]>
Commit | Line | Data |
---|---|---|
1bac305b AC |
1 | /* GDB-specific functions for operating on agent expressions. |
2 | ||
ecd75fc8 | 3 | Copyright (C) 1998-2014 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c | 19 | |
c906108c SS |
20 | #include "defs.h" |
21 | #include "symtab.h" | |
22 | #include "symfile.h" | |
23 | #include "gdbtypes.h" | |
b97aedf3 | 24 | #include "language.h" |
c906108c SS |
25 | #include "value.h" |
26 | #include "expression.h" | |
27 | #include "command.h" | |
28 | #include "gdbcmd.h" | |
29 | #include "frame.h" | |
30 | #include "target.h" | |
31 | #include "ax.h" | |
32 | #include "ax-gdb.h" | |
0e9f083f | 33 | #include <string.h> |
fe898f56 | 34 | #include "block.h" |
7b83296f | 35 | #include "regcache.h" |
029a67e4 | 36 | #include "user-regs.h" |
6c228b9c | 37 | #include "dictionary.h" |
00bf0b85 | 38 | #include "breakpoint.h" |
f61e138d | 39 | #include "tracepoint.h" |
b6e7192f | 40 | #include "cp-support.h" |
6710bf39 | 41 | #include "arch-utils.h" |
d3ce09f5 | 42 | #include "cli/cli-utils.h" |
34b536a8 | 43 | #include "linespec.h" |
c906108c | 44 | |
3065dfb6 SS |
45 | #include "valprint.h" |
46 | #include "c-lang.h" | |
47 | ||
d3ce09f5 SS |
48 | #include "format.h" |
49 | ||
6426a772 JM |
50 | /* To make sense of this file, you should read doc/agentexpr.texi. |
51 | Then look at the types and enums in ax-gdb.h. For the code itself, | |
52 | look at gen_expr, towards the bottom; that's the main function that | |
53 | looks at the GDB expressions and calls everything else to generate | |
54 | code. | |
c906108c SS |
55 | |
56 | I'm beginning to wonder whether it wouldn't be nicer to internally | |
57 | generate trees, with types, and then spit out the bytecode in | |
58 | linear form afterwards; we could generate fewer `swap', `ext', and | |
59 | `zero_ext' bytecodes that way; it would make good constant folding | |
60 | easier, too. But at the moment, I think we should be willing to | |
61 | pay for the simplicity of this code with less-than-optimal bytecode | |
62 | strings. | |
63 | ||
c5aa993b JM |
64 | Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */ |
65 | \f | |
c906108c SS |
66 | |
67 | ||
0e2de366 | 68 | /* Prototypes for local functions. */ |
c906108c SS |
69 | |
70 | /* There's a standard order to the arguments of these functions: | |
71 | union exp_element ** --- pointer into expression | |
72 | struct agent_expr * --- agent expression buffer to generate code into | |
73 | struct axs_value * --- describes value left on top of stack */ | |
c5aa993b | 74 | |
a14ed312 KB |
75 | static struct value *const_var_ref (struct symbol *var); |
76 | static struct value *const_expr (union exp_element **pc); | |
77 | static struct value *maybe_const_expr (union exp_element **pc); | |
78 | ||
3e43a32a MS |
79 | static void gen_traced_pop (struct gdbarch *, struct agent_expr *, |
80 | struct axs_value *); | |
a14ed312 KB |
81 | |
82 | static void gen_sign_extend (struct agent_expr *, struct type *); | |
83 | static void gen_extend (struct agent_expr *, struct type *); | |
84 | static void gen_fetch (struct agent_expr *, struct type *); | |
85 | static void gen_left_shift (struct agent_expr *, int); | |
86 | ||
87 | ||
f7c79c41 UW |
88 | static void gen_frame_args_address (struct gdbarch *, struct agent_expr *); |
89 | static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *); | |
a14ed312 KB |
90 | static void gen_offset (struct agent_expr *ax, int offset); |
91 | static void gen_sym_offset (struct agent_expr *, struct symbol *); | |
f7c79c41 | 92 | static void gen_var_ref (struct gdbarch *, struct agent_expr *ax, |
a14ed312 KB |
93 | struct axs_value *value, struct symbol *var); |
94 | ||
95 | ||
96 | static void gen_int_literal (struct agent_expr *ax, | |
97 | struct axs_value *value, | |
98 | LONGEST k, struct type *type); | |
99 | ||
f7c79c41 UW |
100 | static void gen_usual_unary (struct expression *exp, struct agent_expr *ax, |
101 | struct axs_value *value); | |
a14ed312 KB |
102 | static int type_wider_than (struct type *type1, struct type *type2); |
103 | static struct type *max_type (struct type *type1, struct type *type2); | |
104 | static void gen_conversion (struct agent_expr *ax, | |
105 | struct type *from, struct type *to); | |
106 | static int is_nontrivial_conversion (struct type *from, struct type *to); | |
f7c79c41 UW |
107 | static void gen_usual_arithmetic (struct expression *exp, |
108 | struct agent_expr *ax, | |
a14ed312 KB |
109 | struct axs_value *value1, |
110 | struct axs_value *value2); | |
f7c79c41 UW |
111 | static void gen_integral_promotions (struct expression *exp, |
112 | struct agent_expr *ax, | |
a14ed312 KB |
113 | struct axs_value *value); |
114 | static void gen_cast (struct agent_expr *ax, | |
115 | struct axs_value *value, struct type *type); | |
116 | static void gen_scale (struct agent_expr *ax, | |
117 | enum agent_op op, struct type *type); | |
f7c79c41 UW |
118 | static void gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
119 | struct axs_value *value1, struct axs_value *value2); | |
120 | static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
121 | struct axs_value *value1, struct axs_value *value2); | |
122 | static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, | |
123 | struct axs_value *value1, struct axs_value *value2, | |
124 | struct type *result_type); | |
a14ed312 KB |
125 | static void gen_binop (struct agent_expr *ax, |
126 | struct axs_value *value, | |
127 | struct axs_value *value1, | |
128 | struct axs_value *value2, | |
129 | enum agent_op op, | |
130 | enum agent_op op_unsigned, int may_carry, char *name); | |
f7c79c41 UW |
131 | static void gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
132 | struct type *result_type); | |
a14ed312 KB |
133 | static void gen_complement (struct agent_expr *ax, struct axs_value *value); |
134 | static void gen_deref (struct agent_expr *, struct axs_value *); | |
135 | static void gen_address_of (struct agent_expr *, struct axs_value *); | |
505e835d | 136 | static void gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, |
a14ed312 KB |
137 | struct axs_value *value, |
138 | struct type *type, int start, int end); | |
b6e7192f SS |
139 | static void gen_primitive_field (struct expression *exp, |
140 | struct agent_expr *ax, | |
141 | struct axs_value *value, | |
142 | int offset, int fieldno, struct type *type); | |
143 | static int gen_struct_ref_recursive (struct expression *exp, | |
144 | struct agent_expr *ax, | |
145 | struct axs_value *value, | |
146 | char *field, int offset, | |
147 | struct type *type); | |
505e835d | 148 | static void gen_struct_ref (struct expression *exp, struct agent_expr *ax, |
a14ed312 KB |
149 | struct axs_value *value, |
150 | char *field, | |
151 | char *operator_name, char *operand_name); | |
400c6af0 | 152 | static void gen_static_field (struct gdbarch *gdbarch, |
b6e7192f SS |
153 | struct agent_expr *ax, struct axs_value *value, |
154 | struct type *type, int fieldno); | |
f7c79c41 | 155 | static void gen_repeat (struct expression *exp, union exp_element **pc, |
a14ed312 | 156 | struct agent_expr *ax, struct axs_value *value); |
f7c79c41 UW |
157 | static void gen_sizeof (struct expression *exp, union exp_element **pc, |
158 | struct agent_expr *ax, struct axs_value *value, | |
159 | struct type *size_type); | |
f61e138d SS |
160 | static void gen_expr_binop_rest (struct expression *exp, |
161 | enum exp_opcode op, union exp_element **pc, | |
162 | struct agent_expr *ax, | |
163 | struct axs_value *value, | |
164 | struct axs_value *value1, | |
165 | struct axs_value *value2); | |
c5aa993b | 166 | |
a14ed312 | 167 | static void agent_command (char *exp, int from_tty); |
c906108c | 168 | \f |
c5aa993b | 169 | |
c906108c SS |
170 | /* Detecting constant expressions. */ |
171 | ||
172 | /* If the variable reference at *PC is a constant, return its value. | |
173 | Otherwise, return zero. | |
174 | ||
175 | Hey, Wally! How can a variable reference be a constant? | |
176 | ||
177 | Well, Beav, this function really handles the OP_VAR_VALUE operator, | |
178 | not specifically variable references. GDB uses OP_VAR_VALUE to | |
179 | refer to any kind of symbolic reference: function names, enum | |
180 | elements, and goto labels are all handled through the OP_VAR_VALUE | |
181 | operator, even though they're constants. It makes sense given the | |
182 | situation. | |
183 | ||
184 | Gee, Wally, don'cha wonder sometimes if data representations that | |
185 | subvert commonly accepted definitions of terms in favor of heavily | |
186 | context-specific interpretations are really just a tool of the | |
187 | programming hegemony to preserve their power and exclude the | |
188 | proletariat? */ | |
189 | ||
190 | static struct value * | |
fba45db2 | 191 | const_var_ref (struct symbol *var) |
c906108c SS |
192 | { |
193 | struct type *type = SYMBOL_TYPE (var); | |
194 | ||
195 | switch (SYMBOL_CLASS (var)) | |
196 | { | |
197 | case LOC_CONST: | |
198 | return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var)); | |
199 | ||
200 | case LOC_LABEL: | |
4478b372 | 201 | return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var)); |
c906108c SS |
202 | |
203 | default: | |
204 | return 0; | |
205 | } | |
206 | } | |
207 | ||
208 | ||
209 | /* If the expression starting at *PC has a constant value, return it. | |
210 | Otherwise, return zero. If we return a value, then *PC will be | |
211 | advanced to the end of it. If we return zero, *PC could be | |
212 | anywhere. */ | |
213 | static struct value * | |
fba45db2 | 214 | const_expr (union exp_element **pc) |
c906108c SS |
215 | { |
216 | enum exp_opcode op = (*pc)->opcode; | |
217 | struct value *v1; | |
218 | ||
219 | switch (op) | |
220 | { | |
221 | case OP_LONG: | |
222 | { | |
223 | struct type *type = (*pc)[1].type; | |
224 | LONGEST k = (*pc)[2].longconst; | |
5b4ee69b | 225 | |
c906108c SS |
226 | (*pc) += 4; |
227 | return value_from_longest (type, k); | |
228 | } | |
229 | ||
230 | case OP_VAR_VALUE: | |
231 | { | |
232 | struct value *v = const_var_ref ((*pc)[2].symbol); | |
5b4ee69b | 233 | |
c906108c SS |
234 | (*pc) += 4; |
235 | return v; | |
236 | } | |
237 | ||
c5aa993b | 238 | /* We could add more operators in here. */ |
c906108c SS |
239 | |
240 | case UNOP_NEG: | |
241 | (*pc)++; | |
242 | v1 = const_expr (pc); | |
243 | if (v1) | |
244 | return value_neg (v1); | |
245 | else | |
246 | return 0; | |
247 | ||
248 | default: | |
249 | return 0; | |
250 | } | |
251 | } | |
252 | ||
253 | ||
254 | /* Like const_expr, but guarantee also that *PC is undisturbed if the | |
255 | expression is not constant. */ | |
256 | static struct value * | |
fba45db2 | 257 | maybe_const_expr (union exp_element **pc) |
c906108c SS |
258 | { |
259 | union exp_element *tentative_pc = *pc; | |
260 | struct value *v = const_expr (&tentative_pc); | |
261 | ||
262 | /* If we got a value, then update the real PC. */ | |
263 | if (v) | |
264 | *pc = tentative_pc; | |
c5aa993b | 265 | |
c906108c SS |
266 | return v; |
267 | } | |
c906108c | 268 | \f |
c5aa993b | 269 | |
c906108c SS |
270 | /* Generating bytecode from GDB expressions: general assumptions */ |
271 | ||
272 | /* Here are a few general assumptions made throughout the code; if you | |
273 | want to make a change that contradicts one of these, then you'd | |
274 | better scan things pretty thoroughly. | |
275 | ||
276 | - We assume that all values occupy one stack element. For example, | |
c5aa993b JM |
277 | sometimes we'll swap to get at the left argument to a binary |
278 | operator. If we decide that void values should occupy no stack | |
279 | elements, or that synthetic arrays (whose size is determined at | |
280 | run time, created by the `@' operator) should occupy two stack | |
281 | elements (address and length), then this will cause trouble. | |
c906108c SS |
282 | |
283 | - We assume the stack elements are infinitely wide, and that we | |
c5aa993b JM |
284 | don't have to worry what happens if the user requests an |
285 | operation that is wider than the actual interpreter's stack. | |
286 | That is, it's up to the interpreter to handle directly all the | |
287 | integer widths the user has access to. (Woe betide the language | |
288 | with bignums!) | |
c906108c SS |
289 | |
290 | - We don't support side effects. Thus, we don't have to worry about | |
c5aa993b | 291 | GCC's generalized lvalues, function calls, etc. |
c906108c SS |
292 | |
293 | - We don't support floating point. Many places where we switch on | |
c5aa993b JM |
294 | some type don't bother to include cases for floating point; there |
295 | may be even more subtle ways this assumption exists. For | |
296 | example, the arguments to % must be integers. | |
c906108c SS |
297 | |
298 | - We assume all subexpressions have a static, unchanging type. If | |
c5aa993b JM |
299 | we tried to support convenience variables, this would be a |
300 | problem. | |
c906108c SS |
301 | |
302 | - All values on the stack should always be fully zero- or | |
c5aa993b JM |
303 | sign-extended. |
304 | ||
305 | (I wasn't sure whether to choose this or its opposite --- that | |
306 | only addresses are assumed extended --- but it turns out that | |
307 | neither convention completely eliminates spurious extend | |
308 | operations (if everything is always extended, then you have to | |
309 | extend after add, because it could overflow; if nothing is | |
310 | extended, then you end up producing extends whenever you change | |
311 | sizes), and this is simpler.) */ | |
c906108c | 312 | \f |
c5aa993b | 313 | |
400c6af0 SS |
314 | /* Scan for all static fields in the given class, including any base |
315 | classes, and generate tracing bytecodes for each. */ | |
316 | ||
317 | static void | |
318 | gen_trace_static_fields (struct gdbarch *gdbarch, | |
319 | struct agent_expr *ax, | |
320 | struct type *type) | |
321 | { | |
322 | int i, nbases = TYPE_N_BASECLASSES (type); | |
323 | struct axs_value value; | |
324 | ||
325 | CHECK_TYPEDEF (type); | |
326 | ||
327 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) | |
328 | { | |
329 | if (field_is_static (&TYPE_FIELD (type, i))) | |
330 | { | |
331 | gen_static_field (gdbarch, ax, &value, type, i); | |
332 | if (value.optimized_out) | |
333 | continue; | |
334 | switch (value.kind) | |
335 | { | |
336 | case axs_lvalue_memory: | |
337 | { | |
744a8059 SP |
338 | /* Initialize the TYPE_LENGTH if it is a typedef. */ |
339 | check_typedef (value.type); | |
340 | ax_const_l (ax, TYPE_LENGTH (value.type)); | |
400c6af0 SS |
341 | ax_simple (ax, aop_trace); |
342 | } | |
343 | break; | |
344 | ||
345 | case axs_lvalue_register: | |
35c9c7ba SS |
346 | /* We don't actually need the register's value to be pushed, |
347 | just note that we need it to be collected. */ | |
348 | ax_reg_mask (ax, value.u.reg); | |
400c6af0 SS |
349 | |
350 | default: | |
351 | break; | |
352 | } | |
353 | } | |
354 | } | |
355 | ||
356 | /* Now scan through base classes recursively. */ | |
357 | for (i = 0; i < nbases; i++) | |
358 | { | |
359 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
360 | ||
361 | gen_trace_static_fields (gdbarch, ax, basetype); | |
362 | } | |
363 | } | |
364 | ||
c906108c SS |
365 | /* Trace the lvalue on the stack, if it needs it. In either case, pop |
366 | the value. Useful on the left side of a comma, and at the end of | |
367 | an expression being used for tracing. */ | |
368 | static void | |
400c6af0 SS |
369 | gen_traced_pop (struct gdbarch *gdbarch, |
370 | struct agent_expr *ax, struct axs_value *value) | |
c906108c | 371 | { |
3065dfb6 | 372 | int string_trace = 0; |
92bc6a20 | 373 | if (ax->trace_string |
3065dfb6 SS |
374 | && TYPE_CODE (value->type) == TYPE_CODE_PTR |
375 | && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)), | |
376 | 's')) | |
377 | string_trace = 1; | |
378 | ||
92bc6a20 | 379 | if (ax->tracing) |
c906108c SS |
380 | switch (value->kind) |
381 | { | |
382 | case axs_rvalue: | |
3065dfb6 SS |
383 | if (string_trace) |
384 | { | |
92bc6a20 | 385 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
386 | ax_simple (ax, aop_tracenz); |
387 | } | |
388 | else | |
389 | /* We don't trace rvalues, just the lvalues necessary to | |
390 | produce them. So just dispose of this value. */ | |
391 | ax_simple (ax, aop_pop); | |
c906108c SS |
392 | break; |
393 | ||
394 | case axs_lvalue_memory: | |
395 | { | |
3065dfb6 SS |
396 | if (string_trace) |
397 | ax_simple (ax, aop_dup); | |
398 | ||
744a8059 SP |
399 | /* Initialize the TYPE_LENGTH if it is a typedef. */ |
400 | check_typedef (value->type); | |
401 | ||
c906108c SS |
402 | /* There's no point in trying to use a trace_quick bytecode |
403 | here, since "trace_quick SIZE pop" is three bytes, whereas | |
404 | "const8 SIZE trace" is also three bytes, does the same | |
405 | thing, and the simplest code which generates that will also | |
406 | work correctly for objects with large sizes. */ | |
744a8059 | 407 | ax_const_l (ax, TYPE_LENGTH (value->type)); |
c906108c | 408 | ax_simple (ax, aop_trace); |
3065dfb6 SS |
409 | |
410 | if (string_trace) | |
411 | { | |
412 | ax_simple (ax, aop_ref32); | |
92bc6a20 | 413 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
414 | ax_simple (ax, aop_tracenz); |
415 | } | |
c906108c | 416 | } |
c5aa993b | 417 | break; |
c906108c SS |
418 | |
419 | case axs_lvalue_register: | |
35c9c7ba SS |
420 | /* We don't actually need the register's value to be on the |
421 | stack, and the target will get heartburn if the register is | |
422 | larger than will fit in a stack, so just mark it for | |
423 | collection and be done with it. */ | |
424 | ax_reg_mask (ax, value->u.reg); | |
3065dfb6 SS |
425 | |
426 | /* But if the register points to a string, assume the value | |
427 | will fit on the stack and push it anyway. */ | |
428 | if (string_trace) | |
429 | { | |
430 | ax_reg (ax, value->u.reg); | |
92bc6a20 | 431 | ax_const_l (ax, ax->trace_string); |
3065dfb6 SS |
432 | ax_simple (ax, aop_tracenz); |
433 | } | |
c906108c SS |
434 | break; |
435 | } | |
436 | else | |
437 | /* If we're not tracing, just pop the value. */ | |
438 | ax_simple (ax, aop_pop); | |
400c6af0 SS |
439 | |
440 | /* To trace C++ classes with static fields stored elsewhere. */ | |
92bc6a20 | 441 | if (ax->tracing |
400c6af0 SS |
442 | && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT |
443 | || TYPE_CODE (value->type) == TYPE_CODE_UNION)) | |
444 | gen_trace_static_fields (gdbarch, ax, value->type); | |
c906108c | 445 | } |
c5aa993b | 446 | \f |
c906108c SS |
447 | |
448 | ||
c906108c SS |
449 | /* Generating bytecode from GDB expressions: helper functions */ |
450 | ||
451 | /* Assume that the lower bits of the top of the stack is a value of | |
452 | type TYPE, and the upper bits are zero. Sign-extend if necessary. */ | |
453 | static void | |
fba45db2 | 454 | gen_sign_extend (struct agent_expr *ax, struct type *type) |
c906108c SS |
455 | { |
456 | /* Do we need to sign-extend this? */ | |
c5aa993b | 457 | if (!TYPE_UNSIGNED (type)) |
0004e5a2 | 458 | ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT); |
c906108c SS |
459 | } |
460 | ||
461 | ||
462 | /* Assume the lower bits of the top of the stack hold a value of type | |
463 | TYPE, and the upper bits are garbage. Sign-extend or truncate as | |
464 | needed. */ | |
465 | static void | |
fba45db2 | 466 | gen_extend (struct agent_expr *ax, struct type *type) |
c906108c | 467 | { |
0004e5a2 | 468 | int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT; |
5b4ee69b | 469 | |
c906108c SS |
470 | /* I just had to. */ |
471 | ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits)); | |
472 | } | |
473 | ||
474 | ||
475 | /* Assume that the top of the stack contains a value of type "pointer | |
476 | to TYPE"; generate code to fetch its value. Note that TYPE is the | |
477 | target type, not the pointer type. */ | |
478 | static void | |
fba45db2 | 479 | gen_fetch (struct agent_expr *ax, struct type *type) |
c906108c | 480 | { |
92bc6a20 | 481 | if (ax->tracing) |
c906108c SS |
482 | { |
483 | /* Record the area of memory we're about to fetch. */ | |
484 | ax_trace_quick (ax, TYPE_LENGTH (type)); | |
485 | } | |
486 | ||
af381b8c JB |
487 | if (TYPE_CODE (type) == TYPE_CODE_RANGE) |
488 | type = TYPE_TARGET_TYPE (type); | |
489 | ||
0004e5a2 | 490 | switch (TYPE_CODE (type)) |
c906108c SS |
491 | { |
492 | case TYPE_CODE_PTR: | |
b97aedf3 | 493 | case TYPE_CODE_REF: |
c906108c SS |
494 | case TYPE_CODE_ENUM: |
495 | case TYPE_CODE_INT: | |
496 | case TYPE_CODE_CHAR: | |
3b11a015 | 497 | case TYPE_CODE_BOOL: |
c906108c SS |
498 | /* It's a scalar value, so we know how to dereference it. How |
499 | many bytes long is it? */ | |
0004e5a2 | 500 | switch (TYPE_LENGTH (type)) |
c906108c | 501 | { |
c5aa993b JM |
502 | case 8 / TARGET_CHAR_BIT: |
503 | ax_simple (ax, aop_ref8); | |
504 | break; | |
505 | case 16 / TARGET_CHAR_BIT: | |
506 | ax_simple (ax, aop_ref16); | |
507 | break; | |
508 | case 32 / TARGET_CHAR_BIT: | |
509 | ax_simple (ax, aop_ref32); | |
510 | break; | |
511 | case 64 / TARGET_CHAR_BIT: | |
512 | ax_simple (ax, aop_ref64); | |
513 | break; | |
c906108c SS |
514 | |
515 | /* Either our caller shouldn't have asked us to dereference | |
516 | that pointer (other code's fault), or we're not | |
517 | implementing something we should be (this code's fault). | |
518 | In any case, it's a bug the user shouldn't see. */ | |
519 | default: | |
8e65ff28 | 520 | internal_error (__FILE__, __LINE__, |
3d263c1d | 521 | _("gen_fetch: strange size")); |
c906108c SS |
522 | } |
523 | ||
524 | gen_sign_extend (ax, type); | |
525 | break; | |
526 | ||
527 | default: | |
52323be9 LM |
528 | /* Our caller requested us to dereference a pointer from an unsupported |
529 | type. Error out and give callers a chance to handle the failure | |
530 | gracefully. */ | |
531 | error (_("gen_fetch: Unsupported type code `%s'."), | |
532 | TYPE_NAME (type)); | |
c906108c SS |
533 | } |
534 | } | |
535 | ||
536 | ||
537 | /* Generate code to left shift the top of the stack by DISTANCE bits, or | |
538 | right shift it by -DISTANCE bits if DISTANCE < 0. This generates | |
539 | unsigned (logical) right shifts. */ | |
540 | static void | |
fba45db2 | 541 | gen_left_shift (struct agent_expr *ax, int distance) |
c906108c SS |
542 | { |
543 | if (distance > 0) | |
544 | { | |
545 | ax_const_l (ax, distance); | |
546 | ax_simple (ax, aop_lsh); | |
547 | } | |
548 | else if (distance < 0) | |
549 | { | |
550 | ax_const_l (ax, -distance); | |
551 | ax_simple (ax, aop_rsh_unsigned); | |
552 | } | |
553 | } | |
c5aa993b | 554 | \f |
c906108c SS |
555 | |
556 | ||
c906108c SS |
557 | /* Generating bytecode from GDB expressions: symbol references */ |
558 | ||
559 | /* Generate code to push the base address of the argument portion of | |
560 | the top stack frame. */ | |
561 | static void | |
f7c79c41 | 562 | gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax) |
c906108c | 563 | { |
39d4ef09 AC |
564 | int frame_reg; |
565 | LONGEST frame_offset; | |
c906108c | 566 | |
f7c79c41 | 567 | gdbarch_virtual_frame_pointer (gdbarch, |
c7bb205c | 568 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 569 | ax_reg (ax, frame_reg); |
c906108c SS |
570 | gen_offset (ax, frame_offset); |
571 | } | |
572 | ||
573 | ||
574 | /* Generate code to push the base address of the locals portion of the | |
575 | top stack frame. */ | |
576 | static void | |
f7c79c41 | 577 | gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax) |
c906108c | 578 | { |
39d4ef09 AC |
579 | int frame_reg; |
580 | LONGEST frame_offset; | |
c906108c | 581 | |
f7c79c41 | 582 | gdbarch_virtual_frame_pointer (gdbarch, |
c7bb205c | 583 | ax->scope, &frame_reg, &frame_offset); |
c5aa993b | 584 | ax_reg (ax, frame_reg); |
c906108c SS |
585 | gen_offset (ax, frame_offset); |
586 | } | |
587 | ||
588 | ||
589 | /* Generate code to add OFFSET to the top of the stack. Try to | |
590 | generate short and readable code. We use this for getting to | |
591 | variables on the stack, and structure members. If we were | |
592 | programming in ML, it would be clearer why these are the same | |
593 | thing. */ | |
594 | static void | |
fba45db2 | 595 | gen_offset (struct agent_expr *ax, int offset) |
c906108c SS |
596 | { |
597 | /* It would suffice to simply push the offset and add it, but this | |
598 | makes it easier to read positive and negative offsets in the | |
599 | bytecode. */ | |
600 | if (offset > 0) | |
601 | { | |
602 | ax_const_l (ax, offset); | |
603 | ax_simple (ax, aop_add); | |
604 | } | |
605 | else if (offset < 0) | |
606 | { | |
607 | ax_const_l (ax, -offset); | |
608 | ax_simple (ax, aop_sub); | |
609 | } | |
610 | } | |
611 | ||
612 | ||
613 | /* In many cases, a symbol's value is the offset from some other | |
614 | address (stack frame, base register, etc.) Generate code to add | |
615 | VAR's value to the top of the stack. */ | |
616 | static void | |
fba45db2 | 617 | gen_sym_offset (struct agent_expr *ax, struct symbol *var) |
c906108c SS |
618 | { |
619 | gen_offset (ax, SYMBOL_VALUE (var)); | |
620 | } | |
621 | ||
622 | ||
623 | /* Generate code for a variable reference to AX. The variable is the | |
624 | symbol VAR. Set VALUE to describe the result. */ | |
625 | ||
626 | static void | |
f7c79c41 UW |
627 | gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax, |
628 | struct axs_value *value, struct symbol *var) | |
c906108c | 629 | { |
0e2de366 | 630 | /* Dereference any typedefs. */ |
c906108c | 631 | value->type = check_typedef (SYMBOL_TYPE (var)); |
400c6af0 | 632 | value->optimized_out = 0; |
c906108c | 633 | |
24d6c2a0 TT |
634 | if (SYMBOL_COMPUTED_OPS (var) != NULL) |
635 | { | |
636 | SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value); | |
637 | return; | |
638 | } | |
639 | ||
c906108c SS |
640 | /* I'm imitating the code in read_var_value. */ |
641 | switch (SYMBOL_CLASS (var)) | |
642 | { | |
643 | case LOC_CONST: /* A constant, like an enum value. */ | |
644 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var)); | |
645 | value->kind = axs_rvalue; | |
646 | break; | |
647 | ||
648 | case LOC_LABEL: /* A goto label, being used as a value. */ | |
649 | ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var)); | |
650 | value->kind = axs_rvalue; | |
651 | break; | |
652 | ||
653 | case LOC_CONST_BYTES: | |
8e65ff28 | 654 | internal_error (__FILE__, __LINE__, |
3e43a32a MS |
655 | _("gen_var_ref: LOC_CONST_BYTES " |
656 | "symbols are not supported")); | |
c906108c SS |
657 | |
658 | /* Variable at a fixed location in memory. Easy. */ | |
659 | case LOC_STATIC: | |
660 | /* Push the address of the variable. */ | |
661 | ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var)); | |
662 | value->kind = axs_lvalue_memory; | |
663 | break; | |
664 | ||
665 | case LOC_ARG: /* var lives in argument area of frame */ | |
f7c79c41 | 666 | gen_frame_args_address (gdbarch, ax); |
c906108c SS |
667 | gen_sym_offset (ax, var); |
668 | value->kind = axs_lvalue_memory; | |
669 | break; | |
670 | ||
671 | case LOC_REF_ARG: /* As above, but the frame slot really | |
672 | holds the address of the variable. */ | |
f7c79c41 | 673 | gen_frame_args_address (gdbarch, ax); |
c906108c SS |
674 | gen_sym_offset (ax, var); |
675 | /* Don't assume any particular pointer size. */ | |
f7c79c41 | 676 | gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr); |
c906108c SS |
677 | value->kind = axs_lvalue_memory; |
678 | break; | |
679 | ||
680 | case LOC_LOCAL: /* var lives in locals area of frame */ | |
f7c79c41 | 681 | gen_frame_locals_address (gdbarch, ax); |
c906108c SS |
682 | gen_sym_offset (ax, var); |
683 | value->kind = axs_lvalue_memory; | |
684 | break; | |
685 | ||
c906108c | 686 | case LOC_TYPEDEF: |
3d263c1d | 687 | error (_("Cannot compute value of typedef `%s'."), |
de5ad195 | 688 | SYMBOL_PRINT_NAME (var)); |
c906108c SS |
689 | break; |
690 | ||
691 | case LOC_BLOCK: | |
692 | ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var))); | |
693 | value->kind = axs_rvalue; | |
694 | break; | |
695 | ||
696 | case LOC_REGISTER: | |
c906108c SS |
697 | /* Don't generate any code at all; in the process of treating |
698 | this as an lvalue or rvalue, the caller will generate the | |
699 | right code. */ | |
700 | value->kind = axs_lvalue_register; | |
768a979c | 701 | value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch); |
c906108c SS |
702 | break; |
703 | ||
704 | /* A lot like LOC_REF_ARG, but the pointer lives directly in a | |
2a2d4dc3 AS |
705 | register, not on the stack. Simpler than LOC_REGISTER |
706 | because it's just like any other case where the thing | |
707 | has a real address. */ | |
c906108c | 708 | case LOC_REGPARM_ADDR: |
768a979c | 709 | ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch)); |
c906108c SS |
710 | value->kind = axs_lvalue_memory; |
711 | break; | |
712 | ||
713 | case LOC_UNRESOLVED: | |
714 | { | |
c5aa993b | 715 | struct minimal_symbol *msym |
3567439c | 716 | = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL); |
5b4ee69b | 717 | |
c5aa993b | 718 | if (!msym) |
3d263c1d | 719 | error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var)); |
c5aa993b | 720 | |
c906108c SS |
721 | /* Push the address of the variable. */ |
722 | ax_const_l (ax, SYMBOL_VALUE_ADDRESS (msym)); | |
723 | value->kind = axs_lvalue_memory; | |
724 | } | |
c5aa993b | 725 | break; |
c906108c | 726 | |
a55cc764 | 727 | case LOC_COMPUTED: |
24d6c2a0 | 728 | gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method")); |
a55cc764 | 729 | |
c906108c | 730 | case LOC_OPTIMIZED_OUT: |
400c6af0 SS |
731 | /* Flag this, but don't say anything; leave it up to callers to |
732 | warn the user. */ | |
733 | value->optimized_out = 1; | |
c906108c SS |
734 | break; |
735 | ||
736 | default: | |
3d263c1d | 737 | error (_("Cannot find value of botched symbol `%s'."), |
de5ad195 | 738 | SYMBOL_PRINT_NAME (var)); |
c906108c SS |
739 | break; |
740 | } | |
741 | } | |
c5aa993b | 742 | \f |
c906108c SS |
743 | |
744 | ||
c906108c SS |
745 | /* Generating bytecode from GDB expressions: literals */ |
746 | ||
747 | static void | |
fba45db2 KB |
748 | gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k, |
749 | struct type *type) | |
c906108c SS |
750 | { |
751 | ax_const_l (ax, k); | |
752 | value->kind = axs_rvalue; | |
648027cc | 753 | value->type = check_typedef (type); |
c906108c | 754 | } |
c5aa993b | 755 | \f |
c906108c SS |
756 | |
757 | ||
c906108c SS |
758 | /* Generating bytecode from GDB expressions: unary conversions, casts */ |
759 | ||
760 | /* Take what's on the top of the stack (as described by VALUE), and | |
761 | try to make an rvalue out of it. Signal an error if we can't do | |
762 | that. */ | |
55aa24fb | 763 | void |
fba45db2 | 764 | require_rvalue (struct agent_expr *ax, struct axs_value *value) |
c906108c | 765 | { |
3a96536b SS |
766 | /* Only deal with scalars, structs and such may be too large |
767 | to fit in a stack entry. */ | |
768 | value->type = check_typedef (value->type); | |
769 | if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY | |
770 | || TYPE_CODE (value->type) == TYPE_CODE_STRUCT | |
771 | || TYPE_CODE (value->type) == TYPE_CODE_UNION | |
772 | || TYPE_CODE (value->type) == TYPE_CODE_FUNC) | |
1c40aa62 | 773 | error (_("Value not scalar: cannot be an rvalue.")); |
3a96536b | 774 | |
c906108c SS |
775 | switch (value->kind) |
776 | { | |
777 | case axs_rvalue: | |
778 | /* It's already an rvalue. */ | |
779 | break; | |
780 | ||
781 | case axs_lvalue_memory: | |
782 | /* The top of stack is the address of the object. Dereference. */ | |
783 | gen_fetch (ax, value->type); | |
784 | break; | |
785 | ||
786 | case axs_lvalue_register: | |
787 | /* There's nothing on the stack, but value->u.reg is the | |
788 | register number containing the value. | |
789 | ||
c5aa993b JM |
790 | When we add floating-point support, this is going to have to |
791 | change. What about SPARC register pairs, for example? */ | |
c906108c SS |
792 | ax_reg (ax, value->u.reg); |
793 | gen_extend (ax, value->type); | |
794 | break; | |
795 | } | |
796 | ||
797 | value->kind = axs_rvalue; | |
798 | } | |
799 | ||
800 | ||
801 | /* Assume the top of the stack is described by VALUE, and perform the | |
802 | usual unary conversions. This is motivated by ANSI 6.2.2, but of | |
803 | course GDB expressions are not ANSI; they're the mishmash union of | |
804 | a bunch of languages. Rah. | |
805 | ||
806 | NOTE! This function promises to produce an rvalue only when the | |
807 | incoming value is of an appropriate type. In other words, the | |
808 | consumer of the value this function produces may assume the value | |
809 | is an rvalue only after checking its type. | |
810 | ||
811 | The immediate issue is that if the user tries to use a structure or | |
812 | union as an operand of, say, the `+' operator, we don't want to try | |
813 | to convert that structure to an rvalue; require_rvalue will bomb on | |
814 | structs and unions. Rather, we want to simply pass the struct | |
815 | lvalue through unchanged, and let `+' raise an error. */ | |
816 | ||
817 | static void | |
f7c79c41 UW |
818 | gen_usual_unary (struct expression *exp, struct agent_expr *ax, |
819 | struct axs_value *value) | |
c906108c SS |
820 | { |
821 | /* We don't have to generate any code for the usual integral | |
822 | conversions, since values are always represented as full-width on | |
823 | the stack. Should we tweak the type? */ | |
824 | ||
825 | /* Some types require special handling. */ | |
0004e5a2 | 826 | switch (TYPE_CODE (value->type)) |
c906108c SS |
827 | { |
828 | /* Functions get converted to a pointer to the function. */ | |
829 | case TYPE_CODE_FUNC: | |
830 | value->type = lookup_pointer_type (value->type); | |
831 | value->kind = axs_rvalue; /* Should always be true, but just in case. */ | |
832 | break; | |
833 | ||
834 | /* Arrays get converted to a pointer to their first element, and | |
c5aa993b | 835 | are no longer an lvalue. */ |
c906108c SS |
836 | case TYPE_CODE_ARRAY: |
837 | { | |
838 | struct type *elements = TYPE_TARGET_TYPE (value->type); | |
5b4ee69b | 839 | |
c906108c SS |
840 | value->type = lookup_pointer_type (elements); |
841 | value->kind = axs_rvalue; | |
842 | /* We don't need to generate any code; the address of the array | |
843 | is also the address of its first element. */ | |
844 | } | |
c5aa993b | 845 | break; |
c906108c | 846 | |
c5aa993b JM |
847 | /* Don't try to convert structures and unions to rvalues. Let the |
848 | consumer signal an error. */ | |
c906108c SS |
849 | case TYPE_CODE_STRUCT: |
850 | case TYPE_CODE_UNION: | |
851 | return; | |
c906108c SS |
852 | } |
853 | ||
854 | /* If the value is an lvalue, dereference it. */ | |
855 | require_rvalue (ax, value); | |
856 | } | |
857 | ||
858 | ||
859 | /* Return non-zero iff the type TYPE1 is considered "wider" than the | |
860 | type TYPE2, according to the rules described in gen_usual_arithmetic. */ | |
861 | static int | |
fba45db2 | 862 | type_wider_than (struct type *type1, struct type *type2) |
c906108c SS |
863 | { |
864 | return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2) | |
865 | || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2) | |
866 | && TYPE_UNSIGNED (type1) | |
c5aa993b | 867 | && !TYPE_UNSIGNED (type2))); |
c906108c SS |
868 | } |
869 | ||
870 | ||
871 | /* Return the "wider" of the two types TYPE1 and TYPE2. */ | |
872 | static struct type * | |
fba45db2 | 873 | max_type (struct type *type1, struct type *type2) |
c906108c SS |
874 | { |
875 | return type_wider_than (type1, type2) ? type1 : type2; | |
876 | } | |
877 | ||
878 | ||
879 | /* Generate code to convert a scalar value of type FROM to type TO. */ | |
880 | static void | |
fba45db2 | 881 | gen_conversion (struct agent_expr *ax, struct type *from, struct type *to) |
c906108c SS |
882 | { |
883 | /* Perhaps there is a more graceful way to state these rules. */ | |
884 | ||
885 | /* If we're converting to a narrower type, then we need to clear out | |
886 | the upper bits. */ | |
887 | if (TYPE_LENGTH (to) < TYPE_LENGTH (from)) | |
888 | gen_extend (ax, from); | |
889 | ||
890 | /* If the two values have equal width, but different signednesses, | |
891 | then we need to extend. */ | |
892 | else if (TYPE_LENGTH (to) == TYPE_LENGTH (from)) | |
893 | { | |
894 | if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to)) | |
895 | gen_extend (ax, to); | |
896 | } | |
897 | ||
898 | /* If we're converting to a wider type, and becoming unsigned, then | |
899 | we need to zero out any possible sign bits. */ | |
900 | else if (TYPE_LENGTH (to) > TYPE_LENGTH (from)) | |
901 | { | |
902 | if (TYPE_UNSIGNED (to)) | |
903 | gen_extend (ax, to); | |
904 | } | |
905 | } | |
906 | ||
907 | ||
908 | /* Return non-zero iff the type FROM will require any bytecodes to be | |
909 | emitted to be converted to the type TO. */ | |
910 | static int | |
fba45db2 | 911 | is_nontrivial_conversion (struct type *from, struct type *to) |
c906108c | 912 | { |
35c9c7ba | 913 | struct agent_expr *ax = new_agent_expr (NULL, 0); |
c906108c SS |
914 | int nontrivial; |
915 | ||
916 | /* Actually generate the code, and see if anything came out. At the | |
917 | moment, it would be trivial to replicate the code in | |
918 | gen_conversion here, but in the future, when we're supporting | |
919 | floating point and the like, it may not be. Doing things this | |
920 | way allows this function to be independent of the logic in | |
921 | gen_conversion. */ | |
922 | gen_conversion (ax, from, to); | |
923 | nontrivial = ax->len > 0; | |
924 | free_agent_expr (ax); | |
925 | return nontrivial; | |
926 | } | |
927 | ||
928 | ||
929 | /* Generate code to perform the "usual arithmetic conversions" (ANSI C | |
930 | 6.2.1.5) for the two operands of an arithmetic operator. This | |
931 | effectively finds a "least upper bound" type for the two arguments, | |
932 | and promotes each argument to that type. *VALUE1 and *VALUE2 | |
933 | describe the values as they are passed in, and as they are left. */ | |
934 | static void | |
f7c79c41 UW |
935 | gen_usual_arithmetic (struct expression *exp, struct agent_expr *ax, |
936 | struct axs_value *value1, struct axs_value *value2) | |
c906108c SS |
937 | { |
938 | /* Do the usual binary conversions. */ | |
939 | if (TYPE_CODE (value1->type) == TYPE_CODE_INT | |
940 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) | |
941 | { | |
942 | /* The ANSI integral promotions seem to work this way: Order the | |
c5aa993b JM |
943 | integer types by size, and then by signedness: an n-bit |
944 | unsigned type is considered "wider" than an n-bit signed | |
945 | type. Promote to the "wider" of the two types, and always | |
946 | promote at least to int. */ | |
f7c79c41 | 947 | struct type *target = max_type (builtin_type (exp->gdbarch)->builtin_int, |
c906108c SS |
948 | max_type (value1->type, value2->type)); |
949 | ||
950 | /* Deal with value2, on the top of the stack. */ | |
951 | gen_conversion (ax, value2->type, target); | |
952 | ||
953 | /* Deal with value1, not on the top of the stack. Don't | |
954 | generate the `swap' instructions if we're not actually going | |
955 | to do anything. */ | |
956 | if (is_nontrivial_conversion (value1->type, target)) | |
957 | { | |
958 | ax_simple (ax, aop_swap); | |
959 | gen_conversion (ax, value1->type, target); | |
960 | ax_simple (ax, aop_swap); | |
961 | } | |
962 | ||
648027cc | 963 | value1->type = value2->type = check_typedef (target); |
c906108c SS |
964 | } |
965 | } | |
966 | ||
967 | ||
968 | /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on | |
969 | the value on the top of the stack, as described by VALUE. Assume | |
970 | the value has integral type. */ | |
971 | static void | |
f7c79c41 UW |
972 | gen_integral_promotions (struct expression *exp, struct agent_expr *ax, |
973 | struct axs_value *value) | |
c906108c | 974 | { |
f7c79c41 UW |
975 | const struct builtin_type *builtin = builtin_type (exp->gdbarch); |
976 | ||
977 | if (!type_wider_than (value->type, builtin->builtin_int)) | |
c906108c | 978 | { |
f7c79c41 UW |
979 | gen_conversion (ax, value->type, builtin->builtin_int); |
980 | value->type = builtin->builtin_int; | |
c906108c | 981 | } |
f7c79c41 | 982 | else if (!type_wider_than (value->type, builtin->builtin_unsigned_int)) |
c906108c | 983 | { |
f7c79c41 UW |
984 | gen_conversion (ax, value->type, builtin->builtin_unsigned_int); |
985 | value->type = builtin->builtin_unsigned_int; | |
c906108c SS |
986 | } |
987 | } | |
988 | ||
989 | ||
990 | /* Generate code for a cast to TYPE. */ | |
991 | static void | |
fba45db2 | 992 | gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type) |
c906108c SS |
993 | { |
994 | /* GCC does allow casts to yield lvalues, so this should be fixed | |
995 | before merging these changes into the trunk. */ | |
996 | require_rvalue (ax, value); | |
0e2de366 | 997 | /* Dereference typedefs. */ |
c906108c SS |
998 | type = check_typedef (type); |
999 | ||
0004e5a2 | 1000 | switch (TYPE_CODE (type)) |
c906108c SS |
1001 | { |
1002 | case TYPE_CODE_PTR: | |
b97aedf3 | 1003 | case TYPE_CODE_REF: |
c906108c SS |
1004 | /* It's implementation-defined, and I'll bet this is what GCC |
1005 | does. */ | |
1006 | break; | |
1007 | ||
1008 | case TYPE_CODE_ARRAY: | |
1009 | case TYPE_CODE_STRUCT: | |
1010 | case TYPE_CODE_UNION: | |
1011 | case TYPE_CODE_FUNC: | |
3d263c1d | 1012 | error (_("Invalid type cast: intended type must be scalar.")); |
c906108c SS |
1013 | |
1014 | case TYPE_CODE_ENUM: | |
3b11a015 | 1015 | case TYPE_CODE_BOOL: |
c906108c SS |
1016 | /* We don't have to worry about the size of the value, because |
1017 | all our integral values are fully sign-extended, and when | |
1018 | casting pointers we can do anything we like. Is there any | |
74b35824 JB |
1019 | way for us to know what GCC actually does with a cast like |
1020 | this? */ | |
c906108c | 1021 | break; |
c5aa993b | 1022 | |
c906108c SS |
1023 | case TYPE_CODE_INT: |
1024 | gen_conversion (ax, value->type, type); | |
1025 | break; | |
1026 | ||
1027 | case TYPE_CODE_VOID: | |
1028 | /* We could pop the value, and rely on everyone else to check | |
c5aa993b JM |
1029 | the type and notice that this value doesn't occupy a stack |
1030 | slot. But for now, leave the value on the stack, and | |
1031 | preserve the "value == stack element" assumption. */ | |
c906108c SS |
1032 | break; |
1033 | ||
1034 | default: | |
3d263c1d | 1035 | error (_("Casts to requested type are not yet implemented.")); |
c906108c SS |
1036 | } |
1037 | ||
1038 | value->type = type; | |
1039 | } | |
c5aa993b | 1040 | \f |
c906108c SS |
1041 | |
1042 | ||
c906108c SS |
1043 | /* Generating bytecode from GDB expressions: arithmetic */ |
1044 | ||
1045 | /* Scale the integer on the top of the stack by the size of the target | |
1046 | of the pointer type TYPE. */ | |
1047 | static void | |
fba45db2 | 1048 | gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type) |
c906108c SS |
1049 | { |
1050 | struct type *element = TYPE_TARGET_TYPE (type); | |
1051 | ||
0004e5a2 | 1052 | if (TYPE_LENGTH (element) != 1) |
c906108c | 1053 | { |
0004e5a2 | 1054 | ax_const_l (ax, TYPE_LENGTH (element)); |
c906108c SS |
1055 | ax_simple (ax, op); |
1056 | } | |
1057 | } | |
1058 | ||
1059 | ||
f7c79c41 | 1060 | /* Generate code for pointer arithmetic PTR + INT. */ |
c906108c | 1061 | static void |
f7c79c41 UW |
1062 | gen_ptradd (struct agent_expr *ax, struct axs_value *value, |
1063 | struct axs_value *value1, struct axs_value *value2) | |
c906108c | 1064 | { |
b97aedf3 | 1065 | gdb_assert (pointer_type (value1->type)); |
f7c79c41 | 1066 | gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); |
c906108c | 1067 | |
f7c79c41 UW |
1068 | gen_scale (ax, aop_mul, value1->type); |
1069 | ax_simple (ax, aop_add); | |
1070 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
1071 | value->type = value1->type; | |
1072 | value->kind = axs_rvalue; | |
1073 | } | |
c906108c | 1074 | |
c906108c | 1075 | |
f7c79c41 UW |
1076 | /* Generate code for pointer arithmetic PTR - INT. */ |
1077 | static void | |
1078 | gen_ptrsub (struct agent_expr *ax, struct axs_value *value, | |
1079 | struct axs_value *value1, struct axs_value *value2) | |
1080 | { | |
b97aedf3 | 1081 | gdb_assert (pointer_type (value1->type)); |
f7c79c41 | 1082 | gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT); |
c906108c | 1083 | |
f7c79c41 UW |
1084 | gen_scale (ax, aop_mul, value1->type); |
1085 | ax_simple (ax, aop_sub); | |
1086 | gen_extend (ax, value1->type); /* Catch overflow. */ | |
1087 | value->type = value1->type; | |
c906108c SS |
1088 | value->kind = axs_rvalue; |
1089 | } | |
1090 | ||
1091 | ||
f7c79c41 | 1092 | /* Generate code for pointer arithmetic PTR - PTR. */ |
c906108c | 1093 | static void |
f7c79c41 UW |
1094 | gen_ptrdiff (struct agent_expr *ax, struct axs_value *value, |
1095 | struct axs_value *value1, struct axs_value *value2, | |
1096 | struct type *result_type) | |
c906108c | 1097 | { |
b97aedf3 SS |
1098 | gdb_assert (pointer_type (value1->type)); |
1099 | gdb_assert (pointer_type (value2->type)); | |
c906108c | 1100 | |
f7c79c41 UW |
1101 | if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type)) |
1102 | != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type))) | |
ac74f770 MS |
1103 | error (_("\ |
1104 | First argument of `-' is a pointer, but second argument is neither\n\ | |
1105 | an integer nor a pointer of the same type.")); | |
c906108c | 1106 | |
f7c79c41 UW |
1107 | ax_simple (ax, aop_sub); |
1108 | gen_scale (ax, aop_div_unsigned, value1->type); | |
1109 | value->type = result_type; | |
c906108c SS |
1110 | value->kind = axs_rvalue; |
1111 | } | |
1112 | ||
3b11a015 SS |
1113 | static void |
1114 | gen_equal (struct agent_expr *ax, struct axs_value *value, | |
1115 | struct axs_value *value1, struct axs_value *value2, | |
1116 | struct type *result_type) | |
1117 | { | |
1118 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1119 | ax_simple (ax, aop_equal); | |
1120 | else | |
1121 | gen_binop (ax, value, value1, value2, | |
1122 | aop_equal, aop_equal, 0, "equal"); | |
1123 | value->type = result_type; | |
1124 | value->kind = axs_rvalue; | |
1125 | } | |
1126 | ||
1127 | static void | |
1128 | gen_less (struct agent_expr *ax, struct axs_value *value, | |
1129 | struct axs_value *value1, struct axs_value *value2, | |
1130 | struct type *result_type) | |
1131 | { | |
1132 | if (pointer_type (value1->type) || pointer_type (value2->type)) | |
1133 | ax_simple (ax, aop_less_unsigned); | |
1134 | else | |
1135 | gen_binop (ax, value, value1, value2, | |
1136 | aop_less_signed, aop_less_unsigned, 0, "less than"); | |
1137 | value->type = result_type; | |
1138 | value->kind = axs_rvalue; | |
1139 | } | |
f7c79c41 | 1140 | |
c906108c SS |
1141 | /* Generate code for a binary operator that doesn't do pointer magic. |
1142 | We set VALUE to describe the result value; we assume VALUE1 and | |
1143 | VALUE2 describe the two operands, and that they've undergone the | |
1144 | usual binary conversions. MAY_CARRY should be non-zero iff the | |
1145 | result needs to be extended. NAME is the English name of the | |
1146 | operator, used in error messages */ | |
1147 | static void | |
fba45db2 | 1148 | gen_binop (struct agent_expr *ax, struct axs_value *value, |
3e43a32a MS |
1149 | struct axs_value *value1, struct axs_value *value2, |
1150 | enum agent_op op, enum agent_op op_unsigned, | |
1151 | int may_carry, char *name) | |
c906108c SS |
1152 | { |
1153 | /* We only handle INT op INT. */ | |
0004e5a2 DJ |
1154 | if ((TYPE_CODE (value1->type) != TYPE_CODE_INT) |
1155 | || (TYPE_CODE (value2->type) != TYPE_CODE_INT)) | |
3d263c1d | 1156 | error (_("Invalid combination of types in %s."), name); |
c5aa993b | 1157 | |
c906108c SS |
1158 | ax_simple (ax, |
1159 | TYPE_UNSIGNED (value1->type) ? op_unsigned : op); | |
1160 | if (may_carry) | |
c5aa993b | 1161 | gen_extend (ax, value1->type); /* catch overflow */ |
c906108c SS |
1162 | value->type = value1->type; |
1163 | value->kind = axs_rvalue; | |
1164 | } | |
1165 | ||
1166 | ||
1167 | static void | |
f7c79c41 UW |
1168 | gen_logical_not (struct agent_expr *ax, struct axs_value *value, |
1169 | struct type *result_type) | |
c906108c SS |
1170 | { |
1171 | if (TYPE_CODE (value->type) != TYPE_CODE_INT | |
1172 | && TYPE_CODE (value->type) != TYPE_CODE_PTR) | |
3d263c1d | 1173 | error (_("Invalid type of operand to `!'.")); |
c906108c | 1174 | |
c906108c | 1175 | ax_simple (ax, aop_log_not); |
f7c79c41 | 1176 | value->type = result_type; |
c906108c SS |
1177 | } |
1178 | ||
1179 | ||
1180 | static void | |
fba45db2 | 1181 | gen_complement (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1182 | { |
1183 | if (TYPE_CODE (value->type) != TYPE_CODE_INT) | |
3d263c1d | 1184 | error (_("Invalid type of operand to `~'.")); |
c906108c | 1185 | |
c906108c SS |
1186 | ax_simple (ax, aop_bit_not); |
1187 | gen_extend (ax, value->type); | |
1188 | } | |
c5aa993b | 1189 | \f |
c906108c SS |
1190 | |
1191 | ||
c906108c SS |
1192 | /* Generating bytecode from GDB expressions: * & . -> @ sizeof */ |
1193 | ||
1194 | /* Dereference the value on the top of the stack. */ | |
1195 | static void | |
fba45db2 | 1196 | gen_deref (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1197 | { |
1198 | /* The caller should check the type, because several operators use | |
1199 | this, and we don't know what error message to generate. */ | |
b97aedf3 | 1200 | if (!pointer_type (value->type)) |
8e65ff28 | 1201 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1202 | _("gen_deref: expected a pointer")); |
c906108c SS |
1203 | |
1204 | /* We've got an rvalue now, which is a pointer. We want to yield an | |
1205 | lvalue, whose address is exactly that pointer. So we don't | |
1206 | actually emit any code; we just change the type from "Pointer to | |
1207 | T" to "T", and mark the value as an lvalue in memory. Leave it | |
1208 | to the consumer to actually dereference it. */ | |
1209 | value->type = check_typedef (TYPE_TARGET_TYPE (value->type)); | |
b1028c8e PA |
1210 | if (TYPE_CODE (value->type) == TYPE_CODE_VOID) |
1211 | error (_("Attempt to dereference a generic pointer.")); | |
0004e5a2 | 1212 | value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC) |
c906108c SS |
1213 | ? axs_rvalue : axs_lvalue_memory); |
1214 | } | |
1215 | ||
1216 | ||
1217 | /* Produce the address of the lvalue on the top of the stack. */ | |
1218 | static void | |
fba45db2 | 1219 | gen_address_of (struct agent_expr *ax, struct axs_value *value) |
c906108c SS |
1220 | { |
1221 | /* Special case for taking the address of a function. The ANSI | |
1222 | standard describes this as a special case, too, so this | |
1223 | arrangement is not without motivation. */ | |
0004e5a2 | 1224 | if (TYPE_CODE (value->type) == TYPE_CODE_FUNC) |
c906108c SS |
1225 | /* The value's already an rvalue on the stack, so we just need to |
1226 | change the type. */ | |
1227 | value->type = lookup_pointer_type (value->type); | |
1228 | else | |
1229 | switch (value->kind) | |
1230 | { | |
1231 | case axs_rvalue: | |
3d263c1d | 1232 | error (_("Operand of `&' is an rvalue, which has no address.")); |
c906108c SS |
1233 | |
1234 | case axs_lvalue_register: | |
3d263c1d | 1235 | error (_("Operand of `&' is in a register, and has no address.")); |
c906108c SS |
1236 | |
1237 | case axs_lvalue_memory: | |
1238 | value->kind = axs_rvalue; | |
1239 | value->type = lookup_pointer_type (value->type); | |
1240 | break; | |
1241 | } | |
1242 | } | |
1243 | ||
c906108c SS |
1244 | /* Generate code to push the value of a bitfield of a structure whose |
1245 | address is on the top of the stack. START and END give the | |
1246 | starting and one-past-ending *bit* numbers of the field within the | |
1247 | structure. */ | |
1248 | static void | |
505e835d UW |
1249 | gen_bitfield_ref (struct expression *exp, struct agent_expr *ax, |
1250 | struct axs_value *value, struct type *type, | |
1251 | int start, int end) | |
c906108c SS |
1252 | { |
1253 | /* Note that ops[i] fetches 8 << i bits. */ | |
1254 | static enum agent_op ops[] | |
5b4ee69b | 1255 | = {aop_ref8, aop_ref16, aop_ref32, aop_ref64}; |
c906108c SS |
1256 | static int num_ops = (sizeof (ops) / sizeof (ops[0])); |
1257 | ||
1258 | /* We don't want to touch any byte that the bitfield doesn't | |
1259 | actually occupy; we shouldn't make any accesses we're not | |
1260 | explicitly permitted to. We rely here on the fact that the | |
1261 | bytecode `ref' operators work on unaligned addresses. | |
1262 | ||
1263 | It takes some fancy footwork to get the stack to work the way | |
1264 | we'd like. Say we're retrieving a bitfield that requires three | |
1265 | fetches. Initially, the stack just contains the address: | |
c5aa993b | 1266 | addr |
c906108c | 1267 | For the first fetch, we duplicate the address |
c5aa993b | 1268 | addr addr |
c906108c SS |
1269 | then add the byte offset, do the fetch, and shift and mask as |
1270 | needed, yielding a fragment of the value, properly aligned for | |
1271 | the final bitwise or: | |
c5aa993b | 1272 | addr frag1 |
c906108c | 1273 | then we swap, and repeat the process: |
c5aa993b JM |
1274 | frag1 addr --- address on top |
1275 | frag1 addr addr --- duplicate it | |
1276 | frag1 addr frag2 --- get second fragment | |
1277 | frag1 frag2 addr --- swap again | |
1278 | frag1 frag2 frag3 --- get third fragment | |
c906108c SS |
1279 | Notice that, since the third fragment is the last one, we don't |
1280 | bother duplicating the address this time. Now we have all the | |
1281 | fragments on the stack, and we can simply `or' them together, | |
1282 | yielding the final value of the bitfield. */ | |
1283 | ||
1284 | /* The first and one-after-last bits in the field, but rounded down | |
1285 | and up to byte boundaries. */ | |
1286 | int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT; | |
c5aa993b JM |
1287 | int bound_end = (((end + TARGET_CHAR_BIT - 1) |
1288 | / TARGET_CHAR_BIT) | |
1289 | * TARGET_CHAR_BIT); | |
c906108c SS |
1290 | |
1291 | /* current bit offset within the structure */ | |
1292 | int offset; | |
1293 | ||
1294 | /* The index in ops of the opcode we're considering. */ | |
1295 | int op; | |
1296 | ||
1297 | /* The number of fragments we generated in the process. Probably | |
1298 | equal to the number of `one' bits in bytesize, but who cares? */ | |
1299 | int fragment_count; | |
1300 | ||
0e2de366 | 1301 | /* Dereference any typedefs. */ |
c906108c SS |
1302 | type = check_typedef (type); |
1303 | ||
1304 | /* Can we fetch the number of bits requested at all? */ | |
1305 | if ((end - start) > ((1 << num_ops) * 8)) | |
8e65ff28 | 1306 | internal_error (__FILE__, __LINE__, |
3d263c1d | 1307 | _("gen_bitfield_ref: bitfield too wide")); |
c906108c SS |
1308 | |
1309 | /* Note that we know here that we only need to try each opcode once. | |
1310 | That may not be true on machines with weird byte sizes. */ | |
1311 | offset = bound_start; | |
1312 | fragment_count = 0; | |
1313 | for (op = num_ops - 1; op >= 0; op--) | |
1314 | { | |
1315 | /* number of bits that ops[op] would fetch */ | |
1316 | int op_size = 8 << op; | |
1317 | ||
1318 | /* The stack at this point, from bottom to top, contains zero or | |
c5aa993b JM |
1319 | more fragments, then the address. */ |
1320 | ||
c906108c SS |
1321 | /* Does this fetch fit within the bitfield? */ |
1322 | if (offset + op_size <= bound_end) | |
1323 | { | |
1324 | /* Is this the last fragment? */ | |
1325 | int last_frag = (offset + op_size == bound_end); | |
1326 | ||
c5aa993b JM |
1327 | if (!last_frag) |
1328 | ax_simple (ax, aop_dup); /* keep a copy of the address */ | |
1329 | ||
c906108c SS |
1330 | /* Add the offset. */ |
1331 | gen_offset (ax, offset / TARGET_CHAR_BIT); | |
1332 | ||
92bc6a20 | 1333 | if (ax->tracing) |
c906108c SS |
1334 | { |
1335 | /* Record the area of memory we're about to fetch. */ | |
1336 | ax_trace_quick (ax, op_size / TARGET_CHAR_BIT); | |
1337 | } | |
1338 | ||
1339 | /* Perform the fetch. */ | |
1340 | ax_simple (ax, ops[op]); | |
c5aa993b JM |
1341 | |
1342 | /* Shift the bits we have to their proper position. | |
c906108c SS |
1343 | gen_left_shift will generate right shifts when the operand |
1344 | is negative. | |
1345 | ||
c5aa993b JM |
1346 | A big-endian field diagram to ponder: |
1347 | byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7 | |
1348 | +------++------++------++------++------++------++------++------+ | |
1349 | xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx | |
1350 | ^ ^ ^ ^ | |
1351 | bit number 16 32 48 53 | |
c906108c SS |
1352 | These are bit numbers as supplied by GDB. Note that the |
1353 | bit numbers run from right to left once you've fetched the | |
1354 | value! | |
1355 | ||
c5aa993b JM |
1356 | A little-endian field diagram to ponder: |
1357 | byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0 | |
1358 | +------++------++------++------++------++------++------++------+ | |
1359 | xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx | |
1360 | ^ ^ ^ ^ ^ | |
1361 | bit number 48 32 16 4 0 | |
1362 | ||
1363 | In both cases, the most significant end is on the left | |
1364 | (i.e. normal numeric writing order), which means that you | |
1365 | don't go crazy thinking about `left' and `right' shifts. | |
1366 | ||
1367 | We don't have to worry about masking yet: | |
1368 | - If they contain garbage off the least significant end, then we | |
1369 | must be looking at the low end of the field, and the right | |
1370 | shift will wipe them out. | |
1371 | - If they contain garbage off the most significant end, then we | |
1372 | must be looking at the most significant end of the word, and | |
1373 | the sign/zero extension will wipe them out. | |
1374 | - If we're in the interior of the word, then there is no garbage | |
1375 | on either end, because the ref operators zero-extend. */ | |
505e835d | 1376 | if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG) |
c906108c | 1377 | gen_left_shift (ax, end - (offset + op_size)); |
c5aa993b | 1378 | else |
c906108c SS |
1379 | gen_left_shift (ax, offset - start); |
1380 | ||
c5aa993b | 1381 | if (!last_frag) |
c906108c SS |
1382 | /* Bring the copy of the address up to the top. */ |
1383 | ax_simple (ax, aop_swap); | |
1384 | ||
1385 | offset += op_size; | |
1386 | fragment_count++; | |
1387 | } | |
1388 | } | |
1389 | ||
1390 | /* Generate enough bitwise `or' operations to combine all the | |
1391 | fragments we left on the stack. */ | |
1392 | while (fragment_count-- > 1) | |
1393 | ax_simple (ax, aop_bit_or); | |
1394 | ||
1395 | /* Sign- or zero-extend the value as appropriate. */ | |
1396 | ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start)); | |
1397 | ||
1398 | /* This is *not* an lvalue. Ugh. */ | |
1399 | value->kind = axs_rvalue; | |
1400 | value->type = type; | |
1401 | } | |
1402 | ||
b6e7192f SS |
1403 | /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET |
1404 | is an accumulated offset (in bytes), will be nonzero for objects | |
1405 | embedded in other objects, like C++ base classes. Behavior should | |
1406 | generally follow value_primitive_field. */ | |
1407 | ||
1408 | static void | |
1409 | gen_primitive_field (struct expression *exp, | |
1410 | struct agent_expr *ax, struct axs_value *value, | |
1411 | int offset, int fieldno, struct type *type) | |
1412 | { | |
1413 | /* Is this a bitfield? */ | |
1414 | if (TYPE_FIELD_PACKED (type, fieldno)) | |
1415 | gen_bitfield_ref (exp, ax, value, TYPE_FIELD_TYPE (type, fieldno), | |
1416 | (offset * TARGET_CHAR_BIT | |
1417 | + TYPE_FIELD_BITPOS (type, fieldno)), | |
1418 | (offset * TARGET_CHAR_BIT | |
1419 | + TYPE_FIELD_BITPOS (type, fieldno) | |
1420 | + TYPE_FIELD_BITSIZE (type, fieldno))); | |
1421 | else | |
1422 | { | |
1423 | gen_offset (ax, offset | |
1424 | + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT); | |
1425 | value->kind = axs_lvalue_memory; | |
1426 | value->type = TYPE_FIELD_TYPE (type, fieldno); | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | /* Search for the given field in either the given type or one of its | |
1431 | base classes. Return 1 if found, 0 if not. */ | |
1432 | ||
1433 | static int | |
1434 | gen_struct_ref_recursive (struct expression *exp, struct agent_expr *ax, | |
1435 | struct axs_value *value, | |
1436 | char *field, int offset, struct type *type) | |
1437 | { | |
1438 | int i, rslt; | |
1439 | int nbases = TYPE_N_BASECLASSES (type); | |
1440 | ||
1441 | CHECK_TYPEDEF (type); | |
1442 | ||
1443 | for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--) | |
1444 | { | |
0d5cff50 | 1445 | const char *this_name = TYPE_FIELD_NAME (type, i); |
b6e7192f SS |
1446 | |
1447 | if (this_name) | |
1448 | { | |
1449 | if (strcmp (field, this_name) == 0) | |
1450 | { | |
1451 | /* Note that bytecodes for the struct's base (aka | |
1452 | "this") will have been generated already, which will | |
1453 | be unnecessary but not harmful if the static field is | |
1454 | being handled as a global. */ | |
1455 | if (field_is_static (&TYPE_FIELD (type, i))) | |
1456 | { | |
400c6af0 SS |
1457 | gen_static_field (exp->gdbarch, ax, value, type, i); |
1458 | if (value->optimized_out) | |
3e43a32a MS |
1459 | error (_("static field `%s' has been " |
1460 | "optimized out, cannot use"), | |
400c6af0 | 1461 | field); |
b6e7192f SS |
1462 | return 1; |
1463 | } | |
1464 | ||
1465 | gen_primitive_field (exp, ax, value, offset, i, type); | |
1466 | return 1; | |
1467 | } | |
1468 | #if 0 /* is this right? */ | |
1469 | if (this_name[0] == '\0') | |
1470 | internal_error (__FILE__, __LINE__, | |
1471 | _("find_field: anonymous unions not supported")); | |
1472 | #endif | |
1473 | } | |
1474 | } | |
1475 | ||
1476 | /* Now scan through base classes recursively. */ | |
1477 | for (i = 0; i < nbases; i++) | |
1478 | { | |
1479 | struct type *basetype = check_typedef (TYPE_BASECLASS (type, i)); | |
1480 | ||
1481 | rslt = gen_struct_ref_recursive (exp, ax, value, field, | |
3e43a32a MS |
1482 | offset + TYPE_BASECLASS_BITPOS (type, i) |
1483 | / TARGET_CHAR_BIT, | |
b6e7192f SS |
1484 | basetype); |
1485 | if (rslt) | |
1486 | return 1; | |
1487 | } | |
1488 | ||
1489 | /* Not found anywhere, flag so caller can complain. */ | |
1490 | return 0; | |
1491 | } | |
c906108c SS |
1492 | |
1493 | /* Generate code to reference the member named FIELD of a structure or | |
1494 | union. The top of the stack, as described by VALUE, should have | |
1495 | type (pointer to a)* struct/union. OPERATOR_NAME is the name of | |
1496 | the operator being compiled, and OPERAND_NAME is the kind of thing | |
1497 | it operates on; we use them in error messages. */ | |
1498 | static void | |
505e835d UW |
1499 | gen_struct_ref (struct expression *exp, struct agent_expr *ax, |
1500 | struct axs_value *value, char *field, | |
fba45db2 | 1501 | char *operator_name, char *operand_name) |
c906108c SS |
1502 | { |
1503 | struct type *type; | |
b6e7192f | 1504 | int found; |
c906108c SS |
1505 | |
1506 | /* Follow pointers until we reach a non-pointer. These aren't the C | |
1507 | semantics, but they're what the normal GDB evaluator does, so we | |
1508 | should at least be consistent. */ | |
b97aedf3 | 1509 | while (pointer_type (value->type)) |
c906108c | 1510 | { |
f7c79c41 | 1511 | require_rvalue (ax, value); |
c906108c SS |
1512 | gen_deref (ax, value); |
1513 | } | |
e8860ec2 | 1514 | type = check_typedef (value->type); |
c906108c SS |
1515 | |
1516 | /* This must yield a structure or a union. */ | |
1517 | if (TYPE_CODE (type) != TYPE_CODE_STRUCT | |
1518 | && TYPE_CODE (type) != TYPE_CODE_UNION) | |
3d263c1d | 1519 | error (_("The left operand of `%s' is not a %s."), |
c906108c SS |
1520 | operator_name, operand_name); |
1521 | ||
1522 | /* And it must be in memory; we don't deal with structure rvalues, | |
1523 | or structures living in registers. */ | |
1524 | if (value->kind != axs_lvalue_memory) | |
3d263c1d | 1525 | error (_("Structure does not live in memory.")); |
c906108c | 1526 | |
b6e7192f SS |
1527 | /* Search through fields and base classes recursively. */ |
1528 | found = gen_struct_ref_recursive (exp, ax, value, field, 0, type); | |
1529 | ||
1530 | if (!found) | |
1531 | error (_("Couldn't find member named `%s' in struct/union/class `%s'"), | |
1532 | field, TYPE_TAG_NAME (type)); | |
1533 | } | |
c5aa993b | 1534 | |
b6e7192f SS |
1535 | static int |
1536 | gen_namespace_elt (struct expression *exp, | |
1537 | struct agent_expr *ax, struct axs_value *value, | |
1538 | const struct type *curtype, char *name); | |
1539 | static int | |
1540 | gen_maybe_namespace_elt (struct expression *exp, | |
1541 | struct agent_expr *ax, struct axs_value *value, | |
1542 | const struct type *curtype, char *name); | |
1543 | ||
1544 | static void | |
400c6af0 | 1545 | gen_static_field (struct gdbarch *gdbarch, |
b6e7192f SS |
1546 | struct agent_expr *ax, struct axs_value *value, |
1547 | struct type *type, int fieldno) | |
1548 | { | |
1549 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) | |
c906108c | 1550 | { |
b6e7192f | 1551 | ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c | 1552 | value->kind = axs_lvalue_memory; |
b6e7192f | 1553 | value->type = TYPE_FIELD_TYPE (type, fieldno); |
400c6af0 | 1554 | value->optimized_out = 0; |
b6e7192f SS |
1555 | } |
1556 | else | |
1557 | { | |
ff355380 | 1558 | const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); |
b6e7192f | 1559 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
b6e7192f | 1560 | |
400c6af0 SS |
1561 | if (sym) |
1562 | { | |
1563 | gen_var_ref (gdbarch, ax, value, sym); | |
1564 | ||
1565 | /* Don't error if the value was optimized out, we may be | |
1566 | scanning all static fields and just want to pass over this | |
1567 | and continue with the rest. */ | |
1568 | } | |
1569 | else | |
1570 | { | |
1571 | /* Silently assume this was optimized out; class printing | |
1572 | will let the user know why the data is missing. */ | |
1573 | value->optimized_out = 1; | |
1574 | } | |
b6e7192f SS |
1575 | } |
1576 | } | |
1577 | ||
1578 | static int | |
1579 | gen_struct_elt_for_reference (struct expression *exp, | |
1580 | struct agent_expr *ax, struct axs_value *value, | |
1581 | struct type *type, char *fieldname) | |
1582 | { | |
1583 | struct type *t = type; | |
1584 | int i; | |
b6e7192f SS |
1585 | |
1586 | if (TYPE_CODE (t) != TYPE_CODE_STRUCT | |
1587 | && TYPE_CODE (t) != TYPE_CODE_UNION) | |
1588 | internal_error (__FILE__, __LINE__, | |
1589 | _("non-aggregate type to gen_struct_elt_for_reference")); | |
1590 | ||
1591 | for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--) | |
1592 | { | |
0d5cff50 | 1593 | const char *t_field_name = TYPE_FIELD_NAME (t, i); |
b6e7192f SS |
1594 | |
1595 | if (t_field_name && strcmp (t_field_name, fieldname) == 0) | |
1596 | { | |
1597 | if (field_is_static (&TYPE_FIELD (t, i))) | |
1598 | { | |
400c6af0 SS |
1599 | gen_static_field (exp->gdbarch, ax, value, t, i); |
1600 | if (value->optimized_out) | |
3e43a32a MS |
1601 | error (_("static field `%s' has been " |
1602 | "optimized out, cannot use"), | |
400c6af0 | 1603 | fieldname); |
b6e7192f SS |
1604 | return 1; |
1605 | } | |
1606 | if (TYPE_FIELD_PACKED (t, i)) | |
1607 | error (_("pointers to bitfield members not allowed")); | |
1608 | ||
1609 | /* FIXME we need a way to do "want_address" equivalent */ | |
1610 | ||
1611 | error (_("Cannot reference non-static field \"%s\""), fieldname); | |
1612 | } | |
c906108c | 1613 | } |
b6e7192f SS |
1614 | |
1615 | /* FIXME add other scoped-reference cases here */ | |
1616 | ||
1617 | /* Do a last-ditch lookup. */ | |
1618 | return gen_maybe_namespace_elt (exp, ax, value, type, fieldname); | |
c906108c SS |
1619 | } |
1620 | ||
b6e7192f SS |
1621 | /* C++: Return the member NAME of the namespace given by the type |
1622 | CURTYPE. */ | |
1623 | ||
1624 | static int | |
1625 | gen_namespace_elt (struct expression *exp, | |
1626 | struct agent_expr *ax, struct axs_value *value, | |
1627 | const struct type *curtype, char *name) | |
1628 | { | |
1629 | int found = gen_maybe_namespace_elt (exp, ax, value, curtype, name); | |
1630 | ||
1631 | if (!found) | |
1632 | error (_("No symbol \"%s\" in namespace \"%s\"."), | |
1633 | name, TYPE_TAG_NAME (curtype)); | |
1634 | ||
1635 | return found; | |
1636 | } | |
1637 | ||
1638 | /* A helper function used by value_namespace_elt and | |
1639 | value_struct_elt_for_reference. It looks up NAME inside the | |
1640 | context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE | |
1641 | is a class and NAME refers to a type in CURTYPE itself (as opposed | |
1642 | to, say, some base class of CURTYPE). */ | |
1643 | ||
1644 | static int | |
1645 | gen_maybe_namespace_elt (struct expression *exp, | |
1646 | struct agent_expr *ax, struct axs_value *value, | |
1647 | const struct type *curtype, char *name) | |
1648 | { | |
1649 | const char *namespace_name = TYPE_TAG_NAME (curtype); | |
1650 | struct symbol *sym; | |
1651 | ||
1652 | sym = cp_lookup_symbol_namespace (namespace_name, name, | |
1653 | block_for_pc (ax->scope), | |
ac0cd78b | 1654 | VAR_DOMAIN); |
b6e7192f SS |
1655 | |
1656 | if (sym == NULL) | |
1657 | return 0; | |
1658 | ||
1659 | gen_var_ref (exp->gdbarch, ax, value, sym); | |
1660 | ||
400c6af0 SS |
1661 | if (value->optimized_out) |
1662 | error (_("`%s' has been optimized out, cannot use"), | |
1663 | SYMBOL_PRINT_NAME (sym)); | |
1664 | ||
b6e7192f SS |
1665 | return 1; |
1666 | } | |
1667 | ||
1668 | ||
1669 | static int | |
1670 | gen_aggregate_elt_ref (struct expression *exp, | |
1671 | struct agent_expr *ax, struct axs_value *value, | |
1672 | struct type *type, char *field, | |
1673 | char *operator_name, char *operand_name) | |
1674 | { | |
1675 | switch (TYPE_CODE (type)) | |
1676 | { | |
1677 | case TYPE_CODE_STRUCT: | |
1678 | case TYPE_CODE_UNION: | |
1679 | return gen_struct_elt_for_reference (exp, ax, value, type, field); | |
1680 | break; | |
1681 | case TYPE_CODE_NAMESPACE: | |
1682 | return gen_namespace_elt (exp, ax, value, type, field); | |
1683 | break; | |
1684 | default: | |
1685 | internal_error (__FILE__, __LINE__, | |
1686 | _("non-aggregate type in gen_aggregate_elt_ref")); | |
1687 | } | |
1688 | ||
1689 | return 0; | |
1690 | } | |
c906108c | 1691 | |
0e2de366 | 1692 | /* Generate code for GDB's magical `repeat' operator. |
c906108c SS |
1693 | LVALUE @ INT creates an array INT elements long, and whose elements |
1694 | have the same type as LVALUE, located in memory so that LVALUE is | |
1695 | its first element. For example, argv[0]@argc gives you the array | |
1696 | of command-line arguments. | |
1697 | ||
1698 | Unfortunately, because we have to know the types before we actually | |
1699 | have a value for the expression, we can't implement this perfectly | |
1700 | without changing the type system, having values that occupy two | |
1701 | stack slots, doing weird things with sizeof, etc. So we require | |
1702 | the right operand to be a constant expression. */ | |
1703 | static void | |
f7c79c41 UW |
1704 | gen_repeat (struct expression *exp, union exp_element **pc, |
1705 | struct agent_expr *ax, struct axs_value *value) | |
c906108c SS |
1706 | { |
1707 | struct axs_value value1; | |
5b4ee69b | 1708 | |
c906108c SS |
1709 | /* We don't want to turn this into an rvalue, so no conversions |
1710 | here. */ | |
f7c79c41 | 1711 | gen_expr (exp, pc, ax, &value1); |
c906108c | 1712 | if (value1.kind != axs_lvalue_memory) |
3d263c1d | 1713 | error (_("Left operand of `@' must be an object in memory.")); |
c906108c SS |
1714 | |
1715 | /* Evaluate the length; it had better be a constant. */ | |
1716 | { | |
1717 | struct value *v = const_expr (pc); | |
1718 | int length; | |
1719 | ||
c5aa993b | 1720 | if (!v) |
3e43a32a MS |
1721 | error (_("Right operand of `@' must be a " |
1722 | "constant, in agent expressions.")); | |
04624583 | 1723 | if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT) |
3d263c1d | 1724 | error (_("Right operand of `@' must be an integer.")); |
c906108c SS |
1725 | length = value_as_long (v); |
1726 | if (length <= 0) | |
3d263c1d | 1727 | error (_("Right operand of `@' must be positive.")); |
c906108c SS |
1728 | |
1729 | /* The top of the stack is already the address of the object, so | |
1730 | all we need to do is frob the type of the lvalue. */ | |
1731 | { | |
1732 | /* FIXME-type-allocation: need a way to free this type when we are | |
c5aa993b | 1733 | done with it. */ |
e3506a9f UW |
1734 | struct type *array |
1735 | = lookup_array_range_type (value1.type, 0, length - 1); | |
c906108c SS |
1736 | |
1737 | value->kind = axs_lvalue_memory; | |
1738 | value->type = array; | |
1739 | } | |
1740 | } | |
1741 | } | |
1742 | ||
1743 | ||
1744 | /* Emit code for the `sizeof' operator. | |
1745 | *PC should point at the start of the operand expression; we advance it | |
1746 | to the first instruction after the operand. */ | |
1747 | static void | |
f7c79c41 UW |
1748 | gen_sizeof (struct expression *exp, union exp_element **pc, |
1749 | struct agent_expr *ax, struct axs_value *value, | |
1750 | struct type *size_type) | |
c906108c SS |
1751 | { |
1752 | /* We don't care about the value of the operand expression; we only | |
1753 | care about its type. However, in the current arrangement, the | |
1754 | only way to find an expression's type is to generate code for it. | |
1755 | So we generate code for the operand, and then throw it away, | |
1756 | replacing it with code that simply pushes its size. */ | |
1757 | int start = ax->len; | |
5b4ee69b | 1758 | |
f7c79c41 | 1759 | gen_expr (exp, pc, ax, value); |
c906108c SS |
1760 | |
1761 | /* Throw away the code we just generated. */ | |
1762 | ax->len = start; | |
c5aa993b | 1763 | |
c906108c SS |
1764 | ax_const_l (ax, TYPE_LENGTH (value->type)); |
1765 | value->kind = axs_rvalue; | |
f7c79c41 | 1766 | value->type = size_type; |
c906108c | 1767 | } |
c906108c | 1768 | \f |
c5aa993b | 1769 | |
c906108c SS |
1770 | /* Generating bytecode from GDB expressions: general recursive thingy */ |
1771 | ||
3d263c1d | 1772 | /* XXX: i18n */ |
c906108c SS |
1773 | /* A gen_expr function written by a Gen-X'er guy. |
1774 | Append code for the subexpression of EXPR starting at *POS_P to AX. */ | |
55aa24fb | 1775 | void |
f7c79c41 UW |
1776 | gen_expr (struct expression *exp, union exp_element **pc, |
1777 | struct agent_expr *ax, struct axs_value *value) | |
c906108c SS |
1778 | { |
1779 | /* Used to hold the descriptions of operand expressions. */ | |
09d559e4 | 1780 | struct axs_value value1, value2, value3; |
f61e138d | 1781 | enum exp_opcode op = (*pc)[0].opcode, op2; |
09d559e4 | 1782 | int if1, go1, if2, go2, end; |
3b11a015 | 1783 | struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; |
c906108c SS |
1784 | |
1785 | /* If we're looking at a constant expression, just push its value. */ | |
1786 | { | |
1787 | struct value *v = maybe_const_expr (pc); | |
c5aa993b | 1788 | |
c906108c SS |
1789 | if (v) |
1790 | { | |
1791 | ax_const_l (ax, value_as_long (v)); | |
1792 | value->kind = axs_rvalue; | |
df407dfe | 1793 | value->type = check_typedef (value_type (v)); |
c906108c SS |
1794 | return; |
1795 | } | |
1796 | } | |
1797 | ||
1798 | /* Otherwise, go ahead and generate code for it. */ | |
1799 | switch (op) | |
1800 | { | |
1801 | /* Binary arithmetic operators. */ | |
1802 | case BINOP_ADD: | |
1803 | case BINOP_SUB: | |
1804 | case BINOP_MUL: | |
1805 | case BINOP_DIV: | |
1806 | case BINOP_REM: | |
948103cf SS |
1807 | case BINOP_LSH: |
1808 | case BINOP_RSH: | |
c906108c SS |
1809 | case BINOP_SUBSCRIPT: |
1810 | case BINOP_BITWISE_AND: | |
1811 | case BINOP_BITWISE_IOR: | |
1812 | case BINOP_BITWISE_XOR: | |
782b2b07 SS |
1813 | case BINOP_EQUAL: |
1814 | case BINOP_NOTEQUAL: | |
1815 | case BINOP_LESS: | |
1816 | case BINOP_GTR: | |
1817 | case BINOP_LEQ: | |
1818 | case BINOP_GEQ: | |
c906108c | 1819 | (*pc)++; |
f7c79c41 UW |
1820 | gen_expr (exp, pc, ax, &value1); |
1821 | gen_usual_unary (exp, ax, &value1); | |
f61e138d SS |
1822 | gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2); |
1823 | break; | |
1824 | ||
09d559e4 SS |
1825 | case BINOP_LOGICAL_AND: |
1826 | (*pc)++; | |
1827 | /* Generate the obvious sequence of tests and jumps. */ | |
1828 | gen_expr (exp, pc, ax, &value1); | |
1829 | gen_usual_unary (exp, ax, &value1); | |
1830 | if1 = ax_goto (ax, aop_if_goto); | |
1831 | go1 = ax_goto (ax, aop_goto); | |
1832 | ax_label (ax, if1, ax->len); | |
1833 | gen_expr (exp, pc, ax, &value2); | |
1834 | gen_usual_unary (exp, ax, &value2); | |
1835 | if2 = ax_goto (ax, aop_if_goto); | |
1836 | go2 = ax_goto (ax, aop_goto); | |
1837 | ax_label (ax, if2, ax->len); | |
1838 | ax_const_l (ax, 1); | |
1839 | end = ax_goto (ax, aop_goto); | |
1840 | ax_label (ax, go1, ax->len); | |
1841 | ax_label (ax, go2, ax->len); | |
1842 | ax_const_l (ax, 0); | |
1843 | ax_label (ax, end, ax->len); | |
1844 | value->kind = axs_rvalue; | |
3b11a015 | 1845 | value->type = int_type; |
09d559e4 SS |
1846 | break; |
1847 | ||
1848 | case BINOP_LOGICAL_OR: | |
1849 | (*pc)++; | |
1850 | /* Generate the obvious sequence of tests and jumps. */ | |
1851 | gen_expr (exp, pc, ax, &value1); | |
1852 | gen_usual_unary (exp, ax, &value1); | |
1853 | if1 = ax_goto (ax, aop_if_goto); | |
1854 | gen_expr (exp, pc, ax, &value2); | |
1855 | gen_usual_unary (exp, ax, &value2); | |
1856 | if2 = ax_goto (ax, aop_if_goto); | |
1857 | ax_const_l (ax, 0); | |
1858 | end = ax_goto (ax, aop_goto); | |
1859 | ax_label (ax, if1, ax->len); | |
1860 | ax_label (ax, if2, ax->len); | |
1861 | ax_const_l (ax, 1); | |
1862 | ax_label (ax, end, ax->len); | |
1863 | value->kind = axs_rvalue; | |
3b11a015 | 1864 | value->type = int_type; |
09d559e4 SS |
1865 | break; |
1866 | ||
1867 | case TERNOP_COND: | |
1868 | (*pc)++; | |
1869 | gen_expr (exp, pc, ax, &value1); | |
1870 | gen_usual_unary (exp, ax, &value1); | |
1871 | /* For (A ? B : C), it's easiest to generate subexpression | |
1872 | bytecodes in order, but if_goto jumps on true, so we invert | |
1873 | the sense of A. Then we can do B by dropping through, and | |
1874 | jump to do C. */ | |
3b11a015 | 1875 | gen_logical_not (ax, &value1, int_type); |
09d559e4 SS |
1876 | if1 = ax_goto (ax, aop_if_goto); |
1877 | gen_expr (exp, pc, ax, &value2); | |
1878 | gen_usual_unary (exp, ax, &value2); | |
1879 | end = ax_goto (ax, aop_goto); | |
1880 | ax_label (ax, if1, ax->len); | |
1881 | gen_expr (exp, pc, ax, &value3); | |
1882 | gen_usual_unary (exp, ax, &value3); | |
1883 | ax_label (ax, end, ax->len); | |
1884 | /* This is arbitary - what if B and C are incompatible types? */ | |
1885 | value->type = value2.type; | |
1886 | value->kind = value2.kind; | |
1887 | break; | |
1888 | ||
f61e138d SS |
1889 | case BINOP_ASSIGN: |
1890 | (*pc)++; | |
1891 | if ((*pc)[0].opcode == OP_INTERNALVAR) | |
c906108c | 1892 | { |
f61e138d SS |
1893 | char *name = internalvar_name ((*pc)[1].internalvar); |
1894 | struct trace_state_variable *tsv; | |
5b4ee69b | 1895 | |
f61e138d SS |
1896 | (*pc) += 3; |
1897 | gen_expr (exp, pc, ax, value); | |
1898 | tsv = find_trace_state_variable (name); | |
1899 | if (tsv) | |
f7c79c41 | 1900 | { |
f61e138d | 1901 | ax_tsv (ax, aop_setv, tsv->number); |
92bc6a20 | 1902 | if (ax->tracing) |
f61e138d | 1903 | ax_tsv (ax, aop_tracev, tsv->number); |
f7c79c41 | 1904 | } |
f7c79c41 | 1905 | else |
3e43a32a MS |
1906 | error (_("$%s is not a trace state variable, " |
1907 | "may not assign to it"), name); | |
f61e138d SS |
1908 | } |
1909 | else | |
1910 | error (_("May only assign to trace state variables")); | |
1911 | break; | |
782b2b07 | 1912 | |
f61e138d SS |
1913 | case BINOP_ASSIGN_MODIFY: |
1914 | (*pc)++; | |
1915 | op2 = (*pc)[0].opcode; | |
1916 | (*pc)++; | |
1917 | (*pc)++; | |
1918 | if ((*pc)[0].opcode == OP_INTERNALVAR) | |
1919 | { | |
1920 | char *name = internalvar_name ((*pc)[1].internalvar); | |
1921 | struct trace_state_variable *tsv; | |
5b4ee69b | 1922 | |
f61e138d SS |
1923 | (*pc) += 3; |
1924 | tsv = find_trace_state_variable (name); | |
1925 | if (tsv) | |
1926 | { | |
1927 | /* The tsv will be the left half of the binary operation. */ | |
1928 | ax_tsv (ax, aop_getv, tsv->number); | |
92bc6a20 | 1929 | if (ax->tracing) |
f61e138d SS |
1930 | ax_tsv (ax, aop_tracev, tsv->number); |
1931 | /* Trace state variables are always 64-bit integers. */ | |
1932 | value1.kind = axs_rvalue; | |
1933 | value1.type = builtin_type (exp->gdbarch)->builtin_long_long; | |
1934 | /* Now do right half of expression. */ | |
1935 | gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2); | |
1936 | /* We have a result of the binary op, set the tsv. */ | |
1937 | ax_tsv (ax, aop_setv, tsv->number); | |
92bc6a20 | 1938 | if (ax->tracing) |
f61e138d SS |
1939 | ax_tsv (ax, aop_tracev, tsv->number); |
1940 | } | |
1941 | else | |
3e43a32a MS |
1942 | error (_("$%s is not a trace state variable, " |
1943 | "may not assign to it"), name); | |
c906108c | 1944 | } |
f61e138d SS |
1945 | else |
1946 | error (_("May only assign to trace state variables")); | |
c906108c SS |
1947 | break; |
1948 | ||
1949 | /* Note that we need to be a little subtle about generating code | |
c5aa993b JM |
1950 | for comma. In C, we can do some optimizations here because |
1951 | we know the left operand is only being evaluated for effect. | |
1952 | However, if the tracing kludge is in effect, then we always | |
1953 | need to evaluate the left hand side fully, so that all the | |
1954 | variables it mentions get traced. */ | |
c906108c SS |
1955 | case BINOP_COMMA: |
1956 | (*pc)++; | |
f7c79c41 | 1957 | gen_expr (exp, pc, ax, &value1); |
c906108c | 1958 | /* Don't just dispose of the left operand. We might be tracing, |
c5aa993b JM |
1959 | in which case we want to emit code to trace it if it's an |
1960 | lvalue. */ | |
400c6af0 | 1961 | gen_traced_pop (exp->gdbarch, ax, &value1); |
f7c79c41 | 1962 | gen_expr (exp, pc, ax, value); |
c906108c SS |
1963 | /* It's the consumer's responsibility to trace the right operand. */ |
1964 | break; | |
c5aa993b | 1965 | |
c906108c SS |
1966 | case OP_LONG: /* some integer constant */ |
1967 | { | |
1968 | struct type *type = (*pc)[1].type; | |
1969 | LONGEST k = (*pc)[2].longconst; | |
5b4ee69b | 1970 | |
c906108c SS |
1971 | (*pc) += 4; |
1972 | gen_int_literal (ax, value, k, type); | |
1973 | } | |
c5aa993b | 1974 | break; |
c906108c SS |
1975 | |
1976 | case OP_VAR_VALUE: | |
f7c79c41 | 1977 | gen_var_ref (exp->gdbarch, ax, value, (*pc)[2].symbol); |
400c6af0 SS |
1978 | |
1979 | if (value->optimized_out) | |
1980 | error (_("`%s' has been optimized out, cannot use"), | |
1981 | SYMBOL_PRINT_NAME ((*pc)[2].symbol)); | |
1982 | ||
c906108c SS |
1983 | (*pc) += 4; |
1984 | break; | |
1985 | ||
1986 | case OP_REGISTER: | |
1987 | { | |
67f3407f DJ |
1988 | const char *name = &(*pc)[2].string; |
1989 | int reg; | |
5b4ee69b | 1990 | |
67f3407f | 1991 | (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1); |
f7c79c41 | 1992 | reg = user_reg_map_name_to_regnum (exp->gdbarch, name, strlen (name)); |
67f3407f DJ |
1993 | if (reg == -1) |
1994 | internal_error (__FILE__, __LINE__, | |
1995 | _("Register $%s not available"), name); | |
6ab12e0f PA |
1996 | /* No support for tracing user registers yet. */ |
1997 | if (reg >= gdbarch_num_regs (exp->gdbarch) | |
1998 | + gdbarch_num_pseudo_regs (exp->gdbarch)) | |
abc1f4cd HZ |
1999 | error (_("'%s' is a user-register; " |
2000 | "GDB cannot yet trace user-register contents."), | |
6ab12e0f | 2001 | name); |
c906108c SS |
2002 | value->kind = axs_lvalue_register; |
2003 | value->u.reg = reg; | |
f7c79c41 | 2004 | value->type = register_type (exp->gdbarch, reg); |
c906108c | 2005 | } |
c5aa993b | 2006 | break; |
c906108c SS |
2007 | |
2008 | case OP_INTERNALVAR: | |
f61e138d | 2009 | { |
22d2b532 SDJ |
2010 | struct internalvar *var = (*pc)[1].internalvar; |
2011 | const char *name = internalvar_name (var); | |
f61e138d | 2012 | struct trace_state_variable *tsv; |
5b4ee69b | 2013 | |
f61e138d SS |
2014 | (*pc) += 3; |
2015 | tsv = find_trace_state_variable (name); | |
2016 | if (tsv) | |
2017 | { | |
2018 | ax_tsv (ax, aop_getv, tsv->number); | |
92bc6a20 | 2019 | if (ax->tracing) |
f61e138d SS |
2020 | ax_tsv (ax, aop_tracev, tsv->number); |
2021 | /* Trace state variables are always 64-bit integers. */ | |
2022 | value->kind = axs_rvalue; | |
2023 | value->type = builtin_type (exp->gdbarch)->builtin_long_long; | |
2024 | } | |
22d2b532 | 2025 | else if (! compile_internalvar_to_ax (var, ax, value)) |
3e43a32a MS |
2026 | error (_("$%s is not a trace state variable; GDB agent " |
2027 | "expressions cannot use convenience variables."), name); | |
f61e138d SS |
2028 | } |
2029 | break; | |
c906108c | 2030 | |
c5aa993b | 2031 | /* Weirdo operator: see comments for gen_repeat for details. */ |
c906108c SS |
2032 | case BINOP_REPEAT: |
2033 | /* Note that gen_repeat handles its own argument evaluation. */ | |
2034 | (*pc)++; | |
f7c79c41 | 2035 | gen_repeat (exp, pc, ax, value); |
c906108c SS |
2036 | break; |
2037 | ||
2038 | case UNOP_CAST: | |
2039 | { | |
2040 | struct type *type = (*pc)[1].type; | |
5b4ee69b | 2041 | |
c906108c | 2042 | (*pc) += 3; |
f7c79c41 | 2043 | gen_expr (exp, pc, ax, value); |
c906108c SS |
2044 | gen_cast (ax, value, type); |
2045 | } | |
c5aa993b | 2046 | break; |
c906108c | 2047 | |
9eaf6705 TT |
2048 | case UNOP_CAST_TYPE: |
2049 | { | |
2050 | int offset; | |
2051 | struct value *val; | |
2052 | struct type *type; | |
2053 | ||
2054 | ++*pc; | |
2055 | offset = *pc - exp->elts; | |
2056 | val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS); | |
2057 | type = value_type (val); | |
2058 | *pc = &exp->elts[offset]; | |
2059 | ||
2060 | gen_expr (exp, pc, ax, value); | |
2061 | gen_cast (ax, value, type); | |
2062 | } | |
2063 | break; | |
2064 | ||
c906108c SS |
2065 | case UNOP_MEMVAL: |
2066 | { | |
2067 | struct type *type = check_typedef ((*pc)[1].type); | |
5b4ee69b | 2068 | |
c906108c | 2069 | (*pc) += 3; |
f7c79c41 | 2070 | gen_expr (exp, pc, ax, value); |
a0c78a73 PA |
2071 | |
2072 | /* If we have an axs_rvalue or an axs_lvalue_memory, then we | |
2073 | already have the right value on the stack. For | |
2074 | axs_lvalue_register, we must convert. */ | |
2075 | if (value->kind == axs_lvalue_register) | |
2076 | require_rvalue (ax, value); | |
2077 | ||
c906108c SS |
2078 | value->type = type; |
2079 | value->kind = axs_lvalue_memory; | |
2080 | } | |
c5aa993b | 2081 | break; |
c906108c | 2082 | |
9eaf6705 TT |
2083 | case UNOP_MEMVAL_TYPE: |
2084 | { | |
2085 | int offset; | |
2086 | struct value *val; | |
2087 | struct type *type; | |
2088 | ||
2089 | ++*pc; | |
2090 | offset = *pc - exp->elts; | |
2091 | val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS); | |
2092 | type = value_type (val); | |
2093 | *pc = &exp->elts[offset]; | |
2094 | ||
2095 | gen_expr (exp, pc, ax, value); | |
2096 | ||
2097 | /* If we have an axs_rvalue or an axs_lvalue_memory, then we | |
2098 | already have the right value on the stack. For | |
2099 | axs_lvalue_register, we must convert. */ | |
2100 | if (value->kind == axs_lvalue_register) | |
2101 | require_rvalue (ax, value); | |
2102 | ||
2103 | value->type = type; | |
2104 | value->kind = axs_lvalue_memory; | |
2105 | } | |
2106 | break; | |
2107 | ||
36e9969c NS |
2108 | case UNOP_PLUS: |
2109 | (*pc)++; | |
0e2de366 | 2110 | /* + FOO is equivalent to 0 + FOO, which can be optimized. */ |
f7c79c41 UW |
2111 | gen_expr (exp, pc, ax, value); |
2112 | gen_usual_unary (exp, ax, value); | |
36e9969c NS |
2113 | break; |
2114 | ||
c906108c SS |
2115 | case UNOP_NEG: |
2116 | (*pc)++; | |
2117 | /* -FOO is equivalent to 0 - FOO. */ | |
22601c15 UW |
2118 | gen_int_literal (ax, &value1, 0, |
2119 | builtin_type (exp->gdbarch)->builtin_int); | |
f7c79c41 UW |
2120 | gen_usual_unary (exp, ax, &value1); /* shouldn't do much */ |
2121 | gen_expr (exp, pc, ax, &value2); | |
2122 | gen_usual_unary (exp, ax, &value2); | |
2123 | gen_usual_arithmetic (exp, ax, &value1, &value2); | |
2124 | gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation"); | |
c906108c SS |
2125 | break; |
2126 | ||
2127 | case UNOP_LOGICAL_NOT: | |
2128 | (*pc)++; | |
f7c79c41 UW |
2129 | gen_expr (exp, pc, ax, value); |
2130 | gen_usual_unary (exp, ax, value); | |
3b11a015 | 2131 | gen_logical_not (ax, value, int_type); |
c906108c SS |
2132 | break; |
2133 | ||
2134 | case UNOP_COMPLEMENT: | |
2135 | (*pc)++; | |
f7c79c41 UW |
2136 | gen_expr (exp, pc, ax, value); |
2137 | gen_usual_unary (exp, ax, value); | |
2138 | gen_integral_promotions (exp, ax, value); | |
c906108c SS |
2139 | gen_complement (ax, value); |
2140 | break; | |
2141 | ||
2142 | case UNOP_IND: | |
2143 | (*pc)++; | |
f7c79c41 UW |
2144 | gen_expr (exp, pc, ax, value); |
2145 | gen_usual_unary (exp, ax, value); | |
b97aedf3 | 2146 | if (!pointer_type (value->type)) |
3d263c1d | 2147 | error (_("Argument of unary `*' is not a pointer.")); |
c906108c SS |
2148 | gen_deref (ax, value); |
2149 | break; | |
2150 | ||
2151 | case UNOP_ADDR: | |
2152 | (*pc)++; | |
f7c79c41 | 2153 | gen_expr (exp, pc, ax, value); |
c906108c SS |
2154 | gen_address_of (ax, value); |
2155 | break; | |
2156 | ||
2157 | case UNOP_SIZEOF: | |
2158 | (*pc)++; | |
2159 | /* Notice that gen_sizeof handles its own operand, unlike most | |
c5aa993b JM |
2160 | of the other unary operator functions. This is because we |
2161 | have to throw away the code we generate. */ | |
f7c79c41 UW |
2162 | gen_sizeof (exp, pc, ax, value, |
2163 | builtin_type (exp->gdbarch)->builtin_int); | |
c906108c SS |
2164 | break; |
2165 | ||
2166 | case STRUCTOP_STRUCT: | |
2167 | case STRUCTOP_PTR: | |
2168 | { | |
2169 | int length = (*pc)[1].longconst; | |
2170 | char *name = &(*pc)[2].string; | |
2171 | ||
2172 | (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1); | |
f7c79c41 | 2173 | gen_expr (exp, pc, ax, value); |
c906108c | 2174 | if (op == STRUCTOP_STRUCT) |
505e835d | 2175 | gen_struct_ref (exp, ax, value, name, ".", "structure or union"); |
c906108c | 2176 | else if (op == STRUCTOP_PTR) |
505e835d | 2177 | gen_struct_ref (exp, ax, value, name, "->", |
c906108c SS |
2178 | "pointer to a structure or union"); |
2179 | else | |
2180 | /* If this `if' chain doesn't handle it, then the case list | |
c5aa993b | 2181 | shouldn't mention it, and we shouldn't be here. */ |
8e65ff28 | 2182 | internal_error (__FILE__, __LINE__, |
3d263c1d | 2183 | _("gen_expr: unhandled struct case")); |
c906108c | 2184 | } |
c5aa993b | 2185 | break; |
c906108c | 2186 | |
6c228b9c SS |
2187 | case OP_THIS: |
2188 | { | |
66a17cb6 | 2189 | struct symbol *sym, *func; |
6c228b9c | 2190 | struct block *b; |
66a17cb6 | 2191 | const struct language_defn *lang; |
6c228b9c | 2192 | |
66a17cb6 TT |
2193 | b = block_for_pc (ax->scope); |
2194 | func = block_linkage_function (b); | |
2195 | lang = language_def (SYMBOL_LANGUAGE (func)); | |
6c228b9c | 2196 | |
66a17cb6 | 2197 | sym = lookup_language_this (lang, b); |
6c228b9c | 2198 | if (!sym) |
66a17cb6 | 2199 | error (_("no `%s' found"), lang->la_name_of_this); |
6c228b9c SS |
2200 | |
2201 | gen_var_ref (exp->gdbarch, ax, value, sym); | |
400c6af0 SS |
2202 | |
2203 | if (value->optimized_out) | |
2204 | error (_("`%s' has been optimized out, cannot use"), | |
2205 | SYMBOL_PRINT_NAME (sym)); | |
2206 | ||
6c228b9c SS |
2207 | (*pc) += 2; |
2208 | } | |
2209 | break; | |
2210 | ||
b6e7192f SS |
2211 | case OP_SCOPE: |
2212 | { | |
2213 | struct type *type = (*pc)[1].type; | |
2214 | int length = longest_to_int ((*pc)[2].longconst); | |
2215 | char *name = &(*pc)[3].string; | |
2216 | int found; | |
2217 | ||
2218 | found = gen_aggregate_elt_ref (exp, ax, value, type, name, | |
2219 | "?", "??"); | |
2220 | if (!found) | |
2221 | error (_("There is no field named %s"), name); | |
2222 | (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1); | |
2223 | } | |
2224 | break; | |
2225 | ||
c906108c | 2226 | case OP_TYPE: |
608b4967 TT |
2227 | case OP_TYPEOF: |
2228 | case OP_DECLTYPE: | |
3d263c1d | 2229 | error (_("Attempt to use a type name as an expression.")); |
c906108c SS |
2230 | |
2231 | default: | |
b6e7192f | 2232 | error (_("Unsupported operator %s (%d) in expression."), |
bd0b9f9e | 2233 | op_name (exp, op), op); |
c906108c SS |
2234 | } |
2235 | } | |
f61e138d SS |
2236 | |
2237 | /* This handles the middle-to-right-side of code generation for binary | |
2238 | expressions, which is shared between regular binary operations and | |
2239 | assign-modify (+= and friends) expressions. */ | |
2240 | ||
2241 | static void | |
2242 | gen_expr_binop_rest (struct expression *exp, | |
2243 | enum exp_opcode op, union exp_element **pc, | |
2244 | struct agent_expr *ax, struct axs_value *value, | |
2245 | struct axs_value *value1, struct axs_value *value2) | |
2246 | { | |
3b11a015 SS |
2247 | struct type *int_type = builtin_type (exp->gdbarch)->builtin_int; |
2248 | ||
f61e138d SS |
2249 | gen_expr (exp, pc, ax, value2); |
2250 | gen_usual_unary (exp, ax, value2); | |
2251 | gen_usual_arithmetic (exp, ax, value1, value2); | |
2252 | switch (op) | |
2253 | { | |
2254 | case BINOP_ADD: | |
2255 | if (TYPE_CODE (value1->type) == TYPE_CODE_INT | |
b97aedf3 | 2256 | && pointer_type (value2->type)) |
f61e138d SS |
2257 | { |
2258 | /* Swap the values and proceed normally. */ | |
2259 | ax_simple (ax, aop_swap); | |
2260 | gen_ptradd (ax, value, value2, value1); | |
2261 | } | |
b97aedf3 | 2262 | else if (pointer_type (value1->type) |
f61e138d SS |
2263 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) |
2264 | gen_ptradd (ax, value, value1, value2); | |
2265 | else | |
2266 | gen_binop (ax, value, value1, value2, | |
2267 | aop_add, aop_add, 1, "addition"); | |
2268 | break; | |
2269 | case BINOP_SUB: | |
b97aedf3 | 2270 | if (pointer_type (value1->type) |
f61e138d SS |
2271 | && TYPE_CODE (value2->type) == TYPE_CODE_INT) |
2272 | gen_ptrsub (ax,value, value1, value2); | |
b97aedf3 SS |
2273 | else if (pointer_type (value1->type) |
2274 | && pointer_type (value2->type)) | |
f61e138d SS |
2275 | /* FIXME --- result type should be ptrdiff_t */ |
2276 | gen_ptrdiff (ax, value, value1, value2, | |
2277 | builtin_type (exp->gdbarch)->builtin_long); | |
2278 | else | |
2279 | gen_binop (ax, value, value1, value2, | |
2280 | aop_sub, aop_sub, 1, "subtraction"); | |
2281 | break; | |
2282 | case BINOP_MUL: | |
2283 | gen_binop (ax, value, value1, value2, | |
2284 | aop_mul, aop_mul, 1, "multiplication"); | |
2285 | break; | |
2286 | case BINOP_DIV: | |
2287 | gen_binop (ax, value, value1, value2, | |
2288 | aop_div_signed, aop_div_unsigned, 1, "division"); | |
2289 | break; | |
2290 | case BINOP_REM: | |
2291 | gen_binop (ax, value, value1, value2, | |
2292 | aop_rem_signed, aop_rem_unsigned, 1, "remainder"); | |
2293 | break; | |
948103cf SS |
2294 | case BINOP_LSH: |
2295 | gen_binop (ax, value, value1, value2, | |
2296 | aop_lsh, aop_lsh, 1, "left shift"); | |
2297 | break; | |
2298 | case BINOP_RSH: | |
2299 | gen_binop (ax, value, value1, value2, | |
2300 | aop_rsh_signed, aop_rsh_unsigned, 1, "right shift"); | |
2301 | break; | |
f61e138d | 2302 | case BINOP_SUBSCRIPT: |
be636754 PA |
2303 | { |
2304 | struct type *type; | |
2305 | ||
2306 | if (binop_types_user_defined_p (op, value1->type, value2->type)) | |
2307 | { | |
3e43a32a MS |
2308 | error (_("cannot subscript requested type: " |
2309 | "cannot call user defined functions")); | |
be636754 PA |
2310 | } |
2311 | else | |
2312 | { | |
2313 | /* If the user attempts to subscript something that is not | |
2314 | an array or pointer type (like a plain int variable for | |
2315 | example), then report this as an error. */ | |
2316 | type = check_typedef (value1->type); | |
2317 | if (TYPE_CODE (type) != TYPE_CODE_ARRAY | |
2318 | && TYPE_CODE (type) != TYPE_CODE_PTR) | |
2319 | { | |
2320 | if (TYPE_NAME (type)) | |
2321 | error (_("cannot subscript something of type `%s'"), | |
2322 | TYPE_NAME (type)); | |
2323 | else | |
2324 | error (_("cannot subscript requested type")); | |
2325 | } | |
2326 | } | |
2327 | ||
5d5b640e | 2328 | if (!is_integral_type (value2->type)) |
3e43a32a MS |
2329 | error (_("Argument to arithmetic operation " |
2330 | "not a number or boolean.")); | |
5d5b640e | 2331 | |
be636754 PA |
2332 | gen_ptradd (ax, value, value1, value2); |
2333 | gen_deref (ax, value); | |
2334 | break; | |
2335 | } | |
f61e138d SS |
2336 | case BINOP_BITWISE_AND: |
2337 | gen_binop (ax, value, value1, value2, | |
2338 | aop_bit_and, aop_bit_and, 0, "bitwise and"); | |
2339 | break; | |
2340 | ||
2341 | case BINOP_BITWISE_IOR: | |
2342 | gen_binop (ax, value, value1, value2, | |
2343 | aop_bit_or, aop_bit_or, 0, "bitwise or"); | |
2344 | break; | |
2345 | ||
2346 | case BINOP_BITWISE_XOR: | |
2347 | gen_binop (ax, value, value1, value2, | |
2348 | aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or"); | |
2349 | break; | |
2350 | ||
2351 | case BINOP_EQUAL: | |
3b11a015 | 2352 | gen_equal (ax, value, value1, value2, int_type); |
f61e138d SS |
2353 | break; |
2354 | ||
2355 | case BINOP_NOTEQUAL: | |
3b11a015 SS |
2356 | gen_equal (ax, value, value1, value2, int_type); |
2357 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2358 | break; |
2359 | ||
2360 | case BINOP_LESS: | |
3b11a015 | 2361 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2362 | break; |
2363 | ||
2364 | case BINOP_GTR: | |
2365 | ax_simple (ax, aop_swap); | |
3b11a015 | 2366 | gen_less (ax, value, value1, value2, int_type); |
f61e138d SS |
2367 | break; |
2368 | ||
2369 | case BINOP_LEQ: | |
2370 | ax_simple (ax, aop_swap); | |
3b11a015 SS |
2371 | gen_less (ax, value, value1, value2, int_type); |
2372 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2373 | break; |
2374 | ||
2375 | case BINOP_GEQ: | |
3b11a015 SS |
2376 | gen_less (ax, value, value1, value2, int_type); |
2377 | gen_logical_not (ax, value, int_type); | |
f61e138d SS |
2378 | break; |
2379 | ||
2380 | default: | |
2381 | /* We should only list operators in the outer case statement | |
2382 | that we actually handle in the inner case statement. */ | |
2383 | internal_error (__FILE__, __LINE__, | |
2384 | _("gen_expr: op case sets don't match")); | |
2385 | } | |
2386 | } | |
c906108c | 2387 | \f |
c5aa993b | 2388 | |
0936ad1d SS |
2389 | /* Given a single variable and a scope, generate bytecodes to trace |
2390 | its value. This is for use in situations where we have only a | |
2391 | variable's name, and no parsed expression; for instance, when the | |
2392 | name comes from a list of local variables of a function. */ | |
2393 | ||
2394 | struct agent_expr * | |
400c6af0 | 2395 | gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch, |
92bc6a20 | 2396 | struct symbol *var, int trace_string) |
0936ad1d SS |
2397 | { |
2398 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2399 | struct agent_expr *ax = new_agent_expr (gdbarch, scope); |
0936ad1d SS |
2400 | struct axs_value value; |
2401 | ||
2402 | old_chain = make_cleanup_free_agent_expr (ax); | |
2403 | ||
92bc6a20 TT |
2404 | ax->tracing = 1; |
2405 | ax->trace_string = trace_string; | |
400c6af0 SS |
2406 | gen_var_ref (gdbarch, ax, &value, var); |
2407 | ||
2408 | /* If there is no actual variable to trace, flag it by returning | |
2409 | an empty agent expression. */ | |
2410 | if (value.optimized_out) | |
2411 | { | |
2412 | do_cleanups (old_chain); | |
2413 | return NULL; | |
2414 | } | |
0936ad1d SS |
2415 | |
2416 | /* Make sure we record the final object, and get rid of it. */ | |
400c6af0 | 2417 | gen_traced_pop (gdbarch, ax, &value); |
0936ad1d SS |
2418 | |
2419 | /* Oh, and terminate. */ | |
2420 | ax_simple (ax, aop_end); | |
2421 | ||
2422 | /* We have successfully built the agent expr, so cancel the cleanup | |
2423 | request. If we add more cleanups that we always want done, this | |
2424 | will have to get more complicated. */ | |
2425 | discard_cleanups (old_chain); | |
2426 | return ax; | |
2427 | } | |
c5aa993b | 2428 | |
c906108c SS |
2429 | /* Generating bytecode from GDB expressions: driver */ |
2430 | ||
c906108c SS |
2431 | /* Given a GDB expression EXPR, return bytecode to trace its value. |
2432 | The result will use the `trace' and `trace_quick' bytecodes to | |
2433 | record the value of all memory touched by the expression. The | |
2434 | caller can then use the ax_reqs function to discover which | |
2435 | registers it relies upon. */ | |
2436 | struct agent_expr * | |
92bc6a20 TT |
2437 | gen_trace_for_expr (CORE_ADDR scope, struct expression *expr, |
2438 | int trace_string) | |
c906108c SS |
2439 | { |
2440 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2441 | struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); |
c906108c SS |
2442 | union exp_element *pc; |
2443 | struct axs_value value; | |
2444 | ||
f23d52e0 | 2445 | old_chain = make_cleanup_free_agent_expr (ax); |
c906108c SS |
2446 | |
2447 | pc = expr->elts; | |
92bc6a20 TT |
2448 | ax->tracing = 1; |
2449 | ax->trace_string = trace_string; | |
35c9c7ba | 2450 | value.optimized_out = 0; |
f7c79c41 | 2451 | gen_expr (expr, &pc, ax, &value); |
c906108c SS |
2452 | |
2453 | /* Make sure we record the final object, and get rid of it. */ | |
400c6af0 | 2454 | gen_traced_pop (expr->gdbarch, ax, &value); |
c906108c SS |
2455 | |
2456 | /* Oh, and terminate. */ | |
2457 | ax_simple (ax, aop_end); | |
2458 | ||
2459 | /* We have successfully built the agent expr, so cancel the cleanup | |
2460 | request. If we add more cleanups that we always want done, this | |
2461 | will have to get more complicated. */ | |
2462 | discard_cleanups (old_chain); | |
2463 | return ax; | |
2464 | } | |
c906108c | 2465 | |
782b2b07 SS |
2466 | /* Given a GDB expression EXPR, return a bytecode sequence that will |
2467 | evaluate and return a result. The bytecodes will do a direct | |
2468 | evaluation, using the current data on the target, rather than | |
2469 | recording blocks of memory and registers for later use, as | |
2470 | gen_trace_for_expr does. The generated bytecode sequence leaves | |
2471 | the result of expression evaluation on the top of the stack. */ | |
2472 | ||
2473 | struct agent_expr * | |
2474 | gen_eval_for_expr (CORE_ADDR scope, struct expression *expr) | |
2475 | { | |
2476 | struct cleanup *old_chain = 0; | |
35c9c7ba | 2477 | struct agent_expr *ax = new_agent_expr (expr->gdbarch, scope); |
782b2b07 SS |
2478 | union exp_element *pc; |
2479 | struct axs_value value; | |
2480 | ||
2481 | old_chain = make_cleanup_free_agent_expr (ax); | |
2482 | ||
2483 | pc = expr->elts; | |
92bc6a20 | 2484 | ax->tracing = 0; |
35c9c7ba | 2485 | value.optimized_out = 0; |
782b2b07 SS |
2486 | gen_expr (expr, &pc, ax, &value); |
2487 | ||
35c9c7ba SS |
2488 | require_rvalue (ax, &value); |
2489 | ||
782b2b07 SS |
2490 | /* Oh, and terminate. */ |
2491 | ax_simple (ax, aop_end); | |
2492 | ||
2493 | /* We have successfully built the agent expr, so cancel the cleanup | |
2494 | request. If we add more cleanups that we always want done, this | |
2495 | will have to get more complicated. */ | |
2496 | discard_cleanups (old_chain); | |
2497 | return ax; | |
2498 | } | |
2499 | ||
6710bf39 | 2500 | struct agent_expr * |
92bc6a20 TT |
2501 | gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch, |
2502 | int trace_string) | |
6710bf39 SS |
2503 | { |
2504 | struct cleanup *old_chain = 0; | |
2505 | struct agent_expr *ax = new_agent_expr (gdbarch, scope); | |
2506 | struct axs_value value; | |
2507 | ||
2508 | old_chain = make_cleanup_free_agent_expr (ax); | |
2509 | ||
92bc6a20 TT |
2510 | ax->tracing = 1; |
2511 | ax->trace_string = trace_string; | |
6710bf39 SS |
2512 | |
2513 | gdbarch_gen_return_address (gdbarch, ax, &value, scope); | |
2514 | ||
2515 | /* Make sure we record the final object, and get rid of it. */ | |
2516 | gen_traced_pop (gdbarch, ax, &value); | |
2517 | ||
2518 | /* Oh, and terminate. */ | |
2519 | ax_simple (ax, aop_end); | |
2520 | ||
2521 | /* We have successfully built the agent expr, so cancel the cleanup | |
2522 | request. If we add more cleanups that we always want done, this | |
2523 | will have to get more complicated. */ | |
2524 | discard_cleanups (old_chain); | |
2525 | return ax; | |
2526 | } | |
2527 | ||
d3ce09f5 SS |
2528 | /* Given a collection of printf-style arguments, generate code to |
2529 | evaluate the arguments and pass everything to a special | |
2530 | bytecode. */ | |
2531 | ||
2532 | struct agent_expr * | |
2533 | gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch, | |
2534 | CORE_ADDR function, LONGEST channel, | |
741d92cf | 2535 | const char *format, int fmtlen, |
d3ce09f5 SS |
2536 | struct format_piece *frags, |
2537 | int nargs, struct expression **exprs) | |
2538 | { | |
d3ce09f5 SS |
2539 | struct cleanup *old_chain = 0; |
2540 | struct agent_expr *ax = new_agent_expr (gdbarch, scope); | |
2541 | union exp_element *pc; | |
2542 | struct axs_value value; | |
0e43993a | 2543 | int tem; |
d3ce09f5 SS |
2544 | |
2545 | old_chain = make_cleanup_free_agent_expr (ax); | |
2546 | ||
92bc6a20 TT |
2547 | /* We're computing values, not doing side effects. */ |
2548 | ax->tracing = 0; | |
2549 | ||
d3ce09f5 SS |
2550 | /* Evaluate and push the args on the stack in reverse order, |
2551 | for simplicity of collecting them on the target side. */ | |
2552 | for (tem = nargs - 1; tem >= 0; --tem) | |
2553 | { | |
2554 | pc = exprs[tem]->elts; | |
d3ce09f5 SS |
2555 | value.optimized_out = 0; |
2556 | gen_expr (exprs[tem], &pc, ax, &value); | |
2557 | require_rvalue (ax, &value); | |
2558 | } | |
2559 | ||
2560 | /* Push function and channel. */ | |
2561 | ax_const_l (ax, channel); | |
2562 | ax_const_l (ax, function); | |
2563 | ||
2564 | /* Issue the printf bytecode proper. */ | |
2565 | ax_simple (ax, aop_printf); | |
2566 | ax_simple (ax, nargs); | |
2567 | ax_string (ax, format, fmtlen); | |
2568 | ||
2569 | /* And terminate. */ | |
2570 | ax_simple (ax, aop_end); | |
2571 | ||
2572 | /* We have successfully built the agent expr, so cancel the cleanup | |
2573 | request. If we add more cleanups that we always want done, this | |
2574 | will have to get more complicated. */ | |
2575 | discard_cleanups (old_chain); | |
2576 | ||
2577 | return ax; | |
2578 | } | |
2579 | ||
c906108c | 2580 | static void |
6f937416 | 2581 | agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc) |
c906108c SS |
2582 | { |
2583 | struct cleanup *old_chain = 0; | |
2584 | struct expression *expr; | |
2585 | struct agent_expr *agent; | |
bbc13ae3 | 2586 | const char *arg; |
92bc6a20 | 2587 | int trace_string = 0; |
c906108c | 2588 | |
34b536a8 HZ |
2589 | if (!eval) |
2590 | { | |
34b536a8 | 2591 | if (*exp == '/') |
92bc6a20 | 2592 | exp = decode_agent_options (exp, &trace_string); |
34b536a8 | 2593 | } |
3065dfb6 | 2594 | |
bbc13ae3 KS |
2595 | arg = exp; |
2596 | if (!eval && strcmp (arg, "$_ret") == 0) | |
6710bf39 | 2597 | { |
92bc6a20 TT |
2598 | agent = gen_trace_for_return_address (pc, get_current_arch (), |
2599 | trace_string); | |
6710bf39 SS |
2600 | old_chain = make_cleanup_free_agent_expr (agent); |
2601 | } | |
2602 | else | |
2603 | { | |
bbc13ae3 | 2604 | expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0); |
6710bf39 | 2605 | old_chain = make_cleanup (free_current_contents, &expr); |
34b536a8 | 2606 | if (eval) |
92bc6a20 TT |
2607 | { |
2608 | gdb_assert (trace_string == 0); | |
2609 | agent = gen_eval_for_expr (pc, expr); | |
2610 | } | |
34b536a8 | 2611 | else |
92bc6a20 | 2612 | agent = gen_trace_for_expr (pc, expr, trace_string); |
6710bf39 SS |
2613 | make_cleanup_free_agent_expr (agent); |
2614 | } | |
2615 | ||
35c9c7ba | 2616 | ax_reqs (agent); |
c906108c | 2617 | ax_print (gdb_stdout, agent); |
085dd6e6 JM |
2618 | |
2619 | /* It would be nice to call ax_reqs here to gather some general info | |
2620 | about the expression, and then print out the result. */ | |
c906108c SS |
2621 | |
2622 | do_cleanups (old_chain); | |
2623 | dont_repeat (); | |
2624 | } | |
782b2b07 | 2625 | |
782b2b07 | 2626 | static void |
34b536a8 | 2627 | agent_command_1 (char *exp, int eval) |
782b2b07 | 2628 | { |
782b2b07 SS |
2629 | /* We don't deal with overlay debugging at the moment. We need to |
2630 | think more carefully about this. If you copy this code into | |
2631 | another command, change the error message; the user shouldn't | |
2632 | have to know anything about agent expressions. */ | |
2633 | if (overlay_debugging) | |
2634 | error (_("GDB can't do agent expression translation with overlays.")); | |
2635 | ||
2636 | if (exp == 0) | |
2637 | error_no_arg (_("expression to translate")); | |
2638 | ||
34b536a8 HZ |
2639 | if (check_for_argument (&exp, "-at", sizeof ("-at") - 1)) |
2640 | { | |
2641 | struct linespec_result canonical; | |
2642 | int ix; | |
2643 | struct linespec_sals *iter; | |
2644 | struct cleanup *old_chain; | |
2645 | ||
2646 | exp = skip_spaces (exp); | |
2647 | init_linespec_result (&canonical); | |
2648 | decode_line_full (&exp, DECODE_LINE_FUNFIRSTLINE, | |
2649 | (struct symtab *) NULL, 0, &canonical, | |
2650 | NULL, NULL); | |
2651 | old_chain = make_cleanup_destroy_linespec_result (&canonical); | |
2652 | exp = skip_spaces (exp); | |
2653 | if (exp[0] == ',') | |
2654 | { | |
2655 | exp++; | |
2656 | exp = skip_spaces (exp); | |
2657 | } | |
2658 | for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix) | |
2659 | { | |
2660 | int i; | |
782b2b07 | 2661 | |
34b536a8 HZ |
2662 | for (i = 0; i < iter->sals.nelts; i++) |
2663 | agent_eval_command_one (exp, eval, iter->sals.sals[i].pc); | |
2664 | } | |
2665 | do_cleanups (old_chain); | |
2666 | } | |
2667 | else | |
2668 | agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ())); | |
782b2b07 | 2669 | |
782b2b07 SS |
2670 | dont_repeat (); |
2671 | } | |
34b536a8 HZ |
2672 | |
2673 | static void | |
2674 | agent_command (char *exp, int from_tty) | |
2675 | { | |
2676 | agent_command_1 (exp, 0); | |
2677 | } | |
2678 | ||
2679 | /* Parse the given expression, compile it into an agent expression | |
2680 | that does direct evaluation, and display the resulting | |
2681 | expression. */ | |
2682 | ||
2683 | static void | |
2684 | agent_eval_command (char *exp, int from_tty) | |
2685 | { | |
2686 | agent_command_1 (exp, 1); | |
2687 | } | |
2688 | ||
d3ce09f5 SS |
2689 | /* Parse the given expression, compile it into an agent expression |
2690 | that does a printf, and display the resulting expression. */ | |
2691 | ||
2692 | static void | |
2693 | maint_agent_printf_command (char *exp, int from_tty) | |
2694 | { | |
2695 | struct cleanup *old_chain = 0; | |
2696 | struct expression *expr; | |
2697 | struct expression *argvec[100]; | |
2698 | struct agent_expr *agent; | |
2699 | struct frame_info *fi = get_current_frame (); /* need current scope */ | |
bbc13ae3 KS |
2700 | const char *cmdrest; |
2701 | const char *format_start, *format_end; | |
d3ce09f5 SS |
2702 | struct format_piece *fpieces; |
2703 | int nargs; | |
2704 | ||
2705 | /* We don't deal with overlay debugging at the moment. We need to | |
2706 | think more carefully about this. If you copy this code into | |
2707 | another command, change the error message; the user shouldn't | |
2708 | have to know anything about agent expressions. */ | |
2709 | if (overlay_debugging) | |
2710 | error (_("GDB can't do agent expression translation with overlays.")); | |
2711 | ||
2712 | if (exp == 0) | |
2713 | error_no_arg (_("expression to translate")); | |
2714 | ||
2715 | cmdrest = exp; | |
2716 | ||
bbc13ae3 | 2717 | cmdrest = skip_spaces_const (cmdrest); |
d3ce09f5 SS |
2718 | |
2719 | if (*cmdrest++ != '"') | |
2720 | error (_("Must start with a format string.")); | |
2721 | ||
2722 | format_start = cmdrest; | |
2723 | ||
2724 | fpieces = parse_format_string (&cmdrest); | |
2725 | ||
2726 | old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces); | |
2727 | ||
2728 | format_end = cmdrest; | |
2729 | ||
2730 | if (*cmdrest++ != '"') | |
2731 | error (_("Bad format string, non-terminated '\"'.")); | |
2732 | ||
bbc13ae3 | 2733 | cmdrest = skip_spaces_const (cmdrest); |
d3ce09f5 SS |
2734 | |
2735 | if (*cmdrest != ',' && *cmdrest != 0) | |
2736 | error (_("Invalid argument syntax")); | |
2737 | ||
2738 | if (*cmdrest == ',') | |
2739 | cmdrest++; | |
bbc13ae3 | 2740 | cmdrest = skip_spaces_const (cmdrest); |
d3ce09f5 SS |
2741 | |
2742 | nargs = 0; | |
2743 | while (*cmdrest != '\0') | |
2744 | { | |
bbc13ae3 | 2745 | const char *cmd1; |
d3ce09f5 SS |
2746 | |
2747 | cmd1 = cmdrest; | |
2748 | expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1); | |
2749 | argvec[nargs] = expr; | |
2750 | ++nargs; | |
2751 | cmdrest = cmd1; | |
2752 | if (*cmdrest == ',') | |
2753 | ++cmdrest; | |
2754 | /* else complain? */ | |
2755 | } | |
2756 | ||
2757 | ||
2758 | agent = gen_printf (get_frame_pc (fi), get_current_arch (), 0, 0, | |
2759 | format_start, format_end - format_start, | |
2760 | fpieces, nargs, argvec); | |
2761 | make_cleanup_free_agent_expr (agent); | |
2762 | ax_reqs (agent); | |
2763 | ax_print (gdb_stdout, agent); | |
2764 | ||
2765 | /* It would be nice to call ax_reqs here to gather some general info | |
2766 | about the expression, and then print out the result. */ | |
2767 | ||
2768 | do_cleanups (old_chain); | |
2769 | dont_repeat (); | |
2770 | } | |
c906108c | 2771 | \f |
c5aa993b | 2772 | |
c906108c SS |
2773 | /* Initialization code. */ |
2774 | ||
a14ed312 | 2775 | void _initialize_ax_gdb (void); |
c906108c | 2776 | void |
fba45db2 | 2777 | _initialize_ax_gdb (void) |
c906108c | 2778 | { |
c906108c | 2779 | add_cmd ("agent", class_maintenance, agent_command, |
34b536a8 HZ |
2780 | _("\ |
2781 | Translate an expression into remote agent bytecode for tracing.\n\ | |
2782 | Usage: maint agent [-at location,] EXPRESSION\n\ | |
2783 | If -at is given, generate remote agent bytecode for this location.\n\ | |
2784 | If not, generate remote agent bytecode for current frame pc address."), | |
782b2b07 SS |
2785 | &maintenancelist); |
2786 | ||
2787 | add_cmd ("agent-eval", class_maintenance, agent_eval_command, | |
34b536a8 HZ |
2788 | _("\ |
2789 | Translate an expression into remote agent bytecode for evaluation.\n\ | |
2790 | Usage: maint agent-eval [-at location,] EXPRESSION\n\ | |
2791 | If -at is given, generate remote agent bytecode for this location.\n\ | |
2792 | If not, generate remote agent bytecode for current frame pc address."), | |
c906108c | 2793 | &maintenancelist); |
d3ce09f5 SS |
2794 | |
2795 | add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command, | |
2796 | _("Translate an expression into remote " | |
2797 | "agent bytecode for evaluation and display the bytecodes."), | |
2798 | &maintenancelist); | |
c906108c | 2799 | } |