]>
Commit | Line | Data |
---|---|---|
456f8b9d DB |
1 | /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger. |
2 | Copyright 2002 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GDB. | |
5 | ||
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2 of the License, or | |
9 | (at your option) any later version. | |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with this program; if not, write to the Free Software | |
18 | Foundation, Inc., 59 Temple Place - Suite 330, | |
19 | Boston, MA 02111-1307, USA. */ | |
20 | ||
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
23 | #include "symfile.h" /* for entry_point_address */ | |
24 | #include "gdbcore.h" | |
25 | #include "arch-utils.h" | |
26 | #include "regcache.h" | |
27 | ||
28 | extern void _initialize_frv_tdep (void); | |
29 | ||
30 | static gdbarch_init_ftype frv_gdbarch_init; | |
31 | ||
32 | static gdbarch_register_name_ftype frv_register_name; | |
33 | static gdbarch_register_raw_size_ftype frv_register_raw_size; | |
34 | static gdbarch_register_virtual_size_ftype frv_register_virtual_size; | |
35 | static gdbarch_register_virtual_type_ftype frv_register_virtual_type; | |
36 | static gdbarch_register_byte_ftype frv_register_byte; | |
37 | static gdbarch_breakpoint_from_pc_ftype frv_breakpoint_from_pc; | |
38 | static gdbarch_frame_chain_ftype frv_frame_chain; | |
39 | static gdbarch_frame_saved_pc_ftype frv_frame_saved_pc; | |
40 | static gdbarch_skip_prologue_ftype frv_skip_prologue; | |
41 | static gdbarch_frame_init_saved_regs_ftype frv_frame_init_saved_regs; | |
42 | static gdbarch_deprecated_extract_return_value_ftype frv_extract_return_value; | |
43 | static gdbarch_deprecated_extract_struct_value_address_ftype frv_extract_struct_value_address; | |
44 | static gdbarch_use_struct_convention_ftype frv_use_struct_convention; | |
45 | static gdbarch_frameless_function_invocation_ftype frv_frameless_function_invocation; | |
46 | static gdbarch_init_extra_frame_info_ftype stupid_useless_init_extra_frame_info; | |
456f8b9d DB |
47 | static gdbarch_store_struct_return_ftype frv_store_struct_return; |
48 | static gdbarch_push_arguments_ftype frv_push_arguments; | |
49 | static gdbarch_push_return_address_ftype frv_push_return_address; | |
50 | static gdbarch_pop_frame_ftype frv_pop_frame; | |
51 | static gdbarch_saved_pc_after_call_ftype frv_saved_pc_after_call; | |
52 | ||
53 | static void frv_pop_frame_regular (struct frame_info *frame); | |
54 | ||
55 | /* Register numbers. You can change these as needed, but don't forget | |
56 | to update the simulator accordingly. */ | |
57 | enum { | |
58 | /* The total number of registers we know exist. */ | |
59 | frv_num_regs = 147, | |
60 | ||
61 | /* Register numbers 0 -- 63 are always reserved for general-purpose | |
62 | registers. The chip at hand may have less. */ | |
63 | first_gpr_regnum = 0, | |
64 | sp_regnum = 1, | |
65 | fp_regnum = 2, | |
66 | struct_return_regnum = 3, | |
67 | last_gpr_regnum = 63, | |
68 | ||
69 | /* Register numbers 64 -- 127 are always reserved for floating-point | |
70 | registers. The chip at hand may have less. */ | |
71 | first_fpr_regnum = 64, | |
72 | last_fpr_regnum = 127, | |
73 | ||
74 | /* Register numbers 128 on up are always reserved for special-purpose | |
75 | registers. */ | |
76 | first_spr_regnum = 128, | |
77 | pc_regnum = 128, | |
78 | psr_regnum = 129, | |
79 | ccr_regnum = 130, | |
80 | cccr_regnum = 131, | |
81 | tbr_regnum = 135, | |
82 | brr_regnum = 136, | |
83 | dbar0_regnum = 137, | |
84 | dbar1_regnum = 138, | |
85 | dbar2_regnum = 139, | |
86 | dbar3_regnum = 140, | |
87 | lr_regnum = 145, | |
88 | lcr_regnum = 146, | |
89 | last_spr_regnum = 146 | |
90 | }; | |
91 | ||
92 | static LONGEST frv_call_dummy_words[] = | |
93 | {0}; | |
94 | ||
95 | ||
96 | /* The contents of this structure can only be trusted after we've | |
97 | frv_frame_init_saved_regs on the frame. */ | |
98 | struct frame_extra_info | |
99 | { | |
100 | /* The offset from our frame pointer to our caller's stack | |
101 | pointer. */ | |
102 | int fp_to_callers_sp_offset; | |
103 | ||
104 | /* Non-zero if we've saved our return address on the stack yet. | |
105 | Zero if it's still sitting in the link register. */ | |
106 | int lr_saved_on_stack; | |
107 | }; | |
108 | ||
109 | ||
110 | /* A structure describing a particular variant of the FRV. | |
111 | We allocate and initialize one of these structures when we create | |
112 | the gdbarch object for a variant. | |
113 | ||
114 | At the moment, all the FR variants we support differ only in which | |
115 | registers are present; the portable code of GDB knows that | |
116 | registers whose names are the empty string don't exist, so the | |
117 | `register_names' array captures all the per-variant information we | |
118 | need. | |
119 | ||
120 | in the future, if we need to have per-variant maps for raw size, | |
121 | virtual type, etc., we should replace register_names with an array | |
122 | of structures, each of which gives all the necessary info for one | |
123 | register. Don't stick parallel arrays in here --- that's so | |
124 | Fortran. */ | |
125 | struct gdbarch_tdep | |
126 | { | |
127 | /* How many general-purpose registers does this variant have? */ | |
128 | int num_gprs; | |
129 | ||
130 | /* How many floating-point registers does this variant have? */ | |
131 | int num_fprs; | |
132 | ||
133 | /* How many hardware watchpoints can it support? */ | |
134 | int num_hw_watchpoints; | |
135 | ||
136 | /* How many hardware breakpoints can it support? */ | |
137 | int num_hw_breakpoints; | |
138 | ||
139 | /* Register names. */ | |
140 | char **register_names; | |
141 | }; | |
142 | ||
143 | #define CURRENT_VARIANT (gdbarch_tdep (current_gdbarch)) | |
144 | ||
145 | ||
146 | /* Allocate a new variant structure, and set up default values for all | |
147 | the fields. */ | |
148 | static struct gdbarch_tdep * | |
5ae5f592 | 149 | new_variant (void) |
456f8b9d DB |
150 | { |
151 | struct gdbarch_tdep *var; | |
152 | int r; | |
153 | char buf[20]; | |
154 | ||
155 | var = xmalloc (sizeof (*var)); | |
156 | memset (var, 0, sizeof (*var)); | |
157 | ||
158 | var->num_gprs = 64; | |
159 | var->num_fprs = 64; | |
160 | var->num_hw_watchpoints = 0; | |
161 | var->num_hw_breakpoints = 0; | |
162 | ||
163 | /* By default, don't supply any general-purpose or floating-point | |
164 | register names. */ | |
165 | var->register_names = (char **) xmalloc (frv_num_regs * sizeof (char *)); | |
166 | for (r = 0; r < frv_num_regs; r++) | |
167 | var->register_names[r] = ""; | |
168 | ||
169 | /* Do, however, supply default names for the special-purpose | |
170 | registers. */ | |
171 | for (r = first_spr_regnum; r <= last_spr_regnum; ++r) | |
172 | { | |
173 | sprintf (buf, "x%d", r); | |
174 | var->register_names[r] = xstrdup (buf); | |
175 | } | |
176 | ||
177 | var->register_names[pc_regnum] = "pc"; | |
178 | var->register_names[lr_regnum] = "lr"; | |
179 | var->register_names[lcr_regnum] = "lcr"; | |
180 | ||
181 | var->register_names[psr_regnum] = "psr"; | |
182 | var->register_names[ccr_regnum] = "ccr"; | |
183 | var->register_names[cccr_regnum] = "cccr"; | |
184 | var->register_names[tbr_regnum] = "tbr"; | |
185 | ||
186 | /* Debug registers. */ | |
187 | var->register_names[brr_regnum] = "brr"; | |
188 | var->register_names[dbar0_regnum] = "dbar0"; | |
189 | var->register_names[dbar1_regnum] = "dbar1"; | |
190 | var->register_names[dbar2_regnum] = "dbar2"; | |
191 | var->register_names[dbar3_regnum] = "dbar3"; | |
192 | ||
193 | return var; | |
194 | } | |
195 | ||
196 | ||
197 | /* Indicate that the variant VAR has NUM_GPRS general-purpose | |
198 | registers, and fill in the names array appropriately. */ | |
199 | static void | |
200 | set_variant_num_gprs (struct gdbarch_tdep *var, int num_gprs) | |
201 | { | |
202 | int r; | |
203 | ||
204 | var->num_gprs = num_gprs; | |
205 | ||
206 | for (r = 0; r < num_gprs; ++r) | |
207 | { | |
208 | char buf[20]; | |
209 | ||
210 | sprintf (buf, "gr%d", r); | |
211 | var->register_names[first_gpr_regnum + r] = xstrdup (buf); | |
212 | } | |
213 | } | |
214 | ||
215 | ||
216 | /* Indicate that the variant VAR has NUM_FPRS floating-point | |
217 | registers, and fill in the names array appropriately. */ | |
218 | static void | |
219 | set_variant_num_fprs (struct gdbarch_tdep *var, int num_fprs) | |
220 | { | |
221 | int r; | |
222 | ||
223 | var->num_fprs = num_fprs; | |
224 | ||
225 | for (r = 0; r < num_fprs; ++r) | |
226 | { | |
227 | char buf[20]; | |
228 | ||
229 | sprintf (buf, "fr%d", r); | |
230 | var->register_names[first_fpr_regnum + r] = xstrdup (buf); | |
231 | } | |
232 | } | |
233 | ||
234 | ||
235 | static const char * | |
236 | frv_register_name (int reg) | |
237 | { | |
238 | if (reg < 0) | |
239 | return "?toosmall?"; | |
240 | if (reg >= frv_num_regs) | |
241 | return "?toolarge?"; | |
242 | ||
243 | return CURRENT_VARIANT->register_names[reg]; | |
244 | } | |
245 | ||
246 | ||
247 | static int | |
248 | frv_register_raw_size (int reg) | |
249 | { | |
250 | return 4; | |
251 | } | |
252 | ||
253 | static int | |
254 | frv_register_virtual_size (int reg) | |
255 | { | |
256 | return 4; | |
257 | } | |
258 | ||
259 | static struct type * | |
260 | frv_register_virtual_type (int reg) | |
261 | { | |
262 | if (reg >= 64 && reg <= 127) | |
263 | return builtin_type_float; | |
264 | else | |
265 | return builtin_type_int; | |
266 | } | |
267 | ||
268 | static int | |
269 | frv_register_byte (int reg) | |
270 | { | |
271 | return (reg * 4); | |
272 | } | |
273 | ||
274 | static const unsigned char * | |
275 | frv_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenp) | |
276 | { | |
277 | static unsigned char breakpoint[] = {0xc0, 0x70, 0x00, 0x01}; | |
278 | *lenp = sizeof (breakpoint); | |
279 | return breakpoint; | |
280 | } | |
281 | ||
282 | static CORE_ADDR | |
283 | frv_frame_chain (struct frame_info *frame) | |
284 | { | |
285 | CORE_ADDR saved_fp_addr; | |
286 | ||
287 | if (frame->saved_regs && frame->saved_regs[fp_regnum] != 0) | |
288 | saved_fp_addr = frame->saved_regs[fp_regnum]; | |
289 | else | |
290 | /* Just assume it was saved in the usual place. */ | |
291 | saved_fp_addr = frame->frame; | |
292 | ||
293 | return read_memory_integer (saved_fp_addr, 4); | |
294 | } | |
295 | ||
296 | static CORE_ADDR | |
297 | frv_frame_saved_pc (struct frame_info *frame) | |
298 | { | |
299 | frv_frame_init_saved_regs (frame); | |
300 | ||
301 | /* Perhaps the prologue analyzer recorded where it was stored. | |
302 | (As of 14 Oct 2001, it never does.) */ | |
303 | if (frame->saved_regs && frame->saved_regs[pc_regnum] != 0) | |
304 | return read_memory_integer (frame->saved_regs[pc_regnum], 4); | |
305 | ||
306 | /* If the prologue analyzer tells us the link register was saved on | |
307 | the stack, get it from there. */ | |
308 | if (frame->extra_info->lr_saved_on_stack) | |
309 | return read_memory_integer (frame->frame + 8, 4); | |
310 | ||
311 | /* Otherwise, it's still in LR. | |
312 | However, if FRAME isn't the youngest frame, this is kind of | |
313 | suspicious --- if this frame called somebody else, then its LR | |
314 | has certainly been overwritten. */ | |
315 | if (! frame->next) | |
316 | return read_register (lr_regnum); | |
317 | ||
318 | /* By default, assume it's saved in the standard place, relative to | |
319 | the frame pointer. */ | |
320 | return read_memory_integer (frame->frame + 8, 4); | |
321 | } | |
322 | ||
323 | ||
324 | /* Return true if REG is a caller-saves ("scratch") register, | |
325 | false otherwise. */ | |
326 | static int | |
327 | is_caller_saves_reg (int reg) | |
328 | { | |
329 | return ((4 <= reg && reg <= 7) | |
330 | || (14 <= reg && reg <= 15) | |
331 | || (32 <= reg && reg <= 47)); | |
332 | } | |
333 | ||
334 | ||
335 | /* Return true if REG is a callee-saves register, false otherwise. */ | |
336 | static int | |
337 | is_callee_saves_reg (int reg) | |
338 | { | |
339 | return ((16 <= reg && reg <= 31) | |
340 | || (48 <= reg && reg <= 63)); | |
341 | } | |
342 | ||
343 | ||
344 | /* Return true if REG is an argument register, false otherwise. */ | |
345 | static int | |
346 | is_argument_reg (int reg) | |
347 | { | |
348 | return (8 <= reg && reg <= 13); | |
349 | } | |
350 | ||
351 | ||
352 | /* Scan an FR-V prologue, starting at PC, until frame->PC. | |
353 | If FRAME is non-zero, fill in its saved_regs with appropriate addresses. | |
354 | We assume FRAME's saved_regs array has already been allocated and cleared. | |
355 | Return the first PC value after the prologue. | |
356 | ||
357 | Note that, for unoptimized code, we almost don't need this function | |
358 | at all; all arguments and locals live on the stack, so we just need | |
359 | the FP to find everything. The catch: structures passed by value | |
360 | have their addresses living in registers; they're never spilled to | |
361 | the stack. So if you ever want to be able to get to these | |
362 | arguments in any frame but the top, you'll need to do this serious | |
363 | prologue analysis. */ | |
364 | static CORE_ADDR | |
365 | frv_analyze_prologue (CORE_ADDR pc, struct frame_info *frame) | |
366 | { | |
367 | /* When writing out instruction bitpatterns, we use the following | |
368 | letters to label instruction fields: | |
369 | P - The parallel bit. We don't use this. | |
370 | J - The register number of GRj in the instruction description. | |
371 | K - The register number of GRk in the instruction description. | |
372 | I - The register number of GRi. | |
373 | S - a signed imediate offset. | |
374 | U - an unsigned immediate offset. | |
375 | ||
376 | The dots below the numbers indicate where hex digit boundaries | |
377 | fall, to make it easier to check the numbers. */ | |
378 | ||
379 | /* Non-zero iff we've seen the instruction that initializes the | |
380 | frame pointer for this function's frame. */ | |
381 | int fp_set = 0; | |
382 | ||
383 | /* If fp_set is non_zero, then this is the distance from | |
384 | the stack pointer to frame pointer: fp = sp + fp_offset. */ | |
385 | int fp_offset = 0; | |
386 | ||
387 | /* Total size of frame prior to any alloca operations. */ | |
388 | int framesize = 0; | |
389 | ||
390 | /* The number of the general-purpose register we saved the return | |
391 | address ("link register") in, or -1 if we haven't moved it yet. */ | |
392 | int lr_save_reg = -1; | |
393 | ||
394 | /* Non-zero iff we've saved the LR onto the stack. */ | |
395 | int lr_saved_on_stack = 0; | |
396 | ||
397 | /* If gr_saved[i] is non-zero, then we've noticed that general | |
398 | register i has been saved at gr_sp_offset[i] from the stack | |
399 | pointer. */ | |
400 | char gr_saved[64]; | |
401 | int gr_sp_offset[64]; | |
402 | ||
403 | memset (gr_saved, 0, sizeof (gr_saved)); | |
404 | ||
405 | while (! frame || pc < frame->pc) | |
406 | { | |
407 | LONGEST op = read_memory_integer (pc, 4); | |
408 | ||
409 | /* The tests in this chain of ifs should be in order of | |
410 | decreasing selectivity, so that more particular patterns get | |
411 | to fire before less particular patterns. */ | |
412 | ||
413 | /* Setting the FP from the SP: | |
414 | ori sp, 0, fp | |
415 | P 000010 0100010 000001 000000000000 = 0x04881000 | |
416 | 0 111111 1111111 111111 111111111111 = 0x7fffffff | |
417 | . . . . . . . . | |
418 | We treat this as part of the prologue. */ | |
419 | if ((op & 0x7fffffff) == 0x04881000) | |
420 | { | |
421 | fp_set = 1; | |
422 | fp_offset = 0; | |
423 | } | |
424 | ||
425 | /* Move the link register to the scratch register grJ, before saving: | |
426 | movsg lr, grJ | |
427 | P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0 | |
428 | 0 111111 1111111 111111 111111 000000 = 0x7fffffc0 | |
429 | . . . . . . . . | |
430 | We treat this as part of the prologue. */ | |
431 | else if ((op & 0x7fffffc0) == 0x080d01c0) | |
432 | { | |
433 | int gr_j = op & 0x3f; | |
434 | ||
435 | /* If we're moving it to a scratch register, that's fine. */ | |
436 | if (is_caller_saves_reg (gr_j)) | |
437 | lr_save_reg = gr_j; | |
438 | /* Otherwise it's not a prologue instruction that we | |
439 | recognize. */ | |
440 | else | |
441 | break; | |
442 | } | |
443 | ||
444 | /* To save multiple callee-saves registers on the stack, at | |
445 | offset zero: | |
446 | ||
447 | std grK,@(sp,gr0) | |
448 | P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0 | |
449 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
450 | ||
451 | stq grK,@(sp,gr0) | |
452 | P KKKKKK 0000011 000001 000100 000000 = 0x000c1100 | |
453 | 0 000000 1111111 111111 111111 111111 = 0x01ffffff | |
454 | . . . . . . . . | |
455 | We treat this as part of the prologue, and record the register's | |
456 | saved address in the frame structure. */ | |
457 | else if ((op & 0x01ffffff) == 0x000c10c0 | |
458 | || (op & 0x01ffffff) == 0x000c1100) | |
459 | { | |
460 | int gr_k = ((op >> 25) & 0x3f); | |
461 | int ope = ((op >> 6) & 0x3f); | |
462 | int count; | |
463 | int i; | |
464 | ||
465 | /* Is it an std or an stq? */ | |
466 | if (ope == 0x03) | |
467 | count = 2; | |
468 | else | |
469 | count = 4; | |
470 | ||
471 | /* Is it really a callee-saves register? */ | |
472 | if (is_callee_saves_reg (gr_k)) | |
473 | { | |
474 | for (i = 0; i < count; i++) | |
475 | { | |
476 | gr_saved[gr_k + i] = 1; | |
477 | gr_sp_offset[gr_k + i] = 4 * i; | |
478 | } | |
479 | } | |
480 | else | |
481 | /* It's not a prologue instruction. */ | |
482 | break; | |
483 | } | |
484 | ||
485 | /* Adjusting the stack pointer. (The stack pointer is GR1.) | |
486 | addi sp, S, sp | |
487 | P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000 | |
488 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
489 | . . . . . . . . | |
490 | We treat this as part of the prologue. */ | |
491 | else if ((op & 0x7ffff000) == 0x02401000) | |
492 | { | |
493 | /* Sign-extend the twelve-bit field. | |
494 | (Isn't there a better way to do this?) */ | |
495 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
496 | ||
497 | framesize -= s; | |
498 | } | |
499 | ||
500 | /* Setting the FP to a constant distance from the SP: | |
501 | addi sp, S, fp | |
502 | P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000 | |
503 | 0 111111 1111111 111111 000000000000 = 0x7ffff000 | |
504 | . . . . . . . . | |
505 | We treat this as part of the prologue. */ | |
506 | else if ((op & 0x7ffff000) == 0x04401000) | |
507 | { | |
508 | /* Sign-extend the twelve-bit field. | |
509 | (Isn't there a better way to do this?) */ | |
510 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
511 | fp_set = 1; | |
512 | fp_offset = s; | |
513 | } | |
514 | ||
515 | /* To spill an argument register to a scratch register: | |
516 | ori GRi, 0, GRk | |
517 | P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000 | |
518 | 0 000000 1111111 000000 111111111111 = 0x01fc0fff | |
519 | . . . . . . . . | |
520 | For the time being, we treat this as a prologue instruction, | |
521 | assuming that GRi is an argument register. This one's kind | |
522 | of suspicious, because it seems like it could be part of a | |
523 | legitimate body instruction. But we only come here when the | |
524 | source info wasn't helpful, so we have to do the best we can. | |
525 | Hopefully once GCC and GDB agree on how to emit line number | |
526 | info for prologues, then this code will never come into play. */ | |
527 | else if ((op & 0x01fc0fff) == 0x00880000) | |
528 | { | |
529 | int gr_i = ((op >> 12) & 0x3f); | |
530 | ||
531 | /* If the source isn't an arg register, then this isn't a | |
532 | prologue instruction. */ | |
533 | if (! is_argument_reg (gr_i)) | |
534 | break; | |
535 | } | |
536 | ||
537 | /* To spill 16-bit values to the stack: | |
538 | sthi GRk, @(fp, s) | |
539 | P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000 | |
540 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
541 | . . . . . . . . | |
542 | And for 8-bit values, we use STB instructions. | |
543 | stbi GRk, @(fp, s) | |
544 | P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000 | |
545 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
546 | . . . . . . . . | |
547 | We check that GRk is really an argument register, and treat | |
548 | all such as part of the prologue. */ | |
549 | else if ( (op & 0x01fff000) == 0x01442000 | |
550 | || (op & 0x01fff000) == 0x01402000) | |
551 | { | |
552 | int gr_k = ((op >> 25) & 0x3f); | |
553 | ||
554 | if (! is_argument_reg (gr_k)) | |
555 | break; /* Source isn't an arg register. */ | |
556 | } | |
557 | ||
558 | /* To save multiple callee-saves register on the stack, at a | |
559 | non-zero offset: | |
560 | ||
561 | stdi GRk, @(sp, s) | |
562 | P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000 | |
563 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
564 | . . . . . . . . | |
565 | stqi GRk, @(sp, s) | |
566 | P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000 | |
567 | 0 000000 1111111 111111 000000000000 = 0x01fff000 | |
568 | . . . . . . . . | |
569 | We treat this as part of the prologue, and record the register's | |
570 | saved address in the frame structure. */ | |
571 | else if ((op & 0x01fff000) == 0x014c1000 | |
572 | || (op & 0x01fff000) == 0x01501000) | |
573 | { | |
574 | int gr_k = ((op >> 25) & 0x3f); | |
575 | int count; | |
576 | int i; | |
577 | ||
578 | /* Is it a stdi or a stqi? */ | |
579 | if ((op & 0x01fff000) == 0x014c1000) | |
580 | count = 2; | |
581 | else | |
582 | count = 4; | |
583 | ||
584 | /* Is it really a callee-saves register? */ | |
585 | if (is_callee_saves_reg (gr_k)) | |
586 | { | |
587 | /* Sign-extend the twelve-bit field. | |
588 | (Isn't there a better way to do this?) */ | |
589 | int s = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
590 | ||
591 | for (i = 0; i < count; i++) | |
592 | { | |
593 | gr_saved[gr_k + i] = 1; | |
594 | gr_sp_offset[gr_k + i] = s + (4 * i); | |
595 | } | |
596 | } | |
597 | else | |
598 | /* It's not a prologue instruction. */ | |
599 | break; | |
600 | } | |
601 | ||
602 | /* Storing any kind of integer register at any constant offset | |
603 | from any other register. | |
604 | ||
605 | st GRk, @(GRi, gr0) | |
606 | P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080 | |
607 | 0 000000 1111111 000000 111111 111111 = 0x01fc0fff | |
608 | . . . . . . . . | |
609 | sti GRk, @(GRi, d12) | |
610 | P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000 | |
611 | 0 000000 1111111 000000 000000000000 = 0x01fc0000 | |
612 | . . . . . . . . | |
613 | These could be almost anything, but a lot of prologue | |
614 | instructions fall into this pattern, so let's decode the | |
615 | instruction once, and then work at a higher level. */ | |
616 | else if (((op & 0x01fc0fff) == 0x000c0080) | |
617 | || ((op & 0x01fc0000) == 0x01480000)) | |
618 | { | |
619 | int gr_k = ((op >> 25) & 0x3f); | |
620 | int gr_i = ((op >> 12) & 0x3f); | |
621 | int offset; | |
622 | ||
623 | /* Are we storing with gr0 as an offset, or using an | |
624 | immediate value? */ | |
625 | if ((op & 0x01fc0fff) == 0x000c0080) | |
626 | offset = 0; | |
627 | else | |
628 | offset = (((op & 0xfff) - 0x800) & 0xfff) - 0x800; | |
629 | ||
630 | /* If the address isn't relative to the SP or FP, it's not a | |
631 | prologue instruction. */ | |
632 | if (gr_i != sp_regnum && gr_i != fp_regnum) | |
633 | break; | |
634 | ||
635 | /* Saving the old FP in the new frame (relative to the SP). */ | |
636 | if (gr_k == fp_regnum && gr_i == sp_regnum) | |
637 | ; | |
638 | ||
639 | /* Saving callee-saves register(s) on the stack, relative to | |
640 | the SP. */ | |
641 | else if (gr_i == sp_regnum | |
642 | && is_callee_saves_reg (gr_k)) | |
643 | { | |
644 | gr_saved[gr_k] = 1; | |
645 | gr_sp_offset[gr_k] = offset; | |
646 | } | |
647 | ||
648 | /* Saving the scratch register holding the return address. */ | |
649 | else if (lr_save_reg != -1 | |
650 | && gr_k == lr_save_reg) | |
651 | lr_saved_on_stack = 1; | |
652 | ||
653 | /* Spilling int-sized arguments to the stack. */ | |
654 | else if (is_argument_reg (gr_k)) | |
655 | ; | |
656 | ||
657 | /* It's not a store instruction we recognize, so this must | |
658 | be the end of the prologue. */ | |
659 | else | |
660 | break; | |
661 | } | |
662 | ||
663 | /* It's not any instruction we recognize, so this must be the end | |
664 | of the prologue. */ | |
665 | else | |
666 | break; | |
667 | ||
668 | pc += 4; | |
669 | } | |
670 | ||
671 | if (frame) | |
672 | { | |
673 | frame->extra_info->lr_saved_on_stack = lr_saved_on_stack; | |
674 | ||
675 | /* If we know the relationship between the stack and frame | |
676 | pointers, record the addresses of the registers we noticed. | |
677 | Note that we have to do this as a separate step at the end, | |
678 | because instructions may save relative to the SP, but we need | |
679 | their addresses relative to the FP. */ | |
680 | if (fp_set) | |
681 | { | |
682 | int i; | |
683 | ||
684 | for (i = 0; i < 64; i++) | |
685 | if (gr_saved[i]) | |
686 | frame->saved_regs[i] = (frame->frame | |
687 | - fp_offset + gr_sp_offset[i]); | |
688 | ||
689 | frame->extra_info->fp_to_callers_sp_offset = framesize - fp_offset; | |
690 | } | |
691 | } | |
692 | ||
693 | return pc; | |
694 | } | |
695 | ||
696 | ||
697 | static CORE_ADDR | |
698 | frv_skip_prologue (CORE_ADDR pc) | |
699 | { | |
700 | CORE_ADDR func_addr, func_end, new_pc; | |
701 | ||
702 | new_pc = pc; | |
703 | ||
704 | /* If the line table has entry for a line *within* the function | |
705 | (i.e., not in the prologue, and not past the end), then that's | |
706 | our location. */ | |
707 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | |
708 | { | |
709 | struct symtab_and_line sal; | |
710 | ||
711 | sal = find_pc_line (func_addr, 0); | |
712 | ||
713 | if (sal.line != 0 && sal.end < func_end) | |
714 | { | |
715 | new_pc = sal.end; | |
716 | } | |
717 | } | |
718 | ||
719 | /* The FR-V prologue is at least five instructions long (twenty bytes). | |
720 | If we didn't find a real source location past that, then | |
721 | do a full analysis of the prologue. */ | |
722 | if (new_pc < pc + 20) | |
723 | new_pc = frv_analyze_prologue (pc, 0); | |
724 | ||
725 | return new_pc; | |
726 | } | |
727 | ||
728 | static void | |
729 | frv_frame_init_saved_regs (struct frame_info *frame) | |
730 | { | |
731 | if (frame->saved_regs) | |
732 | return; | |
733 | ||
734 | frame_saved_regs_zalloc (frame); | |
735 | frame->saved_regs[fp_regnum] = frame->frame; | |
736 | ||
737 | /* Find the beginning of this function, so we can analyze its | |
738 | prologue. */ | |
739 | { | |
740 | CORE_ADDR func_addr, func_end; | |
741 | ||
742 | if (find_pc_partial_function (frame->pc, NULL, &func_addr, &func_end)) | |
743 | frv_analyze_prologue (func_addr, frame); | |
744 | } | |
745 | } | |
746 | ||
747 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
748 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
749 | and TYPE is the type (which is known to be struct, union or array). | |
750 | ||
751 | The frv returns all structs in memory. */ | |
752 | ||
753 | static int | |
754 | frv_use_struct_convention (int gcc_p, struct type *type) | |
755 | { | |
756 | return 1; | |
757 | } | |
758 | ||
759 | static void | |
760 | frv_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
761 | { | |
762 | memcpy (valbuf, (regbuf | |
763 | + frv_register_byte (8) | |
764 | + (TYPE_LENGTH (type) < 4 ? 4 - TYPE_LENGTH (type) : 0)), | |
765 | TYPE_LENGTH (type)); | |
766 | } | |
767 | ||
768 | static CORE_ADDR | |
769 | frv_extract_struct_value_address (char *regbuf) | |
770 | { | |
771 | return extract_address (regbuf + frv_register_byte (struct_return_regnum), | |
772 | 4); | |
773 | } | |
774 | ||
775 | static void | |
776 | frv_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
777 | { | |
778 | write_register (struct_return_regnum, addr); | |
779 | } | |
780 | ||
781 | static int | |
782 | frv_frameless_function_invocation (struct frame_info *frame) | |
783 | { | |
784 | return frameless_look_for_prologue (frame); | |
785 | } | |
786 | ||
787 | static CORE_ADDR | |
788 | frv_saved_pc_after_call (struct frame_info *frame) | |
789 | { | |
790 | return read_register (lr_regnum); | |
791 | } | |
792 | ||
793 | static void | |
794 | frv_init_extra_frame_info (int fromleaf, struct frame_info *frame) | |
795 | { | |
796 | frame->extra_info = (struct frame_extra_info *) | |
797 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
798 | frame->extra_info->fp_to_callers_sp_offset = 0; | |
799 | frame->extra_info->lr_saved_on_stack = 0; | |
800 | } | |
801 | ||
802 | #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) | |
803 | #define ROUND_DOWN(n,a) ((n) & ~((a)-1)) | |
804 | ||
805 | static CORE_ADDR | |
806 | frv_push_arguments (int nargs, struct value **args, CORE_ADDR sp, | |
807 | int struct_return, CORE_ADDR struct_addr) | |
808 | { | |
809 | int argreg; | |
810 | int argnum; | |
811 | char *val; | |
812 | char valbuf[4]; | |
813 | struct value *arg; | |
814 | struct type *arg_type; | |
815 | int len; | |
816 | enum type_code typecode; | |
817 | CORE_ADDR regval; | |
818 | int stack_space; | |
819 | int stack_offset; | |
820 | ||
821 | #if 0 | |
822 | printf("Push %d args at sp = %x, struct_return=%d (%x)\n", | |
823 | nargs, (int) sp, struct_return, struct_addr); | |
824 | #endif | |
825 | ||
826 | stack_space = 0; | |
827 | for (argnum = 0; argnum < nargs; ++argnum) | |
828 | stack_space += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), 4); | |
829 | ||
830 | stack_space -= (6 * 4); | |
831 | if (stack_space > 0) | |
832 | sp -= stack_space; | |
833 | ||
834 | /* Make sure stack is dword aligned. */ | |
835 | sp = ROUND_DOWN (sp, 8); | |
836 | ||
837 | stack_offset = 0; | |
838 | ||
839 | argreg = 8; | |
840 | ||
841 | if (struct_return) | |
842 | write_register (struct_return_regnum, struct_addr); | |
843 | ||
844 | for (argnum = 0; argnum < nargs; ++argnum) | |
845 | { | |
846 | arg = args[argnum]; | |
847 | arg_type = check_typedef (VALUE_TYPE (arg)); | |
848 | len = TYPE_LENGTH (arg_type); | |
849 | typecode = TYPE_CODE (arg_type); | |
850 | ||
851 | if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) | |
852 | { | |
853 | store_address (valbuf, 4, VALUE_ADDRESS (arg)); | |
854 | typecode = TYPE_CODE_PTR; | |
855 | len = 4; | |
856 | val = valbuf; | |
857 | } | |
858 | else | |
859 | { | |
860 | val = (char *) VALUE_CONTENTS (arg); | |
861 | } | |
862 | ||
863 | while (len > 0) | |
864 | { | |
865 | int partial_len = (len < 4 ? len : 4); | |
866 | ||
867 | if (argreg < 14) | |
868 | { | |
869 | regval = extract_address (val, partial_len); | |
870 | #if 0 | |
871 | printf(" Argnum %d data %x -> reg %d\n", | |
872 | argnum, (int) regval, argreg); | |
873 | #endif | |
874 | write_register (argreg, regval); | |
875 | ++argreg; | |
876 | } | |
877 | else | |
878 | { | |
879 | #if 0 | |
880 | printf(" Argnum %d data %x -> offset %d (%x)\n", | |
881 | argnum, *((int *)val), stack_offset, (int) (sp + stack_offset)); | |
882 | #endif | |
883 | write_memory (sp + stack_offset, val, partial_len); | |
884 | stack_offset += ROUND_UP(partial_len, 4); | |
885 | } | |
886 | len -= partial_len; | |
887 | val += partial_len; | |
888 | } | |
889 | } | |
890 | return sp; | |
891 | } | |
892 | ||
893 | static CORE_ADDR | |
894 | frv_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
895 | { | |
896 | write_register (lr_regnum, CALL_DUMMY_ADDRESS ()); | |
897 | return sp; | |
898 | } | |
899 | ||
900 | static void | |
901 | frv_store_return_value (struct type *type, char *valbuf) | |
902 | { | |
903 | int length = TYPE_LENGTH (type); | |
904 | int reg8_offset = frv_register_byte (8); | |
905 | ||
906 | if (length <= 4) | |
73937e03 AC |
907 | deprecated_write_register_bytes (reg8_offset + (4 - length), valbuf, |
908 | length); | |
456f8b9d | 909 | else if (length == 8) |
73937e03 | 910 | deprecated_write_register_bytes (reg8_offset, valbuf, length); |
456f8b9d DB |
911 | else |
912 | internal_error (__FILE__, __LINE__, | |
913 | "Don't know how to return a %d-byte value.", length); | |
914 | } | |
915 | ||
916 | static void | |
917 | frv_pop_frame (void) | |
918 | { | |
919 | generic_pop_current_frame (frv_pop_frame_regular); | |
920 | } | |
921 | ||
922 | static void | |
923 | frv_pop_frame_regular (struct frame_info *frame) | |
924 | { | |
925 | CORE_ADDR fp; | |
926 | int regno; | |
927 | ||
928 | fp = frame->frame; | |
929 | ||
930 | frv_frame_init_saved_regs (frame); | |
931 | ||
932 | write_register (pc_regnum, frv_frame_saved_pc (frame)); | |
933 | for (regno = 0; regno < frv_num_regs; ++regno) | |
934 | { | |
935 | if (frame->saved_regs[regno] | |
936 | && regno != pc_regnum | |
937 | && regno != sp_regnum) | |
938 | { | |
939 | write_register (regno, | |
940 | read_memory_integer (frame->saved_regs[regno], 4)); | |
941 | } | |
942 | } | |
943 | write_register (sp_regnum, fp + frame->extra_info->fp_to_callers_sp_offset); | |
944 | flush_cached_frames (); | |
945 | } | |
946 | ||
947 | ||
948 | static void | |
949 | frv_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes, | |
950 | CORE_ADDR *targ_addr, int *targ_len) | |
951 | { | |
952 | *targ_addr = memaddr; | |
953 | *targ_len = nr_bytes; | |
954 | } | |
955 | ||
956 | ||
957 | /* Hardware watchpoint / breakpoint support for the FR500 | |
958 | and FR400. */ | |
959 | ||
960 | int | |
961 | frv_check_watch_resources (int type, int cnt, int ot) | |
962 | { | |
963 | struct gdbarch_tdep *var = CURRENT_VARIANT; | |
964 | ||
965 | /* Watchpoints not supported on simulator. */ | |
966 | if (strcmp (target_shortname, "sim") == 0) | |
967 | return 0; | |
968 | ||
969 | if (type == bp_hardware_breakpoint) | |
970 | { | |
971 | if (var->num_hw_breakpoints == 0) | |
972 | return 0; | |
973 | else if (cnt <= var->num_hw_breakpoints) | |
974 | return 1; | |
975 | } | |
976 | else | |
977 | { | |
978 | if (var->num_hw_watchpoints == 0) | |
979 | return 0; | |
980 | else if (ot) | |
981 | return -1; | |
982 | else if (cnt <= var->num_hw_watchpoints) | |
983 | return 1; | |
984 | } | |
985 | return -1; | |
986 | } | |
987 | ||
988 | ||
989 | CORE_ADDR | |
5ae5f592 | 990 | frv_stopped_data_address (void) |
456f8b9d DB |
991 | { |
992 | CORE_ADDR brr, dbar0, dbar1, dbar2, dbar3; | |
993 | ||
994 | brr = read_register (brr_regnum); | |
995 | dbar0 = read_register (dbar0_regnum); | |
996 | dbar1 = read_register (dbar1_regnum); | |
997 | dbar2 = read_register (dbar2_regnum); | |
998 | dbar3 = read_register (dbar3_regnum); | |
999 | ||
1000 | if (brr & (1<<11)) | |
1001 | return dbar0; | |
1002 | else if (brr & (1<<10)) | |
1003 | return dbar1; | |
1004 | else if (brr & (1<<9)) | |
1005 | return dbar2; | |
1006 | else if (brr & (1<<8)) | |
1007 | return dbar3; | |
1008 | else | |
1009 | return 0; | |
1010 | } | |
1011 | ||
1012 | static struct gdbarch * | |
1013 | frv_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1014 | { | |
1015 | struct gdbarch *gdbarch; | |
1016 | struct gdbarch_tdep *var; | |
1017 | ||
1018 | /* Check to see if we've already built an appropriate architecture | |
1019 | object for this executable. */ | |
1020 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
1021 | if (arches) | |
1022 | return arches->gdbarch; | |
1023 | ||
1024 | /* Select the right tdep structure for this variant. */ | |
1025 | var = new_variant (); | |
1026 | switch (info.bfd_arch_info->mach) | |
1027 | { | |
1028 | case bfd_mach_frv: | |
1029 | case bfd_mach_frvsimple: | |
1030 | case bfd_mach_fr500: | |
1031 | case bfd_mach_frvtomcat: | |
1032 | set_variant_num_gprs (var, 64); | |
1033 | set_variant_num_fprs (var, 64); | |
1034 | break; | |
1035 | ||
1036 | case bfd_mach_fr400: | |
1037 | set_variant_num_gprs (var, 32); | |
1038 | set_variant_num_fprs (var, 32); | |
1039 | break; | |
1040 | ||
1041 | default: | |
1042 | /* Never heard of this variant. */ | |
1043 | return 0; | |
1044 | } | |
1045 | ||
1046 | gdbarch = gdbarch_alloc (&info, var); | |
1047 | ||
a5afb99f AC |
1048 | /* NOTE: cagney/2002-12-06: This can be deleted when this arch is |
1049 | ready to unwind the PC first (see frame.c:get_prev_frame()). */ | |
1050 | set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default); | |
1051 | ||
456f8b9d DB |
1052 | set_gdbarch_short_bit (gdbarch, 16); |
1053 | set_gdbarch_int_bit (gdbarch, 32); | |
1054 | set_gdbarch_long_bit (gdbarch, 32); | |
1055 | set_gdbarch_long_long_bit (gdbarch, 64); | |
1056 | set_gdbarch_float_bit (gdbarch, 32); | |
1057 | set_gdbarch_double_bit (gdbarch, 64); | |
1058 | set_gdbarch_long_double_bit (gdbarch, 64); | |
1059 | set_gdbarch_ptr_bit (gdbarch, 32); | |
1060 | ||
1061 | set_gdbarch_num_regs (gdbarch, frv_num_regs); | |
1062 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); | |
1063 | set_gdbarch_fp_regnum (gdbarch, fp_regnum); | |
1064 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); | |
1065 | ||
1066 | set_gdbarch_register_name (gdbarch, frv_register_name); | |
1067 | set_gdbarch_register_size (gdbarch, 4); | |
1068 | set_gdbarch_register_bytes (gdbarch, frv_num_regs * 4); | |
1069 | set_gdbarch_register_byte (gdbarch, frv_register_byte); | |
1070 | set_gdbarch_register_raw_size (gdbarch, frv_register_raw_size); | |
1071 | set_gdbarch_max_register_raw_size (gdbarch, 4); | |
1072 | set_gdbarch_register_virtual_size (gdbarch, frv_register_virtual_size); | |
1073 | set_gdbarch_max_register_virtual_size (gdbarch, 4); | |
1074 | set_gdbarch_register_virtual_type (gdbarch, frv_register_virtual_type); | |
1075 | ||
1076 | set_gdbarch_skip_prologue (gdbarch, frv_skip_prologue); | |
1077 | set_gdbarch_breakpoint_from_pc (gdbarch, frv_breakpoint_from_pc); | |
1078 | ||
1079 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
1080 | set_gdbarch_frame_args_skip (gdbarch, 0); | |
1081 | set_gdbarch_frameless_function_invocation (gdbarch, frv_frameless_function_invocation); | |
1082 | ||
1083 | set_gdbarch_saved_pc_after_call (gdbarch, frv_saved_pc_after_call); | |
1084 | ||
1085 | set_gdbarch_frame_chain (gdbarch, frv_frame_chain); | |
1086 | set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid); | |
1087 | set_gdbarch_frame_saved_pc (gdbarch, frv_frame_saved_pc); | |
456f8b9d DB |
1088 | |
1089 | set_gdbarch_frame_init_saved_regs (gdbarch, frv_frame_init_saved_regs); | |
1090 | ||
1091 | set_gdbarch_use_struct_convention (gdbarch, frv_use_struct_convention); | |
1092 | set_gdbarch_deprecated_extract_return_value (gdbarch, frv_extract_return_value); | |
1093 | ||
1094 | set_gdbarch_store_struct_return (gdbarch, frv_store_struct_return); | |
ebba8386 | 1095 | set_gdbarch_deprecated_store_return_value (gdbarch, frv_store_return_value); |
456f8b9d DB |
1096 | set_gdbarch_deprecated_extract_struct_value_address (gdbarch, frv_extract_struct_value_address); |
1097 | ||
1098 | /* Settings for calling functions in the inferior. */ | |
456f8b9d DB |
1099 | set_gdbarch_call_dummy_length (gdbarch, 0); |
1100 | set_gdbarch_coerce_float_to_double (gdbarch, | |
1101 | standard_coerce_float_to_double); | |
1102 | set_gdbarch_push_arguments (gdbarch, frv_push_arguments); | |
1103 | set_gdbarch_push_return_address (gdbarch, frv_push_return_address); | |
1104 | set_gdbarch_pop_frame (gdbarch, frv_pop_frame); | |
1105 | ||
1106 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
1107 | set_gdbarch_call_dummy_words (gdbarch, frv_call_dummy_words); | |
1108 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (frv_call_dummy_words)); | |
1109 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
1110 | set_gdbarch_init_extra_frame_info (gdbarch, frv_init_extra_frame_info); | |
1111 | ||
1112 | /* Settings that should be unnecessary. */ | |
1113 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
1114 | ||
1115 | set_gdbarch_read_pc (gdbarch, generic_target_read_pc); | |
1116 | set_gdbarch_write_pc (gdbarch, generic_target_write_pc); | |
1117 | set_gdbarch_read_fp (gdbarch, generic_target_read_fp); | |
1118 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
1119 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
1120 | ||
456f8b9d DB |
1121 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); |
1122 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
1123 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
ae45cd16 | 1124 | set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point); |
456f8b9d DB |
1125 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); |
1126 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
1127 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
1128 | ||
456f8b9d DB |
1129 | set_gdbarch_decr_pc_after_break (gdbarch, 0); |
1130 | set_gdbarch_function_start_offset (gdbarch, 0); | |
1131 | set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not); | |
1132 | ||
1133 | set_gdbarch_remote_translate_xfer_address | |
1134 | (gdbarch, frv_remote_translate_xfer_address); | |
1135 | ||
1136 | /* Hardware watchpoint / breakpoint support. */ | |
1137 | switch (info.bfd_arch_info->mach) | |
1138 | { | |
1139 | case bfd_mach_frv: | |
1140 | case bfd_mach_frvsimple: | |
1141 | case bfd_mach_fr500: | |
1142 | case bfd_mach_frvtomcat: | |
1143 | /* fr500-style hardware debugging support. */ | |
1144 | var->num_hw_watchpoints = 4; | |
1145 | var->num_hw_breakpoints = 4; | |
1146 | break; | |
1147 | ||
1148 | case bfd_mach_fr400: | |
1149 | /* fr400-style hardware debugging support. */ | |
1150 | var->num_hw_watchpoints = 2; | |
1151 | var->num_hw_breakpoints = 4; | |
1152 | break; | |
1153 | ||
1154 | default: | |
1155 | /* Otherwise, assume we don't have hardware debugging support. */ | |
1156 | var->num_hw_watchpoints = 0; | |
1157 | var->num_hw_breakpoints = 0; | |
1158 | break; | |
1159 | } | |
1160 | ||
1161 | return gdbarch; | |
1162 | } | |
1163 | ||
1164 | void | |
1165 | _initialize_frv_tdep (void) | |
1166 | { | |
1167 | register_gdbarch_init (bfd_arch_frv, frv_gdbarch_init); | |
1168 | ||
1169 | tm_print_insn = print_insn_frv; | |
1170 | } | |
1171 | ||
1172 | \f |