'. */ |
1007 | write_register (G0_REGNUM + 3, read_pc () - 8); | |
1008 | ||
c906108c | 1009 | /* Set the FP that the call dummy will be using after the 'save'. |
c5aa993b | 1010 | This makes backtraces from an inferior function call work properly. */ |
c906108c SS |
1011 | write_register (FP_REGNUM, old_sp); |
1012 | } | |
1013 | } | |
1014 | ||
1015 | /* sparc_frame_find_saved_regs (). This function is here only because | |
1016 | pop_frame uses it. Note there is an interesting corner case which | |
1017 | I think few ports of GDB get right--if you are popping a frame | |
1018 | which does not save some register that *is* saved by a more inner | |
1019 | frame (such a frame will never be a dummy frame because dummy | |
1020 | frames save all registers). Rewriting pop_frame to use | |
1021 | get_saved_register would solve this problem and also get rid of the | |
1022 | ugly duplication between sparc_frame_find_saved_regs and | |
1023 | get_saved_register. | |
1024 | ||
5af923b0 | 1025 | Stores, into an array of CORE_ADDR, |
c906108c SS |
1026 | the addresses of the saved registers of frame described by FRAME_INFO. |
1027 | This includes special registers such as pc and fp saved in special | |
1028 | ways in the stack frame. sp is even more special: | |
1029 | the address we return for it IS the sp for the next frame. | |
1030 | ||
1031 | Note that on register window machines, we are currently making the | |
1032 | assumption that window registers are being saved somewhere in the | |
1033 | frame in which they are being used. If they are stored in an | |
1034 | inferior frame, find_saved_register will break. | |
1035 | ||
1036 | On the Sun 4, the only time all registers are saved is when | |
1037 | a dummy frame is involved. Otherwise, the only saved registers | |
1038 | are the LOCAL and IN registers which are saved as a result | |
1039 | of the "save/restore" opcodes. This condition is determined | |
1040 | by address rather than by value. | |
1041 | ||
1042 | The "pc" is not stored in a frame on the SPARC. (What is stored | |
1043 | is a return address minus 8.) sparc_pop_frame knows how to | |
1044 | deal with that. Other routines might or might not. | |
1045 | ||
1046 | See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information | |
1047 | about how this works. */ | |
1048 | ||
5af923b0 | 1049 | static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *); |
c906108c SS |
1050 | |
1051 | static void | |
fba45db2 | 1052 | sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr) |
c906108c SS |
1053 | { |
1054 | register int regnum; | |
1055 | CORE_ADDR frame_addr = FRAME_FP (fi); | |
1056 | ||
1057 | if (!fi) | |
8e65ff28 AC |
1058 | internal_error (__FILE__, __LINE__, |
1059 | "Bad frame info struct in FRAME_FIND_SAVED_REGS"); | |
c906108c | 1060 | |
5af923b0 | 1061 | memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR)); |
c906108c | 1062 | |
5af923b0 MS |
1063 | if (fi->pc >= (fi->extra_info->bottom ? |
1064 | fi->extra_info->bottom : read_sp ()) | |
c5aa993b | 1065 | && fi->pc <= FRAME_FP (fi)) |
c906108c SS |
1066 | { |
1067 | /* Dummy frame. All but the window regs are in there somewhere. */ | |
c5aa993b | 1068 | for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++) |
5af923b0 | 1069 | saved_regs_addr[regnum] = |
c906108c | 1070 | frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1071 | - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE; |
5af923b0 | 1072 | |
c5aa993b | 1073 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1074 | saved_regs_addr[regnum] = |
c906108c | 1075 | frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
c5aa993b | 1076 | - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE; |
60054393 | 1077 | |
5af923b0 MS |
1078 | if (SPARC_HAS_FPU) |
1079 | for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++) | |
1080 | saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4 | |
1081 | - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE; | |
1082 | ||
1083 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1084 | { |
5af923b0 MS |
1085 | for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++) |
1086 | { | |
1087 | saved_regs_addr[regnum] = | |
1088 | frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE | |
1089 | - DUMMY_STACK_REG_BUF_SIZE; | |
1090 | } | |
1091 | saved_regs_addr[PSTATE_REGNUM] = | |
1092 | frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE; | |
c906108c | 1093 | } |
5af923b0 MS |
1094 | else |
1095 | for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++) | |
1096 | saved_regs_addr[regnum] = | |
1097 | frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE | |
1098 | - DUMMY_STACK_REG_BUF_SIZE; | |
1099 | ||
1100 | frame_addr = fi->extra_info->bottom ? | |
1101 | fi->extra_info->bottom : read_sp (); | |
c906108c | 1102 | } |
5af923b0 | 1103 | else if (fi->extra_info->flat) |
c906108c SS |
1104 | { |
1105 | CORE_ADDR func_start; | |
1106 | find_pc_partial_function (fi->pc, NULL, &func_start, NULL); | |
1107 | examine_prologue (func_start, 0, fi, saved_regs_addr); | |
1108 | ||
1109 | /* Flat register window frame. */ | |
5af923b0 MS |
1110 | saved_regs_addr[RP_REGNUM] = fi->extra_info->pc_addr; |
1111 | saved_regs_addr[I7_REGNUM] = fi->extra_info->fp_addr; | |
c906108c SS |
1112 | } |
1113 | else | |
1114 | { | |
1115 | /* Normal frame. Just Local and In registers */ | |
5af923b0 MS |
1116 | frame_addr = fi->extra_info->bottom ? |
1117 | fi->extra_info->bottom : read_sp (); | |
c5aa993b | 1118 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++) |
5af923b0 | 1119 | saved_regs_addr[regnum] = |
c906108c SS |
1120 | (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE |
1121 | + FRAME_SAVED_L0); | |
c5aa993b | 1122 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++) |
5af923b0 | 1123 | saved_regs_addr[regnum] = |
c906108c SS |
1124 | (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE |
1125 | + FRAME_SAVED_I0); | |
1126 | } | |
1127 | if (fi->next) | |
1128 | { | |
5af923b0 | 1129 | if (fi->extra_info->flat) |
c906108c | 1130 | { |
5af923b0 | 1131 | saved_regs_addr[O7_REGNUM] = fi->extra_info->pc_addr; |
c906108c SS |
1132 | } |
1133 | else | |
1134 | { | |
1135 | /* Pull off either the next frame pointer or the stack pointer */ | |
1136 | CORE_ADDR next_next_frame_addr = | |
5af923b0 MS |
1137 | (fi->next->extra_info->bottom ? |
1138 | fi->next->extra_info->bottom : read_sp ()); | |
c5aa993b | 1139 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++) |
5af923b0 | 1140 | saved_regs_addr[regnum] = |
c906108c SS |
1141 | (next_next_frame_addr |
1142 | + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE | |
1143 | + FRAME_SAVED_I0); | |
1144 | } | |
1145 | } | |
1146 | /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */ | |
1147 | /* FIXME -- should this adjust for the sparc64 offset? */ | |
5af923b0 | 1148 | saved_regs_addr[SP_REGNUM] = FRAME_FP (fi); |
c906108c SS |
1149 | } |
1150 | ||
1151 | /* Discard from the stack the innermost frame, restoring all saved registers. | |
1152 | ||
1153 | Note that the values stored in fsr by get_frame_saved_regs are *in | |
1154 | the context of the called frame*. What this means is that the i | |
1155 | regs of fsr must be restored into the o regs of the (calling) frame that | |
1156 | we pop into. We don't care about the output regs of the calling frame, | |
1157 | since unless it's a dummy frame, it won't have any output regs in it. | |
1158 | ||
1159 | We never have to bother with %l (local) regs, since the called routine's | |
1160 | locals get tossed, and the calling routine's locals are already saved | |
1161 | on its stack. */ | |
1162 | ||
1163 | /* Definitely see tm-sparc.h for more doc of the frame format here. */ | |
1164 | ||
1165 | void | |
fba45db2 | 1166 | sparc_pop_frame (void) |
c906108c SS |
1167 | { |
1168 | register struct frame_info *frame = get_current_frame (); | |
1169 | register CORE_ADDR pc; | |
5af923b0 MS |
1170 | CORE_ADDR *fsr; |
1171 | char *raw_buffer; | |
c906108c SS |
1172 | int regnum; |
1173 | ||
5af923b0 MS |
1174 | fsr = alloca (NUM_REGS * sizeof (CORE_ADDR)); |
1175 | raw_buffer = alloca (REGISTER_BYTES); | |
1176 | sparc_frame_find_saved_regs (frame, &fsr[0]); | |
1177 | if (SPARC_HAS_FPU) | |
c906108c | 1178 | { |
5af923b0 | 1179 | if (fsr[FP0_REGNUM]) |
60054393 | 1180 | { |
5af923b0 | 1181 | read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES); |
60054393 MS |
1182 | write_register_bytes (REGISTER_BYTE (FP0_REGNUM), |
1183 | raw_buffer, FP_REGISTER_BYTES); | |
1184 | } | |
5af923b0 | 1185 | if (!(GDB_TARGET_IS_SPARC64)) |
60054393 | 1186 | { |
5af923b0 MS |
1187 | if (fsr[FPS_REGNUM]) |
1188 | { | |
1189 | read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
1190 | write_register_gen (FPS_REGNUM, raw_buffer); | |
1191 | } | |
1192 | if (fsr[CPS_REGNUM]) | |
1193 | { | |
1194 | read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE); | |
1195 | write_register_gen (CPS_REGNUM, raw_buffer); | |
1196 | } | |
60054393 | 1197 | } |
60054393 | 1198 | } |
5af923b0 | 1199 | if (fsr[G1_REGNUM]) |
c906108c | 1200 | { |
5af923b0 | 1201 | read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE); |
c906108c SS |
1202 | write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer, |
1203 | 7 * SPARC_INTREG_SIZE); | |
1204 | } | |
1205 | ||
5af923b0 | 1206 | if (frame->extra_info->flat) |
c906108c SS |
1207 | { |
1208 | /* Each register might or might not have been saved, need to test | |
c5aa993b | 1209 | individually. */ |
c906108c | 1210 | for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum) |
5af923b0 MS |
1211 | if (fsr[regnum]) |
1212 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1213 | SPARC_INTREG_SIZE)); |
1214 | for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum) | |
5af923b0 MS |
1215 | if (fsr[regnum]) |
1216 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c SS |
1217 | SPARC_INTREG_SIZE)); |
1218 | ||
1219 | /* Handle all outs except stack pointer (o0-o5; o7). */ | |
1220 | for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum) | |
5af923b0 MS |
1221 | if (fsr[regnum]) |
1222 | write_register (regnum, read_memory_integer (fsr[regnum], | |
c906108c | 1223 | SPARC_INTREG_SIZE)); |
5af923b0 | 1224 | if (fsr[O0_REGNUM + 7]) |
c906108c | 1225 | write_register (O0_REGNUM + 7, |
5af923b0 | 1226 | read_memory_integer (fsr[O0_REGNUM + 7], |
c906108c SS |
1227 | SPARC_INTREG_SIZE)); |
1228 | ||
1229 | write_sp (frame->frame); | |
1230 | } | |
5af923b0 | 1231 | else if (fsr[I0_REGNUM]) |
c906108c SS |
1232 | { |
1233 | CORE_ADDR sp; | |
1234 | ||
5af923b0 MS |
1235 | char *reg_temp; |
1236 | ||
1237 | reg_temp = alloca (REGISTER_BYTES); | |
c906108c | 1238 | |
5af923b0 | 1239 | read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE); |
c906108c SS |
1240 | |
1241 | /* Get the ins and locals which we are about to restore. Just | |
c5aa993b JM |
1242 | moving the stack pointer is all that is really needed, except |
1243 | store_inferior_registers is then going to write the ins and | |
1244 | locals from the registers array, so we need to muck with the | |
1245 | registers array. */ | |
5af923b0 MS |
1246 | sp = fsr[SP_REGNUM]; |
1247 | ||
1248 | if (GDB_TARGET_IS_SPARC64 && (sp & 1)) | |
c906108c | 1249 | sp += 2047; |
5af923b0 | 1250 | |
c906108c SS |
1251 | read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16); |
1252 | ||
1253 | /* Restore the out registers. | |
c5aa993b | 1254 | Among other things this writes the new stack pointer. */ |
c906108c SS |
1255 | write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer, |
1256 | SPARC_INTREG_SIZE * 8); | |
1257 | ||
1258 | write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp, | |
1259 | SPARC_INTREG_SIZE * 16); | |
1260 | } | |
5af923b0 MS |
1261 | |
1262 | if (!(GDB_TARGET_IS_SPARC64)) | |
1263 | if (fsr[PS_REGNUM]) | |
1264 | write_register (PS_REGNUM, | |
1265 | read_memory_integer (fsr[PS_REGNUM], | |
1266 | REGISTER_RAW_SIZE (PS_REGNUM))); | |
1267 | ||
1268 | if (fsr[Y_REGNUM]) | |
1269 | write_register (Y_REGNUM, | |
1270 | read_memory_integer (fsr[Y_REGNUM], | |
1271 | REGISTER_RAW_SIZE (Y_REGNUM))); | |
1272 | if (fsr[PC_REGNUM]) | |
c906108c SS |
1273 | { |
1274 | /* Explicitly specified PC (and maybe NPC) -- just restore them. */ | |
5af923b0 MS |
1275 | write_register (PC_REGNUM, |
1276 | read_memory_integer (fsr[PC_REGNUM], | |
1277 | REGISTER_RAW_SIZE (PC_REGNUM))); | |
1278 | if (fsr[NPC_REGNUM]) | |
c906108c | 1279 | write_register (NPC_REGNUM, |
5af923b0 MS |
1280 | read_memory_integer (fsr[NPC_REGNUM], |
1281 | REGISTER_RAW_SIZE (NPC_REGNUM))); | |
c906108c | 1282 | } |
5af923b0 | 1283 | else if (frame->extra_info->flat) |
c906108c | 1284 | { |
5af923b0 | 1285 | if (frame->extra_info->pc_addr) |
c906108c | 1286 | pc = PC_ADJUST ((CORE_ADDR) |
5af923b0 | 1287 | read_memory_integer (frame->extra_info->pc_addr, |
c906108c SS |
1288 | REGISTER_RAW_SIZE (PC_REGNUM))); |
1289 | else | |
1290 | { | |
1291 | /* I think this happens only in the innermost frame, if so then | |
1292 | it is a complicated way of saying | |
1293 | "pc = read_register (O7_REGNUM);". */ | |
5af923b0 MS |
1294 | char *buf; |
1295 | ||
1296 | buf = alloca (MAX_REGISTER_RAW_SIZE); | |
c906108c SS |
1297 | get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0); |
1298 | pc = PC_ADJUST (extract_address | |
1299 | (buf, REGISTER_RAW_SIZE (O7_REGNUM))); | |
1300 | } | |
1301 | ||
c5aa993b | 1302 | write_register (PC_REGNUM, pc); |
c906108c SS |
1303 | write_register (NPC_REGNUM, pc + 4); |
1304 | } | |
5af923b0 | 1305 | else if (fsr[I7_REGNUM]) |
c906108c SS |
1306 | { |
1307 | /* Return address in %i7 -- adjust it, then restore PC and NPC from it */ | |
5af923b0 | 1308 | pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM], |
c906108c | 1309 | SPARC_INTREG_SIZE)); |
c5aa993b | 1310 | write_register (PC_REGNUM, pc); |
c906108c SS |
1311 | write_register (NPC_REGNUM, pc + 4); |
1312 | } | |
1313 | flush_cached_frames (); | |
1314 | } | |
1315 | ||
1316 | /* On the Sun 4 under SunOS, the compile will leave a fake insn which | |
1317 | encodes the structure size being returned. If we detect such | |
1318 | a fake insn, step past it. */ | |
1319 | ||
1320 | CORE_ADDR | |
fba45db2 | 1321 | sparc_pc_adjust (CORE_ADDR pc) |
c906108c SS |
1322 | { |
1323 | unsigned long insn; | |
1324 | char buf[4]; | |
1325 | int err; | |
1326 | ||
1327 | err = target_read_memory (pc + 8, buf, 4); | |
1328 | insn = extract_unsigned_integer (buf, 4); | |
1329 | if ((err == 0) && (insn & 0xffc00000) == 0) | |
c5aa993b | 1330 | return pc + 12; |
c906108c | 1331 | else |
c5aa993b | 1332 | return pc + 8; |
c906108c SS |
1333 | } |
1334 | ||
1335 | /* If pc is in a shared library trampoline, return its target. | |
1336 | The SunOs 4.x linker rewrites the jump table entries for PIC | |
1337 | compiled modules in the main executable to bypass the dynamic linker | |
1338 | with jumps of the form | |
c5aa993b JM |
1339 | sethi %hi(addr),%g1 |
1340 | jmp %g1+%lo(addr) | |
c906108c SS |
1341 | and removes the corresponding jump table relocation entry in the |
1342 | dynamic relocations. | |
1343 | find_solib_trampoline_target relies on the presence of the jump | |
1344 | table relocation entry, so we have to detect these jump instructions | |
1345 | by hand. */ | |
1346 | ||
1347 | CORE_ADDR | |
fba45db2 | 1348 | sunos4_skip_trampoline_code (CORE_ADDR pc) |
c906108c SS |
1349 | { |
1350 | unsigned long insn1; | |
1351 | char buf[4]; | |
1352 | int err; | |
1353 | ||
1354 | err = target_read_memory (pc, buf, 4); | |
1355 | insn1 = extract_unsigned_integer (buf, 4); | |
1356 | if (err == 0 && (insn1 & 0xffc00000) == 0x03000000) | |
1357 | { | |
1358 | unsigned long insn2; | |
1359 | ||
1360 | err = target_read_memory (pc + 4, buf, 4); | |
1361 | insn2 = extract_unsigned_integer (buf, 4); | |
1362 | if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000) | |
1363 | { | |
1364 | CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10; | |
1365 | int delta = insn2 & 0x1fff; | |
1366 | ||
1367 | /* Sign extend the displacement. */ | |
1368 | if (delta & 0x1000) | |
1369 | delta |= ~0x1fff; | |
1370 | return target_pc + delta; | |
1371 | } | |
1372 | } | |
1373 | return find_solib_trampoline_target (pc); | |
1374 | } | |
1375 | \f | |
c5aa993b | 1376 | #ifdef USE_PROC_FS /* Target dependent support for /proc */ |
9846de1b | 1377 | /* *INDENT-OFF* */ |
c906108c SS |
1378 | /* The /proc interface divides the target machine's register set up into |
1379 | two different sets, the general register set (gregset) and the floating | |
1380 | point register set (fpregset). For each set, there is an ioctl to get | |
1381 | the current register set and another ioctl to set the current values. | |
1382 | ||
1383 | The actual structure passed through the ioctl interface is, of course, | |
1384 | naturally machine dependent, and is different for each set of registers. | |
1385 | For the sparc for example, the general register set is typically defined | |
1386 | by: | |
1387 | ||
1388 | typedef int gregset_t[38]; | |
1389 | ||
1390 | #define R_G0 0 | |
1391 | ... | |
1392 | #define R_TBR 37 | |
1393 | ||
1394 | and the floating point set by: | |
1395 | ||
1396 | typedef struct prfpregset { | |
1397 | union { | |
1398 | u_long pr_regs[32]; | |
1399 | double pr_dregs[16]; | |
1400 | } pr_fr; | |
1401 | void * pr_filler; | |
1402 | u_long pr_fsr; | |
1403 | u_char pr_qcnt; | |
1404 | u_char pr_q_entrysize; | |
1405 | u_char pr_en; | |
1406 | u_long pr_q[64]; | |
1407 | } prfpregset_t; | |
1408 | ||
1409 | These routines provide the packing and unpacking of gregset_t and | |
1410 | fpregset_t formatted data. | |
1411 | ||
1412 | */ | |
9846de1b | 1413 | /* *INDENT-ON* */ |
c906108c SS |
1414 | |
1415 | /* Given a pointer to a general register set in /proc format (gregset_t *), | |
1416 | unpack the register contents and supply them as gdb's idea of the current | |
1417 | register values. */ | |
1418 | ||
1419 | void | |
fba45db2 | 1420 | supply_gregset (gdb_gregset_t *gregsetp) |
c906108c | 1421 | { |
5af923b0 MS |
1422 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1423 | int regi, offset = 0; | |
1424 | ||
1425 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1426 | then the gregset may contain 64-bit ints while supply_register | |
1427 | is expecting 32-bit ints. Compensate. */ | |
1428 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1429 | offset = 4; | |
c906108c SS |
1430 | |
1431 | /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */ | |
5af923b0 | 1432 | /* FIXME MVS: assumes the order of the first 32 elements... */ |
c5aa993b | 1433 | for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++) |
c906108c | 1434 | { |
5af923b0 | 1435 | supply_register (regi, ((char *) (regp + regi)) + offset); |
c906108c SS |
1436 | } |
1437 | ||
1438 | /* These require a bit more care. */ | |
5af923b0 MS |
1439 | supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset); |
1440 | supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset); | |
1441 | supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset); | |
1442 | ||
1443 | if (GDB_TARGET_IS_SPARC64) | |
1444 | { | |
1445 | #ifdef R_CCR | |
1446 | supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); | |
1447 | #else | |
1448 | supply_register (CCR_REGNUM, NULL); | |
1449 | #endif | |
1450 | #ifdef R_FPRS | |
1451 | supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); | |
1452 | #else | |
1453 | supply_register (FPRS_REGNUM, NULL); | |
1454 | #endif | |
1455 | #ifdef R_ASI | |
1456 | supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); | |
1457 | #else | |
1458 | supply_register (ASI_REGNUM, NULL); | |
1459 | #endif | |
1460 | } | |
1461 | else /* sparc32 */ | |
1462 | { | |
1463 | #ifdef R_PS | |
1464 | supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset); | |
1465 | #else | |
1466 | supply_register (PS_REGNUM, NULL); | |
1467 | #endif | |
1468 | ||
1469 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1470 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1471 | ||
1472 | #if !defined (R_WIM) && defined (R_ASI) | |
1473 | #define R_WIM R_ASI | |
1474 | #endif | |
1475 | ||
1476 | #if !defined (R_TBR) && defined (R_FPRS) | |
1477 | #define R_TBR R_FPRS | |
1478 | #endif | |
1479 | ||
1480 | #if defined (R_WIM) | |
1481 | supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); | |
1482 | #else | |
1483 | supply_register (WIM_REGNUM, NULL); | |
1484 | #endif | |
1485 | ||
1486 | #if defined (R_TBR) | |
1487 | supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); | |
1488 | #else | |
1489 | supply_register (TBR_REGNUM, NULL); | |
1490 | #endif | |
1491 | } | |
c906108c SS |
1492 | |
1493 | /* Fill inaccessible registers with zero. */ | |
5af923b0 MS |
1494 | if (GDB_TARGET_IS_SPARC64) |
1495 | { | |
1496 | /* | |
1497 | * don't know how to get value of any of the following: | |
1498 | */ | |
1499 | supply_register (VER_REGNUM, NULL); | |
1500 | supply_register (TICK_REGNUM, NULL); | |
1501 | supply_register (PIL_REGNUM, NULL); | |
1502 | supply_register (PSTATE_REGNUM, NULL); | |
1503 | supply_register (TSTATE_REGNUM, NULL); | |
1504 | supply_register (TBA_REGNUM, NULL); | |
1505 | supply_register (TL_REGNUM, NULL); | |
1506 | supply_register (TT_REGNUM, NULL); | |
1507 | supply_register (TPC_REGNUM, NULL); | |
1508 | supply_register (TNPC_REGNUM, NULL); | |
1509 | supply_register (WSTATE_REGNUM, NULL); | |
1510 | supply_register (CWP_REGNUM, NULL); | |
1511 | supply_register (CANSAVE_REGNUM, NULL); | |
1512 | supply_register (CANRESTORE_REGNUM, NULL); | |
1513 | supply_register (CLEANWIN_REGNUM, NULL); | |
1514 | supply_register (OTHERWIN_REGNUM, NULL); | |
1515 | supply_register (ASR16_REGNUM, NULL); | |
1516 | supply_register (ASR17_REGNUM, NULL); | |
1517 | supply_register (ASR18_REGNUM, NULL); | |
1518 | supply_register (ASR19_REGNUM, NULL); | |
1519 | supply_register (ASR20_REGNUM, NULL); | |
1520 | supply_register (ASR21_REGNUM, NULL); | |
1521 | supply_register (ASR22_REGNUM, NULL); | |
1522 | supply_register (ASR23_REGNUM, NULL); | |
1523 | supply_register (ASR24_REGNUM, NULL); | |
1524 | supply_register (ASR25_REGNUM, NULL); | |
1525 | supply_register (ASR26_REGNUM, NULL); | |
1526 | supply_register (ASR27_REGNUM, NULL); | |
1527 | supply_register (ASR28_REGNUM, NULL); | |
1528 | supply_register (ASR29_REGNUM, NULL); | |
1529 | supply_register (ASR30_REGNUM, NULL); | |
1530 | supply_register (ASR31_REGNUM, NULL); | |
1531 | supply_register (ICC_REGNUM, NULL); | |
1532 | supply_register (XCC_REGNUM, NULL); | |
1533 | } | |
1534 | else | |
1535 | { | |
1536 | supply_register (CPS_REGNUM, NULL); | |
1537 | } | |
c906108c SS |
1538 | } |
1539 | ||
1540 | void | |
fba45db2 | 1541 | fill_gregset (gdb_gregset_t *gregsetp, int regno) |
c906108c | 1542 | { |
5af923b0 MS |
1543 | prgreg_t *regp = (prgreg_t *) gregsetp; |
1544 | int regi, offset = 0; | |
1545 | ||
1546 | /* If the host is 64-bit sparc, but the target is 32-bit sparc, | |
1547 | then the gregset may contain 64-bit ints while supply_register | |
1548 | is expecting 32-bit ints. Compensate. */ | |
1549 | if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4) | |
1550 | offset = 4; | |
c906108c | 1551 | |
c5aa993b | 1552 | for (regi = 0; regi <= R_I7; regi++) |
5af923b0 MS |
1553 | if ((regno == -1) || (regno == regi)) |
1554 | read_register_gen (regi, (char *) (regp + regi) + offset); | |
1555 | ||
c906108c | 1556 | if ((regno == -1) || (regno == PC_REGNUM)) |
5af923b0 MS |
1557 | read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset); |
1558 | ||
c906108c | 1559 | if ((regno == -1) || (regno == NPC_REGNUM)) |
5af923b0 MS |
1560 | read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset); |
1561 | ||
1562 | if ((regno == -1) || (regno == Y_REGNUM)) | |
1563 | read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset); | |
1564 | ||
1565 | if (GDB_TARGET_IS_SPARC64) | |
c906108c | 1566 | { |
5af923b0 MS |
1567 | #ifdef R_CCR |
1568 | if (regno == -1 || regno == CCR_REGNUM) | |
1569 | read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset); | |
1570 | #endif | |
1571 | #ifdef R_FPRS | |
1572 | if (regno == -1 || regno == FPRS_REGNUM) | |
1573 | read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset); | |
1574 | #endif | |
1575 | #ifdef R_ASI | |
1576 | if (regno == -1 || regno == ASI_REGNUM) | |
1577 | read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset); | |
1578 | #endif | |
c906108c | 1579 | } |
5af923b0 | 1580 | else /* sparc32 */ |
c906108c | 1581 | { |
5af923b0 MS |
1582 | #ifdef R_PS |
1583 | if (regno == -1 || regno == PS_REGNUM) | |
1584 | read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset); | |
1585 | #endif | |
1586 | ||
1587 | /* For 64-bit hosts, R_WIM and R_TBR may not be defined. | |
1588 | Steal R_ASI and R_FPRS, and hope for the best! */ | |
1589 | ||
1590 | #if !defined (R_WIM) && defined (R_ASI) | |
1591 | #define R_WIM R_ASI | |
1592 | #endif | |
1593 | ||
1594 | #if !defined (R_TBR) && defined (R_FPRS) | |
1595 | #define R_TBR R_FPRS | |
1596 | #endif | |
1597 | ||
1598 | #if defined (R_WIM) | |
1599 | if (regno == -1 || regno == WIM_REGNUM) | |
1600 | read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset); | |
1601 | #else | |
1602 | if (regno == -1 || regno == WIM_REGNUM) | |
1603 | read_register_gen (WIM_REGNUM, NULL); | |
1604 | #endif | |
1605 | ||
1606 | #if defined (R_TBR) | |
1607 | if (regno == -1 || regno == TBR_REGNUM) | |
1608 | read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset); | |
1609 | #else | |
1610 | if (regno == -1 || regno == TBR_REGNUM) | |
1611 | read_register_gen (TBR_REGNUM, NULL); | |
1612 | #endif | |
c906108c SS |
1613 | } |
1614 | } | |
1615 | ||
c906108c | 1616 | /* Given a pointer to a floating point register set in /proc format |
c5aa993b JM |
1617 | (fpregset_t *), unpack the register contents and supply them as gdb's |
1618 | idea of the current floating point register values. */ | |
c906108c | 1619 | |
c5aa993b | 1620 | void |
fba45db2 | 1621 | supply_fpregset (gdb_fpregset_t *fpregsetp) |
c906108c SS |
1622 | { |
1623 | register int regi; | |
1624 | char *from; | |
c5aa993b | 1625 | |
5af923b0 | 1626 | if (!SPARC_HAS_FPU) |
60054393 MS |
1627 | return; |
1628 | ||
c5aa993b | 1629 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c | 1630 | { |
c5aa993b | 1631 | from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1632 | supply_register (regi, from); |
1633 | } | |
5af923b0 MS |
1634 | |
1635 | if (GDB_TARGET_IS_SPARC64) | |
1636 | { | |
1637 | /* | |
1638 | * don't know how to get value of the following. | |
1639 | */ | |
1640 | supply_register (FSR_REGNUM, NULL); /* zero it out for now */ | |
1641 | supply_register (FCC0_REGNUM, NULL); | |
1642 | supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */ | |
1643 | supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */ | |
1644 | supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */ | |
1645 | } | |
1646 | else | |
1647 | { | |
1648 | supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr)); | |
1649 | } | |
c906108c SS |
1650 | } |
1651 | ||
1652 | /* Given a pointer to a floating point register set in /proc format | |
c5aa993b JM |
1653 | (fpregset_t *), update the register specified by REGNO from gdb's idea |
1654 | of the current floating point register set. If REGNO is -1, update | |
1655 | them all. */ | |
5af923b0 | 1656 | /* This will probably need some changes for sparc64. */ |
c906108c SS |
1657 | |
1658 | void | |
fba45db2 | 1659 | fill_fpregset (gdb_fpregset_t *fpregsetp, int regno) |
c906108c SS |
1660 | { |
1661 | int regi; | |
1662 | char *to; | |
1663 | char *from; | |
1664 | ||
5af923b0 | 1665 | if (!SPARC_HAS_FPU) |
60054393 MS |
1666 | return; |
1667 | ||
c5aa993b | 1668 | for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++) |
c906108c SS |
1669 | { |
1670 | if ((regno == -1) || (regno == regi)) | |
1671 | { | |
1672 | from = (char *) ®isters[REGISTER_BYTE (regi)]; | |
c5aa993b | 1673 | to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM]; |
c906108c SS |
1674 | memcpy (to, from, REGISTER_RAW_SIZE (regi)); |
1675 | } | |
1676 | } | |
5af923b0 MS |
1677 | |
1678 | if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */ | |
1679 | if ((regno == -1) || (regno == FPS_REGNUM)) | |
1680 | { | |
1681 | from = (char *)®isters[REGISTER_BYTE (FPS_REGNUM)]; | |
1682 | to = (char *) &fpregsetp->pr_fsr; | |
1683 | memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM)); | |
1684 | } | |
c906108c SS |
1685 | } |
1686 | ||
c5aa993b | 1687 | #endif /* USE_PROC_FS */ |
c906108c SS |
1688 | |
1689 | ||
1690 | #ifdef GET_LONGJMP_TARGET | |
1691 | ||
1692 | /* Figure out where the longjmp will land. We expect that we have just entered | |
1693 | longjmp and haven't yet setup the stack frame, so the args are still in the | |
1694 | output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we | |
1695 | extract the pc (JB_PC) that we will land at. The pc is copied into ADDR. | |
1696 | This routine returns true on success */ | |
1697 | ||
1698 | int | |
fba45db2 | 1699 | get_longjmp_target (CORE_ADDR *pc) |
c906108c SS |
1700 | { |
1701 | CORE_ADDR jb_addr; | |
1702 | #define LONGJMP_TARGET_SIZE 4 | |
1703 | char buf[LONGJMP_TARGET_SIZE]; | |
1704 | ||
1705 | jb_addr = read_register (O0_REGNUM); | |
1706 | ||
1707 | if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf, | |
1708 | LONGJMP_TARGET_SIZE)) | |
1709 | return 0; | |
1710 | ||
1711 | *pc = extract_address (buf, LONGJMP_TARGET_SIZE); | |
1712 | ||
1713 | return 1; | |
1714 | } | |
1715 | #endif /* GET_LONGJMP_TARGET */ | |
1716 | \f | |
1717 | #ifdef STATIC_TRANSFORM_NAME | |
1718 | /* SunPRO (3.0 at least), encodes the static variables. This is not | |
1719 | related to C++ mangling, it is done for C too. */ | |
1720 | ||
1721 | char * | |
fba45db2 | 1722 | sunpro_static_transform_name (char *name) |
c906108c SS |
1723 | { |
1724 | char *p; | |
1725 | if (name[0] == '$') | |
1726 | { | |
1727 | /* For file-local statics there will be a dollar sign, a bunch | |
c5aa993b JM |
1728 | of junk (the contents of which match a string given in the |
1729 | N_OPT), a period and the name. For function-local statics | |
1730 | there will be a bunch of junk (which seems to change the | |
1731 | second character from 'A' to 'B'), a period, the name of the | |
1732 | function, and the name. So just skip everything before the | |
1733 | last period. */ | |
c906108c SS |
1734 | p = strrchr (name, '.'); |
1735 | if (p != NULL) | |
1736 | name = p + 1; | |
1737 | } | |
1738 | return name; | |
1739 | } | |
1740 | #endif /* STATIC_TRANSFORM_NAME */ | |
1741 | \f | |
1742 | ||
1743 | /* Utilities for printing registers. | |
1744 | Page numbers refer to the SPARC Architecture Manual. */ | |
1745 | ||
5af923b0 | 1746 | static void dump_ccreg (char *, int); |
c906108c SS |
1747 | |
1748 | static void | |
fba45db2 | 1749 | dump_ccreg (char *reg, int val) |
c906108c SS |
1750 | { |
1751 | /* page 41 */ | |
1752 | printf_unfiltered ("%s:%s,%s,%s,%s", reg, | |
c5aa993b JM |
1753 | val & 8 ? "N" : "NN", |
1754 | val & 4 ? "Z" : "NZ", | |
1755 | val & 2 ? "O" : "NO", | |
5af923b0 | 1756 | val & 1 ? "C" : "NC"); |
c906108c SS |
1757 | } |
1758 | ||
1759 | static char * | |
fba45db2 | 1760 | decode_asi (int val) |
c906108c SS |
1761 | { |
1762 | /* page 72 */ | |
1763 | switch (val) | |
1764 | { | |
c5aa993b JM |
1765 | case 4: |
1766 | return "ASI_NUCLEUS"; | |
1767 | case 0x0c: | |
1768 | return "ASI_NUCLEUS_LITTLE"; | |
1769 | case 0x10: | |
1770 | return "ASI_AS_IF_USER_PRIMARY"; | |
1771 | case 0x11: | |
1772 | return "ASI_AS_IF_USER_SECONDARY"; | |
1773 | case 0x18: | |
1774 | return "ASI_AS_IF_USER_PRIMARY_LITTLE"; | |
1775 | case 0x19: | |
1776 | return "ASI_AS_IF_USER_SECONDARY_LITTLE"; | |
1777 | case 0x80: | |
1778 | return "ASI_PRIMARY"; | |
1779 | case 0x81: | |
1780 | return "ASI_SECONDARY"; | |
1781 | case 0x82: | |
1782 | return "ASI_PRIMARY_NOFAULT"; | |
1783 | case 0x83: | |
1784 | return "ASI_SECONDARY_NOFAULT"; | |
1785 | case 0x88: | |
1786 | return "ASI_PRIMARY_LITTLE"; | |
1787 | case 0x89: | |
1788 | return "ASI_SECONDARY_LITTLE"; | |
1789 | case 0x8a: | |
1790 | return "ASI_PRIMARY_NOFAULT_LITTLE"; | |
1791 | case 0x8b: | |
1792 | return "ASI_SECONDARY_NOFAULT_LITTLE"; | |
1793 | default: | |
1794 | return NULL; | |
c906108c SS |
1795 | } |
1796 | } | |
1797 | ||
1798 | /* PRINT_REGISTER_HOOK routine. | |
1799 | Pretty print various registers. */ | |
1800 | /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */ | |
1801 | ||
1802 | void | |
fba45db2 | 1803 | sparc_print_register_hook (int regno) |
c906108c SS |
1804 | { |
1805 | ULONGEST val; | |
1806 | ||
1807 | /* Handle double/quad versions of lower 32 fp regs. */ | |
1808 | if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32 | |
1809 | && (regno & 1) == 0) | |
1810 | { | |
1811 | char value[16]; | |
1812 | ||
1813 | if (!read_relative_register_raw_bytes (regno, value) | |
1814 | && !read_relative_register_raw_bytes (regno + 1, value + 4)) | |
1815 | { | |
1816 | printf_unfiltered ("\t"); | |
1817 | print_floating (value, builtin_type_double, gdb_stdout); | |
1818 | } | |
c5aa993b | 1819 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1820 | if ((regno & 3) == 0) |
1821 | { | |
1822 | if (!read_relative_register_raw_bytes (regno + 2, value + 8) | |
1823 | && !read_relative_register_raw_bytes (regno + 3, value + 12)) | |
1824 | { | |
1825 | printf_unfiltered ("\t"); | |
1826 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1827 | } | |
1828 | } | |
1829 | #endif | |
1830 | return; | |
1831 | } | |
1832 | ||
c5aa993b | 1833 | #if 0 /* FIXME: gdb doesn't handle long doubles */ |
c906108c SS |
1834 | /* Print upper fp regs as long double if appropriate. */ |
1835 | if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM | |
c5aa993b JM |
1836 | /* We test for even numbered regs and not a multiple of 4 because |
1837 | the upper fp regs are recorded as doubles. */ | |
c906108c SS |
1838 | && (regno & 1) == 0) |
1839 | { | |
1840 | char value[16]; | |
1841 | ||
1842 | if (!read_relative_register_raw_bytes (regno, value) | |
1843 | && !read_relative_register_raw_bytes (regno + 1, value + 8)) | |
1844 | { | |
1845 | printf_unfiltered ("\t"); | |
1846 | print_floating (value, builtin_type_long_double, gdb_stdout); | |
1847 | } | |
1848 | return; | |
1849 | } | |
1850 | #endif | |
1851 | ||
1852 | /* FIXME: Some of these are priviledged registers. | |
1853 | Not sure how they should be handled. */ | |
1854 | ||
1855 | #define BITS(n, mask) ((int) (((val) >> (n)) & (mask))) | |
1856 | ||
1857 | val = read_register (regno); | |
1858 | ||
1859 | /* pages 40 - 60 */ | |
5af923b0 MS |
1860 | if (GDB_TARGET_IS_SPARC64) |
1861 | switch (regno) | |
c906108c | 1862 | { |
5af923b0 MS |
1863 | case CCR_REGNUM: |
1864 | printf_unfiltered ("\t"); | |
1865 | dump_ccreg ("xcc", val >> 4); | |
1866 | printf_unfiltered (", "); | |
1867 | dump_ccreg ("icc", val & 15); | |
c906108c | 1868 | break; |
5af923b0 MS |
1869 | case FPRS_REGNUM: |
1870 | printf ("\tfef:%d, du:%d, dl:%d", | |
1871 | BITS (2, 1), BITS (1, 1), BITS (0, 1)); | |
c906108c | 1872 | break; |
5af923b0 MS |
1873 | case FSR_REGNUM: |
1874 | { | |
1875 | static char *fcc[4] = | |
1876 | {"=", "<", ">", "?"}; | |
1877 | static char *rd[4] = | |
1878 | {"N", "0", "+", "-"}; | |
1879 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
1880 | printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ", | |
1881 | fcc[BITS (10, 3)], fcc[BITS (32, 3)], | |
1882 | fcc[BITS (34, 3)], fcc[BITS (36, 3)], | |
1883 | rd[BITS (30, 3)], BITS (23, 31)); | |
1884 | printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d", | |
1885 | BITS (22, 1), BITS (17, 7), BITS (14, 7), | |
1886 | BITS (13, 1), BITS (5, 31), BITS (0, 31)); | |
1887 | break; | |
1888 | } | |
1889 | case ASI_REGNUM: | |
1890 | { | |
1891 | char *asi = decode_asi (val); | |
1892 | if (asi != NULL) | |
1893 | printf ("\t%s", asi); | |
1894 | break; | |
1895 | } | |
1896 | case VER_REGNUM: | |
1897 | printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d", | |
1898 | BITS (48, 0xffff), BITS (32, 0xffff), | |
1899 | BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31)); | |
1900 | break; | |
1901 | case PSTATE_REGNUM: | |
1902 | { | |
1903 | static char *mm[4] = | |
1904 | {"tso", "pso", "rso", "?"}; | |
1905 | printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ", | |
1906 | BITS (9, 1), BITS (8, 1), | |
1907 | mm[BITS (6, 3)], BITS (5, 1)); | |
1908 | printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d", | |
1909 | BITS (4, 1), BITS (3, 1), BITS (2, 1), | |
1910 | BITS (1, 1), BITS (0, 1)); | |
1911 | break; | |
1912 | } | |
1913 | case TSTATE_REGNUM: | |
1914 | /* FIXME: print all 4? */ | |
1915 | break; | |
1916 | case TT_REGNUM: | |
1917 | /* FIXME: print all 4? */ | |
1918 | break; | |
1919 | case TPC_REGNUM: | |
1920 | /* FIXME: print all 4? */ | |
1921 | break; | |
1922 | case TNPC_REGNUM: | |
1923 | /* FIXME: print all 4? */ | |
1924 | break; | |
1925 | case WSTATE_REGNUM: | |
1926 | printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7)); | |
1927 | break; | |
1928 | case CWP_REGNUM: | |
1929 | printf ("\t%d", BITS (0, 31)); | |
1930 | break; | |
1931 | case CANSAVE_REGNUM: | |
1932 | printf ("\t%-2d before spill", BITS (0, 31)); | |
1933 | break; | |
1934 | case CANRESTORE_REGNUM: | |
1935 | printf ("\t%-2d before fill", BITS (0, 31)); | |
1936 | break; | |
1937 | case CLEANWIN_REGNUM: | |
1938 | printf ("\t%-2d before clean", BITS (0, 31)); | |
1939 | break; | |
1940 | case OTHERWIN_REGNUM: | |
1941 | printf ("\t%d", BITS (0, 31)); | |
c906108c SS |
1942 | break; |
1943 | } | |
5af923b0 MS |
1944 | else /* Sparc32 */ |
1945 | switch (regno) | |
c906108c | 1946 | { |
5af923b0 MS |
1947 | case PS_REGNUM: |
1948 | printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d", | |
1949 | BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-', | |
1950 | BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-', | |
1951 | BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1), | |
c906108c SS |
1952 | BITS (0, 31)); |
1953 | break; | |
5af923b0 MS |
1954 | case FPS_REGNUM: |
1955 | { | |
1956 | static char *fcc[4] = | |
1957 | {"=", "<", ">", "?"}; | |
1958 | static char *rd[4] = | |
1959 | {"N", "0", "+", "-"}; | |
1960 | /* Long, but I'd rather leave it as is and use a wide screen. */ | |
1961 | printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, " | |
1962 | "fcc:%s, aexc:%d, cexc:%d", | |
1963 | rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7), | |
1964 | BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31), | |
1965 | BITS (0, 31)); | |
1966 | break; | |
1967 | } | |
c906108c SS |
1968 | } |
1969 | ||
c906108c SS |
1970 | #undef BITS |
1971 | } | |
1972 | \f | |
1973 | int | |
fba45db2 | 1974 | gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info) |
c906108c SS |
1975 | { |
1976 | /* It's necessary to override mach again because print_insn messes it up. */ | |
96baa820 | 1977 | info->mach = TARGET_ARCHITECTURE->mach; |
c906108c SS |
1978 | return print_insn_sparc (memaddr, info); |
1979 | } | |
1980 | \f | |
1981 | /* The SPARC passes the arguments on the stack; arguments smaller | |
5af923b0 MS |
1982 | than an int are promoted to an int. The first 6 words worth of |
1983 | args are also passed in registers o0 - o5. */ | |
c906108c SS |
1984 | |
1985 | CORE_ADDR | |
ea7c478f | 1986 | sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 1987 | int struct_return, CORE_ADDR struct_addr) |
c906108c | 1988 | { |
5af923b0 | 1989 | int i, j, oregnum; |
c906108c SS |
1990 | int accumulate_size = 0; |
1991 | struct sparc_arg | |
1992 | { | |
1993 | char *contents; | |
1994 | int len; | |
1995 | int offset; | |
1996 | }; | |
1997 | struct sparc_arg *sparc_args = | |
5af923b0 | 1998 | (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg)); |
c906108c SS |
1999 | struct sparc_arg *m_arg; |
2000 | ||
2001 | /* Promote arguments if necessary, and calculate their stack offsets | |
2002 | and sizes. */ | |
2003 | for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++) | |
2004 | { | |
ea7c478f | 2005 | struct value *arg = args[i]; |
c906108c SS |
2006 | struct type *arg_type = check_typedef (VALUE_TYPE (arg)); |
2007 | /* Cast argument to long if necessary as the compiler does it too. */ | |
2008 | switch (TYPE_CODE (arg_type)) | |
2009 | { | |
2010 | case TYPE_CODE_INT: | |
2011 | case TYPE_CODE_BOOL: | |
2012 | case TYPE_CODE_CHAR: | |
2013 | case TYPE_CODE_RANGE: | |
2014 | case TYPE_CODE_ENUM: | |
2015 | if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) | |
2016 | { | |
2017 | arg_type = builtin_type_long; | |
2018 | arg = value_cast (arg_type, arg); | |
2019 | } | |
2020 | break; | |
2021 | default: | |
2022 | break; | |
2023 | } | |
2024 | m_arg->len = TYPE_LENGTH (arg_type); | |
2025 | m_arg->offset = accumulate_size; | |
2026 | accumulate_size = (accumulate_size + m_arg->len + 3) & ~3; | |
c5aa993b | 2027 | m_arg->contents = VALUE_CONTENTS (arg); |
c906108c SS |
2028 | } |
2029 | ||
2030 | /* Make room for the arguments on the stack. */ | |
2031 | accumulate_size += CALL_DUMMY_STACK_ADJUST; | |
2032 | sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST; | |
2033 | ||
2034 | /* `Push' arguments on the stack. */ | |
5af923b0 MS |
2035 | for (i = 0, oregnum = 0, m_arg = sparc_args; |
2036 | i < nargs; | |
2037 | i++, m_arg++) | |
2038 | { | |
2039 | write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len); | |
2040 | for (j = 0; | |
2041 | j < m_arg->len && oregnum < 6; | |
2042 | j += SPARC_INTREG_SIZE, oregnum++) | |
2043 | write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j); | |
2044 | } | |
c906108c SS |
2045 | |
2046 | return sp; | |
2047 | } | |
2048 | ||
2049 | ||
2050 | /* Extract from an array REGBUF containing the (raw) register state | |
2051 | a function return value of type TYPE, and copy that, in virtual format, | |
2052 | into VALBUF. */ | |
2053 | ||
2054 | void | |
fba45db2 | 2055 | sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf) |
c906108c SS |
2056 | { |
2057 | int typelen = TYPE_LENGTH (type); | |
2058 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2059 | ||
2060 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c5aa993b | 2061 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2062 | else |
2063 | memcpy (valbuf, | |
c5aa993b JM |
2064 | ®buf[O0_REGNUM * regsize + |
2065 | (typelen >= regsize | |
778eb05e | 2066 | || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0 |
c5aa993b | 2067 | : regsize - typelen)], |
c906108c SS |
2068 | typelen); |
2069 | } | |
2070 | ||
2071 | ||
2072 | /* Write into appropriate registers a function return value | |
2073 | of type TYPE, given in virtual format. On SPARCs with FPUs, | |
2074 | float values are returned in %f0 (and %f1). In all other cases, | |
2075 | values are returned in register %o0. */ | |
2076 | ||
2077 | void | |
fba45db2 | 2078 | sparc_store_return_value (struct type *type, char *valbuf) |
c906108c SS |
2079 | { |
2080 | int regno; | |
5af923b0 MS |
2081 | char *buffer; |
2082 | ||
902d0061 | 2083 | buffer = alloca (MAX_REGISTER_RAW_SIZE); |
c906108c SS |
2084 | |
2085 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2086 | /* Floating-point values are returned in the register pair */ | |
2087 | /* formed by %f0 and %f1 (doubles are, anyway). */ | |
2088 | regno = FP0_REGNUM; | |
2089 | else | |
2090 | /* Other values are returned in register %o0. */ | |
2091 | regno = O0_REGNUM; | |
2092 | ||
2093 | /* Add leading zeros to the value. */ | |
c5aa993b | 2094 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno)) |
c906108c | 2095 | { |
5af923b0 | 2096 | memset (buffer, 0, REGISTER_RAW_SIZE (regno)); |
c5aa993b | 2097 | memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf, |
c906108c | 2098 | TYPE_LENGTH (type)); |
5af923b0 | 2099 | write_register_gen (regno, buffer); |
c906108c SS |
2100 | } |
2101 | else | |
2102 | write_register_bytes (REGISTER_BYTE (regno), valbuf, TYPE_LENGTH (type)); | |
2103 | } | |
2104 | ||
5af923b0 MS |
2105 | extern void |
2106 | sparclet_store_return_value (struct type *type, char *valbuf) | |
2107 | { | |
2108 | /* Other values are returned in register %o0. */ | |
2109 | write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf, | |
2110 | TYPE_LENGTH (type)); | |
2111 | } | |
2112 | ||
2113 | ||
2114 | #ifndef CALL_DUMMY_CALL_OFFSET | |
2115 | #define CALL_DUMMY_CALL_OFFSET \ | |
2116 | (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset) | |
2117 | #endif /* CALL_DUMMY_CALL_OFFSET */ | |
c906108c SS |
2118 | |
2119 | /* Insert the function address into a call dummy instruction sequence | |
2120 | stored at DUMMY. | |
2121 | ||
2122 | For structs and unions, if the function was compiled with Sun cc, | |
2123 | it expects 'unimp' after the call. But gcc doesn't use that | |
2124 | (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY | |
2125 | can assume it is operating on a pristine CALL_DUMMY, not one that | |
2126 | has already been customized for a different function). */ | |
2127 | ||
2128 | void | |
fba45db2 KB |
2129 | sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, |
2130 | struct type *value_type, int using_gcc) | |
c906108c SS |
2131 | { |
2132 | int i; | |
2133 | ||
2134 | /* Store the relative adddress of the target function into the | |
2135 | 'call' instruction. */ | |
2136 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4, | |
2137 | (0x40000000 | |
2138 | | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2) | |
c5aa993b | 2139 | & 0x3fffffff))); |
c906108c | 2140 | |
9e36d949 PS |
2141 | /* If the called function returns an aggregate value, fill in the UNIMP |
2142 | instruction containing the size of the returned aggregate return value, | |
2143 | which follows the call instruction. | |
2144 | For details see the SPARC Architecture Manual Version 8, Appendix D.3. | |
2145 | ||
2146 | Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint | |
2147 | to the proper address in the call dummy, so that `finish' after a stop | |
2148 | in a call dummy works. | |
2149 | Tweeking current_gdbarch is not an optimal solution, but the call to | |
2150 | sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy, | |
2151 | which is the only function where dummy_breakpoint_offset is actually | |
2152 | used, if it is non-zero. */ | |
2153 | if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT | |
2154 | || TYPE_CODE (value_type) == TYPE_CODE_UNION) | |
2155 | { | |
2156 | store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4, | |
2157 | TYPE_LENGTH (value_type) & 0x1fff); | |
2158 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30); | |
2159 | } | |
2160 | else | |
2161 | set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c); | |
c906108c | 2162 | |
5af923b0 | 2163 | if (!(GDB_TARGET_IS_SPARC64)) |
c906108c | 2164 | { |
5af923b0 MS |
2165 | /* If this is not a simulator target, change the first four |
2166 | instructions of the call dummy to NOPs. Those instructions | |
2167 | include a 'save' instruction and are designed to work around | |
2168 | problems with register window flushing in the simulator. */ | |
2169 | ||
2170 | if (strcmp (target_shortname, "sim") != 0) | |
2171 | { | |
2172 | for (i = 0; i < 4; i++) | |
2173 | store_unsigned_integer (dummy + (i * 4), 4, 0x01000000); | |
2174 | } | |
c906108c | 2175 | } |
c906108c SS |
2176 | |
2177 | /* If this is a bi-endian target, GDB has written the call dummy | |
2178 | in little-endian order. We must byte-swap it back to big-endian. */ | |
2179 | if (bi_endian) | |
2180 | { | |
2181 | for (i = 0; i < CALL_DUMMY_LENGTH; i += 4) | |
2182 | { | |
c5aa993b JM |
2183 | char tmp = dummy[i]; |
2184 | dummy[i] = dummy[i + 3]; | |
2185 | dummy[i + 3] = tmp; | |
2186 | tmp = dummy[i + 1]; | |
2187 | dummy[i + 1] = dummy[i + 2]; | |
2188 | dummy[i + 2] = tmp; | |
c906108c SS |
2189 | } |
2190 | } | |
2191 | } | |
2192 | ||
2193 | ||
2194 | /* Set target byte order based on machine type. */ | |
2195 | ||
2196 | static int | |
fba45db2 | 2197 | sparc_target_architecture_hook (const bfd_arch_info_type *ap) |
c906108c SS |
2198 | { |
2199 | int i, j; | |
2200 | ||
2201 | if (ap->mach == bfd_mach_sparc_sparclite_le) | |
2202 | { | |
2203 | if (TARGET_BYTE_ORDER_SELECTABLE_P) | |
2204 | { | |
778eb05e | 2205 | target_byte_order = BFD_ENDIAN_LITTLE; |
c906108c SS |
2206 | bi_endian = 1; |
2207 | } | |
2208 | else | |
2209 | { | |
2210 | warning ("This GDB does not support little endian sparclite."); | |
2211 | } | |
2212 | } | |
2213 | else | |
2214 | bi_endian = 0; | |
2215 | return 1; | |
2216 | } | |
c906108c | 2217 | \f |
c5aa993b | 2218 | |
5af923b0 MS |
2219 | /* |
2220 | * Module "constructor" function. | |
2221 | */ | |
2222 | ||
2223 | static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info, | |
2224 | struct gdbarch_list *arches); | |
2225 | ||
c906108c | 2226 | void |
fba45db2 | 2227 | _initialize_sparc_tdep (void) |
c906108c | 2228 | { |
5af923b0 MS |
2229 | /* Hook us into the gdbarch mechanism. */ |
2230 | register_gdbarch_init (bfd_arch_sparc, sparc_gdbarch_init); | |
2231 | ||
c906108c | 2232 | tm_print_insn = gdb_print_insn_sparc; |
c5aa993b | 2233 | tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */ |
c906108c SS |
2234 | target_architecture_hook = sparc_target_architecture_hook; |
2235 | } | |
2236 | ||
5af923b0 MS |
2237 | /* Compensate for stack bias. Note that we currently don't handle |
2238 | mixed 32/64 bit code. */ | |
c906108c | 2239 | |
c906108c | 2240 | CORE_ADDR |
5af923b0 | 2241 | sparc64_read_sp (void) |
c906108c SS |
2242 | { |
2243 | CORE_ADDR sp = read_register (SP_REGNUM); | |
2244 | ||
2245 | if (sp & 1) | |
2246 | sp += 2047; | |
2247 | return sp; | |
2248 | } | |
2249 | ||
2250 | CORE_ADDR | |
5af923b0 | 2251 | sparc64_read_fp (void) |
c906108c SS |
2252 | { |
2253 | CORE_ADDR fp = read_register (FP_REGNUM); | |
2254 | ||
2255 | if (fp & 1) | |
2256 | fp += 2047; | |
2257 | return fp; | |
2258 | } | |
2259 | ||
2260 | void | |
fba45db2 | 2261 | sparc64_write_sp (CORE_ADDR val) |
c906108c SS |
2262 | { |
2263 | CORE_ADDR oldsp = read_register (SP_REGNUM); | |
2264 | if (oldsp & 1) | |
2265 | write_register (SP_REGNUM, val - 2047); | |
2266 | else | |
2267 | write_register (SP_REGNUM, val); | |
2268 | } | |
2269 | ||
2270 | void | |
fba45db2 | 2271 | sparc64_write_fp (CORE_ADDR val) |
c906108c SS |
2272 | { |
2273 | CORE_ADDR oldfp = read_register (FP_REGNUM); | |
2274 | if (oldfp & 1) | |
2275 | write_register (FP_REGNUM, val - 2047); | |
2276 | else | |
2277 | write_register (FP_REGNUM, val); | |
2278 | } | |
2279 | ||
5af923b0 MS |
2280 | /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31, |
2281 | and all other arguments in O0 to O5. They are also copied onto | |
2282 | the stack in the correct places. Apparently (empirically), | |
2283 | structs of less than 16 bytes are passed member-by-member in | |
2284 | separate registers, but I am unable to figure out the algorithm. | |
2285 | Some members go in floating point regs, but I don't know which. | |
2286 | ||
2287 | FIXME: Handle small structs (less than 16 bytes containing floats). | |
2288 | ||
2289 | The counting regimen for using both integer and FP registers | |
2290 | for argument passing is rather odd -- a single counter is used | |
2291 | for both; this means that if the arguments alternate between | |
2292 | int and float, we will waste every other register of both types. */ | |
c906108c SS |
2293 | |
2294 | CORE_ADDR | |
ea7c478f | 2295 | sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp, |
fba45db2 | 2296 | int struct_return, CORE_ADDR struct_retaddr) |
c906108c | 2297 | { |
5af923b0 | 2298 | int i, j, register_counter = 0; |
c906108c | 2299 | CORE_ADDR tempsp; |
5af923b0 MS |
2300 | struct type *sparc_intreg_type = |
2301 | TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ? | |
2302 | builtin_type_long : builtin_type_long_long; | |
c5aa993b | 2303 | |
5af923b0 | 2304 | sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL)); |
c906108c SS |
2305 | |
2306 | /* Figure out how much space we'll need. */ | |
5af923b0 | 2307 | for (i = nargs - 1; i >= 0; i--) |
c906108c | 2308 | { |
5af923b0 | 2309 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2310 | struct value *copyarg = args[i]; |
c906108c SS |
2311 | int copylen = len; |
2312 | ||
5af923b0 | 2313 | if (copylen < SPARC_INTREG_SIZE) |
c906108c | 2314 | { |
5af923b0 MS |
2315 | copyarg = value_cast (sparc_intreg_type, copyarg); |
2316 | copylen = SPARC_INTREG_SIZE; | |
c5aa993b | 2317 | } |
c906108c SS |
2318 | sp -= copylen; |
2319 | } | |
2320 | ||
2321 | /* Round down. */ | |
2322 | sp = sp & ~7; | |
2323 | tempsp = sp; | |
2324 | ||
5af923b0 MS |
2325 | /* if STRUCT_RETURN, then first argument is the struct return location. */ |
2326 | if (struct_return) | |
2327 | write_register (O0_REGNUM + register_counter++, struct_retaddr); | |
2328 | ||
2329 | /* Now write the arguments onto the stack, while writing FP | |
2330 | arguments into the FP registers, and other arguments into the | |
2331 | first six 'O' registers. */ | |
2332 | ||
2333 | for (i = 0; i < nargs; i++) | |
c906108c | 2334 | { |
5af923b0 | 2335 | int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i]))); |
ea7c478f | 2336 | struct value *copyarg = args[i]; |
5af923b0 | 2337 | enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i])); |
c906108c SS |
2338 | int copylen = len; |
2339 | ||
5af923b0 MS |
2340 | if (typecode == TYPE_CODE_INT || |
2341 | typecode == TYPE_CODE_BOOL || | |
2342 | typecode == TYPE_CODE_CHAR || | |
2343 | typecode == TYPE_CODE_RANGE || | |
2344 | typecode == TYPE_CODE_ENUM) | |
2345 | if (len < SPARC_INTREG_SIZE) | |
2346 | { | |
2347 | /* Small ints will all take up the size of one intreg on | |
2348 | the stack. */ | |
2349 | copyarg = value_cast (sparc_intreg_type, copyarg); | |
2350 | copylen = SPARC_INTREG_SIZE; | |
2351 | } | |
2352 | ||
c906108c SS |
2353 | write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen); |
2354 | tempsp += copylen; | |
5af923b0 MS |
2355 | |
2356 | /* Corner case: Structs consisting of a single float member are floats. | |
2357 | * FIXME! I don't know about structs containing multiple floats! | |
2358 | * Structs containing mixed floats and ints are even more weird. | |
2359 | */ | |
2360 | ||
2361 | ||
2362 | ||
2363 | /* Separate float args from all other args. */ | |
2364 | if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
c906108c | 2365 | { |
5af923b0 MS |
2366 | if (register_counter < 16) |
2367 | { | |
2368 | /* This arg gets copied into a FP register. */ | |
2369 | int fpreg; | |
2370 | ||
2371 | switch (len) { | |
2372 | case 4: /* Single-precision (float) */ | |
2373 | fpreg = FP0_REGNUM + 2 * register_counter + 1; | |
2374 | register_counter += 1; | |
2375 | break; | |
2376 | case 8: /* Double-precision (double) */ | |
2377 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2378 | register_counter += 1; | |
2379 | break; | |
2380 | case 16: /* Quad-precision (long double) */ | |
2381 | fpreg = FP0_REGNUM + 2 * register_counter; | |
2382 | register_counter += 2; | |
2383 | break; | |
93d56215 AC |
2384 | default: |
2385 | internal_error (__FILE__, __LINE__, "bad switch"); | |
5af923b0 MS |
2386 | } |
2387 | write_register_bytes (REGISTER_BYTE (fpreg), | |
2388 | VALUE_CONTENTS (args[i]), | |
2389 | len); | |
2390 | } | |
c906108c | 2391 | } |
5af923b0 MS |
2392 | else /* all other args go into the first six 'o' registers */ |
2393 | { | |
2394 | for (j = 0; | |
2395 | j < len && register_counter < 6; | |
2396 | j += SPARC_INTREG_SIZE) | |
2397 | { | |
2398 | int oreg = O0_REGNUM + register_counter; | |
2399 | ||
2400 | write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j); | |
2401 | register_counter += 1; | |
2402 | } | |
2403 | } | |
c906108c SS |
2404 | } |
2405 | return sp; | |
2406 | } | |
2407 | ||
2408 | /* Values <= 32 bytes are returned in o0-o3 (floating-point values are | |
2409 | returned in f0-f3). */ | |
5af923b0 | 2410 | |
c906108c | 2411 | void |
fba45db2 KB |
2412 | sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf, |
2413 | int bitoffset) | |
c906108c SS |
2414 | { |
2415 | int typelen = TYPE_LENGTH (type); | |
2416 | int regsize = REGISTER_RAW_SIZE (O0_REGNUM); | |
2417 | ||
2418 | if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU) | |
2419 | { | |
c5aa993b | 2420 | memcpy (valbuf, ®buf[REGISTER_BYTE (FP0_REGNUM)], typelen); |
c906108c SS |
2421 | return; |
2422 | } | |
2423 | ||
2424 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
2425 | || (TYPE_LENGTH (type) > 32)) | |
2426 | { | |
2427 | memcpy (valbuf, | |
c5aa993b | 2428 | ®buf[O0_REGNUM * regsize + |
c906108c SS |
2429 | (typelen >= regsize ? 0 : regsize - typelen)], |
2430 | typelen); | |
2431 | return; | |
2432 | } | |
2433 | else | |
2434 | { | |
2435 | char *o0 = ®buf[O0_REGNUM * regsize]; | |
2436 | char *f0 = ®buf[FP0_REGNUM * regsize]; | |
2437 | int x; | |
2438 | ||
2439 | for (x = 0; x < TYPE_NFIELDS (type); x++) | |
2440 | { | |
c5aa993b | 2441 | struct field *f = &TYPE_FIELDS (type)[x]; |
c906108c SS |
2442 | /* FIXME: We may need to handle static fields here. */ |
2443 | int whichreg = (f->loc.bitpos + bitoffset) / 32; | |
2444 | int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8; | |
2445 | int where = (f->loc.bitpos + bitoffset) / 8; | |
2446 | int size = TYPE_LENGTH (f->type); | |
2447 | int typecode = TYPE_CODE (f->type); | |
2448 | ||
2449 | if (typecode == TYPE_CODE_STRUCT) | |
2450 | { | |
5af923b0 MS |
2451 | sp64_extract_return_value (f->type, |
2452 | regbuf, | |
2453 | valbuf, | |
2454 | bitoffset + f->loc.bitpos); | |
c906108c | 2455 | } |
5af923b0 | 2456 | else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU) |
c906108c SS |
2457 | { |
2458 | memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size); | |
2459 | } | |
2460 | else | |
2461 | { | |
2462 | memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size); | |
2463 | } | |
2464 | } | |
2465 | } | |
2466 | } | |
2acceee2 | 2467 | |
5af923b0 MS |
2468 | extern void |
2469 | sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
2470 | { | |
2471 | sp64_extract_return_value (type, regbuf, valbuf, 0); | |
2472 | } | |
2473 | ||
2474 | extern void | |
2475 | sparclet_extract_return_value (struct type *type, | |
2476 | char *regbuf, | |
2477 | char *valbuf) | |
2478 | { | |
2479 | regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8; | |
2480 | if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM)) | |
2481 | regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type); | |
2482 | ||
2483 | memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type)); | |
2484 | } | |
2485 | ||
2486 | ||
2487 | extern CORE_ADDR | |
2488 | sparc32_stack_align (CORE_ADDR addr) | |
2489 | { | |
2490 | return ((addr + 7) & -8); | |
2491 | } | |
2492 | ||
2493 | extern CORE_ADDR | |
2494 | sparc64_stack_align (CORE_ADDR addr) | |
2495 | { | |
2496 | return ((addr + 15) & -16); | |
2497 | } | |
2498 | ||
2499 | extern void | |
2500 | sparc_print_extra_frame_info (struct frame_info *fi) | |
2501 | { | |
2502 | if (fi && fi->extra_info && fi->extra_info->flat) | |
2503 | printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n", | |
2504 | paddr_nz (fi->extra_info->pc_addr), | |
2505 | paddr_nz (fi->extra_info->fp_addr)); | |
2506 | } | |
2507 | ||
2508 | /* MULTI_ARCH support */ | |
2509 | ||
2510 | static char * | |
2511 | sparc32_register_name (int regno) | |
2512 | { | |
2513 | static char *register_names[] = | |
2514 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2515 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2516 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2517 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2518 | ||
2519 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2520 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2521 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2522 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2523 | ||
2524 | "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr" | |
2525 | }; | |
2526 | ||
2527 | if (regno < 0 || | |
2528 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2529 | return NULL; | |
2530 | else | |
2531 | return register_names[regno]; | |
2532 | } | |
2533 | ||
2534 | static char * | |
2535 | sparc64_register_name (int regno) | |
2536 | { | |
2537 | static char *register_names[] = | |
2538 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2539 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2540 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2541 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2542 | ||
2543 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2544 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2545 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2546 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2547 | "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46", | |
2548 | "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62", | |
2549 | ||
2550 | "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver", | |
2551 | "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc", | |
2552 | "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin", | |
2553 | "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23", | |
2554 | "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31", | |
2555 | /* These are here at the end to simplify removing them if we have to. */ | |
2556 | "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3" | |
2557 | }; | |
2558 | ||
2559 | if (regno < 0 || | |
2560 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2561 | return NULL; | |
2562 | else | |
2563 | return register_names[regno]; | |
2564 | } | |
2565 | ||
2566 | static char * | |
2567 | sparclite_register_name (int regno) | |
2568 | { | |
2569 | static char *register_names[] = | |
2570 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2571 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2572 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2573 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2574 | ||
2575 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
2576 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
2577 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
2578 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
2579 | ||
2580 | "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr", | |
2581 | "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr" | |
2582 | }; | |
2583 | ||
2584 | if (regno < 0 || | |
2585 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2586 | return NULL; | |
2587 | else | |
2588 | return register_names[regno]; | |
2589 | } | |
2590 | ||
2591 | static char * | |
2592 | sparclet_register_name (int regno) | |
2593 | { | |
2594 | static char *register_names[] = | |
2595 | { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", | |
2596 | "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7", | |
2597 | "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7", | |
2598 | "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7", | |
2599 | ||
2600 | "", "", "", "", "", "", "", "", /* no floating point registers */ | |
2601 | "", "", "", "", "", "", "", "", | |
2602 | "", "", "", "", "", "", "", "", | |
2603 | "", "", "", "", "", "", "", "", | |
2604 | ||
2605 | "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */ | |
2606 | "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "", | |
2607 | ||
2608 | /* ASR15 ASR19 (don't display them) */ | |
2609 | "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22" | |
2610 | /* None of the rest get displayed */ | |
2611 | #if 0 | |
2612 | "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7", | |
2613 | "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15", | |
2614 | "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23", | |
2615 | "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31", | |
2616 | "apsr" | |
2617 | #endif /* 0 */ | |
2618 | }; | |
2619 | ||
2620 | if (regno < 0 || | |
2621 | regno >= (sizeof (register_names) / sizeof (register_names[0]))) | |
2622 | return NULL; | |
2623 | else | |
2624 | return register_names[regno]; | |
2625 | } | |
2626 | ||
2627 | CORE_ADDR | |
2628 | sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp) | |
2629 | { | |
2630 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2631 | { | |
2632 | /* The return PC of the dummy_frame is the former 'current' PC | |
2633 | (where we were before we made the target function call). | |
2634 | This is saved in %i7 by push_dummy_frame. | |
2635 | ||
2636 | We will save the 'call dummy location' (ie. the address | |
2637 | to which the target function will return) in %o7. | |
2638 | This address will actually be the program's entry point. | |
2639 | There will be a special call_dummy breakpoint there. */ | |
2640 | ||
2641 | write_register (O7_REGNUM, | |
2642 | CALL_DUMMY_ADDRESS () - 8); | |
2643 | } | |
2644 | ||
2645 | return sp; | |
2646 | } | |
2647 | ||
2648 | /* Should call_function allocate stack space for a struct return? */ | |
2649 | ||
2650 | static int | |
2651 | sparc64_use_struct_convention (int gcc_p, struct type *type) | |
2652 | { | |
2653 | return (TYPE_LENGTH (type) > 32); | |
2654 | } | |
2655 | ||
2656 | /* Store the address of the place in which to copy the structure the | |
2657 | subroutine will return. This is called from call_function_by_hand. | |
2658 | The ultimate mystery is, tho, what is the value "16"? | |
2659 | ||
2660 | MVS: That's the offset from where the sp is now, to where the | |
2661 | subroutine is gonna expect to find the struct return address. */ | |
2662 | ||
2663 | static void | |
2664 | sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2665 | { | |
2666 | char *val; | |
2667 | CORE_ADDR o7; | |
2668 | ||
2669 | val = alloca (SPARC_INTREG_SIZE); | |
2670 | store_unsigned_integer (val, SPARC_INTREG_SIZE, addr); | |
2671 | write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE); | |
2672 | ||
2673 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2674 | { | |
2675 | /* Now adjust the value of the link register, which was previously | |
2676 | stored by push_return_address. Functions that return structs are | |
2677 | peculiar in that they return to link register + 12, rather than | |
2678 | link register + 8. */ | |
2679 | ||
2680 | o7 = read_register (O7_REGNUM); | |
2681 | write_register (O7_REGNUM, o7 - 4); | |
2682 | } | |
2683 | } | |
2684 | ||
2685 | static void | |
2686 | sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
2687 | { | |
2688 | /* FIXME: V9 uses %o0 for this. */ | |
2689 | /* FIXME MVS: Only for small enough structs!!! */ | |
2acceee2 | 2690 | |
5af923b0 MS |
2691 | target_write_memory (sp + (16 * SPARC_INTREG_SIZE), |
2692 | (char *) &addr, SPARC_INTREG_SIZE); | |
2693 | #if 0 | |
2694 | if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT) | |
2695 | { | |
2696 | /* Now adjust the value of the link register, which was previously | |
2697 | stored by push_return_address. Functions that return structs are | |
2698 | peculiar in that they return to link register + 12, rather than | |
2699 | link register + 8. */ | |
2700 | ||
2701 | write_register (O7_REGNUM, read_register (O7_REGNUM) - 4); | |
2702 | } | |
c906108c | 2703 | #endif |
5af923b0 MS |
2704 | } |
2705 | ||
2706 | /* Default target data type for register REGNO. */ | |
2707 | ||
2708 | static struct type * | |
2709 | sparc32_register_virtual_type (int regno) | |
2710 | { | |
2711 | if (regno == PC_REGNUM || | |
2712 | regno == FP_REGNUM || | |
2713 | regno == SP_REGNUM) | |
2714 | return builtin_type_unsigned_int; | |
2715 | if (regno < 32) | |
2716 | return builtin_type_int; | |
2717 | if (regno < 64) | |
2718 | return builtin_type_float; | |
2719 | return builtin_type_int; | |
2720 | } | |
2721 | ||
2722 | static struct type * | |
2723 | sparc64_register_virtual_type (int regno) | |
2724 | { | |
2725 | if (regno == PC_REGNUM || | |
2726 | regno == FP_REGNUM || | |
2727 | regno == SP_REGNUM) | |
2728 | return builtin_type_unsigned_long_long; | |
2729 | if (regno < 32) | |
2730 | return builtin_type_long_long; | |
2731 | if (regno < 64) | |
2732 | return builtin_type_float; | |
2733 | if (regno < 80) | |
2734 | return builtin_type_double; | |
2735 | return builtin_type_long_long; | |
2736 | } | |
2737 | ||
2738 | /* Number of bytes of storage in the actual machine representation for | |
2739 | register REGNO. */ | |
2740 | ||
2741 | static int | |
2742 | sparc32_register_size (int regno) | |
2743 | { | |
2744 | return 4; | |
2745 | } | |
2746 | ||
2747 | static int | |
2748 | sparc64_register_size (int regno) | |
2749 | { | |
2750 | return (regno < 32 ? 8 : regno < 64 ? 4 : 8); | |
2751 | } | |
2752 | ||
2753 | /* Index within the `registers' buffer of the first byte of the space | |
2754 | for register REGNO. */ | |
2755 | ||
2756 | static int | |
2757 | sparc32_register_byte (int regno) | |
2758 | { | |
2759 | return (regno * 4); | |
2760 | } | |
2761 | ||
2762 | static int | |
2763 | sparc64_register_byte (int regno) | |
2764 | { | |
2765 | if (regno < 32) | |
2766 | return regno * 8; | |
2767 | else if (regno < 64) | |
2768 | return 32 * 8 + (regno - 32) * 4; | |
2769 | else if (regno < 80) | |
2770 | return 32 * 8 + 32 * 4 + (regno - 64) * 8; | |
2771 | else | |
2772 | return 64 * 8 + (regno - 80) * 8; | |
2773 | } | |
2774 | ||
2775 | /* Advance PC across any function entry prologue instructions to reach | |
2776 | some "real" code. SKIP_PROLOGUE_FRAMELESS_P advances the PC past | |
2777 | some of the prologue, but stops as soon as it knows that the | |
2778 | function has a frame. Its result is equal to its input PC if the | |
2779 | function is frameless, unequal otherwise. */ | |
2780 | ||
2781 | static CORE_ADDR | |
2782 | sparc_gdbarch_skip_prologue (CORE_ADDR ip) | |
2783 | { | |
2784 | return examine_prologue (ip, 0, NULL, NULL); | |
2785 | } | |
2786 | ||
2787 | /* Immediately after a function call, return the saved pc. | |
2788 | Can't go through the frames for this because on some machines | |
2789 | the new frame is not set up until the new function executes | |
2790 | some instructions. */ | |
2791 | ||
2792 | static CORE_ADDR | |
2793 | sparc_saved_pc_after_call (struct frame_info *fi) | |
2794 | { | |
2795 | return sparc_pc_adjust (read_register (RP_REGNUM)); | |
2796 | } | |
2797 | ||
2798 | /* Convert registers between 'raw' and 'virtual' formats. | |
2799 | They are the same on sparc, so there's nothing to do. */ | |
2800 | ||
2801 | static void | |
2802 | sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to) | |
2803 | { /* do nothing (should never be called) */ | |
2804 | } | |
2805 | ||
2806 | static void | |
2807 | sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to) | |
2808 | { /* do nothing (should never be called) */ | |
2809 | } | |
2810 | ||
2811 | /* Init saved regs: nothing to do, just a place-holder function. */ | |
2812 | ||
2813 | static void | |
2814 | sparc_frame_init_saved_regs (struct frame_info *fi_ignored) | |
2815 | { /* no-op */ | |
2816 | } | |
2817 | ||
5af923b0 MS |
2818 | /* gdbarch fix call dummy: |
2819 | All this function does is rearrange the arguments before calling | |
2820 | sparc_fix_call_dummy (which does the real work). */ | |
2821 | ||
2822 | static void | |
2823 | sparc_gdbarch_fix_call_dummy (char *dummy, | |
2824 | CORE_ADDR pc, | |
2825 | CORE_ADDR fun, | |
2826 | int nargs, | |
2827 | struct value **args, | |
2828 | struct type *type, | |
2829 | int gcc_p) | |
2830 | { | |
2831 | if (CALL_DUMMY_LOCATION == ON_STACK) | |
2832 | sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p); | |
2833 | } | |
2834 | ||
2835 | /* Coerce float to double: a no-op. */ | |
2836 | ||
2837 | static int | |
2838 | sparc_coerce_float_to_double (struct type *formal, struct type *actual) | |
2839 | { | |
2840 | return 1; | |
2841 | } | |
2842 | ||
2843 | /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */ | |
2844 | ||
2845 | static CORE_ADDR | |
2846 | sparc_call_dummy_address (void) | |
2847 | { | |
2848 | return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET; | |
2849 | } | |
2850 | ||
2851 | /* Supply the Y register number to those that need it. */ | |
2852 | ||
2853 | int | |
2854 | sparc_y_regnum (void) | |
2855 | { | |
2856 | return gdbarch_tdep (current_gdbarch)->y_regnum; | |
2857 | } | |
2858 | ||
2859 | int | |
2860 | sparc_reg_struct_has_addr (int gcc_p, struct type *type) | |
2861 | { | |
2862 | if (GDB_TARGET_IS_SPARC64) | |
2863 | return (TYPE_LENGTH (type) > 32); | |
2864 | else | |
2865 | return (gcc_p != 1); | |
2866 | } | |
2867 | ||
2868 | int | |
2869 | sparc_intreg_size (void) | |
2870 | { | |
2871 | return SPARC_INTREG_SIZE; | |
2872 | } | |
2873 | ||
2874 | static int | |
2875 | sparc_return_value_on_stack (struct type *type) | |
2876 | { | |
2877 | if (TYPE_CODE (type) == TYPE_CODE_FLT && | |
2878 | TYPE_LENGTH (type) > 8) | |
2879 | return 1; | |
2880 | else | |
2881 | return 0; | |
2882 | } | |
2883 | ||
2884 | /* | |
2885 | * Gdbarch "constructor" function. | |
2886 | */ | |
2887 | ||
2888 | #define SPARC32_CALL_DUMMY_ON_STACK | |
2889 | ||
2890 | #define SPARC_SP_REGNUM 14 | |
2891 | #define SPARC_FP_REGNUM 30 | |
2892 | #define SPARC_FP0_REGNUM 32 | |
2893 | #define SPARC32_NPC_REGNUM 69 | |
2894 | #define SPARC32_PC_REGNUM 68 | |
2895 | #define SPARC32_Y_REGNUM 64 | |
2896 | #define SPARC64_PC_REGNUM 80 | |
2897 | #define SPARC64_NPC_REGNUM 81 | |
2898 | #define SPARC64_Y_REGNUM 85 | |
2899 | ||
2900 | static struct gdbarch * | |
2901 | sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
2902 | { | |
2903 | struct gdbarch *gdbarch; | |
2904 | struct gdbarch_tdep *tdep; | |
2905 | ||
2906 | static LONGEST call_dummy_32[] = | |
2907 | { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003, | |
2908 | 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c, | |
2909 | 0xd203a048, 0x40000000, 0xd003a044, 0x01000000, | |
2910 | 0x91d02001, 0x01000000 | |
2911 | }; | |
2912 | static LONGEST call_dummy_64[] = | |
2913 | { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL, | |
2914 | 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL, | |
2915 | 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL, | |
2916 | 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL, | |
2917 | 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL, | |
2918 | 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL, | |
2919 | 0xf03fa73f01000000LL, 0x0100000001000000LL, | |
2920 | 0x0100000091580000LL, 0xd027a72b93500000LL, | |
2921 | 0xd027a72791480000LL, 0xd027a72391400000LL, | |
2922 | 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL, | |
2923 | 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL, | |
2924 | 0x0100000091d02001LL, 0x0100000001000000LL | |
2925 | }; | |
2926 | static LONGEST call_dummy_nil[] = {0}; | |
2927 | ||
2928 | /* First see if there is already a gdbarch that can satisfy the request. */ | |
2929 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2930 | if (arches != NULL) | |
2931 | return arches->gdbarch; | |
2932 | ||
2933 | /* None found: is the request for a sparc architecture? */ | |
aca21d9a | 2934 | if (info.bfd_arch_info->arch != bfd_arch_sparc) |
5af923b0 MS |
2935 | return NULL; /* No; then it's not for us. */ |
2936 | ||
2937 | /* Yes: create a new gdbarch for the specified machine type. */ | |
2938 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
2939 | gdbarch = gdbarch_alloc (&info, tdep); | |
2940 | ||
2941 | /* First set settings that are common for all sparc architectures. */ | |
2942 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); | |
2943 | set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc); | |
2944 | set_gdbarch_coerce_float_to_double (gdbarch, | |
2945 | sparc_coerce_float_to_double); | |
2946 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2947 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
2948 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1); | |
2949 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2950 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2951 | set_gdbarch_extract_struct_value_address (gdbarch, | |
2952 | sparc_extract_struct_value_address); | |
2953 | set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy); | |
2954 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2955 | set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM); | |
2956 | set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM); | |
c347ee3e | 2957 | set_gdbarch_frame_args_address (gdbarch, default_frame_address); |
5af923b0 MS |
2958 | set_gdbarch_frame_chain (gdbarch, sparc_frame_chain); |
2959 | set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs); | |
c347ee3e | 2960 | set_gdbarch_frame_locals_address (gdbarch, default_frame_address); |
5af923b0 MS |
2961 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); |
2962 | set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc); | |
2963 | set_gdbarch_frameless_function_invocation (gdbarch, | |
2964 | frameless_look_for_prologue); | |
2965 | set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register); | |
2966 | set_gdbarch_ieee_float (gdbarch, 1); | |
2967 | set_gdbarch_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info); | |
2968 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2969 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
2970 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); | |
2971 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
2972 | set_gdbarch_max_register_raw_size (gdbarch, 8); | |
2973 | set_gdbarch_max_register_virtual_size (gdbarch, 8); | |
5af923b0 MS |
2974 | set_gdbarch_pop_frame (gdbarch, sparc_pop_frame); |
2975 | set_gdbarch_push_return_address (gdbarch, sparc_push_return_address); | |
2976 | set_gdbarch_push_dummy_frame (gdbarch, sparc_push_dummy_frame); | |
2977 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); | |
2978 | set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw); | |
2979 | set_gdbarch_register_convert_to_virtual (gdbarch, | |
2980 | sparc_convert_to_virtual); | |
2981 | set_gdbarch_register_convertible (gdbarch, | |
2982 | generic_register_convertible_not); | |
2983 | set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr); | |
2984 | set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack); | |
2985 | set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call); | |
2986 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
2987 | set_gdbarch_skip_prologue (gdbarch, sparc_gdbarch_skip_prologue); | |
2988 | set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); | |
2989 | set_gdbarch_use_generic_dummy_frames (gdbarch, 0); | |
2990 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
2991 | ||
2992 | /* | |
2993 | * Settings that depend only on 32/64 bit word size | |
2994 | */ | |
2995 | ||
2996 | switch (info.bfd_arch_info->mach) | |
2997 | { | |
2998 | case bfd_mach_sparc: | |
2999 | case bfd_mach_sparc_sparclet: | |
3000 | case bfd_mach_sparc_sparclite: | |
3001 | case bfd_mach_sparc_v8plus: | |
3002 | case bfd_mach_sparc_v8plusa: | |
3003 | case bfd_mach_sparc_sparclite_le: | |
3004 | /* 32-bit machine types: */ | |
3005 | ||
3006 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
9e36d949 | 3007 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); |
5af923b0 MS |
3008 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3009 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30); | |
3010 | set_gdbarch_call_dummy_length (gdbarch, 0x38); | |
3011 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
3012 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_32); | |
3013 | #else | |
9e36d949 | 3014 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3015 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
3016 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
3017 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
3018 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
3019 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); | |
3020 | #endif | |
3021 | set_gdbarch_call_dummy_stack_adjust (gdbarch, 68); | |
3022 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
3023 | set_gdbarch_frame_args_skip (gdbarch, 68); | |
3024 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3025 | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3026 | set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM); | |
3027 | set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM); | |
3028 | set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
3029 | set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments); | |
3030 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
3031 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
3032 | ||
3033 | set_gdbarch_register_byte (gdbarch, sparc32_register_byte); | |
3034 | set_gdbarch_register_raw_size (gdbarch, sparc32_register_size); | |
3035 | set_gdbarch_register_size (gdbarch, 4); | |
3036 | set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size); | |
3037 | set_gdbarch_register_virtual_type (gdbarch, | |
3038 | sparc32_register_virtual_type); | |
3039 | #ifdef SPARC32_CALL_DUMMY_ON_STACK | |
3040 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32)); | |
3041 | #else | |
3042 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3043 | #endif | |
3044 | set_gdbarch_stack_align (gdbarch, sparc32_stack_align); | |
3045 | set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return); | |
3046 | set_gdbarch_use_struct_convention (gdbarch, | |
3047 | generic_use_struct_convention); | |
3048 | set_gdbarch_write_fp (gdbarch, generic_target_write_fp); | |
3049 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
3050 | tdep->y_regnum = SPARC32_Y_REGNUM; | |
3051 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32; | |
3052 | tdep->intreg_size = 4; | |
3053 | tdep->reg_save_offset = 0x60; | |
3054 | tdep->call_dummy_call_offset = 0x24; | |
3055 | break; | |
3056 | ||
3057 | case bfd_mach_sparc_v9: | |
3058 | case bfd_mach_sparc_v9a: | |
3059 | /* 64-bit machine types: */ | |
3060 | default: /* Any new machine type is likely to be 64-bit. */ | |
3061 | ||
3062 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
9e36d949 | 3063 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack); |
5af923b0 MS |
3064 | set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address); |
3065 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4); | |
3066 | set_gdbarch_call_dummy_length (gdbarch, 192); | |
3067 | set_gdbarch_call_dummy_location (gdbarch, ON_STACK); | |
3068 | set_gdbarch_call_dummy_start_offset (gdbarch, 148); | |
3069 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_64); | |
3070 | #else | |
9e36d949 | 3071 | set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point); |
5af923b0 MS |
3072 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
3073 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
3074 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
3075 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
3076 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
3077 | set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil); | |
3078 | #endif | |
3079 | set_gdbarch_call_dummy_stack_adjust (gdbarch, 128); | |
3080 | set_gdbarch_frame_args_skip (gdbarch, 136); | |
3081 | set_gdbarch_function_start_offset (gdbarch, 0); | |
3082 | set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3083 | set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM); | |
3084 | set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); | |
3085 | set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
3086 | set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments); | |
3087 | /* NOTE different for at_entry */ | |
3088 | set_gdbarch_read_fp (gdbarch, sparc64_read_fp); | |
3089 | set_gdbarch_read_sp (gdbarch, sparc64_read_sp); | |
3090 | /* Some of the registers aren't 64 bits, but it's a lot simpler just | |
3091 | to assume they all are (since most of them are). */ | |
3092 | set_gdbarch_register_byte (gdbarch, sparc64_register_byte); | |
3093 | set_gdbarch_register_raw_size (gdbarch, sparc64_register_size); | |
3094 | set_gdbarch_register_size (gdbarch, 8); | |
3095 | set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size); | |
3096 | set_gdbarch_register_virtual_type (gdbarch, | |
3097 | sparc64_register_virtual_type); | |
3098 | #ifdef SPARC64_CALL_DUMMY_ON_STACK | |
3099 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64)); | |
3100 | #else | |
3101 | set_gdbarch_sizeof_call_dummy_words (gdbarch, 0); | |
3102 | #endif | |
3103 | set_gdbarch_stack_align (gdbarch, sparc64_stack_align); | |
3104 | set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return); | |
3105 | set_gdbarch_use_struct_convention (gdbarch, | |
3106 | sparc64_use_struct_convention); | |
3107 | set_gdbarch_write_fp (gdbarch, sparc64_write_fp); | |
3108 | set_gdbarch_write_sp (gdbarch, sparc64_write_sp); | |
3109 | tdep->y_regnum = SPARC64_Y_REGNUM; | |
3110 | tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48; | |
3111 | tdep->intreg_size = 8; | |
3112 | tdep->reg_save_offset = 0x90; | |
3113 | tdep->call_dummy_call_offset = 148 + 4 * 5; | |
3114 | break; | |
3115 | } | |
3116 | ||
3117 | /* | |
3118 | * Settings that vary per-architecture: | |
3119 | */ | |
3120 | ||
3121 | switch (info.bfd_arch_info->mach) | |
3122 | { | |
3123 | case bfd_mach_sparc: | |
3124 | set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3125 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3126 | set_gdbarch_num_regs (gdbarch, 72); | |
3127 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3128 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
3129 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3130 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3131 | tdep->fp_register_bytes = 32 * 4; | |
3132 | tdep->print_insn_mach = bfd_mach_sparc; | |
3133 | break; | |
3134 | case bfd_mach_sparc_sparclet: | |
3135 | set_gdbarch_extract_return_value (gdbarch, | |
3136 | sparclet_extract_return_value); | |
3137 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3138 | set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8); | |
3139 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4); | |
3140 | set_gdbarch_register_name (gdbarch, sparclet_register_name); | |
3141 | set_gdbarch_store_return_value (gdbarch, sparclet_store_return_value); | |
3142 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3143 | tdep->fp_register_bytes = 0; | |
3144 | tdep->print_insn_mach = bfd_mach_sparc_sparclet; | |
3145 | break; | |
3146 | case bfd_mach_sparc_sparclite: | |
3147 | set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3148 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); | |
3149 | set_gdbarch_num_regs (gdbarch, 80); | |
3150 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3151 | set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
3152 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3153 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3154 | tdep->fp_register_bytes = 0; | |
3155 | tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3156 | break; | |
3157 | case bfd_mach_sparc_v8plus: | |
3158 | set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3159 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3160 | set_gdbarch_num_regs (gdbarch, 72); | |
3161 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3162 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
3163 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3164 | tdep->print_insn_mach = bfd_mach_sparc; | |
3165 | tdep->fp_register_bytes = 32 * 4; | |
3166 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3167 | break; | |
3168 | case bfd_mach_sparc_v8plusa: | |
3169 | set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3170 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3171 | set_gdbarch_num_regs (gdbarch, 72); | |
3172 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4); | |
3173 | set_gdbarch_register_name (gdbarch, sparc32_register_name); | |
3174 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3175 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3176 | tdep->fp_register_bytes = 32 * 4; | |
3177 | tdep->print_insn_mach = bfd_mach_sparc; | |
3178 | break; | |
3179 | case bfd_mach_sparc_sparclite_le: | |
3180 | set_gdbarch_extract_return_value (gdbarch, sparc32_extract_return_value); | |
3181 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); | |
3182 | set_gdbarch_num_regs (gdbarch, 80); | |
3183 | set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4); | |
3184 | set_gdbarch_register_name (gdbarch, sparclite_register_name); | |
3185 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3186 | tdep->has_fpu = 0; /* (all but sparclet and sparclite) */ | |
3187 | tdep->fp_register_bytes = 0; | |
3188 | tdep->print_insn_mach = bfd_mach_sparc_sparclite; | |
3189 | break; | |
3190 | case bfd_mach_sparc_v9: | |
3191 | set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value); | |
3192 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3193 | set_gdbarch_num_regs (gdbarch, 125); | |
3194 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3195 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
3196 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3197 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3198 | tdep->fp_register_bytes = 64 * 4; | |
3199 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3200 | break; | |
3201 | case bfd_mach_sparc_v9a: | |
3202 | set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value); | |
3203 | set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid); | |
3204 | set_gdbarch_num_regs (gdbarch, 125); | |
3205 | set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8); | |
3206 | set_gdbarch_register_name (gdbarch, sparc64_register_name); | |
3207 | set_gdbarch_store_return_value (gdbarch, sparc_store_return_value); | |
3208 | tdep->has_fpu = 1; /* (all but sparclet and sparclite) */ | |
3209 | tdep->fp_register_bytes = 64 * 4; | |
3210 | tdep->print_insn_mach = bfd_mach_sparc_v9a; | |
3211 | break; | |
3212 | } | |
3213 | ||
3214 | return gdbarch; | |
3215 | } | |
3216 |