]> Git Repo - binutils.git/blame - gdb/dwarf2read.c
Remove dwarf_decode_lines argumewant_line_info
[binutils.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck ([email protected]), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
45cfd468 82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 83static unsigned int dwarf2_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
73869dc2
DE
103/* A descriptor for dwarf sections.
104
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
109
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
114 input section.
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
118
dce234bc
PP
119struct dwarf2_section_info
120{
73869dc2
DE
121 union
122 {
e5aa3347 123 /* If this is a real section, the bfd section. */
73869dc2
DE
124 asection *asection;
125 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 126 section. */
73869dc2
DE
127 struct dwarf2_section_info *containing_section;
128 } s;
19ac8c2e 129 /* Pointer to section data, only valid if readin. */
d521ce57 130 const gdb_byte *buffer;
73869dc2 131 /* The size of the section, real or virtual. */
dce234bc 132 bfd_size_type size;
73869dc2
DE
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
be391dca 136 /* True if we have tried to read this section. */
73869dc2
DE
137 char readin;
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
140 char is_virtual;
dce234bc
PP
141};
142
8b70b953
TT
143typedef struct dwarf2_section_info dwarf2_section_info_def;
144DEF_VEC_O (dwarf2_section_info_def);
145
9291a0cd
TT
146/* All offsets in the index are of this type. It must be
147 architecture-independent. */
148typedef uint32_t offset_type;
149
150DEF_VEC_I (offset_type);
151
156942c7
DE
152/* Ensure only legit values are used. */
153#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 do { \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
157 } while (0)
158
159/* Ensure only legit values are used. */
160#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 do { \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
165 } while (0)
166
167/* Ensure we don't use more than the alloted nuber of bits for the CU. */
168#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
9291a0cd
TT
174/* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
176struct mapped_index
177{
559a7a62
JK
178 /* Index data format version. */
179 int version;
180
9291a0cd
TT
181 /* The total length of the buffer. */
182 off_t total_size;
b11b1f88 183
9291a0cd
TT
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
b11b1f88 186
9291a0cd
TT
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
b11b1f88 189
3876f04e
DE
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
b11b1f88 192
9291a0cd 193 /* Size in slots, each slot is 2 offset_types. */
3876f04e 194 offset_type symbol_table_slots;
b11b1f88 195
9291a0cd
TT
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
198};
199
95554aad
TT
200typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201DEF_VEC_P (dwarf2_per_cu_ptr);
202
9cdd5dbd
DE
203/* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
205
6502dd73
DJ
206struct dwarf2_per_objfile
207{
dce234bc
PP
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
dce234bc
PP
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
cf2c3c16 213 struct dwarf2_section_info macro;
dce234bc
PP
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
3019eac3 216 struct dwarf2_section_info addr;
dce234bc
PP
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
9291a0cd 219 struct dwarf2_section_info gdb_index;
ae038cb0 220
8b70b953
TT
221 VEC (dwarf2_section_info_def) *types;
222
be391dca
TT
223 /* Back link. */
224 struct objfile *objfile;
225
d467dd73 226 /* Table of all the compilation units. This is used to locate
10b3939b 227 the target compilation unit of a particular reference. */
ae038cb0
DJ
228 struct dwarf2_per_cu_data **all_comp_units;
229
230 /* The number of compilation units in ALL_COMP_UNITS. */
231 int n_comp_units;
232
1fd400ff 233 /* The number of .debug_types-related CUs. */
d467dd73 234 int n_type_units;
1fd400ff 235
6aa5f3a6
DE
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
239
a2ce51a0
DE
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
b4dd5633 242 struct signatured_type **all_type_units;
1fd400ff 243
f4dc4d17
DE
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
72dca2f5 247
348e048f
DE
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
251
f4dc4d17
DE
252 /* Type unit statistics, to see how well the scaling improvements
253 are doing. */
254 struct tu_stats
255 {
256 int nr_uniq_abbrev_tables;
257 int nr_symtabs;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
6aa5f3a6 260 int nr_all_type_units_reallocs;
f4dc4d17
DE
261 } tu_stats;
262
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
266
3019eac3
DE
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
269 htab_t dwo_files;
270
80626a55
DE
271 /* Non-zero if we've check for whether there is a DWP file. */
272 int dwp_checked;
273
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
276
36586728
TT
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
280
72dca2f5
FR
281 /* A flag indicating wether this objfile has a section loaded at a
282 VMA of 0. */
283 int has_section_at_zero;
9291a0cd 284
ae2de4f8
DE
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
287 unsigned char using_index;
288
ae2de4f8 289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 290 struct mapped_index *index_table;
98bfdba5 291
7b9f3c50 292 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
7b9f3c50
DE
299 htab_t quick_file_names_table;
300
98bfdba5
PA
301 /* Set during partial symbol reading, to prevent queueing of full
302 symbols. */
303 int reading_partial_symbols;
673bfd45 304
dee91e82 305 /* Table mapping type DIEs to their struct type *.
673bfd45 306 This is NULL if not allocated yet.
02142a6c 307 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 308 htab_t die_type_hash;
95554aad
TT
309
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
312};
313
314static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 315
251d32d9 316/* Default names of the debugging sections. */
c906108c 317
233a11ab
CS
318/* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
320
9cdd5dbd
DE
321static const struct dwarf2_debug_sections dwarf2_elf_names =
322{
251d32d9
TG
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 328 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
3019eac3 332 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
24d3216f
TT
335 { ".gdb_index", ".zgdb_index" },
336 23
251d32d9 337};
c906108c 338
80626a55 339/* List of DWO/DWP sections. */
3019eac3 340
80626a55 341static const struct dwop_section_names
3019eac3
DE
342{
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
09262596
DE
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
3019eac3
DE
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
80626a55
DE
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
3019eac3 354}
80626a55 355dwop_section_names =
3019eac3
DE
356{
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
368};
369
c906108c
SS
370/* local data types */
371
107d2387
AC
372/* The data in a compilation unit header, after target2host
373 translation, looks like this. */
c906108c 374struct comp_unit_head
a738430d 375{
c764a876 376 unsigned int length;
a738430d 377 short version;
a738430d
MK
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
b64f50a1 380 sect_offset abbrev_offset;
57349743 381
a738430d
MK
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
57349743 384
a738430d
MK
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
57349743 387
a738430d
MK
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
b64f50a1 390 sect_offset offset;
57349743 391
d00adf39
DE
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
b64f50a1 394 cu_offset first_die_offset;
a738430d 395};
c906108c 396
3da10d80
KS
397/* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399struct delayed_method_info
400{
401 /* The type to which the method is attached, i.e., its parent class. */
402 struct type *type;
403
404 /* The index of the method in the type's function fieldlists. */
405 int fnfield_index;
406
407 /* The index of the method in the fieldlist. */
408 int index;
409
410 /* The name of the DIE. */
411 const char *name;
412
413 /* The DIE associated with this method. */
414 struct die_info *die;
415};
416
417typedef struct delayed_method_info delayed_method_info;
418DEF_VEC_O (delayed_method_info);
419
e7c27a73
DJ
420/* Internal state when decoding a particular compilation unit. */
421struct dwarf2_cu
422{
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
425
d00adf39 426 /* The header of the compilation unit. */
e7c27a73 427 struct comp_unit_head header;
e142c38c 428
d00adf39
DE
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
431
432 /* Non-zero if base_address has been set. */
433 int base_known;
434
e142c38c
DJ
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
438
b0f35d58
DL
439 const char *producer;
440
e142c38c
DJ
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
451
433df2d4
DE
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
72bf9492 456
b64f50a1
JK
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
459 htab_t partial_dies;
460
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
464
ae038cb0
DJ
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
470
69d751e3 471 /* Backlink to our per_cu entry. */
ae038cb0
DJ
472 struct dwarf2_per_cu_data *per_cu;
473
474 /* How many compilation units ago was this CU last referenced? */
475 int last_used;
476
b64f50a1
JK
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
51545339 479 htab_t die_hash;
10b3939b
DJ
480
481 /* Full DIEs if read in. */
482 struct die_info *dies;
483
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
487 htab_t dependencies;
488
cb1df416
DJ
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
491
3da10d80
KS
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
495
96408a79
SA
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
498
034e5797
DE
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
3019eac3
DE
508 struct dwo_unit *dwo_unit;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
1dbab08b 512 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
513 ULONGEST addr_base;
514
2e3cf129
DE
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
1dbab08b 517 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 518 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
525 ULONGEST ranges_base;
526
ae038cb0
DJ
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
529
8be455d7
JK
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 534 unsigned int has_loclist : 1;
ba919b58 535
1b80a9fa
JK
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
ba919b58
TT
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 542 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 543 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
544
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
548
549 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
550};
551
10b3939b
DJ
552/* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
28dee7f5 554 read_symtab_private field of the psymtab. */
10b3939b 555
ae038cb0
DJ
556struct dwarf2_per_cu_data
557{
36586728 558 /* The start offset and length of this compilation unit.
45452591 559 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
560 initial_length_size.
561 If the DIE refers to a DWO file, this is always of the original die,
562 not the DWO file. */
b64f50a1 563 sect_offset offset;
36586728 564 unsigned int length;
ae038cb0
DJ
565
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
c764a876 568 unsigned int queued : 1;
ae038cb0 569
0d99eb77
DE
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
575
0186c6a7
DE
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
578 this is non-zero. */
3019eac3
DE
579 unsigned int is_debug_types : 1;
580
36586728
TT
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
583
a2ce51a0
DE
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
589
7ee85ab1
DE
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
596 "midflight").
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
599
3019eac3
DE
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
602 not the DWO file. */
8a0459fd 603 struct dwarf2_section_info *section;
348e048f 604
17ea53c3
JK
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
ae038cb0 607 struct dwarf2_cu *cu;
1c379e20 608
9cdd5dbd
DE
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
612 struct objfile *objfile;
613
fffbe6a8
YQ
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
616 union
617 {
618 /* The partial symbol table associated with this compilation unit,
95554aad 619 or NULL for unread partial units. */
9291a0cd
TT
620 struct partial_symtab *psymtab;
621
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
624 } v;
95554aad 625
796a7ff8
DE
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
630
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
645};
646
348e048f
DE
647/* Entry in the signatured_types hash table. */
648
649struct signatured_type
650{
42e7ad6c 651 /* The "per_cu" object of this type.
ac9ec31b 652 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
653 N.B.: This is the first member so that it's easy to convert pointers
654 between them. */
655 struct dwarf2_per_cu_data per_cu;
656
3019eac3 657 /* The type's signature. */
348e048f
DE
658 ULONGEST signature;
659
3019eac3 660 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
663 cu_offset type_offset_in_tu;
664
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
0186c6a7
DE
671
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
ac9ec31b
DE
675
676 /* The type.
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
679 struct type *type;
a2ce51a0
DE
680
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
348e048f
DE
684};
685
0186c6a7
DE
686typedef struct signatured_type *sig_type_ptr;
687DEF_VEC_P (sig_type_ptr);
688
094b34ac
DE
689/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
691
692struct stmt_list_hash
693{
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
696
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
699};
700
f4dc4d17
DE
701/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
703
704struct type_unit_group
705{
0186c6a7 706 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
8a0459fd 711#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
712 struct dwarf2_per_cu_data per_cu;
713
0186c6a7
DE
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
718
719 /* The primary symtab.
094b34ac
DE
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
722 struct symtab *primary_symtab;
723
094b34ac
DE
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
f4dc4d17
DE
726
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
730
731 /* The symbol tables for this TU (obtained from the files listed in
732 DW_AT_stmt_list).
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
740};
741
73869dc2 742/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
743
744struct dwo_sections
745{
746 struct dwarf2_section_info abbrev;
3019eac3
DE
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
09262596
DE
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
3019eac3
DE
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
80626a55
DE
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
3019eac3
DE
755 VEC (dwarf2_section_info_def) *types;
756};
757
c88ee1f0 758/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
759
760struct dwo_unit
761{
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
764
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
768 ULONGEST signature;
769
770 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 771 struct dwarf2_section_info *section;
3019eac3 772
19ac8c2e 773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
774 sect_offset offset;
775 unsigned int length;
776
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
779};
780
73869dc2
DE
781/* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
784
785enum dwp_v2_section_ids
786{
787 DW_SECT_MIN = 1
788};
789
80626a55 790/* Data for one DWO file.
57d63ce2
DE
791
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
3019eac3
DE
800
801struct dwo_file
802{
0ac5b59e 803 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
0ac5b59e
DE
807 const char *dwo_name;
808
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
3019eac3 811
80626a55
DE
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
814 bfd *dbfd;
3019eac3 815
73869dc2
DE
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
3019eac3
DE
819 struct dwo_sections sections;
820
19c3d4c9
DE
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
826 struct dwo_unit *cu;
3019eac3
DE
827
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
830 htab_t tus;
831};
832
80626a55
DE
833/* These sections are what may appear in a DWP file. */
834
835struct dwp_sections
836{
73869dc2 837 /* These are used by both DWP version 1 and 2. */
80626a55
DE
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
73869dc2
DE
841
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
80626a55
DE
858};
859
73869dc2
DE
860/* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 862
73869dc2 863struct virtual_v1_dwo_sections
80626a55
DE
864{
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 872 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
873 struct dwarf2_section_info info_or_types;
874};
875
73869dc2
DE
876/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
880
881struct virtual_v2_dwo_sections
882{
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
885
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
888
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
891
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
894
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
897
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
900
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
905};
906
80626a55
DE
907/* Contents of DWP hash tables. */
908
909struct dwp_hash_table
910{
73869dc2 911 uint32_t version, nr_columns;
80626a55 912 uint32_t nr_units, nr_slots;
73869dc2
DE
913 const gdb_byte *hash_table, *unit_table;
914 union
915 {
916 struct
917 {
918 const gdb_byte *indices;
919 } v1;
920 struct
921 {
922 /* This is indexed by column number and gives the id of the section
923 in that column. */
924#define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
934 } v2;
935 } section_pool;
80626a55
DE
936};
937
938/* Data for one DWP file. */
939
940struct dwp_file
941{
942 /* Name of the file. */
943 const char *name;
944
73869dc2
DE
945 /* File format version. */
946 int version;
947
93417882 948 /* The bfd. */
80626a55
DE
949 bfd *dbfd;
950
951 /* Section info for this file. */
952 struct dwp_sections sections;
953
57d63ce2 954 /* Table of CUs in the file. */
80626a55
DE
955 const struct dwp_hash_table *cus;
956
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
959
19ac8c2e
DE
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
961 htab_t loaded_cus;
962 htab_t loaded_tus;
80626a55 963
73869dc2
DE
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
80626a55
DE
966 unsigned int num_sections;
967 asection **elf_sections;
968};
969
36586728
TT
970/* This represents a '.dwz' file. */
971
972struct dwz_file
973{
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
2ec9a5e0 980 struct dwarf2_section_info gdb_index;
36586728
TT
981
982 /* The dwz's BFD. */
983 bfd *dwz_bfd;
984};
985
0963b4bd
MS
986/* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
dee91e82 989 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
990
991struct die_reader_specs
992{
a32a8923 993 /* The bfd of die_section. */
93311388
DE
994 bfd* abfd;
995
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
998
80626a55 999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1000 struct dwo_file *dwo_file;
1001
dee91e82 1002 /* The section the die comes from.
3019eac3 1003 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1004 struct dwarf2_section_info *die_section;
1005
1006 /* die_section->buffer. */
d521ce57 1007 const gdb_byte *buffer;
f664829e
DE
1008
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
a2ce51a0
DE
1011
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
93311388
DE
1014};
1015
fd820528 1016/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1017typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1018 const gdb_byte *info_ptr,
dee91e82
DE
1019 struct die_info *comp_unit_die,
1020 int has_children,
1021 void *data);
1022
debd256d
JB
1023/* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1026struct line_header
1027{
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
2dc7f7b3 1032 unsigned char maximum_ops_per_instruction;
debd256d
JB
1033 unsigned char default_is_stmt;
1034 int line_base;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1037
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1043
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1047 indigestion. */
1048 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1049 const char **include_dirs;
debd256d
JB
1050
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1055 struct file_entry
c906108c 1056 {
d521ce57 1057 const char *name;
debd256d
JB
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
aaa75496 1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1062 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1063 } *file_names;
1064
1065 /* The start and end of the statement program following this
6502dd73 1066 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1067 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1068};
c906108c
SS
1069
1070/* When we construct a partial symbol table entry we only
0963b4bd 1071 need this much information. */
c906108c
SS
1072struct partial_die_info
1073 {
72bf9492 1074 /* Offset of this DIE. */
b64f50a1 1075 sect_offset offset;
72bf9492
DJ
1076
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
72bf9492
DJ
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
481860b3 1087 unsigned int may_be_inlined : 1;
72bf9492
DJ
1088
1089 /* Flag set if the SCOPE field of this structure has been
1090 computed. */
1091 unsigned int scope_set : 1;
1092
fa4028e9
JB
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1095
98bfdba5
PA
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1098
abc72ce4
DE
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1101
36586728
TT
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1104
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1107
72bf9492 1108 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1109 sometimes a default name for unnamed DIEs. */
15d034d0 1110 const char *name;
72bf9492 1111
abc72ce4
DE
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1114
72bf9492
DJ
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
15d034d0 1118 const char *scope;
72bf9492 1119
95554aad
TT
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1122 union
1123 {
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1127 sect_offset offset;
1128 } d;
72bf9492
DJ
1129
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1131 CORE_ADDR lowpc;
1132 CORE_ADDR highpc;
72bf9492 1133
93311388 1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1135 DW_AT_sibling, if any. */
abc72ce4
DE
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1138 const gdb_byte *sibling;
72bf9492
DJ
1139
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
b64f50a1 1143 sect_offset spec_offset;
72bf9492
DJ
1144
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1146 if any. */
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1148 };
1149
0963b4bd 1150/* This data structure holds the information of an abbrev. */
c906108c
SS
1151struct abbrev_info
1152 {
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1159 };
1160
1161struct attr_abbrev
1162 {
9d25dd43
DE
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1165 };
1166
433df2d4
DE
1167/* Size of abbrev_table.abbrev_hash_table. */
1168#define ABBREV_HASH_SIZE 121
1169
1170/* Top level data structure to contain an abbreviation table. */
1171
1172struct abbrev_table
1173{
f4dc4d17
DE
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
433df2d4
DE
1176 sect_offset offset;
1177
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1180
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1184 don't either. */
1185 struct abbrev_info **abbrevs;
1186};
1187
0963b4bd 1188/* Attributes have a name and a value. */
b60c80d6
DJ
1189struct attribute
1190 {
9d25dd43 1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1193
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1198
b60c80d6
DJ
1199 union
1200 {
15d034d0 1201 const char *str;
b60c80d6 1202 struct dwarf_block *blk;
43bbcdc2
PH
1203 ULONGEST unsnd;
1204 LONGEST snd;
b60c80d6 1205 CORE_ADDR addr;
ac9ec31b 1206 ULONGEST signature;
b60c80d6
DJ
1207 }
1208 u;
1209 };
1210
0963b4bd 1211/* This data structure holds a complete die structure. */
c906108c
SS
1212struct die_info
1213 {
76815b17
DE
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1216
1217 /* Number of attributes */
98bfdba5
PA
1218 unsigned char num_attrs;
1219
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
76815b17 1223
adde2bff
DE
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1226
76815b17
DE
1227 /* Abbrev number */
1228 unsigned int abbrev;
1229
93311388 1230 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1231 sect_offset offset;
78ba4af6
JB
1232
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
4950bc1c 1236 together via their SIBLING fields. */
639d11d3
DC
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
c906108c 1240
b60c80d6
DJ
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
c906108c
SS
1245 };
1246
0963b4bd 1247/* Get at parts of an attribute structure. */
c906108c
SS
1248
1249#define DW_STRING(attr) ((attr)->u.str)
8285870a 1250#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1251#define DW_UNSND(attr) ((attr)->u.unsnd)
1252#define DW_BLOCK(attr) ((attr)->u.blk)
1253#define DW_SND(attr) ((attr)->u.snd)
1254#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1255#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1256
0963b4bd 1257/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1258struct dwarf_block
1259 {
56eb65bd 1260 size_t size;
1d6edc3c
JK
1261
1262 /* Valid only if SIZE is not zero. */
d521ce57 1263 const gdb_byte *data;
c906108c
SS
1264 };
1265
c906108c
SS
1266#ifndef ATTR_ALLOC_CHUNK
1267#define ATTR_ALLOC_CHUNK 4
1268#endif
1269
c906108c
SS
1270/* Allocate fields for structs, unions and enums in this size. */
1271#ifndef DW_FIELD_ALLOC_CHUNK
1272#define DW_FIELD_ALLOC_CHUNK 4
1273#endif
1274
c906108c
SS
1275/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1277 and friends. */
1278static int bits_per_byte = 8;
1279
1280/* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1283struct field_info
c5aa993b 1284 {
0963b4bd 1285 /* List of data member and baseclasses fields. */
c5aa993b
JM
1286 struct nextfield
1287 {
1288 struct nextfield *next;
1289 int accessibility;
1290 int virtuality;
1291 struct field field;
1292 }
7d0ccb61 1293 *fields, *baseclasses;
c906108c 1294
7d0ccb61 1295 /* Number of fields (including baseclasses). */
c5aa993b 1296 int nfields;
c906108c 1297
c5aa993b
JM
1298 /* Number of baseclasses. */
1299 int nbaseclasses;
c906108c 1300
c5aa993b
JM
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
c906108c 1303
c5aa993b
JM
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1306 struct nextfnfield
1307 {
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1310 }
1311 *fnfields;
c906108c 1312
c5aa993b
JM
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1316 struct fnfieldlist
1317 {
15d034d0 1318 const char *name;
c5aa993b
JM
1319 int length;
1320 struct nextfnfield *head;
1321 }
1322 *fnfieldlists;
c906108c 1323
c5aa993b
JM
1324 /* Number of entries in the fnfieldlists array. */
1325 int nfnfields;
98751a41
JK
1326
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1330 {
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1333 }
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
c5aa993b 1336 };
c906108c 1337
10b3939b
DJ
1338/* One item on the queue of compilation units to read in full symbols
1339 for. */
1340struct dwarf2_queue_item
1341{
1342 struct dwarf2_per_cu_data *per_cu;
95554aad 1343 enum language pretend_language;
10b3939b
DJ
1344 struct dwarf2_queue_item *next;
1345};
1346
1347/* The current queue. */
1348static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1349
ae038cb0
DJ
1350/* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355static int dwarf2_max_cache_age = 5;
920d2a44
AC
1356static void
1357show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359{
3e43a32a
MS
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1362 value);
1363}
4390d890 1364\f
c906108c
SS
1365/* local function prototypes */
1366
a32a8923
DE
1367static const char *get_section_name (const struct dwarf2_section_info *);
1368
1369static const char *get_section_file_name (const struct dwarf2_section_info *);
1370
4efb68b1 1371static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1372
918dd910
JK
1373static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1375
0018ea6f
DE
1376static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1378
c67a9c90 1379static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1380
72bf9492
DJ
1381static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1383 int, struct dwarf2_cu *);
c906108c 1384
72bf9492
DJ
1385static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
63d06c5c 1387
72bf9492
DJ
1388static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1390 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1391
5d7cb8df 1392static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1393 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1394 struct dwarf2_cu *cu);
1395
72bf9492
DJ
1396static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
91c24f0a 1398
bc30ff58
JB
1399static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1401 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1402
257e7a09
YQ
1403static void dwarf2_read_symtab (struct partial_symtab *,
1404 struct objfile *);
c906108c 1405
a14ed312 1406static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1407
433df2d4
DE
1408static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1410
1411static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1413
1414static void abbrev_table_free (struct abbrev_table *);
1415
f4dc4d17
DE
1416static void abbrev_table_free_cleanup (void *);
1417
dee91e82
DE
1418static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
c906108c 1420
f3dd6933 1421static void dwarf2_free_abbrev_table (void *);
c906108c 1422
d521ce57 1423static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1424
dee91e82 1425static struct partial_die_info *load_partial_dies
d521ce57 1426 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1427
d521ce57
TT
1428static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1431 unsigned int,
1432 const gdb_byte *);
c906108c 1433
36586728 1434static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1435 struct dwarf2_cu *);
72bf9492
DJ
1436
1437static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1439
d521ce57
TT
1440static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1442 const gdb_byte *);
a8329558 1443
a1855c1d 1444static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1445
a1855c1d 1446static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1447
a1855c1d 1448static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1453
d521ce57 1454static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1455 unsigned int *);
c906108c 1456
d521ce57 1457static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1458
1459static LONGEST read_checked_initial_length_and_offset
d521ce57 1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1461 unsigned int *, unsigned int *);
613e1657 1462
d521ce57
TT
1463static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
c764a876
DE
1465 unsigned int *);
1466
d521ce57 1467static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1468
f4dc4d17
DE
1469static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1470 sect_offset);
1471
d521ce57 1472static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1473
d521ce57 1474static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1475
d521ce57
TT
1476static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1478 unsigned int *);
4bdf3d34 1479
d521ce57 1480static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1481
d521ce57 1482static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1483
d521ce57 1484static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1485
d521ce57
TT
1486static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1487 const gdb_byte *,
3019eac3
DE
1488 unsigned int *);
1489
d521ce57 1490static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1491 ULONGEST str_index);
3019eac3 1492
e142c38c 1493static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1494
e142c38c
DJ
1495static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
c906108c 1497
348e048f 1498static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1499 unsigned int);
348e048f 1500
05cf31d1
JB
1501static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1503
e142c38c 1504static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1505
e142c38c 1506static struct die_info *die_specification (struct die_info *die,
f2f0e013 1507 struct dwarf2_cu **);
63d06c5c 1508
debd256d
JB
1509static void free_line_header (struct line_header *lh);
1510
3019eac3
DE
1511static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
debd256d 1513
f3f5162e 1514static void dwarf_decode_lines (struct line_header *, const char *,
a1b34d15 1515 struct dwarf2_cu *, struct partial_symtab *);
c906108c 1516
d521ce57 1517static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1518
f4dc4d17 1519static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1520 const char *, const char *, CORE_ADDR);
f4dc4d17 1521
a14ed312 1522static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1523 struct dwarf2_cu *);
c906108c 1524
34eaf542
TT
1525static struct symbol *new_symbol_full (struct die_info *, struct type *,
1526 struct dwarf2_cu *, struct symbol *);
1527
ff39bb5e 1528static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1529 struct dwarf2_cu *);
c906108c 1530
ff39bb5e 1531static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1532 struct type *type,
1533 const char *name,
1534 struct obstack *obstack,
12df843f 1535 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1536 const gdb_byte **bytes,
98bfdba5 1537 struct dwarf2_locexpr_baton **baton);
2df3850c 1538
e7c27a73 1539static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1540
b4ba55a1
JB
1541static int need_gnat_info (struct dwarf2_cu *);
1542
3e43a32a
MS
1543static struct type *die_descriptive_type (struct die_info *,
1544 struct dwarf2_cu *);
b4ba55a1
JB
1545
1546static void set_descriptive_type (struct type *, struct die_info *,
1547 struct dwarf2_cu *);
1548
e7c27a73
DJ
1549static struct type *die_containing_type (struct die_info *,
1550 struct dwarf2_cu *);
c906108c 1551
ff39bb5e 1552static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1553 struct dwarf2_cu *);
c906108c 1554
f792889a 1555static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1556
673bfd45
DE
1557static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1558
0d5cff50 1559static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1560
6e70227d 1561static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1562 const char *suffix, int physname,
1563 struct dwarf2_cu *cu);
63d06c5c 1564
e7c27a73 1565static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1566
348e048f
DE
1567static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1568
e7c27a73 1569static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1570
e7c27a73 1571static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1572
96408a79
SA
1573static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1574
ff013f42
JK
1575static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1576 struct dwarf2_cu *, struct partial_symtab *);
1577
a14ed312 1578static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1579 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1580 struct partial_symtab *);
c906108c 1581
fae299cd
DC
1582static void get_scope_pc_bounds (struct die_info *,
1583 CORE_ADDR *, CORE_ADDR *,
1584 struct dwarf2_cu *);
1585
801e3a5b
JB
1586static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1587 CORE_ADDR, struct dwarf2_cu *);
1588
a14ed312 1589static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1590 struct dwarf2_cu *);
c906108c 1591
a14ed312 1592static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1593 struct type *, struct dwarf2_cu *);
c906108c 1594
a14ed312 1595static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1596 struct die_info *, struct type *,
e7c27a73 1597 struct dwarf2_cu *);
c906108c 1598
a14ed312 1599static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1600 struct type *,
1601 struct dwarf2_cu *);
c906108c 1602
134d01f1 1603static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1604
e7c27a73 1605static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1606
e7c27a73 1607static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1608
5d7cb8df
JK
1609static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1610
27aa8d6a
SW
1611static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1612
74921315
KS
1613static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1614
f55ee35c
JK
1615static struct type *read_module_type (struct die_info *die,
1616 struct dwarf2_cu *cu);
1617
38d518c9 1618static const char *namespace_name (struct die_info *die,
e142c38c 1619 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1620
134d01f1 1621static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1622
e7c27a73 1623static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1624
6e70227d 1625static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1626 struct dwarf2_cu *);
1627
bf6af496 1628static struct die_info *read_die_and_siblings_1
d521ce57 1629 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1630 struct die_info *);
639d11d3 1631
dee91e82 1632static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1633 const gdb_byte *info_ptr,
1634 const gdb_byte **new_info_ptr,
639d11d3
DC
1635 struct die_info *parent);
1636
d521ce57
TT
1637static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1638 struct die_info **, const gdb_byte *,
1639 int *, int);
3019eac3 1640
d521ce57
TT
1641static const gdb_byte *read_full_die (const struct die_reader_specs *,
1642 struct die_info **, const gdb_byte *,
1643 int *);
93311388 1644
e7c27a73 1645static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1646
15d034d0
TT
1647static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1648 struct obstack *);
71c25dea 1649
15d034d0 1650static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1651
15d034d0 1652static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1653 struct die_info *die,
1654 struct dwarf2_cu *cu);
1655
ca69b9e6
DE
1656static const char *dwarf2_physname (const char *name, struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
e142c38c 1659static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1660 struct dwarf2_cu **);
9219021c 1661
f39c6ffd 1662static const char *dwarf_tag_name (unsigned int);
c906108c 1663
f39c6ffd 1664static const char *dwarf_attr_name (unsigned int);
c906108c 1665
f39c6ffd 1666static const char *dwarf_form_name (unsigned int);
c906108c 1667
a14ed312 1668static char *dwarf_bool_name (unsigned int);
c906108c 1669
f39c6ffd 1670static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1671
f9aca02d 1672static struct die_info *sibling_die (struct die_info *);
c906108c 1673
d97bc12b
DE
1674static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1675
1676static void dump_die_for_error (struct die_info *);
1677
1678static void dump_die_1 (struct ui_file *, int level, int max_level,
1679 struct die_info *);
c906108c 1680
d97bc12b 1681/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1682
51545339 1683static void store_in_ref_table (struct die_info *,
10b3939b 1684 struct dwarf2_cu *);
c906108c 1685
ff39bb5e 1686static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1687
ff39bb5e 1688static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1689
348e048f 1690static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1691 const struct attribute *,
348e048f
DE
1692 struct dwarf2_cu **);
1693
10b3939b 1694static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1695 const struct attribute *,
f2f0e013 1696 struct dwarf2_cu **);
c906108c 1697
348e048f 1698static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1699 const struct attribute *,
348e048f
DE
1700 struct dwarf2_cu **);
1701
ac9ec31b
DE
1702static struct type *get_signatured_type (struct die_info *, ULONGEST,
1703 struct dwarf2_cu *);
1704
1705static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1706 const struct attribute *,
ac9ec31b
DE
1707 struct dwarf2_cu *);
1708
e5fe5e75 1709static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1710
52dc124a 1711static void read_signatured_type (struct signatured_type *);
348e048f 1712
c906108c
SS
1713/* memory allocation interface */
1714
7b5a2f43 1715static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1716
b60c80d6 1717static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1718
09262596 1719static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1720 const char *, int);
2e276125 1721
6e5a29e1 1722static int attr_form_is_block (const struct attribute *);
8e19ed76 1723
6e5a29e1 1724static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1725
6e5a29e1 1726static int attr_form_is_constant (const struct attribute *);
3690dd37 1727
6e5a29e1 1728static int attr_form_is_ref (const struct attribute *);
7771576e 1729
8cf6f0b1
TT
1730static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
ff39bb5e 1732 const struct attribute *attr);
8cf6f0b1 1733
ff39bb5e 1734static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1735 struct symbol *sym,
f1e6e072
TT
1736 struct dwarf2_cu *cu,
1737 int is_block);
4c2df51b 1738
d521ce57
TT
1739static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
4bb7a0a7 1742
72bf9492
DJ
1743static void free_stack_comp_unit (void *);
1744
72bf9492
DJ
1745static hashval_t partial_die_hash (const void *item);
1746
1747static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
ae038cb0 1749static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1751
9816fde3 1752static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1753 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1754
1755static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
93311388 1758
68dc6402 1759static void free_heap_comp_unit (void *);
ae038cb0
DJ
1760
1761static void free_cached_comp_units (void *);
1762
1763static void age_cached_comp_units (void);
1764
dee91e82 1765static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1766
f792889a
DJ
1767static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1c379e20 1769
ae038cb0
DJ
1770static void create_all_comp_units (struct objfile *);
1771
0e50663e 1772static int create_all_type_units (struct objfile *);
1fd400ff 1773
95554aad
TT
1774static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
10b3939b 1776
95554aad
TT
1777static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
10b3939b 1779
f4dc4d17
DE
1780static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
10b3939b
DJ
1783static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
ae038cb0
DJ
1786static void dwarf2_mark (struct dwarf2_cu *);
1787
1788static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
b64f50a1 1790static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1791 struct dwarf2_per_cu_data *);
673bfd45 1792
f792889a 1793static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1794
9291a0cd
TT
1795static void dwarf2_release_queue (void *dummy);
1796
95554aad
TT
1797static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
a0f42c21 1800static void process_queue (void);
9291a0cd
TT
1801
1802static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
15d034d0 1804 const char **name, const char **comp_dir);
9291a0cd
TT
1805
1806static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
d521ce57 1809static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
d521ce57 1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1813 int is_debug_types_section);
1814
fd820528 1815static void init_cutu_and_read_dies
f4dc4d17
DE
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
3019eac3
DE
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
dee91e82
DE
1820static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1823
673bfd45 1824static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1825
3019eac3
DE
1826static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
57d63ce2
DE
1828static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1831
1832static struct dwp_file *get_dwp_file (void);
1833
3019eac3 1834static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1836
1837static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1838 (struct signatured_type *, const char *, const char *);
3019eac3 1839
89e63ee4
DE
1840static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
3019eac3
DE
1842static void free_dwo_file_cleanup (void *);
1843
95554aad
TT
1844static void process_cu_includes (void);
1845
1b80a9fa 1846static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1847\f
1848/* Various complaints about symbol reading that don't abort the process. */
1849
1850static void
1851dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852{
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855}
1856
1857static void
1858dwarf2_debug_line_missing_file_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_end_sequence_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870}
1871
1872static void
1873dwarf2_complex_location_expr_complaint (void)
1874{
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876}
1877
1878static void
1879dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881{
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885}
1886
1887static void
1888dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889{
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
a32a8923
DE
1893 get_section_name (section),
1894 get_section_file_name (section));
4390d890 1895}
1b80a9fa 1896
4390d890
DE
1897static void
1898dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899{
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904}
1905
1906static void
1907dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908{
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912}
1913\f
9291a0cd
TT
1914#if WORDS_BIGENDIAN
1915
1916/* Convert VALUE between big- and little-endian. */
1917static offset_type
1918byte_swap (offset_type value)
1919{
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927}
1928
1929#define MAYBE_SWAP(V) byte_swap (V)
1930
1931#else
1932#define MAYBE_SWAP(V) (V)
1933#endif /* WORDS_BIGENDIAN */
1934
31aa7e4e
JB
1935/* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938static CORE_ADDR
1939attr_value_as_address (struct attribute *attr)
1940{
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963}
1964
9291a0cd
TT
1965/* The suffix for an index file. */
1966#define INDEX_SUFFIX ".gdb-index"
1967
c906108c 1968/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
c906108c
SS
1972
1973int
251d32d9
TG
1974dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
c906108c 1976{
be391dca
TT
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1983
be391dca
TT
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
6502dd73 1987
251d32d9
TG
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
be391dca
TT
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
73869dc2
DE
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996}
1997
1998/* Return the containing section of virtual section SECTION. */
1999
2000static struct dwarf2_section_info *
2001get_containing_section (const struct dwarf2_section_info *section)
2002{
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
c906108c
SS
2005}
2006
a32a8923
DE
2007/* Return the bfd owner of SECTION. */
2008
2009static struct bfd *
2010get_section_bfd_owner (const struct dwarf2_section_info *section)
2011{
73869dc2
DE
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
a32a8923
DE
2018}
2019
2020/* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023static asection *
2024get_section_bfd_section (const struct dwarf2_section_info *section)
2025{
73869dc2
DE
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
a32a8923
DE
2032}
2033
2034/* Return the name of SECTION. */
2035
2036static const char *
2037get_section_name (const struct dwarf2_section_info *section)
2038{
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043}
2044
2045/* Return the name of the file SECTION is in. */
2046
2047static const char *
2048get_section_file_name (const struct dwarf2_section_info *section)
2049{
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053}
2054
2055/* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058static int
2059get_section_id (const struct dwarf2_section_info *section)
2060{
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066}
2067
2068/* Return the flags of SECTION.
73869dc2 2069 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2070
2071static int
2072get_section_flags (const struct dwarf2_section_info *section)
2073{
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078}
2079
251d32d9
TG
2080/* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
233a11ab
CS
2082
2083static int
251d32d9
TG
2084section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
233a11ab 2086{
251d32d9
TG
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
233a11ab
CS
2094}
2095
c906108c
SS
2096/* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100static void
251d32d9 2101dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2102{
251d32d9 2103 const struct dwarf2_debug_sections *names;
dc7650b8 2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
dc7650b8
JK
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
c906108c 2115 {
73869dc2 2116 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2118 }
251d32d9 2119 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2120 {
73869dc2 2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2123 }
251d32d9 2124 else if (section_is_p (sectp->name, &names->line))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->loc))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2138 }
cf2c3c16
TT
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
73869dc2 2141 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->str))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2148 }
3019eac3
DE
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
73869dc2 2151 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2155 {
73869dc2 2156 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2158 }
251d32d9 2159 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2160 {
73869dc2 2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2165 {
73869dc2 2166 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->types))
348e048f 2170 {
8b70b953
TT
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
73869dc2 2174 type_section.s.asection = sectp;
8b70b953
TT
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
348e048f 2179 }
251d32d9 2180 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2181 {
73869dc2 2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
dce234bc 2185
72dca2f5
FR
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2189}
2190
fceca515
DE
2191/* A helper function that decides whether a section is empty,
2192 or not present. */
9e0ac564
TT
2193
2194static int
19ac8c2e 2195dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2196{
73869dc2
DE
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2200}
2201
3019eac3
DE
2202/* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
dce234bc 2206 If the section is compressed, uncompress it before returning. */
c906108c 2207
dce234bc
PP
2208static void
2209dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2210{
a32a8923 2211 asection *sectp;
3019eac3 2212 bfd *abfd;
dce234bc 2213 gdb_byte *buf, *retbuf;
c906108c 2214
be391dca
TT
2215 if (info->readin)
2216 return;
dce234bc 2217 info->buffer = NULL;
be391dca 2218 info->readin = 1;
188dd5d6 2219
9e0ac564 2220 if (dwarf2_section_empty_p (info))
dce234bc 2221 return;
c906108c 2222
a32a8923 2223 sectp = get_section_bfd_section (info);
3019eac3 2224
73869dc2
DE
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
4bf44c1c
TT
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2253 {
d521ce57 2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2255 return;
dce234bc 2256 }
dce234bc 2257
4bf44c1c
TT
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
dce234bc
PP
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
ac8035ab 2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
a32a8923
DE
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
dce234bc
PP
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
dce234bc
PP
2282}
2283
9e0ac564
TT
2284/* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291static bfd_size_type
2292dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294{
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298}
2299
dce234bc 2300/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2301 SECTION_NAME. */
af34e669 2302
dce234bc 2303void
3017a003
TG
2304dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
d521ce57 2306 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2307 bfd_size_type *sizep)
2308{
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
a3b2a86b
TT
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
3017a003
TG
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
dce234bc 2333
9e0ac564 2334 dwarf2_read_section (objfile, info);
dce234bc 2335
a32a8923 2336 *sectp = get_section_bfd_section (info);
dce234bc
PP
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339}
2340
36586728
TT
2341/* A helper function to find the sections for a .dwz file. */
2342
2343static void
2344locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345{
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
73869dc2 2352 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
73869dc2 2357 dwz_file->info.s.asection = sectp;
36586728
TT
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
73869dc2 2362 dwz_file->str.s.asection = sectp;
36586728
TT
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
73869dc2 2367 dwz_file->line.s.asection = sectp;
36586728
TT
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
73869dc2 2372 dwz_file->macro.s.asection = sectp;
36586728
TT
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2ec9a5e0
TT
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
73869dc2 2377 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
36586728
TT
2380}
2381
4db1a1dc
TT
2382/* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
36586728
TT
2385
2386static struct dwz_file *
2387dwarf2_get_dwz_file (void)
2388{
4db1a1dc
TT
2389 bfd *dwz_bfd;
2390 char *data;
36586728
TT
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
acd13123 2394 bfd_size_type buildid_len_arg;
dc294be5
TT
2395 size_t buildid_len;
2396 bfd_byte *buildid;
36586728
TT
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
4db1a1dc
TT
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2403 &buildid_len_arg, &buildid);
4db1a1dc
TT
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
36586728 2411 cleanup = make_cleanup (xfree, data);
dc294be5 2412 make_cleanup (xfree, buildid);
36586728 2413
acd13123
TT
2414 buildid_len = (size_t) buildid_len_arg;
2415
f9d83a0b 2416 filename = (const char *) data;
36586728
TT
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
4262abfb 2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
dc294be5
TT
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
36586728 2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2434 if (dwz_bfd != NULL)
36586728 2435 {
dc294be5
TT
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
36586728
TT
2441 }
2442
dc294be5
TT
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
36586728
TT
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
13aaf454 2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2459 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2460 return result;
2461}
9291a0cd 2462\f
7b9f3c50
DE
2463/* DWARF quick_symbols_functions support. */
2464
2465/* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470struct quick_file_names
2471{
094b34ac
DE
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
7b9f3c50
DE
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485};
2486
2487/* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490struct dwarf2_per_cu_quick_data
2491{
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
2499 struct symtab *symtab;
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508};
2509
094b34ac
DE
2510/* Utility hash function for a stmt_list_hash. */
2511
2512static hashval_t
2513hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514{
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521}
2522
2523/* Utility equality function for a stmt_list_hash. */
2524
2525static int
2526eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528{
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536}
2537
7b9f3c50
DE
2538/* Hash function for a quick_file_names. */
2539
2540static hashval_t
2541hash_file_name_entry (const void *e)
2542{
2543 const struct quick_file_names *file_data = e;
2544
094b34ac 2545 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2546}
2547
2548/* Equality function for a quick_file_names. */
2549
2550static int
2551eq_file_name_entry (const void *a, const void *b)
2552{
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
094b34ac 2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2557}
2558
2559/* Delete function for a quick_file_names. */
2560
2561static void
2562delete_file_name_entry (void *e)
2563{
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576}
2577
2578/* Create a quick_file_names hash table. */
2579
2580static htab_t
2581create_quick_file_names_table (unsigned int nr_initial_entries)
2582{
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586}
9291a0cd 2587
918dd910
JK
2588/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592static void
2593load_cu (struct dwarf2_per_cu_data *per_cu)
2594{
3019eac3 2595 if (per_cu->is_debug_types)
e5fe5e75 2596 load_full_type_unit (per_cu);
918dd910 2597 else
95554aad 2598 load_full_comp_unit (per_cu, language_minimal);
918dd910 2599
918dd910 2600 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2603}
2604
a0f42c21 2605/* Read in the symbols for PER_CU. */
2fdf6df6 2606
9291a0cd 2607static void
a0f42c21 2608dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2609{
2610 struct cleanup *back_to;
2611
f4dc4d17
DE
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
9291a0cd
TT
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
95554aad
TT
2619 if (dwarf2_per_objfile->using_index
2620 ? per_cu->v.quick->symtab == NULL
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
89e63ee4
DE
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
95554aad 2636 }
9291a0cd 2637
a0f42c21 2638 process_queue ();
9291a0cd
TT
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645}
2646
2647/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2fdf6df6 2650
9291a0cd 2651static struct symtab *
a0f42c21 2652dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2653{
95554aad 2654 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2655 if (!per_cu->v.quick->symtab)
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
a0f42c21 2659 dw2_do_instantiate_symtab (per_cu);
95554aad 2660 process_cu_includes ();
9291a0cd
TT
2661 do_cleanups (back_to);
2662 }
2663 return per_cu->v.quick->symtab;
2664}
2665
8832e7e3 2666/* Return the CU/TU given its index.
f4dc4d17
DE
2667
2668 This is intended for loops like:
2669
2670 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2671 + dwarf2_per_objfile->n_type_units); ++i)
2672 {
8832e7e3 2673 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2674
2675 ...;
2676 }
2677*/
2fdf6df6 2678
1fd400ff 2679static struct dwarf2_per_cu_data *
8832e7e3 2680dw2_get_cutu (int index)
1fd400ff
TT
2681{
2682 if (index >= dwarf2_per_objfile->n_comp_units)
2683 {
f4dc4d17 2684 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2685 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2686 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2687 }
2688
2689 return dwarf2_per_objfile->all_comp_units[index];
2690}
2691
8832e7e3
DE
2692/* Return the CU given its index.
2693 This differs from dw2_get_cutu in that it's for when you know INDEX
2694 refers to a CU. */
f4dc4d17
DE
2695
2696static struct dwarf2_per_cu_data *
8832e7e3 2697dw2_get_cu (int index)
f4dc4d17 2698{
8832e7e3 2699 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2700
1fd400ff
TT
2701 return dwarf2_per_objfile->all_comp_units[index];
2702}
2703
2ec9a5e0
TT
2704/* A helper for create_cus_from_index that handles a given list of
2705 CUs. */
2fdf6df6 2706
74a0d9f6 2707static void
2ec9a5e0
TT
2708create_cus_from_index_list (struct objfile *objfile,
2709 const gdb_byte *cu_list, offset_type n_elements,
2710 struct dwarf2_section_info *section,
2711 int is_dwz,
2712 int base_offset)
9291a0cd
TT
2713{
2714 offset_type i;
9291a0cd 2715
2ec9a5e0 2716 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2717 {
2718 struct dwarf2_per_cu_data *the_cu;
2719 ULONGEST offset, length;
2720
74a0d9f6
JK
2721 gdb_static_assert (sizeof (ULONGEST) >= 8);
2722 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2723 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2724 cu_list += 2 * 8;
2725
2726 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2727 struct dwarf2_per_cu_data);
b64f50a1 2728 the_cu->offset.sect_off = offset;
9291a0cd
TT
2729 the_cu->length = length;
2730 the_cu->objfile = objfile;
8a0459fd 2731 the_cu->section = section;
9291a0cd
TT
2732 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2733 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2734 the_cu->is_dwz = is_dwz;
2735 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2736 }
9291a0cd
TT
2737}
2738
2ec9a5e0 2739/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2740 the CU objects for this objfile. */
2ec9a5e0 2741
74a0d9f6 2742static void
2ec9a5e0
TT
2743create_cus_from_index (struct objfile *objfile,
2744 const gdb_byte *cu_list, offset_type cu_list_elements,
2745 const gdb_byte *dwz_list, offset_type dwz_elements)
2746{
2747 struct dwz_file *dwz;
2748
2749 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2750 dwarf2_per_objfile->all_comp_units
2751 = obstack_alloc (&objfile->objfile_obstack,
2752 dwarf2_per_objfile->n_comp_units
2753 * sizeof (struct dwarf2_per_cu_data *));
2754
74a0d9f6
JK
2755 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2756 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2757
2758 if (dwz_elements == 0)
74a0d9f6 2759 return;
2ec9a5e0
TT
2760
2761 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2762 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2763 cu_list_elements / 2);
2ec9a5e0
TT
2764}
2765
1fd400ff 2766/* Create the signatured type hash table from the index. */
673bfd45 2767
74a0d9f6 2768static void
673bfd45 2769create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2770 struct dwarf2_section_info *section,
673bfd45
DE
2771 const gdb_byte *bytes,
2772 offset_type elements)
1fd400ff
TT
2773{
2774 offset_type i;
673bfd45 2775 htab_t sig_types_hash;
1fd400ff 2776
6aa5f3a6
DE
2777 dwarf2_per_objfile->n_type_units
2778 = dwarf2_per_objfile->n_allocated_type_units
2779 = elements / 3;
d467dd73 2780 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2781 = xmalloc (dwarf2_per_objfile->n_type_units
2782 * sizeof (struct signatured_type *));
1fd400ff 2783
673bfd45 2784 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2785
2786 for (i = 0; i < elements; i += 3)
2787 {
52dc124a
DE
2788 struct signatured_type *sig_type;
2789 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2790 void **slot;
2791
74a0d9f6
JK
2792 gdb_static_assert (sizeof (ULONGEST) >= 8);
2793 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2794 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2795 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2796 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2797 bytes += 3 * 8;
2798
52dc124a 2799 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2800 struct signatured_type);
52dc124a 2801 sig_type->signature = signature;
3019eac3
DE
2802 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2803 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2804 sig_type->per_cu.section = section;
52dc124a
DE
2805 sig_type->per_cu.offset.sect_off = offset;
2806 sig_type->per_cu.objfile = objfile;
2807 sig_type->per_cu.v.quick
1fd400ff
TT
2808 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2809 struct dwarf2_per_cu_quick_data);
2810
52dc124a
DE
2811 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2812 *slot = sig_type;
1fd400ff 2813
b4dd5633 2814 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2815 }
2816
673bfd45 2817 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2818}
2819
9291a0cd
TT
2820/* Read the address map data from the mapped index, and use it to
2821 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2822
9291a0cd
TT
2823static void
2824create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2825{
2826 const gdb_byte *iter, *end;
2827 struct obstack temp_obstack;
2828 struct addrmap *mutable_map;
2829 struct cleanup *cleanup;
2830 CORE_ADDR baseaddr;
2831
2832 obstack_init (&temp_obstack);
2833 cleanup = make_cleanup_obstack_free (&temp_obstack);
2834 mutable_map = addrmap_create_mutable (&temp_obstack);
2835
2836 iter = index->address_table;
2837 end = iter + index->address_table_size;
2838
2839 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2840
2841 while (iter < end)
2842 {
2843 ULONGEST hi, lo, cu_index;
2844 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2845 iter += 8;
2846 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2849 iter += 4;
f652bce2 2850
24a55014 2851 if (lo > hi)
f652bce2 2852 {
24a55014
DE
2853 complaint (&symfile_complaints,
2854 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2855 hex_string (lo), hex_string (hi));
24a55014 2856 continue;
f652bce2 2857 }
24a55014
DE
2858
2859 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2860 {
2861 complaint (&symfile_complaints,
2862 _(".gdb_index address table has invalid CU number %u"),
2863 (unsigned) cu_index);
24a55014 2864 continue;
f652bce2 2865 }
24a55014
DE
2866
2867 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
8832e7e3 2868 dw2_get_cutu (cu_index));
9291a0cd
TT
2869 }
2870
2871 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2872 &objfile->objfile_obstack);
2873 do_cleanups (cleanup);
2874}
2875
59d7bcaf
JK
2876/* The hash function for strings in the mapped index. This is the same as
2877 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2878 implementation. This is necessary because the hash function is tied to the
2879 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2880 SYMBOL_HASH_NEXT.
2881
2882 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2883
9291a0cd 2884static hashval_t
559a7a62 2885mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2886{
2887 const unsigned char *str = (const unsigned char *) p;
2888 hashval_t r = 0;
2889 unsigned char c;
2890
2891 while ((c = *str++) != 0)
559a7a62
JK
2892 {
2893 if (index_version >= 5)
2894 c = tolower (c);
2895 r = r * 67 + c - 113;
2896 }
9291a0cd
TT
2897
2898 return r;
2899}
2900
2901/* Find a slot in the mapped index INDEX for the object named NAME.
2902 If NAME is found, set *VEC_OUT to point to the CU vector in the
2903 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2904
9291a0cd
TT
2905static int
2906find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2907 offset_type **vec_out)
2908{
0cf03b49
JK
2909 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2910 offset_type hash;
9291a0cd 2911 offset_type slot, step;
559a7a62 2912 int (*cmp) (const char *, const char *);
9291a0cd 2913
0cf03b49
JK
2914 if (current_language->la_language == language_cplus
2915 || current_language->la_language == language_java
2916 || current_language->la_language == language_fortran)
2917 {
2918 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2919 not contain any. */
2920 const char *paren = strchr (name, '(');
2921
2922 if (paren)
2923 {
2924 char *dup;
2925
2926 dup = xmalloc (paren - name + 1);
2927 memcpy (dup, name, paren - name);
2928 dup[paren - name] = 0;
2929
2930 make_cleanup (xfree, dup);
2931 name = dup;
2932 }
2933 }
2934
559a7a62 2935 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2936 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2937 simulate our NAME being searched is also lowercased. */
2938 hash = mapped_index_string_hash ((index->version == 4
2939 && case_sensitivity == case_sensitive_off
2940 ? 5 : index->version),
2941 name);
2942
3876f04e
DE
2943 slot = hash & (index->symbol_table_slots - 1);
2944 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2945 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2946
2947 for (;;)
2948 {
2949 /* Convert a slot number to an offset into the table. */
2950 offset_type i = 2 * slot;
2951 const char *str;
3876f04e 2952 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2953 {
2954 do_cleanups (back_to);
2955 return 0;
2956 }
9291a0cd 2957
3876f04e 2958 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2959 if (!cmp (name, str))
9291a0cd
TT
2960 {
2961 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2962 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2963 do_cleanups (back_to);
9291a0cd
TT
2964 return 1;
2965 }
2966
3876f04e 2967 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2968 }
2969}
2970
2ec9a5e0
TT
2971/* A helper function that reads the .gdb_index from SECTION and fills
2972 in MAP. FILENAME is the name of the file containing the section;
2973 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2974 ok to use deprecated sections.
2975
2976 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2977 out parameters that are filled in with information about the CU and
2978 TU lists in the section.
2979
2980 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2981
9291a0cd 2982static int
2ec9a5e0
TT
2983read_index_from_section (struct objfile *objfile,
2984 const char *filename,
2985 int deprecated_ok,
2986 struct dwarf2_section_info *section,
2987 struct mapped_index *map,
2988 const gdb_byte **cu_list,
2989 offset_type *cu_list_elements,
2990 const gdb_byte **types_list,
2991 offset_type *types_list_elements)
9291a0cd 2992{
948f8e3d 2993 const gdb_byte *addr;
2ec9a5e0 2994 offset_type version;
b3b272e1 2995 offset_type *metadata;
1fd400ff 2996 int i;
9291a0cd 2997
2ec9a5e0 2998 if (dwarf2_section_empty_p (section))
9291a0cd 2999 return 0;
82430852
JK
3000
3001 /* Older elfutils strip versions could keep the section in the main
3002 executable while splitting it for the separate debug info file. */
a32a8923 3003 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3004 return 0;
3005
2ec9a5e0 3006 dwarf2_read_section (objfile, section);
9291a0cd 3007
2ec9a5e0 3008 addr = section->buffer;
9291a0cd 3009 /* Version check. */
1fd400ff 3010 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3011 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3012 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3013 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3014 indices. */
831adc1f 3015 if (version < 4)
481860b3
GB
3016 {
3017 static int warning_printed = 0;
3018 if (!warning_printed)
3019 {
3020 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3021 filename);
481860b3
GB
3022 warning_printed = 1;
3023 }
3024 return 0;
3025 }
3026 /* Index version 4 uses a different hash function than index version
3027 5 and later.
3028
3029 Versions earlier than 6 did not emit psymbols for inlined
3030 functions. Using these files will cause GDB not to be able to
3031 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3032 indices unless the user has done
3033 "set use-deprecated-index-sections on". */
2ec9a5e0 3034 if (version < 6 && !deprecated_ok)
481860b3
GB
3035 {
3036 static int warning_printed = 0;
3037 if (!warning_printed)
3038 {
e615022a
DE
3039 warning (_("\
3040Skipping deprecated .gdb_index section in %s.\n\
3041Do \"set use-deprecated-index-sections on\" before the file is read\n\
3042to use the section anyway."),
2ec9a5e0 3043 filename);
481860b3
GB
3044 warning_printed = 1;
3045 }
3046 return 0;
3047 }
796a7ff8 3048 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3049 of the TU (for symbols coming from TUs),
3050 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3051 Plus gold-generated indices can have duplicate entries for global symbols,
3052 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3053 These are just performance bugs, and we can't distinguish gdb-generated
3054 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3055
481860b3 3056 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3057 longer backward compatible. */
796a7ff8 3058 if (version > 8)
594e8718 3059 return 0;
9291a0cd 3060
559a7a62 3061 map->version = version;
2ec9a5e0 3062 map->total_size = section->size;
9291a0cd
TT
3063
3064 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3065
3066 i = 0;
2ec9a5e0
TT
3067 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3068 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3069 / 8);
1fd400ff
TT
3070 ++i;
3071
2ec9a5e0
TT
3072 *types_list = addr + MAYBE_SWAP (metadata[i]);
3073 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3074 - MAYBE_SWAP (metadata[i]))
3075 / 8);
987d643c 3076 ++i;
1fd400ff
TT
3077
3078 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3079 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3080 - MAYBE_SWAP (metadata[i]));
3081 ++i;
3082
3876f04e
DE
3083 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3084 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3085 - MAYBE_SWAP (metadata[i]))
3086 / (2 * sizeof (offset_type)));
1fd400ff 3087 ++i;
9291a0cd 3088
f9d83a0b 3089 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3090
2ec9a5e0
TT
3091 return 1;
3092}
3093
3094
3095/* Read the index file. If everything went ok, initialize the "quick"
3096 elements of all the CUs and return 1. Otherwise, return 0. */
3097
3098static int
3099dwarf2_read_index (struct objfile *objfile)
3100{
3101 struct mapped_index local_map, *map;
3102 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3103 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3104 struct dwz_file *dwz;
2ec9a5e0 3105
4262abfb 3106 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3107 use_deprecated_index_sections,
3108 &dwarf2_per_objfile->gdb_index, &local_map,
3109 &cu_list, &cu_list_elements,
3110 &types_list, &types_list_elements))
3111 return 0;
3112
0fefef59 3113 /* Don't use the index if it's empty. */
2ec9a5e0 3114 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3115 return 0;
3116
2ec9a5e0
TT
3117 /* If there is a .dwz file, read it so we can get its CU list as
3118 well. */
4db1a1dc
TT
3119 dwz = dwarf2_get_dwz_file ();
3120 if (dwz != NULL)
2ec9a5e0 3121 {
2ec9a5e0
TT
3122 struct mapped_index dwz_map;
3123 const gdb_byte *dwz_types_ignore;
3124 offset_type dwz_types_elements_ignore;
3125
3126 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3127 1,
3128 &dwz->gdb_index, &dwz_map,
3129 &dwz_list, &dwz_list_elements,
3130 &dwz_types_ignore,
3131 &dwz_types_elements_ignore))
3132 {
3133 warning (_("could not read '.gdb_index' section from %s; skipping"),
3134 bfd_get_filename (dwz->dwz_bfd));
3135 return 0;
3136 }
3137 }
3138
74a0d9f6
JK
3139 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3140 dwz_list_elements);
1fd400ff 3141
8b70b953
TT
3142 if (types_list_elements)
3143 {
3144 struct dwarf2_section_info *section;
3145
3146 /* We can only handle a single .debug_types when we have an
3147 index. */
3148 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3149 return 0;
3150
3151 section = VEC_index (dwarf2_section_info_def,
3152 dwarf2_per_objfile->types, 0);
3153
74a0d9f6
JK
3154 create_signatured_type_table_from_index (objfile, section, types_list,
3155 types_list_elements);
8b70b953 3156 }
9291a0cd 3157
2ec9a5e0
TT
3158 create_addrmap_from_index (objfile, &local_map);
3159
3160 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3161 *map = local_map;
9291a0cd
TT
3162
3163 dwarf2_per_objfile->index_table = map;
3164 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3165 dwarf2_per_objfile->quick_file_names_table =
3166 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3167
3168 return 1;
3169}
3170
3171/* A helper for the "quick" functions which sets the global
3172 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3173
9291a0cd
TT
3174static void
3175dw2_setup (struct objfile *objfile)
3176{
3177 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3178 gdb_assert (dwarf2_per_objfile);
3179}
3180
dee91e82 3181/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3182
dee91e82
DE
3183static void
3184dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3185 const gdb_byte *info_ptr,
dee91e82
DE
3186 struct die_info *comp_unit_die,
3187 int has_children,
3188 void *data)
9291a0cd 3189{
dee91e82
DE
3190 struct dwarf2_cu *cu = reader->cu;
3191 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3192 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3193 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3194 struct line_header *lh;
9291a0cd 3195 struct attribute *attr;
dee91e82 3196 int i;
15d034d0 3197 const char *name, *comp_dir;
7b9f3c50
DE
3198 void **slot;
3199 struct quick_file_names *qfn;
3200 unsigned int line_offset;
9291a0cd 3201
0186c6a7
DE
3202 gdb_assert (! this_cu->is_debug_types);
3203
07261596
TT
3204 /* Our callers never want to match partial units -- instead they
3205 will match the enclosing full CU. */
3206 if (comp_unit_die->tag == DW_TAG_partial_unit)
3207 {
3208 this_cu->v.quick->no_file_data = 1;
3209 return;
3210 }
3211
0186c6a7 3212 lh_cu = this_cu;
7b9f3c50
DE
3213 lh = NULL;
3214 slot = NULL;
3215 line_offset = 0;
dee91e82
DE
3216
3217 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3218 if (attr)
3219 {
7b9f3c50
DE
3220 struct quick_file_names find_entry;
3221
3222 line_offset = DW_UNSND (attr);
3223
3224 /* We may have already read in this line header (TU line header sharing).
3225 If we have we're done. */
094b34ac
DE
3226 find_entry.hash.dwo_unit = cu->dwo_unit;
3227 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3228 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3229 &find_entry, INSERT);
3230 if (*slot != NULL)
3231 {
094b34ac 3232 lh_cu->v.quick->file_names = *slot;
dee91e82 3233 return;
7b9f3c50
DE
3234 }
3235
3019eac3 3236 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3237 }
3238 if (lh == NULL)
3239 {
094b34ac 3240 lh_cu->v.quick->no_file_data = 1;
dee91e82 3241 return;
9291a0cd
TT
3242 }
3243
7b9f3c50 3244 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3245 qfn->hash.dwo_unit = cu->dwo_unit;
3246 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3247 gdb_assert (slot != NULL);
3248 *slot = qfn;
9291a0cd 3249
dee91e82 3250 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3251
7b9f3c50
DE
3252 qfn->num_file_names = lh->num_file_names;
3253 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3254 lh->num_file_names * sizeof (char *));
9291a0cd 3255 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3256 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3257 qfn->real_names = NULL;
9291a0cd 3258
7b9f3c50 3259 free_line_header (lh);
7b9f3c50 3260
094b34ac 3261 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3262}
3263
3264/* A helper for the "quick" functions which attempts to read the line
3265 table for THIS_CU. */
3266
3267static struct quick_file_names *
e4a48d9d 3268dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3269{
0186c6a7
DE
3270 /* This should never be called for TUs. */
3271 gdb_assert (! this_cu->is_debug_types);
3272 /* Nor type unit groups. */
3273 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3274
dee91e82
DE
3275 if (this_cu->v.quick->file_names != NULL)
3276 return this_cu->v.quick->file_names;
3277 /* If we know there is no line data, no point in looking again. */
3278 if (this_cu->v.quick->no_file_data)
3279 return NULL;
3280
0186c6a7 3281 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3282
3283 if (this_cu->v.quick->no_file_data)
3284 return NULL;
3285 return this_cu->v.quick->file_names;
9291a0cd
TT
3286}
3287
3288/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3289 real path for a given file name from the line table. */
2fdf6df6 3290
9291a0cd 3291static const char *
7b9f3c50
DE
3292dw2_get_real_path (struct objfile *objfile,
3293 struct quick_file_names *qfn, int index)
9291a0cd 3294{
7b9f3c50
DE
3295 if (qfn->real_names == NULL)
3296 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3297 qfn->num_file_names, const char *);
9291a0cd 3298
7b9f3c50
DE
3299 if (qfn->real_names[index] == NULL)
3300 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3301
7b9f3c50 3302 return qfn->real_names[index];
9291a0cd
TT
3303}
3304
3305static struct symtab *
3306dw2_find_last_source_symtab (struct objfile *objfile)
3307{
3308 int index;
ae2de4f8 3309
9291a0cd
TT
3310 dw2_setup (objfile);
3311 index = dwarf2_per_objfile->n_comp_units - 1;
8832e7e3 3312 return dw2_instantiate_symtab (dw2_get_cutu (index));
9291a0cd
TT
3313}
3314
7b9f3c50
DE
3315/* Traversal function for dw2_forget_cached_source_info. */
3316
3317static int
3318dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3319{
7b9f3c50 3320 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3321
7b9f3c50 3322 if (file_data->real_names)
9291a0cd 3323 {
7b9f3c50 3324 int i;
9291a0cd 3325
7b9f3c50 3326 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3327 {
7b9f3c50
DE
3328 xfree ((void*) file_data->real_names[i]);
3329 file_data->real_names[i] = NULL;
9291a0cd
TT
3330 }
3331 }
7b9f3c50
DE
3332
3333 return 1;
3334}
3335
3336static void
3337dw2_forget_cached_source_info (struct objfile *objfile)
3338{
3339 dw2_setup (objfile);
3340
3341 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3342 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3343}
3344
f8eba3c6
TT
3345/* Helper function for dw2_map_symtabs_matching_filename that expands
3346 the symtabs and calls the iterator. */
3347
3348static int
3349dw2_map_expand_apply (struct objfile *objfile,
3350 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3351 const char *name, const char *real_path,
f8eba3c6
TT
3352 int (*callback) (struct symtab *, void *),
3353 void *data)
3354{
3355 struct symtab *last_made = objfile->symtabs;
3356
3357 /* Don't visit already-expanded CUs. */
3358 if (per_cu->v.quick->symtab)
3359 return 0;
3360
3361 /* This may expand more than one symtab, and we want to iterate over
3362 all of them. */
a0f42c21 3363 dw2_instantiate_symtab (per_cu);
f8eba3c6 3364
f5b95b50 3365 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3366 objfile->symtabs, last_made);
3367}
3368
3369/* Implementation of the map_symtabs_matching_filename method. */
3370
9291a0cd 3371static int
f8eba3c6 3372dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3373 const char *real_path,
f8eba3c6
TT
3374 int (*callback) (struct symtab *, void *),
3375 void *data)
9291a0cd
TT
3376{
3377 int i;
c011a4f4 3378 const char *name_basename = lbasename (name);
9291a0cd
TT
3379
3380 dw2_setup (objfile);
ae2de4f8 3381
848e3e78
DE
3382 /* The rule is CUs specify all the files, including those used by
3383 any TU, so there's no need to scan TUs here. */
f4dc4d17 3384
848e3e78 3385 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3386 {
3387 int j;
8832e7e3 3388 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3389 struct quick_file_names *file_data;
9291a0cd 3390
3d7bb9d9 3391 /* We only need to look at symtabs not already expanded. */
e254ef6a 3392 if (per_cu->v.quick->symtab)
9291a0cd
TT
3393 continue;
3394
e4a48d9d 3395 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3396 if (file_data == NULL)
9291a0cd
TT
3397 continue;
3398
7b9f3c50 3399 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3400 {
7b9f3c50 3401 const char *this_name = file_data->file_names[j];
da235a7c 3402 const char *this_real_name;
9291a0cd 3403
af529f8f 3404 if (compare_filenames_for_search (this_name, name))
9291a0cd 3405 {
f5b95b50 3406 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3407 callback, data))
3408 return 1;
288e77a7 3409 continue;
4aac40c8 3410 }
9291a0cd 3411
c011a4f4
DE
3412 /* Before we invoke realpath, which can get expensive when many
3413 files are involved, do a quick comparison of the basenames. */
3414 if (! basenames_may_differ
3415 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3416 continue;
3417
da235a7c
JK
3418 this_real_name = dw2_get_real_path (objfile, file_data, j);
3419 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3420 {
da235a7c
JK
3421 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3422 callback, data))
3423 return 1;
288e77a7 3424 continue;
da235a7c 3425 }
9291a0cd 3426
da235a7c
JK
3427 if (real_path != NULL)
3428 {
af529f8f
JK
3429 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3430 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3431 if (this_real_name != NULL
af529f8f 3432 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3433 {
f5b95b50 3434 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3435 callback, data))
3436 return 1;
288e77a7 3437 continue;
9291a0cd
TT
3438 }
3439 }
3440 }
3441 }
3442
9291a0cd
TT
3443 return 0;
3444}
3445
da51c347
DE
3446/* Struct used to manage iterating over all CUs looking for a symbol. */
3447
3448struct dw2_symtab_iterator
9291a0cd 3449{
da51c347
DE
3450 /* The internalized form of .gdb_index. */
3451 struct mapped_index *index;
3452 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3453 int want_specific_block;
3454 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3455 Unused if !WANT_SPECIFIC_BLOCK. */
3456 int block_index;
3457 /* The kind of symbol we're looking for. */
3458 domain_enum domain;
3459 /* The list of CUs from the index entry of the symbol,
3460 or NULL if not found. */
3461 offset_type *vec;
3462 /* The next element in VEC to look at. */
3463 int next;
3464 /* The number of elements in VEC, or zero if there is no match. */
3465 int length;
8943b874
DE
3466 /* Have we seen a global version of the symbol?
3467 If so we can ignore all further global instances.
3468 This is to work around gold/15646, inefficient gold-generated
3469 indices. */
3470 int global_seen;
da51c347 3471};
9291a0cd 3472
da51c347
DE
3473/* Initialize the index symtab iterator ITER.
3474 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3475 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3476
9291a0cd 3477static void
da51c347
DE
3478dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3479 struct mapped_index *index,
3480 int want_specific_block,
3481 int block_index,
3482 domain_enum domain,
3483 const char *name)
3484{
3485 iter->index = index;
3486 iter->want_specific_block = want_specific_block;
3487 iter->block_index = block_index;
3488 iter->domain = domain;
3489 iter->next = 0;
8943b874 3490 iter->global_seen = 0;
da51c347
DE
3491
3492 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3493 iter->length = MAYBE_SWAP (*iter->vec);
3494 else
3495 {
3496 iter->vec = NULL;
3497 iter->length = 0;
3498 }
3499}
3500
3501/* Return the next matching CU or NULL if there are no more. */
3502
3503static struct dwarf2_per_cu_data *
3504dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3505{
3506 for ( ; iter->next < iter->length; ++iter->next)
3507 {
3508 offset_type cu_index_and_attrs =
3509 MAYBE_SWAP (iter->vec[iter->next + 1]);
3510 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3511 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3512 int want_static = iter->block_index != GLOBAL_BLOCK;
3513 /* This value is only valid for index versions >= 7. */
3514 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3515 gdb_index_symbol_kind symbol_kind =
3516 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3517 /* Only check the symbol attributes if they're present.
3518 Indices prior to version 7 don't record them,
3519 and indices >= 7 may elide them for certain symbols
3520 (gold does this). */
3521 int attrs_valid =
3522 (iter->index->version >= 7
3523 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3524
3190f0c6
DE
3525 /* Don't crash on bad data. */
3526 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3527 + dwarf2_per_objfile->n_type_units))
3528 {
3529 complaint (&symfile_complaints,
3530 _(".gdb_index entry has bad CU index"
4262abfb
JK
3531 " [in module %s]"),
3532 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3533 continue;
3534 }
3535
8832e7e3 3536 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3537
da51c347
DE
3538 /* Skip if already read in. */
3539 if (per_cu->v.quick->symtab)
3540 continue;
3541
8943b874
DE
3542 /* Check static vs global. */
3543 if (attrs_valid)
3544 {
3545 if (iter->want_specific_block
3546 && want_static != is_static)
3547 continue;
3548 /* Work around gold/15646. */
3549 if (!is_static && iter->global_seen)
3550 continue;
3551 if (!is_static)
3552 iter->global_seen = 1;
3553 }
da51c347
DE
3554
3555 /* Only check the symbol's kind if it has one. */
3556 if (attrs_valid)
3557 {
3558 switch (iter->domain)
3559 {
3560 case VAR_DOMAIN:
3561 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3562 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3563 /* Some types are also in VAR_DOMAIN. */
3564 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3565 continue;
3566 break;
3567 case STRUCT_DOMAIN:
3568 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3569 continue;
3570 break;
3571 case LABEL_DOMAIN:
3572 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3573 continue;
3574 break;
3575 default:
3576 break;
3577 }
3578 }
3579
3580 ++iter->next;
3581 return per_cu;
3582 }
3583
3584 return NULL;
3585}
3586
3587static struct symtab *
3588dw2_lookup_symbol (struct objfile *objfile, int block_index,
3589 const char *name, domain_enum domain)
9291a0cd 3590{
da51c347 3591 struct symtab *stab_best = NULL;
156942c7
DE
3592 struct mapped_index *index;
3593
9291a0cd
TT
3594 dw2_setup (objfile);
3595
156942c7
DE
3596 index = dwarf2_per_objfile->index_table;
3597
da51c347 3598 /* index is NULL if OBJF_READNOW. */
156942c7 3599 if (index)
9291a0cd 3600 {
da51c347
DE
3601 struct dw2_symtab_iterator iter;
3602 struct dwarf2_per_cu_data *per_cu;
3603
3604 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3605
da51c347 3606 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3607 {
da51c347
DE
3608 struct symbol *sym = NULL;
3609 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3610
3611 /* Some caution must be observed with overloaded functions
3612 and methods, since the index will not contain any overload
3613 information (but NAME might contain it). */
3614 if (stab->primary)
9291a0cd 3615 {
346d1dfe 3616 const struct blockvector *bv = BLOCKVECTOR (stab);
da51c347 3617 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3618
da51c347
DE
3619 sym = lookup_block_symbol (block, name, domain);
3620 }
1fd400ff 3621
da51c347
DE
3622 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3623 {
3624 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3625 return stab;
3626
3627 stab_best = stab;
9291a0cd 3628 }
da51c347
DE
3629
3630 /* Keep looking through other CUs. */
9291a0cd
TT
3631 }
3632 }
9291a0cd 3633
da51c347 3634 return stab_best;
9291a0cd
TT
3635}
3636
3637static void
3638dw2_print_stats (struct objfile *objfile)
3639{
e4a48d9d 3640 int i, total, count;
9291a0cd
TT
3641
3642 dw2_setup (objfile);
e4a48d9d 3643 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3644 count = 0;
e4a48d9d 3645 for (i = 0; i < total; ++i)
9291a0cd 3646 {
8832e7e3 3647 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3648
e254ef6a 3649 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3650 ++count;
3651 }
e4a48d9d 3652 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3653 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3654}
3655
779bd270
DE
3656/* This dumps minimal information about the index.
3657 It is called via "mt print objfiles".
3658 One use is to verify .gdb_index has been loaded by the
3659 gdb.dwarf2/gdb-index.exp testcase. */
3660
9291a0cd
TT
3661static void
3662dw2_dump (struct objfile *objfile)
3663{
779bd270
DE
3664 dw2_setup (objfile);
3665 gdb_assert (dwarf2_per_objfile->using_index);
3666 printf_filtered (".gdb_index:");
3667 if (dwarf2_per_objfile->index_table != NULL)
3668 {
3669 printf_filtered (" version %d\n",
3670 dwarf2_per_objfile->index_table->version);
3671 }
3672 else
3673 printf_filtered (" faked for \"readnow\"\n");
3674 printf_filtered ("\n");
9291a0cd
TT
3675}
3676
3677static void
3189cb12
DE
3678dw2_relocate (struct objfile *objfile,
3679 const struct section_offsets *new_offsets,
3680 const struct section_offsets *delta)
9291a0cd
TT
3681{
3682 /* There's nothing to relocate here. */
3683}
3684
3685static void
3686dw2_expand_symtabs_for_function (struct objfile *objfile,
3687 const char *func_name)
3688{
da51c347
DE
3689 struct mapped_index *index;
3690
3691 dw2_setup (objfile);
3692
3693 index = dwarf2_per_objfile->index_table;
3694
3695 /* index is NULL if OBJF_READNOW. */
3696 if (index)
3697 {
3698 struct dw2_symtab_iterator iter;
3699 struct dwarf2_per_cu_data *per_cu;
3700
3701 /* Note: It doesn't matter what we pass for block_index here. */
3702 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3703 func_name);
3704
3705 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3706 dw2_instantiate_symtab (per_cu);
3707 }
9291a0cd
TT
3708}
3709
3710static void
3711dw2_expand_all_symtabs (struct objfile *objfile)
3712{
3713 int i;
3714
3715 dw2_setup (objfile);
1fd400ff
TT
3716
3717 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3718 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3719 {
8832e7e3 3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3721
a0f42c21 3722 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3723 }
3724}
3725
3726static void
652a8996
JK
3727dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3728 const char *fullname)
9291a0cd
TT
3729{
3730 int i;
3731
3732 dw2_setup (objfile);
d4637a04
DE
3733
3734 /* We don't need to consider type units here.
3735 This is only called for examining code, e.g. expand_line_sal.
3736 There can be an order of magnitude (or more) more type units
3737 than comp units, and we avoid them if we can. */
3738
3739 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3740 {
3741 int j;
8832e7e3 3742 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3743 struct quick_file_names *file_data;
9291a0cd 3744
3d7bb9d9 3745 /* We only need to look at symtabs not already expanded. */
e254ef6a 3746 if (per_cu->v.quick->symtab)
9291a0cd
TT
3747 continue;
3748
e4a48d9d 3749 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3750 if (file_data == NULL)
9291a0cd
TT
3751 continue;
3752
7b9f3c50 3753 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3754 {
652a8996
JK
3755 const char *this_fullname = file_data->file_names[j];
3756
3757 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3758 {
a0f42c21 3759 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3760 break;
3761 }
3762 }
3763 }
3764}
3765
9291a0cd 3766static void
ade7ed9e
DE
3767dw2_map_matching_symbols (struct objfile *objfile,
3768 const char * name, domain_enum namespace,
3769 int global,
40658b94
PH
3770 int (*callback) (struct block *,
3771 struct symbol *, void *),
2edb89d3
JK
3772 void *data, symbol_compare_ftype *match,
3773 symbol_compare_ftype *ordered_compare)
9291a0cd 3774{
40658b94 3775 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3776 current language is Ada for a non-Ada objfile using GNU index. As Ada
3777 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3778}
3779
3780static void
f8eba3c6
TT
3781dw2_expand_symtabs_matching
3782 (struct objfile *objfile,
206f2a57
DE
3783 expand_symtabs_file_matcher_ftype *file_matcher,
3784 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3785 enum search_domain kind,
3786 void *data)
9291a0cd
TT
3787{
3788 int i;
3789 offset_type iter;
4b5246aa 3790 struct mapped_index *index;
9291a0cd
TT
3791
3792 dw2_setup (objfile);
ae2de4f8
DE
3793
3794 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3795 if (!dwarf2_per_objfile->index_table)
3796 return;
4b5246aa 3797 index = dwarf2_per_objfile->index_table;
9291a0cd 3798
7b08b9eb 3799 if (file_matcher != NULL)
24c79950
TT
3800 {
3801 struct cleanup *cleanup;
3802 htab_t visited_found, visited_not_found;
3803
3804 visited_found = htab_create_alloc (10,
3805 htab_hash_pointer, htab_eq_pointer,
3806 NULL, xcalloc, xfree);
3807 cleanup = make_cleanup_htab_delete (visited_found);
3808 visited_not_found = htab_create_alloc (10,
3809 htab_hash_pointer, htab_eq_pointer,
3810 NULL, xcalloc, xfree);
3811 make_cleanup_htab_delete (visited_not_found);
3812
848e3e78
DE
3813 /* The rule is CUs specify all the files, including those used by
3814 any TU, so there's no need to scan TUs here. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3817 {
3818 int j;
8832e7e3 3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3820 struct quick_file_names *file_data;
3821 void **slot;
7b08b9eb 3822
24c79950 3823 per_cu->v.quick->mark = 0;
3d7bb9d9 3824
24c79950
TT
3825 /* We only need to look at symtabs not already expanded. */
3826 if (per_cu->v.quick->symtab)
3827 continue;
7b08b9eb 3828
e4a48d9d 3829 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3830 if (file_data == NULL)
3831 continue;
7b08b9eb 3832
24c79950
TT
3833 if (htab_find (visited_not_found, file_data) != NULL)
3834 continue;
3835 else if (htab_find (visited_found, file_data) != NULL)
3836 {
3837 per_cu->v.quick->mark = 1;
3838 continue;
3839 }
3840
3841 for (j = 0; j < file_data->num_file_names; ++j)
3842 {
da235a7c
JK
3843 const char *this_real_name;
3844
fbd9ab74 3845 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3846 {
3847 per_cu->v.quick->mark = 1;
3848 break;
3849 }
da235a7c
JK
3850
3851 /* Before we invoke realpath, which can get expensive when many
3852 files are involved, do a quick comparison of the basenames. */
3853 if (!basenames_may_differ
3854 && !file_matcher (lbasename (file_data->file_names[j]),
3855 data, 1))
3856 continue;
3857
3858 this_real_name = dw2_get_real_path (objfile, file_data, j);
3859 if (file_matcher (this_real_name, data, 0))
3860 {
3861 per_cu->v.quick->mark = 1;
3862 break;
3863 }
24c79950
TT
3864 }
3865
3866 slot = htab_find_slot (per_cu->v.quick->mark
3867 ? visited_found
3868 : visited_not_found,
3869 file_data, INSERT);
3870 *slot = file_data;
3871 }
3872
3873 do_cleanups (cleanup);
3874 }
9291a0cd 3875
3876f04e 3876 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3877 {
3878 offset_type idx = 2 * iter;
3879 const char *name;
3880 offset_type *vec, vec_len, vec_idx;
8943b874 3881 int global_seen = 0;
9291a0cd 3882
3876f04e 3883 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3884 continue;
3885
3876f04e 3886 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3887
206f2a57 3888 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3889 continue;
3890
3891 /* The name was matched, now expand corresponding CUs that were
3892 marked. */
4b5246aa 3893 vec = (offset_type *) (index->constant_pool
3876f04e 3894 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3895 vec_len = MAYBE_SWAP (vec[0]);
3896 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3897 {
e254ef6a 3898 struct dwarf2_per_cu_data *per_cu;
156942c7 3899 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3900 /* This value is only valid for index versions >= 7. */
3901 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3902 gdb_index_symbol_kind symbol_kind =
3903 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3904 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3905 /* Only check the symbol attributes if they're present.
3906 Indices prior to version 7 don't record them,
3907 and indices >= 7 may elide them for certain symbols
3908 (gold does this). */
3909 int attrs_valid =
3910 (index->version >= 7
3911 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3912
8943b874
DE
3913 /* Work around gold/15646. */
3914 if (attrs_valid)
3915 {
3916 if (!is_static && global_seen)
3917 continue;
3918 if (!is_static)
3919 global_seen = 1;
3920 }
3921
3190f0c6
DE
3922 /* Only check the symbol's kind if it has one. */
3923 if (attrs_valid)
156942c7
DE
3924 {
3925 switch (kind)
3926 {
3927 case VARIABLES_DOMAIN:
3928 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3929 continue;
3930 break;
3931 case FUNCTIONS_DOMAIN:
3932 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3933 continue;
3934 break;
3935 case TYPES_DOMAIN:
3936 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3937 continue;
3938 break;
3939 default:
3940 break;
3941 }
3942 }
3943
3190f0c6
DE
3944 /* Don't crash on bad data. */
3945 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3946 + dwarf2_per_objfile->n_type_units))
3947 {
3948 complaint (&symfile_complaints,
3949 _(".gdb_index entry has bad CU index"
4262abfb 3950 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3951 continue;
3952 }
3953
8832e7e3 3954 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3955 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3956 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3957 }
3958 }
3959}
3960
9703b513
TT
3961/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3962 symtab. */
3963
3964static struct symtab *
3965recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3966{
3967 int i;
3968
3969 if (BLOCKVECTOR (symtab) != NULL
3970 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3971 return symtab;
3972
a3ec0bb1
DE
3973 if (symtab->includes == NULL)
3974 return NULL;
3975
9703b513
TT
3976 for (i = 0; symtab->includes[i]; ++i)
3977 {
a3ec0bb1 3978 struct symtab *s = symtab->includes[i];
9703b513
TT
3979
3980 s = recursively_find_pc_sect_symtab (s, pc);
3981 if (s != NULL)
3982 return s;
3983 }
3984
3985 return NULL;
3986}
3987
9291a0cd
TT
3988static struct symtab *
3989dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 3990 struct bound_minimal_symbol msymbol,
9291a0cd
TT
3991 CORE_ADDR pc,
3992 struct obj_section *section,
3993 int warn_if_readin)
3994{
3995 struct dwarf2_per_cu_data *data;
9703b513 3996 struct symtab *result;
9291a0cd
TT
3997
3998 dw2_setup (objfile);
3999
4000 if (!objfile->psymtabs_addrmap)
4001 return NULL;
4002
4003 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4004 if (!data)
4005 return NULL;
4006
4007 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4008 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4009 paddress (get_objfile_arch (objfile), pc));
4010
9703b513
TT
4011 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4012 gdb_assert (result != NULL);
4013 return result;
9291a0cd
TT
4014}
4015
9291a0cd 4016static void
44b13c5a 4017dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4018 void *data, int need_fullname)
9291a0cd
TT
4019{
4020 int i;
24c79950
TT
4021 struct cleanup *cleanup;
4022 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4023 NULL, xcalloc, xfree);
9291a0cd 4024
24c79950 4025 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4026 dw2_setup (objfile);
ae2de4f8 4027
848e3e78
DE
4028 /* The rule is CUs specify all the files, including those used by
4029 any TU, so there's no need to scan TUs here.
4030 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4031
848e3e78 4032 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4033 {
8832e7e3 4034 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950
TT
4035
4036 if (per_cu->v.quick->symtab)
4037 {
4038 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4039 INSERT);
4040
4041 *slot = per_cu->v.quick->file_names;
4042 }
4043 }
4044
848e3e78 4045 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4046 {
4047 int j;
8832e7e3 4048 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4049 struct quick_file_names *file_data;
24c79950 4050 void **slot;
9291a0cd 4051
3d7bb9d9 4052 /* We only need to look at symtabs not already expanded. */
e254ef6a 4053 if (per_cu->v.quick->symtab)
9291a0cd
TT
4054 continue;
4055
e4a48d9d 4056 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4057 if (file_data == NULL)
9291a0cd
TT
4058 continue;
4059
24c79950
TT
4060 slot = htab_find_slot (visited, file_data, INSERT);
4061 if (*slot)
4062 {
4063 /* Already visited. */
4064 continue;
4065 }
4066 *slot = file_data;
4067
7b9f3c50 4068 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4069 {
74e2f255
DE
4070 const char *this_real_name;
4071
4072 if (need_fullname)
4073 this_real_name = dw2_get_real_path (objfile, file_data, j);
4074 else
4075 this_real_name = NULL;
7b9f3c50 4076 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4077 }
4078 }
24c79950
TT
4079
4080 do_cleanups (cleanup);
9291a0cd
TT
4081}
4082
4083static int
4084dw2_has_symbols (struct objfile *objfile)
4085{
4086 return 1;
4087}
4088
4089const struct quick_symbol_functions dwarf2_gdb_index_functions =
4090{
4091 dw2_has_symbols,
4092 dw2_find_last_source_symtab,
4093 dw2_forget_cached_source_info,
f8eba3c6 4094 dw2_map_symtabs_matching_filename,
9291a0cd 4095 dw2_lookup_symbol,
9291a0cd
TT
4096 dw2_print_stats,
4097 dw2_dump,
4098 dw2_relocate,
4099 dw2_expand_symtabs_for_function,
4100 dw2_expand_all_symtabs,
652a8996 4101 dw2_expand_symtabs_with_fullname,
40658b94 4102 dw2_map_matching_symbols,
9291a0cd
TT
4103 dw2_expand_symtabs_matching,
4104 dw2_find_pc_sect_symtab,
9291a0cd
TT
4105 dw2_map_symbol_filenames
4106};
4107
4108/* Initialize for reading DWARF for this objfile. Return 0 if this
4109 file will use psymtabs, or 1 if using the GNU index. */
4110
4111int
4112dwarf2_initialize_objfile (struct objfile *objfile)
4113{
4114 /* If we're about to read full symbols, don't bother with the
4115 indices. In this case we also don't care if some other debug
4116 format is making psymtabs, because they are all about to be
4117 expanded anyway. */
4118 if ((objfile->flags & OBJF_READNOW))
4119 {
4120 int i;
4121
4122 dwarf2_per_objfile->using_index = 1;
4123 create_all_comp_units (objfile);
0e50663e 4124 create_all_type_units (objfile);
7b9f3c50
DE
4125 dwarf2_per_objfile->quick_file_names_table =
4126 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4127
1fd400ff 4128 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4129 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4130 {
8832e7e3 4131 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4132
e254ef6a
DE
4133 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4134 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4135 }
4136
4137 /* Return 1 so that gdb sees the "quick" functions. However,
4138 these functions will be no-ops because we will have expanded
4139 all symtabs. */
4140 return 1;
4141 }
4142
4143 if (dwarf2_read_index (objfile))
4144 return 1;
4145
9291a0cd
TT
4146 return 0;
4147}
4148
4149\f
4150
dce234bc
PP
4151/* Build a partial symbol table. */
4152
4153void
f29dff0a 4154dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4155{
c9bf0622
TT
4156 volatile struct gdb_exception except;
4157
f29dff0a 4158 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4159 {
4160 init_psymbol_list (objfile, 1024);
4161 }
4162
c9bf0622
TT
4163 TRY_CATCH (except, RETURN_MASK_ERROR)
4164 {
4165 /* This isn't really ideal: all the data we allocate on the
4166 objfile's obstack is still uselessly kept around. However,
4167 freeing it seems unsafe. */
4168 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4169
4170 dwarf2_build_psymtabs_hard (objfile);
4171 discard_cleanups (cleanups);
4172 }
4173 if (except.reason < 0)
4174 exception_print (gdb_stderr, except);
c906108c 4175}
c906108c 4176
1ce1cefd
DE
4177/* Return the total length of the CU described by HEADER. */
4178
4179static unsigned int
4180get_cu_length (const struct comp_unit_head *header)
4181{
4182 return header->initial_length_size + header->length;
4183}
4184
45452591
DE
4185/* Return TRUE if OFFSET is within CU_HEADER. */
4186
4187static inline int
b64f50a1 4188offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4189{
b64f50a1 4190 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4191 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4192
b64f50a1 4193 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4194}
4195
3b80fe9b
DE
4196/* Find the base address of the compilation unit for range lists and
4197 location lists. It will normally be specified by DW_AT_low_pc.
4198 In DWARF-3 draft 4, the base address could be overridden by
4199 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4200 compilation units with discontinuous ranges. */
4201
4202static void
4203dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4204{
4205 struct attribute *attr;
4206
4207 cu->base_known = 0;
4208 cu->base_address = 0;
4209
4210 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4211 if (attr)
4212 {
31aa7e4e 4213 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4214 cu->base_known = 1;
4215 }
4216 else
4217 {
4218 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4219 if (attr)
4220 {
31aa7e4e 4221 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4222 cu->base_known = 1;
4223 }
4224 }
4225}
4226
93311388
DE
4227/* Read in the comp unit header information from the debug_info at info_ptr.
4228 NOTE: This leaves members offset, first_die_offset to be filled in
4229 by the caller. */
107d2387 4230
d521ce57 4231static const gdb_byte *
107d2387 4232read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4233 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4234{
4235 int signed_addr;
891d2f0b 4236 unsigned int bytes_read;
c764a876
DE
4237
4238 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4239 cu_header->initial_length_size = bytes_read;
4240 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4241 info_ptr += bytes_read;
107d2387
AC
4242 cu_header->version = read_2_bytes (abfd, info_ptr);
4243 info_ptr += 2;
b64f50a1
JK
4244 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4245 &bytes_read);
613e1657 4246 info_ptr += bytes_read;
107d2387
AC
4247 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4248 info_ptr += 1;
4249 signed_addr = bfd_get_sign_extend_vma (abfd);
4250 if (signed_addr < 0)
8e65ff28 4251 internal_error (__FILE__, __LINE__,
e2e0b3e5 4252 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4253 cu_header->signed_addr_p = signed_addr;
c764a876 4254
107d2387
AC
4255 return info_ptr;
4256}
4257
36586728
TT
4258/* Helper function that returns the proper abbrev section for
4259 THIS_CU. */
4260
4261static struct dwarf2_section_info *
4262get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4263{
4264 struct dwarf2_section_info *abbrev;
4265
4266 if (this_cu->is_dwz)
4267 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4268 else
4269 abbrev = &dwarf2_per_objfile->abbrev;
4270
4271 return abbrev;
4272}
4273
9ff913ba
DE
4274/* Subroutine of read_and_check_comp_unit_head and
4275 read_and_check_type_unit_head to simplify them.
4276 Perform various error checking on the header. */
4277
4278static void
4279error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4280 struct dwarf2_section_info *section,
4281 struct dwarf2_section_info *abbrev_section)
9ff913ba 4282{
a32a8923
DE
4283 bfd *abfd = get_section_bfd_owner (section);
4284 const char *filename = get_section_file_name (section);
9ff913ba
DE
4285
4286 if (header->version != 2 && header->version != 3 && header->version != 4)
4287 error (_("Dwarf Error: wrong version in compilation unit header "
4288 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4289 filename);
4290
b64f50a1 4291 if (header->abbrev_offset.sect_off
36586728 4292 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4293 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4294 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4295 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4296 filename);
4297
4298 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4299 avoid potential 32-bit overflow. */
1ce1cefd 4300 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4301 > section->size)
4302 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4303 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4304 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4305 filename);
4306}
4307
4308/* Read in a CU/TU header and perform some basic error checking.
4309 The contents of the header are stored in HEADER.
4310 The result is a pointer to the start of the first DIE. */
adabb602 4311
d521ce57 4312static const gdb_byte *
9ff913ba
DE
4313read_and_check_comp_unit_head (struct comp_unit_head *header,
4314 struct dwarf2_section_info *section,
4bdcc0c1 4315 struct dwarf2_section_info *abbrev_section,
d521ce57 4316 const gdb_byte *info_ptr,
9ff913ba 4317 int is_debug_types_section)
72bf9492 4318{
d521ce57 4319 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4320 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4321
b64f50a1 4322 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4323
72bf9492
DJ
4324 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4325
460c1c54
CC
4326 /* If we're reading a type unit, skip over the signature and
4327 type_offset fields. */
b0df02fd 4328 if (is_debug_types_section)
460c1c54
CC
4329 info_ptr += 8 /*signature*/ + header->offset_size;
4330
b64f50a1 4331 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4332
4bdcc0c1 4333 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4334
4335 return info_ptr;
4336}
4337
348e048f
DE
4338/* Read in the types comp unit header information from .debug_types entry at
4339 types_ptr. The result is a pointer to one past the end of the header. */
4340
d521ce57 4341static const gdb_byte *
9ff913ba
DE
4342read_and_check_type_unit_head (struct comp_unit_head *header,
4343 struct dwarf2_section_info *section,
4bdcc0c1 4344 struct dwarf2_section_info *abbrev_section,
d521ce57 4345 const gdb_byte *info_ptr,
dee91e82
DE
4346 ULONGEST *signature,
4347 cu_offset *type_offset_in_tu)
348e048f 4348{
d521ce57 4349 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4350 bfd *abfd = get_section_bfd_owner (section);
348e048f 4351
b64f50a1 4352 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4353
9ff913ba 4354 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4355
9ff913ba
DE
4356 /* If we're reading a type unit, skip over the signature and
4357 type_offset fields. */
4358 if (signature != NULL)
4359 *signature = read_8_bytes (abfd, info_ptr);
4360 info_ptr += 8;
dee91e82
DE
4361 if (type_offset_in_tu != NULL)
4362 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4363 header->offset_size);
9ff913ba
DE
4364 info_ptr += header->offset_size;
4365
b64f50a1 4366 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4367
4bdcc0c1 4368 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4369
4370 return info_ptr;
348e048f
DE
4371}
4372
f4dc4d17
DE
4373/* Fetch the abbreviation table offset from a comp or type unit header. */
4374
4375static sect_offset
4376read_abbrev_offset (struct dwarf2_section_info *section,
4377 sect_offset offset)
4378{
a32a8923 4379 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4380 const gdb_byte *info_ptr;
f4dc4d17
DE
4381 unsigned int length, initial_length_size, offset_size;
4382 sect_offset abbrev_offset;
4383
4384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4385 info_ptr = section->buffer + offset.sect_off;
4386 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4387 offset_size = initial_length_size == 4 ? 4 : 8;
4388 info_ptr += initial_length_size + 2 /*version*/;
4389 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4390 return abbrev_offset;
4391}
4392
aaa75496
JB
4393/* Allocate a new partial symtab for file named NAME and mark this new
4394 partial symtab as being an include of PST. */
4395
4396static void
d521ce57 4397dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4398 struct objfile *objfile)
4399{
4400 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4401
fbd9ab74
JK
4402 if (!IS_ABSOLUTE_PATH (subpst->filename))
4403 {
4404 /* It shares objfile->objfile_obstack. */
4405 subpst->dirname = pst->dirname;
4406 }
4407
aaa75496
JB
4408 subpst->section_offsets = pst->section_offsets;
4409 subpst->textlow = 0;
4410 subpst->texthigh = 0;
4411
4412 subpst->dependencies = (struct partial_symtab **)
4413 obstack_alloc (&objfile->objfile_obstack,
4414 sizeof (struct partial_symtab *));
4415 subpst->dependencies[0] = pst;
4416 subpst->number_of_dependencies = 1;
4417
4418 subpst->globals_offset = 0;
4419 subpst->n_global_syms = 0;
4420 subpst->statics_offset = 0;
4421 subpst->n_static_syms = 0;
4422 subpst->symtab = NULL;
4423 subpst->read_symtab = pst->read_symtab;
4424 subpst->readin = 0;
4425
4426 /* No private part is necessary for include psymtabs. This property
4427 can be used to differentiate between such include psymtabs and
10b3939b 4428 the regular ones. */
58a9656e 4429 subpst->read_symtab_private = NULL;
aaa75496
JB
4430}
4431
4432/* Read the Line Number Program data and extract the list of files
4433 included by the source file represented by PST. Build an include
d85a05f0 4434 partial symtab for each of these included files. */
aaa75496
JB
4435
4436static void
4437dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4438 struct die_info *die,
4439 struct partial_symtab *pst)
aaa75496 4440{
d85a05f0
DJ
4441 struct line_header *lh = NULL;
4442 struct attribute *attr;
aaa75496 4443
d85a05f0
DJ
4444 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4445 if (attr)
3019eac3 4446 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4447 if (lh == NULL)
4448 return; /* No linetable, so no includes. */
4449
c6da4cef 4450 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
a1b34d15 4451 dwarf_decode_lines (lh, pst->dirname, cu, pst);
aaa75496
JB
4452
4453 free_line_header (lh);
4454}
4455
348e048f 4456static hashval_t
52dc124a 4457hash_signatured_type (const void *item)
348e048f 4458{
52dc124a 4459 const struct signatured_type *sig_type = item;
9a619af0 4460
348e048f 4461 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4462 return sig_type->signature;
348e048f
DE
4463}
4464
4465static int
52dc124a 4466eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4467{
4468 const struct signatured_type *lhs = item_lhs;
4469 const struct signatured_type *rhs = item_rhs;
9a619af0 4470
348e048f
DE
4471 return lhs->signature == rhs->signature;
4472}
4473
1fd400ff
TT
4474/* Allocate a hash table for signatured types. */
4475
4476static htab_t
673bfd45 4477allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4478{
4479 return htab_create_alloc_ex (41,
52dc124a
DE
4480 hash_signatured_type,
4481 eq_signatured_type,
1fd400ff
TT
4482 NULL,
4483 &objfile->objfile_obstack,
4484 hashtab_obstack_allocate,
4485 dummy_obstack_deallocate);
4486}
4487
d467dd73 4488/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4489
4490static int
d467dd73 4491add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4492{
4493 struct signatured_type *sigt = *slot;
b4dd5633 4494 struct signatured_type ***datap = datum;
1fd400ff 4495
b4dd5633 4496 **datap = sigt;
1fd400ff
TT
4497 ++*datap;
4498
4499 return 1;
4500}
4501
c88ee1f0
DE
4502/* Create the hash table of all entries in the .debug_types
4503 (or .debug_types.dwo) section(s).
4504 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4505 otherwise it is NULL.
4506
4507 The result is a pointer to the hash table or NULL if there are no types.
4508
4509 Note: This function processes DWO files only, not DWP files. */
348e048f 4510
3019eac3
DE
4511static htab_t
4512create_debug_types_hash_table (struct dwo_file *dwo_file,
4513 VEC (dwarf2_section_info_def) *types)
348e048f 4514{
3019eac3 4515 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4516 htab_t types_htab = NULL;
8b70b953
TT
4517 int ix;
4518 struct dwarf2_section_info *section;
4bdcc0c1 4519 struct dwarf2_section_info *abbrev_section;
348e048f 4520
3019eac3
DE
4521 if (VEC_empty (dwarf2_section_info_def, types))
4522 return NULL;
348e048f 4523
4bdcc0c1
DE
4524 abbrev_section = (dwo_file != NULL
4525 ? &dwo_file->sections.abbrev
4526 : &dwarf2_per_objfile->abbrev);
4527
09406207
DE
4528 if (dwarf2_read_debug)
4529 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4530 dwo_file ? ".dwo" : "",
a32a8923 4531 get_section_file_name (abbrev_section));
09406207 4532
8b70b953 4533 for (ix = 0;
3019eac3 4534 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4535 ++ix)
4536 {
3019eac3 4537 bfd *abfd;
d521ce57 4538 const gdb_byte *info_ptr, *end_ptr;
348e048f 4539
8b70b953
TT
4540 dwarf2_read_section (objfile, section);
4541 info_ptr = section->buffer;
348e048f 4542
8b70b953
TT
4543 if (info_ptr == NULL)
4544 continue;
348e048f 4545
3019eac3 4546 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4547 not present, in which case the bfd is unknown. */
4548 abfd = get_section_bfd_owner (section);
3019eac3 4549
dee91e82
DE
4550 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4551 because we don't need to read any dies: the signature is in the
4552 header. */
8b70b953
TT
4553
4554 end_ptr = info_ptr + section->size;
4555 while (info_ptr < end_ptr)
4556 {
b64f50a1 4557 sect_offset offset;
3019eac3 4558 cu_offset type_offset_in_tu;
8b70b953 4559 ULONGEST signature;
52dc124a 4560 struct signatured_type *sig_type;
3019eac3 4561 struct dwo_unit *dwo_tu;
8b70b953 4562 void **slot;
d521ce57 4563 const gdb_byte *ptr = info_ptr;
9ff913ba 4564 struct comp_unit_head header;
dee91e82 4565 unsigned int length;
348e048f 4566
b64f50a1 4567 offset.sect_off = ptr - section->buffer;
348e048f 4568
8b70b953 4569 /* We need to read the type's signature in order to build the hash
9ff913ba 4570 table, but we don't need anything else just yet. */
348e048f 4571
4bdcc0c1
DE
4572 ptr = read_and_check_type_unit_head (&header, section,
4573 abbrev_section, ptr,
3019eac3 4574 &signature, &type_offset_in_tu);
6caca83c 4575
1ce1cefd 4576 length = get_cu_length (&header);
dee91e82 4577
6caca83c 4578 /* Skip dummy type units. */
dee91e82
DE
4579 if (ptr >= info_ptr + length
4580 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4581 {
1ce1cefd 4582 info_ptr += length;
6caca83c
CC
4583 continue;
4584 }
8b70b953 4585
0349ea22
DE
4586 if (types_htab == NULL)
4587 {
4588 if (dwo_file)
4589 types_htab = allocate_dwo_unit_table (objfile);
4590 else
4591 types_htab = allocate_signatured_type_table (objfile);
4592 }
4593
3019eac3
DE
4594 if (dwo_file)
4595 {
4596 sig_type = NULL;
4597 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4598 struct dwo_unit);
4599 dwo_tu->dwo_file = dwo_file;
4600 dwo_tu->signature = signature;
4601 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4602 dwo_tu->section = section;
3019eac3
DE
4603 dwo_tu->offset = offset;
4604 dwo_tu->length = length;
4605 }
4606 else
4607 {
4608 /* N.B.: type_offset is not usable if this type uses a DWO file.
4609 The real type_offset is in the DWO file. */
4610 dwo_tu = NULL;
4611 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4612 struct signatured_type);
4613 sig_type->signature = signature;
4614 sig_type->type_offset_in_tu = type_offset_in_tu;
4615 sig_type->per_cu.objfile = objfile;
4616 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4617 sig_type->per_cu.section = section;
3019eac3
DE
4618 sig_type->per_cu.offset = offset;
4619 sig_type->per_cu.length = length;
4620 }
8b70b953 4621
3019eac3
DE
4622 slot = htab_find_slot (types_htab,
4623 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4624 INSERT);
8b70b953
TT
4625 gdb_assert (slot != NULL);
4626 if (*slot != NULL)
4627 {
3019eac3
DE
4628 sect_offset dup_offset;
4629
4630 if (dwo_file)
4631 {
4632 const struct dwo_unit *dup_tu = *slot;
4633
4634 dup_offset = dup_tu->offset;
4635 }
4636 else
4637 {
4638 const struct signatured_type *dup_tu = *slot;
4639
4640 dup_offset = dup_tu->per_cu.offset;
4641 }
b3c8eb43 4642
8b70b953 4643 complaint (&symfile_complaints,
c88ee1f0 4644 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4645 " the entry at offset 0x%x, signature %s"),
3019eac3 4646 offset.sect_off, dup_offset.sect_off,
4031ecc5 4647 hex_string (signature));
8b70b953 4648 }
3019eac3 4649 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4650
73be47f5 4651 if (dwarf2_read_debug > 1)
4031ecc5 4652 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4653 offset.sect_off,
4031ecc5 4654 hex_string (signature));
348e048f 4655
dee91e82 4656 info_ptr += length;
8b70b953 4657 }
348e048f
DE
4658 }
4659
3019eac3
DE
4660 return types_htab;
4661}
4662
4663/* Create the hash table of all entries in the .debug_types section,
4664 and initialize all_type_units.
4665 The result is zero if there is an error (e.g. missing .debug_types section),
4666 otherwise non-zero. */
4667
4668static int
4669create_all_type_units (struct objfile *objfile)
4670{
4671 htab_t types_htab;
b4dd5633 4672 struct signatured_type **iter;
3019eac3
DE
4673
4674 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4675 if (types_htab == NULL)
4676 {
4677 dwarf2_per_objfile->signatured_types = NULL;
4678 return 0;
4679 }
4680
348e048f
DE
4681 dwarf2_per_objfile->signatured_types = types_htab;
4682
6aa5f3a6
DE
4683 dwarf2_per_objfile->n_type_units
4684 = dwarf2_per_objfile->n_allocated_type_units
4685 = htab_elements (types_htab);
d467dd73 4686 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4687 = xmalloc (dwarf2_per_objfile->n_type_units
4688 * sizeof (struct signatured_type *));
d467dd73
DE
4689 iter = &dwarf2_per_objfile->all_type_units[0];
4690 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4691 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4692 == dwarf2_per_objfile->n_type_units);
1fd400ff 4693
348e048f
DE
4694 return 1;
4695}
4696
6aa5f3a6
DE
4697/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4698 If SLOT is non-NULL, it is the entry to use in the hash table.
4699 Otherwise we find one. */
4700
4701static struct signatured_type *
4702add_type_unit (ULONGEST sig, void **slot)
4703{
4704 struct objfile *objfile = dwarf2_per_objfile->objfile;
4705 int n_type_units = dwarf2_per_objfile->n_type_units;
4706 struct signatured_type *sig_type;
4707
4708 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4709 ++n_type_units;
4710 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4711 {
4712 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4713 dwarf2_per_objfile->n_allocated_type_units = 1;
4714 dwarf2_per_objfile->n_allocated_type_units *= 2;
4715 dwarf2_per_objfile->all_type_units
4716 = xrealloc (dwarf2_per_objfile->all_type_units,
4717 dwarf2_per_objfile->n_allocated_type_units
4718 * sizeof (struct signatured_type *));
4719 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4720 }
4721 dwarf2_per_objfile->n_type_units = n_type_units;
4722
4723 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4724 struct signatured_type);
4725 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4726 sig_type->signature = sig;
4727 sig_type->per_cu.is_debug_types = 1;
4728 if (dwarf2_per_objfile->using_index)
4729 {
4730 sig_type->per_cu.v.quick =
4731 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4732 struct dwarf2_per_cu_quick_data);
4733 }
4734
4735 if (slot == NULL)
4736 {
4737 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4738 sig_type, INSERT);
4739 }
4740 gdb_assert (*slot == NULL);
4741 *slot = sig_type;
4742 /* The rest of sig_type must be filled in by the caller. */
4743 return sig_type;
4744}
4745
a2ce51a0
DE
4746/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4747 Fill in SIG_ENTRY with DWO_ENTRY. */
4748
4749static void
4750fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4751 struct signatured_type *sig_entry,
4752 struct dwo_unit *dwo_entry)
4753{
7ee85ab1 4754 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4755 gdb_assert (! sig_entry->per_cu.queued);
4756 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4757 if (dwarf2_per_objfile->using_index)
4758 {
4759 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4760 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4761 }
4762 else
4763 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4764 gdb_assert (sig_entry->signature == dwo_entry->signature);
4765 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4766 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4767 gdb_assert (sig_entry->dwo_unit == NULL);
4768
4769 sig_entry->per_cu.section = dwo_entry->section;
4770 sig_entry->per_cu.offset = dwo_entry->offset;
4771 sig_entry->per_cu.length = dwo_entry->length;
4772 sig_entry->per_cu.reading_dwo_directly = 1;
4773 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4774 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4775 sig_entry->dwo_unit = dwo_entry;
4776}
4777
4778/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4779 If we haven't read the TU yet, create the signatured_type data structure
4780 for a TU to be read in directly from a DWO file, bypassing the stub.
4781 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4782 using .gdb_index, then when reading a CU we want to stay in the DWO file
4783 containing that CU. Otherwise we could end up reading several other DWO
4784 files (due to comdat folding) to process the transitive closure of all the
4785 mentioned TUs, and that can be slow. The current DWO file will have every
4786 type signature that it needs.
a2ce51a0
DE
4787 We only do this for .gdb_index because in the psymtab case we already have
4788 to read all the DWOs to build the type unit groups. */
4789
4790static struct signatured_type *
4791lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4792{
4793 struct objfile *objfile = dwarf2_per_objfile->objfile;
4794 struct dwo_file *dwo_file;
4795 struct dwo_unit find_dwo_entry, *dwo_entry;
4796 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4797 void **slot;
a2ce51a0
DE
4798
4799 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4800
6aa5f3a6
DE
4801 /* If TU skeletons have been removed then we may not have read in any
4802 TUs yet. */
4803 if (dwarf2_per_objfile->signatured_types == NULL)
4804 {
4805 dwarf2_per_objfile->signatured_types
4806 = allocate_signatured_type_table (objfile);
4807 }
a2ce51a0
DE
4808
4809 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4810 Use the global signatured_types array to do our own comdat-folding
4811 of types. If this is the first time we're reading this TU, and
4812 the TU has an entry in .gdb_index, replace the recorded data from
4813 .gdb_index with this TU. */
a2ce51a0 4814
a2ce51a0 4815 find_sig_entry.signature = sig;
6aa5f3a6
DE
4816 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4817 &find_sig_entry, INSERT);
4818 sig_entry = *slot;
7ee85ab1
DE
4819
4820 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4821 read. Don't reassign the global entry to point to this DWO if that's
4822 the case. Also note that if the TU is already being read, it may not
4823 have come from a DWO, the program may be a mix of Fission-compiled
4824 code and non-Fission-compiled code. */
4825
4826 /* Have we already tried to read this TU?
4827 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4828 needn't exist in the global table yet). */
4829 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4830 return sig_entry;
4831
6aa5f3a6
DE
4832 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4833 dwo_unit of the TU itself. */
4834 dwo_file = cu->dwo_unit->dwo_file;
4835
a2ce51a0
DE
4836 /* Ok, this is the first time we're reading this TU. */
4837 if (dwo_file->tus == NULL)
4838 return NULL;
4839 find_dwo_entry.signature = sig;
4840 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4841 if (dwo_entry == NULL)
4842 return NULL;
4843
6aa5f3a6
DE
4844 /* If the global table doesn't have an entry for this TU, add one. */
4845 if (sig_entry == NULL)
4846 sig_entry = add_type_unit (sig, slot);
4847
a2ce51a0 4848 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4849 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4850 return sig_entry;
4851}
4852
a2ce51a0
DE
4853/* Subroutine of lookup_signatured_type.
4854 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4855 then try the DWP file. If the TU stub (skeleton) has been removed then
4856 it won't be in .gdb_index. */
a2ce51a0
DE
4857
4858static struct signatured_type *
4859lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4860{
4861 struct objfile *objfile = dwarf2_per_objfile->objfile;
4862 struct dwp_file *dwp_file = get_dwp_file ();
4863 struct dwo_unit *dwo_entry;
4864 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4865 void **slot;
a2ce51a0
DE
4866
4867 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4868 gdb_assert (dwp_file != NULL);
4869
6aa5f3a6
DE
4870 /* If TU skeletons have been removed then we may not have read in any
4871 TUs yet. */
4872 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4873 {
6aa5f3a6
DE
4874 dwarf2_per_objfile->signatured_types
4875 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4876 }
4877
6aa5f3a6
DE
4878 find_sig_entry.signature = sig;
4879 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4880 &find_sig_entry, INSERT);
4881 sig_entry = *slot;
4882
4883 /* Have we already tried to read this TU?
4884 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4885 needn't exist in the global table yet). */
4886 if (sig_entry != NULL)
4887 return sig_entry;
4888
a2ce51a0
DE
4889 if (dwp_file->tus == NULL)
4890 return NULL;
57d63ce2
DE
4891 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4892 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4893 if (dwo_entry == NULL)
4894 return NULL;
4895
6aa5f3a6 4896 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4897 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4898
a2ce51a0
DE
4899 return sig_entry;
4900}
4901
380bca97 4902/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4903 Returns NULL if signature SIG is not present in the table.
4904 It is up to the caller to complain about this. */
348e048f
DE
4905
4906static struct signatured_type *
a2ce51a0 4907lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4908{
a2ce51a0
DE
4909 if (cu->dwo_unit
4910 && dwarf2_per_objfile->using_index)
4911 {
4912 /* We're in a DWO/DWP file, and we're using .gdb_index.
4913 These cases require special processing. */
4914 if (get_dwp_file () == NULL)
4915 return lookup_dwo_signatured_type (cu, sig);
4916 else
4917 return lookup_dwp_signatured_type (cu, sig);
4918 }
4919 else
4920 {
4921 struct signatured_type find_entry, *entry;
348e048f 4922
a2ce51a0
DE
4923 if (dwarf2_per_objfile->signatured_types == NULL)
4924 return NULL;
4925 find_entry.signature = sig;
4926 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4927 return entry;
4928 }
348e048f 4929}
42e7ad6c
DE
4930\f
4931/* Low level DIE reading support. */
348e048f 4932
d85a05f0
DJ
4933/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4934
4935static void
4936init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4937 struct dwarf2_cu *cu,
3019eac3
DE
4938 struct dwarf2_section_info *section,
4939 struct dwo_file *dwo_file)
d85a05f0 4940{
fceca515 4941 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4942 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4943 reader->cu = cu;
3019eac3 4944 reader->dwo_file = dwo_file;
dee91e82
DE
4945 reader->die_section = section;
4946 reader->buffer = section->buffer;
f664829e 4947 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4948 reader->comp_dir = NULL;
d85a05f0
DJ
4949}
4950
b0c7bfa9
DE
4951/* Subroutine of init_cutu_and_read_dies to simplify it.
4952 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4953 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4954 already.
4955
4956 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4957 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4958 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4959 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4960 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4961 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4962 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4963 are filled in with the info of the DIE from the DWO file.
4964 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4965 provided an abbrev table to use.
4966 The result is non-zero if a valid (non-dummy) DIE was found. */
4967
4968static int
4969read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4970 struct dwo_unit *dwo_unit,
4971 int abbrev_table_provided,
4972 struct die_info *stub_comp_unit_die,
a2ce51a0 4973 const char *stub_comp_dir,
b0c7bfa9 4974 struct die_reader_specs *result_reader,
d521ce57 4975 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4976 struct die_info **result_comp_unit_die,
4977 int *result_has_children)
4978{
4979 struct objfile *objfile = dwarf2_per_objfile->objfile;
4980 struct dwarf2_cu *cu = this_cu->cu;
4981 struct dwarf2_section_info *section;
4982 bfd *abfd;
d521ce57 4983 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4984 ULONGEST signature; /* Or dwo_id. */
4985 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4986 int i,num_extra_attrs;
4987 struct dwarf2_section_info *dwo_abbrev_section;
4988 struct attribute *attr;
4989 struct die_info *comp_unit_die;
4990
b0aeadb3
DE
4991 /* At most one of these may be provided. */
4992 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4993
b0c7bfa9
DE
4994 /* These attributes aren't processed until later:
4995 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
4996 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4997 referenced later. However, these attributes are found in the stub
4998 which we won't have later. In order to not impose this complication
4999 on the rest of the code, we read them here and copy them to the
5000 DWO CU/TU die. */
b0c7bfa9
DE
5001
5002 stmt_list = NULL;
5003 low_pc = NULL;
5004 high_pc = NULL;
5005 ranges = NULL;
5006 comp_dir = NULL;
5007
5008 if (stub_comp_unit_die != NULL)
5009 {
5010 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5011 DWO file. */
5012 if (! this_cu->is_debug_types)
5013 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5014 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5015 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5016 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5017 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5018
5019 /* There should be a DW_AT_addr_base attribute here (if needed).
5020 We need the value before we can process DW_FORM_GNU_addr_index. */
5021 cu->addr_base = 0;
5022 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5023 if (attr)
5024 cu->addr_base = DW_UNSND (attr);
5025
5026 /* There should be a DW_AT_ranges_base attribute here (if needed).
5027 We need the value before we can process DW_AT_ranges. */
5028 cu->ranges_base = 0;
5029 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5030 if (attr)
5031 cu->ranges_base = DW_UNSND (attr);
5032 }
a2ce51a0
DE
5033 else if (stub_comp_dir != NULL)
5034 {
5035 /* Reconstruct the comp_dir attribute to simplify the code below. */
5036 comp_dir = (struct attribute *)
5037 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5038 comp_dir->name = DW_AT_comp_dir;
5039 comp_dir->form = DW_FORM_string;
5040 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5041 DW_STRING (comp_dir) = stub_comp_dir;
5042 }
b0c7bfa9
DE
5043
5044 /* Set up for reading the DWO CU/TU. */
5045 cu->dwo_unit = dwo_unit;
5046 section = dwo_unit->section;
5047 dwarf2_read_section (objfile, section);
a32a8923 5048 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5049 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5050 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5051 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5052
5053 if (this_cu->is_debug_types)
5054 {
5055 ULONGEST header_signature;
5056 cu_offset type_offset_in_tu;
5057 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5058
5059 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5060 dwo_abbrev_section,
5061 info_ptr,
5062 &header_signature,
5063 &type_offset_in_tu);
a2ce51a0
DE
5064 /* This is not an assert because it can be caused by bad debug info. */
5065 if (sig_type->signature != header_signature)
5066 {
5067 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5068 " TU at offset 0x%x [in module %s]"),
5069 hex_string (sig_type->signature),
5070 hex_string (header_signature),
5071 dwo_unit->offset.sect_off,
5072 bfd_get_filename (abfd));
5073 }
b0c7bfa9
DE
5074 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5075 /* For DWOs coming from DWP files, we don't know the CU length
5076 nor the type's offset in the TU until now. */
5077 dwo_unit->length = get_cu_length (&cu->header);
5078 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5079
5080 /* Establish the type offset that can be used to lookup the type.
5081 For DWO files, we don't know it until now. */
5082 sig_type->type_offset_in_section.sect_off =
5083 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5084 }
5085 else
5086 {
5087 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5088 dwo_abbrev_section,
5089 info_ptr, 0);
5090 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5091 /* For DWOs coming from DWP files, we don't know the CU length
5092 until now. */
5093 dwo_unit->length = get_cu_length (&cu->header);
5094 }
5095
02142a6c
DE
5096 /* Replace the CU's original abbrev table with the DWO's.
5097 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5098 if (abbrev_table_provided)
5099 {
5100 /* Don't free the provided abbrev table, the caller of
5101 init_cutu_and_read_dies owns it. */
5102 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5103 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5104 make_cleanup (dwarf2_free_abbrev_table, cu);
5105 }
5106 else
5107 {
5108 dwarf2_free_abbrev_table (cu);
5109 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5110 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5111 }
5112
5113 /* Read in the die, but leave space to copy over the attributes
5114 from the stub. This has the benefit of simplifying the rest of
5115 the code - all the work to maintain the illusion of a single
5116 DW_TAG_{compile,type}_unit DIE is done here. */
5117 num_extra_attrs = ((stmt_list != NULL)
5118 + (low_pc != NULL)
5119 + (high_pc != NULL)
5120 + (ranges != NULL)
5121 + (comp_dir != NULL));
5122 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5123 result_has_children, num_extra_attrs);
5124
5125 /* Copy over the attributes from the stub to the DIE we just read in. */
5126 comp_unit_die = *result_comp_unit_die;
5127 i = comp_unit_die->num_attrs;
5128 if (stmt_list != NULL)
5129 comp_unit_die->attrs[i++] = *stmt_list;
5130 if (low_pc != NULL)
5131 comp_unit_die->attrs[i++] = *low_pc;
5132 if (high_pc != NULL)
5133 comp_unit_die->attrs[i++] = *high_pc;
5134 if (ranges != NULL)
5135 comp_unit_die->attrs[i++] = *ranges;
5136 if (comp_dir != NULL)
5137 comp_unit_die->attrs[i++] = *comp_dir;
5138 comp_unit_die->num_attrs += num_extra_attrs;
5139
bf6af496
DE
5140 if (dwarf2_die_debug)
5141 {
5142 fprintf_unfiltered (gdb_stdlog,
5143 "Read die from %s@0x%x of %s:\n",
a32a8923 5144 get_section_name (section),
bf6af496
DE
5145 (unsigned) (begin_info_ptr - section->buffer),
5146 bfd_get_filename (abfd));
5147 dump_die (comp_unit_die, dwarf2_die_debug);
5148 }
5149
a2ce51a0
DE
5150 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5151 TUs by skipping the stub and going directly to the entry in the DWO file.
5152 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5153 to get it via circuitous means. Blech. */
5154 if (comp_dir != NULL)
5155 result_reader->comp_dir = DW_STRING (comp_dir);
5156
b0c7bfa9
DE
5157 /* Skip dummy compilation units. */
5158 if (info_ptr >= begin_info_ptr + dwo_unit->length
5159 || peek_abbrev_code (abfd, info_ptr) == 0)
5160 return 0;
5161
5162 *result_info_ptr = info_ptr;
5163 return 1;
5164}
5165
5166/* Subroutine of init_cutu_and_read_dies to simplify it.
5167 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5168 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5169
5170static struct dwo_unit *
5171lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5172 struct die_info *comp_unit_die)
5173{
5174 struct dwarf2_cu *cu = this_cu->cu;
5175 struct attribute *attr;
5176 ULONGEST signature;
5177 struct dwo_unit *dwo_unit;
5178 const char *comp_dir, *dwo_name;
5179
a2ce51a0
DE
5180 gdb_assert (cu != NULL);
5181
b0c7bfa9
DE
5182 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5183 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5184 gdb_assert (attr != NULL);
5185 dwo_name = DW_STRING (attr);
5186 comp_dir = NULL;
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5188 if (attr)
5189 comp_dir = DW_STRING (attr);
5190
5191 if (this_cu->is_debug_types)
5192 {
5193 struct signatured_type *sig_type;
5194
5195 /* Since this_cu is the first member of struct signatured_type,
5196 we can go from a pointer to one to a pointer to the other. */
5197 sig_type = (struct signatured_type *) this_cu;
5198 signature = sig_type->signature;
5199 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5200 }
5201 else
5202 {
5203 struct attribute *attr;
5204
5205 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5206 if (! attr)
5207 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5208 " [in module %s]"),
4262abfb 5209 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5210 signature = DW_UNSND (attr);
5211 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5212 signature);
5213 }
5214
b0c7bfa9
DE
5215 return dwo_unit;
5216}
5217
a2ce51a0 5218/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5219 See it for a description of the parameters.
5220 Read a TU directly from a DWO file, bypassing the stub.
5221
5222 Note: This function could be a little bit simpler if we shared cleanups
5223 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5224 to do, so we keep this function self-contained. Or we could move this
5225 into our caller, but it's complex enough already. */
a2ce51a0
DE
5226
5227static void
6aa5f3a6
DE
5228init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5229 int use_existing_cu, int keep,
a2ce51a0
DE
5230 die_reader_func_ftype *die_reader_func,
5231 void *data)
5232{
5233 struct dwarf2_cu *cu;
5234 struct signatured_type *sig_type;
6aa5f3a6 5235 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5236 struct die_reader_specs reader;
5237 const gdb_byte *info_ptr;
5238 struct die_info *comp_unit_die;
5239 int has_children;
5240
5241 /* Verify we can do the following downcast, and that we have the
5242 data we need. */
5243 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5244 sig_type = (struct signatured_type *) this_cu;
5245 gdb_assert (sig_type->dwo_unit != NULL);
5246
5247 cleanups = make_cleanup (null_cleanup, NULL);
5248
6aa5f3a6
DE
5249 if (use_existing_cu && this_cu->cu != NULL)
5250 {
5251 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5252 cu = this_cu->cu;
5253 /* There's no need to do the rereading_dwo_cu handling that
5254 init_cutu_and_read_dies does since we don't read the stub. */
5255 }
5256 else
5257 {
5258 /* If !use_existing_cu, this_cu->cu must be NULL. */
5259 gdb_assert (this_cu->cu == NULL);
5260 cu = xmalloc (sizeof (*cu));
5261 init_one_comp_unit (cu, this_cu);
5262 /* If an error occurs while loading, release our storage. */
5263 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5264 }
5265
5266 /* A future optimization, if needed, would be to use an existing
5267 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5268 could share abbrev tables. */
a2ce51a0
DE
5269
5270 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5271 0 /* abbrev_table_provided */,
5272 NULL /* stub_comp_unit_die */,
5273 sig_type->dwo_unit->dwo_file->comp_dir,
5274 &reader, &info_ptr,
5275 &comp_unit_die, &has_children) == 0)
5276 {
5277 /* Dummy die. */
5278 do_cleanups (cleanups);
5279 return;
5280 }
5281
5282 /* All the "real" work is done here. */
5283 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5284
6aa5f3a6 5285 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5286 but the alternative is making the latter more complex.
5287 This function is only for the special case of using DWO files directly:
5288 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5289 if (free_cu_cleanup != NULL)
a2ce51a0 5290 {
6aa5f3a6
DE
5291 if (keep)
5292 {
5293 /* We've successfully allocated this compilation unit. Let our
5294 caller clean it up when finished with it. */
5295 discard_cleanups (free_cu_cleanup);
a2ce51a0 5296
6aa5f3a6
DE
5297 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5298 So we have to manually free the abbrev table. */
5299 dwarf2_free_abbrev_table (cu);
a2ce51a0 5300
6aa5f3a6
DE
5301 /* Link this CU into read_in_chain. */
5302 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5303 dwarf2_per_objfile->read_in_chain = this_cu;
5304 }
5305 else
5306 do_cleanups (free_cu_cleanup);
a2ce51a0 5307 }
a2ce51a0
DE
5308
5309 do_cleanups (cleanups);
5310}
5311
fd820528 5312/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5313 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5314
f4dc4d17
DE
5315 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5316 Otherwise the table specified in the comp unit header is read in and used.
5317 This is an optimization for when we already have the abbrev table.
5318
dee91e82
DE
5319 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5320 Otherwise, a new CU is allocated with xmalloc.
5321
5322 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5323 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5324
5325 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5326 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5327
70221824 5328static void
fd820528 5329init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5330 struct abbrev_table *abbrev_table,
fd820528
DE
5331 int use_existing_cu, int keep,
5332 die_reader_func_ftype *die_reader_func,
5333 void *data)
c906108c 5334{
dee91e82 5335 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5336 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5337 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5338 struct dwarf2_cu *cu;
d521ce57 5339 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5340 struct die_reader_specs reader;
d85a05f0 5341 struct die_info *comp_unit_die;
dee91e82 5342 int has_children;
d85a05f0 5343 struct attribute *attr;
365156ad 5344 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5345 struct signatured_type *sig_type = NULL;
4bdcc0c1 5346 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5347 /* Non-zero if CU currently points to a DWO file and we need to
5348 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5349 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5350 int rereading_dwo_cu = 0;
c906108c 5351
09406207
DE
5352 if (dwarf2_die_debug)
5353 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5354 this_cu->is_debug_types ? "type" : "comp",
5355 this_cu->offset.sect_off);
5356
dee91e82
DE
5357 if (use_existing_cu)
5358 gdb_assert (keep);
23745b47 5359
a2ce51a0
DE
5360 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5361 file (instead of going through the stub), short-circuit all of this. */
5362 if (this_cu->reading_dwo_directly)
5363 {
5364 /* Narrow down the scope of possibilities to have to understand. */
5365 gdb_assert (this_cu->is_debug_types);
5366 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5367 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5368 die_reader_func, data);
a2ce51a0
DE
5369 return;
5370 }
5371
dee91e82
DE
5372 cleanups = make_cleanup (null_cleanup, NULL);
5373
5374 /* This is cheap if the section is already read in. */
5375 dwarf2_read_section (objfile, section);
5376
5377 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5378
5379 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5380
5381 if (use_existing_cu && this_cu->cu != NULL)
5382 {
5383 cu = this_cu->cu;
42e7ad6c
DE
5384 /* If this CU is from a DWO file we need to start over, we need to
5385 refetch the attributes from the skeleton CU.
5386 This could be optimized by retrieving those attributes from when we
5387 were here the first time: the previous comp_unit_die was stored in
5388 comp_unit_obstack. But there's no data yet that we need this
5389 optimization. */
5390 if (cu->dwo_unit != NULL)
5391 rereading_dwo_cu = 1;
dee91e82
DE
5392 }
5393 else
5394 {
5395 /* If !use_existing_cu, this_cu->cu must be NULL. */
5396 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5397 cu = xmalloc (sizeof (*cu));
5398 init_one_comp_unit (cu, this_cu);
dee91e82 5399 /* If an error occurs while loading, release our storage. */
365156ad 5400 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5401 }
dee91e82 5402
b0c7bfa9 5403 /* Get the header. */
42e7ad6c
DE
5404 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5405 {
5406 /* We already have the header, there's no need to read it in again. */
5407 info_ptr += cu->header.first_die_offset.cu_off;
5408 }
5409 else
5410 {
3019eac3 5411 if (this_cu->is_debug_types)
dee91e82
DE
5412 {
5413 ULONGEST signature;
42e7ad6c 5414 cu_offset type_offset_in_tu;
dee91e82 5415
4bdcc0c1
DE
5416 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5417 abbrev_section, info_ptr,
42e7ad6c
DE
5418 &signature,
5419 &type_offset_in_tu);
dee91e82 5420
42e7ad6c
DE
5421 /* Since per_cu is the first member of struct signatured_type,
5422 we can go from a pointer to one to a pointer to the other. */
5423 sig_type = (struct signatured_type *) this_cu;
5424 gdb_assert (sig_type->signature == signature);
5425 gdb_assert (sig_type->type_offset_in_tu.cu_off
5426 == type_offset_in_tu.cu_off);
dee91e82
DE
5427 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5428
42e7ad6c
DE
5429 /* LENGTH has not been set yet for type units if we're
5430 using .gdb_index. */
1ce1cefd 5431 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5432
5433 /* Establish the type offset that can be used to lookup the type. */
5434 sig_type->type_offset_in_section.sect_off =
5435 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5436 }
5437 else
5438 {
4bdcc0c1
DE
5439 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5440 abbrev_section,
5441 info_ptr, 0);
dee91e82
DE
5442
5443 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5444 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5445 }
5446 }
10b3939b 5447
6caca83c 5448 /* Skip dummy compilation units. */
dee91e82 5449 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5450 || peek_abbrev_code (abfd, info_ptr) == 0)
5451 {
dee91e82 5452 do_cleanups (cleanups);
21b2bd31 5453 return;
6caca83c
CC
5454 }
5455
433df2d4
DE
5456 /* If we don't have them yet, read the abbrevs for this compilation unit.
5457 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5458 done. Note that it's important that if the CU had an abbrev table
5459 on entry we don't free it when we're done: Somewhere up the call stack
5460 it may be in use. */
f4dc4d17
DE
5461 if (abbrev_table != NULL)
5462 {
5463 gdb_assert (cu->abbrev_table == NULL);
5464 gdb_assert (cu->header.abbrev_offset.sect_off
5465 == abbrev_table->offset.sect_off);
5466 cu->abbrev_table = abbrev_table;
5467 }
5468 else if (cu->abbrev_table == NULL)
dee91e82 5469 {
4bdcc0c1 5470 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5471 make_cleanup (dwarf2_free_abbrev_table, cu);
5472 }
42e7ad6c
DE
5473 else if (rereading_dwo_cu)
5474 {
5475 dwarf2_free_abbrev_table (cu);
5476 dwarf2_read_abbrevs (cu, abbrev_section);
5477 }
af703f96 5478
dee91e82 5479 /* Read the top level CU/TU die. */
3019eac3 5480 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5481 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5482
b0c7bfa9
DE
5483 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5484 from the DWO file.
5485 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5486 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5487 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5488 if (attr)
5489 {
3019eac3 5490 struct dwo_unit *dwo_unit;
b0c7bfa9 5491 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5492
5493 if (has_children)
6a506a2d
DE
5494 {
5495 complaint (&symfile_complaints,
5496 _("compilation unit with DW_AT_GNU_dwo_name"
5497 " has children (offset 0x%x) [in module %s]"),
5498 this_cu->offset.sect_off, bfd_get_filename (abfd));
5499 }
b0c7bfa9 5500 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5501 if (dwo_unit != NULL)
3019eac3 5502 {
6a506a2d
DE
5503 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5504 abbrev_table != NULL,
a2ce51a0 5505 comp_unit_die, NULL,
6a506a2d
DE
5506 &reader, &info_ptr,
5507 &dwo_comp_unit_die, &has_children) == 0)
5508 {
5509 /* Dummy die. */
5510 do_cleanups (cleanups);
5511 return;
5512 }
5513 comp_unit_die = dwo_comp_unit_die;
5514 }
5515 else
5516 {
5517 /* Yikes, we couldn't find the rest of the DIE, we only have
5518 the stub. A complaint has already been logged. There's
5519 not much more we can do except pass on the stub DIE to
5520 die_reader_func. We don't want to throw an error on bad
5521 debug info. */
3019eac3
DE
5522 }
5523 }
5524
b0c7bfa9 5525 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5526 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5527
b0c7bfa9 5528 /* Done, clean up. */
365156ad 5529 if (free_cu_cleanup != NULL)
348e048f 5530 {
365156ad
TT
5531 if (keep)
5532 {
5533 /* We've successfully allocated this compilation unit. Let our
5534 caller clean it up when finished with it. */
5535 discard_cleanups (free_cu_cleanup);
dee91e82 5536
365156ad
TT
5537 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5538 So we have to manually free the abbrev table. */
5539 dwarf2_free_abbrev_table (cu);
dee91e82 5540
365156ad
TT
5541 /* Link this CU into read_in_chain. */
5542 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5543 dwarf2_per_objfile->read_in_chain = this_cu;
5544 }
5545 else
5546 do_cleanups (free_cu_cleanup);
348e048f 5547 }
365156ad
TT
5548
5549 do_cleanups (cleanups);
dee91e82
DE
5550}
5551
33e80786
DE
5552/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5553 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5554 to have already done the lookup to find the DWO file).
dee91e82
DE
5555
5556 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5557 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5558
5559 We fill in THIS_CU->length.
5560
5561 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5562 linker) then DIE_READER_FUNC will not get called.
5563
5564 THIS_CU->cu is always freed when done.
3019eac3
DE
5565 This is done in order to not leave THIS_CU->cu in a state where we have
5566 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5567
5568static void
5569init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5570 struct dwo_file *dwo_file,
dee91e82
DE
5571 die_reader_func_ftype *die_reader_func,
5572 void *data)
5573{
5574 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5575 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5576 bfd *abfd = get_section_bfd_owner (section);
33e80786 5577 struct dwarf2_section_info *abbrev_section;
dee91e82 5578 struct dwarf2_cu cu;
d521ce57 5579 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5580 struct die_reader_specs reader;
5581 struct cleanup *cleanups;
5582 struct die_info *comp_unit_die;
5583 int has_children;
5584
09406207
DE
5585 if (dwarf2_die_debug)
5586 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5587 this_cu->is_debug_types ? "type" : "comp",
5588 this_cu->offset.sect_off);
5589
dee91e82
DE
5590 gdb_assert (this_cu->cu == NULL);
5591
33e80786
DE
5592 abbrev_section = (dwo_file != NULL
5593 ? &dwo_file->sections.abbrev
5594 : get_abbrev_section_for_cu (this_cu));
5595
dee91e82
DE
5596 /* This is cheap if the section is already read in. */
5597 dwarf2_read_section (objfile, section);
5598
5599 init_one_comp_unit (&cu, this_cu);
5600
5601 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5602
5603 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5604 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5605 abbrev_section, info_ptr,
3019eac3 5606 this_cu->is_debug_types);
dee91e82 5607
1ce1cefd 5608 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5609
5610 /* Skip dummy compilation units. */
5611 if (info_ptr >= begin_info_ptr + this_cu->length
5612 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5613 {
dee91e82 5614 do_cleanups (cleanups);
21b2bd31 5615 return;
93311388 5616 }
72bf9492 5617
dee91e82
DE
5618 dwarf2_read_abbrevs (&cu, abbrev_section);
5619 make_cleanup (dwarf2_free_abbrev_table, &cu);
5620
3019eac3 5621 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5622 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5623
5624 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5625
5626 do_cleanups (cleanups);
5627}
5628
3019eac3
DE
5629/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5630 does not lookup the specified DWO file.
5631 This cannot be used to read DWO files.
dee91e82
DE
5632
5633 THIS_CU->cu is always freed when done.
3019eac3
DE
5634 This is done in order to not leave THIS_CU->cu in a state where we have
5635 to care whether it refers to the "main" CU or the DWO CU.
5636 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5637
5638static void
5639init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5640 die_reader_func_ftype *die_reader_func,
5641 void *data)
5642{
33e80786 5643 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5644}
0018ea6f
DE
5645\f
5646/* Type Unit Groups.
dee91e82 5647
0018ea6f
DE
5648 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5649 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5650 so that all types coming from the same compilation (.o file) are grouped
5651 together. A future step could be to put the types in the same symtab as
5652 the CU the types ultimately came from. */
ff013f42 5653
f4dc4d17
DE
5654static hashval_t
5655hash_type_unit_group (const void *item)
5656{
094b34ac 5657 const struct type_unit_group *tu_group = item;
f4dc4d17 5658
094b34ac 5659 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5660}
348e048f
DE
5661
5662static int
f4dc4d17 5663eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5664{
f4dc4d17
DE
5665 const struct type_unit_group *lhs = item_lhs;
5666 const struct type_unit_group *rhs = item_rhs;
348e048f 5667
094b34ac 5668 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5669}
348e048f 5670
f4dc4d17
DE
5671/* Allocate a hash table for type unit groups. */
5672
5673static htab_t
5674allocate_type_unit_groups_table (void)
5675{
5676 return htab_create_alloc_ex (3,
5677 hash_type_unit_group,
5678 eq_type_unit_group,
5679 NULL,
5680 &dwarf2_per_objfile->objfile->objfile_obstack,
5681 hashtab_obstack_allocate,
5682 dummy_obstack_deallocate);
5683}
dee91e82 5684
f4dc4d17
DE
5685/* Type units that don't have DW_AT_stmt_list are grouped into their own
5686 partial symtabs. We combine several TUs per psymtab to not let the size
5687 of any one psymtab grow too big. */
5688#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5689#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5690
094b34ac 5691/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5692 Create the type_unit_group object used to hold one or more TUs. */
5693
5694static struct type_unit_group *
094b34ac 5695create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5696{
5697 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5698 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5699 struct type_unit_group *tu_group;
f4dc4d17
DE
5700
5701 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5702 struct type_unit_group);
094b34ac 5703 per_cu = &tu_group->per_cu;
f4dc4d17 5704 per_cu->objfile = objfile;
f4dc4d17 5705
094b34ac
DE
5706 if (dwarf2_per_objfile->using_index)
5707 {
5708 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5709 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5710 }
5711 else
5712 {
5713 unsigned int line_offset = line_offset_struct.sect_off;
5714 struct partial_symtab *pst;
5715 char *name;
5716
5717 /* Give the symtab a useful name for debug purposes. */
5718 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5719 name = xstrprintf ("<type_units_%d>",
5720 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5721 else
5722 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5723
5724 pst = create_partial_symtab (per_cu, name);
5725 pst->anonymous = 1;
f4dc4d17 5726
094b34ac
DE
5727 xfree (name);
5728 }
f4dc4d17 5729
094b34ac
DE
5730 tu_group->hash.dwo_unit = cu->dwo_unit;
5731 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5732
5733 return tu_group;
5734}
5735
094b34ac
DE
5736/* Look up the type_unit_group for type unit CU, and create it if necessary.
5737 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5738
5739static struct type_unit_group *
ff39bb5e 5740get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5741{
5742 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5743 struct type_unit_group *tu_group;
5744 void **slot;
5745 unsigned int line_offset;
5746 struct type_unit_group type_unit_group_for_lookup;
5747
5748 if (dwarf2_per_objfile->type_unit_groups == NULL)
5749 {
5750 dwarf2_per_objfile->type_unit_groups =
5751 allocate_type_unit_groups_table ();
5752 }
5753
5754 /* Do we need to create a new group, or can we use an existing one? */
5755
5756 if (stmt_list)
5757 {
5758 line_offset = DW_UNSND (stmt_list);
5759 ++tu_stats->nr_symtab_sharers;
5760 }
5761 else
5762 {
5763 /* Ugh, no stmt_list. Rare, but we have to handle it.
5764 We can do various things here like create one group per TU or
5765 spread them over multiple groups to split up the expansion work.
5766 To avoid worst case scenarios (too many groups or too large groups)
5767 we, umm, group them in bunches. */
5768 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5769 | (tu_stats->nr_stmt_less_type_units
5770 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5771 ++tu_stats->nr_stmt_less_type_units;
5772 }
5773
094b34ac
DE
5774 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5775 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5776 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5777 &type_unit_group_for_lookup, INSERT);
5778 if (*slot != NULL)
5779 {
5780 tu_group = *slot;
5781 gdb_assert (tu_group != NULL);
5782 }
5783 else
5784 {
5785 sect_offset line_offset_struct;
5786
5787 line_offset_struct.sect_off = line_offset;
094b34ac 5788 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5789 *slot = tu_group;
5790 ++tu_stats->nr_symtabs;
5791 }
5792
5793 return tu_group;
5794}
0018ea6f
DE
5795\f
5796/* Partial symbol tables. */
5797
5798/* Create a psymtab named NAME and assign it to PER_CU.
5799
5800 The caller must fill in the following details:
5801 dirname, textlow, texthigh. */
5802
5803static struct partial_symtab *
5804create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5805{
5806 struct objfile *objfile = per_cu->objfile;
5807 struct partial_symtab *pst;
5808
5809 pst = start_psymtab_common (objfile, objfile->section_offsets,
5810 name, 0,
5811 objfile->global_psymbols.next,
5812 objfile->static_psymbols.next);
5813
5814 pst->psymtabs_addrmap_supported = 1;
5815
5816 /* This is the glue that links PST into GDB's symbol API. */
5817 pst->read_symtab_private = per_cu;
5818 pst->read_symtab = dwarf2_read_symtab;
5819 per_cu->v.psymtab = pst;
5820
5821 return pst;
5822}
5823
b93601f3
TT
5824/* The DATA object passed to process_psymtab_comp_unit_reader has this
5825 type. */
5826
5827struct process_psymtab_comp_unit_data
5828{
5829 /* True if we are reading a DW_TAG_partial_unit. */
5830
5831 int want_partial_unit;
5832
5833 /* The "pretend" language that is used if the CU doesn't declare a
5834 language. */
5835
5836 enum language pretend_language;
5837};
5838
0018ea6f
DE
5839/* die_reader_func for process_psymtab_comp_unit. */
5840
5841static void
5842process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5843 const gdb_byte *info_ptr,
0018ea6f
DE
5844 struct die_info *comp_unit_die,
5845 int has_children,
5846 void *data)
5847{
5848 struct dwarf2_cu *cu = reader->cu;
5849 struct objfile *objfile = cu->objfile;
5850 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5851 struct attribute *attr;
5852 CORE_ADDR baseaddr;
5853 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5854 struct partial_symtab *pst;
5855 int has_pc_info;
5856 const char *filename;
b93601f3 5857 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5858
b93601f3 5859 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5860 return;
5861
5862 gdb_assert (! per_cu->is_debug_types);
5863
b93601f3 5864 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5865
5866 cu->list_in_scope = &file_symbols;
5867
5868 /* Allocate a new partial symbol table structure. */
5869 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5870 if (attr == NULL || !DW_STRING (attr))
5871 filename = "";
5872 else
5873 filename = DW_STRING (attr);
5874
5875 pst = create_partial_symtab (per_cu, filename);
5876
5877 /* This must be done before calling dwarf2_build_include_psymtabs. */
5878 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5879 if (attr != NULL)
5880 pst->dirname = DW_STRING (attr);
5881
5882 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5883
5884 dwarf2_find_base_address (comp_unit_die, cu);
5885
5886 /* Possibly set the default values of LOWPC and HIGHPC from
5887 `DW_AT_ranges'. */
5888 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5889 &best_highpc, cu, pst);
5890 if (has_pc_info == 1 && best_lowpc < best_highpc)
5891 /* Store the contiguous range if it is not empty; it can be empty for
5892 CUs with no code. */
5893 addrmap_set_empty (objfile->psymtabs_addrmap,
5894 best_lowpc + baseaddr,
5895 best_highpc + baseaddr - 1, pst);
5896
5897 /* Check if comp unit has_children.
5898 If so, read the rest of the partial symbols from this comp unit.
5899 If not, there's no more debug_info for this comp unit. */
5900 if (has_children)
5901 {
5902 struct partial_die_info *first_die;
5903 CORE_ADDR lowpc, highpc;
5904
5905 lowpc = ((CORE_ADDR) -1);
5906 highpc = ((CORE_ADDR) 0);
5907
5908 first_die = load_partial_dies (reader, info_ptr, 1);
5909
5910 scan_partial_symbols (first_die, &lowpc, &highpc,
5911 ! has_pc_info, cu);
5912
5913 /* If we didn't find a lowpc, set it to highpc to avoid
5914 complaints from `maint check'. */
5915 if (lowpc == ((CORE_ADDR) -1))
5916 lowpc = highpc;
5917
5918 /* If the compilation unit didn't have an explicit address range,
5919 then use the information extracted from its child dies. */
5920 if (! has_pc_info)
5921 {
5922 best_lowpc = lowpc;
5923 best_highpc = highpc;
5924 }
5925 }
5926 pst->textlow = best_lowpc + baseaddr;
5927 pst->texthigh = best_highpc + baseaddr;
5928
5929 pst->n_global_syms = objfile->global_psymbols.next -
5930 (objfile->global_psymbols.list + pst->globals_offset);
5931 pst->n_static_syms = objfile->static_psymbols.next -
5932 (objfile->static_psymbols.list + pst->statics_offset);
5933 sort_pst_symbols (objfile, pst);
5934
5935 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5936 {
5937 int i;
5938 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5939 struct dwarf2_per_cu_data *iter;
5940
5941 /* Fill in 'dependencies' here; we fill in 'users' in a
5942 post-pass. */
5943 pst->number_of_dependencies = len;
5944 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5945 len * sizeof (struct symtab *));
5946 for (i = 0;
5947 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5948 i, iter);
5949 ++i)
5950 pst->dependencies[i] = iter->v.psymtab;
5951
5952 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5953 }
5954
5955 /* Get the list of files included in the current compilation unit,
5956 and build a psymtab for each of them. */
5957 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5958
5959 if (dwarf2_read_debug)
5960 {
5961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5962
5963 fprintf_unfiltered (gdb_stdlog,
5964 "Psymtab for %s unit @0x%x: %s - %s"
5965 ", %d global, %d static syms\n",
5966 per_cu->is_debug_types ? "type" : "comp",
5967 per_cu->offset.sect_off,
5968 paddress (gdbarch, pst->textlow),
5969 paddress (gdbarch, pst->texthigh),
5970 pst->n_global_syms, pst->n_static_syms);
5971 }
5972}
5973
5974/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5975 Process compilation unit THIS_CU for a psymtab. */
5976
5977static void
5978process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5979 int want_partial_unit,
5980 enum language pretend_language)
0018ea6f 5981{
b93601f3
TT
5982 struct process_psymtab_comp_unit_data info;
5983
0018ea6f
DE
5984 /* If this compilation unit was already read in, free the
5985 cached copy in order to read it in again. This is
5986 necessary because we skipped some symbols when we first
5987 read in the compilation unit (see load_partial_dies).
5988 This problem could be avoided, but the benefit is unclear. */
5989 if (this_cu->cu != NULL)
5990 free_one_cached_comp_unit (this_cu);
5991
5992 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
5993 info.want_partial_unit = want_partial_unit;
5994 info.pretend_language = pretend_language;
0018ea6f
DE
5995 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5996 process_psymtab_comp_unit_reader,
b93601f3 5997 &info);
0018ea6f
DE
5998
5999 /* Age out any secondary CUs. */
6000 age_cached_comp_units ();
6001}
f4dc4d17
DE
6002
6003/* Reader function for build_type_psymtabs. */
6004
6005static void
6006build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6007 const gdb_byte *info_ptr,
f4dc4d17
DE
6008 struct die_info *type_unit_die,
6009 int has_children,
6010 void *data)
6011{
6012 struct objfile *objfile = dwarf2_per_objfile->objfile;
6013 struct dwarf2_cu *cu = reader->cu;
6014 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6015 struct signatured_type *sig_type;
f4dc4d17
DE
6016 struct type_unit_group *tu_group;
6017 struct attribute *attr;
6018 struct partial_die_info *first_die;
6019 CORE_ADDR lowpc, highpc;
6020 struct partial_symtab *pst;
6021
6022 gdb_assert (data == NULL);
0186c6a7
DE
6023 gdb_assert (per_cu->is_debug_types);
6024 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6025
6026 if (! has_children)
6027 return;
6028
6029 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6030 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6031
0186c6a7 6032 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6033
6034 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6035 cu->list_in_scope = &file_symbols;
6036 pst = create_partial_symtab (per_cu, "");
6037 pst->anonymous = 1;
6038
6039 first_die = load_partial_dies (reader, info_ptr, 1);
6040
6041 lowpc = (CORE_ADDR) -1;
6042 highpc = (CORE_ADDR) 0;
6043 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6044
6045 pst->n_global_syms = objfile->global_psymbols.next -
6046 (objfile->global_psymbols.list + pst->globals_offset);
6047 pst->n_static_syms = objfile->static_psymbols.next -
6048 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6049 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6050}
6051
73051182
DE
6052/* Struct used to sort TUs by their abbreviation table offset. */
6053
6054struct tu_abbrev_offset
6055{
6056 struct signatured_type *sig_type;
6057 sect_offset abbrev_offset;
6058};
6059
6060/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6061
6062static int
6063sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6064{
6065 const struct tu_abbrev_offset * const *a = ap;
6066 const struct tu_abbrev_offset * const *b = bp;
6067 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6068 unsigned int boff = (*b)->abbrev_offset.sect_off;
6069
6070 return (aoff > boff) - (aoff < boff);
6071}
6072
6073/* Efficiently read all the type units.
6074 This does the bulk of the work for build_type_psymtabs.
6075
6076 The efficiency is because we sort TUs by the abbrev table they use and
6077 only read each abbrev table once. In one program there are 200K TUs
6078 sharing 8K abbrev tables.
6079
6080 The main purpose of this function is to support building the
6081 dwarf2_per_objfile->type_unit_groups table.
6082 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6083 can collapse the search space by grouping them by stmt_list.
6084 The savings can be significant, in the same program from above the 200K TUs
6085 share 8K stmt_list tables.
6086
6087 FUNC is expected to call get_type_unit_group, which will create the
6088 struct type_unit_group if necessary and add it to
6089 dwarf2_per_objfile->type_unit_groups. */
6090
6091static void
6092build_type_psymtabs_1 (void)
6093{
6094 struct objfile *objfile = dwarf2_per_objfile->objfile;
6095 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6096 struct cleanup *cleanups;
6097 struct abbrev_table *abbrev_table;
6098 sect_offset abbrev_offset;
6099 struct tu_abbrev_offset *sorted_by_abbrev;
6100 struct type_unit_group **iter;
6101 int i;
6102
6103 /* It's up to the caller to not call us multiple times. */
6104 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6105
6106 if (dwarf2_per_objfile->n_type_units == 0)
6107 return;
6108
6109 /* TUs typically share abbrev tables, and there can be way more TUs than
6110 abbrev tables. Sort by abbrev table to reduce the number of times we
6111 read each abbrev table in.
6112 Alternatives are to punt or to maintain a cache of abbrev tables.
6113 This is simpler and efficient enough for now.
6114
6115 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6116 symtab to use). Typically TUs with the same abbrev offset have the same
6117 stmt_list value too so in practice this should work well.
6118
6119 The basic algorithm here is:
6120
6121 sort TUs by abbrev table
6122 for each TU with same abbrev table:
6123 read abbrev table if first user
6124 read TU top level DIE
6125 [IWBN if DWO skeletons had DW_AT_stmt_list]
6126 call FUNC */
6127
6128 if (dwarf2_read_debug)
6129 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6130
6131 /* Sort in a separate table to maintain the order of all_type_units
6132 for .gdb_index: TU indices directly index all_type_units. */
6133 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6134 dwarf2_per_objfile->n_type_units);
6135 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6136 {
6137 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6138
6139 sorted_by_abbrev[i].sig_type = sig_type;
6140 sorted_by_abbrev[i].abbrev_offset =
6141 read_abbrev_offset (sig_type->per_cu.section,
6142 sig_type->per_cu.offset);
6143 }
6144 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6145 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6146 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6147
6148 abbrev_offset.sect_off = ~(unsigned) 0;
6149 abbrev_table = NULL;
6150 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6151
6152 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6153 {
6154 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6155
6156 /* Switch to the next abbrev table if necessary. */
6157 if (abbrev_table == NULL
6158 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6159 {
6160 if (abbrev_table != NULL)
6161 {
6162 abbrev_table_free (abbrev_table);
6163 /* Reset to NULL in case abbrev_table_read_table throws
6164 an error: abbrev_table_free_cleanup will get called. */
6165 abbrev_table = NULL;
6166 }
6167 abbrev_offset = tu->abbrev_offset;
6168 abbrev_table =
6169 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6170 abbrev_offset);
6171 ++tu_stats->nr_uniq_abbrev_tables;
6172 }
6173
6174 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6175 build_type_psymtabs_reader, NULL);
6176 }
6177
73051182 6178 do_cleanups (cleanups);
6aa5f3a6 6179}
73051182 6180
6aa5f3a6
DE
6181/* Print collected type unit statistics. */
6182
6183static void
6184print_tu_stats (void)
6185{
6186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6187
6188 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6189 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6190 dwarf2_per_objfile->n_type_units);
6191 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6192 tu_stats->nr_uniq_abbrev_tables);
6193 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6194 tu_stats->nr_symtabs);
6195 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6196 tu_stats->nr_symtab_sharers);
6197 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6198 tu_stats->nr_stmt_less_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6200 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6201}
6202
f4dc4d17
DE
6203/* Traversal function for build_type_psymtabs. */
6204
6205static int
6206build_type_psymtab_dependencies (void **slot, void *info)
6207{
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6211 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
f4dc4d17
DE
6214 int i;
6215
6216 gdb_assert (len > 0);
0186c6a7 6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
0186c6a7 6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6224 ++i)
6225 {
0186c6a7
DE
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6228 iter->type_unit_group = tu_group;
f4dc4d17
DE
6229 }
6230
0186c6a7 6231 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6232
6233 return 1;
6234}
6235
6236/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239static void
6240build_type_psymtabs (struct objfile *objfile)
6241{
0e50663e 6242 if (! create_all_type_units (objfile))
348e048f
DE
6243 return;
6244
73051182 6245 build_type_psymtabs_1 ();
6aa5f3a6 6246}
f4dc4d17 6247
6aa5f3a6
DE
6248/* Traversal function for process_skeletonless_type_unit.
6249 Read a TU in a DWO file and build partial symbols for it. */
6250
6251static int
6252process_skeletonless_type_unit (void **slot, void *info)
6253{
6254 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6255 struct objfile *objfile = info;
6256 struct signatured_type find_entry, *entry;
6257
6258 /* If this TU doesn't exist in the global table, add it and read it in. */
6259
6260 if (dwarf2_per_objfile->signatured_types == NULL)
6261 {
6262 dwarf2_per_objfile->signatured_types
6263 = allocate_signatured_type_table (objfile);
6264 }
6265
6266 find_entry.signature = dwo_unit->signature;
6267 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6268 INSERT);
6269 /* If we've already seen this type there's nothing to do. What's happening
6270 is we're doing our own version of comdat-folding here. */
6271 if (*slot != NULL)
6272 return 1;
6273
6274 /* This does the job that create_all_type_units would have done for
6275 this TU. */
6276 entry = add_type_unit (dwo_unit->signature, slot);
6277 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6278 *slot = entry;
6279
6280 /* This does the job that build_type_psymtabs_1 would have done. */
6281 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6282 build_type_psymtabs_reader, NULL);
6283
6284 return 1;
6285}
6286
6287/* Traversal function for process_skeletonless_type_units. */
6288
6289static int
6290process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6291{
6292 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6293
6294 if (dwo_file->tus != NULL)
6295 {
6296 htab_traverse_noresize (dwo_file->tus,
6297 process_skeletonless_type_unit, info);
6298 }
6299
6300 return 1;
6301}
6302
6303/* Scan all TUs of DWO files, verifying we've processed them.
6304 This is needed in case a TU was emitted without its skeleton.
6305 Note: This can't be done until we know what all the DWO files are. */
6306
6307static void
6308process_skeletonless_type_units (struct objfile *objfile)
6309{
6310 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6311 if (get_dwp_file () == NULL
6312 && dwarf2_per_objfile->dwo_files != NULL)
6313 {
6314 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6315 process_dwo_file_for_skeletonless_type_units,
6316 objfile);
6317 }
348e048f
DE
6318}
6319
60606b2c
TT
6320/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6321
6322static void
6323psymtabs_addrmap_cleanup (void *o)
6324{
6325 struct objfile *objfile = o;
ec61707d 6326
60606b2c
TT
6327 objfile->psymtabs_addrmap = NULL;
6328}
6329
95554aad
TT
6330/* Compute the 'user' field for each psymtab in OBJFILE. */
6331
6332static void
6333set_partial_user (struct objfile *objfile)
6334{
6335 int i;
6336
6337 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6338 {
8832e7e3 6339 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6340 struct partial_symtab *pst = per_cu->v.psymtab;
6341 int j;
6342
36586728
TT
6343 if (pst == NULL)
6344 continue;
6345
95554aad
TT
6346 for (j = 0; j < pst->number_of_dependencies; ++j)
6347 {
6348 /* Set the 'user' field only if it is not already set. */
6349 if (pst->dependencies[j]->user == NULL)
6350 pst->dependencies[j]->user = pst;
6351 }
6352 }
6353}
6354
93311388
DE
6355/* Build the partial symbol table by doing a quick pass through the
6356 .debug_info and .debug_abbrev sections. */
72bf9492 6357
93311388 6358static void
c67a9c90 6359dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6360{
60606b2c
TT
6361 struct cleanup *back_to, *addrmap_cleanup;
6362 struct obstack temp_obstack;
21b2bd31 6363 int i;
93311388 6364
45cfd468
DE
6365 if (dwarf2_read_debug)
6366 {
6367 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6368 objfile_name (objfile));
45cfd468
DE
6369 }
6370
98bfdba5
PA
6371 dwarf2_per_objfile->reading_partial_symbols = 1;
6372
be391dca 6373 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6374
93311388
DE
6375 /* Any cached compilation units will be linked by the per-objfile
6376 read_in_chain. Make sure to free them when we're done. */
6377 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6378
348e048f
DE
6379 build_type_psymtabs (objfile);
6380
93311388 6381 create_all_comp_units (objfile);
c906108c 6382
60606b2c
TT
6383 /* Create a temporary address map on a temporary obstack. We later
6384 copy this to the final obstack. */
6385 obstack_init (&temp_obstack);
6386 make_cleanup_obstack_free (&temp_obstack);
6387 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6388 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6389
21b2bd31 6390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6391 {
8832e7e3 6392 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6393
b93601f3 6394 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6395 }
ff013f42 6396
6aa5f3a6
DE
6397 /* This has to wait until we read the CUs, we need the list of DWOs. */
6398 process_skeletonless_type_units (objfile);
6399
6400 /* Now that all TUs have been processed we can fill in the dependencies. */
6401 if (dwarf2_per_objfile->type_unit_groups != NULL)
6402 {
6403 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6404 build_type_psymtab_dependencies, NULL);
6405 }
6406
6407 if (dwarf2_read_debug)
6408 print_tu_stats ();
6409
95554aad
TT
6410 set_partial_user (objfile);
6411
ff013f42
JK
6412 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6413 &objfile->objfile_obstack);
60606b2c 6414 discard_cleanups (addrmap_cleanup);
ff013f42 6415
ae038cb0 6416 do_cleanups (back_to);
45cfd468
DE
6417
6418 if (dwarf2_read_debug)
6419 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6420 objfile_name (objfile));
ae038cb0
DJ
6421}
6422
3019eac3 6423/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6424
6425static void
dee91e82 6426load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6427 const gdb_byte *info_ptr,
dee91e82
DE
6428 struct die_info *comp_unit_die,
6429 int has_children,
6430 void *data)
ae038cb0 6431{
dee91e82 6432 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6433
95554aad 6434 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6435
ae038cb0
DJ
6436 /* Check if comp unit has_children.
6437 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6438 If not, there's no more debug_info for this comp unit. */
d85a05f0 6439 if (has_children)
dee91e82
DE
6440 load_partial_dies (reader, info_ptr, 0);
6441}
98bfdba5 6442
dee91e82
DE
6443/* Load the partial DIEs for a secondary CU into memory.
6444 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6445
dee91e82
DE
6446static void
6447load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6448{
f4dc4d17
DE
6449 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6450 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6451}
6452
ae038cb0 6453static void
36586728
TT
6454read_comp_units_from_section (struct objfile *objfile,
6455 struct dwarf2_section_info *section,
6456 unsigned int is_dwz,
6457 int *n_allocated,
6458 int *n_comp_units,
6459 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6460{
d521ce57 6461 const gdb_byte *info_ptr;
a32a8923 6462 bfd *abfd = get_section_bfd_owner (section);
be391dca 6463
bf6af496
DE
6464 if (dwarf2_read_debug)
6465 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6466 get_section_name (section),
6467 get_section_file_name (section));
bf6af496 6468
36586728 6469 dwarf2_read_section (objfile, section);
ae038cb0 6470
36586728 6471 info_ptr = section->buffer;
6e70227d 6472
36586728 6473 while (info_ptr < section->buffer + section->size)
ae038cb0 6474 {
c764a876 6475 unsigned int length, initial_length_size;
ae038cb0 6476 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6477 sect_offset offset;
ae038cb0 6478
36586728 6479 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6480
6481 /* Read just enough information to find out where the next
6482 compilation unit is. */
36586728 6483 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6484
6485 /* Save the compilation unit for later lookup. */
6486 this_cu = obstack_alloc (&objfile->objfile_obstack,
6487 sizeof (struct dwarf2_per_cu_data));
6488 memset (this_cu, 0, sizeof (*this_cu));
6489 this_cu->offset = offset;
c764a876 6490 this_cu->length = length + initial_length_size;
36586728 6491 this_cu->is_dwz = is_dwz;
9291a0cd 6492 this_cu->objfile = objfile;
8a0459fd 6493 this_cu->section = section;
ae038cb0 6494
36586728 6495 if (*n_comp_units == *n_allocated)
ae038cb0 6496 {
36586728
TT
6497 *n_allocated *= 2;
6498 *all_comp_units = xrealloc (*all_comp_units,
6499 *n_allocated
6500 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6501 }
36586728
TT
6502 (*all_comp_units)[*n_comp_units] = this_cu;
6503 ++*n_comp_units;
ae038cb0
DJ
6504
6505 info_ptr = info_ptr + this_cu->length;
6506 }
36586728
TT
6507}
6508
6509/* Create a list of all compilation units in OBJFILE.
6510 This is only done for -readnow and building partial symtabs. */
6511
6512static void
6513create_all_comp_units (struct objfile *objfile)
6514{
6515 int n_allocated;
6516 int n_comp_units;
6517 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6518 struct dwz_file *dwz;
36586728
TT
6519
6520 n_comp_units = 0;
6521 n_allocated = 10;
6522 all_comp_units = xmalloc (n_allocated
6523 * sizeof (struct dwarf2_per_cu_data *));
6524
6525 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6526 &n_allocated, &n_comp_units, &all_comp_units);
6527
4db1a1dc
TT
6528 dwz = dwarf2_get_dwz_file ();
6529 if (dwz != NULL)
6530 read_comp_units_from_section (objfile, &dwz->info, 1,
6531 &n_allocated, &n_comp_units,
6532 &all_comp_units);
ae038cb0
DJ
6533
6534 dwarf2_per_objfile->all_comp_units
6535 = obstack_alloc (&objfile->objfile_obstack,
6536 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6537 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6538 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6539 xfree (all_comp_units);
6540 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6541}
6542
5734ee8b 6543/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6544 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6545 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6546 DW_AT_ranges). See the comments of add_partial_subprogram on how
6547 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6548
72bf9492
DJ
6549static void
6550scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6551 CORE_ADDR *highpc, int set_addrmap,
6552 struct dwarf2_cu *cu)
c906108c 6553{
72bf9492 6554 struct partial_die_info *pdi;
c906108c 6555
91c24f0a
DC
6556 /* Now, march along the PDI's, descending into ones which have
6557 interesting children but skipping the children of the other ones,
6558 until we reach the end of the compilation unit. */
c906108c 6559
72bf9492 6560 pdi = first_die;
91c24f0a 6561
72bf9492
DJ
6562 while (pdi != NULL)
6563 {
6564 fixup_partial_die (pdi, cu);
c906108c 6565
f55ee35c 6566 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6567 children, so we need to look at them. Ditto for anonymous
6568 enums. */
933c6fe4 6569
72bf9492 6570 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6571 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6572 || pdi->tag == DW_TAG_imported_unit)
c906108c 6573 {
72bf9492 6574 switch (pdi->tag)
c906108c
SS
6575 {
6576 case DW_TAG_subprogram:
cdc07690 6577 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6578 break;
72929c62 6579 case DW_TAG_constant:
c906108c
SS
6580 case DW_TAG_variable:
6581 case DW_TAG_typedef:
91c24f0a 6582 case DW_TAG_union_type:
72bf9492 6583 if (!pdi->is_declaration)
63d06c5c 6584 {
72bf9492 6585 add_partial_symbol (pdi, cu);
63d06c5c
DC
6586 }
6587 break;
c906108c 6588 case DW_TAG_class_type:
680b30c7 6589 case DW_TAG_interface_type:
c906108c 6590 case DW_TAG_structure_type:
72bf9492 6591 if (!pdi->is_declaration)
c906108c 6592 {
72bf9492 6593 add_partial_symbol (pdi, cu);
c906108c
SS
6594 }
6595 break;
91c24f0a 6596 case DW_TAG_enumeration_type:
72bf9492
DJ
6597 if (!pdi->is_declaration)
6598 add_partial_enumeration (pdi, cu);
c906108c
SS
6599 break;
6600 case DW_TAG_base_type:
a02abb62 6601 case DW_TAG_subrange_type:
c906108c 6602 /* File scope base type definitions are added to the partial
c5aa993b 6603 symbol table. */
72bf9492 6604 add_partial_symbol (pdi, cu);
c906108c 6605 break;
d9fa45fe 6606 case DW_TAG_namespace:
cdc07690 6607 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6608 break;
5d7cb8df 6609 case DW_TAG_module:
cdc07690 6610 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6611 break;
95554aad
TT
6612 case DW_TAG_imported_unit:
6613 {
6614 struct dwarf2_per_cu_data *per_cu;
6615
f4dc4d17
DE
6616 /* For now we don't handle imported units in type units. */
6617 if (cu->per_cu->is_debug_types)
6618 {
6619 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6620 " supported in type units [in module %s]"),
4262abfb 6621 objfile_name (cu->objfile));
f4dc4d17
DE
6622 }
6623
95554aad 6624 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6625 pdi->is_dwz,
95554aad
TT
6626 cu->objfile);
6627
6628 /* Go read the partial unit, if needed. */
6629 if (per_cu->v.psymtab == NULL)
b93601f3 6630 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6631
f4dc4d17 6632 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6633 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6634 }
6635 break;
74921315
KS
6636 case DW_TAG_imported_declaration:
6637 add_partial_symbol (pdi, cu);
6638 break;
c906108c
SS
6639 default:
6640 break;
6641 }
6642 }
6643
72bf9492
DJ
6644 /* If the die has a sibling, skip to the sibling. */
6645
6646 pdi = pdi->die_sibling;
6647 }
6648}
6649
6650/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6651
72bf9492 6652 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6653 name is concatenated with "::" and the partial DIE's name. For
6654 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6655 Enumerators are an exception; they use the scope of their parent
6656 enumeration type, i.e. the name of the enumeration type is not
6657 prepended to the enumerator.
91c24f0a 6658
72bf9492
DJ
6659 There are two complexities. One is DW_AT_specification; in this
6660 case "parent" means the parent of the target of the specification,
6661 instead of the direct parent of the DIE. The other is compilers
6662 which do not emit DW_TAG_namespace; in this case we try to guess
6663 the fully qualified name of structure types from their members'
6664 linkage names. This must be done using the DIE's children rather
6665 than the children of any DW_AT_specification target. We only need
6666 to do this for structures at the top level, i.e. if the target of
6667 any DW_AT_specification (if any; otherwise the DIE itself) does not
6668 have a parent. */
6669
6670/* Compute the scope prefix associated with PDI's parent, in
6671 compilation unit CU. The result will be allocated on CU's
6672 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6673 field. NULL is returned if no prefix is necessary. */
15d034d0 6674static const char *
72bf9492
DJ
6675partial_die_parent_scope (struct partial_die_info *pdi,
6676 struct dwarf2_cu *cu)
6677{
15d034d0 6678 const char *grandparent_scope;
72bf9492 6679 struct partial_die_info *parent, *real_pdi;
91c24f0a 6680
72bf9492
DJ
6681 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6682 then this means the parent of the specification DIE. */
6683
6684 real_pdi = pdi;
72bf9492 6685 while (real_pdi->has_specification)
36586728
TT
6686 real_pdi = find_partial_die (real_pdi->spec_offset,
6687 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6688
6689 parent = real_pdi->die_parent;
6690 if (parent == NULL)
6691 return NULL;
6692
6693 if (parent->scope_set)
6694 return parent->scope;
6695
6696 fixup_partial_die (parent, cu);
6697
10b3939b 6698 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6699
acebe513
UW
6700 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6701 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6702 Work around this problem here. */
6703 if (cu->language == language_cplus
6e70227d 6704 && parent->tag == DW_TAG_namespace
acebe513
UW
6705 && strcmp (parent->name, "::") == 0
6706 && grandparent_scope == NULL)
6707 {
6708 parent->scope = NULL;
6709 parent->scope_set = 1;
6710 return NULL;
6711 }
6712
9c6c53f7
SA
6713 if (pdi->tag == DW_TAG_enumerator)
6714 /* Enumerators should not get the name of the enumeration as a prefix. */
6715 parent->scope = grandparent_scope;
6716 else if (parent->tag == DW_TAG_namespace
f55ee35c 6717 || parent->tag == DW_TAG_module
72bf9492
DJ
6718 || parent->tag == DW_TAG_structure_type
6719 || parent->tag == DW_TAG_class_type
680b30c7 6720 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6721 || parent->tag == DW_TAG_union_type
6722 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6723 {
6724 if (grandparent_scope == NULL)
6725 parent->scope = parent->name;
6726 else
3e43a32a
MS
6727 parent->scope = typename_concat (&cu->comp_unit_obstack,
6728 grandparent_scope,
f55ee35c 6729 parent->name, 0, cu);
72bf9492 6730 }
72bf9492
DJ
6731 else
6732 {
6733 /* FIXME drow/2004-04-01: What should we be doing with
6734 function-local names? For partial symbols, we should probably be
6735 ignoring them. */
6736 complaint (&symfile_complaints,
e2e0b3e5 6737 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6738 parent->tag, pdi->offset.sect_off);
72bf9492 6739 parent->scope = grandparent_scope;
c906108c
SS
6740 }
6741
72bf9492
DJ
6742 parent->scope_set = 1;
6743 return parent->scope;
6744}
6745
6746/* Return the fully scoped name associated with PDI, from compilation unit
6747 CU. The result will be allocated with malloc. */
4568ecf9 6748
72bf9492
DJ
6749static char *
6750partial_die_full_name (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752{
15d034d0 6753 const char *parent_scope;
72bf9492 6754
98bfdba5
PA
6755 /* If this is a template instantiation, we can not work out the
6756 template arguments from partial DIEs. So, unfortunately, we have
6757 to go through the full DIEs. At least any work we do building
6758 types here will be reused if full symbols are loaded later. */
6759 if (pdi->has_template_arguments)
6760 {
6761 fixup_partial_die (pdi, cu);
6762
6763 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6764 {
6765 struct die_info *die;
6766 struct attribute attr;
6767 struct dwarf2_cu *ref_cu = cu;
6768
b64f50a1 6769 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6770 attr.name = 0;
6771 attr.form = DW_FORM_ref_addr;
4568ecf9 6772 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6773 die = follow_die_ref (NULL, &attr, &ref_cu);
6774
6775 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6776 }
6777 }
6778
72bf9492
DJ
6779 parent_scope = partial_die_parent_scope (pdi, cu);
6780 if (parent_scope == NULL)
6781 return NULL;
6782 else
f55ee35c 6783 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6784}
6785
6786static void
72bf9492 6787add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6788{
e7c27a73 6789 struct objfile *objfile = cu->objfile;
c906108c 6790 CORE_ADDR addr = 0;
15d034d0 6791 const char *actual_name = NULL;
e142c38c 6792 CORE_ADDR baseaddr;
15d034d0 6793 char *built_actual_name;
e142c38c
DJ
6794
6795 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6796
15d034d0
TT
6797 built_actual_name = partial_die_full_name (pdi, cu);
6798 if (built_actual_name != NULL)
6799 actual_name = built_actual_name;
63d06c5c 6800
72bf9492
DJ
6801 if (actual_name == NULL)
6802 actual_name = pdi->name;
6803
c906108c
SS
6804 switch (pdi->tag)
6805 {
6806 case DW_TAG_subprogram:
2cfa0c8d 6807 if (pdi->is_external || cu->language == language_ada)
c906108c 6808 {
2cfa0c8d
JB
6809 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6810 of the global scope. But in Ada, we want to be able to access
6811 nested procedures globally. So all Ada subprograms are stored
6812 in the global scope. */
f47fb265 6813 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6814 mst_text, objfile); */
f47fb265 6815 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6816 built_actual_name != NULL,
f47fb265
MS
6817 VAR_DOMAIN, LOC_BLOCK,
6818 &objfile->global_psymbols,
6819 0, pdi->lowpc + baseaddr,
6820 cu->language, objfile);
c906108c
SS
6821 }
6822 else
6823 {
f47fb265 6824 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6825 mst_file_text, objfile); */
f47fb265 6826 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6827 built_actual_name != NULL,
f47fb265
MS
6828 VAR_DOMAIN, LOC_BLOCK,
6829 &objfile->static_psymbols,
6830 0, pdi->lowpc + baseaddr,
6831 cu->language, objfile);
c906108c
SS
6832 }
6833 break;
72929c62
JB
6834 case DW_TAG_constant:
6835 {
6836 struct psymbol_allocation_list *list;
6837
6838 if (pdi->is_external)
6839 list = &objfile->global_psymbols;
6840 else
6841 list = &objfile->static_psymbols;
f47fb265 6842 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6843 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6844 list, 0, 0, cu->language, objfile);
72929c62
JB
6845 }
6846 break;
c906108c 6847 case DW_TAG_variable:
95554aad
TT
6848 if (pdi->d.locdesc)
6849 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6850
95554aad 6851 if (pdi->d.locdesc
caac4577
JG
6852 && addr == 0
6853 && !dwarf2_per_objfile->has_section_at_zero)
6854 {
6855 /* A global or static variable may also have been stripped
6856 out by the linker if unused, in which case its address
6857 will be nullified; do not add such variables into partial
6858 symbol table then. */
6859 }
6860 else if (pdi->is_external)
c906108c
SS
6861 {
6862 /* Global Variable.
6863 Don't enter into the minimal symbol tables as there is
6864 a minimal symbol table entry from the ELF symbols already.
6865 Enter into partial symbol table if it has a location
6866 descriptor or a type.
6867 If the location descriptor is missing, new_symbol will create
6868 a LOC_UNRESOLVED symbol, the address of the variable will then
6869 be determined from the minimal symbol table whenever the variable
6870 is referenced.
6871 The address for the partial symbol table entry is not
6872 used by GDB, but it comes in handy for debugging partial symbol
6873 table building. */
6874
95554aad 6875 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6876 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6877 built_actual_name != NULL,
f47fb265
MS
6878 VAR_DOMAIN, LOC_STATIC,
6879 &objfile->global_psymbols,
6880 0, addr + baseaddr,
6881 cu->language, objfile);
c906108c
SS
6882 }
6883 else
6884 {
0963b4bd 6885 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6886 if (pdi->d.locdesc == NULL)
decbce07 6887 {
15d034d0 6888 xfree (built_actual_name);
decbce07
MS
6889 return;
6890 }
f47fb265 6891 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6892 mst_file_data, objfile); */
f47fb265 6893 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6894 built_actual_name != NULL,
f47fb265
MS
6895 VAR_DOMAIN, LOC_STATIC,
6896 &objfile->static_psymbols,
6897 0, addr + baseaddr,
6898 cu->language, objfile);
c906108c
SS
6899 }
6900 break;
6901 case DW_TAG_typedef:
6902 case DW_TAG_base_type:
a02abb62 6903 case DW_TAG_subrange_type:
38d518c9 6904 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6905 built_actual_name != NULL,
176620f1 6906 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6907 &objfile->static_psymbols,
e142c38c 6908 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6909 break;
74921315 6910 case DW_TAG_imported_declaration:
72bf9492
DJ
6911 case DW_TAG_namespace:
6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
72bf9492
DJ
6914 VAR_DOMAIN, LOC_TYPEDEF,
6915 &objfile->global_psymbols,
6916 0, (CORE_ADDR) 0, cu->language, objfile);
6917 break;
530e8392
KB
6918 case DW_TAG_module:
6919 add_psymbol_to_list (actual_name, strlen (actual_name),
6920 built_actual_name != NULL,
6921 MODULE_DOMAIN, LOC_TYPEDEF,
6922 &objfile->global_psymbols,
6923 0, (CORE_ADDR) 0, cu->language, objfile);
6924 break;
c906108c 6925 case DW_TAG_class_type:
680b30c7 6926 case DW_TAG_interface_type:
c906108c
SS
6927 case DW_TAG_structure_type:
6928 case DW_TAG_union_type:
6929 case DW_TAG_enumeration_type:
fa4028e9
JB
6930 /* Skip external references. The DWARF standard says in the section
6931 about "Structure, Union, and Class Type Entries": "An incomplete
6932 structure, union or class type is represented by a structure,
6933 union or class entry that does not have a byte size attribute
6934 and that has a DW_AT_declaration attribute." */
6935 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6936 {
15d034d0 6937 xfree (built_actual_name);
decbce07
MS
6938 return;
6939 }
fa4028e9 6940
63d06c5c
DC
6941 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6942 static vs. global. */
38d518c9 6943 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6944 built_actual_name != NULL,
176620f1 6945 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6946 (cu->language == language_cplus
6947 || cu->language == language_java)
63d06c5c
DC
6948 ? &objfile->global_psymbols
6949 : &objfile->static_psymbols,
e142c38c 6950 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6951
c906108c
SS
6952 break;
6953 case DW_TAG_enumerator:
38d518c9 6954 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6955 built_actual_name != NULL,
176620f1 6956 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6957 (cu->language == language_cplus
6958 || cu->language == language_java)
f6fe98ef
DJ
6959 ? &objfile->global_psymbols
6960 : &objfile->static_psymbols,
e142c38c 6961 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6962 break;
6963 default:
6964 break;
6965 }
5c4e30ca 6966
15d034d0 6967 xfree (built_actual_name);
c906108c
SS
6968}
6969
5c4e30ca
DC
6970/* Read a partial die corresponding to a namespace; also, add a symbol
6971 corresponding to that namespace to the symbol table. NAMESPACE is
6972 the name of the enclosing namespace. */
91c24f0a 6973
72bf9492
DJ
6974static void
6975add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6976 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 6977 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 6978{
72bf9492 6979 /* Add a symbol for the namespace. */
e7c27a73 6980
72bf9492 6981 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6982
6983 /* Now scan partial symbols in that namespace. */
6984
91c24f0a 6985 if (pdi->has_children)
cdc07690 6986 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
6987}
6988
5d7cb8df
JK
6989/* Read a partial die corresponding to a Fortran module. */
6990
6991static void
6992add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 6993 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 6994{
530e8392
KB
6995 /* Add a symbol for the namespace. */
6996
6997 add_partial_symbol (pdi, cu);
6998
f55ee35c 6999 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7000
7001 if (pdi->has_children)
cdc07690 7002 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7003}
7004
bc30ff58
JB
7005/* Read a partial die corresponding to a subprogram and create a partial
7006 symbol for that subprogram. When the CU language allows it, this
7007 routine also defines a partial symbol for each nested subprogram
cdc07690 7008 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7009 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7010 and highest PC values found in PDI.
6e70227d 7011
cdc07690
YQ
7012 PDI may also be a lexical block, in which case we simply search
7013 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7014 Again, this is only performed when the CU language allows this
7015 type of definitions. */
7016
7017static void
7018add_partial_subprogram (struct partial_die_info *pdi,
7019 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7020 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7021{
7022 if (pdi->tag == DW_TAG_subprogram)
7023 {
7024 if (pdi->has_pc_info)
7025 {
7026 if (pdi->lowpc < *lowpc)
7027 *lowpc = pdi->lowpc;
7028 if (pdi->highpc > *highpc)
7029 *highpc = pdi->highpc;
cdc07690 7030 if (set_addrmap)
5734ee8b
DJ
7031 {
7032 CORE_ADDR baseaddr;
7033 struct objfile *objfile = cu->objfile;
7034
7035 baseaddr = ANOFFSET (objfile->section_offsets,
7036 SECT_OFF_TEXT (objfile));
7037 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
7038 pdi->lowpc + baseaddr,
7039 pdi->highpc - 1 + baseaddr,
9291a0cd 7040 cu->per_cu->v.psymtab);
5734ee8b 7041 }
481860b3
GB
7042 }
7043
7044 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7045 {
bc30ff58 7046 if (!pdi->is_declaration)
e8d05480
JB
7047 /* Ignore subprogram DIEs that do not have a name, they are
7048 illegal. Do not emit a complaint at this point, we will
7049 do so when we convert this psymtab into a symtab. */
7050 if (pdi->name)
7051 add_partial_symbol (pdi, cu);
bc30ff58
JB
7052 }
7053 }
6e70227d 7054
bc30ff58
JB
7055 if (! pdi->has_children)
7056 return;
7057
7058 if (cu->language == language_ada)
7059 {
7060 pdi = pdi->die_child;
7061 while (pdi != NULL)
7062 {
7063 fixup_partial_die (pdi, cu);
7064 if (pdi->tag == DW_TAG_subprogram
7065 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7066 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7067 pdi = pdi->die_sibling;
7068 }
7069 }
7070}
7071
91c24f0a
DC
7072/* Read a partial die corresponding to an enumeration type. */
7073
72bf9492
DJ
7074static void
7075add_partial_enumeration (struct partial_die_info *enum_pdi,
7076 struct dwarf2_cu *cu)
91c24f0a 7077{
72bf9492 7078 struct partial_die_info *pdi;
91c24f0a
DC
7079
7080 if (enum_pdi->name != NULL)
72bf9492
DJ
7081 add_partial_symbol (enum_pdi, cu);
7082
7083 pdi = enum_pdi->die_child;
7084 while (pdi)
91c24f0a 7085 {
72bf9492 7086 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7087 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7088 else
72bf9492
DJ
7089 add_partial_symbol (pdi, cu);
7090 pdi = pdi->die_sibling;
91c24f0a 7091 }
91c24f0a
DC
7092}
7093
6caca83c
CC
7094/* Return the initial uleb128 in the die at INFO_PTR. */
7095
7096static unsigned int
d521ce57 7097peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7098{
7099 unsigned int bytes_read;
7100
7101 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7102}
7103
4bb7a0a7
DJ
7104/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7105 Return the corresponding abbrev, or NULL if the number is zero (indicating
7106 an empty DIE). In either case *BYTES_READ will be set to the length of
7107 the initial number. */
7108
7109static struct abbrev_info *
d521ce57 7110peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7111 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7112{
7113 bfd *abfd = cu->objfile->obfd;
7114 unsigned int abbrev_number;
7115 struct abbrev_info *abbrev;
7116
7117 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7118
7119 if (abbrev_number == 0)
7120 return NULL;
7121
433df2d4 7122 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7123 if (!abbrev)
7124 {
3e43a32a
MS
7125 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7126 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7127 }
7128
7129 return abbrev;
7130}
7131
93311388
DE
7132/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7133 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7134 DIE. Any children of the skipped DIEs will also be skipped. */
7135
d521ce57
TT
7136static const gdb_byte *
7137skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7138{
dee91e82 7139 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7140 struct abbrev_info *abbrev;
7141 unsigned int bytes_read;
7142
7143 while (1)
7144 {
7145 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7146 if (abbrev == NULL)
7147 return info_ptr + bytes_read;
7148 else
dee91e82 7149 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7150 }
7151}
7152
93311388
DE
7153/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7154 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7155 abbrev corresponding to that skipped uleb128 should be passed in
7156 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7157 children. */
7158
d521ce57
TT
7159static const gdb_byte *
7160skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7161 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7162{
7163 unsigned int bytes_read;
7164 struct attribute attr;
dee91e82
DE
7165 bfd *abfd = reader->abfd;
7166 struct dwarf2_cu *cu = reader->cu;
d521ce57 7167 const gdb_byte *buffer = reader->buffer;
f664829e 7168 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7169 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7170 unsigned int form, i;
7171
7172 for (i = 0; i < abbrev->num_attrs; i++)
7173 {
7174 /* The only abbrev we care about is DW_AT_sibling. */
7175 if (abbrev->attrs[i].name == DW_AT_sibling)
7176 {
dee91e82 7177 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7178 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7179 complaint (&symfile_complaints,
7180 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7181 else
b9502d3f
WN
7182 {
7183 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7184 const gdb_byte *sibling_ptr = buffer + off;
7185
7186 if (sibling_ptr < info_ptr)
7187 complaint (&symfile_complaints,
7188 _("DW_AT_sibling points backwards"));
22869d73
KS
7189 else if (sibling_ptr > reader->buffer_end)
7190 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7191 else
7192 return sibling_ptr;
7193 }
4bb7a0a7
DJ
7194 }
7195
7196 /* If it isn't DW_AT_sibling, skip this attribute. */
7197 form = abbrev->attrs[i].form;
7198 skip_attribute:
7199 switch (form)
7200 {
4bb7a0a7 7201 case DW_FORM_ref_addr:
ae411497
TT
7202 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7203 and later it is offset sized. */
7204 if (cu->header.version == 2)
7205 info_ptr += cu->header.addr_size;
7206 else
7207 info_ptr += cu->header.offset_size;
7208 break;
36586728
TT
7209 case DW_FORM_GNU_ref_alt:
7210 info_ptr += cu->header.offset_size;
7211 break;
ae411497 7212 case DW_FORM_addr:
4bb7a0a7
DJ
7213 info_ptr += cu->header.addr_size;
7214 break;
7215 case DW_FORM_data1:
7216 case DW_FORM_ref1:
7217 case DW_FORM_flag:
7218 info_ptr += 1;
7219 break;
2dc7f7b3
TT
7220 case DW_FORM_flag_present:
7221 break;
4bb7a0a7
DJ
7222 case DW_FORM_data2:
7223 case DW_FORM_ref2:
7224 info_ptr += 2;
7225 break;
7226 case DW_FORM_data4:
7227 case DW_FORM_ref4:
7228 info_ptr += 4;
7229 break;
7230 case DW_FORM_data8:
7231 case DW_FORM_ref8:
55f1336d 7232 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7233 info_ptr += 8;
7234 break;
7235 case DW_FORM_string:
9b1c24c8 7236 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7237 info_ptr += bytes_read;
7238 break;
2dc7f7b3 7239 case DW_FORM_sec_offset:
4bb7a0a7 7240 case DW_FORM_strp:
36586728 7241 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7242 info_ptr += cu->header.offset_size;
7243 break;
2dc7f7b3 7244 case DW_FORM_exprloc:
4bb7a0a7
DJ
7245 case DW_FORM_block:
7246 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7247 info_ptr += bytes_read;
7248 break;
7249 case DW_FORM_block1:
7250 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7251 break;
7252 case DW_FORM_block2:
7253 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7254 break;
7255 case DW_FORM_block4:
7256 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7257 break;
7258 case DW_FORM_sdata:
7259 case DW_FORM_udata:
7260 case DW_FORM_ref_udata:
3019eac3
DE
7261 case DW_FORM_GNU_addr_index:
7262 case DW_FORM_GNU_str_index:
d521ce57 7263 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7264 break;
7265 case DW_FORM_indirect:
7266 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7267 info_ptr += bytes_read;
7268 /* We need to continue parsing from here, so just go back to
7269 the top. */
7270 goto skip_attribute;
7271
7272 default:
3e43a32a
MS
7273 error (_("Dwarf Error: Cannot handle %s "
7274 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7275 dwarf_form_name (form),
7276 bfd_get_filename (abfd));
7277 }
7278 }
7279
7280 if (abbrev->has_children)
dee91e82 7281 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7282 else
7283 return info_ptr;
7284}
7285
93311388 7286/* Locate ORIG_PDI's sibling.
dee91e82 7287 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7288
d521ce57 7289static const gdb_byte *
dee91e82
DE
7290locate_pdi_sibling (const struct die_reader_specs *reader,
7291 struct partial_die_info *orig_pdi,
d521ce57 7292 const gdb_byte *info_ptr)
91c24f0a
DC
7293{
7294 /* Do we know the sibling already? */
72bf9492 7295
91c24f0a
DC
7296 if (orig_pdi->sibling)
7297 return orig_pdi->sibling;
7298
7299 /* Are there any children to deal with? */
7300
7301 if (!orig_pdi->has_children)
7302 return info_ptr;
7303
4bb7a0a7 7304 /* Skip the children the long way. */
91c24f0a 7305
dee91e82 7306 return skip_children (reader, info_ptr);
91c24f0a
DC
7307}
7308
257e7a09 7309/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7310 not NULL. */
c906108c
SS
7311
7312static void
257e7a09
YQ
7313dwarf2_read_symtab (struct partial_symtab *self,
7314 struct objfile *objfile)
c906108c 7315{
257e7a09 7316 if (self->readin)
c906108c 7317 {
442e4d9c 7318 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7319 self->filename);
442e4d9c
YQ
7320 }
7321 else
7322 {
7323 if (info_verbose)
c906108c 7324 {
442e4d9c 7325 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7326 self->filename);
442e4d9c 7327 gdb_flush (gdb_stdout);
c906108c 7328 }
c906108c 7329
442e4d9c
YQ
7330 /* Restore our global data. */
7331 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7332
442e4d9c
YQ
7333 /* If this psymtab is constructed from a debug-only objfile, the
7334 has_section_at_zero flag will not necessarily be correct. We
7335 can get the correct value for this flag by looking at the data
7336 associated with the (presumably stripped) associated objfile. */
7337 if (objfile->separate_debug_objfile_backlink)
7338 {
7339 struct dwarf2_per_objfile *dpo_backlink
7340 = objfile_data (objfile->separate_debug_objfile_backlink,
7341 dwarf2_objfile_data_key);
9a619af0 7342
442e4d9c
YQ
7343 dwarf2_per_objfile->has_section_at_zero
7344 = dpo_backlink->has_section_at_zero;
7345 }
b2ab525c 7346
442e4d9c 7347 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7348
257e7a09 7349 psymtab_to_symtab_1 (self);
c906108c 7350
442e4d9c
YQ
7351 /* Finish up the debug error message. */
7352 if (info_verbose)
7353 printf_filtered (_("done.\n"));
c906108c 7354 }
95554aad
TT
7355
7356 process_cu_includes ();
c906108c 7357}
9cdd5dbd
DE
7358\f
7359/* Reading in full CUs. */
c906108c 7360
10b3939b
DJ
7361/* Add PER_CU to the queue. */
7362
7363static void
95554aad
TT
7364queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7365 enum language pretend_language)
10b3939b
DJ
7366{
7367 struct dwarf2_queue_item *item;
7368
7369 per_cu->queued = 1;
7370 item = xmalloc (sizeof (*item));
7371 item->per_cu = per_cu;
95554aad 7372 item->pretend_language = pretend_language;
10b3939b
DJ
7373 item->next = NULL;
7374
7375 if (dwarf2_queue == NULL)
7376 dwarf2_queue = item;
7377 else
7378 dwarf2_queue_tail->next = item;
7379
7380 dwarf2_queue_tail = item;
7381}
7382
89e63ee4
DE
7383/* If PER_CU is not yet queued, add it to the queue.
7384 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7385 dependency.
0907af0c 7386 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7387 meaning either PER_CU is already queued or it is already loaded.
7388
7389 N.B. There is an invariant here that if a CU is queued then it is loaded.
7390 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7391
7392static int
89e63ee4 7393maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7394 struct dwarf2_per_cu_data *per_cu,
7395 enum language pretend_language)
7396{
7397 /* We may arrive here during partial symbol reading, if we need full
7398 DIEs to process an unusual case (e.g. template arguments). Do
7399 not queue PER_CU, just tell our caller to load its DIEs. */
7400 if (dwarf2_per_objfile->reading_partial_symbols)
7401 {
7402 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7403 return 1;
7404 return 0;
7405 }
7406
7407 /* Mark the dependence relation so that we don't flush PER_CU
7408 too early. */
89e63ee4
DE
7409 if (dependent_cu != NULL)
7410 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7411
7412 /* If it's already on the queue, we have nothing to do. */
7413 if (per_cu->queued)
7414 return 0;
7415
7416 /* If the compilation unit is already loaded, just mark it as
7417 used. */
7418 if (per_cu->cu != NULL)
7419 {
7420 per_cu->cu->last_used = 0;
7421 return 0;
7422 }
7423
7424 /* Add it to the queue. */
7425 queue_comp_unit (per_cu, pretend_language);
7426
7427 return 1;
7428}
7429
10b3939b
DJ
7430/* Process the queue. */
7431
7432static void
a0f42c21 7433process_queue (void)
10b3939b
DJ
7434{
7435 struct dwarf2_queue_item *item, *next_item;
7436
45cfd468
DE
7437 if (dwarf2_read_debug)
7438 {
7439 fprintf_unfiltered (gdb_stdlog,
7440 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7441 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7442 }
7443
03dd20cc
DJ
7444 /* The queue starts out with one item, but following a DIE reference
7445 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7446 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7447 {
9291a0cd
TT
7448 if (dwarf2_per_objfile->using_index
7449 ? !item->per_cu->v.quick->symtab
7450 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7451 {
7452 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7453 unsigned int debug_print_threshold;
247f5c4f 7454 char buf[100];
f4dc4d17 7455
247f5c4f 7456 if (per_cu->is_debug_types)
f4dc4d17 7457 {
247f5c4f
DE
7458 struct signatured_type *sig_type =
7459 (struct signatured_type *) per_cu;
7460
7461 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7462 hex_string (sig_type->signature),
7463 per_cu->offset.sect_off);
7464 /* There can be 100s of TUs.
7465 Only print them in verbose mode. */
7466 debug_print_threshold = 2;
f4dc4d17 7467 }
247f5c4f 7468 else
73be47f5
DE
7469 {
7470 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7471 debug_print_threshold = 1;
7472 }
247f5c4f 7473
73be47f5 7474 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7475 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7476
7477 if (per_cu->is_debug_types)
7478 process_full_type_unit (per_cu, item->pretend_language);
7479 else
7480 process_full_comp_unit (per_cu, item->pretend_language);
7481
73be47f5 7482 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7483 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7484 }
10b3939b
DJ
7485
7486 item->per_cu->queued = 0;
7487 next_item = item->next;
7488 xfree (item);
7489 }
7490
7491 dwarf2_queue_tail = NULL;
45cfd468
DE
7492
7493 if (dwarf2_read_debug)
7494 {
7495 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7496 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7497 }
10b3939b
DJ
7498}
7499
7500/* Free all allocated queue entries. This function only releases anything if
7501 an error was thrown; if the queue was processed then it would have been
7502 freed as we went along. */
7503
7504static void
7505dwarf2_release_queue (void *dummy)
7506{
7507 struct dwarf2_queue_item *item, *last;
7508
7509 item = dwarf2_queue;
7510 while (item)
7511 {
7512 /* Anything still marked queued is likely to be in an
7513 inconsistent state, so discard it. */
7514 if (item->per_cu->queued)
7515 {
7516 if (item->per_cu->cu != NULL)
dee91e82 7517 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7518 item->per_cu->queued = 0;
7519 }
7520
7521 last = item;
7522 item = item->next;
7523 xfree (last);
7524 }
7525
7526 dwarf2_queue = dwarf2_queue_tail = NULL;
7527}
7528
7529/* Read in full symbols for PST, and anything it depends on. */
7530
c906108c 7531static void
fba45db2 7532psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7533{
10b3939b 7534 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7535 int i;
7536
95554aad
TT
7537 if (pst->readin)
7538 return;
7539
aaa75496 7540 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7541 if (!pst->dependencies[i]->readin
7542 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7543 {
7544 /* Inform about additional files that need to be read in. */
7545 if (info_verbose)
7546 {
a3f17187 7547 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7548 fputs_filtered (" ", gdb_stdout);
7549 wrap_here ("");
7550 fputs_filtered ("and ", gdb_stdout);
7551 wrap_here ("");
7552 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7553 wrap_here (""); /* Flush output. */
aaa75496
JB
7554 gdb_flush (gdb_stdout);
7555 }
7556 psymtab_to_symtab_1 (pst->dependencies[i]);
7557 }
7558
e38df1d0 7559 per_cu = pst->read_symtab_private;
10b3939b
DJ
7560
7561 if (per_cu == NULL)
aaa75496
JB
7562 {
7563 /* It's an include file, no symbols to read for it.
7564 Everything is in the parent symtab. */
7565 pst->readin = 1;
7566 return;
7567 }
c906108c 7568
a0f42c21 7569 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7570}
7571
dee91e82
DE
7572/* Trivial hash function for die_info: the hash value of a DIE
7573 is its offset in .debug_info for this objfile. */
10b3939b 7574
dee91e82
DE
7575static hashval_t
7576die_hash (const void *item)
10b3939b 7577{
dee91e82 7578 const struct die_info *die = item;
6502dd73 7579
dee91e82
DE
7580 return die->offset.sect_off;
7581}
63d06c5c 7582
dee91e82
DE
7583/* Trivial comparison function for die_info structures: two DIEs
7584 are equal if they have the same offset. */
98bfdba5 7585
dee91e82
DE
7586static int
7587die_eq (const void *item_lhs, const void *item_rhs)
7588{
7589 const struct die_info *die_lhs = item_lhs;
7590 const struct die_info *die_rhs = item_rhs;
c906108c 7591
dee91e82
DE
7592 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7593}
c906108c 7594
dee91e82
DE
7595/* die_reader_func for load_full_comp_unit.
7596 This is identical to read_signatured_type_reader,
7597 but is kept separate for now. */
c906108c 7598
dee91e82
DE
7599static void
7600load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7601 const gdb_byte *info_ptr,
dee91e82
DE
7602 struct die_info *comp_unit_die,
7603 int has_children,
7604 void *data)
7605{
7606 struct dwarf2_cu *cu = reader->cu;
95554aad 7607 enum language *language_ptr = data;
6caca83c 7608
dee91e82
DE
7609 gdb_assert (cu->die_hash == NULL);
7610 cu->die_hash =
7611 htab_create_alloc_ex (cu->header.length / 12,
7612 die_hash,
7613 die_eq,
7614 NULL,
7615 &cu->comp_unit_obstack,
7616 hashtab_obstack_allocate,
7617 dummy_obstack_deallocate);
e142c38c 7618
dee91e82
DE
7619 if (has_children)
7620 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7621 &info_ptr, comp_unit_die);
7622 cu->dies = comp_unit_die;
7623 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7624
7625 /* We try not to read any attributes in this function, because not
9cdd5dbd 7626 all CUs needed for references have been loaded yet, and symbol
10b3939b 7627 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7628 or we won't be able to build types correctly.
7629 Similarly, if we do not read the producer, we can not apply
7630 producer-specific interpretation. */
95554aad 7631 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7632}
10b3939b 7633
dee91e82 7634/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7635
dee91e82 7636static void
95554aad
TT
7637load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7638 enum language pretend_language)
dee91e82 7639{
3019eac3 7640 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7641
f4dc4d17
DE
7642 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7643 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7644}
7645
3da10d80
KS
7646/* Add a DIE to the delayed physname list. */
7647
7648static void
7649add_to_method_list (struct type *type, int fnfield_index, int index,
7650 const char *name, struct die_info *die,
7651 struct dwarf2_cu *cu)
7652{
7653 struct delayed_method_info mi;
7654 mi.type = type;
7655 mi.fnfield_index = fnfield_index;
7656 mi.index = index;
7657 mi.name = name;
7658 mi.die = die;
7659 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7660}
7661
7662/* A cleanup for freeing the delayed method list. */
7663
7664static void
7665free_delayed_list (void *ptr)
7666{
7667 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7668 if (cu->method_list != NULL)
7669 {
7670 VEC_free (delayed_method_info, cu->method_list);
7671 cu->method_list = NULL;
7672 }
7673}
7674
7675/* Compute the physnames of any methods on the CU's method list.
7676
7677 The computation of method physnames is delayed in order to avoid the
7678 (bad) condition that one of the method's formal parameters is of an as yet
7679 incomplete type. */
7680
7681static void
7682compute_delayed_physnames (struct dwarf2_cu *cu)
7683{
7684 int i;
7685 struct delayed_method_info *mi;
7686 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7687 {
1d06ead6 7688 const char *physname;
3da10d80
KS
7689 struct fn_fieldlist *fn_flp
7690 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7691 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7692 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7693 }
7694}
7695
a766d390
DE
7696/* Go objects should be embedded in a DW_TAG_module DIE,
7697 and it's not clear if/how imported objects will appear.
7698 To keep Go support simple until that's worked out,
7699 go back through what we've read and create something usable.
7700 We could do this while processing each DIE, and feels kinda cleaner,
7701 but that way is more invasive.
7702 This is to, for example, allow the user to type "p var" or "b main"
7703 without having to specify the package name, and allow lookups
7704 of module.object to work in contexts that use the expression
7705 parser. */
7706
7707static void
7708fixup_go_packaging (struct dwarf2_cu *cu)
7709{
7710 char *package_name = NULL;
7711 struct pending *list;
7712 int i;
7713
7714 for (list = global_symbols; list != NULL; list = list->next)
7715 {
7716 for (i = 0; i < list->nsyms; ++i)
7717 {
7718 struct symbol *sym = list->symbol[i];
7719
7720 if (SYMBOL_LANGUAGE (sym) == language_go
7721 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7722 {
7723 char *this_package_name = go_symbol_package_name (sym);
7724
7725 if (this_package_name == NULL)
7726 continue;
7727 if (package_name == NULL)
7728 package_name = this_package_name;
7729 else
7730 {
7731 if (strcmp (package_name, this_package_name) != 0)
7732 complaint (&symfile_complaints,
7733 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7734 (SYMBOL_SYMTAB (sym)
05cba821 7735 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7736 : objfile_name (cu->objfile)),
a766d390
DE
7737 this_package_name, package_name);
7738 xfree (this_package_name);
7739 }
7740 }
7741 }
7742 }
7743
7744 if (package_name != NULL)
7745 {
7746 struct objfile *objfile = cu->objfile;
34a68019
TT
7747 const char *saved_package_name
7748 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7749 package_name,
7750 strlen (package_name));
a766d390 7751 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7752 saved_package_name, objfile);
a766d390
DE
7753 struct symbol *sym;
7754
7755 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7756
e623cf5d 7757 sym = allocate_symbol (objfile);
f85f34ed 7758 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7759 SYMBOL_SET_NAMES (sym, saved_package_name,
7760 strlen (saved_package_name), 0, objfile);
a766d390
DE
7761 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7762 e.g., "main" finds the "main" module and not C's main(). */
7763 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7764 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7765 SYMBOL_TYPE (sym) = type;
7766
7767 add_symbol_to_list (sym, &global_symbols);
7768
7769 xfree (package_name);
7770 }
7771}
7772
95554aad
TT
7773/* Return the symtab for PER_CU. This works properly regardless of
7774 whether we're using the index or psymtabs. */
7775
7776static struct symtab *
7777get_symtab (struct dwarf2_per_cu_data *per_cu)
7778{
7779 return (dwarf2_per_objfile->using_index
7780 ? per_cu->v.quick->symtab
7781 : per_cu->v.psymtab->symtab);
7782}
7783
7784/* A helper function for computing the list of all symbol tables
7785 included by PER_CU. */
7786
7787static void
ec94af83
DE
7788recursively_compute_inclusions (VEC (symtab_ptr) **result,
7789 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7790 struct dwarf2_per_cu_data *per_cu,
7791 struct symtab *immediate_parent)
95554aad
TT
7792{
7793 void **slot;
7794 int ix;
ec94af83 7795 struct symtab *symtab;
95554aad
TT
7796 struct dwarf2_per_cu_data *iter;
7797
7798 slot = htab_find_slot (all_children, per_cu, INSERT);
7799 if (*slot != NULL)
7800 {
7801 /* This inclusion and its children have been processed. */
7802 return;
7803 }
7804
7805 *slot = per_cu;
7806 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7807 symtab = get_symtab (per_cu);
7808 if (symtab != NULL)
7809 {
7810 /* If this is a type unit only add its symbol table if we haven't
7811 seen it yet (type unit per_cu's can share symtabs). */
7812 if (per_cu->is_debug_types)
7813 {
7814 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7815 if (*slot == NULL)
7816 {
7817 *slot = symtab;
7818 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7819 if (symtab->user == NULL)
7820 symtab->user = immediate_parent;
ec94af83
DE
7821 }
7822 }
7823 else
f9125b6c
TT
7824 {
7825 VEC_safe_push (symtab_ptr, *result, symtab);
7826 if (symtab->user == NULL)
7827 symtab->user = immediate_parent;
7828 }
ec94af83 7829 }
95554aad
TT
7830
7831 for (ix = 0;
796a7ff8 7832 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7833 ++ix)
ec94af83
DE
7834 {
7835 recursively_compute_inclusions (result, all_children,
f9125b6c 7836 all_type_symtabs, iter, symtab);
ec94af83 7837 }
95554aad
TT
7838}
7839
7840/* Compute the symtab 'includes' fields for the symtab related to
7841 PER_CU. */
7842
7843static void
7844compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7845{
f4dc4d17
DE
7846 gdb_assert (! per_cu->is_debug_types);
7847
796a7ff8 7848 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7849 {
7850 int ix, len;
ec94af83
DE
7851 struct dwarf2_per_cu_data *per_cu_iter;
7852 struct symtab *symtab_iter;
7853 VEC (symtab_ptr) *result_symtabs = NULL;
7854 htab_t all_children, all_type_symtabs;
95554aad
TT
7855 struct symtab *symtab = get_symtab (per_cu);
7856
7857 /* If we don't have a symtab, we can just skip this case. */
7858 if (symtab == NULL)
7859 return;
7860
7861 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7862 NULL, xcalloc, xfree);
ec94af83
DE
7863 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7864 NULL, xcalloc, xfree);
95554aad
TT
7865
7866 for (ix = 0;
796a7ff8 7867 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7868 ix, per_cu_iter);
95554aad 7869 ++ix)
ec94af83
DE
7870 {
7871 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7872 all_type_symtabs, per_cu_iter,
7873 symtab);
ec94af83 7874 }
95554aad 7875
ec94af83
DE
7876 /* Now we have a transitive closure of all the included symtabs. */
7877 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7878 symtab->includes
7879 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7880 (len + 1) * sizeof (struct symtab *));
7881 for (ix = 0;
ec94af83 7882 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7883 ++ix)
ec94af83 7884 symtab->includes[ix] = symtab_iter;
95554aad
TT
7885 symtab->includes[len] = NULL;
7886
ec94af83 7887 VEC_free (symtab_ptr, result_symtabs);
95554aad 7888 htab_delete (all_children);
ec94af83 7889 htab_delete (all_type_symtabs);
95554aad
TT
7890 }
7891}
7892
7893/* Compute the 'includes' field for the symtabs of all the CUs we just
7894 read. */
7895
7896static void
7897process_cu_includes (void)
7898{
7899 int ix;
7900 struct dwarf2_per_cu_data *iter;
7901
7902 for (ix = 0;
7903 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7904 ix, iter);
7905 ++ix)
f4dc4d17
DE
7906 {
7907 if (! iter->is_debug_types)
7908 compute_symtab_includes (iter);
7909 }
95554aad
TT
7910
7911 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7912}
7913
9cdd5dbd 7914/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7915 already been loaded into memory. */
7916
7917static void
95554aad
TT
7918process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7919 enum language pretend_language)
10b3939b 7920{
10b3939b 7921 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7922 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7923 CORE_ADDR lowpc, highpc;
7924 struct symtab *symtab;
3da10d80 7925 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7926 CORE_ADDR baseaddr;
4359dff1 7927 struct block *static_block;
10b3939b
DJ
7928
7929 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7930
10b3939b
DJ
7931 buildsym_init ();
7932 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7933 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7934
7935 cu->list_in_scope = &file_symbols;
c906108c 7936
95554aad
TT
7937 cu->language = pretend_language;
7938 cu->language_defn = language_def (cu->language);
7939
c906108c 7940 /* Do line number decoding in read_file_scope () */
10b3939b 7941 process_die (cu->dies, cu);
c906108c 7942
a766d390
DE
7943 /* For now fudge the Go package. */
7944 if (cu->language == language_go)
7945 fixup_go_packaging (cu);
7946
3da10d80
KS
7947 /* Now that we have processed all the DIEs in the CU, all the types
7948 should be complete, and it should now be safe to compute all of the
7949 physnames. */
7950 compute_delayed_physnames (cu);
7951 do_cleanups (delayed_list_cleanup);
7952
fae299cd
DC
7953 /* Some compilers don't define a DW_AT_high_pc attribute for the
7954 compilation unit. If the DW_AT_high_pc is missing, synthesize
7955 it, by scanning the DIE's below the compilation unit. */
10b3939b 7956 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7957
36586728 7958 static_block
ff546935 7959 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7960
7961 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7962 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7963 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7964 addrmap to help ensure it has an accurate map of pc values belonging to
7965 this comp unit. */
7966 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7967
7968 symtab = end_symtab_from_static_block (static_block, objfile,
7969 SECT_OFF_TEXT (objfile), 0);
c906108c 7970
8be455d7 7971 if (symtab != NULL)
c906108c 7972 {
df15bd07 7973 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7974
8be455d7
JK
7975 /* Set symtab language to language from DW_AT_language. If the
7976 compilation is from a C file generated by language preprocessors, do
7977 not set the language if it was already deduced by start_subfile. */
7978 if (!(cu->language == language_c && symtab->language != language_c))
7979 symtab->language = cu->language;
7980
7981 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7982 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7983 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7984 there were bugs in prologue debug info, fixed later in GCC-4.5
7985 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7986
7987 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7988 needed, it would be wrong due to missing DW_AT_producer there.
7989
7990 Still one can confuse GDB by using non-standard GCC compilation
7991 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7992 */
ab260dad 7993 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7994 symtab->locations_valid = 1;
e0d00bc7
JK
7995
7996 if (gcc_4_minor >= 5)
7997 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7998
7999 symtab->call_site_htab = cu->call_site_htab;
c906108c 8000 }
9291a0cd
TT
8001
8002 if (dwarf2_per_objfile->using_index)
8003 per_cu->v.quick->symtab = symtab;
8004 else
8005 {
8006 struct partial_symtab *pst = per_cu->v.psymtab;
8007 pst->symtab = symtab;
8008 pst->readin = 1;
8009 }
c906108c 8010
95554aad
TT
8011 /* Push it for inclusion processing later. */
8012 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8013
c906108c 8014 do_cleanups (back_to);
f4dc4d17 8015}
45cfd468 8016
f4dc4d17
DE
8017/* Generate full symbol information for type unit PER_CU, whose DIEs have
8018 already been loaded into memory. */
8019
8020static void
8021process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8022 enum language pretend_language)
8023{
8024 struct dwarf2_cu *cu = per_cu->cu;
8025 struct objfile *objfile = per_cu->objfile;
8026 struct symtab *symtab;
8027 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8028 struct signatured_type *sig_type;
8029
8030 gdb_assert (per_cu->is_debug_types);
8031 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8032
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8036
8037 cu->list_in_scope = &file_symbols;
8038
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
8042 /* The symbol tables are set up in read_type_unit_scope. */
8043 process_die (cu->dies, cu);
8044
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
8055 /* TUs share symbol tables.
8056 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8057 of it with end_expandable_symtab. Otherwise, complete the addition of
8058 this TU's symbols to the existing symtab. */
0186c6a7 8059 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 8060 {
f4dc4d17 8061 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 8062 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
8063
8064 if (symtab != NULL)
8065 {
8066 /* Set symtab language to language from DW_AT_language. If the
8067 compilation is from a C file generated by language preprocessors,
8068 do not set the language if it was already deduced by
8069 start_subfile. */
8070 if (!(cu->language == language_c && symtab->language != language_c))
8071 symtab->language = cu->language;
8072 }
8073 }
8074 else
8075 {
8076 augment_type_symtab (objfile,
0186c6a7
DE
8077 sig_type->type_unit_group->primary_symtab);
8078 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
8079 }
8080
8081 if (dwarf2_per_objfile->using_index)
8082 per_cu->v.quick->symtab = symtab;
8083 else
8084 {
8085 struct partial_symtab *pst = per_cu->v.psymtab;
8086 pst->symtab = symtab;
8087 pst->readin = 1;
45cfd468 8088 }
f4dc4d17
DE
8089
8090 do_cleanups (back_to);
c906108c
SS
8091}
8092
95554aad
TT
8093/* Process an imported unit DIE. */
8094
8095static void
8096process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8097{
8098 struct attribute *attr;
8099
f4dc4d17
DE
8100 /* For now we don't handle imported units in type units. */
8101 if (cu->per_cu->is_debug_types)
8102 {
8103 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8104 " supported in type units [in module %s]"),
4262abfb 8105 objfile_name (cu->objfile));
f4dc4d17
DE
8106 }
8107
95554aad
TT
8108 attr = dwarf2_attr (die, DW_AT_import, cu);
8109 if (attr != NULL)
8110 {
8111 struct dwarf2_per_cu_data *per_cu;
8112 struct symtab *imported_symtab;
8113 sect_offset offset;
36586728 8114 int is_dwz;
95554aad
TT
8115
8116 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8117 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8118 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8119
69d751e3 8120 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8121 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8122 load_full_comp_unit (per_cu, cu->language);
8123
796a7ff8 8124 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8125 per_cu);
8126 }
8127}
8128
adde2bff
DE
8129/* Reset the in_process bit of a die. */
8130
8131static void
8132reset_die_in_process (void *arg)
8133{
8134 struct die_info *die = arg;
8c3cb9fa 8135
adde2bff
DE
8136 die->in_process = 0;
8137}
8138
c906108c
SS
8139/* Process a die and its children. */
8140
8141static void
e7c27a73 8142process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8143{
adde2bff
DE
8144 struct cleanup *in_process;
8145
8146 /* We should only be processing those not already in process. */
8147 gdb_assert (!die->in_process);
8148
8149 die->in_process = 1;
8150 in_process = make_cleanup (reset_die_in_process,die);
8151
c906108c
SS
8152 switch (die->tag)
8153 {
8154 case DW_TAG_padding:
8155 break;
8156 case DW_TAG_compile_unit:
95554aad 8157 case DW_TAG_partial_unit:
e7c27a73 8158 read_file_scope (die, cu);
c906108c 8159 break;
348e048f
DE
8160 case DW_TAG_type_unit:
8161 read_type_unit_scope (die, cu);
8162 break;
c906108c 8163 case DW_TAG_subprogram:
c906108c 8164 case DW_TAG_inlined_subroutine:
edb3359d 8165 read_func_scope (die, cu);
c906108c
SS
8166 break;
8167 case DW_TAG_lexical_block:
14898363
L
8168 case DW_TAG_try_block:
8169 case DW_TAG_catch_block:
e7c27a73 8170 read_lexical_block_scope (die, cu);
c906108c 8171 break;
96408a79
SA
8172 case DW_TAG_GNU_call_site:
8173 read_call_site_scope (die, cu);
8174 break;
c906108c 8175 case DW_TAG_class_type:
680b30c7 8176 case DW_TAG_interface_type:
c906108c
SS
8177 case DW_TAG_structure_type:
8178 case DW_TAG_union_type:
134d01f1 8179 process_structure_scope (die, cu);
c906108c
SS
8180 break;
8181 case DW_TAG_enumeration_type:
134d01f1 8182 process_enumeration_scope (die, cu);
c906108c 8183 break;
134d01f1 8184
f792889a
DJ
8185 /* These dies have a type, but processing them does not create
8186 a symbol or recurse to process the children. Therefore we can
8187 read them on-demand through read_type_die. */
c906108c 8188 case DW_TAG_subroutine_type:
72019c9c 8189 case DW_TAG_set_type:
c906108c 8190 case DW_TAG_array_type:
c906108c 8191 case DW_TAG_pointer_type:
c906108c 8192 case DW_TAG_ptr_to_member_type:
c906108c 8193 case DW_TAG_reference_type:
c906108c 8194 case DW_TAG_string_type:
c906108c 8195 break;
134d01f1 8196
c906108c 8197 case DW_TAG_base_type:
a02abb62 8198 case DW_TAG_subrange_type:
cb249c71 8199 case DW_TAG_typedef:
134d01f1
DJ
8200 /* Add a typedef symbol for the type definition, if it has a
8201 DW_AT_name. */
f792889a 8202 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8203 break;
c906108c 8204 case DW_TAG_common_block:
e7c27a73 8205 read_common_block (die, cu);
c906108c
SS
8206 break;
8207 case DW_TAG_common_inclusion:
8208 break;
d9fa45fe 8209 case DW_TAG_namespace:
4d4ec4e5 8210 cu->processing_has_namespace_info = 1;
e7c27a73 8211 read_namespace (die, cu);
d9fa45fe 8212 break;
5d7cb8df 8213 case DW_TAG_module:
4d4ec4e5 8214 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8215 read_module (die, cu);
8216 break;
d9fa45fe 8217 case DW_TAG_imported_declaration:
74921315
KS
8218 cu->processing_has_namespace_info = 1;
8219 if (read_namespace_alias (die, cu))
8220 break;
8221 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8222 case DW_TAG_imported_module:
4d4ec4e5 8223 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8224 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8225 || cu->language != language_fortran))
8226 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8227 dwarf_tag_name (die->tag));
8228 read_import_statement (die, cu);
d9fa45fe 8229 break;
95554aad
TT
8230
8231 case DW_TAG_imported_unit:
8232 process_imported_unit_die (die, cu);
8233 break;
8234
c906108c 8235 default:
e7c27a73 8236 new_symbol (die, NULL, cu);
c906108c
SS
8237 break;
8238 }
adde2bff
DE
8239
8240 do_cleanups (in_process);
c906108c 8241}
ca69b9e6
DE
8242\f
8243/* DWARF name computation. */
c906108c 8244
94af9270
KS
8245/* A helper function for dwarf2_compute_name which determines whether DIE
8246 needs to have the name of the scope prepended to the name listed in the
8247 die. */
8248
8249static int
8250die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8251{
1c809c68
TT
8252 struct attribute *attr;
8253
94af9270
KS
8254 switch (die->tag)
8255 {
8256 case DW_TAG_namespace:
8257 case DW_TAG_typedef:
8258 case DW_TAG_class_type:
8259 case DW_TAG_interface_type:
8260 case DW_TAG_structure_type:
8261 case DW_TAG_union_type:
8262 case DW_TAG_enumeration_type:
8263 case DW_TAG_enumerator:
8264 case DW_TAG_subprogram:
8265 case DW_TAG_member:
74921315 8266 case DW_TAG_imported_declaration:
94af9270
KS
8267 return 1;
8268
8269 case DW_TAG_variable:
c2b0a229 8270 case DW_TAG_constant:
94af9270
KS
8271 /* We only need to prefix "globally" visible variables. These include
8272 any variable marked with DW_AT_external or any variable that
8273 lives in a namespace. [Variables in anonymous namespaces
8274 require prefixing, but they are not DW_AT_external.] */
8275
8276 if (dwarf2_attr (die, DW_AT_specification, cu))
8277 {
8278 struct dwarf2_cu *spec_cu = cu;
9a619af0 8279
94af9270
KS
8280 return die_needs_namespace (die_specification (die, &spec_cu),
8281 spec_cu);
8282 }
8283
1c809c68 8284 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8285 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8286 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8287 return 0;
8288 /* A variable in a lexical block of some kind does not need a
8289 namespace, even though in C++ such variables may be external
8290 and have a mangled name. */
8291 if (die->parent->tag == DW_TAG_lexical_block
8292 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8293 || die->parent->tag == DW_TAG_catch_block
8294 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8295 return 0;
8296 return 1;
94af9270
KS
8297
8298 default:
8299 return 0;
8300 }
8301}
8302
98bfdba5
PA
8303/* Retrieve the last character from a mem_file. */
8304
8305static void
8306do_ui_file_peek_last (void *object, const char *buffer, long length)
8307{
8308 char *last_char_p = (char *) object;
8309
8310 if (length > 0)
8311 *last_char_p = buffer[length - 1];
8312}
8313
94af9270 8314/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8315 compute the physname for the object, which include a method's:
8316 - formal parameters (C++/Java),
8317 - receiver type (Go),
8318 - return type (Java).
8319
8320 The term "physname" is a bit confusing.
8321 For C++, for example, it is the demangled name.
8322 For Go, for example, it's the mangled name.
94af9270 8323
af6b7be1
JB
8324 For Ada, return the DIE's linkage name rather than the fully qualified
8325 name. PHYSNAME is ignored..
8326
94af9270
KS
8327 The result is allocated on the objfile_obstack and canonicalized. */
8328
8329static const char *
15d034d0
TT
8330dwarf2_compute_name (const char *name,
8331 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8332 int physname)
8333{
bb5ed363
DE
8334 struct objfile *objfile = cu->objfile;
8335
94af9270
KS
8336 if (name == NULL)
8337 name = dwarf2_name (die, cu);
8338
f55ee35c
JK
8339 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8340 compute it by typename_concat inside GDB. */
8341 if (cu->language == language_ada
8342 || (cu->language == language_fortran && physname))
8343 {
8344 /* For Ada unit, we prefer the linkage name over the name, as
8345 the former contains the exported name, which the user expects
8346 to be able to reference. Ideally, we want the user to be able
8347 to reference this entity using either natural or linkage name,
8348 but we haven't started looking at this enhancement yet. */
8349 struct attribute *attr;
8350
8351 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8352 if (attr == NULL)
8353 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8354 if (attr && DW_STRING (attr))
8355 return DW_STRING (attr);
8356 }
8357
94af9270
KS
8358 /* These are the only languages we know how to qualify names in. */
8359 if (name != NULL
f55ee35c
JK
8360 && (cu->language == language_cplus || cu->language == language_java
8361 || cu->language == language_fortran))
94af9270
KS
8362 {
8363 if (die_needs_namespace (die, cu))
8364 {
8365 long length;
0d5cff50 8366 const char *prefix;
94af9270 8367 struct ui_file *buf;
34a68019
TT
8368 char *intermediate_name;
8369 const char *canonical_name = NULL;
94af9270
KS
8370
8371 prefix = determine_prefix (die, cu);
8372 buf = mem_fileopen ();
8373 if (*prefix != '\0')
8374 {
f55ee35c
JK
8375 char *prefixed_name = typename_concat (NULL, prefix, name,
8376 physname, cu);
9a619af0 8377
94af9270
KS
8378 fputs_unfiltered (prefixed_name, buf);
8379 xfree (prefixed_name);
8380 }
8381 else
62d5b8da 8382 fputs_unfiltered (name, buf);
94af9270 8383
98bfdba5
PA
8384 /* Template parameters may be specified in the DIE's DW_AT_name, or
8385 as children with DW_TAG_template_type_param or
8386 DW_TAG_value_type_param. If the latter, add them to the name
8387 here. If the name already has template parameters, then
8388 skip this step; some versions of GCC emit both, and
8389 it is more efficient to use the pre-computed name.
8390
8391 Something to keep in mind about this process: it is very
8392 unlikely, or in some cases downright impossible, to produce
8393 something that will match the mangled name of a function.
8394 If the definition of the function has the same debug info,
8395 we should be able to match up with it anyway. But fallbacks
8396 using the minimal symbol, for instance to find a method
8397 implemented in a stripped copy of libstdc++, will not work.
8398 If we do not have debug info for the definition, we will have to
8399 match them up some other way.
8400
8401 When we do name matching there is a related problem with function
8402 templates; two instantiated function templates are allowed to
8403 differ only by their return types, which we do not add here. */
8404
8405 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8406 {
8407 struct attribute *attr;
8408 struct die_info *child;
8409 int first = 1;
8410
8411 die->building_fullname = 1;
8412
8413 for (child = die->child; child != NULL; child = child->sibling)
8414 {
8415 struct type *type;
12df843f 8416 LONGEST value;
d521ce57 8417 const gdb_byte *bytes;
98bfdba5
PA
8418 struct dwarf2_locexpr_baton *baton;
8419 struct value *v;
8420
8421 if (child->tag != DW_TAG_template_type_param
8422 && child->tag != DW_TAG_template_value_param)
8423 continue;
8424
8425 if (first)
8426 {
8427 fputs_unfiltered ("<", buf);
8428 first = 0;
8429 }
8430 else
8431 fputs_unfiltered (", ", buf);
8432
8433 attr = dwarf2_attr (child, DW_AT_type, cu);
8434 if (attr == NULL)
8435 {
8436 complaint (&symfile_complaints,
8437 _("template parameter missing DW_AT_type"));
8438 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8439 continue;
8440 }
8441 type = die_type (child, cu);
8442
8443 if (child->tag == DW_TAG_template_type_param)
8444 {
79d43c61 8445 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8446 continue;
8447 }
8448
8449 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8450 if (attr == NULL)
8451 {
8452 complaint (&symfile_complaints,
3e43a32a
MS
8453 _("template parameter missing "
8454 "DW_AT_const_value"));
98bfdba5
PA
8455 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8456 continue;
8457 }
8458
8459 dwarf2_const_value_attr (attr, type, name,
8460 &cu->comp_unit_obstack, cu,
8461 &value, &bytes, &baton);
8462
8463 if (TYPE_NOSIGN (type))
8464 /* GDB prints characters as NUMBER 'CHAR'. If that's
8465 changed, this can use value_print instead. */
8466 c_printchar (value, type, buf);
8467 else
8468 {
8469 struct value_print_options opts;
8470
8471 if (baton != NULL)
8472 v = dwarf2_evaluate_loc_desc (type, NULL,
8473 baton->data,
8474 baton->size,
8475 baton->per_cu);
8476 else if (bytes != NULL)
8477 {
8478 v = allocate_value (type);
8479 memcpy (value_contents_writeable (v), bytes,
8480 TYPE_LENGTH (type));
8481 }
8482 else
8483 v = value_from_longest (type, value);
8484
3e43a32a
MS
8485 /* Specify decimal so that we do not depend on
8486 the radix. */
98bfdba5
PA
8487 get_formatted_print_options (&opts, 'd');
8488 opts.raw = 1;
8489 value_print (v, buf, &opts);
8490 release_value (v);
8491 value_free (v);
8492 }
8493 }
8494
8495 die->building_fullname = 0;
8496
8497 if (!first)
8498 {
8499 /* Close the argument list, with a space if necessary
8500 (nested templates). */
8501 char last_char = '\0';
8502 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8503 if (last_char == '>')
8504 fputs_unfiltered (" >", buf);
8505 else
8506 fputs_unfiltered (">", buf);
8507 }
8508 }
8509
94af9270
KS
8510 /* For Java and C++ methods, append formal parameter type
8511 information, if PHYSNAME. */
6e70227d 8512
94af9270
KS
8513 if (physname && die->tag == DW_TAG_subprogram
8514 && (cu->language == language_cplus
8515 || cu->language == language_java))
8516 {
8517 struct type *type = read_type_die (die, cu);
8518
79d43c61
TT
8519 c_type_print_args (type, buf, 1, cu->language,
8520 &type_print_raw_options);
94af9270
KS
8521
8522 if (cu->language == language_java)
8523 {
8524 /* For java, we must append the return type to method
0963b4bd 8525 names. */
94af9270
KS
8526 if (die->tag == DW_TAG_subprogram)
8527 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8528 0, 0, &type_print_raw_options);
94af9270
KS
8529 }
8530 else if (cu->language == language_cplus)
8531 {
60430eff
DJ
8532 /* Assume that an artificial first parameter is
8533 "this", but do not crash if it is not. RealView
8534 marks unnamed (and thus unused) parameters as
8535 artificial; there is no way to differentiate
8536 the two cases. */
94af9270
KS
8537 if (TYPE_NFIELDS (type) > 0
8538 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8539 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8540 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8541 0))))
94af9270
KS
8542 fputs_unfiltered (" const", buf);
8543 }
8544 }
8545
34a68019 8546 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8547 ui_file_delete (buf);
8548
8549 if (cu->language == language_cplus)
34a68019
TT
8550 canonical_name
8551 = dwarf2_canonicalize_name (intermediate_name, cu,
8552 &objfile->per_bfd->storage_obstack);
8553
8554 /* If we only computed INTERMEDIATE_NAME, or if
8555 INTERMEDIATE_NAME is already canonical, then we need to
8556 copy it to the appropriate obstack. */
8557 if (canonical_name == NULL || canonical_name == intermediate_name)
8558 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8559 intermediate_name,
8560 strlen (intermediate_name));
8561 else
8562 name = canonical_name;
9a619af0 8563
34a68019 8564 xfree (intermediate_name);
94af9270
KS
8565 }
8566 }
8567
8568 return name;
8569}
8570
0114d602
DJ
8571/* Return the fully qualified name of DIE, based on its DW_AT_name.
8572 If scope qualifiers are appropriate they will be added. The result
34a68019 8573 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8574 not have a name. NAME may either be from a previous call to
8575 dwarf2_name or NULL.
8576
0963b4bd 8577 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8578
8579static const char *
15d034d0 8580dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8581{
94af9270
KS
8582 return dwarf2_compute_name (name, die, cu, 0);
8583}
0114d602 8584
94af9270
KS
8585/* Construct a physname for the given DIE in CU. NAME may either be
8586 from a previous call to dwarf2_name or NULL. The result will be
8587 allocated on the objfile_objstack or NULL if the DIE does not have a
8588 name.
0114d602 8589
94af9270 8590 The output string will be canonicalized (if C++/Java). */
0114d602 8591
94af9270 8592static const char *
15d034d0 8593dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8594{
bb5ed363 8595 struct objfile *objfile = cu->objfile;
900e11f9
JK
8596 struct attribute *attr;
8597 const char *retval, *mangled = NULL, *canon = NULL;
8598 struct cleanup *back_to;
8599 int need_copy = 1;
8600
8601 /* In this case dwarf2_compute_name is just a shortcut not building anything
8602 on its own. */
8603 if (!die_needs_namespace (die, cu))
8604 return dwarf2_compute_name (name, die, cu, 1);
8605
8606 back_to = make_cleanup (null_cleanup, NULL);
8607
8608 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8609 if (!attr)
8610 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8611
8612 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8613 has computed. */
8614 if (attr && DW_STRING (attr))
8615 {
8616 char *demangled;
8617
8618 mangled = DW_STRING (attr);
8619
8620 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8621 type. It is easier for GDB users to search for such functions as
8622 `name(params)' than `long name(params)'. In such case the minimal
8623 symbol names do not match the full symbol names but for template
8624 functions there is never a need to look up their definition from their
8625 declaration so the only disadvantage remains the minimal symbol
8626 variant `long name(params)' does not have the proper inferior type.
8627 */
8628
a766d390
DE
8629 if (cu->language == language_go)
8630 {
8631 /* This is a lie, but we already lie to the caller new_symbol_full.
8632 new_symbol_full assumes we return the mangled name.
8633 This just undoes that lie until things are cleaned up. */
8634 demangled = NULL;
8635 }
8636 else
8637 {
8de20a37
TT
8638 demangled = gdb_demangle (mangled,
8639 (DMGL_PARAMS | DMGL_ANSI
8640 | (cu->language == language_java
8641 ? DMGL_JAVA | DMGL_RET_POSTFIX
8642 : DMGL_RET_DROP)));
a766d390 8643 }
900e11f9
JK
8644 if (demangled)
8645 {
8646 make_cleanup (xfree, demangled);
8647 canon = demangled;
8648 }
8649 else
8650 {
8651 canon = mangled;
8652 need_copy = 0;
8653 }
8654 }
8655
8656 if (canon == NULL || check_physname)
8657 {
8658 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8659
8660 if (canon != NULL && strcmp (physname, canon) != 0)
8661 {
8662 /* It may not mean a bug in GDB. The compiler could also
8663 compute DW_AT_linkage_name incorrectly. But in such case
8664 GDB would need to be bug-to-bug compatible. */
8665
8666 complaint (&symfile_complaints,
8667 _("Computed physname <%s> does not match demangled <%s> "
8668 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8669 physname, canon, mangled, die->offset.sect_off,
8670 objfile_name (objfile));
900e11f9
JK
8671
8672 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8673 is available here - over computed PHYSNAME. It is safer
8674 against both buggy GDB and buggy compilers. */
8675
8676 retval = canon;
8677 }
8678 else
8679 {
8680 retval = physname;
8681 need_copy = 0;
8682 }
8683 }
8684 else
8685 retval = canon;
8686
8687 if (need_copy)
34a68019
TT
8688 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8689 retval, strlen (retval));
900e11f9
JK
8690
8691 do_cleanups (back_to);
8692 return retval;
0114d602
DJ
8693}
8694
74921315
KS
8695/* Inspect DIE in CU for a namespace alias. If one exists, record
8696 a new symbol for it.
8697
8698 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8699
8700static int
8701read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8702{
8703 struct attribute *attr;
8704
8705 /* If the die does not have a name, this is not a namespace
8706 alias. */
8707 attr = dwarf2_attr (die, DW_AT_name, cu);
8708 if (attr != NULL)
8709 {
8710 int num;
8711 struct die_info *d = die;
8712 struct dwarf2_cu *imported_cu = cu;
8713
8714 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8715 keep inspecting DIEs until we hit the underlying import. */
8716#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8717 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8718 {
8719 attr = dwarf2_attr (d, DW_AT_import, cu);
8720 if (attr == NULL)
8721 break;
8722
8723 d = follow_die_ref (d, attr, &imported_cu);
8724 if (d->tag != DW_TAG_imported_declaration)
8725 break;
8726 }
8727
8728 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8729 {
8730 complaint (&symfile_complaints,
8731 _("DIE at 0x%x has too many recursively imported "
8732 "declarations"), d->offset.sect_off);
8733 return 0;
8734 }
8735
8736 if (attr != NULL)
8737 {
8738 struct type *type;
8739 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8740
8741 type = get_die_type_at_offset (offset, cu->per_cu);
8742 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8743 {
8744 /* This declaration is a global namespace alias. Add
8745 a symbol for it whose type is the aliased namespace. */
8746 new_symbol (die, type, cu);
8747 return 1;
8748 }
8749 }
8750 }
8751
8752 return 0;
8753}
8754
27aa8d6a
SW
8755/* Read the import statement specified by the given die and record it. */
8756
8757static void
8758read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8759{
bb5ed363 8760 struct objfile *objfile = cu->objfile;
27aa8d6a 8761 struct attribute *import_attr;
32019081 8762 struct die_info *imported_die, *child_die;
de4affc9 8763 struct dwarf2_cu *imported_cu;
27aa8d6a 8764 const char *imported_name;
794684b6 8765 const char *imported_name_prefix;
13387711
SW
8766 const char *canonical_name;
8767 const char *import_alias;
8768 const char *imported_declaration = NULL;
794684b6 8769 const char *import_prefix;
32019081
JK
8770 VEC (const_char_ptr) *excludes = NULL;
8771 struct cleanup *cleanups;
13387711 8772
27aa8d6a
SW
8773 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8774 if (import_attr == NULL)
8775 {
8776 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8777 dwarf_tag_name (die->tag));
8778 return;
8779 }
8780
de4affc9
CC
8781 imported_cu = cu;
8782 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8783 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8784 if (imported_name == NULL)
8785 {
8786 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8787
8788 The import in the following code:
8789 namespace A
8790 {
8791 typedef int B;
8792 }
8793
8794 int main ()
8795 {
8796 using A::B;
8797 B b;
8798 return b;
8799 }
8800
8801 ...
8802 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8803 <52> DW_AT_decl_file : 1
8804 <53> DW_AT_decl_line : 6
8805 <54> DW_AT_import : <0x75>
8806 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8807 <59> DW_AT_name : B
8808 <5b> DW_AT_decl_file : 1
8809 <5c> DW_AT_decl_line : 2
8810 <5d> DW_AT_type : <0x6e>
8811 ...
8812 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8813 <76> DW_AT_byte_size : 4
8814 <77> DW_AT_encoding : 5 (signed)
8815
8816 imports the wrong die ( 0x75 instead of 0x58 ).
8817 This case will be ignored until the gcc bug is fixed. */
8818 return;
8819 }
8820
82856980
SW
8821 /* Figure out the local name after import. */
8822 import_alias = dwarf2_name (die, cu);
27aa8d6a 8823
794684b6
SW
8824 /* Figure out where the statement is being imported to. */
8825 import_prefix = determine_prefix (die, cu);
8826
8827 /* Figure out what the scope of the imported die is and prepend it
8828 to the name of the imported die. */
de4affc9 8829 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8830
f55ee35c
JK
8831 if (imported_die->tag != DW_TAG_namespace
8832 && imported_die->tag != DW_TAG_module)
794684b6 8833 {
13387711
SW
8834 imported_declaration = imported_name;
8835 canonical_name = imported_name_prefix;
794684b6 8836 }
13387711 8837 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8838 canonical_name = obconcat (&objfile->objfile_obstack,
8839 imported_name_prefix, "::", imported_name,
8840 (char *) NULL);
13387711
SW
8841 else
8842 canonical_name = imported_name;
794684b6 8843
32019081
JK
8844 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8845
8846 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8847 for (child_die = die->child; child_die && child_die->tag;
8848 child_die = sibling_die (child_die))
8849 {
8850 /* DWARF-4: A Fortran use statement with a “rename list” may be
8851 represented by an imported module entry with an import attribute
8852 referring to the module and owned entries corresponding to those
8853 entities that are renamed as part of being imported. */
8854
8855 if (child_die->tag != DW_TAG_imported_declaration)
8856 {
8857 complaint (&symfile_complaints,
8858 _("child DW_TAG_imported_declaration expected "
8859 "- DIE at 0x%x [in module %s]"),
4262abfb 8860 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8861 continue;
8862 }
8863
8864 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8865 if (import_attr == NULL)
8866 {
8867 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8868 dwarf_tag_name (child_die->tag));
8869 continue;
8870 }
8871
8872 imported_cu = cu;
8873 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8874 &imported_cu);
8875 imported_name = dwarf2_name (imported_die, imported_cu);
8876 if (imported_name == NULL)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration has unknown "
8880 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8881 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8882 continue;
8883 }
8884
8885 VEC_safe_push (const_char_ptr, excludes, imported_name);
8886
8887 process_die (child_die, cu);
8888 }
8889
c0cc3a76
SW
8890 cp_add_using_directive (import_prefix,
8891 canonical_name,
8892 import_alias,
13387711 8893 imported_declaration,
32019081 8894 excludes,
12aaed36 8895 0,
bb5ed363 8896 &objfile->objfile_obstack);
32019081
JK
8897
8898 do_cleanups (cleanups);
27aa8d6a
SW
8899}
8900
f4dc4d17 8901/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8902
cb1df416
DJ
8903static void
8904free_cu_line_header (void *arg)
8905{
8906 struct dwarf2_cu *cu = arg;
8907
8908 free_line_header (cu->line_header);
8909 cu->line_header = NULL;
8910}
8911
1b80a9fa
JK
8912/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8913 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8914 this, it was first present in GCC release 4.3.0. */
8915
8916static int
8917producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8918{
8919 if (!cu->checked_producer)
8920 check_producer (cu);
8921
8922 return cu->producer_is_gcc_lt_4_3;
8923}
8924
9291a0cd
TT
8925static void
8926find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8927 const char **name, const char **comp_dir)
9291a0cd
TT
8928{
8929 struct attribute *attr;
8930
8931 *name = NULL;
8932 *comp_dir = NULL;
8933
8934 /* Find the filename. Do not use dwarf2_name here, since the filename
8935 is not a source language identifier. */
8936 attr = dwarf2_attr (die, DW_AT_name, cu);
8937 if (attr)
8938 {
8939 *name = DW_STRING (attr);
8940 }
8941
8942 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8943 if (attr)
8944 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8945 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8946 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8947 {
15d034d0
TT
8948 char *d = ldirname (*name);
8949
8950 *comp_dir = d;
8951 if (d != NULL)
8952 make_cleanup (xfree, d);
9291a0cd
TT
8953 }
8954 if (*comp_dir != NULL)
8955 {
8956 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8957 directory, get rid of it. */
8958 char *cp = strchr (*comp_dir, ':');
8959
8960 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8961 *comp_dir = cp + 1;
8962 }
8963
8964 if (*name == NULL)
8965 *name = "<unknown>";
8966}
8967
f4dc4d17
DE
8968/* Handle DW_AT_stmt_list for a compilation unit.
8969 DIE is the DW_TAG_compile_unit die for CU.
a1b34d15 8970 COMP_DIR is the compilation directory. */
2ab95328
TT
8971
8972static void
8973handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8974 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8975{
8976 struct attribute *attr;
2ab95328 8977
f4dc4d17
DE
8978 gdb_assert (! cu->per_cu->is_debug_types);
8979
2ab95328
TT
8980 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8981 if (attr)
8982 {
8983 unsigned int line_offset = DW_UNSND (attr);
8984 struct line_header *line_header
3019eac3 8985 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8986
8987 if (line_header)
dee91e82
DE
8988 {
8989 cu->line_header = line_header;
8990 make_cleanup (free_cu_line_header, cu);
a1b34d15 8991 dwarf_decode_lines (line_header, comp_dir, cu, NULL);
dee91e82 8992 }
2ab95328
TT
8993 }
8994}
8995
95554aad 8996/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8997
c906108c 8998static void
e7c27a73 8999read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9000{
dee91e82 9001 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 9002 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9003 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9004 CORE_ADDR highpc = ((CORE_ADDR) 0);
9005 struct attribute *attr;
15d034d0
TT
9006 const char *name = NULL;
9007 const char *comp_dir = NULL;
c906108c
SS
9008 struct die_info *child_die;
9009 bfd *abfd = objfile->obfd;
e142c38c 9010 CORE_ADDR baseaddr;
6e70227d 9011
e142c38c 9012 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9013
fae299cd 9014 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9015
9016 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9017 from finish_block. */
2acceee2 9018 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
9019 lowpc = highpc;
9020 lowpc += baseaddr;
9021 highpc += baseaddr;
9022
9291a0cd 9023 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9024
95554aad 9025 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9026
f4b8a18d
KW
9027 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9028 standardised yet. As a workaround for the language detection we fall
9029 back to the DW_AT_producer string. */
9030 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9031 cu->language = language_opencl;
9032
3019eac3
DE
9033 /* Similar hack for Go. */
9034 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9035 set_cu_language (DW_LANG_Go, cu);
9036
f4dc4d17 9037 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9038
9039 /* Decode line number information if present. We do this before
9040 processing child DIEs, so that the line header table is available
9041 for DW_AT_decl_file. */
f4dc4d17 9042 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
9043
9044 /* Process all dies in compilation unit. */
9045 if (die->child != NULL)
9046 {
9047 child_die = die->child;
9048 while (child_die && child_die->tag)
9049 {
9050 process_die (child_die, cu);
9051 child_die = sibling_die (child_die);
9052 }
9053 }
9054
9055 /* Decode macro information, if present. Dwarf 2 macro information
9056 refers to information in the line number info statement program
9057 header, so we can only read it if we've read the header
9058 successfully. */
9059 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9060 if (attr && cu->line_header)
9061 {
9062 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9063 complaint (&symfile_complaints,
9064 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9065
09262596 9066 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
9067 }
9068 else
9069 {
9070 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9071 if (attr && cu->line_header)
9072 {
9073 unsigned int macro_offset = DW_UNSND (attr);
9074
09262596 9075 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
9076 }
9077 }
9078
9079 do_cleanups (back_to);
9080}
9081
f4dc4d17
DE
9082/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9083 Create the set of symtabs used by this TU, or if this TU is sharing
9084 symtabs with another TU and the symtabs have already been created
9085 then restore those symtabs in the line header.
9086 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9087
9088static void
f4dc4d17 9089setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9090{
f4dc4d17
DE
9091 struct objfile *objfile = dwarf2_per_objfile->objfile;
9092 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9093 struct type_unit_group *tu_group;
9094 int first_time;
9095 struct line_header *lh;
3019eac3 9096 struct attribute *attr;
f4dc4d17 9097 unsigned int i, line_offset;
0186c6a7 9098 struct signatured_type *sig_type;
3019eac3 9099
f4dc4d17 9100 gdb_assert (per_cu->is_debug_types);
0186c6a7 9101 sig_type = (struct signatured_type *) per_cu;
3019eac3 9102
f4dc4d17 9103 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9104
f4dc4d17 9105 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9106 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9107 if (sig_type->type_unit_group == NULL)
9108 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9109 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9110
9111 /* If we've already processed this stmt_list there's no real need to
9112 do it again, we could fake it and just recreate the part we need
9113 (file name,index -> symtab mapping). If data shows this optimization
9114 is useful we can do it then. */
9115 first_time = tu_group->primary_symtab == NULL;
9116
9117 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9118 debug info. */
9119 lh = NULL;
9120 if (attr != NULL)
3019eac3 9121 {
f4dc4d17
DE
9122 line_offset = DW_UNSND (attr);
9123 lh = dwarf_decode_line_header (line_offset, cu);
9124 }
9125 if (lh == NULL)
9126 {
9127 if (first_time)
9128 dwarf2_start_symtab (cu, "", NULL, 0);
9129 else
9130 {
9131 gdb_assert (tu_group->symtabs == NULL);
9132 restart_symtab (0);
9133 }
9134 /* Note: The primary symtab will get allocated at the end. */
9135 return;
3019eac3
DE
9136 }
9137
f4dc4d17
DE
9138 cu->line_header = lh;
9139 make_cleanup (free_cu_line_header, cu);
3019eac3 9140
f4dc4d17
DE
9141 if (first_time)
9142 {
9143 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9144
f4dc4d17
DE
9145 tu_group->num_symtabs = lh->num_file_names;
9146 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9147
f4dc4d17
DE
9148 for (i = 0; i < lh->num_file_names; ++i)
9149 {
d521ce57 9150 const char *dir = NULL;
f4dc4d17 9151 struct file_entry *fe = &lh->file_names[i];
3019eac3 9152
f4dc4d17
DE
9153 if (fe->dir_index)
9154 dir = lh->include_dirs[fe->dir_index - 1];
9155 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9156
f4dc4d17
DE
9157 /* Note: We don't have to watch for the main subfile here, type units
9158 don't have DW_AT_name. */
3019eac3 9159
f4dc4d17
DE
9160 if (current_subfile->symtab == NULL)
9161 {
9162 /* NOTE: start_subfile will recognize when it's been passed
9163 a file it has already seen. So we can't assume there's a
9164 simple mapping from lh->file_names to subfiles,
9165 lh->file_names may contain dups. */
9166 current_subfile->symtab = allocate_symtab (current_subfile->name,
9167 objfile);
9168 }
9169
9170 fe->symtab = current_subfile->symtab;
9171 tu_group->symtabs[i] = fe->symtab;
9172 }
9173 }
9174 else
3019eac3 9175 {
f4dc4d17
DE
9176 restart_symtab (0);
9177
9178 for (i = 0; i < lh->num_file_names; ++i)
9179 {
9180 struct file_entry *fe = &lh->file_names[i];
9181
9182 fe->symtab = tu_group->symtabs[i];
9183 }
3019eac3
DE
9184 }
9185
f4dc4d17
DE
9186 /* The main symtab is allocated last. Type units don't have DW_AT_name
9187 so they don't have a "real" (so to speak) symtab anyway.
9188 There is later code that will assign the main symtab to all symbols
9189 that don't have one. We need to handle the case of a symbol with a
9190 missing symtab (DW_AT_decl_file) anyway. */
9191}
3019eac3 9192
f4dc4d17
DE
9193/* Process DW_TAG_type_unit.
9194 For TUs we want to skip the first top level sibling if it's not the
9195 actual type being defined by this TU. In this case the first top
9196 level sibling is there to provide context only. */
3019eac3 9197
f4dc4d17
DE
9198static void
9199read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9200{
9201 struct die_info *child_die;
3019eac3 9202
f4dc4d17
DE
9203 prepare_one_comp_unit (cu, die, language_minimal);
9204
9205 /* Initialize (or reinitialize) the machinery for building symtabs.
9206 We do this before processing child DIEs, so that the line header table
9207 is available for DW_AT_decl_file. */
9208 setup_type_unit_groups (die, cu);
9209
9210 if (die->child != NULL)
9211 {
9212 child_die = die->child;
9213 while (child_die && child_die->tag)
9214 {
9215 process_die (child_die, cu);
9216 child_die = sibling_die (child_die);
9217 }
9218 }
3019eac3
DE
9219}
9220\f
80626a55
DE
9221/* DWO/DWP files.
9222
9223 http://gcc.gnu.org/wiki/DebugFission
9224 http://gcc.gnu.org/wiki/DebugFissionDWP
9225
9226 To simplify handling of both DWO files ("object" files with the DWARF info)
9227 and DWP files (a file with the DWOs packaged up into one file), we treat
9228 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9229
9230static hashval_t
9231hash_dwo_file (const void *item)
9232{
9233 const struct dwo_file *dwo_file = item;
a2ce51a0 9234 hashval_t hash;
3019eac3 9235
a2ce51a0
DE
9236 hash = htab_hash_string (dwo_file->dwo_name);
9237 if (dwo_file->comp_dir != NULL)
9238 hash += htab_hash_string (dwo_file->comp_dir);
9239 return hash;
3019eac3
DE
9240}
9241
9242static int
9243eq_dwo_file (const void *item_lhs, const void *item_rhs)
9244{
9245 const struct dwo_file *lhs = item_lhs;
9246 const struct dwo_file *rhs = item_rhs;
9247
a2ce51a0
DE
9248 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9249 return 0;
9250 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9251 return lhs->comp_dir == rhs->comp_dir;
9252 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9253}
9254
9255/* Allocate a hash table for DWO files. */
9256
9257static htab_t
9258allocate_dwo_file_hash_table (void)
9259{
9260 struct objfile *objfile = dwarf2_per_objfile->objfile;
9261
9262 return htab_create_alloc_ex (41,
9263 hash_dwo_file,
9264 eq_dwo_file,
9265 NULL,
9266 &objfile->objfile_obstack,
9267 hashtab_obstack_allocate,
9268 dummy_obstack_deallocate);
9269}
9270
80626a55
DE
9271/* Lookup DWO file DWO_NAME. */
9272
9273static void **
0ac5b59e 9274lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9275{
9276 struct dwo_file find_entry;
9277 void **slot;
9278
9279 if (dwarf2_per_objfile->dwo_files == NULL)
9280 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9281
9282 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9283 find_entry.dwo_name = dwo_name;
9284 find_entry.comp_dir = comp_dir;
80626a55
DE
9285 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9286
9287 return slot;
9288}
9289
3019eac3
DE
9290static hashval_t
9291hash_dwo_unit (const void *item)
9292{
9293 const struct dwo_unit *dwo_unit = item;
9294
9295 /* This drops the top 32 bits of the id, but is ok for a hash. */
9296 return dwo_unit->signature;
9297}
9298
9299static int
9300eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9301{
9302 const struct dwo_unit *lhs = item_lhs;
9303 const struct dwo_unit *rhs = item_rhs;
9304
9305 /* The signature is assumed to be unique within the DWO file.
9306 So while object file CU dwo_id's always have the value zero,
9307 that's OK, assuming each object file DWO file has only one CU,
9308 and that's the rule for now. */
9309 return lhs->signature == rhs->signature;
9310}
9311
9312/* Allocate a hash table for DWO CUs,TUs.
9313 There is one of these tables for each of CUs,TUs for each DWO file. */
9314
9315static htab_t
9316allocate_dwo_unit_table (struct objfile *objfile)
9317{
9318 /* Start out with a pretty small number.
9319 Generally DWO files contain only one CU and maybe some TUs. */
9320 return htab_create_alloc_ex (3,
9321 hash_dwo_unit,
9322 eq_dwo_unit,
9323 NULL,
9324 &objfile->objfile_obstack,
9325 hashtab_obstack_allocate,
9326 dummy_obstack_deallocate);
9327}
9328
80626a55 9329/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9330
19c3d4c9 9331struct create_dwo_cu_data
3019eac3
DE
9332{
9333 struct dwo_file *dwo_file;
19c3d4c9 9334 struct dwo_unit dwo_unit;
3019eac3
DE
9335};
9336
19c3d4c9 9337/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9338
9339static void
19c3d4c9
DE
9340create_dwo_cu_reader (const struct die_reader_specs *reader,
9341 const gdb_byte *info_ptr,
9342 struct die_info *comp_unit_die,
9343 int has_children,
9344 void *datap)
3019eac3
DE
9345{
9346 struct dwarf2_cu *cu = reader->cu;
9347 struct objfile *objfile = dwarf2_per_objfile->objfile;
9348 sect_offset offset = cu->per_cu->offset;
8a0459fd 9349 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9350 struct create_dwo_cu_data *data = datap;
3019eac3 9351 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9352 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9353 struct attribute *attr;
3019eac3
DE
9354
9355 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9356 if (attr == NULL)
9357 {
19c3d4c9
DE
9358 complaint (&symfile_complaints,
9359 _("Dwarf Error: debug entry at offset 0x%x is missing"
9360 " its dwo_id [in module %s]"),
9361 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9362 return;
9363 }
9364
3019eac3
DE
9365 dwo_unit->dwo_file = dwo_file;
9366 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9367 dwo_unit->section = section;
3019eac3
DE
9368 dwo_unit->offset = offset;
9369 dwo_unit->length = cu->per_cu->length;
9370
09406207 9371 if (dwarf2_read_debug)
4031ecc5
DE
9372 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9373 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9374}
9375
19c3d4c9
DE
9376/* Create the dwo_unit for the lone CU in DWO_FILE.
9377 Note: This function processes DWO files only, not DWP files. */
3019eac3 9378
19c3d4c9
DE
9379static struct dwo_unit *
9380create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9381{
9382 struct objfile *objfile = dwarf2_per_objfile->objfile;
9383 struct dwarf2_section_info *section = &dwo_file->sections.info;
9384 bfd *abfd;
9385 htab_t cu_htab;
d521ce57 9386 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9387 struct create_dwo_cu_data create_dwo_cu_data;
9388 struct dwo_unit *dwo_unit;
3019eac3
DE
9389
9390 dwarf2_read_section (objfile, section);
9391 info_ptr = section->buffer;
9392
9393 if (info_ptr == NULL)
9394 return NULL;
9395
9396 /* We can't set abfd until now because the section may be empty or
9397 not present, in which case section->asection will be NULL. */
a32a8923 9398 abfd = get_section_bfd_owner (section);
3019eac3 9399
09406207 9400 if (dwarf2_read_debug)
19c3d4c9
DE
9401 {
9402 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9403 get_section_name (section),
9404 get_section_file_name (section));
19c3d4c9 9405 }
3019eac3 9406
19c3d4c9
DE
9407 create_dwo_cu_data.dwo_file = dwo_file;
9408 dwo_unit = NULL;
3019eac3
DE
9409
9410 end_ptr = info_ptr + section->size;
9411 while (info_ptr < end_ptr)
9412 {
9413 struct dwarf2_per_cu_data per_cu;
9414
19c3d4c9
DE
9415 memset (&create_dwo_cu_data.dwo_unit, 0,
9416 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9417 memset (&per_cu, 0, sizeof (per_cu));
9418 per_cu.objfile = objfile;
9419 per_cu.is_debug_types = 0;
9420 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9421 per_cu.section = section;
3019eac3 9422
33e80786 9423 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9424 create_dwo_cu_reader,
9425 &create_dwo_cu_data);
9426
9427 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9428 {
9429 /* If we've already found one, complain. We only support one
9430 because having more than one requires hacking the dwo_name of
9431 each to match, which is highly unlikely to happen. */
9432 if (dwo_unit != NULL)
9433 {
9434 complaint (&symfile_complaints,
9435 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9436 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9437 break;
9438 }
9439
9440 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9441 *dwo_unit = create_dwo_cu_data.dwo_unit;
9442 }
3019eac3
DE
9443
9444 info_ptr += per_cu.length;
9445 }
9446
19c3d4c9 9447 return dwo_unit;
3019eac3
DE
9448}
9449
80626a55
DE
9450/* DWP file .debug_{cu,tu}_index section format:
9451 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9452
d2415c6c
DE
9453 DWP Version 1:
9454
80626a55
DE
9455 Both index sections have the same format, and serve to map a 64-bit
9456 signature to a set of section numbers. Each section begins with a header,
9457 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9458 indexes, and a pool of 32-bit section numbers. The index sections will be
9459 aligned at 8-byte boundaries in the file.
9460
d2415c6c
DE
9461 The index section header consists of:
9462
9463 V, 32 bit version number
9464 -, 32 bits unused
9465 N, 32 bit number of compilation units or type units in the index
9466 M, 32 bit number of slots in the hash table
80626a55 9467
d2415c6c 9468 Numbers are recorded using the byte order of the application binary.
80626a55 9469
d2415c6c
DE
9470 The hash table begins at offset 16 in the section, and consists of an array
9471 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9472 order of the application binary). Unused slots in the hash table are 0.
9473 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9474
d2415c6c
DE
9475 The parallel table begins immediately after the hash table
9476 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9477 array of 32-bit indexes (using the byte order of the application binary),
9478 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9479 table contains a 32-bit index into the pool of section numbers. For unused
9480 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9481
73869dc2
DE
9482 The pool of section numbers begins immediately following the hash table
9483 (at offset 16 + 12 * M from the beginning of the section). The pool of
9484 section numbers consists of an array of 32-bit words (using the byte order
9485 of the application binary). Each item in the array is indexed starting
9486 from 0. The hash table entry provides the index of the first section
9487 number in the set. Additional section numbers in the set follow, and the
9488 set is terminated by a 0 entry (section number 0 is not used in ELF).
9489
9490 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9491 section must be the first entry in the set, and the .debug_abbrev.dwo must
9492 be the second entry. Other members of the set may follow in any order.
9493
9494 ---
9495
9496 DWP Version 2:
9497
9498 DWP Version 2 combines all the .debug_info, etc. sections into one,
9499 and the entries in the index tables are now offsets into these sections.
9500 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9501 section.
9502
9503 Index Section Contents:
9504 Header
9505 Hash Table of Signatures dwp_hash_table.hash_table
9506 Parallel Table of Indices dwp_hash_table.unit_table
9507 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9508 Table of Section Sizes dwp_hash_table.v2.sizes
9509
9510 The index section header consists of:
9511
9512 V, 32 bit version number
9513 L, 32 bit number of columns in the table of section offsets
9514 N, 32 bit number of compilation units or type units in the index
9515 M, 32 bit number of slots in the hash table
9516
9517 Numbers are recorded using the byte order of the application binary.
9518
9519 The hash table has the same format as version 1.
9520 The parallel table of indices has the same format as version 1,
9521 except that the entries are origin-1 indices into the table of sections
9522 offsets and the table of section sizes.
9523
9524 The table of offsets begins immediately following the parallel table
9525 (at offset 16 + 12 * M from the beginning of the section). The table is
9526 a two-dimensional array of 32-bit words (using the byte order of the
9527 application binary), with L columns and N+1 rows, in row-major order.
9528 Each row in the array is indexed starting from 0. The first row provides
9529 a key to the remaining rows: each column in this row provides an identifier
9530 for a debug section, and the offsets in the same column of subsequent rows
9531 refer to that section. The section identifiers are:
9532
9533 DW_SECT_INFO 1 .debug_info.dwo
9534 DW_SECT_TYPES 2 .debug_types.dwo
9535 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9536 DW_SECT_LINE 4 .debug_line.dwo
9537 DW_SECT_LOC 5 .debug_loc.dwo
9538 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9539 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9540 DW_SECT_MACRO 8 .debug_macro.dwo
9541
9542 The offsets provided by the CU and TU index sections are the base offsets
9543 for the contributions made by each CU or TU to the corresponding section
9544 in the package file. Each CU and TU header contains an abbrev_offset
9545 field, used to find the abbreviations table for that CU or TU within the
9546 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9547 be interpreted as relative to the base offset given in the index section.
9548 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9549 should be interpreted as relative to the base offset for .debug_line.dwo,
9550 and offsets into other debug sections obtained from DWARF attributes should
9551 also be interpreted as relative to the corresponding base offset.
9552
9553 The table of sizes begins immediately following the table of offsets.
9554 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9555 with L columns and N rows, in row-major order. Each row in the array is
9556 indexed starting from 1 (row 0 is shared by the two tables).
9557
9558 ---
9559
9560 Hash table lookup is handled the same in version 1 and 2:
9561
9562 We assume that N and M will not exceed 2^32 - 1.
9563 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9564
d2415c6c
DE
9565 Given a 64-bit compilation unit signature or a type signature S, an entry
9566 in the hash table is located as follows:
80626a55 9567
d2415c6c
DE
9568 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9569 the low-order k bits all set to 1.
80626a55 9570
d2415c6c 9571 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9572
d2415c6c
DE
9573 3) If the hash table entry at index H matches the signature, use that
9574 entry. If the hash table entry at index H is unused (all zeroes),
9575 terminate the search: the signature is not present in the table.
80626a55 9576
d2415c6c 9577 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9578
d2415c6c 9579 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9580 to stop at an unused slot or find the match. */
80626a55
DE
9581
9582/* Create a hash table to map DWO IDs to their CU/TU entry in
9583 .debug_{info,types}.dwo in DWP_FILE.
9584 Returns NULL if there isn't one.
9585 Note: This function processes DWP files only, not DWO files. */
9586
9587static struct dwp_hash_table *
9588create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9589{
9590 struct objfile *objfile = dwarf2_per_objfile->objfile;
9591 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9592 const gdb_byte *index_ptr, *index_end;
80626a55 9593 struct dwarf2_section_info *index;
73869dc2 9594 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9595 struct dwp_hash_table *htab;
9596
9597 if (is_debug_types)
9598 index = &dwp_file->sections.tu_index;
9599 else
9600 index = &dwp_file->sections.cu_index;
9601
9602 if (dwarf2_section_empty_p (index))
9603 return NULL;
9604 dwarf2_read_section (objfile, index);
9605
9606 index_ptr = index->buffer;
9607 index_end = index_ptr + index->size;
9608
9609 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9610 index_ptr += 4;
9611 if (version == 2)
9612 nr_columns = read_4_bytes (dbfd, index_ptr);
9613 else
9614 nr_columns = 0;
9615 index_ptr += 4;
80626a55
DE
9616 nr_units = read_4_bytes (dbfd, index_ptr);
9617 index_ptr += 4;
9618 nr_slots = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620
73869dc2 9621 if (version != 1 && version != 2)
80626a55 9622 {
21aa081e 9623 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9624 " [in module %s]"),
21aa081e 9625 pulongest (version), dwp_file->name);
80626a55
DE
9626 }
9627 if (nr_slots != (nr_slots & -nr_slots))
9628 {
21aa081e 9629 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9630 " is not power of 2 [in module %s]"),
21aa081e 9631 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9632 }
9633
9634 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9635 htab->version = version;
9636 htab->nr_columns = nr_columns;
80626a55
DE
9637 htab->nr_units = nr_units;
9638 htab->nr_slots = nr_slots;
9639 htab->hash_table = index_ptr;
9640 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9641
9642 /* Exit early if the table is empty. */
9643 if (nr_slots == 0 || nr_units == 0
9644 || (version == 2 && nr_columns == 0))
9645 {
9646 /* All must be zero. */
9647 if (nr_slots != 0 || nr_units != 0
9648 || (version == 2 && nr_columns != 0))
9649 {
9650 complaint (&symfile_complaints,
9651 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9652 " all zero [in modules %s]"),
9653 dwp_file->name);
9654 }
9655 return htab;
9656 }
9657
9658 if (version == 1)
9659 {
9660 htab->section_pool.v1.indices =
9661 htab->unit_table + sizeof (uint32_t) * nr_slots;
9662 /* It's harder to decide whether the section is too small in v1.
9663 V1 is deprecated anyway so we punt. */
9664 }
9665 else
9666 {
9667 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9668 int *ids = htab->section_pool.v2.section_ids;
9669 /* Reverse map for error checking. */
9670 int ids_seen[DW_SECT_MAX + 1];
9671 int i;
9672
9673 if (nr_columns < 2)
9674 {
9675 error (_("Dwarf Error: bad DWP hash table, too few columns"
9676 " in section table [in module %s]"),
9677 dwp_file->name);
9678 }
9679 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9680 {
9681 error (_("Dwarf Error: bad DWP hash table, too many columns"
9682 " in section table [in module %s]"),
9683 dwp_file->name);
9684 }
9685 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9686 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9687 for (i = 0; i < nr_columns; ++i)
9688 {
9689 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9690
9691 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9692 {
9693 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9694 " in section table [in module %s]"),
9695 id, dwp_file->name);
9696 }
9697 if (ids_seen[id] != -1)
9698 {
9699 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9700 " id %d in section table [in module %s]"),
9701 id, dwp_file->name);
9702 }
9703 ids_seen[id] = i;
9704 ids[i] = id;
9705 }
9706 /* Must have exactly one info or types section. */
9707 if (((ids_seen[DW_SECT_INFO] != -1)
9708 + (ids_seen[DW_SECT_TYPES] != -1))
9709 != 1)
9710 {
9711 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9712 " DWO info/types section [in module %s]"),
9713 dwp_file->name);
9714 }
9715 /* Must have an abbrev section. */
9716 if (ids_seen[DW_SECT_ABBREV] == -1)
9717 {
9718 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9719 " section [in module %s]"),
9720 dwp_file->name);
9721 }
9722 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9723 htab->section_pool.v2.sizes =
9724 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9725 * nr_units * nr_columns);
9726 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9727 * nr_units * nr_columns))
9728 > index_end)
9729 {
9730 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9731 " [in module %s]"),
9732 dwp_file->name);
9733 }
9734 }
80626a55
DE
9735
9736 return htab;
9737}
9738
9739/* Update SECTIONS with the data from SECTP.
9740
9741 This function is like the other "locate" section routines that are
9742 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9743 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9744
9745 The result is non-zero for success, or zero if an error was found. */
9746
9747static int
73869dc2
DE
9748locate_v1_virtual_dwo_sections (asection *sectp,
9749 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9750{
9751 const struct dwop_section_names *names = &dwop_section_names;
9752
9753 if (section_is_p (sectp->name, &names->abbrev_dwo))
9754 {
9755 /* There can be only one. */
73869dc2 9756 if (sections->abbrev.s.asection != NULL)
80626a55 9757 return 0;
73869dc2 9758 sections->abbrev.s.asection = sectp;
80626a55
DE
9759 sections->abbrev.size = bfd_get_section_size (sectp);
9760 }
9761 else if (section_is_p (sectp->name, &names->info_dwo)
9762 || section_is_p (sectp->name, &names->types_dwo))
9763 {
9764 /* There can be only one. */
73869dc2 9765 if (sections->info_or_types.s.asection != NULL)
80626a55 9766 return 0;
73869dc2 9767 sections->info_or_types.s.asection = sectp;
80626a55
DE
9768 sections->info_or_types.size = bfd_get_section_size (sectp);
9769 }
9770 else if (section_is_p (sectp->name, &names->line_dwo))
9771 {
9772 /* There can be only one. */
73869dc2 9773 if (sections->line.s.asection != NULL)
80626a55 9774 return 0;
73869dc2 9775 sections->line.s.asection = sectp;
80626a55
DE
9776 sections->line.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->loc_dwo))
9779 {
9780 /* There can be only one. */
73869dc2 9781 if (sections->loc.s.asection != NULL)
80626a55 9782 return 0;
73869dc2 9783 sections->loc.s.asection = sectp;
80626a55
DE
9784 sections->loc.size = bfd_get_section_size (sectp);
9785 }
9786 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9787 {
9788 /* There can be only one. */
73869dc2 9789 if (sections->macinfo.s.asection != NULL)
80626a55 9790 return 0;
73869dc2 9791 sections->macinfo.s.asection = sectp;
80626a55
DE
9792 sections->macinfo.size = bfd_get_section_size (sectp);
9793 }
9794 else if (section_is_p (sectp->name, &names->macro_dwo))
9795 {
9796 /* There can be only one. */
73869dc2 9797 if (sections->macro.s.asection != NULL)
80626a55 9798 return 0;
73869dc2 9799 sections->macro.s.asection = sectp;
80626a55
DE
9800 sections->macro.size = bfd_get_section_size (sectp);
9801 }
9802 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9803 {
9804 /* There can be only one. */
73869dc2 9805 if (sections->str_offsets.s.asection != NULL)
80626a55 9806 return 0;
73869dc2 9807 sections->str_offsets.s.asection = sectp;
80626a55
DE
9808 sections->str_offsets.size = bfd_get_section_size (sectp);
9809 }
9810 else
9811 {
9812 /* No other kind of section is valid. */
9813 return 0;
9814 }
9815
9816 return 1;
9817}
9818
73869dc2
DE
9819/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9820 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9821 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9822 This is for DWP version 1 files. */
80626a55
DE
9823
9824static struct dwo_unit *
73869dc2
DE
9825create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9826 uint32_t unit_index,
9827 const char *comp_dir,
9828 ULONGEST signature, int is_debug_types)
80626a55
DE
9829{
9830 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9831 const struct dwp_hash_table *dwp_htab =
9832 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9833 bfd *dbfd = dwp_file->dbfd;
9834 const char *kind = is_debug_types ? "TU" : "CU";
9835 struct dwo_file *dwo_file;
9836 struct dwo_unit *dwo_unit;
73869dc2 9837 struct virtual_v1_dwo_sections sections;
80626a55
DE
9838 void **dwo_file_slot;
9839 char *virtual_dwo_name;
9840 struct dwarf2_section_info *cutu;
9841 struct cleanup *cleanups;
9842 int i;
9843
73869dc2
DE
9844 gdb_assert (dwp_file->version == 1);
9845
80626a55
DE
9846 if (dwarf2_read_debug)
9847 {
73869dc2 9848 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9849 kind,
73869dc2 9850 pulongest (unit_index), hex_string (signature),
80626a55
DE
9851 dwp_file->name);
9852 }
9853
19ac8c2e 9854 /* Fetch the sections of this DWO unit.
80626a55
DE
9855 Put a limit on the number of sections we look for so that bad data
9856 doesn't cause us to loop forever. */
9857
73869dc2 9858#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9859 (1 /* .debug_info or .debug_types */ \
9860 + 1 /* .debug_abbrev */ \
9861 + 1 /* .debug_line */ \
9862 + 1 /* .debug_loc */ \
9863 + 1 /* .debug_str_offsets */ \
19ac8c2e 9864 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9865 + 1 /* trailing zero */)
9866
9867 memset (&sections, 0, sizeof (sections));
9868 cleanups = make_cleanup (null_cleanup, 0);
9869
73869dc2 9870 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9871 {
9872 asection *sectp;
9873 uint32_t section_nr =
9874 read_4_bytes (dbfd,
73869dc2
DE
9875 dwp_htab->section_pool.v1.indices
9876 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9877
9878 if (section_nr == 0)
9879 break;
9880 if (section_nr >= dwp_file->num_sections)
9881 {
9882 error (_("Dwarf Error: bad DWP hash table, section number too large"
9883 " [in module %s]"),
9884 dwp_file->name);
9885 }
9886
9887 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9888 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9889 {
9890 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9891 " [in module %s]"),
9892 dwp_file->name);
9893 }
9894 }
9895
9896 if (i < 2
a32a8923
DE
9897 || dwarf2_section_empty_p (&sections.info_or_types)
9898 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
73869dc2 9904 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9905 {
9906 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9907 " [in module %s]"),
9908 dwp_file->name);
9909 }
9910
9911 /* It's easier for the rest of the code if we fake a struct dwo_file and
9912 have dwo_unit "live" in that. At least for now.
9913
9914 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9915 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9916 file, we can combine them back into a virtual DWO file to save space
9917 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9918 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9919
2792b94d
PM
9920 virtual_dwo_name =
9921 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9922 get_section_id (&sections.abbrev),
9923 get_section_id (&sections.line),
9924 get_section_id (&sections.loc),
9925 get_section_id (&sections.str_offsets));
80626a55
DE
9926 make_cleanup (xfree, virtual_dwo_name);
9927 /* Can we use an existing virtual DWO file? */
0ac5b59e 9928 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9929 /* Create one if necessary. */
9930 if (*dwo_file_slot == NULL)
9931 {
9932 if (dwarf2_read_debug)
9933 {
9934 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9935 virtual_dwo_name);
9936 }
9937 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9938 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9939 virtual_dwo_name,
9940 strlen (virtual_dwo_name));
9941 dwo_file->comp_dir = comp_dir;
80626a55
DE
9942 dwo_file->sections.abbrev = sections.abbrev;
9943 dwo_file->sections.line = sections.line;
9944 dwo_file->sections.loc = sections.loc;
9945 dwo_file->sections.macinfo = sections.macinfo;
9946 dwo_file->sections.macro = sections.macro;
9947 dwo_file->sections.str_offsets = sections.str_offsets;
9948 /* The "str" section is global to the entire DWP file. */
9949 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9950 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9951 there's no need to record it in dwo_file.
9952 Also, we can't simply record type sections in dwo_file because
9953 we record a pointer into the vector in dwo_unit. As we collect more
9954 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9955 for it, invalidating all copies of pointers into the previous
9956 contents. */
80626a55
DE
9957 *dwo_file_slot = dwo_file;
9958 }
9959 else
9960 {
9961 if (dwarf2_read_debug)
9962 {
9963 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9964 virtual_dwo_name);
9965 }
9966 dwo_file = *dwo_file_slot;
9967 }
9968 do_cleanups (cleanups);
9969
9970 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9971 dwo_unit->dwo_file = dwo_file;
9972 dwo_unit->signature = signature;
8a0459fd
DE
9973 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9974 sizeof (struct dwarf2_section_info));
9975 *dwo_unit->section = sections.info_or_types;
57d63ce2 9976 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9977
9978 return dwo_unit;
9979}
9980
73869dc2
DE
9981/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9982 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9983 piece within that section used by a TU/CU, return a virtual section
9984 of just that piece. */
9985
9986static struct dwarf2_section_info
9987create_dwp_v2_section (struct dwarf2_section_info *section,
9988 bfd_size_type offset, bfd_size_type size)
9989{
9990 struct dwarf2_section_info result;
9991 asection *sectp;
9992
9993 gdb_assert (section != NULL);
9994 gdb_assert (!section->is_virtual);
9995
9996 memset (&result, 0, sizeof (result));
9997 result.s.containing_section = section;
9998 result.is_virtual = 1;
9999
10000 if (size == 0)
10001 return result;
10002
10003 sectp = get_section_bfd_section (section);
10004
10005 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10006 bounds of the real section. This is a pretty-rare event, so just
10007 flag an error (easier) instead of a warning and trying to cope. */
10008 if (sectp == NULL
10009 || offset + size > bfd_get_section_size (sectp))
10010 {
10011 bfd *abfd = sectp->owner;
10012
10013 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10014 " in section %s [in module %s]"),
10015 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10016 objfile_name (dwarf2_per_objfile->objfile));
10017 }
10018
10019 result.virtual_offset = offset;
10020 result.size = size;
10021 return result;
10022}
10023
10024/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10025 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10026 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10027 This is for DWP version 2 files. */
10028
10029static struct dwo_unit *
10030create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10031 uint32_t unit_index,
10032 const char *comp_dir,
10033 ULONGEST signature, int is_debug_types)
10034{
10035 struct objfile *objfile = dwarf2_per_objfile->objfile;
10036 const struct dwp_hash_table *dwp_htab =
10037 is_debug_types ? dwp_file->tus : dwp_file->cus;
10038 bfd *dbfd = dwp_file->dbfd;
10039 const char *kind = is_debug_types ? "TU" : "CU";
10040 struct dwo_file *dwo_file;
10041 struct dwo_unit *dwo_unit;
10042 struct virtual_v2_dwo_sections sections;
10043 void **dwo_file_slot;
10044 char *virtual_dwo_name;
10045 struct dwarf2_section_info *cutu;
10046 struct cleanup *cleanups;
10047 int i;
10048
10049 gdb_assert (dwp_file->version == 2);
10050
10051 if (dwarf2_read_debug)
10052 {
10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10054 kind,
10055 pulongest (unit_index), hex_string (signature),
10056 dwp_file->name);
10057 }
10058
10059 /* Fetch the section offsets of this DWO unit. */
10060
10061 memset (&sections, 0, sizeof (sections));
10062 cleanups = make_cleanup (null_cleanup, 0);
10063
10064 for (i = 0; i < dwp_htab->nr_columns; ++i)
10065 {
10066 uint32_t offset = read_4_bytes (dbfd,
10067 dwp_htab->section_pool.v2.offsets
10068 + (((unit_index - 1) * dwp_htab->nr_columns
10069 + i)
10070 * sizeof (uint32_t)));
10071 uint32_t size = read_4_bytes (dbfd,
10072 dwp_htab->section_pool.v2.sizes
10073 + (((unit_index - 1) * dwp_htab->nr_columns
10074 + i)
10075 * sizeof (uint32_t)));
10076
10077 switch (dwp_htab->section_pool.v2.section_ids[i])
10078 {
10079 case DW_SECT_INFO:
10080 case DW_SECT_TYPES:
10081 sections.info_or_types_offset = offset;
10082 sections.info_or_types_size = size;
10083 break;
10084 case DW_SECT_ABBREV:
10085 sections.abbrev_offset = offset;
10086 sections.abbrev_size = size;
10087 break;
10088 case DW_SECT_LINE:
10089 sections.line_offset = offset;
10090 sections.line_size = size;
10091 break;
10092 case DW_SECT_LOC:
10093 sections.loc_offset = offset;
10094 sections.loc_size = size;
10095 break;
10096 case DW_SECT_STR_OFFSETS:
10097 sections.str_offsets_offset = offset;
10098 sections.str_offsets_size = size;
10099 break;
10100 case DW_SECT_MACINFO:
10101 sections.macinfo_offset = offset;
10102 sections.macinfo_size = size;
10103 break;
10104 case DW_SECT_MACRO:
10105 sections.macro_offset = offset;
10106 sections.macro_size = size;
10107 break;
10108 }
10109 }
10110
10111 /* It's easier for the rest of the code if we fake a struct dwo_file and
10112 have dwo_unit "live" in that. At least for now.
10113
10114 The DWP file can be made up of a random collection of CUs and TUs.
10115 However, for each CU + set of TUs that came from the same original DWO
10116 file, we can combine them back into a virtual DWO file to save space
10117 (fewer struct dwo_file objects to allocate). Remember that for really
10118 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10119
10120 virtual_dwo_name =
10121 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10122 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10123 (long) (sections.line_size ? sections.line_offset : 0),
10124 (long) (sections.loc_size ? sections.loc_offset : 0),
10125 (long) (sections.str_offsets_size
10126 ? sections.str_offsets_offset : 0));
10127 make_cleanup (xfree, virtual_dwo_name);
10128 /* Can we use an existing virtual DWO file? */
10129 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10130 /* Create one if necessary. */
10131 if (*dwo_file_slot == NULL)
10132 {
10133 if (dwarf2_read_debug)
10134 {
10135 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10136 virtual_dwo_name);
10137 }
10138 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10139 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10140 virtual_dwo_name,
10141 strlen (virtual_dwo_name));
10142 dwo_file->comp_dir = comp_dir;
10143 dwo_file->sections.abbrev =
10144 create_dwp_v2_section (&dwp_file->sections.abbrev,
10145 sections.abbrev_offset, sections.abbrev_size);
10146 dwo_file->sections.line =
10147 create_dwp_v2_section (&dwp_file->sections.line,
10148 sections.line_offset, sections.line_size);
10149 dwo_file->sections.loc =
10150 create_dwp_v2_section (&dwp_file->sections.loc,
10151 sections.loc_offset, sections.loc_size);
10152 dwo_file->sections.macinfo =
10153 create_dwp_v2_section (&dwp_file->sections.macinfo,
10154 sections.macinfo_offset, sections.macinfo_size);
10155 dwo_file->sections.macro =
10156 create_dwp_v2_section (&dwp_file->sections.macro,
10157 sections.macro_offset, sections.macro_size);
10158 dwo_file->sections.str_offsets =
10159 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10160 sections.str_offsets_offset,
10161 sections.str_offsets_size);
10162 /* The "str" section is global to the entire DWP file. */
10163 dwo_file->sections.str = dwp_file->sections.str;
10164 /* The info or types section is assigned below to dwo_unit,
10165 there's no need to record it in dwo_file.
10166 Also, we can't simply record type sections in dwo_file because
10167 we record a pointer into the vector in dwo_unit. As we collect more
10168 types we'll grow the vector and eventually have to reallocate space
10169 for it, invalidating all copies of pointers into the previous
10170 contents. */
10171 *dwo_file_slot = dwo_file;
10172 }
10173 else
10174 {
10175 if (dwarf2_read_debug)
10176 {
10177 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10178 virtual_dwo_name);
10179 }
10180 dwo_file = *dwo_file_slot;
10181 }
10182 do_cleanups (cleanups);
10183
10184 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10185 dwo_unit->dwo_file = dwo_file;
10186 dwo_unit->signature = signature;
10187 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10188 sizeof (struct dwarf2_section_info));
10189 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10190 ? &dwp_file->sections.types
10191 : &dwp_file->sections.info,
10192 sections.info_or_types_offset,
10193 sections.info_or_types_size);
10194 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10195
10196 return dwo_unit;
10197}
10198
57d63ce2
DE
10199/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10200 Returns NULL if the signature isn't found. */
80626a55
DE
10201
10202static struct dwo_unit *
57d63ce2
DE
10203lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10204 ULONGEST signature, int is_debug_types)
80626a55 10205{
57d63ce2
DE
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10208 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10209 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10210 uint32_t hash = signature & mask;
10211 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10212 unsigned int i;
10213 void **slot;
10214 struct dwo_unit find_dwo_cu, *dwo_cu;
10215
10216 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10217 find_dwo_cu.signature = signature;
19ac8c2e
DE
10218 slot = htab_find_slot (is_debug_types
10219 ? dwp_file->loaded_tus
10220 : dwp_file->loaded_cus,
10221 &find_dwo_cu, INSERT);
80626a55
DE
10222
10223 if (*slot != NULL)
10224 return *slot;
10225
10226 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10227 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10228 {
10229 ULONGEST signature_in_table;
10230
10231 signature_in_table =
57d63ce2 10232 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10233 if (signature_in_table == signature)
10234 {
57d63ce2
DE
10235 uint32_t unit_index =
10236 read_4_bytes (dbfd,
10237 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10238
73869dc2
DE
10239 if (dwp_file->version == 1)
10240 {
10241 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10242 comp_dir, signature,
10243 is_debug_types);
10244 }
10245 else
10246 {
10247 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10248 comp_dir, signature,
10249 is_debug_types);
10250 }
80626a55
DE
10251 return *slot;
10252 }
10253 if (signature_in_table == 0)
10254 return NULL;
10255 hash = (hash + hash2) & mask;
10256 }
10257
10258 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10259 " [in module %s]"),
10260 dwp_file->name);
10261}
10262
ab5088bf 10263/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10264 Open the file specified by FILE_NAME and hand it off to BFD for
10265 preliminary analysis. Return a newly initialized bfd *, which
10266 includes a canonicalized copy of FILE_NAME.
80626a55 10267 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10268 SEARCH_CWD is true if the current directory is to be searched.
10269 It will be searched before debug-file-directory.
13aaf454
DE
10270 If successful, the file is added to the bfd include table of the
10271 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10272 If unable to find/open the file, return NULL.
3019eac3
DE
10273 NOTE: This function is derived from symfile_bfd_open. */
10274
10275static bfd *
6ac97d4c 10276try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10277{
10278 bfd *sym_bfd;
80626a55 10279 int desc, flags;
3019eac3 10280 char *absolute_name;
9c02c129
DE
10281 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10282 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10283 to debug_file_directory. */
10284 char *search_path;
10285 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10286
6ac97d4c
DE
10287 if (search_cwd)
10288 {
10289 if (*debug_file_directory != '\0')
10290 search_path = concat (".", dirname_separator_string,
10291 debug_file_directory, NULL);
10292 else
10293 search_path = xstrdup (".");
10294 }
9c02c129 10295 else
6ac97d4c 10296 search_path = xstrdup (debug_file_directory);
3019eac3 10297
492c0ab7 10298 flags = OPF_RETURN_REALPATH;
80626a55
DE
10299 if (is_dwp)
10300 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10301 desc = openp (search_path, flags, file_name,
3019eac3 10302 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10303 xfree (search_path);
3019eac3
DE
10304 if (desc < 0)
10305 return NULL;
10306
bb397797 10307 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10308 xfree (absolute_name);
9c02c129
DE
10309 if (sym_bfd == NULL)
10310 return NULL;
3019eac3
DE
10311 bfd_set_cacheable (sym_bfd, 1);
10312
10313 if (!bfd_check_format (sym_bfd, bfd_object))
10314 {
cbb099e8 10315 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10316 return NULL;
10317 }
10318
13aaf454
DE
10319 /* Success. Record the bfd as having been included by the objfile's bfd.
10320 This is important because things like demangled_names_hash lives in the
10321 objfile's per_bfd space and may have references to things like symbol
10322 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10323 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10324
3019eac3
DE
10325 return sym_bfd;
10326}
10327
ab5088bf 10328/* Try to open DWO file FILE_NAME.
3019eac3
DE
10329 COMP_DIR is the DW_AT_comp_dir attribute.
10330 The result is the bfd handle of the file.
10331 If there is a problem finding or opening the file, return NULL.
10332 Upon success, the canonicalized path of the file is stored in the bfd,
10333 same as symfile_bfd_open. */
10334
10335static bfd *
ab5088bf 10336open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10337{
10338 bfd *abfd;
3019eac3 10339
80626a55 10340 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10341 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10342
10343 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10344
10345 if (comp_dir != NULL)
10346 {
80626a55 10347 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10348
10349 /* NOTE: If comp_dir is a relative path, this will also try the
10350 search path, which seems useful. */
6ac97d4c 10351 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10352 xfree (path_to_try);
10353 if (abfd != NULL)
10354 return abfd;
10355 }
10356
10357 /* That didn't work, try debug-file-directory, which, despite its name,
10358 is a list of paths. */
10359
10360 if (*debug_file_directory == '\0')
10361 return NULL;
10362
6ac97d4c 10363 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10364}
10365
80626a55
DE
10366/* This function is mapped across the sections and remembers the offset and
10367 size of each of the DWO debugging sections we are interested in. */
10368
10369static void
10370dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10371{
10372 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10373 const struct dwop_section_names *names = &dwop_section_names;
10374
10375 if (section_is_p (sectp->name, &names->abbrev_dwo))
10376 {
73869dc2 10377 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10378 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10379 }
10380 else if (section_is_p (sectp->name, &names->info_dwo))
10381 {
73869dc2 10382 dwo_sections->info.s.asection = sectp;
80626a55
DE
10383 dwo_sections->info.size = bfd_get_section_size (sectp);
10384 }
10385 else if (section_is_p (sectp->name, &names->line_dwo))
10386 {
73869dc2 10387 dwo_sections->line.s.asection = sectp;
80626a55
DE
10388 dwo_sections->line.size = bfd_get_section_size (sectp);
10389 }
10390 else if (section_is_p (sectp->name, &names->loc_dwo))
10391 {
73869dc2 10392 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10393 dwo_sections->loc.size = bfd_get_section_size (sectp);
10394 }
10395 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10396 {
73869dc2 10397 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10398 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10399 }
10400 else if (section_is_p (sectp->name, &names->macro_dwo))
10401 {
73869dc2 10402 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10403 dwo_sections->macro.size = bfd_get_section_size (sectp);
10404 }
10405 else if (section_is_p (sectp->name, &names->str_dwo))
10406 {
73869dc2 10407 dwo_sections->str.s.asection = sectp;
80626a55
DE
10408 dwo_sections->str.size = bfd_get_section_size (sectp);
10409 }
10410 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10411 {
73869dc2 10412 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10413 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10414 }
10415 else if (section_is_p (sectp->name, &names->types_dwo))
10416 {
10417 struct dwarf2_section_info type_section;
10418
10419 memset (&type_section, 0, sizeof (type_section));
73869dc2 10420 type_section.s.asection = sectp;
80626a55
DE
10421 type_section.size = bfd_get_section_size (sectp);
10422 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10423 &type_section);
10424 }
10425}
10426
ab5088bf 10427/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10428 by PER_CU. This is for the non-DWP case.
80626a55 10429 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10430
10431static struct dwo_file *
0ac5b59e
DE
10432open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10433 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10434{
10435 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10436 struct dwo_file *dwo_file;
10437 bfd *dbfd;
3019eac3
DE
10438 struct cleanup *cleanups;
10439
ab5088bf 10440 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10441 if (dbfd == NULL)
10442 {
10443 if (dwarf2_read_debug)
10444 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10445 return NULL;
10446 }
10447 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10448 dwo_file->dwo_name = dwo_name;
10449 dwo_file->comp_dir = comp_dir;
80626a55 10450 dwo_file->dbfd = dbfd;
3019eac3
DE
10451
10452 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10453
80626a55 10454 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10455
19c3d4c9 10456 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10457
10458 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10459 dwo_file->sections.types);
10460
10461 discard_cleanups (cleanups);
10462
80626a55
DE
10463 if (dwarf2_read_debug)
10464 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10465
3019eac3
DE
10466 return dwo_file;
10467}
10468
80626a55 10469/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10470 size of each of the DWP debugging sections common to version 1 and 2 that
10471 we are interested in. */
3019eac3 10472
80626a55 10473static void
73869dc2
DE
10474dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10475 void *dwp_file_ptr)
3019eac3 10476{
80626a55
DE
10477 struct dwp_file *dwp_file = dwp_file_ptr;
10478 const struct dwop_section_names *names = &dwop_section_names;
10479 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10480
80626a55 10481 /* Record the ELF section number for later lookup: this is what the
73869dc2 10482 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10483 gdb_assert (elf_section_nr < dwp_file->num_sections);
10484 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10485
80626a55
DE
10486 /* Look for specific sections that we need. */
10487 if (section_is_p (sectp->name, &names->str_dwo))
10488 {
73869dc2 10489 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10490 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10491 }
10492 else if (section_is_p (sectp->name, &names->cu_index))
10493 {
73869dc2 10494 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10495 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10496 }
10497 else if (section_is_p (sectp->name, &names->tu_index))
10498 {
73869dc2 10499 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10500 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10501 }
10502}
3019eac3 10503
73869dc2
DE
10504/* This function is mapped across the sections and remembers the offset and
10505 size of each of the DWP version 2 debugging sections that we are interested
10506 in. This is split into a separate function because we don't know if we
10507 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10508
10509static void
10510dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10511{
10512 struct dwp_file *dwp_file = dwp_file_ptr;
10513 const struct dwop_section_names *names = &dwop_section_names;
10514 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10515
10516 /* Record the ELF section number for later lookup: this is what the
10517 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10518 gdb_assert (elf_section_nr < dwp_file->num_sections);
10519 dwp_file->elf_sections[elf_section_nr] = sectp;
10520
10521 /* Look for specific sections that we need. */
10522 if (section_is_p (sectp->name, &names->abbrev_dwo))
10523 {
10524 dwp_file->sections.abbrev.s.asection = sectp;
10525 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10526 }
10527 else if (section_is_p (sectp->name, &names->info_dwo))
10528 {
10529 dwp_file->sections.info.s.asection = sectp;
10530 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10531 }
10532 else if (section_is_p (sectp->name, &names->line_dwo))
10533 {
10534 dwp_file->sections.line.s.asection = sectp;
10535 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10536 }
10537 else if (section_is_p (sectp->name, &names->loc_dwo))
10538 {
10539 dwp_file->sections.loc.s.asection = sectp;
10540 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10541 }
10542 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10543 {
10544 dwp_file->sections.macinfo.s.asection = sectp;
10545 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10546 }
10547 else if (section_is_p (sectp->name, &names->macro_dwo))
10548 {
10549 dwp_file->sections.macro.s.asection = sectp;
10550 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10551 }
10552 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10553 {
10554 dwp_file->sections.str_offsets.s.asection = sectp;
10555 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10556 }
10557 else if (section_is_p (sectp->name, &names->types_dwo))
10558 {
10559 dwp_file->sections.types.s.asection = sectp;
10560 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10561 }
10562}
10563
80626a55 10564/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10565
80626a55
DE
10566static hashval_t
10567hash_dwp_loaded_cutus (const void *item)
10568{
10569 const struct dwo_unit *dwo_unit = item;
3019eac3 10570
80626a55
DE
10571 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10572 return dwo_unit->signature;
3019eac3
DE
10573}
10574
80626a55 10575/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10576
80626a55
DE
10577static int
10578eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10579{
80626a55
DE
10580 const struct dwo_unit *dua = a;
10581 const struct dwo_unit *dub = b;
3019eac3 10582
80626a55
DE
10583 return dua->signature == dub->signature;
10584}
3019eac3 10585
80626a55 10586/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10587
80626a55
DE
10588static htab_t
10589allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10590{
10591 return htab_create_alloc_ex (3,
10592 hash_dwp_loaded_cutus,
10593 eq_dwp_loaded_cutus,
10594 NULL,
10595 &objfile->objfile_obstack,
10596 hashtab_obstack_allocate,
10597 dummy_obstack_deallocate);
10598}
3019eac3 10599
ab5088bf
DE
10600/* Try to open DWP file FILE_NAME.
10601 The result is the bfd handle of the file.
10602 If there is a problem finding or opening the file, return NULL.
10603 Upon success, the canonicalized path of the file is stored in the bfd,
10604 same as symfile_bfd_open. */
10605
10606static bfd *
10607open_dwp_file (const char *file_name)
10608{
6ac97d4c
DE
10609 bfd *abfd;
10610
10611 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10612 if (abfd != NULL)
10613 return abfd;
10614
10615 /* Work around upstream bug 15652.
10616 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10617 [Whether that's a "bug" is debatable, but it is getting in our way.]
10618 We have no real idea where the dwp file is, because gdb's realpath-ing
10619 of the executable's path may have discarded the needed info.
10620 [IWBN if the dwp file name was recorded in the executable, akin to
10621 .gnu_debuglink, but that doesn't exist yet.]
10622 Strip the directory from FILE_NAME and search again. */
10623 if (*debug_file_directory != '\0')
10624 {
10625 /* Don't implicitly search the current directory here.
10626 If the user wants to search "." to handle this case,
10627 it must be added to debug-file-directory. */
10628 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10629 0 /*search_cwd*/);
10630 }
10631
10632 return NULL;
ab5088bf
DE
10633}
10634
80626a55
DE
10635/* Initialize the use of the DWP file for the current objfile.
10636 By convention the name of the DWP file is ${objfile}.dwp.
10637 The result is NULL if it can't be found. */
a766d390 10638
80626a55 10639static struct dwp_file *
ab5088bf 10640open_and_init_dwp_file (void)
80626a55
DE
10641{
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
10643 struct dwp_file *dwp_file;
10644 char *dwp_name;
10645 bfd *dbfd;
10646 struct cleanup *cleanups;
10647
82bf32bc
JK
10648 /* Try to find first .dwp for the binary file before any symbolic links
10649 resolving. */
10650 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10651 cleanups = make_cleanup (xfree, dwp_name);
10652
ab5088bf 10653 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10654 if (dbfd == NULL
10655 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10656 {
10657 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10658 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10659 make_cleanup (xfree, dwp_name);
10660 dbfd = open_dwp_file (dwp_name);
10661 }
10662
80626a55
DE
10663 if (dbfd == NULL)
10664 {
10665 if (dwarf2_read_debug)
10666 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10667 do_cleanups (cleanups);
10668 return NULL;
3019eac3 10669 }
80626a55 10670 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10671 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10672 dwp_file->dbfd = dbfd;
10673 do_cleanups (cleanups);
c906108c 10674
80626a55
DE
10675 /* +1: section 0 is unused */
10676 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10677 dwp_file->elf_sections =
10678 OBSTACK_CALLOC (&objfile->objfile_obstack,
10679 dwp_file->num_sections, asection *);
10680
73869dc2 10681 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10682
10683 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10684
10685 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10686
73869dc2
DE
10687 /* The DWP file version is stored in the hash table. Oh well. */
10688 if (dwp_file->cus->version != dwp_file->tus->version)
10689 {
10690 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10691 pretty bizarre. We use pulongest here because that's the established
4d65956b 10692 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10693 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10694 " TU version %s [in DWP file %s]"),
10695 pulongest (dwp_file->cus->version),
10696 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10697 }
10698 dwp_file->version = dwp_file->cus->version;
10699
10700 if (dwp_file->version == 2)
10701 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10702
19ac8c2e
DE
10703 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10704 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10705
80626a55
DE
10706 if (dwarf2_read_debug)
10707 {
10708 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10709 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10710 " %s CUs, %s TUs\n",
10711 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10712 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10713 }
10714
10715 return dwp_file;
3019eac3 10716}
c906108c 10717
ab5088bf
DE
10718/* Wrapper around open_and_init_dwp_file, only open it once. */
10719
10720static struct dwp_file *
10721get_dwp_file (void)
10722{
10723 if (! dwarf2_per_objfile->dwp_checked)
10724 {
10725 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10726 dwarf2_per_objfile->dwp_checked = 1;
10727 }
10728 return dwarf2_per_objfile->dwp_file;
10729}
10730
80626a55
DE
10731/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10732 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10733 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10734 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10735 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10736
10737 This is called, for example, when wanting to read a variable with a
10738 complex location. Therefore we don't want to do file i/o for every call.
10739 Therefore we don't want to look for a DWO file on every call.
10740 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10741 then we check if we've already seen DWO_NAME, and only THEN do we check
10742 for a DWO file.
10743
1c658ad5 10744 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10745 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10746
3019eac3 10747static struct dwo_unit *
80626a55
DE
10748lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10749 const char *dwo_name, const char *comp_dir,
10750 ULONGEST signature, int is_debug_types)
3019eac3
DE
10751{
10752 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10753 const char *kind = is_debug_types ? "TU" : "CU";
10754 void **dwo_file_slot;
3019eac3 10755 struct dwo_file *dwo_file;
80626a55 10756 struct dwp_file *dwp_file;
cb1df416 10757
6a506a2d
DE
10758 /* First see if there's a DWP file.
10759 If we have a DWP file but didn't find the DWO inside it, don't
10760 look for the original DWO file. It makes gdb behave differently
10761 depending on whether one is debugging in the build tree. */
cf2c3c16 10762
ab5088bf 10763 dwp_file = get_dwp_file ();
80626a55 10764 if (dwp_file != NULL)
cf2c3c16 10765 {
80626a55
DE
10766 const struct dwp_hash_table *dwp_htab =
10767 is_debug_types ? dwp_file->tus : dwp_file->cus;
10768
10769 if (dwp_htab != NULL)
10770 {
10771 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10772 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10773 signature, is_debug_types);
80626a55
DE
10774
10775 if (dwo_cutu != NULL)
10776 {
10777 if (dwarf2_read_debug)
10778 {
10779 fprintf_unfiltered (gdb_stdlog,
10780 "Virtual DWO %s %s found: @%s\n",
10781 kind, hex_string (signature),
10782 host_address_to_string (dwo_cutu));
10783 }
10784 return dwo_cutu;
10785 }
10786 }
10787 }
6a506a2d 10788 else
80626a55 10789 {
6a506a2d 10790 /* No DWP file, look for the DWO file. */
80626a55 10791
6a506a2d
DE
10792 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10793 if (*dwo_file_slot == NULL)
80626a55 10794 {
6a506a2d
DE
10795 /* Read in the file and build a table of the CUs/TUs it contains. */
10796 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10797 }
6a506a2d
DE
10798 /* NOTE: This will be NULL if unable to open the file. */
10799 dwo_file = *dwo_file_slot;
3019eac3 10800
6a506a2d 10801 if (dwo_file != NULL)
19c3d4c9 10802 {
6a506a2d
DE
10803 struct dwo_unit *dwo_cutu = NULL;
10804
10805 if (is_debug_types && dwo_file->tus)
10806 {
10807 struct dwo_unit find_dwo_cutu;
10808
10809 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10810 find_dwo_cutu.signature = signature;
10811 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10812 }
10813 else if (!is_debug_types && dwo_file->cu)
80626a55 10814 {
6a506a2d
DE
10815 if (signature == dwo_file->cu->signature)
10816 dwo_cutu = dwo_file->cu;
10817 }
10818
10819 if (dwo_cutu != NULL)
10820 {
10821 if (dwarf2_read_debug)
10822 {
10823 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10824 kind, dwo_name, hex_string (signature),
10825 host_address_to_string (dwo_cutu));
10826 }
10827 return dwo_cutu;
80626a55
DE
10828 }
10829 }
2e276125 10830 }
9cdd5dbd 10831
80626a55
DE
10832 /* We didn't find it. This could mean a dwo_id mismatch, or
10833 someone deleted the DWO/DWP file, or the search path isn't set up
10834 correctly to find the file. */
10835
10836 if (dwarf2_read_debug)
10837 {
10838 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10839 kind, dwo_name, hex_string (signature));
10840 }
3019eac3 10841
6656a72d
DE
10842 /* This is a warning and not a complaint because it can be caused by
10843 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10844 {
10845 /* Print the name of the DWP file if we looked there, helps the user
10846 better diagnose the problem. */
10847 char *dwp_text = NULL;
10848 struct cleanup *cleanups;
10849
10850 if (dwp_file != NULL)
10851 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10852 cleanups = make_cleanup (xfree, dwp_text);
10853
10854 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10855 " [in module %s]"),
10856 kind, dwo_name, hex_string (signature),
10857 dwp_text != NULL ? dwp_text : "",
10858 this_unit->is_debug_types ? "TU" : "CU",
10859 this_unit->offset.sect_off, objfile_name (objfile));
10860
10861 do_cleanups (cleanups);
10862 }
3019eac3 10863 return NULL;
5fb290d7
DJ
10864}
10865
80626a55
DE
10866/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10867 See lookup_dwo_cutu_unit for details. */
10868
10869static struct dwo_unit *
10870lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10871 const char *dwo_name, const char *comp_dir,
10872 ULONGEST signature)
10873{
10874 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10875}
10876
10877/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10878 See lookup_dwo_cutu_unit for details. */
10879
10880static struct dwo_unit *
10881lookup_dwo_type_unit (struct signatured_type *this_tu,
10882 const char *dwo_name, const char *comp_dir)
10883{
10884 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10885}
10886
89e63ee4
DE
10887/* Traversal function for queue_and_load_all_dwo_tus. */
10888
10889static int
10890queue_and_load_dwo_tu (void **slot, void *info)
10891{
10892 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10893 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10894 ULONGEST signature = dwo_unit->signature;
10895 struct signatured_type *sig_type =
10896 lookup_dwo_signatured_type (per_cu->cu, signature);
10897
10898 if (sig_type != NULL)
10899 {
10900 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10901
10902 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10903 a real dependency of PER_CU on SIG_TYPE. That is detected later
10904 while processing PER_CU. */
10905 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10906 load_full_type_unit (sig_cu);
10907 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10908 }
10909
10910 return 1;
10911}
10912
10913/* Queue all TUs contained in the DWO of PER_CU to be read in.
10914 The DWO may have the only definition of the type, though it may not be
10915 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10916 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10917
10918static void
10919queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10920{
10921 struct dwo_unit *dwo_unit;
10922 struct dwo_file *dwo_file;
10923
10924 gdb_assert (!per_cu->is_debug_types);
10925 gdb_assert (get_dwp_file () == NULL);
10926 gdb_assert (per_cu->cu != NULL);
10927
10928 dwo_unit = per_cu->cu->dwo_unit;
10929 gdb_assert (dwo_unit != NULL);
10930
10931 dwo_file = dwo_unit->dwo_file;
10932 if (dwo_file->tus != NULL)
10933 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10934}
10935
3019eac3
DE
10936/* Free all resources associated with DWO_FILE.
10937 Close the DWO file and munmap the sections.
10938 All memory should be on the objfile obstack. */
348e048f
DE
10939
10940static void
3019eac3 10941free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10942{
3019eac3
DE
10943 int ix;
10944 struct dwarf2_section_info *section;
348e048f 10945
5c6fa7ab 10946 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10947 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10948
3019eac3
DE
10949 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10950}
348e048f 10951
3019eac3 10952/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10953
3019eac3
DE
10954static void
10955free_dwo_file_cleanup (void *arg)
10956{
10957 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10958 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10959
3019eac3
DE
10960 free_dwo_file (dwo_file, objfile);
10961}
348e048f 10962
3019eac3 10963/* Traversal function for free_dwo_files. */
2ab95328 10964
3019eac3
DE
10965static int
10966free_dwo_file_from_slot (void **slot, void *info)
10967{
10968 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10969 struct objfile *objfile = (struct objfile *) info;
348e048f 10970
3019eac3 10971 free_dwo_file (dwo_file, objfile);
348e048f 10972
3019eac3
DE
10973 return 1;
10974}
348e048f 10975
3019eac3 10976/* Free all resources associated with DWO_FILES. */
348e048f 10977
3019eac3
DE
10978static void
10979free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10980{
10981 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10982}
3019eac3
DE
10983\f
10984/* Read in various DIEs. */
348e048f 10985
d389af10
JK
10986/* qsort helper for inherit_abstract_dies. */
10987
10988static int
10989unsigned_int_compar (const void *ap, const void *bp)
10990{
10991 unsigned int a = *(unsigned int *) ap;
10992 unsigned int b = *(unsigned int *) bp;
10993
10994 return (a > b) - (b > a);
10995}
10996
10997/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10998 Inherit only the children of the DW_AT_abstract_origin DIE not being
10999 already referenced by DW_AT_abstract_origin from the children of the
11000 current DIE. */
d389af10
JK
11001
11002static void
11003inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11004{
11005 struct die_info *child_die;
11006 unsigned die_children_count;
11007 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11008 sect_offset *offsets;
11009 sect_offset *offsets_end, *offsetp;
d389af10
JK
11010 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11011 struct die_info *origin_die;
11012 /* Iterator of the ORIGIN_DIE children. */
11013 struct die_info *origin_child_die;
11014 struct cleanup *cleanups;
11015 struct attribute *attr;
cd02d79d
PA
11016 struct dwarf2_cu *origin_cu;
11017 struct pending **origin_previous_list_in_scope;
d389af10
JK
11018
11019 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11020 if (!attr)
11021 return;
11022
cd02d79d
PA
11023 /* Note that following die references may follow to a die in a
11024 different cu. */
11025
11026 origin_cu = cu;
11027 origin_die = follow_die_ref (die, attr, &origin_cu);
11028
11029 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11030 symbols in. */
11031 origin_previous_list_in_scope = origin_cu->list_in_scope;
11032 origin_cu->list_in_scope = cu->list_in_scope;
11033
edb3359d
DJ
11034 if (die->tag != origin_die->tag
11035 && !(die->tag == DW_TAG_inlined_subroutine
11036 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11037 complaint (&symfile_complaints,
11038 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11039 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11040
11041 child_die = die->child;
11042 die_children_count = 0;
11043 while (child_die && child_die->tag)
11044 {
11045 child_die = sibling_die (child_die);
11046 die_children_count++;
11047 }
11048 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11049 cleanups = make_cleanup (xfree, offsets);
11050
11051 offsets_end = offsets;
11052 child_die = die->child;
11053 while (child_die && child_die->tag)
11054 {
c38f313d
DJ
11055 /* For each CHILD_DIE, find the corresponding child of
11056 ORIGIN_DIE. If there is more than one layer of
11057 DW_AT_abstract_origin, follow them all; there shouldn't be,
11058 but GCC versions at least through 4.4 generate this (GCC PR
11059 40573). */
11060 struct die_info *child_origin_die = child_die;
cd02d79d 11061 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11062
c38f313d
DJ
11063 while (1)
11064 {
cd02d79d
PA
11065 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11066 child_origin_cu);
c38f313d
DJ
11067 if (attr == NULL)
11068 break;
cd02d79d
PA
11069 child_origin_die = follow_die_ref (child_origin_die, attr,
11070 &child_origin_cu);
c38f313d
DJ
11071 }
11072
d389af10
JK
11073 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11074 counterpart may exist. */
c38f313d 11075 if (child_origin_die != child_die)
d389af10 11076 {
edb3359d
DJ
11077 if (child_die->tag != child_origin_die->tag
11078 && !(child_die->tag == DW_TAG_inlined_subroutine
11079 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11080 complaint (&symfile_complaints,
11081 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11082 "different tags"), child_die->offset.sect_off,
11083 child_origin_die->offset.sect_off);
c38f313d
DJ
11084 if (child_origin_die->parent != origin_die)
11085 complaint (&symfile_complaints,
11086 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11087 "different parents"), child_die->offset.sect_off,
11088 child_origin_die->offset.sect_off);
c38f313d
DJ
11089 else
11090 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11091 }
11092 child_die = sibling_die (child_die);
11093 }
11094 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11095 unsigned_int_compar);
11096 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11097 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11098 complaint (&symfile_complaints,
11099 _("Multiple children of DIE 0x%x refer "
11100 "to DIE 0x%x as their abstract origin"),
b64f50a1 11101 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11102
11103 offsetp = offsets;
11104 origin_child_die = origin_die->child;
11105 while (origin_child_die && origin_child_die->tag)
11106 {
11107 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11108 while (offsetp < offsets_end
11109 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11110 offsetp++;
b64f50a1
JK
11111 if (offsetp >= offsets_end
11112 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11113 {
adde2bff
DE
11114 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11115 Check whether we're already processing ORIGIN_CHILD_DIE.
11116 This can happen with mutually referenced abstract_origins.
11117 PR 16581. */
11118 if (!origin_child_die->in_process)
11119 process_die (origin_child_die, origin_cu);
d389af10
JK
11120 }
11121 origin_child_die = sibling_die (origin_child_die);
11122 }
cd02d79d 11123 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11124
11125 do_cleanups (cleanups);
11126}
11127
c906108c 11128static void
e7c27a73 11129read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11130{
e7c27a73 11131 struct objfile *objfile = cu->objfile;
52f0bd74 11132 struct context_stack *new;
c906108c
SS
11133 CORE_ADDR lowpc;
11134 CORE_ADDR highpc;
11135 struct die_info *child_die;
edb3359d 11136 struct attribute *attr, *call_line, *call_file;
15d034d0 11137 const char *name;
e142c38c 11138 CORE_ADDR baseaddr;
801e3a5b 11139 struct block *block;
edb3359d 11140 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11141 VEC (symbolp) *template_args = NULL;
11142 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11143
11144 if (inlined_func)
11145 {
11146 /* If we do not have call site information, we can't show the
11147 caller of this inlined function. That's too confusing, so
11148 only use the scope for local variables. */
11149 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11150 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11151 if (call_line == NULL || call_file == NULL)
11152 {
11153 read_lexical_block_scope (die, cu);
11154 return;
11155 }
11156 }
c906108c 11157
e142c38c
DJ
11158 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11159
94af9270 11160 name = dwarf2_name (die, cu);
c906108c 11161
e8d05480
JB
11162 /* Ignore functions with missing or empty names. These are actually
11163 illegal according to the DWARF standard. */
11164 if (name == NULL)
11165 {
11166 complaint (&symfile_complaints,
b64f50a1
JK
11167 _("missing name for subprogram DIE at %d"),
11168 die->offset.sect_off);
e8d05480
JB
11169 return;
11170 }
11171
11172 /* Ignore functions with missing or invalid low and high pc attributes. */
11173 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11174 {
ae4d0c03
PM
11175 attr = dwarf2_attr (die, DW_AT_external, cu);
11176 if (!attr || !DW_UNSND (attr))
11177 complaint (&symfile_complaints,
3e43a32a
MS
11178 _("cannot get low and high bounds "
11179 "for subprogram DIE at %d"),
b64f50a1 11180 die->offset.sect_off);
e8d05480
JB
11181 return;
11182 }
c906108c
SS
11183
11184 lowpc += baseaddr;
11185 highpc += baseaddr;
11186
34eaf542
TT
11187 /* If we have any template arguments, then we must allocate a
11188 different sort of symbol. */
11189 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11190 {
11191 if (child_die->tag == DW_TAG_template_type_param
11192 || child_die->tag == DW_TAG_template_value_param)
11193 {
e623cf5d 11194 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11195 templ_func->base.is_cplus_template_function = 1;
11196 break;
11197 }
11198 }
11199
c906108c 11200 new = push_context (0, lowpc);
34eaf542
TT
11201 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11202 (struct symbol *) templ_func);
4c2df51b 11203
4cecd739
DJ
11204 /* If there is a location expression for DW_AT_frame_base, record
11205 it. */
e142c38c 11206 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11207 if (attr)
f1e6e072 11208 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11209
e142c38c 11210 cu->list_in_scope = &local_symbols;
c906108c 11211
639d11d3 11212 if (die->child != NULL)
c906108c 11213 {
639d11d3 11214 child_die = die->child;
c906108c
SS
11215 while (child_die && child_die->tag)
11216 {
34eaf542
TT
11217 if (child_die->tag == DW_TAG_template_type_param
11218 || child_die->tag == DW_TAG_template_value_param)
11219 {
11220 struct symbol *arg = new_symbol (child_die, NULL, cu);
11221
f1078f66
DJ
11222 if (arg != NULL)
11223 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11224 }
11225 else
11226 process_die (child_die, cu);
c906108c
SS
11227 child_die = sibling_die (child_die);
11228 }
11229 }
11230
d389af10
JK
11231 inherit_abstract_dies (die, cu);
11232
4a811a97
UW
11233 /* If we have a DW_AT_specification, we might need to import using
11234 directives from the context of the specification DIE. See the
11235 comment in determine_prefix. */
11236 if (cu->language == language_cplus
11237 && dwarf2_attr (die, DW_AT_specification, cu))
11238 {
11239 struct dwarf2_cu *spec_cu = cu;
11240 struct die_info *spec_die = die_specification (die, &spec_cu);
11241
11242 while (spec_die)
11243 {
11244 child_die = spec_die->child;
11245 while (child_die && child_die->tag)
11246 {
11247 if (child_die->tag == DW_TAG_imported_module)
11248 process_die (child_die, spec_cu);
11249 child_die = sibling_die (child_die);
11250 }
11251
11252 /* In some cases, GCC generates specification DIEs that
11253 themselves contain DW_AT_specification attributes. */
11254 spec_die = die_specification (spec_die, &spec_cu);
11255 }
11256 }
11257
c906108c
SS
11258 new = pop_context ();
11259 /* Make a block for the local symbols within. */
801e3a5b
JB
11260 block = finish_block (new->name, &local_symbols, new->old_blocks,
11261 lowpc, highpc, objfile);
11262
df8a16a1 11263 /* For C++, set the block's scope. */
195a3f6c 11264 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11265 && cu->processing_has_namespace_info)
195a3f6c
TT
11266 block_set_scope (block, determine_prefix (die, cu),
11267 &objfile->objfile_obstack);
df8a16a1 11268
801e3a5b
JB
11269 /* If we have address ranges, record them. */
11270 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11271
34eaf542
TT
11272 /* Attach template arguments to function. */
11273 if (! VEC_empty (symbolp, template_args))
11274 {
11275 gdb_assert (templ_func != NULL);
11276
11277 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11278 templ_func->template_arguments
11279 = obstack_alloc (&objfile->objfile_obstack,
11280 (templ_func->n_template_arguments
11281 * sizeof (struct symbol *)));
11282 memcpy (templ_func->template_arguments,
11283 VEC_address (symbolp, template_args),
11284 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11285 VEC_free (symbolp, template_args);
11286 }
11287
208d8187
JB
11288 /* In C++, we can have functions nested inside functions (e.g., when
11289 a function declares a class that has methods). This means that
11290 when we finish processing a function scope, we may need to go
11291 back to building a containing block's symbol lists. */
11292 local_symbols = new->locals;
27aa8d6a 11293 using_directives = new->using_directives;
208d8187 11294
921e78cf
JB
11295 /* If we've finished processing a top-level function, subsequent
11296 symbols go in the file symbol list. */
11297 if (outermost_context_p ())
e142c38c 11298 cu->list_in_scope = &file_symbols;
c906108c
SS
11299}
11300
11301/* Process all the DIES contained within a lexical block scope. Start
11302 a new scope, process the dies, and then close the scope. */
11303
11304static void
e7c27a73 11305read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11306{
e7c27a73 11307 struct objfile *objfile = cu->objfile;
52f0bd74 11308 struct context_stack *new;
c906108c
SS
11309 CORE_ADDR lowpc, highpc;
11310 struct die_info *child_die;
e142c38c
DJ
11311 CORE_ADDR baseaddr;
11312
11313 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11314
11315 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11316 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11317 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11318 be nasty. Might be easier to properly extend generic blocks to
af34e669 11319 describe ranges. */
d85a05f0 11320 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11321 return;
11322 lowpc += baseaddr;
11323 highpc += baseaddr;
11324
11325 push_context (0, lowpc);
639d11d3 11326 if (die->child != NULL)
c906108c 11327 {
639d11d3 11328 child_die = die->child;
c906108c
SS
11329 while (child_die && child_die->tag)
11330 {
e7c27a73 11331 process_die (child_die, cu);
c906108c
SS
11332 child_die = sibling_die (child_die);
11333 }
11334 }
11335 new = pop_context ();
11336
8540c487 11337 if (local_symbols != NULL || using_directives != NULL)
c906108c 11338 {
801e3a5b
JB
11339 struct block *block
11340 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11341 highpc, objfile);
11342
11343 /* Note that recording ranges after traversing children, as we
11344 do here, means that recording a parent's ranges entails
11345 walking across all its children's ranges as they appear in
11346 the address map, which is quadratic behavior.
11347
11348 It would be nicer to record the parent's ranges before
11349 traversing its children, simply overriding whatever you find
11350 there. But since we don't even decide whether to create a
11351 block until after we've traversed its children, that's hard
11352 to do. */
11353 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11354 }
11355 local_symbols = new->locals;
27aa8d6a 11356 using_directives = new->using_directives;
c906108c
SS
11357}
11358
96408a79
SA
11359/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11360
11361static void
11362read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11363{
11364 struct objfile *objfile = cu->objfile;
11365 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11366 CORE_ADDR pc, baseaddr;
11367 struct attribute *attr;
11368 struct call_site *call_site, call_site_local;
11369 void **slot;
11370 int nparams;
11371 struct die_info *child_die;
11372
11373 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11374
11375 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11376 if (!attr)
11377 {
11378 complaint (&symfile_complaints,
11379 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11380 "DIE 0x%x [in module %s]"),
4262abfb 11381 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11382 return;
11383 }
31aa7e4e 11384 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11385
11386 if (cu->call_site_htab == NULL)
11387 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11388 NULL, &objfile->objfile_obstack,
11389 hashtab_obstack_allocate, NULL);
11390 call_site_local.pc = pc;
11391 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11392 if (*slot != NULL)
11393 {
11394 complaint (&symfile_complaints,
11395 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11396 "DIE 0x%x [in module %s]"),
4262abfb
JK
11397 paddress (gdbarch, pc), die->offset.sect_off,
11398 objfile_name (objfile));
96408a79
SA
11399 return;
11400 }
11401
11402 /* Count parameters at the caller. */
11403
11404 nparams = 0;
11405 for (child_die = die->child; child_die && child_die->tag;
11406 child_die = sibling_die (child_die))
11407 {
11408 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11409 {
11410 complaint (&symfile_complaints,
11411 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11412 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11413 child_die->tag, child_die->offset.sect_off,
11414 objfile_name (objfile));
96408a79
SA
11415 continue;
11416 }
11417
11418 nparams++;
11419 }
11420
11421 call_site = obstack_alloc (&objfile->objfile_obstack,
11422 (sizeof (*call_site)
11423 + (sizeof (*call_site->parameter)
11424 * (nparams - 1))));
11425 *slot = call_site;
11426 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11427 call_site->pc = pc;
11428
11429 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11430 {
11431 struct die_info *func_die;
11432
11433 /* Skip also over DW_TAG_inlined_subroutine. */
11434 for (func_die = die->parent;
11435 func_die && func_die->tag != DW_TAG_subprogram
11436 && func_die->tag != DW_TAG_subroutine_type;
11437 func_die = func_die->parent);
11438
11439 /* DW_AT_GNU_all_call_sites is a superset
11440 of DW_AT_GNU_all_tail_call_sites. */
11441 if (func_die
11442 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11443 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11444 {
11445 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11446 not complete. But keep CALL_SITE for look ups via call_site_htab,
11447 both the initial caller containing the real return address PC and
11448 the final callee containing the current PC of a chain of tail
11449 calls do not need to have the tail call list complete. But any
11450 function candidate for a virtual tail call frame searched via
11451 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11452 determined unambiguously. */
11453 }
11454 else
11455 {
11456 struct type *func_type = NULL;
11457
11458 if (func_die)
11459 func_type = get_die_type (func_die, cu);
11460 if (func_type != NULL)
11461 {
11462 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11463
11464 /* Enlist this call site to the function. */
11465 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11466 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11467 }
11468 else
11469 complaint (&symfile_complaints,
11470 _("Cannot find function owning DW_TAG_GNU_call_site "
11471 "DIE 0x%x [in module %s]"),
4262abfb 11472 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11473 }
11474 }
11475
11476 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11477 if (attr == NULL)
11478 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11479 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11480 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11481 /* Keep NULL DWARF_BLOCK. */;
11482 else if (attr_form_is_block (attr))
11483 {
11484 struct dwarf2_locexpr_baton *dlbaton;
11485
11486 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11487 dlbaton->data = DW_BLOCK (attr)->data;
11488 dlbaton->size = DW_BLOCK (attr)->size;
11489 dlbaton->per_cu = cu->per_cu;
11490
11491 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11492 }
7771576e 11493 else if (attr_form_is_ref (attr))
96408a79 11494 {
96408a79
SA
11495 struct dwarf2_cu *target_cu = cu;
11496 struct die_info *target_die;
11497
ac9ec31b 11498 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11499 gdb_assert (target_cu->objfile == objfile);
11500 if (die_is_declaration (target_die, target_cu))
11501 {
9112db09
JK
11502 const char *target_physname = NULL;
11503 struct attribute *target_attr;
11504
11505 /* Prefer the mangled name; otherwise compute the demangled one. */
11506 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11507 if (target_attr == NULL)
11508 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11509 target_cu);
11510 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11511 target_physname = DW_STRING (target_attr);
11512 else
11513 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11514 if (target_physname == NULL)
11515 complaint (&symfile_complaints,
11516 _("DW_AT_GNU_call_site_target target DIE has invalid "
11517 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11518 die->offset.sect_off, objfile_name (objfile));
96408a79 11519 else
7d455152 11520 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11521 }
11522 else
11523 {
11524 CORE_ADDR lowpc;
11525
11526 /* DW_AT_entry_pc should be preferred. */
11527 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11528 complaint (&symfile_complaints,
11529 _("DW_AT_GNU_call_site_target target DIE has invalid "
11530 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11531 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11532 else
11533 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11534 }
11535 }
11536 else
11537 complaint (&symfile_complaints,
11538 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11539 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11540 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11541
11542 call_site->per_cu = cu->per_cu;
11543
11544 for (child_die = die->child;
11545 child_die && child_die->tag;
11546 child_die = sibling_die (child_die))
11547 {
96408a79 11548 struct call_site_parameter *parameter;
1788b2d3 11549 struct attribute *loc, *origin;
96408a79
SA
11550
11551 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11552 {
11553 /* Already printed the complaint above. */
11554 continue;
11555 }
11556
11557 gdb_assert (call_site->parameter_count < nparams);
11558 parameter = &call_site->parameter[call_site->parameter_count];
11559
1788b2d3
JK
11560 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11561 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11562 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11563
24c5c679 11564 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11565 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11566 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11567 {
11568 sect_offset offset;
11569
11570 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11571 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11572 if (!offset_in_cu_p (&cu->header, offset))
11573 {
11574 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11575 binding can be done only inside one CU. Such referenced DIE
11576 therefore cannot be even moved to DW_TAG_partial_unit. */
11577 complaint (&symfile_complaints,
11578 _("DW_AT_abstract_origin offset is not in CU for "
11579 "DW_TAG_GNU_call_site child DIE 0x%x "
11580 "[in module %s]"),
4262abfb 11581 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11582 continue;
11583 }
1788b2d3
JK
11584 parameter->u.param_offset.cu_off = (offset.sect_off
11585 - cu->header.offset.sect_off);
11586 }
11587 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11588 {
11589 complaint (&symfile_complaints,
11590 _("No DW_FORM_block* DW_AT_location for "
11591 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11592 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11593 continue;
11594 }
24c5c679 11595 else
96408a79 11596 {
24c5c679
JK
11597 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11598 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11599 if (parameter->u.dwarf_reg != -1)
11600 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11601 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11602 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11603 &parameter->u.fb_offset))
11604 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11605 else
11606 {
11607 complaint (&symfile_complaints,
11608 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11609 "for DW_FORM_block* DW_AT_location is supported for "
11610 "DW_TAG_GNU_call_site child DIE 0x%x "
11611 "[in module %s]"),
4262abfb 11612 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11613 continue;
11614 }
96408a79
SA
11615 }
11616
11617 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11618 if (!attr_form_is_block (attr))
11619 {
11620 complaint (&symfile_complaints,
11621 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11622 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11623 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11624 continue;
11625 }
11626 parameter->value = DW_BLOCK (attr)->data;
11627 parameter->value_size = DW_BLOCK (attr)->size;
11628
11629 /* Parameters are not pre-cleared by memset above. */
11630 parameter->data_value = NULL;
11631 parameter->data_value_size = 0;
11632 call_site->parameter_count++;
11633
11634 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11635 if (attr)
11636 {
11637 if (!attr_form_is_block (attr))
11638 complaint (&symfile_complaints,
11639 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11640 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11641 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11642 else
11643 {
11644 parameter->data_value = DW_BLOCK (attr)->data;
11645 parameter->data_value_size = DW_BLOCK (attr)->size;
11646 }
11647 }
11648 }
11649}
11650
43039443 11651/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11652 Return 1 if the attributes are present and valid, otherwise, return 0.
11653 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11654
11655static int
11656dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11657 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11658 struct partial_symtab *ranges_pst)
43039443
JK
11659{
11660 struct objfile *objfile = cu->objfile;
11661 struct comp_unit_head *cu_header = &cu->header;
11662 bfd *obfd = objfile->obfd;
11663 unsigned int addr_size = cu_header->addr_size;
11664 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11665 /* Base address selection entry. */
11666 CORE_ADDR base;
11667 int found_base;
11668 unsigned int dummy;
d521ce57 11669 const gdb_byte *buffer;
43039443
JK
11670 CORE_ADDR marker;
11671 int low_set;
11672 CORE_ADDR low = 0;
11673 CORE_ADDR high = 0;
ff013f42 11674 CORE_ADDR baseaddr;
43039443 11675
d00adf39
DE
11676 found_base = cu->base_known;
11677 base = cu->base_address;
43039443 11678
be391dca 11679 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11680 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11681 {
11682 complaint (&symfile_complaints,
11683 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11684 offset);
11685 return 0;
11686 }
dce234bc 11687 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11688
11689 /* Read in the largest possible address. */
11690 marker = read_address (obfd, buffer, cu, &dummy);
11691 if ((marker & mask) == mask)
11692 {
11693 /* If we found the largest possible address, then
11694 read the base address. */
11695 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11696 buffer += 2 * addr_size;
11697 offset += 2 * addr_size;
11698 found_base = 1;
11699 }
11700
11701 low_set = 0;
11702
e7030f15 11703 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11704
43039443
JK
11705 while (1)
11706 {
11707 CORE_ADDR range_beginning, range_end;
11708
11709 range_beginning = read_address (obfd, buffer, cu, &dummy);
11710 buffer += addr_size;
11711 range_end = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 offset += 2 * addr_size;
11714
11715 /* An end of list marker is a pair of zero addresses. */
11716 if (range_beginning == 0 && range_end == 0)
11717 /* Found the end of list entry. */
11718 break;
11719
11720 /* Each base address selection entry is a pair of 2 values.
11721 The first is the largest possible address, the second is
11722 the base address. Check for a base address here. */
11723 if ((range_beginning & mask) == mask)
11724 {
11725 /* If we found the largest possible address, then
11726 read the base address. */
11727 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11728 found_base = 1;
11729 continue;
11730 }
11731
11732 if (!found_base)
11733 {
11734 /* We have no valid base address for the ranges
11735 data. */
11736 complaint (&symfile_complaints,
11737 _("Invalid .debug_ranges data (no base address)"));
11738 return 0;
11739 }
11740
9277c30c
UW
11741 if (range_beginning > range_end)
11742 {
11743 /* Inverted range entries are invalid. */
11744 complaint (&symfile_complaints,
11745 _("Invalid .debug_ranges data (inverted range)"));
11746 return 0;
11747 }
11748
11749 /* Empty range entries have no effect. */
11750 if (range_beginning == range_end)
11751 continue;
11752
43039443
JK
11753 range_beginning += base;
11754 range_end += base;
11755
01093045
DE
11756 /* A not-uncommon case of bad debug info.
11757 Don't pollute the addrmap with bad data. */
11758 if (range_beginning + baseaddr == 0
11759 && !dwarf2_per_objfile->has_section_at_zero)
11760 {
11761 complaint (&symfile_complaints,
11762 _(".debug_ranges entry has start address of zero"
4262abfb 11763 " [in module %s]"), objfile_name (objfile));
01093045
DE
11764 continue;
11765 }
11766
9277c30c 11767 if (ranges_pst != NULL)
ff013f42 11768 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11769 range_beginning + baseaddr,
11770 range_end - 1 + baseaddr,
ff013f42
JK
11771 ranges_pst);
11772
43039443
JK
11773 /* FIXME: This is recording everything as a low-high
11774 segment of consecutive addresses. We should have a
11775 data structure for discontiguous block ranges
11776 instead. */
11777 if (! low_set)
11778 {
11779 low = range_beginning;
11780 high = range_end;
11781 low_set = 1;
11782 }
11783 else
11784 {
11785 if (range_beginning < low)
11786 low = range_beginning;
11787 if (range_end > high)
11788 high = range_end;
11789 }
11790 }
11791
11792 if (! low_set)
11793 /* If the first entry is an end-of-list marker, the range
11794 describes an empty scope, i.e. no instructions. */
11795 return 0;
11796
11797 if (low_return)
11798 *low_return = low;
11799 if (high_return)
11800 *high_return = high;
11801 return 1;
11802}
11803
af34e669
DJ
11804/* Get low and high pc attributes from a die. Return 1 if the attributes
11805 are present and valid, otherwise, return 0. Return -1 if the range is
11806 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11807
c906108c 11808static int
af34e669 11809dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11810 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11811 struct partial_symtab *pst)
c906108c
SS
11812{
11813 struct attribute *attr;
91da1414 11814 struct attribute *attr_high;
af34e669
DJ
11815 CORE_ADDR low = 0;
11816 CORE_ADDR high = 0;
11817 int ret = 0;
c906108c 11818
91da1414
MW
11819 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11820 if (attr_high)
af34e669 11821 {
e142c38c 11822 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11823 if (attr)
91da1414 11824 {
31aa7e4e
JB
11825 low = attr_value_as_address (attr);
11826 high = attr_value_as_address (attr_high);
11827 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11828 high += low;
91da1414 11829 }
af34e669
DJ
11830 else
11831 /* Found high w/o low attribute. */
11832 return 0;
11833
11834 /* Found consecutive range of addresses. */
11835 ret = 1;
11836 }
c906108c 11837 else
af34e669 11838 {
e142c38c 11839 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11840 if (attr != NULL)
11841 {
ab435259
DE
11842 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11843 We take advantage of the fact that DW_AT_ranges does not appear
11844 in DW_TAG_compile_unit of DWO files. */
11845 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11846 unsigned int ranges_offset = (DW_UNSND (attr)
11847 + (need_ranges_base
11848 ? cu->ranges_base
11849 : 0));
2e3cf129 11850
af34e669 11851 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11852 .debug_ranges section. */
2e3cf129 11853 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11854 return 0;
43039443 11855 /* Found discontinuous range of addresses. */
af34e669
DJ
11856 ret = -1;
11857 }
11858 }
c906108c 11859
9373cf26
JK
11860 /* read_partial_die has also the strict LOW < HIGH requirement. */
11861 if (high <= low)
c906108c
SS
11862 return 0;
11863
11864 /* When using the GNU linker, .gnu.linkonce. sections are used to
11865 eliminate duplicate copies of functions and vtables and such.
11866 The linker will arbitrarily choose one and discard the others.
11867 The AT_*_pc values for such functions refer to local labels in
11868 these sections. If the section from that file was discarded, the
11869 labels are not in the output, so the relocs get a value of 0.
11870 If this is a discarded function, mark the pc bounds as invalid,
11871 so that GDB will ignore it. */
72dca2f5 11872 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11873 return 0;
11874
11875 *lowpc = low;
96408a79
SA
11876 if (highpc)
11877 *highpc = high;
af34e669 11878 return ret;
c906108c
SS
11879}
11880
b084d499
JB
11881/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11882 its low and high PC addresses. Do nothing if these addresses could not
11883 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11884 and HIGHPC to the high address if greater than HIGHPC. */
11885
11886static void
11887dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11888 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11889 struct dwarf2_cu *cu)
11890{
11891 CORE_ADDR low, high;
11892 struct die_info *child = die->child;
11893
d85a05f0 11894 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11895 {
11896 *lowpc = min (*lowpc, low);
11897 *highpc = max (*highpc, high);
11898 }
11899
11900 /* If the language does not allow nested subprograms (either inside
11901 subprograms or lexical blocks), we're done. */
11902 if (cu->language != language_ada)
11903 return;
6e70227d 11904
b084d499
JB
11905 /* Check all the children of the given DIE. If it contains nested
11906 subprograms, then check their pc bounds. Likewise, we need to
11907 check lexical blocks as well, as they may also contain subprogram
11908 definitions. */
11909 while (child && child->tag)
11910 {
11911 if (child->tag == DW_TAG_subprogram
11912 || child->tag == DW_TAG_lexical_block)
11913 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11914 child = sibling_die (child);
11915 }
11916}
11917
fae299cd
DC
11918/* Get the low and high pc's represented by the scope DIE, and store
11919 them in *LOWPC and *HIGHPC. If the correct values can't be
11920 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11921
11922static void
11923get_scope_pc_bounds (struct die_info *die,
11924 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11925 struct dwarf2_cu *cu)
11926{
11927 CORE_ADDR best_low = (CORE_ADDR) -1;
11928 CORE_ADDR best_high = (CORE_ADDR) 0;
11929 CORE_ADDR current_low, current_high;
11930
d85a05f0 11931 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11932 {
11933 best_low = current_low;
11934 best_high = current_high;
11935 }
11936 else
11937 {
11938 struct die_info *child = die->child;
11939
11940 while (child && child->tag)
11941 {
11942 switch (child->tag) {
11943 case DW_TAG_subprogram:
b084d499 11944 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11945 break;
11946 case DW_TAG_namespace:
f55ee35c 11947 case DW_TAG_module:
fae299cd
DC
11948 /* FIXME: carlton/2004-01-16: Should we do this for
11949 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11950 that current GCC's always emit the DIEs corresponding
11951 to definitions of methods of classes as children of a
11952 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11953 the DIEs giving the declarations, which could be
11954 anywhere). But I don't see any reason why the
11955 standards says that they have to be there. */
11956 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11957
11958 if (current_low != ((CORE_ADDR) -1))
11959 {
11960 best_low = min (best_low, current_low);
11961 best_high = max (best_high, current_high);
11962 }
11963 break;
11964 default:
0963b4bd 11965 /* Ignore. */
fae299cd
DC
11966 break;
11967 }
11968
11969 child = sibling_die (child);
11970 }
11971 }
11972
11973 *lowpc = best_low;
11974 *highpc = best_high;
11975}
11976
801e3a5b
JB
11977/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11978 in DIE. */
380bca97 11979
801e3a5b
JB
11980static void
11981dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11982 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11983{
bb5ed363 11984 struct objfile *objfile = cu->objfile;
801e3a5b 11985 struct attribute *attr;
91da1414 11986 struct attribute *attr_high;
801e3a5b 11987
91da1414
MW
11988 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11989 if (attr_high)
801e3a5b 11990 {
801e3a5b
JB
11991 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11992 if (attr)
11993 {
31aa7e4e
JB
11994 CORE_ADDR low = attr_value_as_address (attr);
11995 CORE_ADDR high = attr_value_as_address (attr_high);
11996
11997 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11998 high += low;
9a619af0 11999
801e3a5b
JB
12000 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12001 }
12002 }
12003
12004 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12005 if (attr)
12006 {
bb5ed363 12007 bfd *obfd = objfile->obfd;
ab435259
DE
12008 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12009 We take advantage of the fact that DW_AT_ranges does not appear
12010 in DW_TAG_compile_unit of DWO files. */
12011 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12012
12013 /* The value of the DW_AT_ranges attribute is the offset of the
12014 address range list in the .debug_ranges section. */
ab435259
DE
12015 unsigned long offset = (DW_UNSND (attr)
12016 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12017 const gdb_byte *buffer;
801e3a5b
JB
12018
12019 /* For some target architectures, but not others, the
12020 read_address function sign-extends the addresses it returns.
12021 To recognize base address selection entries, we need a
12022 mask. */
12023 unsigned int addr_size = cu->header.addr_size;
12024 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12025
12026 /* The base address, to which the next pair is relative. Note
12027 that this 'base' is a DWARF concept: most entries in a range
12028 list are relative, to reduce the number of relocs against the
12029 debugging information. This is separate from this function's
12030 'baseaddr' argument, which GDB uses to relocate debugging
12031 information from a shared library based on the address at
12032 which the library was loaded. */
d00adf39
DE
12033 CORE_ADDR base = cu->base_address;
12034 int base_known = cu->base_known;
801e3a5b 12035
d62bfeaf 12036 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12037 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12038 {
12039 complaint (&symfile_complaints,
12040 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12041 offset);
12042 return;
12043 }
d62bfeaf 12044 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12045
12046 for (;;)
12047 {
12048 unsigned int bytes_read;
12049 CORE_ADDR start, end;
12050
12051 start = read_address (obfd, buffer, cu, &bytes_read);
12052 buffer += bytes_read;
12053 end = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055
12056 /* Did we find the end of the range list? */
12057 if (start == 0 && end == 0)
12058 break;
12059
12060 /* Did we find a base address selection entry? */
12061 else if ((start & base_select_mask) == base_select_mask)
12062 {
12063 base = end;
12064 base_known = 1;
12065 }
12066
12067 /* We found an ordinary address range. */
12068 else
12069 {
12070 if (!base_known)
12071 {
12072 complaint (&symfile_complaints,
3e43a32a
MS
12073 _("Invalid .debug_ranges data "
12074 "(no base address)"));
801e3a5b
JB
12075 return;
12076 }
12077
9277c30c
UW
12078 if (start > end)
12079 {
12080 /* Inverted range entries are invalid. */
12081 complaint (&symfile_complaints,
12082 _("Invalid .debug_ranges data "
12083 "(inverted range)"));
12084 return;
12085 }
12086
12087 /* Empty range entries have no effect. */
12088 if (start == end)
12089 continue;
12090
01093045
DE
12091 start += base + baseaddr;
12092 end += base + baseaddr;
12093
12094 /* A not-uncommon case of bad debug info.
12095 Don't pollute the addrmap with bad data. */
12096 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12097 {
12098 complaint (&symfile_complaints,
12099 _(".debug_ranges entry has start address of zero"
4262abfb 12100 " [in module %s]"), objfile_name (objfile));
01093045
DE
12101 continue;
12102 }
12103
12104 record_block_range (block, start, end - 1);
801e3a5b
JB
12105 }
12106 }
12107 }
12108}
12109
685b1105
JK
12110/* Check whether the producer field indicates either of GCC < 4.6, or the
12111 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12112
685b1105
JK
12113static void
12114check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12115{
12116 const char *cs;
12117 int major, minor, release;
12118
12119 if (cu->producer == NULL)
12120 {
12121 /* For unknown compilers expect their behavior is DWARF version
12122 compliant.
12123
12124 GCC started to support .debug_types sections by -gdwarf-4 since
12125 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12126 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12127 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12128 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12129 }
685b1105 12130 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12131 {
685b1105
JK
12132 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12133
ba919b58
TT
12134 cs = &cu->producer[strlen ("GNU ")];
12135 while (*cs && !isdigit (*cs))
12136 cs++;
12137 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12138 {
12139 /* Not recognized as GCC. */
12140 }
12141 else
1b80a9fa
JK
12142 {
12143 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12144 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12145 }
685b1105
JK
12146 }
12147 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12148 cu->producer_is_icc = 1;
12149 else
12150 {
12151 /* For other non-GCC compilers, expect their behavior is DWARF version
12152 compliant. */
60d5a603
JK
12153 }
12154
ba919b58 12155 cu->checked_producer = 1;
685b1105 12156}
ba919b58 12157
685b1105
JK
12158/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12159 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12160 during 4.6.0 experimental. */
12161
12162static int
12163producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12164{
12165 if (!cu->checked_producer)
12166 check_producer (cu);
12167
12168 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12169}
12170
12171/* Return the default accessibility type if it is not overriden by
12172 DW_AT_accessibility. */
12173
12174static enum dwarf_access_attribute
12175dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12176{
12177 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12178 {
12179 /* The default DWARF 2 accessibility for members is public, the default
12180 accessibility for inheritance is private. */
12181
12182 if (die->tag != DW_TAG_inheritance)
12183 return DW_ACCESS_public;
12184 else
12185 return DW_ACCESS_private;
12186 }
12187 else
12188 {
12189 /* DWARF 3+ defines the default accessibility a different way. The same
12190 rules apply now for DW_TAG_inheritance as for the members and it only
12191 depends on the container kind. */
12192
12193 if (die->parent->tag == DW_TAG_class_type)
12194 return DW_ACCESS_private;
12195 else
12196 return DW_ACCESS_public;
12197 }
12198}
12199
74ac6d43
TT
12200/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12201 offset. If the attribute was not found return 0, otherwise return
12202 1. If it was found but could not properly be handled, set *OFFSET
12203 to 0. */
12204
12205static int
12206handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12207 LONGEST *offset)
12208{
12209 struct attribute *attr;
12210
12211 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12212 if (attr != NULL)
12213 {
12214 *offset = 0;
12215
12216 /* Note that we do not check for a section offset first here.
12217 This is because DW_AT_data_member_location is new in DWARF 4,
12218 so if we see it, we can assume that a constant form is really
12219 a constant and not a section offset. */
12220 if (attr_form_is_constant (attr))
12221 *offset = dwarf2_get_attr_constant_value (attr, 0);
12222 else if (attr_form_is_section_offset (attr))
12223 dwarf2_complex_location_expr_complaint ();
12224 else if (attr_form_is_block (attr))
12225 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12226 else
12227 dwarf2_complex_location_expr_complaint ();
12228
12229 return 1;
12230 }
12231
12232 return 0;
12233}
12234
c906108c
SS
12235/* Add an aggregate field to the field list. */
12236
12237static void
107d2387 12238dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12239 struct dwarf2_cu *cu)
6e70227d 12240{
e7c27a73 12241 struct objfile *objfile = cu->objfile;
5e2b427d 12242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12243 struct nextfield *new_field;
12244 struct attribute *attr;
12245 struct field *fp;
15d034d0 12246 const char *fieldname = "";
c906108c
SS
12247
12248 /* Allocate a new field list entry and link it in. */
12249 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12250 make_cleanup (xfree, new_field);
c906108c 12251 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12252
12253 if (die->tag == DW_TAG_inheritance)
12254 {
12255 new_field->next = fip->baseclasses;
12256 fip->baseclasses = new_field;
12257 }
12258 else
12259 {
12260 new_field->next = fip->fields;
12261 fip->fields = new_field;
12262 }
c906108c
SS
12263 fip->nfields++;
12264
e142c38c 12265 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12266 if (attr)
12267 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12268 else
12269 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12270 if (new_field->accessibility != DW_ACCESS_public)
12271 fip->non_public_fields = 1;
60d5a603 12272
e142c38c 12273 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12274 if (attr)
12275 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12276 else
12277 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12278
12279 fp = &new_field->field;
a9a9bd0f 12280
e142c38c 12281 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12282 {
74ac6d43
TT
12283 LONGEST offset;
12284
a9a9bd0f 12285 /* Data member other than a C++ static data member. */
6e70227d 12286
c906108c 12287 /* Get type of field. */
e7c27a73 12288 fp->type = die_type (die, cu);
c906108c 12289
d6a843b5 12290 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12291
c906108c 12292 /* Get bit size of field (zero if none). */
e142c38c 12293 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12294 if (attr)
12295 {
12296 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12297 }
12298 else
12299 {
12300 FIELD_BITSIZE (*fp) = 0;
12301 }
12302
12303 /* Get bit offset of field. */
74ac6d43
TT
12304 if (handle_data_member_location (die, cu, &offset))
12305 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12306 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12307 if (attr)
12308 {
5e2b427d 12309 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12310 {
12311 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12312 additional bit offset from the MSB of the containing
12313 anonymous object to the MSB of the field. We don't
12314 have to do anything special since we don't need to
12315 know the size of the anonymous object. */
f41f5e61 12316 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12317 }
12318 else
12319 {
12320 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12321 MSB of the anonymous object, subtract off the number of
12322 bits from the MSB of the field to the MSB of the
12323 object, and then subtract off the number of bits of
12324 the field itself. The result is the bit offset of
12325 the LSB of the field. */
c906108c
SS
12326 int anonymous_size;
12327 int bit_offset = DW_UNSND (attr);
12328
e142c38c 12329 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12330 if (attr)
12331 {
12332 /* The size of the anonymous object containing
12333 the bit field is explicit, so use the
12334 indicated size (in bytes). */
12335 anonymous_size = DW_UNSND (attr);
12336 }
12337 else
12338 {
12339 /* The size of the anonymous object containing
12340 the bit field must be inferred from the type
12341 attribute of the data member containing the
12342 bit field. */
12343 anonymous_size = TYPE_LENGTH (fp->type);
12344 }
f41f5e61
PA
12345 SET_FIELD_BITPOS (*fp,
12346 (FIELD_BITPOS (*fp)
12347 + anonymous_size * bits_per_byte
12348 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12349 }
12350 }
12351
12352 /* Get name of field. */
39cbfefa
DJ
12353 fieldname = dwarf2_name (die, cu);
12354 if (fieldname == NULL)
12355 fieldname = "";
d8151005
DJ
12356
12357 /* The name is already allocated along with this objfile, so we don't
12358 need to duplicate it for the type. */
12359 fp->name = fieldname;
c906108c
SS
12360
12361 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12362 pointer or virtual base class pointer) to private. */
e142c38c 12363 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12364 {
d48cc9dd 12365 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12366 new_field->accessibility = DW_ACCESS_private;
12367 fip->non_public_fields = 1;
12368 }
12369 }
a9a9bd0f 12370 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12371 {
a9a9bd0f
DC
12372 /* C++ static member. */
12373
12374 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12375 is a declaration, but all versions of G++ as of this writing
12376 (so through at least 3.2.1) incorrectly generate
12377 DW_TAG_variable tags. */
6e70227d 12378
ff355380 12379 const char *physname;
c906108c 12380
a9a9bd0f 12381 /* Get name of field. */
39cbfefa
DJ
12382 fieldname = dwarf2_name (die, cu);
12383 if (fieldname == NULL)
c906108c
SS
12384 return;
12385
254e6b9e 12386 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12387 if (attr
12388 /* Only create a symbol if this is an external value.
12389 new_symbol checks this and puts the value in the global symbol
12390 table, which we want. If it is not external, new_symbol
12391 will try to put the value in cu->list_in_scope which is wrong. */
12392 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12393 {
12394 /* A static const member, not much different than an enum as far as
12395 we're concerned, except that we can support more types. */
12396 new_symbol (die, NULL, cu);
12397 }
12398
2df3850c 12399 /* Get physical name. */
ff355380 12400 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12401
d8151005
DJ
12402 /* The name is already allocated along with this objfile, so we don't
12403 need to duplicate it for the type. */
12404 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12405 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12406 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12407 }
12408 else if (die->tag == DW_TAG_inheritance)
12409 {
74ac6d43 12410 LONGEST offset;
d4b96c9a 12411
74ac6d43
TT
12412 /* C++ base class field. */
12413 if (handle_data_member_location (die, cu, &offset))
12414 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12415 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12416 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12417 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12418 fip->nbaseclasses++;
12419 }
12420}
12421
98751a41
JK
12422/* Add a typedef defined in the scope of the FIP's class. */
12423
12424static void
12425dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12426 struct dwarf2_cu *cu)
6e70227d 12427{
98751a41 12428 struct objfile *objfile = cu->objfile;
98751a41
JK
12429 struct typedef_field_list *new_field;
12430 struct attribute *attr;
12431 struct typedef_field *fp;
12432 char *fieldname = "";
12433
12434 /* Allocate a new field list entry and link it in. */
12435 new_field = xzalloc (sizeof (*new_field));
12436 make_cleanup (xfree, new_field);
12437
12438 gdb_assert (die->tag == DW_TAG_typedef);
12439
12440 fp = &new_field->field;
12441
12442 /* Get name of field. */
12443 fp->name = dwarf2_name (die, cu);
12444 if (fp->name == NULL)
12445 return;
12446
12447 fp->type = read_type_die (die, cu);
12448
12449 new_field->next = fip->typedef_field_list;
12450 fip->typedef_field_list = new_field;
12451 fip->typedef_field_list_count++;
12452}
12453
c906108c
SS
12454/* Create the vector of fields, and attach it to the type. */
12455
12456static void
fba45db2 12457dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12458 struct dwarf2_cu *cu)
c906108c
SS
12459{
12460 int nfields = fip->nfields;
12461
12462 /* Record the field count, allocate space for the array of fields,
12463 and create blank accessibility bitfields if necessary. */
12464 TYPE_NFIELDS (type) = nfields;
12465 TYPE_FIELDS (type) = (struct field *)
12466 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12467 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12468
b4ba55a1 12469 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12470 {
12471 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12472
12473 TYPE_FIELD_PRIVATE_BITS (type) =
12474 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12475 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12476
12477 TYPE_FIELD_PROTECTED_BITS (type) =
12478 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12479 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12480
774b6a14
TT
12481 TYPE_FIELD_IGNORE_BITS (type) =
12482 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12483 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12484 }
12485
12486 /* If the type has baseclasses, allocate and clear a bit vector for
12487 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12488 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12489 {
12490 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12491 unsigned char *pointer;
c906108c
SS
12492
12493 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12494 pointer = TYPE_ALLOC (type, num_bytes);
12495 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12496 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12497 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12498 }
12499
3e43a32a
MS
12500 /* Copy the saved-up fields into the field vector. Start from the head of
12501 the list, adding to the tail of the field array, so that they end up in
12502 the same order in the array in which they were added to the list. */
c906108c
SS
12503 while (nfields-- > 0)
12504 {
7d0ccb61
DJ
12505 struct nextfield *fieldp;
12506
12507 if (fip->fields)
12508 {
12509 fieldp = fip->fields;
12510 fip->fields = fieldp->next;
12511 }
12512 else
12513 {
12514 fieldp = fip->baseclasses;
12515 fip->baseclasses = fieldp->next;
12516 }
12517
12518 TYPE_FIELD (type, nfields) = fieldp->field;
12519 switch (fieldp->accessibility)
c906108c 12520 {
c5aa993b 12521 case DW_ACCESS_private:
b4ba55a1
JB
12522 if (cu->language != language_ada)
12523 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12524 break;
c906108c 12525
c5aa993b 12526 case DW_ACCESS_protected:
b4ba55a1
JB
12527 if (cu->language != language_ada)
12528 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12529 break;
c906108c 12530
c5aa993b
JM
12531 case DW_ACCESS_public:
12532 break;
c906108c 12533
c5aa993b
JM
12534 default:
12535 /* Unknown accessibility. Complain and treat it as public. */
12536 {
e2e0b3e5 12537 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12538 fieldp->accessibility);
c5aa993b
JM
12539 }
12540 break;
c906108c
SS
12541 }
12542 if (nfields < fip->nbaseclasses)
12543 {
7d0ccb61 12544 switch (fieldp->virtuality)
c906108c 12545 {
c5aa993b
JM
12546 case DW_VIRTUALITY_virtual:
12547 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12548 if (cu->language == language_ada)
a73c6dcd 12549 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12550 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12551 break;
c906108c
SS
12552 }
12553 }
c906108c
SS
12554 }
12555}
12556
7d27a96d
TT
12557/* Return true if this member function is a constructor, false
12558 otherwise. */
12559
12560static int
12561dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12562{
12563 const char *fieldname;
12564 const char *typename;
12565 int len;
12566
12567 if (die->parent == NULL)
12568 return 0;
12569
12570 if (die->parent->tag != DW_TAG_structure_type
12571 && die->parent->tag != DW_TAG_union_type
12572 && die->parent->tag != DW_TAG_class_type)
12573 return 0;
12574
12575 fieldname = dwarf2_name (die, cu);
12576 typename = dwarf2_name (die->parent, cu);
12577 if (fieldname == NULL || typename == NULL)
12578 return 0;
12579
12580 len = strlen (fieldname);
12581 return (strncmp (fieldname, typename, len) == 0
12582 && (typename[len] == '\0' || typename[len] == '<'));
12583}
12584
c906108c
SS
12585/* Add a member function to the proper fieldlist. */
12586
12587static void
107d2387 12588dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12589 struct type *type, struct dwarf2_cu *cu)
c906108c 12590{
e7c27a73 12591 struct objfile *objfile = cu->objfile;
c906108c
SS
12592 struct attribute *attr;
12593 struct fnfieldlist *flp;
12594 int i;
12595 struct fn_field *fnp;
15d034d0 12596 const char *fieldname;
c906108c 12597 struct nextfnfield *new_fnfield;
f792889a 12598 struct type *this_type;
60d5a603 12599 enum dwarf_access_attribute accessibility;
c906108c 12600
b4ba55a1 12601 if (cu->language == language_ada)
a73c6dcd 12602 error (_("unexpected member function in Ada type"));
b4ba55a1 12603
2df3850c 12604 /* Get name of member function. */
39cbfefa
DJ
12605 fieldname = dwarf2_name (die, cu);
12606 if (fieldname == NULL)
2df3850c 12607 return;
c906108c 12608
c906108c
SS
12609 /* Look up member function name in fieldlist. */
12610 for (i = 0; i < fip->nfnfields; i++)
12611 {
27bfe10e 12612 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12613 break;
12614 }
12615
12616 /* Create new list element if necessary. */
12617 if (i < fip->nfnfields)
12618 flp = &fip->fnfieldlists[i];
12619 else
12620 {
12621 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12622 {
12623 fip->fnfieldlists = (struct fnfieldlist *)
12624 xrealloc (fip->fnfieldlists,
12625 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12626 * sizeof (struct fnfieldlist));
c906108c 12627 if (fip->nfnfields == 0)
c13c43fd 12628 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12629 }
12630 flp = &fip->fnfieldlists[fip->nfnfields];
12631 flp->name = fieldname;
12632 flp->length = 0;
12633 flp->head = NULL;
3da10d80 12634 i = fip->nfnfields++;
c906108c
SS
12635 }
12636
12637 /* Create a new member function field and chain it to the field list
0963b4bd 12638 entry. */
c906108c 12639 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12640 make_cleanup (xfree, new_fnfield);
c906108c
SS
12641 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12642 new_fnfield->next = flp->head;
12643 flp->head = new_fnfield;
12644 flp->length++;
12645
12646 /* Fill in the member function field info. */
12647 fnp = &new_fnfield->fnfield;
3da10d80
KS
12648
12649 /* Delay processing of the physname until later. */
12650 if (cu->language == language_cplus || cu->language == language_java)
12651 {
12652 add_to_method_list (type, i, flp->length - 1, fieldname,
12653 die, cu);
12654 }
12655 else
12656 {
1d06ead6 12657 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12658 fnp->physname = physname ? physname : "";
12659 }
12660
c906108c 12661 fnp->type = alloc_type (objfile);
f792889a
DJ
12662 this_type = read_type_die (die, cu);
12663 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12664 {
f792889a 12665 int nparams = TYPE_NFIELDS (this_type);
c906108c 12666
f792889a 12667 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12668 of the method itself (TYPE_CODE_METHOD). */
12669 smash_to_method_type (fnp->type, type,
f792889a
DJ
12670 TYPE_TARGET_TYPE (this_type),
12671 TYPE_FIELDS (this_type),
12672 TYPE_NFIELDS (this_type),
12673 TYPE_VARARGS (this_type));
c906108c
SS
12674
12675 /* Handle static member functions.
c5aa993b 12676 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12677 member functions. G++ helps GDB by marking the first
12678 parameter for non-static member functions (which is the this
12679 pointer) as artificial. We obtain this information from
12680 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12681 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12682 fnp->voffset = VOFFSET_STATIC;
12683 }
12684 else
e2e0b3e5 12685 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12686 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12687
12688 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12689 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12690 fnp->fcontext = die_containing_type (die, cu);
c906108c 12691
3e43a32a
MS
12692 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12693 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12694
12695 /* Get accessibility. */
e142c38c 12696 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12697 if (attr)
60d5a603
JK
12698 accessibility = DW_UNSND (attr);
12699 else
12700 accessibility = dwarf2_default_access_attribute (die, cu);
12701 switch (accessibility)
c906108c 12702 {
60d5a603
JK
12703 case DW_ACCESS_private:
12704 fnp->is_private = 1;
12705 break;
12706 case DW_ACCESS_protected:
12707 fnp->is_protected = 1;
12708 break;
c906108c
SS
12709 }
12710
b02dede2 12711 /* Check for artificial methods. */
e142c38c 12712 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12713 if (attr && DW_UNSND (attr) != 0)
12714 fnp->is_artificial = 1;
12715
7d27a96d
TT
12716 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12717
0d564a31 12718 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12719 function. For older versions of GCC, this is an offset in the
12720 appropriate virtual table, as specified by DW_AT_containing_type.
12721 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12722 to the object address. */
12723
e142c38c 12724 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12725 if (attr)
8e19ed76 12726 {
aec5aa8b 12727 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12728 {
aec5aa8b
TT
12729 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12730 {
12731 /* Old-style GCC. */
12732 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12733 }
12734 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12735 || (DW_BLOCK (attr)->size > 1
12736 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12737 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12738 {
12739 struct dwarf_block blk;
12740 int offset;
12741
12742 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12743 ? 1 : 2);
12744 blk.size = DW_BLOCK (attr)->size - offset;
12745 blk.data = DW_BLOCK (attr)->data + offset;
12746 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12747 if ((fnp->voffset % cu->header.addr_size) != 0)
12748 dwarf2_complex_location_expr_complaint ();
12749 else
12750 fnp->voffset /= cu->header.addr_size;
12751 fnp->voffset += 2;
12752 }
12753 else
12754 dwarf2_complex_location_expr_complaint ();
12755
12756 if (!fnp->fcontext)
12757 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12758 }
3690dd37 12759 else if (attr_form_is_section_offset (attr))
8e19ed76 12760 {
4d3c2250 12761 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12762 }
12763 else
12764 {
4d3c2250
KB
12765 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12766 fieldname);
8e19ed76 12767 }
0d564a31 12768 }
d48cc9dd
DJ
12769 else
12770 {
12771 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12772 if (attr && DW_UNSND (attr))
12773 {
12774 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12775 complaint (&symfile_complaints,
3e43a32a
MS
12776 _("Member function \"%s\" (offset %d) is virtual "
12777 "but the vtable offset is not specified"),
b64f50a1 12778 fieldname, die->offset.sect_off);
9655fd1a 12779 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12780 TYPE_CPLUS_DYNAMIC (type) = 1;
12781 }
12782 }
c906108c
SS
12783}
12784
12785/* Create the vector of member function fields, and attach it to the type. */
12786
12787static void
fba45db2 12788dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12789 struct dwarf2_cu *cu)
c906108c
SS
12790{
12791 struct fnfieldlist *flp;
c906108c
SS
12792 int i;
12793
b4ba55a1 12794 if (cu->language == language_ada)
a73c6dcd 12795 error (_("unexpected member functions in Ada type"));
b4ba55a1 12796
c906108c
SS
12797 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12798 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12799 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12800
12801 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12802 {
12803 struct nextfnfield *nfp = flp->head;
12804 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12805 int k;
12806
12807 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12808 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12809 fn_flp->fn_fields = (struct fn_field *)
12810 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12811 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12812 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12813 }
12814
12815 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12816}
12817
1168df01
JB
12818/* Returns non-zero if NAME is the name of a vtable member in CU's
12819 language, zero otherwise. */
12820static int
12821is_vtable_name (const char *name, struct dwarf2_cu *cu)
12822{
12823 static const char vptr[] = "_vptr";
987504bb 12824 static const char vtable[] = "vtable";
1168df01 12825
987504bb
JJ
12826 /* Look for the C++ and Java forms of the vtable. */
12827 if ((cu->language == language_java
12828 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12829 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12830 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12831 return 1;
12832
12833 return 0;
12834}
12835
c0dd20ea 12836/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12837 functions, with the ABI-specified layout. If TYPE describes
12838 such a structure, smash it into a member function type.
61049d3b
DJ
12839
12840 GCC shouldn't do this; it should just output pointer to member DIEs.
12841 This is GCC PR debug/28767. */
c0dd20ea 12842
0b92b5bb
TT
12843static void
12844quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12845{
0b92b5bb 12846 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12847
12848 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12849 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12850 return;
c0dd20ea
DJ
12851
12852 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12853 if (TYPE_FIELD_NAME (type, 0) == NULL
12854 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12855 || TYPE_FIELD_NAME (type, 1) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12857 return;
c0dd20ea
DJ
12858
12859 /* Find the type of the method. */
0b92b5bb 12860 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12861 if (pfn_type == NULL
12862 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12863 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12864 return;
c0dd20ea
DJ
12865
12866 /* Look for the "this" argument. */
12867 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12868 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12869 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12870 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12871 return;
c0dd20ea
DJ
12872
12873 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12874 new_type = alloc_type (objfile);
12875 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12876 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12877 TYPE_VARARGS (pfn_type));
0b92b5bb 12878 smash_to_methodptr_type (type, new_type);
c0dd20ea 12879}
1168df01 12880
685b1105
JK
12881/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12882 (icc). */
12883
12884static int
12885producer_is_icc (struct dwarf2_cu *cu)
12886{
12887 if (!cu->checked_producer)
12888 check_producer (cu);
12889
12890 return cu->producer_is_icc;
12891}
12892
c906108c 12893/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12894 (definition) to create a type for the structure or union. Fill in
12895 the type's name and general properties; the members will not be
83655187
DE
12896 processed until process_structure_scope. A symbol table entry for
12897 the type will also not be done until process_structure_scope (assuming
12898 the type has a name).
c906108c 12899
c767944b
DJ
12900 NOTE: we need to call these functions regardless of whether or not the
12901 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12902 structure or union. This gets the type entered into our set of
83655187 12903 user defined types. */
c906108c 12904
f792889a 12905static struct type *
134d01f1 12906read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12907{
e7c27a73 12908 struct objfile *objfile = cu->objfile;
c906108c
SS
12909 struct type *type;
12910 struct attribute *attr;
15d034d0 12911 const char *name;
c906108c 12912
348e048f
DE
12913 /* If the definition of this type lives in .debug_types, read that type.
12914 Don't follow DW_AT_specification though, that will take us back up
12915 the chain and we want to go down. */
45e58e77 12916 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12917 if (attr)
12918 {
ac9ec31b 12919 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12920
ac9ec31b 12921 /* The type's CU may not be the same as CU.
02142a6c 12922 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12923 return set_die_type (die, type, cu);
12924 }
12925
c0dd20ea 12926 type = alloc_type (objfile);
c906108c 12927 INIT_CPLUS_SPECIFIC (type);
93311388 12928
39cbfefa
DJ
12929 name = dwarf2_name (die, cu);
12930 if (name != NULL)
c906108c 12931 {
987504bb
JJ
12932 if (cu->language == language_cplus
12933 || cu->language == language_java)
63d06c5c 12934 {
15d034d0 12935 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12936
12937 /* dwarf2_full_name might have already finished building the DIE's
12938 type. If so, there is no need to continue. */
12939 if (get_die_type (die, cu) != NULL)
12940 return get_die_type (die, cu);
12941
12942 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12943 if (die->tag == DW_TAG_structure_type
12944 || die->tag == DW_TAG_class_type)
12945 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12946 }
12947 else
12948 {
d8151005
DJ
12949 /* The name is already allocated along with this objfile, so
12950 we don't need to duplicate it for the type. */
7d455152 12951 TYPE_TAG_NAME (type) = name;
94af9270
KS
12952 if (die->tag == DW_TAG_class_type)
12953 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12954 }
c906108c
SS
12955 }
12956
12957 if (die->tag == DW_TAG_structure_type)
12958 {
12959 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12960 }
12961 else if (die->tag == DW_TAG_union_type)
12962 {
12963 TYPE_CODE (type) = TYPE_CODE_UNION;
12964 }
12965 else
12966 {
c906108c
SS
12967 TYPE_CODE (type) = TYPE_CODE_CLASS;
12968 }
12969
0cc2414c
TT
12970 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12971 TYPE_DECLARED_CLASS (type) = 1;
12972
e142c38c 12973 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12974 if (attr)
12975 {
12976 TYPE_LENGTH (type) = DW_UNSND (attr);
12977 }
12978 else
12979 {
12980 TYPE_LENGTH (type) = 0;
12981 }
12982
422b1cb0 12983 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
12984 {
12985 /* ICC does not output the required DW_AT_declaration
12986 on incomplete types, but gives them a size of zero. */
422b1cb0 12987 TYPE_STUB (type) = 1;
685b1105
JK
12988 }
12989 else
12990 TYPE_STUB_SUPPORTED (type) = 1;
12991
dc718098 12992 if (die_is_declaration (die, cu))
876cecd0 12993 TYPE_STUB (type) = 1;
a6c727b2
DJ
12994 else if (attr == NULL && die->child == NULL
12995 && producer_is_realview (cu->producer))
12996 /* RealView does not output the required DW_AT_declaration
12997 on incomplete types. */
12998 TYPE_STUB (type) = 1;
dc718098 12999
c906108c
SS
13000 /* We need to add the type field to the die immediately so we don't
13001 infinitely recurse when dealing with pointers to the structure
0963b4bd 13002 type within the structure itself. */
1c379e20 13003 set_die_type (die, type, cu);
c906108c 13004
7e314c57
JK
13005 /* set_die_type should be already done. */
13006 set_descriptive_type (type, die, cu);
13007
c767944b
DJ
13008 return type;
13009}
13010
13011/* Finish creating a structure or union type, including filling in
13012 its members and creating a symbol for it. */
13013
13014static void
13015process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13016{
13017 struct objfile *objfile = cu->objfile;
13018 struct die_info *child_die = die->child;
13019 struct type *type;
13020
13021 type = get_die_type (die, cu);
13022 if (type == NULL)
13023 type = read_structure_type (die, cu);
13024
e142c38c 13025 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13026 {
13027 struct field_info fi;
13028 struct die_info *child_die;
34eaf542 13029 VEC (symbolp) *template_args = NULL;
c767944b 13030 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13031
13032 memset (&fi, 0, sizeof (struct field_info));
13033
639d11d3 13034 child_die = die->child;
c906108c
SS
13035
13036 while (child_die && child_die->tag)
13037 {
a9a9bd0f
DC
13038 if (child_die->tag == DW_TAG_member
13039 || child_die->tag == DW_TAG_variable)
c906108c 13040 {
a9a9bd0f
DC
13041 /* NOTE: carlton/2002-11-05: A C++ static data member
13042 should be a DW_TAG_member that is a declaration, but
13043 all versions of G++ as of this writing (so through at
13044 least 3.2.1) incorrectly generate DW_TAG_variable
13045 tags for them instead. */
e7c27a73 13046 dwarf2_add_field (&fi, child_die, cu);
c906108c 13047 }
8713b1b1 13048 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13049 {
0963b4bd 13050 /* C++ member function. */
e7c27a73 13051 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13052 }
13053 else if (child_die->tag == DW_TAG_inheritance)
13054 {
13055 /* C++ base class field. */
e7c27a73 13056 dwarf2_add_field (&fi, child_die, cu);
c906108c 13057 }
98751a41
JK
13058 else if (child_die->tag == DW_TAG_typedef)
13059 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13060 else if (child_die->tag == DW_TAG_template_type_param
13061 || child_die->tag == DW_TAG_template_value_param)
13062 {
13063 struct symbol *arg = new_symbol (child_die, NULL, cu);
13064
f1078f66
DJ
13065 if (arg != NULL)
13066 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13067 }
13068
c906108c
SS
13069 child_die = sibling_die (child_die);
13070 }
13071
34eaf542
TT
13072 /* Attach template arguments to type. */
13073 if (! VEC_empty (symbolp, template_args))
13074 {
13075 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13076 TYPE_N_TEMPLATE_ARGUMENTS (type)
13077 = VEC_length (symbolp, template_args);
13078 TYPE_TEMPLATE_ARGUMENTS (type)
13079 = obstack_alloc (&objfile->objfile_obstack,
13080 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13081 * sizeof (struct symbol *)));
13082 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13083 VEC_address (symbolp, template_args),
13084 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13085 * sizeof (struct symbol *)));
13086 VEC_free (symbolp, template_args);
13087 }
13088
c906108c
SS
13089 /* Attach fields and member functions to the type. */
13090 if (fi.nfields)
e7c27a73 13091 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13092 if (fi.nfnfields)
13093 {
e7c27a73 13094 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13095
c5aa993b 13096 /* Get the type which refers to the base class (possibly this
c906108c 13097 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13098 class from the DW_AT_containing_type attribute. This use of
13099 DW_AT_containing_type is a GNU extension. */
c906108c 13100
e142c38c 13101 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13102 {
e7c27a73 13103 struct type *t = die_containing_type (die, cu);
c906108c
SS
13104
13105 TYPE_VPTR_BASETYPE (type) = t;
13106 if (type == t)
13107 {
c906108c
SS
13108 int i;
13109
13110 /* Our own class provides vtbl ptr. */
13111 for (i = TYPE_NFIELDS (t) - 1;
13112 i >= TYPE_N_BASECLASSES (t);
13113 --i)
13114 {
0d5cff50 13115 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13116
1168df01 13117 if (is_vtable_name (fieldname, cu))
c906108c
SS
13118 {
13119 TYPE_VPTR_FIELDNO (type) = i;
13120 break;
13121 }
13122 }
13123
13124 /* Complain if virtual function table field not found. */
13125 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13126 complaint (&symfile_complaints,
3e43a32a
MS
13127 _("virtual function table pointer "
13128 "not found when defining class '%s'"),
4d3c2250
KB
13129 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13130 "");
c906108c
SS
13131 }
13132 else
13133 {
13134 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13135 }
13136 }
f6235d4c
EZ
13137 else if (cu->producer
13138 && strncmp (cu->producer,
13139 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13140 {
13141 /* The IBM XLC compiler does not provide direct indication
13142 of the containing type, but the vtable pointer is
13143 always named __vfp. */
13144
13145 int i;
13146
13147 for (i = TYPE_NFIELDS (type) - 1;
13148 i >= TYPE_N_BASECLASSES (type);
13149 --i)
13150 {
13151 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13152 {
13153 TYPE_VPTR_FIELDNO (type) = i;
13154 TYPE_VPTR_BASETYPE (type) = type;
13155 break;
13156 }
13157 }
13158 }
c906108c 13159 }
98751a41
JK
13160
13161 /* Copy fi.typedef_field_list linked list elements content into the
13162 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13163 if (fi.typedef_field_list)
13164 {
13165 int i = fi.typedef_field_list_count;
13166
a0d7a4ff 13167 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13168 TYPE_TYPEDEF_FIELD_ARRAY (type)
13169 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13170 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13171
13172 /* Reverse the list order to keep the debug info elements order. */
13173 while (--i >= 0)
13174 {
13175 struct typedef_field *dest, *src;
6e70227d 13176
98751a41
JK
13177 dest = &TYPE_TYPEDEF_FIELD (type, i);
13178 src = &fi.typedef_field_list->field;
13179 fi.typedef_field_list = fi.typedef_field_list->next;
13180 *dest = *src;
13181 }
13182 }
c767944b
DJ
13183
13184 do_cleanups (back_to);
eb2a6f42
TT
13185
13186 if (HAVE_CPLUS_STRUCT (type))
13187 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13188 }
63d06c5c 13189
bb5ed363 13190 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13191
90aeadfc
DC
13192 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13193 snapshots) has been known to create a die giving a declaration
13194 for a class that has, as a child, a die giving a definition for a
13195 nested class. So we have to process our children even if the
13196 current die is a declaration. Normally, of course, a declaration
13197 won't have any children at all. */
134d01f1 13198
90aeadfc
DC
13199 while (child_die != NULL && child_die->tag)
13200 {
13201 if (child_die->tag == DW_TAG_member
13202 || child_die->tag == DW_TAG_variable
34eaf542
TT
13203 || child_die->tag == DW_TAG_inheritance
13204 || child_die->tag == DW_TAG_template_value_param
13205 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13206 {
90aeadfc 13207 /* Do nothing. */
134d01f1 13208 }
90aeadfc
DC
13209 else
13210 process_die (child_die, cu);
134d01f1 13211
90aeadfc 13212 child_die = sibling_die (child_die);
134d01f1
DJ
13213 }
13214
fa4028e9
JB
13215 /* Do not consider external references. According to the DWARF standard,
13216 these DIEs are identified by the fact that they have no byte_size
13217 attribute, and a declaration attribute. */
13218 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13219 || !die_is_declaration (die, cu))
c767944b 13220 new_symbol (die, type, cu);
134d01f1
DJ
13221}
13222
55426c9d
JB
13223/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13224 update TYPE using some information only available in DIE's children. */
13225
13226static void
13227update_enumeration_type_from_children (struct die_info *die,
13228 struct type *type,
13229 struct dwarf2_cu *cu)
13230{
13231 struct obstack obstack;
13232 struct die_info *child_die = die->child;
13233 int unsigned_enum = 1;
13234 int flag_enum = 1;
13235 ULONGEST mask = 0;
13236 struct cleanup *old_chain;
13237
13238 obstack_init (&obstack);
13239 old_chain = make_cleanup_obstack_free (&obstack);
13240
13241 while (child_die != NULL && child_die->tag)
13242 {
13243 struct attribute *attr;
13244 LONGEST value;
13245 const gdb_byte *bytes;
13246 struct dwarf2_locexpr_baton *baton;
13247 const char *name;
13248 if (child_die->tag != DW_TAG_enumerator)
13249 continue;
13250
13251 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13252 if (attr == NULL)
13253 continue;
13254
13255 name = dwarf2_name (child_die, cu);
13256 if (name == NULL)
13257 name = "<anonymous enumerator>";
13258
13259 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13260 &value, &bytes, &baton);
13261 if (value < 0)
13262 {
13263 unsigned_enum = 0;
13264 flag_enum = 0;
13265 }
13266 else if ((mask & value) != 0)
13267 flag_enum = 0;
13268 else
13269 mask |= value;
13270
13271 /* If we already know that the enum type is neither unsigned, nor
13272 a flag type, no need to look at the rest of the enumerates. */
13273 if (!unsigned_enum && !flag_enum)
13274 break;
13275 child_die = sibling_die (child_die);
13276 }
13277
13278 if (unsigned_enum)
13279 TYPE_UNSIGNED (type) = 1;
13280 if (flag_enum)
13281 TYPE_FLAG_ENUM (type) = 1;
13282
13283 do_cleanups (old_chain);
13284}
13285
134d01f1
DJ
13286/* Given a DW_AT_enumeration_type die, set its type. We do not
13287 complete the type's fields yet, or create any symbols. */
c906108c 13288
f792889a 13289static struct type *
134d01f1 13290read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13291{
e7c27a73 13292 struct objfile *objfile = cu->objfile;
c906108c 13293 struct type *type;
c906108c 13294 struct attribute *attr;
0114d602 13295 const char *name;
134d01f1 13296
348e048f
DE
13297 /* If the definition of this type lives in .debug_types, read that type.
13298 Don't follow DW_AT_specification though, that will take us back up
13299 the chain and we want to go down. */
45e58e77 13300 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13301 if (attr)
13302 {
ac9ec31b 13303 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13304
ac9ec31b 13305 /* The type's CU may not be the same as CU.
02142a6c 13306 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13307 return set_die_type (die, type, cu);
13308 }
13309
c906108c
SS
13310 type = alloc_type (objfile);
13311
13312 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13313 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13314 if (name != NULL)
7d455152 13315 TYPE_TAG_NAME (type) = name;
c906108c 13316
0626fc76
TT
13317 attr = dwarf2_attr (die, DW_AT_type, cu);
13318 if (attr != NULL)
13319 {
13320 struct type *underlying_type = die_type (die, cu);
13321
13322 TYPE_TARGET_TYPE (type) = underlying_type;
13323 }
13324
e142c38c 13325 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13326 if (attr)
13327 {
13328 TYPE_LENGTH (type) = DW_UNSND (attr);
13329 }
13330 else
13331 {
13332 TYPE_LENGTH (type) = 0;
13333 }
13334
137033e9
JB
13335 /* The enumeration DIE can be incomplete. In Ada, any type can be
13336 declared as private in the package spec, and then defined only
13337 inside the package body. Such types are known as Taft Amendment
13338 Types. When another package uses such a type, an incomplete DIE
13339 may be generated by the compiler. */
02eb380e 13340 if (die_is_declaration (die, cu))
876cecd0 13341 TYPE_STUB (type) = 1;
02eb380e 13342
0626fc76
TT
13343 /* Finish the creation of this type by using the enum's children.
13344 We must call this even when the underlying type has been provided
13345 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13346 update_enumeration_type_from_children (die, type, cu);
13347
0626fc76
TT
13348 /* If this type has an underlying type that is not a stub, then we
13349 may use its attributes. We always use the "unsigned" attribute
13350 in this situation, because ordinarily we guess whether the type
13351 is unsigned -- but the guess can be wrong and the underlying type
13352 can tell us the reality. However, we defer to a local size
13353 attribute if one exists, because this lets the compiler override
13354 the underlying type if needed. */
13355 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13356 {
13357 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13358 if (TYPE_LENGTH (type) == 0)
13359 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13360 }
13361
3d567982
TT
13362 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13363
f792889a 13364 return set_die_type (die, type, cu);
134d01f1
DJ
13365}
13366
13367/* Given a pointer to a die which begins an enumeration, process all
13368 the dies that define the members of the enumeration, and create the
13369 symbol for the enumeration type.
13370
13371 NOTE: We reverse the order of the element list. */
13372
13373static void
13374process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13375{
f792889a 13376 struct type *this_type;
134d01f1 13377
f792889a
DJ
13378 this_type = get_die_type (die, cu);
13379 if (this_type == NULL)
13380 this_type = read_enumeration_type (die, cu);
9dc481d3 13381
639d11d3 13382 if (die->child != NULL)
c906108c 13383 {
9dc481d3
DE
13384 struct die_info *child_die;
13385 struct symbol *sym;
13386 struct field *fields = NULL;
13387 int num_fields = 0;
15d034d0 13388 const char *name;
9dc481d3 13389
639d11d3 13390 child_die = die->child;
c906108c
SS
13391 while (child_die && child_die->tag)
13392 {
13393 if (child_die->tag != DW_TAG_enumerator)
13394 {
e7c27a73 13395 process_die (child_die, cu);
c906108c
SS
13396 }
13397 else
13398 {
39cbfefa
DJ
13399 name = dwarf2_name (child_die, cu);
13400 if (name)
c906108c 13401 {
f792889a 13402 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13403
13404 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13405 {
13406 fields = (struct field *)
13407 xrealloc (fields,
13408 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13409 * sizeof (struct field));
c906108c
SS
13410 }
13411
3567439c 13412 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13413 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13414 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13415 FIELD_BITSIZE (fields[num_fields]) = 0;
13416
13417 num_fields++;
13418 }
13419 }
13420
13421 child_die = sibling_die (child_die);
13422 }
13423
13424 if (num_fields)
13425 {
f792889a
DJ
13426 TYPE_NFIELDS (this_type) = num_fields;
13427 TYPE_FIELDS (this_type) = (struct field *)
13428 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13429 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13430 sizeof (struct field) * num_fields);
b8c9b27d 13431 xfree (fields);
c906108c 13432 }
c906108c 13433 }
134d01f1 13434
6c83ed52
TT
13435 /* If we are reading an enum from a .debug_types unit, and the enum
13436 is a declaration, and the enum is not the signatured type in the
13437 unit, then we do not want to add a symbol for it. Adding a
13438 symbol would in some cases obscure the true definition of the
13439 enum, giving users an incomplete type when the definition is
13440 actually available. Note that we do not want to do this for all
13441 enums which are just declarations, because C++0x allows forward
13442 enum declarations. */
3019eac3 13443 if (cu->per_cu->is_debug_types
6c83ed52
TT
13444 && die_is_declaration (die, cu))
13445 {
52dc124a 13446 struct signatured_type *sig_type;
6c83ed52 13447
c0f78cd4 13448 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13449 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13450 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13451 return;
13452 }
13453
f792889a 13454 new_symbol (die, this_type, cu);
c906108c
SS
13455}
13456
13457/* Extract all information from a DW_TAG_array_type DIE and put it in
13458 the DIE's type field. For now, this only handles one dimensional
13459 arrays. */
13460
f792889a 13461static struct type *
e7c27a73 13462read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13463{
e7c27a73 13464 struct objfile *objfile = cu->objfile;
c906108c 13465 struct die_info *child_die;
7e314c57 13466 struct type *type;
c906108c
SS
13467 struct type *element_type, *range_type, *index_type;
13468 struct type **range_types = NULL;
13469 struct attribute *attr;
13470 int ndim = 0;
13471 struct cleanup *back_to;
15d034d0 13472 const char *name;
dc53a7ad 13473 unsigned int bit_stride = 0;
c906108c 13474
e7c27a73 13475 element_type = die_type (die, cu);
c906108c 13476
7e314c57
JK
13477 /* The die_type call above may have already set the type for this DIE. */
13478 type = get_die_type (die, cu);
13479 if (type)
13480 return type;
13481
dc53a7ad
JB
13482 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13483 if (attr != NULL)
13484 bit_stride = DW_UNSND (attr) * 8;
13485
13486 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13487 if (attr != NULL)
13488 bit_stride = DW_UNSND (attr);
13489
c906108c
SS
13490 /* Irix 6.2 native cc creates array types without children for
13491 arrays with unspecified length. */
639d11d3 13492 if (die->child == NULL)
c906108c 13493 {
46bf5051 13494 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13495 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13496 type = create_array_type_with_stride (NULL, element_type, range_type,
13497 bit_stride);
f792889a 13498 return set_die_type (die, type, cu);
c906108c
SS
13499 }
13500
13501 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13502 child_die = die->child;
c906108c
SS
13503 while (child_die && child_die->tag)
13504 {
13505 if (child_die->tag == DW_TAG_subrange_type)
13506 {
f792889a 13507 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13508
f792889a 13509 if (child_type != NULL)
a02abb62 13510 {
0963b4bd
MS
13511 /* The range type was succesfully read. Save it for the
13512 array type creation. */
a02abb62
JB
13513 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13514 {
13515 range_types = (struct type **)
13516 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13517 * sizeof (struct type *));
13518 if (ndim == 0)
13519 make_cleanup (free_current_contents, &range_types);
13520 }
f792889a 13521 range_types[ndim++] = child_type;
a02abb62 13522 }
c906108c
SS
13523 }
13524 child_die = sibling_die (child_die);
13525 }
13526
13527 /* Dwarf2 dimensions are output from left to right, create the
13528 necessary array types in backwards order. */
7ca2d3a3 13529
c906108c 13530 type = element_type;
7ca2d3a3
DL
13531
13532 if (read_array_order (die, cu) == DW_ORD_col_major)
13533 {
13534 int i = 0;
9a619af0 13535
7ca2d3a3 13536 while (i < ndim)
dc53a7ad
JB
13537 type = create_array_type_with_stride (NULL, type, range_types[i++],
13538 bit_stride);
7ca2d3a3
DL
13539 }
13540 else
13541 {
13542 while (ndim-- > 0)
dc53a7ad
JB
13543 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13544 bit_stride);
7ca2d3a3 13545 }
c906108c 13546
f5f8a009
EZ
13547 /* Understand Dwarf2 support for vector types (like they occur on
13548 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13549 array type. This is not part of the Dwarf2/3 standard yet, but a
13550 custom vendor extension. The main difference between a regular
13551 array and the vector variant is that vectors are passed by value
13552 to functions. */
e142c38c 13553 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13554 if (attr)
ea37ba09 13555 make_vector_type (type);
f5f8a009 13556
dbc98a8b
KW
13557 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13558 implementation may choose to implement triple vectors using this
13559 attribute. */
13560 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13561 if (attr)
13562 {
13563 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13564 TYPE_LENGTH (type) = DW_UNSND (attr);
13565 else
3e43a32a
MS
13566 complaint (&symfile_complaints,
13567 _("DW_AT_byte_size for array type smaller "
13568 "than the total size of elements"));
dbc98a8b
KW
13569 }
13570
39cbfefa
DJ
13571 name = dwarf2_name (die, cu);
13572 if (name)
13573 TYPE_NAME (type) = name;
6e70227d 13574
0963b4bd 13575 /* Install the type in the die. */
7e314c57
JK
13576 set_die_type (die, type, cu);
13577
13578 /* set_die_type should be already done. */
b4ba55a1
JB
13579 set_descriptive_type (type, die, cu);
13580
c906108c
SS
13581 do_cleanups (back_to);
13582
7e314c57 13583 return type;
c906108c
SS
13584}
13585
7ca2d3a3 13586static enum dwarf_array_dim_ordering
6e70227d 13587read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13588{
13589 struct attribute *attr;
13590
13591 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13592
13593 if (attr) return DW_SND (attr);
13594
0963b4bd
MS
13595 /* GNU F77 is a special case, as at 08/2004 array type info is the
13596 opposite order to the dwarf2 specification, but data is still
13597 laid out as per normal fortran.
7ca2d3a3 13598
0963b4bd
MS
13599 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13600 version checking. */
7ca2d3a3 13601
905e0470
PM
13602 if (cu->language == language_fortran
13603 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13604 {
13605 return DW_ORD_row_major;
13606 }
13607
6e70227d 13608 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13609 {
13610 case array_column_major:
13611 return DW_ORD_col_major;
13612 case array_row_major:
13613 default:
13614 return DW_ORD_row_major;
13615 };
13616}
13617
72019c9c 13618/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13619 the DIE's type field. */
72019c9c 13620
f792889a 13621static struct type *
72019c9c
GM
13622read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13623{
7e314c57
JK
13624 struct type *domain_type, *set_type;
13625 struct attribute *attr;
f792889a 13626
7e314c57
JK
13627 domain_type = die_type (die, cu);
13628
13629 /* The die_type call above may have already set the type for this DIE. */
13630 set_type = get_die_type (die, cu);
13631 if (set_type)
13632 return set_type;
13633
13634 set_type = create_set_type (NULL, domain_type);
13635
13636 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13637 if (attr)
13638 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13639
f792889a 13640 return set_die_type (die, set_type, cu);
72019c9c 13641}
7ca2d3a3 13642
0971de02
TT
13643/* A helper for read_common_block that creates a locexpr baton.
13644 SYM is the symbol which we are marking as computed.
13645 COMMON_DIE is the DIE for the common block.
13646 COMMON_LOC is the location expression attribute for the common
13647 block itself.
13648 MEMBER_LOC is the location expression attribute for the particular
13649 member of the common block that we are processing.
13650 CU is the CU from which the above come. */
13651
13652static void
13653mark_common_block_symbol_computed (struct symbol *sym,
13654 struct die_info *common_die,
13655 struct attribute *common_loc,
13656 struct attribute *member_loc,
13657 struct dwarf2_cu *cu)
13658{
13659 struct objfile *objfile = dwarf2_per_objfile->objfile;
13660 struct dwarf2_locexpr_baton *baton;
13661 gdb_byte *ptr;
13662 unsigned int cu_off;
13663 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13664 LONGEST offset = 0;
13665
13666 gdb_assert (common_loc && member_loc);
13667 gdb_assert (attr_form_is_block (common_loc));
13668 gdb_assert (attr_form_is_block (member_loc)
13669 || attr_form_is_constant (member_loc));
13670
13671 baton = obstack_alloc (&objfile->objfile_obstack,
13672 sizeof (struct dwarf2_locexpr_baton));
13673 baton->per_cu = cu->per_cu;
13674 gdb_assert (baton->per_cu);
13675
13676 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13677
13678 if (attr_form_is_constant (member_loc))
13679 {
13680 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13681 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13682 }
13683 else
13684 baton->size += DW_BLOCK (member_loc)->size;
13685
13686 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13687 baton->data = ptr;
13688
13689 *ptr++ = DW_OP_call4;
13690 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13691 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13692 ptr += 4;
13693
13694 if (attr_form_is_constant (member_loc))
13695 {
13696 *ptr++ = DW_OP_addr;
13697 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13698 ptr += cu->header.addr_size;
13699 }
13700 else
13701 {
13702 /* We have to copy the data here, because DW_OP_call4 will only
13703 use a DW_AT_location attribute. */
13704 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13705 ptr += DW_BLOCK (member_loc)->size;
13706 }
13707
13708 *ptr++ = DW_OP_plus;
13709 gdb_assert (ptr - baton->data == baton->size);
13710
0971de02 13711 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13712 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13713}
13714
4357ac6c
TT
13715/* Create appropriate locally-scoped variables for all the
13716 DW_TAG_common_block entries. Also create a struct common_block
13717 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13718 is used to sepate the common blocks name namespace from regular
13719 variable names. */
c906108c
SS
13720
13721static void
e7c27a73 13722read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13723{
0971de02
TT
13724 struct attribute *attr;
13725
13726 attr = dwarf2_attr (die, DW_AT_location, cu);
13727 if (attr)
13728 {
13729 /* Support the .debug_loc offsets. */
13730 if (attr_form_is_block (attr))
13731 {
13732 /* Ok. */
13733 }
13734 else if (attr_form_is_section_offset (attr))
13735 {
13736 dwarf2_complex_location_expr_complaint ();
13737 attr = NULL;
13738 }
13739 else
13740 {
13741 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13742 "common block member");
13743 attr = NULL;
13744 }
13745 }
13746
639d11d3 13747 if (die->child != NULL)
c906108c 13748 {
4357ac6c
TT
13749 struct objfile *objfile = cu->objfile;
13750 struct die_info *child_die;
13751 size_t n_entries = 0, size;
13752 struct common_block *common_block;
13753 struct symbol *sym;
74ac6d43 13754
4357ac6c
TT
13755 for (child_die = die->child;
13756 child_die && child_die->tag;
13757 child_die = sibling_die (child_die))
13758 ++n_entries;
13759
13760 size = (sizeof (struct common_block)
13761 + (n_entries - 1) * sizeof (struct symbol *));
13762 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13763 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13764 common_block->n_entries = 0;
13765
13766 for (child_die = die->child;
13767 child_die && child_die->tag;
13768 child_die = sibling_die (child_die))
13769 {
13770 /* Create the symbol in the DW_TAG_common_block block in the current
13771 symbol scope. */
e7c27a73 13772 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13773 if (sym != NULL)
13774 {
13775 struct attribute *member_loc;
13776
13777 common_block->contents[common_block->n_entries++] = sym;
13778
13779 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13780 cu);
13781 if (member_loc)
13782 {
13783 /* GDB has handled this for a long time, but it is
13784 not specified by DWARF. It seems to have been
13785 emitted by gfortran at least as recently as:
13786 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13787 complaint (&symfile_complaints,
13788 _("Variable in common block has "
13789 "DW_AT_data_member_location "
13790 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13791 child_die->offset.sect_off,
13792 objfile_name (cu->objfile));
0971de02
TT
13793
13794 if (attr_form_is_section_offset (member_loc))
13795 dwarf2_complex_location_expr_complaint ();
13796 else if (attr_form_is_constant (member_loc)
13797 || attr_form_is_block (member_loc))
13798 {
13799 if (attr)
13800 mark_common_block_symbol_computed (sym, die, attr,
13801 member_loc, cu);
13802 }
13803 else
13804 dwarf2_complex_location_expr_complaint ();
13805 }
13806 }
c906108c 13807 }
4357ac6c
TT
13808
13809 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13810 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13811 }
13812}
13813
0114d602 13814/* Create a type for a C++ namespace. */
d9fa45fe 13815
0114d602
DJ
13816static struct type *
13817read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13818{
e7c27a73 13819 struct objfile *objfile = cu->objfile;
0114d602 13820 const char *previous_prefix, *name;
9219021c 13821 int is_anonymous;
0114d602
DJ
13822 struct type *type;
13823
13824 /* For extensions, reuse the type of the original namespace. */
13825 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13826 {
13827 struct die_info *ext_die;
13828 struct dwarf2_cu *ext_cu = cu;
9a619af0 13829
0114d602
DJ
13830 ext_die = dwarf2_extension (die, &ext_cu);
13831 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13832
13833 /* EXT_CU may not be the same as CU.
02142a6c 13834 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13835 return set_die_type (die, type, cu);
13836 }
9219021c 13837
e142c38c 13838 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13839
13840 /* Now build the name of the current namespace. */
13841
0114d602
DJ
13842 previous_prefix = determine_prefix (die, cu);
13843 if (previous_prefix[0] != '\0')
13844 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13845 previous_prefix, name, 0, cu);
0114d602
DJ
13846
13847 /* Create the type. */
13848 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13849 objfile);
abee88f2 13850 TYPE_NAME (type) = name;
0114d602
DJ
13851 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13852
60531b24 13853 return set_die_type (die, type, cu);
0114d602
DJ
13854}
13855
13856/* Read a C++ namespace. */
13857
13858static void
13859read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13860{
13861 struct objfile *objfile = cu->objfile;
0114d602 13862 int is_anonymous;
9219021c 13863
5c4e30ca
DC
13864 /* Add a symbol associated to this if we haven't seen the namespace
13865 before. Also, add a using directive if it's an anonymous
13866 namespace. */
9219021c 13867
f2f0e013 13868 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13869 {
13870 struct type *type;
13871
0114d602 13872 type = read_type_die (die, cu);
e7c27a73 13873 new_symbol (die, type, cu);
5c4e30ca 13874
e8e80198 13875 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13876 if (is_anonymous)
0114d602
DJ
13877 {
13878 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13879
c0cc3a76 13880 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13881 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13882 }
5c4e30ca 13883 }
9219021c 13884
639d11d3 13885 if (die->child != NULL)
d9fa45fe 13886 {
639d11d3 13887 struct die_info *child_die = die->child;
6e70227d 13888
d9fa45fe
DC
13889 while (child_die && child_die->tag)
13890 {
e7c27a73 13891 process_die (child_die, cu);
d9fa45fe
DC
13892 child_die = sibling_die (child_die);
13893 }
13894 }
38d518c9
EZ
13895}
13896
f55ee35c
JK
13897/* Read a Fortran module as type. This DIE can be only a declaration used for
13898 imported module. Still we need that type as local Fortran "use ... only"
13899 declaration imports depend on the created type in determine_prefix. */
13900
13901static struct type *
13902read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13903{
13904 struct objfile *objfile = cu->objfile;
15d034d0 13905 const char *module_name;
f55ee35c
JK
13906 struct type *type;
13907
13908 module_name = dwarf2_name (die, cu);
13909 if (!module_name)
3e43a32a
MS
13910 complaint (&symfile_complaints,
13911 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13912 die->offset.sect_off);
f55ee35c
JK
13913 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13914
13915 /* determine_prefix uses TYPE_TAG_NAME. */
13916 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13917
13918 return set_die_type (die, type, cu);
13919}
13920
5d7cb8df
JK
13921/* Read a Fortran module. */
13922
13923static void
13924read_module (struct die_info *die, struct dwarf2_cu *cu)
13925{
13926 struct die_info *child_die = die->child;
530e8392
KB
13927 struct type *type;
13928
13929 type = read_type_die (die, cu);
13930 new_symbol (die, type, cu);
5d7cb8df 13931
5d7cb8df
JK
13932 while (child_die && child_die->tag)
13933 {
13934 process_die (child_die, cu);
13935 child_die = sibling_die (child_die);
13936 }
13937}
13938
38d518c9
EZ
13939/* Return the name of the namespace represented by DIE. Set
13940 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13941 namespace. */
13942
13943static const char *
e142c38c 13944namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13945{
13946 struct die_info *current_die;
13947 const char *name = NULL;
13948
13949 /* Loop through the extensions until we find a name. */
13950
13951 for (current_die = die;
13952 current_die != NULL;
f2f0e013 13953 current_die = dwarf2_extension (die, &cu))
38d518c9 13954 {
e142c38c 13955 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13956 if (name != NULL)
13957 break;
13958 }
13959
13960 /* Is it an anonymous namespace? */
13961
13962 *is_anonymous = (name == NULL);
13963 if (*is_anonymous)
2b1dbab0 13964 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13965
13966 return name;
d9fa45fe
DC
13967}
13968
c906108c
SS
13969/* Extract all information from a DW_TAG_pointer_type DIE and add to
13970 the user defined type vector. */
13971
f792889a 13972static struct type *
e7c27a73 13973read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13974{
5e2b427d 13975 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13976 struct comp_unit_head *cu_header = &cu->header;
c906108c 13977 struct type *type;
8b2dbe47
KB
13978 struct attribute *attr_byte_size;
13979 struct attribute *attr_address_class;
13980 int byte_size, addr_class;
7e314c57
JK
13981 struct type *target_type;
13982
13983 target_type = die_type (die, cu);
c906108c 13984
7e314c57
JK
13985 /* The die_type call above may have already set the type for this DIE. */
13986 type = get_die_type (die, cu);
13987 if (type)
13988 return type;
13989
13990 type = lookup_pointer_type (target_type);
8b2dbe47 13991
e142c38c 13992 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13993 if (attr_byte_size)
13994 byte_size = DW_UNSND (attr_byte_size);
c906108c 13995 else
8b2dbe47
KB
13996 byte_size = cu_header->addr_size;
13997
e142c38c 13998 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13999 if (attr_address_class)
14000 addr_class = DW_UNSND (attr_address_class);
14001 else
14002 addr_class = DW_ADDR_none;
14003
14004 /* If the pointer size or address class is different than the
14005 default, create a type variant marked as such and set the
14006 length accordingly. */
14007 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14008 {
5e2b427d 14009 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14010 {
14011 int type_flags;
14012
849957d9 14013 type_flags = gdbarch_address_class_type_flags
5e2b427d 14014 (gdbarch, byte_size, addr_class);
876cecd0
TT
14015 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14016 == 0);
8b2dbe47
KB
14017 type = make_type_with_address_space (type, type_flags);
14018 }
14019 else if (TYPE_LENGTH (type) != byte_size)
14020 {
3e43a32a
MS
14021 complaint (&symfile_complaints,
14022 _("invalid pointer size %d"), byte_size);
8b2dbe47 14023 }
6e70227d 14024 else
9a619af0
MS
14025 {
14026 /* Should we also complain about unhandled address classes? */
14027 }
c906108c 14028 }
8b2dbe47
KB
14029
14030 TYPE_LENGTH (type) = byte_size;
f792889a 14031 return set_die_type (die, type, cu);
c906108c
SS
14032}
14033
14034/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14035 the user defined type vector. */
14036
f792889a 14037static struct type *
e7c27a73 14038read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14039{
14040 struct type *type;
14041 struct type *to_type;
14042 struct type *domain;
14043
e7c27a73
DJ
14044 to_type = die_type (die, cu);
14045 domain = die_containing_type (die, cu);
0d5de010 14046
7e314c57
JK
14047 /* The calls above may have already set the type for this DIE. */
14048 type = get_die_type (die, cu);
14049 if (type)
14050 return type;
14051
0d5de010
DJ
14052 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14053 type = lookup_methodptr_type (to_type);
7078baeb
TT
14054 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14055 {
14056 struct type *new_type = alloc_type (cu->objfile);
14057
14058 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14059 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14060 TYPE_VARARGS (to_type));
14061 type = lookup_methodptr_type (new_type);
14062 }
0d5de010
DJ
14063 else
14064 type = lookup_memberptr_type (to_type, domain);
c906108c 14065
f792889a 14066 return set_die_type (die, type, cu);
c906108c
SS
14067}
14068
14069/* Extract all information from a DW_TAG_reference_type DIE and add to
14070 the user defined type vector. */
14071
f792889a 14072static struct type *
e7c27a73 14073read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14074{
e7c27a73 14075 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14076 struct type *type, *target_type;
c906108c
SS
14077 struct attribute *attr;
14078
7e314c57
JK
14079 target_type = die_type (die, cu);
14080
14081 /* The die_type call above may have already set the type for this DIE. */
14082 type = get_die_type (die, cu);
14083 if (type)
14084 return type;
14085
14086 type = lookup_reference_type (target_type);
e142c38c 14087 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14088 if (attr)
14089 {
14090 TYPE_LENGTH (type) = DW_UNSND (attr);
14091 }
14092 else
14093 {
107d2387 14094 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14095 }
f792889a 14096 return set_die_type (die, type, cu);
c906108c
SS
14097}
14098
cf363f18
MW
14099/* Add the given cv-qualifiers to the element type of the array. GCC
14100 outputs DWARF type qualifiers that apply to an array, not the
14101 element type. But GDB relies on the array element type to carry
14102 the cv-qualifiers. This mimics section 6.7.3 of the C99
14103 specification. */
14104
14105static struct type *
14106add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14107 struct type *base_type, int cnst, int voltl)
14108{
14109 struct type *el_type, *inner_array;
14110
14111 base_type = copy_type (base_type);
14112 inner_array = base_type;
14113
14114 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14115 {
14116 TYPE_TARGET_TYPE (inner_array) =
14117 copy_type (TYPE_TARGET_TYPE (inner_array));
14118 inner_array = TYPE_TARGET_TYPE (inner_array);
14119 }
14120
14121 el_type = TYPE_TARGET_TYPE (inner_array);
14122 cnst |= TYPE_CONST (el_type);
14123 voltl |= TYPE_VOLATILE (el_type);
14124 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14125
14126 return set_die_type (die, base_type, cu);
14127}
14128
f792889a 14129static struct type *
e7c27a73 14130read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14131{
f792889a 14132 struct type *base_type, *cv_type;
c906108c 14133
e7c27a73 14134 base_type = die_type (die, cu);
7e314c57
JK
14135
14136 /* The die_type call above may have already set the type for this DIE. */
14137 cv_type = get_die_type (die, cu);
14138 if (cv_type)
14139 return cv_type;
14140
2f608a3a
KW
14141 /* In case the const qualifier is applied to an array type, the element type
14142 is so qualified, not the array type (section 6.7.3 of C99). */
14143 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14144 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14145
f792889a
DJ
14146 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14147 return set_die_type (die, cv_type, cu);
c906108c
SS
14148}
14149
f792889a 14150static struct type *
e7c27a73 14151read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14152{
f792889a 14153 struct type *base_type, *cv_type;
c906108c 14154
e7c27a73 14155 base_type = die_type (die, cu);
7e314c57
JK
14156
14157 /* The die_type call above may have already set the type for this DIE. */
14158 cv_type = get_die_type (die, cu);
14159 if (cv_type)
14160 return cv_type;
14161
cf363f18
MW
14162 /* In case the volatile qualifier is applied to an array type, the
14163 element type is so qualified, not the array type (section 6.7.3
14164 of C99). */
14165 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14166 return add_array_cv_type (die, cu, base_type, 0, 1);
14167
f792889a
DJ
14168 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14169 return set_die_type (die, cv_type, cu);
c906108c
SS
14170}
14171
06d66ee9
TT
14172/* Handle DW_TAG_restrict_type. */
14173
14174static struct type *
14175read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14176{
14177 struct type *base_type, *cv_type;
14178
14179 base_type = die_type (die, cu);
14180
14181 /* The die_type call above may have already set the type for this DIE. */
14182 cv_type = get_die_type (die, cu);
14183 if (cv_type)
14184 return cv_type;
14185
14186 cv_type = make_restrict_type (base_type);
14187 return set_die_type (die, cv_type, cu);
14188}
14189
c906108c
SS
14190/* Extract all information from a DW_TAG_string_type DIE and add to
14191 the user defined type vector. It isn't really a user defined type,
14192 but it behaves like one, with other DIE's using an AT_user_def_type
14193 attribute to reference it. */
14194
f792889a 14195static struct type *
e7c27a73 14196read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14197{
e7c27a73 14198 struct objfile *objfile = cu->objfile;
3b7538c0 14199 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14200 struct type *type, *range_type, *index_type, *char_type;
14201 struct attribute *attr;
14202 unsigned int length;
14203
e142c38c 14204 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14205 if (attr)
14206 {
14207 length = DW_UNSND (attr);
14208 }
14209 else
14210 {
0963b4bd 14211 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14212 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14213 if (attr)
14214 {
14215 length = DW_UNSND (attr);
14216 }
14217 else
14218 {
14219 length = 1;
14220 }
c906108c 14221 }
6ccb9162 14222
46bf5051 14223 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14224 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14225 char_type = language_string_char_type (cu->language_defn, gdbarch);
14226 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14227
f792889a 14228 return set_die_type (die, type, cu);
c906108c
SS
14229}
14230
4d804846
JB
14231/* Assuming that DIE corresponds to a function, returns nonzero
14232 if the function is prototyped. */
14233
14234static int
14235prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14236{
14237 struct attribute *attr;
14238
14239 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14240 if (attr && (DW_UNSND (attr) != 0))
14241 return 1;
14242
14243 /* The DWARF standard implies that the DW_AT_prototyped attribute
14244 is only meaninful for C, but the concept also extends to other
14245 languages that allow unprototyped functions (Eg: Objective C).
14246 For all other languages, assume that functions are always
14247 prototyped. */
14248 if (cu->language != language_c
14249 && cu->language != language_objc
14250 && cu->language != language_opencl)
14251 return 1;
14252
14253 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14254 prototyped and unprototyped functions; default to prototyped,
14255 since that is more common in modern code (and RealView warns
14256 about unprototyped functions). */
14257 if (producer_is_realview (cu->producer))
14258 return 1;
14259
14260 return 0;
14261}
14262
c906108c
SS
14263/* Handle DIES due to C code like:
14264
14265 struct foo
c5aa993b
JM
14266 {
14267 int (*funcp)(int a, long l);
14268 int b;
14269 };
c906108c 14270
0963b4bd 14271 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14272
f792889a 14273static struct type *
e7c27a73 14274read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14275{
bb5ed363 14276 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14277 struct type *type; /* Type that this function returns. */
14278 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14279 struct attribute *attr;
14280
e7c27a73 14281 type = die_type (die, cu);
7e314c57
JK
14282
14283 /* The die_type call above may have already set the type for this DIE. */
14284 ftype = get_die_type (die, cu);
14285 if (ftype)
14286 return ftype;
14287
0c8b41f1 14288 ftype = lookup_function_type (type);
c906108c 14289
4d804846 14290 if (prototyped_function_p (die, cu))
a6c727b2 14291 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14292
c055b101
CV
14293 /* Store the calling convention in the type if it's available in
14294 the subroutine die. Otherwise set the calling convention to
14295 the default value DW_CC_normal. */
14296 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14297 if (attr)
14298 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14299 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14300 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14301 else
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14303
14304 /* We need to add the subroutine type to the die immediately so
14305 we don't infinitely recurse when dealing with parameters
0963b4bd 14306 declared as the same subroutine type. */
76c10ea2 14307 set_die_type (die, ftype, cu);
6e70227d 14308
639d11d3 14309 if (die->child != NULL)
c906108c 14310 {
bb5ed363 14311 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14312 struct die_info *child_die;
8072405b 14313 int nparams, iparams;
c906108c
SS
14314
14315 /* Count the number of parameters.
14316 FIXME: GDB currently ignores vararg functions, but knows about
14317 vararg member functions. */
8072405b 14318 nparams = 0;
639d11d3 14319 child_die = die->child;
c906108c
SS
14320 while (child_die && child_die->tag)
14321 {
14322 if (child_die->tag == DW_TAG_formal_parameter)
14323 nparams++;
14324 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14325 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14326 child_die = sibling_die (child_die);
14327 }
14328
14329 /* Allocate storage for parameters and fill them in. */
14330 TYPE_NFIELDS (ftype) = nparams;
14331 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14332 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14333
8072405b
JK
14334 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14335 even if we error out during the parameters reading below. */
14336 for (iparams = 0; iparams < nparams; iparams++)
14337 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14338
14339 iparams = 0;
639d11d3 14340 child_die = die->child;
c906108c
SS
14341 while (child_die && child_die->tag)
14342 {
14343 if (child_die->tag == DW_TAG_formal_parameter)
14344 {
3ce3b1ba
PA
14345 struct type *arg_type;
14346
14347 /* DWARF version 2 has no clean way to discern C++
14348 static and non-static member functions. G++ helps
14349 GDB by marking the first parameter for non-static
14350 member functions (which is the this pointer) as
14351 artificial. We pass this information to
14352 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14353
14354 DWARF version 3 added DW_AT_object_pointer, which GCC
14355 4.5 does not yet generate. */
e142c38c 14356 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14357 if (attr)
14358 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14359 else
418835cc
KS
14360 {
14361 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14362
14363 /* GCC/43521: In java, the formal parameter
14364 "this" is sometimes not marked with DW_AT_artificial. */
14365 if (cu->language == language_java)
14366 {
14367 const char *name = dwarf2_name (child_die, cu);
9a619af0 14368
418835cc
KS
14369 if (name && !strcmp (name, "this"))
14370 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14371 }
14372 }
3ce3b1ba
PA
14373 arg_type = die_type (child_die, cu);
14374
14375 /* RealView does not mark THIS as const, which the testsuite
14376 expects. GCC marks THIS as const in method definitions,
14377 but not in the class specifications (GCC PR 43053). */
14378 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14379 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14380 {
14381 int is_this = 0;
14382 struct dwarf2_cu *arg_cu = cu;
14383 const char *name = dwarf2_name (child_die, cu);
14384
14385 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14386 if (attr)
14387 {
14388 /* If the compiler emits this, use it. */
14389 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14390 is_this = 1;
14391 }
14392 else if (name && strcmp (name, "this") == 0)
14393 /* Function definitions will have the argument names. */
14394 is_this = 1;
14395 else if (name == NULL && iparams == 0)
14396 /* Declarations may not have the names, so like
14397 elsewhere in GDB, assume an artificial first
14398 argument is "this". */
14399 is_this = 1;
14400
14401 if (is_this)
14402 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14403 arg_type, 0);
14404 }
14405
14406 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14407 iparams++;
14408 }
14409 child_die = sibling_die (child_die);
14410 }
14411 }
14412
76c10ea2 14413 return ftype;
c906108c
SS
14414}
14415
f792889a 14416static struct type *
e7c27a73 14417read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14418{
e7c27a73 14419 struct objfile *objfile = cu->objfile;
0114d602 14420 const char *name = NULL;
3c8e0968 14421 struct type *this_type, *target_type;
c906108c 14422
94af9270 14423 name = dwarf2_full_name (NULL, die, cu);
f792889a 14424 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14425 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14426 TYPE_NAME (this_type) = name;
f792889a 14427 set_die_type (die, this_type, cu);
3c8e0968
DE
14428 target_type = die_type (die, cu);
14429 if (target_type != this_type)
14430 TYPE_TARGET_TYPE (this_type) = target_type;
14431 else
14432 {
14433 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14434 spec and cause infinite loops in GDB. */
14435 complaint (&symfile_complaints,
14436 _("Self-referential DW_TAG_typedef "
14437 "- DIE at 0x%x [in module %s]"),
4262abfb 14438 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14439 TYPE_TARGET_TYPE (this_type) = NULL;
14440 }
f792889a 14441 return this_type;
c906108c
SS
14442}
14443
14444/* Find a representation of a given base type and install
14445 it in the TYPE field of the die. */
14446
f792889a 14447static struct type *
e7c27a73 14448read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14449{
e7c27a73 14450 struct objfile *objfile = cu->objfile;
c906108c
SS
14451 struct type *type;
14452 struct attribute *attr;
14453 int encoding = 0, size = 0;
15d034d0 14454 const char *name;
6ccb9162
UW
14455 enum type_code code = TYPE_CODE_INT;
14456 int type_flags = 0;
14457 struct type *target_type = NULL;
c906108c 14458
e142c38c 14459 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14460 if (attr)
14461 {
14462 encoding = DW_UNSND (attr);
14463 }
e142c38c 14464 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14465 if (attr)
14466 {
14467 size = DW_UNSND (attr);
14468 }
39cbfefa 14469 name = dwarf2_name (die, cu);
6ccb9162 14470 if (!name)
c906108c 14471 {
6ccb9162
UW
14472 complaint (&symfile_complaints,
14473 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14474 }
6ccb9162
UW
14475
14476 switch (encoding)
c906108c 14477 {
6ccb9162
UW
14478 case DW_ATE_address:
14479 /* Turn DW_ATE_address into a void * pointer. */
14480 code = TYPE_CODE_PTR;
14481 type_flags |= TYPE_FLAG_UNSIGNED;
14482 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14483 break;
14484 case DW_ATE_boolean:
14485 code = TYPE_CODE_BOOL;
14486 type_flags |= TYPE_FLAG_UNSIGNED;
14487 break;
14488 case DW_ATE_complex_float:
14489 code = TYPE_CODE_COMPLEX;
14490 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14491 break;
14492 case DW_ATE_decimal_float:
14493 code = TYPE_CODE_DECFLOAT;
14494 break;
14495 case DW_ATE_float:
14496 code = TYPE_CODE_FLT;
14497 break;
14498 case DW_ATE_signed:
14499 break;
14500 case DW_ATE_unsigned:
14501 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14502 if (cu->language == language_fortran
14503 && name
14504 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14505 code = TYPE_CODE_CHAR;
6ccb9162
UW
14506 break;
14507 case DW_ATE_signed_char:
6e70227d 14508 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14509 || cu->language == language_pascal
14510 || cu->language == language_fortran)
6ccb9162
UW
14511 code = TYPE_CODE_CHAR;
14512 break;
14513 case DW_ATE_unsigned_char:
868a0084 14514 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14515 || cu->language == language_pascal
14516 || cu->language == language_fortran)
6ccb9162
UW
14517 code = TYPE_CODE_CHAR;
14518 type_flags |= TYPE_FLAG_UNSIGNED;
14519 break;
75079b2b
TT
14520 case DW_ATE_UTF:
14521 /* We just treat this as an integer and then recognize the
14522 type by name elsewhere. */
14523 break;
14524
6ccb9162
UW
14525 default:
14526 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14527 dwarf_type_encoding_name (encoding));
14528 break;
c906108c 14529 }
6ccb9162 14530
0114d602
DJ
14531 type = init_type (code, size, type_flags, NULL, objfile);
14532 TYPE_NAME (type) = name;
6ccb9162
UW
14533 TYPE_TARGET_TYPE (type) = target_type;
14534
0114d602 14535 if (name && strcmp (name, "char") == 0)
876cecd0 14536 TYPE_NOSIGN (type) = 1;
0114d602 14537
f792889a 14538 return set_die_type (die, type, cu);
c906108c
SS
14539}
14540
80180f79
SA
14541/* Parse dwarf attribute if it's a block, reference or constant and put the
14542 resulting value of the attribute into struct bound_prop.
14543 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14544
14545static int
14546attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14547 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14548{
14549 struct dwarf2_property_baton *baton;
14550 struct obstack *obstack = &cu->objfile->objfile_obstack;
14551
14552 if (attr == NULL || prop == NULL)
14553 return 0;
14554
14555 if (attr_form_is_block (attr))
14556 {
14557 baton = obstack_alloc (obstack, sizeof (*baton));
14558 baton->referenced_type = NULL;
14559 baton->locexpr.per_cu = cu->per_cu;
14560 baton->locexpr.size = DW_BLOCK (attr)->size;
14561 baton->locexpr.data = DW_BLOCK (attr)->data;
14562 prop->data.baton = baton;
14563 prop->kind = PROP_LOCEXPR;
14564 gdb_assert (prop->data.baton != NULL);
14565 }
14566 else if (attr_form_is_ref (attr))
14567 {
14568 struct dwarf2_cu *target_cu = cu;
14569 struct die_info *target_die;
14570 struct attribute *target_attr;
14571
14572 target_die = follow_die_ref (die, attr, &target_cu);
14573 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14574 if (target_attr == NULL)
14575 return 0;
14576
14577 if (attr_form_is_section_offset (target_attr))
14578 {
14579 baton = obstack_alloc (obstack, sizeof (*baton));
14580 baton->referenced_type = die_type (target_die, target_cu);
14581 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14582 prop->data.baton = baton;
14583 prop->kind = PROP_LOCLIST;
14584 gdb_assert (prop->data.baton != NULL);
14585 }
14586 else if (attr_form_is_block (target_attr))
14587 {
14588 baton = obstack_alloc (obstack, sizeof (*baton));
14589 baton->referenced_type = die_type (target_die, target_cu);
14590 baton->locexpr.per_cu = cu->per_cu;
14591 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14592 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14593 prop->data.baton = baton;
14594 prop->kind = PROP_LOCEXPR;
14595 gdb_assert (prop->data.baton != NULL);
14596 }
14597 else
14598 {
14599 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14600 "dynamic property");
14601 return 0;
14602 }
14603 }
14604 else if (attr_form_is_constant (attr))
14605 {
14606 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14607 prop->kind = PROP_CONST;
14608 }
14609 else
14610 {
14611 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14612 dwarf2_name (die, cu));
14613 return 0;
14614 }
14615
14616 return 1;
14617}
14618
a02abb62
JB
14619/* Read the given DW_AT_subrange DIE. */
14620
f792889a 14621static struct type *
a02abb62
JB
14622read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14623{
4c9ad8c2 14624 struct type *base_type, *orig_base_type;
a02abb62
JB
14625 struct type *range_type;
14626 struct attribute *attr;
729efb13 14627 struct dynamic_prop low, high;
4fae6e18 14628 int low_default_is_valid;
c451ebe5 14629 int high_bound_is_count = 0;
15d034d0 14630 const char *name;
43bbcdc2 14631 LONGEST negative_mask;
e77813c8 14632
4c9ad8c2
TT
14633 orig_base_type = die_type (die, cu);
14634 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14635 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14636 creating the range type, but we use the result of check_typedef
14637 when examining properties of the type. */
14638 base_type = check_typedef (orig_base_type);
a02abb62 14639
7e314c57
JK
14640 /* The die_type call above may have already set the type for this DIE. */
14641 range_type = get_die_type (die, cu);
14642 if (range_type)
14643 return range_type;
14644
729efb13
SA
14645 low.kind = PROP_CONST;
14646 high.kind = PROP_CONST;
14647 high.data.const_val = 0;
14648
4fae6e18
JK
14649 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14650 omitting DW_AT_lower_bound. */
14651 switch (cu->language)
6e70227d 14652 {
4fae6e18
JK
14653 case language_c:
14654 case language_cplus:
729efb13 14655 low.data.const_val = 0;
4fae6e18
JK
14656 low_default_is_valid = 1;
14657 break;
14658 case language_fortran:
729efb13 14659 low.data.const_val = 1;
4fae6e18
JK
14660 low_default_is_valid = 1;
14661 break;
14662 case language_d:
14663 case language_java:
14664 case language_objc:
729efb13 14665 low.data.const_val = 0;
4fae6e18
JK
14666 low_default_is_valid = (cu->header.version >= 4);
14667 break;
14668 case language_ada:
14669 case language_m2:
14670 case language_pascal:
729efb13 14671 low.data.const_val = 1;
4fae6e18
JK
14672 low_default_is_valid = (cu->header.version >= 4);
14673 break;
14674 default:
729efb13 14675 low.data.const_val = 0;
4fae6e18
JK
14676 low_default_is_valid = 0;
14677 break;
a02abb62
JB
14678 }
14679
e142c38c 14680 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14681 if (attr)
11c1ba78 14682 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14683 else if (!low_default_is_valid)
14684 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14685 "- DIE at 0x%x [in module %s]"),
4262abfb 14686 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14687
e142c38c 14688 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14689 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14690 {
14691 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14692 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14693 {
c451ebe5
SA
14694 /* If bounds are constant do the final calculation here. */
14695 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14696 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14697 else
14698 high_bound_is_count = 1;
c2ff108b 14699 }
e77813c8
PM
14700 }
14701
14702 /* Dwarf-2 specifications explicitly allows to create subrange types
14703 without specifying a base type.
14704 In that case, the base type must be set to the type of
14705 the lower bound, upper bound or count, in that order, if any of these
14706 three attributes references an object that has a type.
14707 If no base type is found, the Dwarf-2 specifications say that
14708 a signed integer type of size equal to the size of an address should
14709 be used.
14710 For the following C code: `extern char gdb_int [];'
14711 GCC produces an empty range DIE.
14712 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14713 high bound or count are not yet handled by this code. */
e77813c8
PM
14714 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14715 {
14716 struct objfile *objfile = cu->objfile;
14717 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14718 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14719 struct type *int_type = objfile_type (objfile)->builtin_int;
14720
14721 /* Test "int", "long int", and "long long int" objfile types,
14722 and select the first one having a size above or equal to the
14723 architecture address size. */
14724 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14725 base_type = int_type;
14726 else
14727 {
14728 int_type = objfile_type (objfile)->builtin_long;
14729 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14730 base_type = int_type;
14731 else
14732 {
14733 int_type = objfile_type (objfile)->builtin_long_long;
14734 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14735 base_type = int_type;
14736 }
14737 }
14738 }
a02abb62 14739
dbb9c2b1
JB
14740 /* Normally, the DWARF producers are expected to use a signed
14741 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14742 But this is unfortunately not always the case, as witnessed
14743 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14744 is used instead. To work around that ambiguity, we treat
14745 the bounds as signed, and thus sign-extend their values, when
14746 the base type is signed. */
6e70227d 14747 negative_mask =
43bbcdc2 14748 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14749 if (low.kind == PROP_CONST
14750 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14751 low.data.const_val |= negative_mask;
14752 if (high.kind == PROP_CONST
14753 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14754 high.data.const_val |= negative_mask;
43bbcdc2 14755
729efb13 14756 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14757
c451ebe5
SA
14758 if (high_bound_is_count)
14759 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14760
c2ff108b
JK
14761 /* Ada expects an empty array on no boundary attributes. */
14762 if (attr == NULL && cu->language != language_ada)
729efb13 14763 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14764
39cbfefa
DJ
14765 name = dwarf2_name (die, cu);
14766 if (name)
14767 TYPE_NAME (range_type) = name;
6e70227d 14768
e142c38c 14769 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14770 if (attr)
14771 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14772
7e314c57
JK
14773 set_die_type (die, range_type, cu);
14774
14775 /* set_die_type should be already done. */
b4ba55a1
JB
14776 set_descriptive_type (range_type, die, cu);
14777
7e314c57 14778 return range_type;
a02abb62 14779}
6e70227d 14780
f792889a 14781static struct type *
81a17f79
JB
14782read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14783{
14784 struct type *type;
81a17f79 14785
81a17f79
JB
14786 /* For now, we only support the C meaning of an unspecified type: void. */
14787
0114d602
DJ
14788 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14789 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14790
f792889a 14791 return set_die_type (die, type, cu);
81a17f79 14792}
a02abb62 14793
639d11d3
DC
14794/* Read a single die and all its descendents. Set the die's sibling
14795 field to NULL; set other fields in the die correctly, and set all
14796 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14797 location of the info_ptr after reading all of those dies. PARENT
14798 is the parent of the die in question. */
14799
14800static struct die_info *
dee91e82 14801read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14802 const gdb_byte *info_ptr,
14803 const gdb_byte **new_info_ptr,
dee91e82 14804 struct die_info *parent)
639d11d3
DC
14805{
14806 struct die_info *die;
d521ce57 14807 const gdb_byte *cur_ptr;
639d11d3
DC
14808 int has_children;
14809
bf6af496 14810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14811 if (die == NULL)
14812 {
14813 *new_info_ptr = cur_ptr;
14814 return NULL;
14815 }
93311388 14816 store_in_ref_table (die, reader->cu);
639d11d3
DC
14817
14818 if (has_children)
bf6af496 14819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14820 else
14821 {
14822 die->child = NULL;
14823 *new_info_ptr = cur_ptr;
14824 }
14825
14826 die->sibling = NULL;
14827 die->parent = parent;
14828 return die;
14829}
14830
14831/* Read a die, all of its descendents, and all of its siblings; set
14832 all of the fields of all of the dies correctly. Arguments are as
14833 in read_die_and_children. */
14834
14835static struct die_info *
bf6af496 14836read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14837 const gdb_byte *info_ptr,
14838 const gdb_byte **new_info_ptr,
bf6af496 14839 struct die_info *parent)
639d11d3
DC
14840{
14841 struct die_info *first_die, *last_sibling;
d521ce57 14842 const gdb_byte *cur_ptr;
639d11d3 14843
c906108c 14844 cur_ptr = info_ptr;
639d11d3
DC
14845 first_die = last_sibling = NULL;
14846
14847 while (1)
c906108c 14848 {
639d11d3 14849 struct die_info *die
dee91e82 14850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14851
1d325ec1 14852 if (die == NULL)
c906108c 14853 {
639d11d3
DC
14854 *new_info_ptr = cur_ptr;
14855 return first_die;
c906108c 14856 }
1d325ec1
DJ
14857
14858 if (!first_die)
14859 first_die = die;
c906108c 14860 else
1d325ec1
DJ
14861 last_sibling->sibling = die;
14862
14863 last_sibling = die;
c906108c 14864 }
c906108c
SS
14865}
14866
bf6af496
DE
14867/* Read a die, all of its descendents, and all of its siblings; set
14868 all of the fields of all of the dies correctly. Arguments are as
14869 in read_die_and_children.
14870 This the main entry point for reading a DIE and all its children. */
14871
14872static struct die_info *
14873read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14874 const gdb_byte *info_ptr,
14875 const gdb_byte **new_info_ptr,
bf6af496
DE
14876 struct die_info *parent)
14877{
14878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14879 new_info_ptr, parent);
14880
14881 if (dwarf2_die_debug)
14882 {
14883 fprintf_unfiltered (gdb_stdlog,
14884 "Read die from %s@0x%x of %s:\n",
a32a8923 14885 get_section_name (reader->die_section),
bf6af496
DE
14886 (unsigned) (info_ptr - reader->die_section->buffer),
14887 bfd_get_filename (reader->abfd));
14888 dump_die (die, dwarf2_die_debug);
14889 }
14890
14891 return die;
14892}
14893
3019eac3
DE
14894/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14895 attributes.
14896 The caller is responsible for filling in the extra attributes
14897 and updating (*DIEP)->num_attrs.
14898 Set DIEP to point to a newly allocated die with its information,
14899 except for its child, sibling, and parent fields.
14900 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14901
d521ce57 14902static const gdb_byte *
3019eac3 14903read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14904 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14905 int *has_children, int num_extra_attrs)
93311388 14906{
b64f50a1
JK
14907 unsigned int abbrev_number, bytes_read, i;
14908 sect_offset offset;
93311388
DE
14909 struct abbrev_info *abbrev;
14910 struct die_info *die;
14911 struct dwarf2_cu *cu = reader->cu;
14912 bfd *abfd = reader->abfd;
14913
b64f50a1 14914 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14915 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14916 info_ptr += bytes_read;
14917 if (!abbrev_number)
14918 {
14919 *diep = NULL;
14920 *has_children = 0;
14921 return info_ptr;
14922 }
14923
433df2d4 14924 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14925 if (!abbrev)
348e048f
DE
14926 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14927 abbrev_number,
14928 bfd_get_filename (abfd));
14929
3019eac3 14930 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14931 die->offset = offset;
14932 die->tag = abbrev->tag;
14933 die->abbrev = abbrev_number;
14934
3019eac3
DE
14935 /* Make the result usable.
14936 The caller needs to update num_attrs after adding the extra
14937 attributes. */
93311388
DE
14938 die->num_attrs = abbrev->num_attrs;
14939
14940 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14941 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14942 info_ptr);
93311388
DE
14943
14944 *diep = die;
14945 *has_children = abbrev->has_children;
14946 return info_ptr;
14947}
14948
3019eac3
DE
14949/* Read a die and all its attributes.
14950 Set DIEP to point to a newly allocated die with its information,
14951 except for its child, sibling, and parent fields.
14952 Set HAS_CHILDREN to tell whether the die has children or not. */
14953
d521ce57 14954static const gdb_byte *
3019eac3 14955read_full_die (const struct die_reader_specs *reader,
d521ce57 14956 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14957 int *has_children)
14958{
d521ce57 14959 const gdb_byte *result;
bf6af496
DE
14960
14961 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14962
14963 if (dwarf2_die_debug)
14964 {
14965 fprintf_unfiltered (gdb_stdlog,
14966 "Read die from %s@0x%x of %s:\n",
a32a8923 14967 get_section_name (reader->die_section),
bf6af496
DE
14968 (unsigned) (info_ptr - reader->die_section->buffer),
14969 bfd_get_filename (reader->abfd));
14970 dump_die (*diep, dwarf2_die_debug);
14971 }
14972
14973 return result;
3019eac3 14974}
433df2d4
DE
14975\f
14976/* Abbreviation tables.
3019eac3 14977
433df2d4 14978 In DWARF version 2, the description of the debugging information is
c906108c
SS
14979 stored in a separate .debug_abbrev section. Before we read any
14980 dies from a section we read in all abbreviations and install them
433df2d4
DE
14981 in a hash table. */
14982
14983/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14984
14985static struct abbrev_info *
14986abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14987{
14988 struct abbrev_info *abbrev;
14989
14990 abbrev = (struct abbrev_info *)
14991 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14992 memset (abbrev, 0, sizeof (struct abbrev_info));
14993 return abbrev;
14994}
14995
14996/* Add an abbreviation to the table. */
c906108c
SS
14997
14998static void
433df2d4
DE
14999abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15000 unsigned int abbrev_number,
15001 struct abbrev_info *abbrev)
15002{
15003 unsigned int hash_number;
15004
15005 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15006 abbrev->next = abbrev_table->abbrevs[hash_number];
15007 abbrev_table->abbrevs[hash_number] = abbrev;
15008}
dee91e82 15009
433df2d4
DE
15010/* Look up an abbrev in the table.
15011 Returns NULL if the abbrev is not found. */
15012
15013static struct abbrev_info *
15014abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15015 unsigned int abbrev_number)
c906108c 15016{
433df2d4
DE
15017 unsigned int hash_number;
15018 struct abbrev_info *abbrev;
15019
15020 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15021 abbrev = abbrev_table->abbrevs[hash_number];
15022
15023 while (abbrev)
15024 {
15025 if (abbrev->number == abbrev_number)
15026 return abbrev;
15027 abbrev = abbrev->next;
15028 }
15029 return NULL;
15030}
15031
15032/* Read in an abbrev table. */
15033
15034static struct abbrev_table *
15035abbrev_table_read_table (struct dwarf2_section_info *section,
15036 sect_offset offset)
15037{
15038 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15039 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15040 struct abbrev_table *abbrev_table;
d521ce57 15041 const gdb_byte *abbrev_ptr;
c906108c
SS
15042 struct abbrev_info *cur_abbrev;
15043 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15044 unsigned int abbrev_form;
f3dd6933
DJ
15045 struct attr_abbrev *cur_attrs;
15046 unsigned int allocated_attrs;
c906108c 15047
70ba0933 15048 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15049 abbrev_table->offset = offset;
433df2d4
DE
15050 obstack_init (&abbrev_table->abbrev_obstack);
15051 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15052 (ABBREV_HASH_SIZE
15053 * sizeof (struct abbrev_info *)));
15054 memset (abbrev_table->abbrevs, 0,
15055 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15056
433df2d4
DE
15057 dwarf2_read_section (objfile, section);
15058 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15059 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15060 abbrev_ptr += bytes_read;
15061
f3dd6933
DJ
15062 allocated_attrs = ATTR_ALLOC_CHUNK;
15063 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15064
0963b4bd 15065 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15066 while (abbrev_number)
15067 {
433df2d4 15068 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15069
15070 /* read in abbrev header */
15071 cur_abbrev->number = abbrev_number;
15072 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15073 abbrev_ptr += bytes_read;
15074 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15075 abbrev_ptr += 1;
15076
15077 /* now read in declarations */
15078 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15079 abbrev_ptr += bytes_read;
15080 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 while (abbrev_name)
15083 {
f3dd6933 15084 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15085 {
f3dd6933
DJ
15086 allocated_attrs += ATTR_ALLOC_CHUNK;
15087 cur_attrs
15088 = xrealloc (cur_attrs, (allocated_attrs
15089 * sizeof (struct attr_abbrev)));
c906108c 15090 }
ae038cb0 15091
f3dd6933
DJ
15092 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15093 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15094 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15095 abbrev_ptr += bytes_read;
15096 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 }
15099
433df2d4 15100 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15101 (cur_abbrev->num_attrs
15102 * sizeof (struct attr_abbrev)));
15103 memcpy (cur_abbrev->attrs, cur_attrs,
15104 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15105
433df2d4 15106 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15107
15108 /* Get next abbreviation.
15109 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15110 always properly terminated with an abbrev number of 0.
15111 Exit loop if we encounter an abbreviation which we have
15112 already read (which means we are about to read the abbreviations
15113 for the next compile unit) or if the end of the abbreviation
15114 table is reached. */
433df2d4 15115 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15116 break;
15117 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15118 abbrev_ptr += bytes_read;
433df2d4 15119 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15120 break;
15121 }
f3dd6933
DJ
15122
15123 xfree (cur_attrs);
433df2d4 15124 return abbrev_table;
c906108c
SS
15125}
15126
433df2d4 15127/* Free the resources held by ABBREV_TABLE. */
c906108c 15128
c906108c 15129static void
433df2d4 15130abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15131{
433df2d4
DE
15132 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15133 xfree (abbrev_table);
c906108c
SS
15134}
15135
f4dc4d17
DE
15136/* Same as abbrev_table_free but as a cleanup.
15137 We pass in a pointer to the pointer to the table so that we can
15138 set the pointer to NULL when we're done. It also simplifies
73051182 15139 build_type_psymtabs_1. */
f4dc4d17
DE
15140
15141static void
15142abbrev_table_free_cleanup (void *table_ptr)
15143{
15144 struct abbrev_table **abbrev_table_ptr = table_ptr;
15145
15146 if (*abbrev_table_ptr != NULL)
15147 abbrev_table_free (*abbrev_table_ptr);
15148 *abbrev_table_ptr = NULL;
15149}
15150
433df2d4
DE
15151/* Read the abbrev table for CU from ABBREV_SECTION. */
15152
15153static void
15154dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15155 struct dwarf2_section_info *abbrev_section)
c906108c 15156{
433df2d4
DE
15157 cu->abbrev_table =
15158 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15159}
c906108c 15160
433df2d4 15161/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15162
433df2d4
DE
15163static void
15164dwarf2_free_abbrev_table (void *ptr_to_cu)
15165{
15166 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15167
a2ce51a0
DE
15168 if (cu->abbrev_table != NULL)
15169 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15170 /* Set this to NULL so that we SEGV if we try to read it later,
15171 and also because free_comp_unit verifies this is NULL. */
15172 cu->abbrev_table = NULL;
15173}
15174\f
72bf9492
DJ
15175/* Returns nonzero if TAG represents a type that we might generate a partial
15176 symbol for. */
15177
15178static int
15179is_type_tag_for_partial (int tag)
15180{
15181 switch (tag)
15182 {
15183#if 0
15184 /* Some types that would be reasonable to generate partial symbols for,
15185 that we don't at present. */
15186 case DW_TAG_array_type:
15187 case DW_TAG_file_type:
15188 case DW_TAG_ptr_to_member_type:
15189 case DW_TAG_set_type:
15190 case DW_TAG_string_type:
15191 case DW_TAG_subroutine_type:
15192#endif
15193 case DW_TAG_base_type:
15194 case DW_TAG_class_type:
680b30c7 15195 case DW_TAG_interface_type:
72bf9492
DJ
15196 case DW_TAG_enumeration_type:
15197 case DW_TAG_structure_type:
15198 case DW_TAG_subrange_type:
15199 case DW_TAG_typedef:
15200 case DW_TAG_union_type:
15201 return 1;
15202 default:
15203 return 0;
15204 }
15205}
15206
15207/* Load all DIEs that are interesting for partial symbols into memory. */
15208
15209static struct partial_die_info *
dee91e82 15210load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15211 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15212{
dee91e82 15213 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15214 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15215 struct partial_die_info *part_die;
15216 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15217 struct abbrev_info *abbrev;
15218 unsigned int bytes_read;
5afb4e99 15219 unsigned int load_all = 0;
72bf9492
DJ
15220 int nesting_level = 1;
15221
15222 parent_die = NULL;
15223 last_die = NULL;
15224
7adf1e79
DE
15225 gdb_assert (cu->per_cu != NULL);
15226 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15227 load_all = 1;
15228
72bf9492
DJ
15229 cu->partial_dies
15230 = htab_create_alloc_ex (cu->header.length / 12,
15231 partial_die_hash,
15232 partial_die_eq,
15233 NULL,
15234 &cu->comp_unit_obstack,
15235 hashtab_obstack_allocate,
15236 dummy_obstack_deallocate);
15237
15238 part_die = obstack_alloc (&cu->comp_unit_obstack,
15239 sizeof (struct partial_die_info));
15240
15241 while (1)
15242 {
15243 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15244
15245 /* A NULL abbrev means the end of a series of children. */
15246 if (abbrev == NULL)
15247 {
15248 if (--nesting_level == 0)
15249 {
15250 /* PART_DIE was probably the last thing allocated on the
15251 comp_unit_obstack, so we could call obstack_free
15252 here. We don't do that because the waste is small,
15253 and will be cleaned up when we're done with this
15254 compilation unit. This way, we're also more robust
15255 against other users of the comp_unit_obstack. */
15256 return first_die;
15257 }
15258 info_ptr += bytes_read;
15259 last_die = parent_die;
15260 parent_die = parent_die->die_parent;
15261 continue;
15262 }
15263
98bfdba5
PA
15264 /* Check for template arguments. We never save these; if
15265 they're seen, we just mark the parent, and go on our way. */
15266 if (parent_die != NULL
15267 && cu->language == language_cplus
15268 && (abbrev->tag == DW_TAG_template_type_param
15269 || abbrev->tag == DW_TAG_template_value_param))
15270 {
15271 parent_die->has_template_arguments = 1;
15272
15273 if (!load_all)
15274 {
15275 /* We don't need a partial DIE for the template argument. */
dee91e82 15276 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15277 continue;
15278 }
15279 }
15280
0d99eb77 15281 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15282 Skip their other children. */
15283 if (!load_all
15284 && cu->language == language_cplus
15285 && parent_die != NULL
15286 && parent_die->tag == DW_TAG_subprogram)
15287 {
dee91e82 15288 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15289 continue;
15290 }
15291
5afb4e99
DJ
15292 /* Check whether this DIE is interesting enough to save. Normally
15293 we would not be interested in members here, but there may be
15294 later variables referencing them via DW_AT_specification (for
15295 static members). */
15296 if (!load_all
15297 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15298 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15299 && abbrev->tag != DW_TAG_enumerator
15300 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15301 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15302 && abbrev->tag != DW_TAG_variable
5afb4e99 15303 && abbrev->tag != DW_TAG_namespace
f55ee35c 15304 && abbrev->tag != DW_TAG_module
95554aad 15305 && abbrev->tag != DW_TAG_member
74921315
KS
15306 && abbrev->tag != DW_TAG_imported_unit
15307 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15308 {
15309 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15310 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15311 continue;
15312 }
15313
dee91e82
DE
15314 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15315 info_ptr);
72bf9492
DJ
15316
15317 /* This two-pass algorithm for processing partial symbols has a
15318 high cost in cache pressure. Thus, handle some simple cases
15319 here which cover the majority of C partial symbols. DIEs
15320 which neither have specification tags in them, nor could have
15321 specification tags elsewhere pointing at them, can simply be
15322 processed and discarded.
15323
15324 This segment is also optional; scan_partial_symbols and
15325 add_partial_symbol will handle these DIEs if we chain
15326 them in normally. When compilers which do not emit large
15327 quantities of duplicate debug information are more common,
15328 this code can probably be removed. */
15329
15330 /* Any complete simple types at the top level (pretty much all
15331 of them, for a language without namespaces), can be processed
15332 directly. */
15333 if (parent_die == NULL
15334 && part_die->has_specification == 0
15335 && part_die->is_declaration == 0
d8228535 15336 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15337 || part_die->tag == DW_TAG_base_type
15338 || part_die->tag == DW_TAG_subrange_type))
15339 {
15340 if (building_psymtab && part_die->name != NULL)
04a679b8 15341 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15342 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15343 &objfile->static_psymbols,
15344 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15345 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15346 continue;
15347 }
15348
d8228535
JK
15349 /* The exception for DW_TAG_typedef with has_children above is
15350 a workaround of GCC PR debug/47510. In the case of this complaint
15351 type_name_no_tag_or_error will error on such types later.
15352
15353 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15354 it could not find the child DIEs referenced later, this is checked
15355 above. In correct DWARF DW_TAG_typedef should have no children. */
15356
15357 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15358 complaint (&symfile_complaints,
15359 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15360 "- DIE at 0x%x [in module %s]"),
4262abfb 15361 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15362
72bf9492
DJ
15363 /* If we're at the second level, and we're an enumerator, and
15364 our parent has no specification (meaning possibly lives in a
15365 namespace elsewhere), then we can add the partial symbol now
15366 instead of queueing it. */
15367 if (part_die->tag == DW_TAG_enumerator
15368 && parent_die != NULL
15369 && parent_die->die_parent == NULL
15370 && parent_die->tag == DW_TAG_enumeration_type
15371 && parent_die->has_specification == 0)
15372 {
15373 if (part_die->name == NULL)
3e43a32a
MS
15374 complaint (&symfile_complaints,
15375 _("malformed enumerator DIE ignored"));
72bf9492 15376 else if (building_psymtab)
04a679b8 15377 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15378 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15379 (cu->language == language_cplus
15380 || cu->language == language_java)
bb5ed363
DE
15381 ? &objfile->global_psymbols
15382 : &objfile->static_psymbols,
15383 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15384
dee91e82 15385 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15386 continue;
15387 }
15388
15389 /* We'll save this DIE so link it in. */
15390 part_die->die_parent = parent_die;
15391 part_die->die_sibling = NULL;
15392 part_die->die_child = NULL;
15393
15394 if (last_die && last_die == parent_die)
15395 last_die->die_child = part_die;
15396 else if (last_die)
15397 last_die->die_sibling = part_die;
15398
15399 last_die = part_die;
15400
15401 if (first_die == NULL)
15402 first_die = part_die;
15403
15404 /* Maybe add the DIE to the hash table. Not all DIEs that we
15405 find interesting need to be in the hash table, because we
15406 also have the parent/sibling/child chains; only those that we
15407 might refer to by offset later during partial symbol reading.
15408
15409 For now this means things that might have be the target of a
15410 DW_AT_specification, DW_AT_abstract_origin, or
15411 DW_AT_extension. DW_AT_extension will refer only to
15412 namespaces; DW_AT_abstract_origin refers to functions (and
15413 many things under the function DIE, but we do not recurse
15414 into function DIEs during partial symbol reading) and
15415 possibly variables as well; DW_AT_specification refers to
15416 declarations. Declarations ought to have the DW_AT_declaration
15417 flag. It happens that GCC forgets to put it in sometimes, but
15418 only for functions, not for types.
15419
15420 Adding more things than necessary to the hash table is harmless
15421 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15422 wasted time in find_partial_die, when we reread the compilation
15423 unit with load_all_dies set. */
72bf9492 15424
5afb4e99 15425 if (load_all
72929c62 15426 || abbrev->tag == DW_TAG_constant
5afb4e99 15427 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15428 || abbrev->tag == DW_TAG_variable
15429 || abbrev->tag == DW_TAG_namespace
15430 || part_die->is_declaration)
15431 {
15432 void **slot;
15433
15434 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15435 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15436 *slot = part_die;
15437 }
15438
15439 part_die = obstack_alloc (&cu->comp_unit_obstack,
15440 sizeof (struct partial_die_info));
15441
15442 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15443 we have no reason to follow the children of structures; for other
98bfdba5
PA
15444 languages we have to, so that we can get at method physnames
15445 to infer fully qualified class names, for DW_AT_specification,
15446 and for C++ template arguments. For C++, we also look one level
15447 inside functions to find template arguments (if the name of the
15448 function does not already contain the template arguments).
bc30ff58
JB
15449
15450 For Ada, we need to scan the children of subprograms and lexical
15451 blocks as well because Ada allows the definition of nested
15452 entities that could be interesting for the debugger, such as
15453 nested subprograms for instance. */
72bf9492 15454 if (last_die->has_children
5afb4e99
DJ
15455 && (load_all
15456 || last_die->tag == DW_TAG_namespace
f55ee35c 15457 || last_die->tag == DW_TAG_module
72bf9492 15458 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15459 || (cu->language == language_cplus
15460 && last_die->tag == DW_TAG_subprogram
15461 && (last_die->name == NULL
15462 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15463 || (cu->language != language_c
15464 && (last_die->tag == DW_TAG_class_type
680b30c7 15465 || last_die->tag == DW_TAG_interface_type
72bf9492 15466 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15467 || last_die->tag == DW_TAG_union_type))
15468 || (cu->language == language_ada
15469 && (last_die->tag == DW_TAG_subprogram
15470 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15471 {
15472 nesting_level++;
15473 parent_die = last_die;
15474 continue;
15475 }
15476
15477 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15478 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15479
15480 /* Back to the top, do it again. */
15481 }
15482}
15483
c906108c
SS
15484/* Read a minimal amount of information into the minimal die structure. */
15485
d521ce57 15486static const gdb_byte *
dee91e82
DE
15487read_partial_die (const struct die_reader_specs *reader,
15488 struct partial_die_info *part_die,
15489 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15490 const gdb_byte *info_ptr)
c906108c 15491{
dee91e82 15492 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15493 struct objfile *objfile = cu->objfile;
d521ce57 15494 const gdb_byte *buffer = reader->buffer;
fa238c03 15495 unsigned int i;
c906108c 15496 struct attribute attr;
c5aa993b 15497 int has_low_pc_attr = 0;
c906108c 15498 int has_high_pc_attr = 0;
91da1414 15499 int high_pc_relative = 0;
c906108c 15500
72bf9492 15501 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15502
b64f50a1 15503 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15504
15505 info_ptr += abbrev_len;
15506
15507 if (abbrev == NULL)
15508 return info_ptr;
15509
c906108c
SS
15510 part_die->tag = abbrev->tag;
15511 part_die->has_children = abbrev->has_children;
c906108c
SS
15512
15513 for (i = 0; i < abbrev->num_attrs; ++i)
15514 {
dee91e82 15515 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15516
15517 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15518 partial symbol table. */
c906108c
SS
15519 switch (attr.name)
15520 {
15521 case DW_AT_name:
71c25dea
TT
15522 switch (part_die->tag)
15523 {
15524 case DW_TAG_compile_unit:
95554aad 15525 case DW_TAG_partial_unit:
348e048f 15526 case DW_TAG_type_unit:
71c25dea
TT
15527 /* Compilation units have a DW_AT_name that is a filename, not
15528 a source language identifier. */
15529 case DW_TAG_enumeration_type:
15530 case DW_TAG_enumerator:
15531 /* These tags always have simple identifiers already; no need
15532 to canonicalize them. */
15533 part_die->name = DW_STRING (&attr);
15534 break;
15535 default:
15536 part_die->name
15537 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15538 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15539 break;
15540 }
c906108c 15541 break;
31ef98ae 15542 case DW_AT_linkage_name:
c906108c 15543 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15544 /* Note that both forms of linkage name might appear. We
15545 assume they will be the same, and we only store the last
15546 one we see. */
94af9270
KS
15547 if (cu->language == language_ada)
15548 part_die->name = DW_STRING (&attr);
abc72ce4 15549 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15550 break;
15551 case DW_AT_low_pc:
15552 has_low_pc_attr = 1;
31aa7e4e 15553 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15554 break;
15555 case DW_AT_high_pc:
15556 has_high_pc_attr = 1;
31aa7e4e
JB
15557 part_die->highpc = attr_value_as_address (&attr);
15558 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15559 high_pc_relative = 1;
c906108c
SS
15560 break;
15561 case DW_AT_location:
0963b4bd 15562 /* Support the .debug_loc offsets. */
8e19ed76
PS
15563 if (attr_form_is_block (&attr))
15564 {
95554aad 15565 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15566 }
3690dd37 15567 else if (attr_form_is_section_offset (&attr))
8e19ed76 15568 {
4d3c2250 15569 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15570 }
15571 else
15572 {
4d3c2250
KB
15573 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15574 "partial symbol information");
8e19ed76 15575 }
c906108c 15576 break;
c906108c
SS
15577 case DW_AT_external:
15578 part_die->is_external = DW_UNSND (&attr);
15579 break;
15580 case DW_AT_declaration:
15581 part_die->is_declaration = DW_UNSND (&attr);
15582 break;
15583 case DW_AT_type:
15584 part_die->has_type = 1;
15585 break;
15586 case DW_AT_abstract_origin:
15587 case DW_AT_specification:
72bf9492
DJ
15588 case DW_AT_extension:
15589 part_die->has_specification = 1;
c764a876 15590 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15591 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15592 || cu->per_cu->is_dwz);
c906108c
SS
15593 break;
15594 case DW_AT_sibling:
15595 /* Ignore absolute siblings, they might point outside of
15596 the current compile unit. */
15597 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15598 complaint (&symfile_complaints,
15599 _("ignoring absolute DW_AT_sibling"));
c906108c 15600 else
b9502d3f
WN
15601 {
15602 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15603 const gdb_byte *sibling_ptr = buffer + off;
15604
15605 if (sibling_ptr < info_ptr)
15606 complaint (&symfile_complaints,
15607 _("DW_AT_sibling points backwards"));
22869d73
KS
15608 else if (sibling_ptr > reader->buffer_end)
15609 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15610 else
15611 part_die->sibling = sibling_ptr;
15612 }
c906108c 15613 break;
fa4028e9
JB
15614 case DW_AT_byte_size:
15615 part_die->has_byte_size = 1;
15616 break;
68511cec
CES
15617 case DW_AT_calling_convention:
15618 /* DWARF doesn't provide a way to identify a program's source-level
15619 entry point. DW_AT_calling_convention attributes are only meant
15620 to describe functions' calling conventions.
15621
15622 However, because it's a necessary piece of information in
15623 Fortran, and because DW_CC_program is the only piece of debugging
15624 information whose definition refers to a 'main program' at all,
15625 several compilers have begun marking Fortran main programs with
15626 DW_CC_program --- even when those functions use the standard
15627 calling conventions.
15628
15629 So until DWARF specifies a way to provide this information and
15630 compilers pick up the new representation, we'll support this
15631 practice. */
15632 if (DW_UNSND (&attr) == DW_CC_program
15633 && cu->language == language_fortran)
3d548a53 15634 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15635 break;
481860b3
GB
15636 case DW_AT_inline:
15637 if (DW_UNSND (&attr) == DW_INL_inlined
15638 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15639 part_die->may_be_inlined = 1;
15640 break;
95554aad
TT
15641
15642 case DW_AT_import:
15643 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15644 {
15645 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15646 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15647 || cu->per_cu->is_dwz);
15648 }
95554aad
TT
15649 break;
15650
c906108c
SS
15651 default:
15652 break;
15653 }
15654 }
15655
91da1414
MW
15656 if (high_pc_relative)
15657 part_die->highpc += part_die->lowpc;
15658
9373cf26
JK
15659 if (has_low_pc_attr && has_high_pc_attr)
15660 {
15661 /* When using the GNU linker, .gnu.linkonce. sections are used to
15662 eliminate duplicate copies of functions and vtables and such.
15663 The linker will arbitrarily choose one and discard the others.
15664 The AT_*_pc values for such functions refer to local labels in
15665 these sections. If the section from that file was discarded, the
15666 labels are not in the output, so the relocs get a value of 0.
15667 If this is a discarded function, mark the pc bounds as invalid,
15668 so that GDB will ignore it. */
15669 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15670 {
bb5ed363 15671 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15672
15673 complaint (&symfile_complaints,
15674 _("DW_AT_low_pc %s is zero "
15675 "for DIE at 0x%x [in module %s]"),
15676 paddress (gdbarch, part_die->lowpc),
4262abfb 15677 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15678 }
15679 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15680 else if (part_die->lowpc >= part_die->highpc)
15681 {
bb5ed363 15682 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15683
15684 complaint (&symfile_complaints,
15685 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15686 "for DIE at 0x%x [in module %s]"),
15687 paddress (gdbarch, part_die->lowpc),
15688 paddress (gdbarch, part_die->highpc),
4262abfb 15689 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15690 }
15691 else
15692 part_die->has_pc_info = 1;
15693 }
85cbf3d3 15694
c906108c
SS
15695 return info_ptr;
15696}
15697
72bf9492
DJ
15698/* Find a cached partial DIE at OFFSET in CU. */
15699
15700static struct partial_die_info *
b64f50a1 15701find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15702{
15703 struct partial_die_info *lookup_die = NULL;
15704 struct partial_die_info part_die;
15705
15706 part_die.offset = offset;
b64f50a1
JK
15707 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15708 offset.sect_off);
72bf9492 15709
72bf9492
DJ
15710 return lookup_die;
15711}
15712
348e048f
DE
15713/* Find a partial DIE at OFFSET, which may or may not be in CU,
15714 except in the case of .debug_types DIEs which do not reference
15715 outside their CU (they do however referencing other types via
55f1336d 15716 DW_FORM_ref_sig8). */
72bf9492
DJ
15717
15718static struct partial_die_info *
36586728 15719find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15720{
bb5ed363 15721 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15722 struct dwarf2_per_cu_data *per_cu = NULL;
15723 struct partial_die_info *pd = NULL;
72bf9492 15724
36586728
TT
15725 if (offset_in_dwz == cu->per_cu->is_dwz
15726 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15727 {
15728 pd = find_partial_die_in_comp_unit (offset, cu);
15729 if (pd != NULL)
15730 return pd;
0d99eb77
DE
15731 /* We missed recording what we needed.
15732 Load all dies and try again. */
15733 per_cu = cu->per_cu;
5afb4e99 15734 }
0d99eb77
DE
15735 else
15736 {
15737 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15738 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15739 {
15740 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15741 " external reference to offset 0x%lx [in module %s].\n"),
15742 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15743 bfd_get_filename (objfile->obfd));
15744 }
36586728
TT
15745 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15746 objfile);
72bf9492 15747
0d99eb77
DE
15748 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15749 load_partial_comp_unit (per_cu);
ae038cb0 15750
0d99eb77
DE
15751 per_cu->cu->last_used = 0;
15752 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15753 }
5afb4e99 15754
dee91e82
DE
15755 /* If we didn't find it, and not all dies have been loaded,
15756 load them all and try again. */
15757
5afb4e99
DJ
15758 if (pd == NULL && per_cu->load_all_dies == 0)
15759 {
5afb4e99 15760 per_cu->load_all_dies = 1;
fd820528
DE
15761
15762 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15763 THIS_CU->cu may already be in use. So we can't just free it and
15764 replace its DIEs with the ones we read in. Instead, we leave those
15765 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15766 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15767 set. */
dee91e82 15768 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15769
15770 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15771 }
15772
15773 if (pd == NULL)
15774 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15775 _("could not find partial DIE 0x%x "
15776 "in cache [from module %s]\n"),
b64f50a1 15777 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15778 return pd;
72bf9492
DJ
15779}
15780
abc72ce4
DE
15781/* See if we can figure out if the class lives in a namespace. We do
15782 this by looking for a member function; its demangled name will
15783 contain namespace info, if there is any. */
15784
15785static void
15786guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15787 struct dwarf2_cu *cu)
15788{
15789 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15790 what template types look like, because the demangler
15791 frequently doesn't give the same name as the debug info. We
15792 could fix this by only using the demangled name to get the
15793 prefix (but see comment in read_structure_type). */
15794
15795 struct partial_die_info *real_pdi;
15796 struct partial_die_info *child_pdi;
15797
15798 /* If this DIE (this DIE's specification, if any) has a parent, then
15799 we should not do this. We'll prepend the parent's fully qualified
15800 name when we create the partial symbol. */
15801
15802 real_pdi = struct_pdi;
15803 while (real_pdi->has_specification)
36586728
TT
15804 real_pdi = find_partial_die (real_pdi->spec_offset,
15805 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15806
15807 if (real_pdi->die_parent != NULL)
15808 return;
15809
15810 for (child_pdi = struct_pdi->die_child;
15811 child_pdi != NULL;
15812 child_pdi = child_pdi->die_sibling)
15813 {
15814 if (child_pdi->tag == DW_TAG_subprogram
15815 && child_pdi->linkage_name != NULL)
15816 {
15817 char *actual_class_name
15818 = language_class_name_from_physname (cu->language_defn,
15819 child_pdi->linkage_name);
15820 if (actual_class_name != NULL)
15821 {
15822 struct_pdi->name
34a68019 15823 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15824 actual_class_name,
15825 strlen (actual_class_name));
abc72ce4
DE
15826 xfree (actual_class_name);
15827 }
15828 break;
15829 }
15830 }
15831}
15832
72bf9492
DJ
15833/* Adjust PART_DIE before generating a symbol for it. This function
15834 may set the is_external flag or change the DIE's name. */
15835
15836static void
15837fixup_partial_die (struct partial_die_info *part_die,
15838 struct dwarf2_cu *cu)
15839{
abc72ce4
DE
15840 /* Once we've fixed up a die, there's no point in doing so again.
15841 This also avoids a memory leak if we were to call
15842 guess_partial_die_structure_name multiple times. */
15843 if (part_die->fixup_called)
15844 return;
15845
72bf9492
DJ
15846 /* If we found a reference attribute and the DIE has no name, try
15847 to find a name in the referred to DIE. */
15848
15849 if (part_die->name == NULL && part_die->has_specification)
15850 {
15851 struct partial_die_info *spec_die;
72bf9492 15852
36586728
TT
15853 spec_die = find_partial_die (part_die->spec_offset,
15854 part_die->spec_is_dwz, cu);
72bf9492 15855
10b3939b 15856 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15857
15858 if (spec_die->name)
15859 {
15860 part_die->name = spec_die->name;
15861
15862 /* Copy DW_AT_external attribute if it is set. */
15863 if (spec_die->is_external)
15864 part_die->is_external = spec_die->is_external;
15865 }
15866 }
15867
15868 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15869
15870 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15871 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15872
abc72ce4
DE
15873 /* If there is no parent die to provide a namespace, and there are
15874 children, see if we can determine the namespace from their linkage
122d1940 15875 name. */
abc72ce4 15876 if (cu->language == language_cplus
8b70b953 15877 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15878 && part_die->die_parent == NULL
15879 && part_die->has_children
15880 && (part_die->tag == DW_TAG_class_type
15881 || part_die->tag == DW_TAG_structure_type
15882 || part_die->tag == DW_TAG_union_type))
15883 guess_partial_die_structure_name (part_die, cu);
15884
53832f31
TT
15885 /* GCC might emit a nameless struct or union that has a linkage
15886 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15887 if (part_die->name == NULL
96408a79
SA
15888 && (part_die->tag == DW_TAG_class_type
15889 || part_die->tag == DW_TAG_interface_type
15890 || part_die->tag == DW_TAG_structure_type
15891 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15892 && part_die->linkage_name != NULL)
15893 {
15894 char *demangled;
15895
8de20a37 15896 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15897 if (demangled)
15898 {
96408a79
SA
15899 const char *base;
15900
15901 /* Strip any leading namespaces/classes, keep only the base name.
15902 DW_AT_name for named DIEs does not contain the prefixes. */
15903 base = strrchr (demangled, ':');
15904 if (base && base > demangled && base[-1] == ':')
15905 base++;
15906 else
15907 base = demangled;
15908
34a68019
TT
15909 part_die->name
15910 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15911 base, strlen (base));
53832f31
TT
15912 xfree (demangled);
15913 }
15914 }
15915
abc72ce4 15916 part_die->fixup_called = 1;
72bf9492
DJ
15917}
15918
a8329558 15919/* Read an attribute value described by an attribute form. */
c906108c 15920
d521ce57 15921static const gdb_byte *
dee91e82
DE
15922read_attribute_value (const struct die_reader_specs *reader,
15923 struct attribute *attr, unsigned form,
d521ce57 15924 const gdb_byte *info_ptr)
c906108c 15925{
dee91e82
DE
15926 struct dwarf2_cu *cu = reader->cu;
15927 bfd *abfd = reader->abfd;
e7c27a73 15928 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15929 unsigned int bytes_read;
15930 struct dwarf_block *blk;
15931
a8329558
KW
15932 attr->form = form;
15933 switch (form)
c906108c 15934 {
c906108c 15935 case DW_FORM_ref_addr:
ae411497 15936 if (cu->header.version == 2)
4568ecf9 15937 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15938 else
4568ecf9
DE
15939 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15940 &cu->header, &bytes_read);
ae411497
TT
15941 info_ptr += bytes_read;
15942 break;
36586728
TT
15943 case DW_FORM_GNU_ref_alt:
15944 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15945 info_ptr += bytes_read;
15946 break;
ae411497 15947 case DW_FORM_addr:
e7c27a73 15948 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15949 info_ptr += bytes_read;
c906108c
SS
15950 break;
15951 case DW_FORM_block2:
7b5a2f43 15952 blk = dwarf_alloc_block (cu);
c906108c
SS
15953 blk->size = read_2_bytes (abfd, info_ptr);
15954 info_ptr += 2;
15955 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15956 info_ptr += blk->size;
15957 DW_BLOCK (attr) = blk;
15958 break;
15959 case DW_FORM_block4:
7b5a2f43 15960 blk = dwarf_alloc_block (cu);
c906108c
SS
15961 blk->size = read_4_bytes (abfd, info_ptr);
15962 info_ptr += 4;
15963 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15964 info_ptr += blk->size;
15965 DW_BLOCK (attr) = blk;
15966 break;
15967 case DW_FORM_data2:
15968 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15969 info_ptr += 2;
15970 break;
15971 case DW_FORM_data4:
15972 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15973 info_ptr += 4;
15974 break;
15975 case DW_FORM_data8:
15976 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15977 info_ptr += 8;
15978 break;
2dc7f7b3
TT
15979 case DW_FORM_sec_offset:
15980 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15981 info_ptr += bytes_read;
15982 break;
c906108c 15983 case DW_FORM_string:
9b1c24c8 15984 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15985 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15986 info_ptr += bytes_read;
15987 break;
4bdf3d34 15988 case DW_FORM_strp:
36586728
TT
15989 if (!cu->per_cu->is_dwz)
15990 {
15991 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15992 &bytes_read);
15993 DW_STRING_IS_CANONICAL (attr) = 0;
15994 info_ptr += bytes_read;
15995 break;
15996 }
15997 /* FALLTHROUGH */
15998 case DW_FORM_GNU_strp_alt:
15999 {
16000 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16001 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16002 &bytes_read);
16003
16004 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16005 DW_STRING_IS_CANONICAL (attr) = 0;
16006 info_ptr += bytes_read;
16007 }
4bdf3d34 16008 break;
2dc7f7b3 16009 case DW_FORM_exprloc:
c906108c 16010 case DW_FORM_block:
7b5a2f43 16011 blk = dwarf_alloc_block (cu);
c906108c
SS
16012 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16013 info_ptr += bytes_read;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16017 break;
16018 case DW_FORM_block1:
7b5a2f43 16019 blk = dwarf_alloc_block (cu);
c906108c
SS
16020 blk->size = read_1_byte (abfd, info_ptr);
16021 info_ptr += 1;
16022 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16023 info_ptr += blk->size;
16024 DW_BLOCK (attr) = blk;
16025 break;
16026 case DW_FORM_data1:
16027 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16028 info_ptr += 1;
16029 break;
16030 case DW_FORM_flag:
16031 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16032 info_ptr += 1;
16033 break;
2dc7f7b3
TT
16034 case DW_FORM_flag_present:
16035 DW_UNSND (attr) = 1;
16036 break;
c906108c
SS
16037 case DW_FORM_sdata:
16038 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16039 info_ptr += bytes_read;
16040 break;
16041 case DW_FORM_udata:
16042 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16043 info_ptr += bytes_read;
16044 break;
16045 case DW_FORM_ref1:
4568ecf9
DE
16046 DW_UNSND (attr) = (cu->header.offset.sect_off
16047 + read_1_byte (abfd, info_ptr));
c906108c
SS
16048 info_ptr += 1;
16049 break;
16050 case DW_FORM_ref2:
4568ecf9
DE
16051 DW_UNSND (attr) = (cu->header.offset.sect_off
16052 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16053 info_ptr += 2;
16054 break;
16055 case DW_FORM_ref4:
4568ecf9
DE
16056 DW_UNSND (attr) = (cu->header.offset.sect_off
16057 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16058 info_ptr += 4;
16059 break;
613e1657 16060 case DW_FORM_ref8:
4568ecf9
DE
16061 DW_UNSND (attr) = (cu->header.offset.sect_off
16062 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16063 info_ptr += 8;
16064 break;
55f1336d 16065 case DW_FORM_ref_sig8:
ac9ec31b 16066 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16067 info_ptr += 8;
16068 break;
c906108c 16069 case DW_FORM_ref_udata:
4568ecf9
DE
16070 DW_UNSND (attr) = (cu->header.offset.sect_off
16071 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16072 info_ptr += bytes_read;
16073 break;
c906108c 16074 case DW_FORM_indirect:
a8329558
KW
16075 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16076 info_ptr += bytes_read;
dee91e82 16077 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16078 break;
3019eac3
DE
16079 case DW_FORM_GNU_addr_index:
16080 if (reader->dwo_file == NULL)
16081 {
16082 /* For now flag a hard error.
16083 Later we can turn this into a complaint. */
16084 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16085 dwarf_form_name (form),
16086 bfd_get_filename (abfd));
16087 }
16088 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16089 info_ptr += bytes_read;
16090 break;
16091 case DW_FORM_GNU_str_index:
16092 if (reader->dwo_file == NULL)
16093 {
16094 /* For now flag a hard error.
16095 Later we can turn this into a complaint if warranted. */
16096 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16097 dwarf_form_name (form),
16098 bfd_get_filename (abfd));
16099 }
16100 {
16101 ULONGEST str_index =
16102 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16103
342587c4 16104 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16105 DW_STRING_IS_CANONICAL (attr) = 0;
16106 info_ptr += bytes_read;
16107 }
16108 break;
c906108c 16109 default:
8a3fe4f8 16110 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16111 dwarf_form_name (form),
16112 bfd_get_filename (abfd));
c906108c 16113 }
28e94949 16114
36586728 16115 /* Super hack. */
7771576e 16116 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16117 attr->form = DW_FORM_GNU_ref_alt;
16118
28e94949
JB
16119 /* We have seen instances where the compiler tried to emit a byte
16120 size attribute of -1 which ended up being encoded as an unsigned
16121 0xffffffff. Although 0xffffffff is technically a valid size value,
16122 an object of this size seems pretty unlikely so we can relatively
16123 safely treat these cases as if the size attribute was invalid and
16124 treat them as zero by default. */
16125 if (attr->name == DW_AT_byte_size
16126 && form == DW_FORM_data4
16127 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16128 {
16129 complaint
16130 (&symfile_complaints,
43bbcdc2
PH
16131 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16132 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16133 DW_UNSND (attr) = 0;
16134 }
28e94949 16135
c906108c
SS
16136 return info_ptr;
16137}
16138
a8329558
KW
16139/* Read an attribute described by an abbreviated attribute. */
16140
d521ce57 16141static const gdb_byte *
dee91e82
DE
16142read_attribute (const struct die_reader_specs *reader,
16143 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16144 const gdb_byte *info_ptr)
a8329558
KW
16145{
16146 attr->name = abbrev->name;
dee91e82 16147 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16148}
16149
0963b4bd 16150/* Read dwarf information from a buffer. */
c906108c
SS
16151
16152static unsigned int
a1855c1d 16153read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16154{
fe1b8b76 16155 return bfd_get_8 (abfd, buf);
c906108c
SS
16156}
16157
16158static int
a1855c1d 16159read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16160{
fe1b8b76 16161 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16162}
16163
16164static unsigned int
a1855c1d 16165read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16166{
fe1b8b76 16167 return bfd_get_16 (abfd, buf);
c906108c
SS
16168}
16169
21ae7a4d 16170static int
a1855c1d 16171read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16172{
16173 return bfd_get_signed_16 (abfd, buf);
16174}
16175
c906108c 16176static unsigned int
a1855c1d 16177read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16178{
fe1b8b76 16179 return bfd_get_32 (abfd, buf);
c906108c
SS
16180}
16181
21ae7a4d 16182static int
a1855c1d 16183read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16184{
16185 return bfd_get_signed_32 (abfd, buf);
16186}
16187
93311388 16188static ULONGEST
a1855c1d 16189read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16190{
fe1b8b76 16191 return bfd_get_64 (abfd, buf);
c906108c
SS
16192}
16193
16194static CORE_ADDR
d521ce57 16195read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16196 unsigned int *bytes_read)
c906108c 16197{
e7c27a73 16198 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16199 CORE_ADDR retval = 0;
16200
107d2387 16201 if (cu_header->signed_addr_p)
c906108c 16202 {
107d2387
AC
16203 switch (cu_header->addr_size)
16204 {
16205 case 2:
fe1b8b76 16206 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16207 break;
16208 case 4:
fe1b8b76 16209 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16210 break;
16211 case 8:
fe1b8b76 16212 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16213 break;
16214 default:
8e65ff28 16215 internal_error (__FILE__, __LINE__,
e2e0b3e5 16216 _("read_address: bad switch, signed [in module %s]"),
659b0389 16217 bfd_get_filename (abfd));
107d2387
AC
16218 }
16219 }
16220 else
16221 {
16222 switch (cu_header->addr_size)
16223 {
16224 case 2:
fe1b8b76 16225 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16226 break;
16227 case 4:
fe1b8b76 16228 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16229 break;
16230 case 8:
fe1b8b76 16231 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16232 break;
16233 default:
8e65ff28 16234 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16235 _("read_address: bad switch, "
16236 "unsigned [in module %s]"),
659b0389 16237 bfd_get_filename (abfd));
107d2387 16238 }
c906108c 16239 }
64367e0a 16240
107d2387
AC
16241 *bytes_read = cu_header->addr_size;
16242 return retval;
c906108c
SS
16243}
16244
f7ef9339 16245/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16246 specification allows the initial length to take up either 4 bytes
16247 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16248 bytes describe the length and all offsets will be 8 bytes in length
16249 instead of 4.
16250
f7ef9339
KB
16251 An older, non-standard 64-bit format is also handled by this
16252 function. The older format in question stores the initial length
16253 as an 8-byte quantity without an escape value. Lengths greater
16254 than 2^32 aren't very common which means that the initial 4 bytes
16255 is almost always zero. Since a length value of zero doesn't make
16256 sense for the 32-bit format, this initial zero can be considered to
16257 be an escape value which indicates the presence of the older 64-bit
16258 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16259 greater than 4GB. If it becomes necessary to handle lengths
16260 somewhat larger than 4GB, we could allow other small values (such
16261 as the non-sensical values of 1, 2, and 3) to also be used as
16262 escape values indicating the presence of the old format.
f7ef9339 16263
917c78fc
MK
16264 The value returned via bytes_read should be used to increment the
16265 relevant pointer after calling read_initial_length().
c764a876 16266
613e1657
KB
16267 [ Note: read_initial_length() and read_offset() are based on the
16268 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16269 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16270 from:
16271
f7ef9339 16272 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16273
613e1657
KB
16274 This document is only a draft and is subject to change. (So beware.)
16275
f7ef9339 16276 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16277 determined empirically by examining 64-bit ELF files produced by
16278 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16279
16280 - Kevin, July 16, 2002
613e1657
KB
16281 ] */
16282
16283static LONGEST
d521ce57 16284read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16285{
fe1b8b76 16286 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16287
dd373385 16288 if (length == 0xffffffff)
613e1657 16289 {
fe1b8b76 16290 length = bfd_get_64 (abfd, buf + 4);
613e1657 16291 *bytes_read = 12;
613e1657 16292 }
dd373385 16293 else if (length == 0)
f7ef9339 16294 {
dd373385 16295 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16296 length = bfd_get_64 (abfd, buf);
f7ef9339 16297 *bytes_read = 8;
f7ef9339 16298 }
613e1657
KB
16299 else
16300 {
16301 *bytes_read = 4;
613e1657
KB
16302 }
16303
c764a876
DE
16304 return length;
16305}
dd373385 16306
c764a876
DE
16307/* Cover function for read_initial_length.
16308 Returns the length of the object at BUF, and stores the size of the
16309 initial length in *BYTES_READ and stores the size that offsets will be in
16310 *OFFSET_SIZE.
16311 If the initial length size is not equivalent to that specified in
16312 CU_HEADER then issue a complaint.
16313 This is useful when reading non-comp-unit headers. */
dd373385 16314
c764a876 16315static LONGEST
d521ce57 16316read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16317 const struct comp_unit_head *cu_header,
16318 unsigned int *bytes_read,
16319 unsigned int *offset_size)
16320{
16321 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16322
16323 gdb_assert (cu_header->initial_length_size == 4
16324 || cu_header->initial_length_size == 8
16325 || cu_header->initial_length_size == 12);
16326
16327 if (cu_header->initial_length_size != *bytes_read)
16328 complaint (&symfile_complaints,
16329 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16330
c764a876 16331 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16332 return length;
613e1657
KB
16333}
16334
16335/* Read an offset from the data stream. The size of the offset is
917c78fc 16336 given by cu_header->offset_size. */
613e1657
KB
16337
16338static LONGEST
d521ce57
TT
16339read_offset (bfd *abfd, const gdb_byte *buf,
16340 const struct comp_unit_head *cu_header,
891d2f0b 16341 unsigned int *bytes_read)
c764a876
DE
16342{
16343 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16344
c764a876
DE
16345 *bytes_read = cu_header->offset_size;
16346 return offset;
16347}
16348
16349/* Read an offset from the data stream. */
16350
16351static LONGEST
d521ce57 16352read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16353{
16354 LONGEST retval = 0;
16355
c764a876 16356 switch (offset_size)
613e1657
KB
16357 {
16358 case 4:
fe1b8b76 16359 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16360 break;
16361 case 8:
fe1b8b76 16362 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16363 break;
16364 default:
8e65ff28 16365 internal_error (__FILE__, __LINE__,
c764a876 16366 _("read_offset_1: bad switch [in module %s]"),
659b0389 16367 bfd_get_filename (abfd));
613e1657
KB
16368 }
16369
917c78fc 16370 return retval;
613e1657
KB
16371}
16372
d521ce57
TT
16373static const gdb_byte *
16374read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16375{
16376 /* If the size of a host char is 8 bits, we can return a pointer
16377 to the buffer, otherwise we have to copy the data to a buffer
16378 allocated on the temporary obstack. */
4bdf3d34 16379 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16380 return buf;
c906108c
SS
16381}
16382
d521ce57
TT
16383static const char *
16384read_direct_string (bfd *abfd, const gdb_byte *buf,
16385 unsigned int *bytes_read_ptr)
c906108c
SS
16386{
16387 /* If the size of a host char is 8 bits, we can return a pointer
16388 to the string, otherwise we have to copy the string to a buffer
16389 allocated on the temporary obstack. */
4bdf3d34 16390 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16391 if (*buf == '\0')
16392 {
16393 *bytes_read_ptr = 1;
16394 return NULL;
16395 }
d521ce57
TT
16396 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16397 return (const char *) buf;
4bdf3d34
JJ
16398}
16399
d521ce57 16400static const char *
cf2c3c16 16401read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16402{
be391dca 16403 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16404 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16405 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16406 bfd_get_filename (abfd));
dce234bc 16407 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16408 error (_("DW_FORM_strp pointing outside of "
16409 ".debug_str section [in module %s]"),
16410 bfd_get_filename (abfd));
4bdf3d34 16411 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16412 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16413 return NULL;
d521ce57 16414 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16415}
16416
36586728
TT
16417/* Read a string at offset STR_OFFSET in the .debug_str section from
16418 the .dwz file DWZ. Throw an error if the offset is too large. If
16419 the string consists of a single NUL byte, return NULL; otherwise
16420 return a pointer to the string. */
16421
d521ce57 16422static const char *
36586728
TT
16423read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16424{
16425 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16426
16427 if (dwz->str.buffer == NULL)
16428 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16429 "section [in module %s]"),
16430 bfd_get_filename (dwz->dwz_bfd));
16431 if (str_offset >= dwz->str.size)
16432 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16433 ".debug_str section [in module %s]"),
16434 bfd_get_filename (dwz->dwz_bfd));
16435 gdb_assert (HOST_CHAR_BIT == 8);
16436 if (dwz->str.buffer[str_offset] == '\0')
16437 return NULL;
d521ce57 16438 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16439}
16440
d521ce57
TT
16441static const char *
16442read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16443 const struct comp_unit_head *cu_header,
16444 unsigned int *bytes_read_ptr)
16445{
16446 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16447
16448 return read_indirect_string_at_offset (abfd, str_offset);
16449}
16450
12df843f 16451static ULONGEST
d521ce57
TT
16452read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16453 unsigned int *bytes_read_ptr)
c906108c 16454{
12df843f 16455 ULONGEST result;
ce5d95e1 16456 unsigned int num_read;
c906108c
SS
16457 int i, shift;
16458 unsigned char byte;
16459
16460 result = 0;
16461 shift = 0;
16462 num_read = 0;
16463 i = 0;
16464 while (1)
16465 {
fe1b8b76 16466 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16467 buf++;
16468 num_read++;
12df843f 16469 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16470 if ((byte & 128) == 0)
16471 {
16472 break;
16473 }
16474 shift += 7;
16475 }
16476 *bytes_read_ptr = num_read;
16477 return result;
16478}
16479
12df843f 16480static LONGEST
d521ce57
TT
16481read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16482 unsigned int *bytes_read_ptr)
c906108c 16483{
12df843f 16484 LONGEST result;
77e0b926 16485 int i, shift, num_read;
c906108c
SS
16486 unsigned char byte;
16487
16488 result = 0;
16489 shift = 0;
c906108c
SS
16490 num_read = 0;
16491 i = 0;
16492 while (1)
16493 {
fe1b8b76 16494 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16495 buf++;
16496 num_read++;
12df843f 16497 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16498 shift += 7;
16499 if ((byte & 128) == 0)
16500 {
16501 break;
16502 }
16503 }
77e0b926 16504 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16505 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16506 *bytes_read_ptr = num_read;
16507 return result;
16508}
16509
3019eac3
DE
16510/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16511 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16512 ADDR_SIZE is the size of addresses from the CU header. */
16513
16514static CORE_ADDR
16515read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16516{
16517 struct objfile *objfile = dwarf2_per_objfile->objfile;
16518 bfd *abfd = objfile->obfd;
16519 const gdb_byte *info_ptr;
16520
16521 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16522 if (dwarf2_per_objfile->addr.buffer == NULL)
16523 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16524 objfile_name (objfile));
3019eac3
DE
16525 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16526 error (_("DW_FORM_addr_index pointing outside of "
16527 ".debug_addr section [in module %s]"),
4262abfb 16528 objfile_name (objfile));
3019eac3
DE
16529 info_ptr = (dwarf2_per_objfile->addr.buffer
16530 + addr_base + addr_index * addr_size);
16531 if (addr_size == 4)
16532 return bfd_get_32 (abfd, info_ptr);
16533 else
16534 return bfd_get_64 (abfd, info_ptr);
16535}
16536
16537/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16538
16539static CORE_ADDR
16540read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16541{
16542 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16543}
16544
16545/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16546
16547static CORE_ADDR
d521ce57 16548read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16549 unsigned int *bytes_read)
16550{
16551 bfd *abfd = cu->objfile->obfd;
16552 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16553
16554 return read_addr_index (cu, addr_index);
16555}
16556
16557/* Data structure to pass results from dwarf2_read_addr_index_reader
16558 back to dwarf2_read_addr_index. */
16559
16560struct dwarf2_read_addr_index_data
16561{
16562 ULONGEST addr_base;
16563 int addr_size;
16564};
16565
16566/* die_reader_func for dwarf2_read_addr_index. */
16567
16568static void
16569dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16570 const gdb_byte *info_ptr,
3019eac3
DE
16571 struct die_info *comp_unit_die,
16572 int has_children,
16573 void *data)
16574{
16575 struct dwarf2_cu *cu = reader->cu;
16576 struct dwarf2_read_addr_index_data *aidata =
16577 (struct dwarf2_read_addr_index_data *) data;
16578
16579 aidata->addr_base = cu->addr_base;
16580 aidata->addr_size = cu->header.addr_size;
16581}
16582
16583/* Given an index in .debug_addr, fetch the value.
16584 NOTE: This can be called during dwarf expression evaluation,
16585 long after the debug information has been read, and thus per_cu->cu
16586 may no longer exist. */
16587
16588CORE_ADDR
16589dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16590 unsigned int addr_index)
16591{
16592 struct objfile *objfile = per_cu->objfile;
16593 struct dwarf2_cu *cu = per_cu->cu;
16594 ULONGEST addr_base;
16595 int addr_size;
16596
16597 /* This is intended to be called from outside this file. */
16598 dw2_setup (objfile);
16599
16600 /* We need addr_base and addr_size.
16601 If we don't have PER_CU->cu, we have to get it.
16602 Nasty, but the alternative is storing the needed info in PER_CU,
16603 which at this point doesn't seem justified: it's not clear how frequently
16604 it would get used and it would increase the size of every PER_CU.
16605 Entry points like dwarf2_per_cu_addr_size do a similar thing
16606 so we're not in uncharted territory here.
16607 Alas we need to be a bit more complicated as addr_base is contained
16608 in the DIE.
16609
16610 We don't need to read the entire CU(/TU).
16611 We just need the header and top level die.
a1b64ce1 16612
3019eac3 16613 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16614 For now we skip this optimization. */
3019eac3
DE
16615
16616 if (cu != NULL)
16617 {
16618 addr_base = cu->addr_base;
16619 addr_size = cu->header.addr_size;
16620 }
16621 else
16622 {
16623 struct dwarf2_read_addr_index_data aidata;
16624
a1b64ce1
DE
16625 /* Note: We can't use init_cutu_and_read_dies_simple here,
16626 we need addr_base. */
16627 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16628 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16629 addr_base = aidata.addr_base;
16630 addr_size = aidata.addr_size;
16631 }
16632
16633 return read_addr_index_1 (addr_index, addr_base, addr_size);
16634}
16635
57d63ce2
DE
16636/* Given a DW_FORM_GNU_str_index, fetch the string.
16637 This is only used by the Fission support. */
3019eac3 16638
d521ce57 16639static const char *
342587c4 16640read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16641{
16642 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16643 const char *objf_name = objfile_name (objfile);
3019eac3 16644 bfd *abfd = objfile->obfd;
342587c4 16645 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16646 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16647 struct dwarf2_section_info *str_offsets_section =
16648 &reader->dwo_file->sections.str_offsets;
d521ce57 16649 const gdb_byte *info_ptr;
3019eac3 16650 ULONGEST str_offset;
57d63ce2 16651 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16652
73869dc2
DE
16653 dwarf2_read_section (objfile, str_section);
16654 dwarf2_read_section (objfile, str_offsets_section);
16655 if (str_section->buffer == NULL)
57d63ce2 16656 error (_("%s used without .debug_str.dwo section"
3019eac3 16657 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16658 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16659 if (str_offsets_section->buffer == NULL)
57d63ce2 16660 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16661 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16662 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16663 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16664 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16665 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16666 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16667 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16668 + str_index * cu->header.offset_size);
16669 if (cu->header.offset_size == 4)
16670 str_offset = bfd_get_32 (abfd, info_ptr);
16671 else
16672 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16673 if (str_offset >= str_section->size)
57d63ce2 16674 error (_("Offset from %s pointing outside of"
3019eac3 16675 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16676 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16677 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16678}
16679
3019eac3
DE
16680/* Return the length of an LEB128 number in BUF. */
16681
16682static int
16683leb128_size (const gdb_byte *buf)
16684{
16685 const gdb_byte *begin = buf;
16686 gdb_byte byte;
16687
16688 while (1)
16689 {
16690 byte = *buf++;
16691 if ((byte & 128) == 0)
16692 return buf - begin;
16693 }
16694}
16695
c906108c 16696static void
e142c38c 16697set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16698{
16699 switch (lang)
16700 {
16701 case DW_LANG_C89:
76bee0cc 16702 case DW_LANG_C99:
c906108c 16703 case DW_LANG_C:
d1be3247 16704 case DW_LANG_UPC:
e142c38c 16705 cu->language = language_c;
c906108c
SS
16706 break;
16707 case DW_LANG_C_plus_plus:
e142c38c 16708 cu->language = language_cplus;
c906108c 16709 break;
6aecb9c2
JB
16710 case DW_LANG_D:
16711 cu->language = language_d;
16712 break;
c906108c
SS
16713 case DW_LANG_Fortran77:
16714 case DW_LANG_Fortran90:
b21b22e0 16715 case DW_LANG_Fortran95:
e142c38c 16716 cu->language = language_fortran;
c906108c 16717 break;
a766d390
DE
16718 case DW_LANG_Go:
16719 cu->language = language_go;
16720 break;
c906108c 16721 case DW_LANG_Mips_Assembler:
e142c38c 16722 cu->language = language_asm;
c906108c 16723 break;
bebd888e 16724 case DW_LANG_Java:
e142c38c 16725 cu->language = language_java;
bebd888e 16726 break;
c906108c 16727 case DW_LANG_Ada83:
8aaf0b47 16728 case DW_LANG_Ada95:
bc5f45f8
JB
16729 cu->language = language_ada;
16730 break;
72019c9c
GM
16731 case DW_LANG_Modula2:
16732 cu->language = language_m2;
16733 break;
fe8e67fd
PM
16734 case DW_LANG_Pascal83:
16735 cu->language = language_pascal;
16736 break;
22566fbd
DJ
16737 case DW_LANG_ObjC:
16738 cu->language = language_objc;
16739 break;
c906108c
SS
16740 case DW_LANG_Cobol74:
16741 case DW_LANG_Cobol85:
c906108c 16742 default:
e142c38c 16743 cu->language = language_minimal;
c906108c
SS
16744 break;
16745 }
e142c38c 16746 cu->language_defn = language_def (cu->language);
c906108c
SS
16747}
16748
16749/* Return the named attribute or NULL if not there. */
16750
16751static struct attribute *
e142c38c 16752dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16753{
a48e046c 16754 for (;;)
c906108c 16755 {
a48e046c
TT
16756 unsigned int i;
16757 struct attribute *spec = NULL;
16758
16759 for (i = 0; i < die->num_attrs; ++i)
16760 {
16761 if (die->attrs[i].name == name)
16762 return &die->attrs[i];
16763 if (die->attrs[i].name == DW_AT_specification
16764 || die->attrs[i].name == DW_AT_abstract_origin)
16765 spec = &die->attrs[i];
16766 }
16767
16768 if (!spec)
16769 break;
c906108c 16770
f2f0e013 16771 die = follow_die_ref (die, spec, &cu);
f2f0e013 16772 }
c5aa993b 16773
c906108c
SS
16774 return NULL;
16775}
16776
348e048f
DE
16777/* Return the named attribute or NULL if not there,
16778 but do not follow DW_AT_specification, etc.
16779 This is for use in contexts where we're reading .debug_types dies.
16780 Following DW_AT_specification, DW_AT_abstract_origin will take us
16781 back up the chain, and we want to go down. */
16782
16783static struct attribute *
45e58e77 16784dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16785{
16786 unsigned int i;
16787
16788 for (i = 0; i < die->num_attrs; ++i)
16789 if (die->attrs[i].name == name)
16790 return &die->attrs[i];
16791
16792 return NULL;
16793}
16794
05cf31d1
JB
16795/* Return non-zero iff the attribute NAME is defined for the given DIE,
16796 and holds a non-zero value. This function should only be used for
2dc7f7b3 16797 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16798
16799static int
16800dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16801{
16802 struct attribute *attr = dwarf2_attr (die, name, cu);
16803
16804 return (attr && DW_UNSND (attr));
16805}
16806
3ca72b44 16807static int
e142c38c 16808die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16809{
05cf31d1
JB
16810 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16811 which value is non-zero. However, we have to be careful with
16812 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16813 (via dwarf2_flag_true_p) follows this attribute. So we may
16814 end up accidently finding a declaration attribute that belongs
16815 to a different DIE referenced by the specification attribute,
16816 even though the given DIE does not have a declaration attribute. */
16817 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16818 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16819}
16820
63d06c5c 16821/* Return the die giving the specification for DIE, if there is
f2f0e013 16822 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16823 containing the return value on output. If there is no
16824 specification, but there is an abstract origin, that is
16825 returned. */
63d06c5c
DC
16826
16827static struct die_info *
f2f0e013 16828die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16829{
f2f0e013
DJ
16830 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16831 *spec_cu);
63d06c5c 16832
edb3359d
DJ
16833 if (spec_attr == NULL)
16834 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16835
63d06c5c
DC
16836 if (spec_attr == NULL)
16837 return NULL;
16838 else
f2f0e013 16839 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16840}
c906108c 16841
debd256d 16842/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16843 refers to.
16844 NOTE: This is also used as a "cleanup" function. */
16845
debd256d
JB
16846static void
16847free_line_header (struct line_header *lh)
16848{
16849 if (lh->standard_opcode_lengths)
a8bc7b56 16850 xfree (lh->standard_opcode_lengths);
debd256d
JB
16851
16852 /* Remember that all the lh->file_names[i].name pointers are
16853 pointers into debug_line_buffer, and don't need to be freed. */
16854 if (lh->file_names)
a8bc7b56 16855 xfree (lh->file_names);
debd256d
JB
16856
16857 /* Similarly for the include directory names. */
16858 if (lh->include_dirs)
a8bc7b56 16859 xfree (lh->include_dirs);
debd256d 16860
a8bc7b56 16861 xfree (lh);
debd256d
JB
16862}
16863
debd256d 16864/* Add an entry to LH's include directory table. */
ae2de4f8 16865
debd256d 16866static void
d521ce57 16867add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16868{
debd256d
JB
16869 /* Grow the array if necessary. */
16870 if (lh->include_dirs_size == 0)
c5aa993b 16871 {
debd256d
JB
16872 lh->include_dirs_size = 1; /* for testing */
16873 lh->include_dirs = xmalloc (lh->include_dirs_size
16874 * sizeof (*lh->include_dirs));
16875 }
16876 else if (lh->num_include_dirs >= lh->include_dirs_size)
16877 {
16878 lh->include_dirs_size *= 2;
16879 lh->include_dirs = xrealloc (lh->include_dirs,
16880 (lh->include_dirs_size
16881 * sizeof (*lh->include_dirs)));
c5aa993b 16882 }
c906108c 16883
debd256d
JB
16884 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16885}
6e70227d 16886
debd256d 16887/* Add an entry to LH's file name table. */
ae2de4f8 16888
debd256d
JB
16889static void
16890add_file_name (struct line_header *lh,
d521ce57 16891 const char *name,
debd256d
JB
16892 unsigned int dir_index,
16893 unsigned int mod_time,
16894 unsigned int length)
16895{
16896 struct file_entry *fe;
16897
16898 /* Grow the array if necessary. */
16899 if (lh->file_names_size == 0)
16900 {
16901 lh->file_names_size = 1; /* for testing */
16902 lh->file_names = xmalloc (lh->file_names_size
16903 * sizeof (*lh->file_names));
16904 }
16905 else if (lh->num_file_names >= lh->file_names_size)
16906 {
16907 lh->file_names_size *= 2;
16908 lh->file_names = xrealloc (lh->file_names,
16909 (lh->file_names_size
16910 * sizeof (*lh->file_names)));
16911 }
16912
16913 fe = &lh->file_names[lh->num_file_names++];
16914 fe->name = name;
16915 fe->dir_index = dir_index;
16916 fe->mod_time = mod_time;
16917 fe->length = length;
aaa75496 16918 fe->included_p = 0;
cb1df416 16919 fe->symtab = NULL;
debd256d 16920}
6e70227d 16921
36586728
TT
16922/* A convenience function to find the proper .debug_line section for a
16923 CU. */
16924
16925static struct dwarf2_section_info *
16926get_debug_line_section (struct dwarf2_cu *cu)
16927{
16928 struct dwarf2_section_info *section;
16929
16930 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16931 DWO file. */
16932 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16933 section = &cu->dwo_unit->dwo_file->sections.line;
16934 else if (cu->per_cu->is_dwz)
16935 {
16936 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16937
16938 section = &dwz->line;
16939 }
16940 else
16941 section = &dwarf2_per_objfile->line;
16942
16943 return section;
16944}
16945
debd256d 16946/* Read the statement program header starting at OFFSET in
3019eac3 16947 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16948 to a struct line_header, allocated using xmalloc.
debd256d
JB
16949
16950 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16951 the returned object point into the dwarf line section buffer,
16952 and must not be freed. */
ae2de4f8 16953
debd256d 16954static struct line_header *
3019eac3 16955dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16956{
16957 struct cleanup *back_to;
16958 struct line_header *lh;
d521ce57 16959 const gdb_byte *line_ptr;
c764a876 16960 unsigned int bytes_read, offset_size;
debd256d 16961 int i;
d521ce57 16962 const char *cur_dir, *cur_file;
3019eac3
DE
16963 struct dwarf2_section_info *section;
16964 bfd *abfd;
16965
36586728 16966 section = get_debug_line_section (cu);
3019eac3
DE
16967 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16968 if (section->buffer == NULL)
debd256d 16969 {
3019eac3
DE
16970 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16971 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16972 else
16973 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16974 return 0;
16975 }
16976
fceca515
DE
16977 /* We can't do this until we know the section is non-empty.
16978 Only then do we know we have such a section. */
a32a8923 16979 abfd = get_section_bfd_owner (section);
fceca515 16980
a738430d
MK
16981 /* Make sure that at least there's room for the total_length field.
16982 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16983 if (offset + 4 >= section->size)
debd256d 16984 {
4d3c2250 16985 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16986 return 0;
16987 }
16988
16989 lh = xmalloc (sizeof (*lh));
16990 memset (lh, 0, sizeof (*lh));
16991 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16992 (void *) lh);
16993
3019eac3 16994 line_ptr = section->buffer + offset;
debd256d 16995
a738430d 16996 /* Read in the header. */
6e70227d 16997 lh->total_length =
c764a876
DE
16998 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16999 &bytes_read, &offset_size);
debd256d 17000 line_ptr += bytes_read;
3019eac3 17001 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17002 {
4d3c2250 17003 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17004 do_cleanups (back_to);
debd256d
JB
17005 return 0;
17006 }
17007 lh->statement_program_end = line_ptr + lh->total_length;
17008 lh->version = read_2_bytes (abfd, line_ptr);
17009 line_ptr += 2;
c764a876
DE
17010 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17011 line_ptr += offset_size;
debd256d
JB
17012 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17013 line_ptr += 1;
2dc7f7b3
TT
17014 if (lh->version >= 4)
17015 {
17016 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17017 line_ptr += 1;
17018 }
17019 else
17020 lh->maximum_ops_per_instruction = 1;
17021
17022 if (lh->maximum_ops_per_instruction == 0)
17023 {
17024 lh->maximum_ops_per_instruction = 1;
17025 complaint (&symfile_complaints,
3e43a32a
MS
17026 _("invalid maximum_ops_per_instruction "
17027 "in `.debug_line' section"));
2dc7f7b3
TT
17028 }
17029
debd256d
JB
17030 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17031 line_ptr += 1;
17032 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_range = read_1_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->opcode_base = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->standard_opcode_lengths
fe1b8b76 17039 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17040
17041 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17042 for (i = 1; i < lh->opcode_base; ++i)
17043 {
17044 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17045 line_ptr += 1;
17046 }
17047
a738430d 17048 /* Read directory table. */
9b1c24c8 17049 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17050 {
17051 line_ptr += bytes_read;
17052 add_include_dir (lh, cur_dir);
17053 }
17054 line_ptr += bytes_read;
17055
a738430d 17056 /* Read file name table. */
9b1c24c8 17057 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17058 {
17059 unsigned int dir_index, mod_time, length;
17060
17061 line_ptr += bytes_read;
17062 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17063 line_ptr += bytes_read;
17064 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068
17069 add_file_name (lh, cur_file, dir_index, mod_time, length);
17070 }
17071 line_ptr += bytes_read;
6e70227d 17072 lh->statement_program_start = line_ptr;
debd256d 17073
3019eac3 17074 if (line_ptr > (section->buffer + section->size))
4d3c2250 17075 complaint (&symfile_complaints,
3e43a32a
MS
17076 _("line number info header doesn't "
17077 "fit in `.debug_line' section"));
debd256d
JB
17078
17079 discard_cleanups (back_to);
17080 return lh;
17081}
c906108c 17082
c6da4cef
DE
17083/* Subroutine of dwarf_decode_lines to simplify it.
17084 Return the file name of the psymtab for included file FILE_INDEX
17085 in line header LH of PST.
17086 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17087 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17088 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17089
17090 The function creates dangling cleanup registration. */
c6da4cef 17091
d521ce57 17092static const char *
c6da4cef
DE
17093psymtab_include_file_name (const struct line_header *lh, int file_index,
17094 const struct partial_symtab *pst,
17095 const char *comp_dir)
17096{
17097 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17098 const char *include_name = fe.name;
17099 const char *include_name_to_compare = include_name;
17100 const char *dir_name = NULL;
72b9f47f
TT
17101 const char *pst_filename;
17102 char *copied_name = NULL;
c6da4cef
DE
17103 int file_is_pst;
17104
17105 if (fe.dir_index)
17106 dir_name = lh->include_dirs[fe.dir_index - 1];
17107
17108 if (!IS_ABSOLUTE_PATH (include_name)
17109 && (dir_name != NULL || comp_dir != NULL))
17110 {
17111 /* Avoid creating a duplicate psymtab for PST.
17112 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17113 Before we do the comparison, however, we need to account
17114 for DIR_NAME and COMP_DIR.
17115 First prepend dir_name (if non-NULL). If we still don't
17116 have an absolute path prepend comp_dir (if non-NULL).
17117 However, the directory we record in the include-file's
17118 psymtab does not contain COMP_DIR (to match the
17119 corresponding symtab(s)).
17120
17121 Example:
17122
17123 bash$ cd /tmp
17124 bash$ gcc -g ./hello.c
17125 include_name = "hello.c"
17126 dir_name = "."
17127 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17128 DW_AT_name = "./hello.c"
17129
17130 */
c6da4cef
DE
17131
17132 if (dir_name != NULL)
17133 {
d521ce57
TT
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17136
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
c6da4cef 17139 include_name_to_compare = include_name;
c6da4cef
DE
17140 }
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17142 {
d521ce57
TT
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17145
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
c6da4cef
DE
17148 }
17149 }
17150
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17153 {
72b9f47f
TT
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
c6da4cef
DE
17157 }
17158
1e3fad37 17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17160
72b9f47f
TT
17161 if (copied_name != NULL)
17162 xfree (copied_name);
c6da4cef
DE
17163
17164 if (file_is_pst)
17165 return NULL;
17166 return include_name;
17167}
17168
c91513d8
PP
17169/* Ignore this record_line request. */
17170
17171static void
17172noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17173{
17174 return;
17175}
17176
a05a36a5
DE
17177/* Return non-zero if we should add LINE to the line number table.
17178 LINE is the line to add, LAST_LINE is the last line that was added,
17179 LAST_SUBFILE is the subfile for LAST_LINE.
17180 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17181 had a non-zero discriminator.
17182
17183 We have to be careful in the presence of discriminators.
17184 E.g., for this line:
17185
17186 for (i = 0; i < 100000; i++);
17187
17188 clang can emit four line number entries for that one line,
17189 each with a different discriminator.
17190 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17191
17192 However, we want gdb to coalesce all four entries into one.
17193 Otherwise the user could stepi into the middle of the line and
17194 gdb would get confused about whether the pc really was in the
17195 middle of the line.
17196
17197 Things are further complicated by the fact that two consecutive
17198 line number entries for the same line is a heuristic used by gcc
17199 to denote the end of the prologue. So we can't just discard duplicate
17200 entries, we have to be selective about it. The heuristic we use is
17201 that we only collapse consecutive entries for the same line if at least
17202 one of those entries has a non-zero discriminator. PR 17276.
17203
17204 Note: Addresses in the line number state machine can never go backwards
17205 within one sequence, thus this coalescing is ok. */
17206
17207static int
17208dwarf_record_line_p (unsigned int line, unsigned int last_line,
17209 int line_has_non_zero_discriminator,
17210 struct subfile *last_subfile)
17211{
17212 if (current_subfile != last_subfile)
17213 return 1;
17214 if (line != last_line)
17215 return 1;
17216 /* Same line for the same file that we've seen already.
17217 As a last check, for pr 17276, only record the line if the line
17218 has never had a non-zero discriminator. */
17219 if (!line_has_non_zero_discriminator)
17220 return 1;
17221 return 0;
17222}
17223
252a6764
DE
17224/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17225 in the line table of subfile SUBFILE. */
17226
17227static void
17228dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17229 unsigned int line, CORE_ADDR address,
17230 record_line_ftype p_record_line)
17231{
17232 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17233
d5962de5 17234 (*p_record_line) (subfile, line, addr);
252a6764
DE
17235}
17236
17237/* Subroutine of dwarf_decode_lines_1 to simplify it.
17238 Mark the end of a set of line number records.
17239 The arguments are the same as for dwarf_record_line.
17240 If SUBFILE is NULL the request is ignored. */
17241
17242static void
17243dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17244 CORE_ADDR address, record_line_ftype p_record_line)
17245{
17246 if (subfile != NULL)
17247 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17248}
17249
f3f5162e
DE
17250/* Subroutine of dwarf_decode_lines to simplify it.
17251 Process the line number information in LH. */
debd256d 17252
c906108c 17253static void
f3f5162e 17254dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
783cecc8 17255 struct dwarf2_cu *cu, const int decode_for_pst_p)
c906108c 17256{
d521ce57
TT
17257 const gdb_byte *line_ptr, *extended_end;
17258 const gdb_byte *line_end;
a8c50c1f 17259 unsigned int bytes_read, extended_len;
699ca60a 17260 unsigned char op_code, extended_op;
e142c38c
DJ
17261 CORE_ADDR baseaddr;
17262 struct objfile *objfile = cu->objfile;
f3f5162e 17263 bfd *abfd = objfile->obfd;
fbf65064 17264 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17265 struct subfile *last_subfile = NULL;
c91513d8
PP
17266 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17267 = record_line;
e142c38c
DJ
17268
17269 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17270
debd256d
JB
17271 line_ptr = lh->statement_program_start;
17272 line_end = lh->statement_program_end;
c906108c
SS
17273
17274 /* Read the statement sequences until there's nothing left. */
17275 while (line_ptr < line_end)
17276 {
17277 /* state machine registers */
17278 CORE_ADDR address = 0;
17279 unsigned int file = 1;
17280 unsigned int line = 1;
debd256d 17281 int is_stmt = lh->default_is_stmt;
c906108c 17282 int end_sequence = 0;
2dc7f7b3 17283 unsigned char op_index = 0;
a05a36a5
DE
17284 unsigned int discriminator = 0;
17285 /* The last line number that was recorded, used to coalesce
17286 consecutive entries for the same line. This can happen, for
17287 example, when discriminators are present. PR 17276. */
17288 unsigned int last_line = 0;
17289 int line_has_non_zero_discriminator = 0;
c906108c 17290
aaa75496 17291 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17292 {
aaa75496 17293 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17294 /* lh->include_dirs and lh->file_names are 0-based, but the
17295 directory and file name numbers in the statement program
17296 are 1-based. */
17297 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17298 const char *dir = NULL;
a738430d 17299
debd256d
JB
17300 if (fe->dir_index)
17301 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17302
17303 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17304 }
17305
a738430d 17306 /* Decode the table. */
c5aa993b 17307 while (!end_sequence)
c906108c
SS
17308 {
17309 op_code = read_1_byte (abfd, line_ptr);
17310 line_ptr += 1;
59205f5a
JB
17311 if (line_ptr > line_end)
17312 {
17313 dwarf2_debug_line_missing_end_sequence_complaint ();
17314 break;
17315 }
9aa1fe7e 17316
debd256d 17317 if (op_code >= lh->opcode_base)
6e70227d 17318 {
8e07a239 17319 /* Special opcode. */
699ca60a 17320 unsigned char adj_opcode;
a05a36a5 17321 int line_delta;
8e07a239 17322
debd256d 17323 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17324 address += (((op_index + (adj_opcode / lh->line_range))
17325 / lh->maximum_ops_per_instruction)
17326 * lh->minimum_instruction_length);
17327 op_index = ((op_index + (adj_opcode / lh->line_range))
17328 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17329 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17330 line += line_delta;
17331 if (line_delta != 0)
17332 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17333 if (lh->num_file_names < file || file == 0)
25e43795 17334 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17335 /* For now we ignore lines not starting on an
17336 instruction boundary. */
17337 else if (op_index == 0)
25e43795
DJ
17338 {
17339 lh->file_names[file - 1].included_p = 1;
ca5f395d 17340 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17341 {
17342 if (last_subfile != current_subfile)
17343 {
252a6764
DE
17344 dwarf_finish_line (gdbarch, last_subfile,
17345 address, p_record_line);
fbf65064 17346 }
a05a36a5
DE
17347 if (dwarf_record_line_p (line, last_line,
17348 line_has_non_zero_discriminator,
17349 last_subfile))
17350 {
17351 dwarf_record_line (gdbarch, current_subfile,
17352 line, address, p_record_line);
17353 }
17354 last_subfile = current_subfile;
17355 last_line = line;
366da635 17356 }
25e43795 17357 }
a05a36a5 17358 discriminator = 0;
9aa1fe7e
GK
17359 }
17360 else switch (op_code)
c906108c
SS
17361 {
17362 case DW_LNS_extended_op:
3e43a32a
MS
17363 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17364 &bytes_read);
473b7be6 17365 line_ptr += bytes_read;
a8c50c1f 17366 extended_end = line_ptr + extended_len;
c906108c
SS
17367 extended_op = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
17369 switch (extended_op)
17370 {
17371 case DW_LNE_end_sequence:
c91513d8 17372 p_record_line = record_line;
c906108c 17373 end_sequence = 1;
c906108c
SS
17374 break;
17375 case DW_LNE_set_address:
e7c27a73 17376 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
17377
17378 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17379 {
17380 /* This line table is for a function which has been
17381 GCd by the linker. Ignore it. PR gdb/12528 */
17382
17383 long line_offset
36586728 17384 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17385
17386 complaint (&symfile_complaints,
17387 _(".debug_line address at offset 0x%lx is 0 "
17388 "[in module %s]"),
4262abfb 17389 line_offset, objfile_name (objfile));
c91513d8 17390 p_record_line = noop_record_line;
37780ee5
DE
17391 /* Note: p_record_line is left as noop_record_line
17392 until we see DW_LNE_end_sequence. */
c91513d8
PP
17393 }
17394
2dc7f7b3 17395 op_index = 0;
107d2387
AC
17396 line_ptr += bytes_read;
17397 address += baseaddr;
c906108c
SS
17398 break;
17399 case DW_LNE_define_file:
debd256d 17400 {
d521ce57 17401 const char *cur_file;
debd256d 17402 unsigned int dir_index, mod_time, length;
6e70227d 17403
3e43a32a
MS
17404 cur_file = read_direct_string (abfd, line_ptr,
17405 &bytes_read);
debd256d
JB
17406 line_ptr += bytes_read;
17407 dir_index =
17408 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17409 line_ptr += bytes_read;
17410 mod_time =
17411 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17412 line_ptr += bytes_read;
17413 length =
17414 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17415 line_ptr += bytes_read;
17416 add_file_name (lh, cur_file, dir_index, mod_time, length);
17417 }
c906108c 17418 break;
d0c6ba3d
CC
17419 case DW_LNE_set_discriminator:
17420 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17421 just ignore it. We still need to check its value though:
17422 if there are consecutive entries for the same
17423 (non-prologue) line we want to coalesce them.
17424 PR 17276. */
17425 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17426 &bytes_read);
17427 line_has_non_zero_discriminator |= discriminator != 0;
17428 line_ptr += bytes_read;
d0c6ba3d 17429 break;
c906108c 17430 default:
4d3c2250 17431 complaint (&symfile_complaints,
e2e0b3e5 17432 _("mangled .debug_line section"));
debd256d 17433 return;
c906108c 17434 }
a8c50c1f
DJ
17435 /* Make sure that we parsed the extended op correctly. If e.g.
17436 we expected a different address size than the producer used,
17437 we may have read the wrong number of bytes. */
17438 if (line_ptr != extended_end)
17439 {
17440 complaint (&symfile_complaints,
17441 _("mangled .debug_line section"));
17442 return;
17443 }
c906108c
SS
17444 break;
17445 case DW_LNS_copy:
59205f5a 17446 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17447 dwarf2_debug_line_missing_file_complaint ();
17448 else
366da635 17449 {
25e43795 17450 lh->file_names[file - 1].included_p = 1;
ca5f395d 17451 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17452 {
17453 if (last_subfile != current_subfile)
17454 {
252a6764
DE
17455 dwarf_finish_line (gdbarch, last_subfile,
17456 address, p_record_line);
fbf65064 17457 }
a05a36a5
DE
17458 if (dwarf_record_line_p (line, last_line,
17459 line_has_non_zero_discriminator,
17460 last_subfile))
17461 {
17462 dwarf_record_line (gdbarch, current_subfile,
17463 line, address, p_record_line);
17464 }
17465 last_subfile = current_subfile;
17466 last_line = line;
fbf65064 17467 }
366da635 17468 }
a05a36a5 17469 discriminator = 0;
c906108c
SS
17470 break;
17471 case DW_LNS_advance_pc:
2dc7f7b3
TT
17472 {
17473 CORE_ADDR adjust
17474 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17475
17476 address += (((op_index + adjust)
17477 / lh->maximum_ops_per_instruction)
17478 * lh->minimum_instruction_length);
17479 op_index = ((op_index + adjust)
17480 % lh->maximum_ops_per_instruction);
17481 line_ptr += bytes_read;
17482 }
c906108c
SS
17483 break;
17484 case DW_LNS_advance_line:
a05a36a5
DE
17485 {
17486 int line_delta
17487 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17488
17489 line += line_delta;
17490 if (line_delta != 0)
17491 line_has_non_zero_discriminator = discriminator != 0;
17492 line_ptr += bytes_read;
17493 }
c906108c
SS
17494 break;
17495 case DW_LNS_set_file:
debd256d 17496 {
a738430d
MK
17497 /* The arrays lh->include_dirs and lh->file_names are
17498 0-based, but the directory and file name numbers in
17499 the statement program are 1-based. */
debd256d 17500 struct file_entry *fe;
d521ce57 17501 const char *dir = NULL;
a738430d 17502
debd256d
JB
17503 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17504 line_ptr += bytes_read;
59205f5a 17505 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17506 dwarf2_debug_line_missing_file_complaint ();
17507 else
17508 {
17509 fe = &lh->file_names[file - 1];
17510 if (fe->dir_index)
17511 dir = lh->include_dirs[fe->dir_index - 1];
17512 if (!decode_for_pst_p)
17513 {
17514 last_subfile = current_subfile;
a05a36a5 17515 line_has_non_zero_discriminator = discriminator != 0;
25e43795
DJ
17516 dwarf2_start_subfile (fe->name, dir, comp_dir);
17517 }
17518 }
debd256d 17519 }
c906108c
SS
17520 break;
17521 case DW_LNS_set_column:
0ad93d4f 17522 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17523 line_ptr += bytes_read;
17524 break;
17525 case DW_LNS_negate_stmt:
17526 is_stmt = (!is_stmt);
17527 break;
17528 case DW_LNS_set_basic_block:
c906108c 17529 break;
c2c6d25f
JM
17530 /* Add to the address register of the state machine the
17531 address increment value corresponding to special opcode
a738430d
MK
17532 255. I.e., this value is scaled by the minimum
17533 instruction length since special opcode 255 would have
b021a221 17534 scaled the increment. */
c906108c 17535 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17536 {
17537 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17538
17539 address += (((op_index + adjust)
17540 / lh->maximum_ops_per_instruction)
17541 * lh->minimum_instruction_length);
17542 op_index = ((op_index + adjust)
17543 % lh->maximum_ops_per_instruction);
17544 }
c906108c
SS
17545 break;
17546 case DW_LNS_fixed_advance_pc:
17547 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17548 op_index = 0;
c906108c
SS
17549 line_ptr += 2;
17550 break;
9aa1fe7e 17551 default:
a738430d
MK
17552 {
17553 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17554 int i;
a738430d 17555
debd256d 17556 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17557 {
17558 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17559 line_ptr += bytes_read;
17560 }
17561 }
c906108c
SS
17562 }
17563 }
59205f5a
JB
17564 if (lh->num_file_names < file || file == 0)
17565 dwarf2_debug_line_missing_file_complaint ();
17566 else
17567 {
17568 lh->file_names[file - 1].included_p = 1;
17569 if (!decode_for_pst_p)
fbf65064 17570 {
252a6764
DE
17571 dwarf_finish_line (gdbarch, current_subfile, address,
17572 p_record_line);
fbf65064 17573 }
59205f5a 17574 }
c906108c 17575 }
f3f5162e
DE
17576}
17577
17578/* Decode the Line Number Program (LNP) for the given line_header
17579 structure and CU. The actual information extracted and the type
17580 of structures created from the LNP depends on the value of PST.
17581
17582 1. If PST is NULL, then this procedure uses the data from the program
17583 to create all necessary symbol tables, and their linetables.
17584
17585 2. If PST is not NULL, this procedure reads the program to determine
17586 the list of files included by the unit represented by PST, and
17587 builds all the associated partial symbol tables.
17588
17589 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17590 It is used for relative paths in the line table.
17591 NOTE: When processing partial symtabs (pst != NULL),
17592 comp_dir == pst->dirname.
17593
17594 NOTE: It is important that psymtabs have the same file name (via strcmp)
17595 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17596 symtab we don't use it in the name of the psymtabs we create.
17597 E.g. expand_line_sal requires this when finding psymtabs to expand.
17598 A good testcase for this is mb-inline.exp. */
17599
17600static void
17601dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
a1b34d15 17602 struct dwarf2_cu *cu, struct partial_symtab *pst)
f3f5162e
DE
17603{
17604 struct objfile *objfile = cu->objfile;
17605 const int decode_for_pst_p = (pst != NULL);
17606 struct subfile *first_subfile = current_subfile;
17607
a1b34d15 17608 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p);
aaa75496
JB
17609
17610 if (decode_for_pst_p)
17611 {
17612 int file_index;
17613
17614 /* Now that we're done scanning the Line Header Program, we can
17615 create the psymtab of each included file. */
17616 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17617 if (lh->file_names[file_index].included_p == 1)
17618 {
d521ce57 17619 const char *include_name =
c6da4cef
DE
17620 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17621 if (include_name != NULL)
aaa75496
JB
17622 dwarf2_create_include_psymtab (include_name, pst, objfile);
17623 }
17624 }
cb1df416
DJ
17625 else
17626 {
17627 /* Make sure a symtab is created for every file, even files
17628 which contain only variables (i.e. no code with associated
17629 line numbers). */
cb1df416 17630 int i;
cb1df416
DJ
17631
17632 for (i = 0; i < lh->num_file_names; i++)
17633 {
d521ce57 17634 const char *dir = NULL;
f3f5162e 17635 struct file_entry *fe;
9a619af0 17636
cb1df416
DJ
17637 fe = &lh->file_names[i];
17638 if (fe->dir_index)
17639 dir = lh->include_dirs[fe->dir_index - 1];
17640 dwarf2_start_subfile (fe->name, dir, comp_dir);
17641
17642 /* Skip the main file; we don't need it, and it must be
17643 allocated last, so that it will show up before the
17644 non-primary symtabs in the objfile's symtab list. */
17645 if (current_subfile == first_subfile)
17646 continue;
17647
17648 if (current_subfile->symtab == NULL)
17649 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17650 objfile);
cb1df416
DJ
17651 fe->symtab = current_subfile->symtab;
17652 }
17653 }
c906108c
SS
17654}
17655
17656/* Start a subfile for DWARF. FILENAME is the name of the file and
17657 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17658 or NULL if not known. COMP_DIR is the compilation directory for the
17659 linetable's compilation unit or NULL if not known.
c906108c
SS
17660 This routine tries to keep line numbers from identical absolute and
17661 relative file names in a common subfile.
17662
17663 Using the `list' example from the GDB testsuite, which resides in
17664 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17665 of /srcdir/list0.c yields the following debugging information for list0.c:
17666
c5aa993b
JM
17667 DW_AT_name: /srcdir/list0.c
17668 DW_AT_comp_dir: /compdir
357e46e7 17669 files.files[0].name: list0.h
c5aa993b 17670 files.files[0].dir: /srcdir
357e46e7 17671 files.files[1].name: list0.c
c5aa993b 17672 files.files[1].dir: /srcdir
c906108c
SS
17673
17674 The line number information for list0.c has to end up in a single
4f1520fb
FR
17675 subfile, so that `break /srcdir/list0.c:1' works as expected.
17676 start_subfile will ensure that this happens provided that we pass the
17677 concatenation of files.files[1].dir and files.files[1].name as the
17678 subfile's name. */
c906108c
SS
17679
17680static void
d521ce57 17681dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17682 const char *comp_dir)
c906108c 17683{
d521ce57 17684 char *copy = NULL;
4f1520fb
FR
17685
17686 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17687 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17688 second argument to start_subfile. To be consistent, we do the
17689 same here. In order not to lose the line information directory,
17690 we concatenate it to the filename when it makes sense.
17691 Note that the Dwarf3 standard says (speaking of filenames in line
17692 information): ``The directory index is ignored for file names
17693 that represent full path names''. Thus ignoring dirname in the
17694 `else' branch below isn't an issue. */
c906108c 17695
d5166ae1 17696 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17697 {
17698 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17699 filename = copy;
17700 }
c906108c 17701
d521ce57 17702 start_subfile (filename, comp_dir);
4f1520fb 17703
d521ce57
TT
17704 if (copy != NULL)
17705 xfree (copy);
c906108c
SS
17706}
17707
f4dc4d17
DE
17708/* Start a symtab for DWARF.
17709 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17710
17711static void
17712dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17713 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17714{
17715 start_symtab (name, comp_dir, low_pc);
17716 record_debugformat ("DWARF 2");
17717 record_producer (cu->producer);
17718
17719 /* We assume that we're processing GCC output. */
17720 processing_gcc_compilation = 2;
17721
4d4ec4e5 17722 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17723}
17724
4c2df51b
DJ
17725static void
17726var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17727 struct dwarf2_cu *cu)
4c2df51b 17728{
e7c27a73
DJ
17729 struct objfile *objfile = cu->objfile;
17730 struct comp_unit_head *cu_header = &cu->header;
17731
4c2df51b
DJ
17732 /* NOTE drow/2003-01-30: There used to be a comment and some special
17733 code here to turn a symbol with DW_AT_external and a
17734 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17735 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17736 with some versions of binutils) where shared libraries could have
17737 relocations against symbols in their debug information - the
17738 minimal symbol would have the right address, but the debug info
17739 would not. It's no longer necessary, because we will explicitly
17740 apply relocations when we read in the debug information now. */
17741
17742 /* A DW_AT_location attribute with no contents indicates that a
17743 variable has been optimized away. */
17744 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17745 {
f1e6e072 17746 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17747 return;
17748 }
17749
17750 /* Handle one degenerate form of location expression specially, to
17751 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17752 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17753 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17754
17755 if (attr_form_is_block (attr)
3019eac3
DE
17756 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17757 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17758 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17759 && (DW_BLOCK (attr)->size
17760 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17761 {
891d2f0b 17762 unsigned int dummy;
4c2df51b 17763
3019eac3
DE
17764 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17765 SYMBOL_VALUE_ADDRESS (sym) =
17766 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17767 else
17768 SYMBOL_VALUE_ADDRESS (sym) =
17769 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17770 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17771 fixup_symbol_section (sym, objfile);
17772 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17773 SYMBOL_SECTION (sym));
4c2df51b
DJ
17774 return;
17775 }
17776
17777 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17778 expression evaluator, and use LOC_COMPUTED only when necessary
17779 (i.e. when the value of a register or memory location is
17780 referenced, or a thread-local block, etc.). Then again, it might
17781 not be worthwhile. I'm assuming that it isn't unless performance
17782 or memory numbers show me otherwise. */
17783
f1e6e072 17784 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17785
f1e6e072 17786 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17787 cu->has_loclist = 1;
4c2df51b
DJ
17788}
17789
c906108c
SS
17790/* Given a pointer to a DWARF information entry, figure out if we need
17791 to make a symbol table entry for it, and if so, create a new entry
17792 and return a pointer to it.
17793 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17794 used the passed type.
17795 If SPACE is not NULL, use it to hold the new symbol. If it is
17796 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17797
17798static struct symbol *
34eaf542
TT
17799new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17800 struct symbol *space)
c906108c 17801{
e7c27a73 17802 struct objfile *objfile = cu->objfile;
c906108c 17803 struct symbol *sym = NULL;
15d034d0 17804 const char *name;
c906108c
SS
17805 struct attribute *attr = NULL;
17806 struct attribute *attr2 = NULL;
e142c38c 17807 CORE_ADDR baseaddr;
e37fd15a
SW
17808 struct pending **list_to_add = NULL;
17809
edb3359d 17810 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17811
17812 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17813
94af9270 17814 name = dwarf2_name (die, cu);
c906108c
SS
17815 if (name)
17816 {
94af9270 17817 const char *linkagename;
34eaf542 17818 int suppress_add = 0;
94af9270 17819
34eaf542
TT
17820 if (space)
17821 sym = space;
17822 else
e623cf5d 17823 sym = allocate_symbol (objfile);
c906108c 17824 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17825
17826 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17827 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17828 linkagename = dwarf2_physname (name, die, cu);
17829 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17830
f55ee35c
JK
17831 /* Fortran does not have mangling standard and the mangling does differ
17832 between gfortran, iFort etc. */
17833 if (cu->language == language_fortran
b250c185 17834 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17835 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17836 dwarf2_full_name (name, die, cu),
29df156d 17837 NULL);
f55ee35c 17838
c906108c 17839 /* Default assumptions.
c5aa993b 17840 Use the passed type or decode it from the die. */
176620f1 17841 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17842 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17843 if (type != NULL)
17844 SYMBOL_TYPE (sym) = type;
17845 else
e7c27a73 17846 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17847 attr = dwarf2_attr (die,
17848 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17849 cu);
c906108c
SS
17850 if (attr)
17851 {
17852 SYMBOL_LINE (sym) = DW_UNSND (attr);
17853 }
cb1df416 17854
edb3359d
DJ
17855 attr = dwarf2_attr (die,
17856 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17857 cu);
cb1df416
DJ
17858 if (attr)
17859 {
17860 int file_index = DW_UNSND (attr);
9a619af0 17861
cb1df416
DJ
17862 if (cu->line_header == NULL
17863 || file_index > cu->line_header->num_file_names)
17864 complaint (&symfile_complaints,
17865 _("file index out of range"));
1c3d648d 17866 else if (file_index > 0)
cb1df416
DJ
17867 {
17868 struct file_entry *fe;
9a619af0 17869
cb1df416
DJ
17870 fe = &cu->line_header->file_names[file_index - 1];
17871 SYMBOL_SYMTAB (sym) = fe->symtab;
17872 }
17873 }
17874
c906108c
SS
17875 switch (die->tag)
17876 {
17877 case DW_TAG_label:
e142c38c 17878 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17879 if (attr)
31aa7e4e
JB
17880 SYMBOL_VALUE_ADDRESS (sym)
17881 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17882 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17883 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17884 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17885 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17886 break;
17887 case DW_TAG_subprogram:
17888 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17889 finish_block. */
f1e6e072 17890 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17891 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17892 if ((attr2 && (DW_UNSND (attr2) != 0))
17893 || cu->language == language_ada)
c906108c 17894 {
2cfa0c8d
JB
17895 /* Subprograms marked external are stored as a global symbol.
17896 Ada subprograms, whether marked external or not, are always
17897 stored as a global symbol, because we want to be able to
17898 access them globally. For instance, we want to be able
17899 to break on a nested subprogram without having to
17900 specify the context. */
e37fd15a 17901 list_to_add = &global_symbols;
c906108c
SS
17902 }
17903 else
17904 {
e37fd15a 17905 list_to_add = cu->list_in_scope;
c906108c
SS
17906 }
17907 break;
edb3359d
DJ
17908 case DW_TAG_inlined_subroutine:
17909 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17910 finish_block. */
f1e6e072 17911 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17912 SYMBOL_INLINED (sym) = 1;
481860b3 17913 list_to_add = cu->list_in_scope;
edb3359d 17914 break;
34eaf542
TT
17915 case DW_TAG_template_value_param:
17916 suppress_add = 1;
17917 /* Fall through. */
72929c62 17918 case DW_TAG_constant:
c906108c 17919 case DW_TAG_variable:
254e6b9e 17920 case DW_TAG_member:
0963b4bd
MS
17921 /* Compilation with minimal debug info may result in
17922 variables with missing type entries. Change the
17923 misleading `void' type to something sensible. */
c906108c 17924 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17925 SYMBOL_TYPE (sym)
46bf5051 17926 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17927
e142c38c 17928 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17929 /* In the case of DW_TAG_member, we should only be called for
17930 static const members. */
17931 if (die->tag == DW_TAG_member)
17932 {
3863f96c
DE
17933 /* dwarf2_add_field uses die_is_declaration,
17934 so we do the same. */
254e6b9e
DE
17935 gdb_assert (die_is_declaration (die, cu));
17936 gdb_assert (attr);
17937 }
c906108c
SS
17938 if (attr)
17939 {
e7c27a73 17940 dwarf2_const_value (attr, sym, cu);
e142c38c 17941 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17942 if (!suppress_add)
34eaf542
TT
17943 {
17944 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17945 list_to_add = &global_symbols;
34eaf542 17946 else
e37fd15a 17947 list_to_add = cu->list_in_scope;
34eaf542 17948 }
c906108c
SS
17949 break;
17950 }
e142c38c 17951 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17952 if (attr)
17953 {
e7c27a73 17954 var_decode_location (attr, sym, cu);
e142c38c 17955 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17956
17957 /* Fortran explicitly imports any global symbols to the local
17958 scope by DW_TAG_common_block. */
17959 if (cu->language == language_fortran && die->parent
17960 && die->parent->tag == DW_TAG_common_block)
17961 attr2 = NULL;
17962
caac4577
JG
17963 if (SYMBOL_CLASS (sym) == LOC_STATIC
17964 && SYMBOL_VALUE_ADDRESS (sym) == 0
17965 && !dwarf2_per_objfile->has_section_at_zero)
17966 {
17967 /* When a static variable is eliminated by the linker,
17968 the corresponding debug information is not stripped
17969 out, but the variable address is set to null;
17970 do not add such variables into symbol table. */
17971 }
17972 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17973 {
f55ee35c
JK
17974 /* Workaround gfortran PR debug/40040 - it uses
17975 DW_AT_location for variables in -fPIC libraries which may
17976 get overriden by other libraries/executable and get
17977 a different address. Resolve it by the minimal symbol
17978 which may come from inferior's executable using copy
17979 relocation. Make this workaround only for gfortran as for
17980 other compilers GDB cannot guess the minimal symbol
17981 Fortran mangling kind. */
17982 if (cu->language == language_fortran && die->parent
17983 && die->parent->tag == DW_TAG_module
17984 && cu->producer
17985 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17986 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17987
1c809c68
TT
17988 /* A variable with DW_AT_external is never static,
17989 but it may be block-scoped. */
17990 list_to_add = (cu->list_in_scope == &file_symbols
17991 ? &global_symbols : cu->list_in_scope);
1c809c68 17992 }
c906108c 17993 else
e37fd15a 17994 list_to_add = cu->list_in_scope;
c906108c
SS
17995 }
17996 else
17997 {
17998 /* We do not know the address of this symbol.
c5aa993b
JM
17999 If it is an external symbol and we have type information
18000 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18001 The address of the variable will then be determined from
18002 the minimal symbol table whenever the variable is
18003 referenced. */
e142c38c 18004 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18005
18006 /* Fortran explicitly imports any global symbols to the local
18007 scope by DW_TAG_common_block. */
18008 if (cu->language == language_fortran && die->parent
18009 && die->parent->tag == DW_TAG_common_block)
18010 {
18011 /* SYMBOL_CLASS doesn't matter here because
18012 read_common_block is going to reset it. */
18013 if (!suppress_add)
18014 list_to_add = cu->list_in_scope;
18015 }
18016 else if (attr2 && (DW_UNSND (attr2) != 0)
18017 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18018 {
0fe7935b
DJ
18019 /* A variable with DW_AT_external is never static, but it
18020 may be block-scoped. */
18021 list_to_add = (cu->list_in_scope == &file_symbols
18022 ? &global_symbols : cu->list_in_scope);
18023
f1e6e072 18024 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18025 }
442ddf59
JK
18026 else if (!die_is_declaration (die, cu))
18027 {
18028 /* Use the default LOC_OPTIMIZED_OUT class. */
18029 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18030 if (!suppress_add)
18031 list_to_add = cu->list_in_scope;
442ddf59 18032 }
c906108c
SS
18033 }
18034 break;
18035 case DW_TAG_formal_parameter:
edb3359d
DJ
18036 /* If we are inside a function, mark this as an argument. If
18037 not, we might be looking at an argument to an inlined function
18038 when we do not have enough information to show inlined frames;
18039 pretend it's a local variable in that case so that the user can
18040 still see it. */
18041 if (context_stack_depth > 0
18042 && context_stack[context_stack_depth - 1].name != NULL)
18043 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18044 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18045 if (attr)
18046 {
e7c27a73 18047 var_decode_location (attr, sym, cu);
c906108c 18048 }
e142c38c 18049 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18050 if (attr)
18051 {
e7c27a73 18052 dwarf2_const_value (attr, sym, cu);
c906108c 18053 }
f346a30d 18054
e37fd15a 18055 list_to_add = cu->list_in_scope;
c906108c
SS
18056 break;
18057 case DW_TAG_unspecified_parameters:
18058 /* From varargs functions; gdb doesn't seem to have any
18059 interest in this information, so just ignore it for now.
18060 (FIXME?) */
18061 break;
34eaf542
TT
18062 case DW_TAG_template_type_param:
18063 suppress_add = 1;
18064 /* Fall through. */
c906108c 18065 case DW_TAG_class_type:
680b30c7 18066 case DW_TAG_interface_type:
c906108c
SS
18067 case DW_TAG_structure_type:
18068 case DW_TAG_union_type:
72019c9c 18069 case DW_TAG_set_type:
c906108c 18070 case DW_TAG_enumeration_type:
f1e6e072 18071 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18072 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18073
63d06c5c 18074 {
987504bb 18075 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18076 really ever be static objects: otherwise, if you try
18077 to, say, break of a class's method and you're in a file
18078 which doesn't mention that class, it won't work unless
18079 the check for all static symbols in lookup_symbol_aux
18080 saves you. See the OtherFileClass tests in
18081 gdb.c++/namespace.exp. */
18082
e37fd15a 18083 if (!suppress_add)
34eaf542 18084 {
34eaf542
TT
18085 list_to_add = (cu->list_in_scope == &file_symbols
18086 && (cu->language == language_cplus
18087 || cu->language == language_java)
18088 ? &global_symbols : cu->list_in_scope);
63d06c5c 18089
64382290
TT
18090 /* The semantics of C++ state that "struct foo {
18091 ... }" also defines a typedef for "foo". A Java
18092 class declaration also defines a typedef for the
18093 class. */
18094 if (cu->language == language_cplus
18095 || cu->language == language_java
18096 || cu->language == language_ada)
18097 {
18098 /* The symbol's name is already allocated along
18099 with this objfile, so we don't need to
18100 duplicate it for the type. */
18101 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18102 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18103 }
63d06c5c
DC
18104 }
18105 }
c906108c
SS
18106 break;
18107 case DW_TAG_typedef:
f1e6e072 18108 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18110 list_to_add = cu->list_in_scope;
63d06c5c 18111 break;
c906108c 18112 case DW_TAG_base_type:
a02abb62 18113 case DW_TAG_subrange_type:
f1e6e072 18114 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18115 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18116 list_to_add = cu->list_in_scope;
c906108c
SS
18117 break;
18118 case DW_TAG_enumerator:
e142c38c 18119 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18120 if (attr)
18121 {
e7c27a73 18122 dwarf2_const_value (attr, sym, cu);
c906108c 18123 }
63d06c5c
DC
18124 {
18125 /* NOTE: carlton/2003-11-10: See comment above in the
18126 DW_TAG_class_type, etc. block. */
18127
e142c38c 18128 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18129 && (cu->language == language_cplus
18130 || cu->language == language_java)
e142c38c 18131 ? &global_symbols : cu->list_in_scope);
63d06c5c 18132 }
c906108c 18133 break;
74921315 18134 case DW_TAG_imported_declaration:
5c4e30ca 18135 case DW_TAG_namespace:
f1e6e072 18136 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18137 list_to_add = &global_symbols;
5c4e30ca 18138 break;
530e8392
KB
18139 case DW_TAG_module:
18140 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18141 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18142 list_to_add = &global_symbols;
18143 break;
4357ac6c 18144 case DW_TAG_common_block:
f1e6e072 18145 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18146 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18147 add_symbol_to_list (sym, cu->list_in_scope);
18148 break;
c906108c
SS
18149 default:
18150 /* Not a tag we recognize. Hopefully we aren't processing
18151 trash data, but since we must specifically ignore things
18152 we don't recognize, there is nothing else we should do at
0963b4bd 18153 this point. */
e2e0b3e5 18154 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18155 dwarf_tag_name (die->tag));
c906108c
SS
18156 break;
18157 }
df8a16a1 18158
e37fd15a
SW
18159 if (suppress_add)
18160 {
18161 sym->hash_next = objfile->template_symbols;
18162 objfile->template_symbols = sym;
18163 list_to_add = NULL;
18164 }
18165
18166 if (list_to_add != NULL)
18167 add_symbol_to_list (sym, list_to_add);
18168
df8a16a1
DJ
18169 /* For the benefit of old versions of GCC, check for anonymous
18170 namespaces based on the demangled name. */
4d4ec4e5 18171 if (!cu->processing_has_namespace_info
94af9270 18172 && cu->language == language_cplus)
a10964d1 18173 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18174 }
18175 return (sym);
18176}
18177
34eaf542
TT
18178/* A wrapper for new_symbol_full that always allocates a new symbol. */
18179
18180static struct symbol *
18181new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18182{
18183 return new_symbol_full (die, type, cu, NULL);
18184}
18185
98bfdba5
PA
18186/* Given an attr with a DW_FORM_dataN value in host byte order,
18187 zero-extend it as appropriate for the symbol's type. The DWARF
18188 standard (v4) is not entirely clear about the meaning of using
18189 DW_FORM_dataN for a constant with a signed type, where the type is
18190 wider than the data. The conclusion of a discussion on the DWARF
18191 list was that this is unspecified. We choose to always zero-extend
18192 because that is the interpretation long in use by GCC. */
c906108c 18193
98bfdba5 18194static gdb_byte *
ff39bb5e 18195dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18196 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18197{
e7c27a73 18198 struct objfile *objfile = cu->objfile;
e17a4113
UW
18199 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18200 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18201 LONGEST l = DW_UNSND (attr);
18202
18203 if (bits < sizeof (*value) * 8)
18204 {
18205 l &= ((LONGEST) 1 << bits) - 1;
18206 *value = l;
18207 }
18208 else if (bits == sizeof (*value) * 8)
18209 *value = l;
18210 else
18211 {
18212 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18213 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18214 return bytes;
18215 }
18216
18217 return NULL;
18218}
18219
18220/* Read a constant value from an attribute. Either set *VALUE, or if
18221 the value does not fit in *VALUE, set *BYTES - either already
18222 allocated on the objfile obstack, or newly allocated on OBSTACK,
18223 or, set *BATON, if we translated the constant to a location
18224 expression. */
18225
18226static void
ff39bb5e 18227dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18228 const char *name, struct obstack *obstack,
18229 struct dwarf2_cu *cu,
d521ce57 18230 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18231 struct dwarf2_locexpr_baton **baton)
18232{
18233 struct objfile *objfile = cu->objfile;
18234 struct comp_unit_head *cu_header = &cu->header;
c906108c 18235 struct dwarf_block *blk;
98bfdba5
PA
18236 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18237 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18238
18239 *value = 0;
18240 *bytes = NULL;
18241 *baton = NULL;
c906108c
SS
18242
18243 switch (attr->form)
18244 {
18245 case DW_FORM_addr:
3019eac3 18246 case DW_FORM_GNU_addr_index:
ac56253d 18247 {
ac56253d
TT
18248 gdb_byte *data;
18249
98bfdba5
PA
18250 if (TYPE_LENGTH (type) != cu_header->addr_size)
18251 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18252 cu_header->addr_size,
98bfdba5 18253 TYPE_LENGTH (type));
ac56253d
TT
18254 /* Symbols of this form are reasonably rare, so we just
18255 piggyback on the existing location code rather than writing
18256 a new implementation of symbol_computed_ops. */
7919a973 18257 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18258 (*baton)->per_cu = cu->per_cu;
18259 gdb_assert ((*baton)->per_cu);
ac56253d 18260
98bfdba5 18261 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18262 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18263 (*baton)->data = data;
ac56253d
TT
18264
18265 data[0] = DW_OP_addr;
18266 store_unsigned_integer (&data[1], cu_header->addr_size,
18267 byte_order, DW_ADDR (attr));
18268 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18269 }
c906108c 18270 break;
4ac36638 18271 case DW_FORM_string:
93b5768b 18272 case DW_FORM_strp:
3019eac3 18273 case DW_FORM_GNU_str_index:
36586728 18274 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18275 /* DW_STRING is already allocated on the objfile obstack, point
18276 directly to it. */
d521ce57 18277 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18278 break;
c906108c
SS
18279 case DW_FORM_block1:
18280 case DW_FORM_block2:
18281 case DW_FORM_block4:
18282 case DW_FORM_block:
2dc7f7b3 18283 case DW_FORM_exprloc:
c906108c 18284 blk = DW_BLOCK (attr);
98bfdba5
PA
18285 if (TYPE_LENGTH (type) != blk->size)
18286 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18287 TYPE_LENGTH (type));
18288 *bytes = blk->data;
c906108c 18289 break;
2df3850c
JM
18290
18291 /* The DW_AT_const_value attributes are supposed to carry the
18292 symbol's value "represented as it would be on the target
18293 architecture." By the time we get here, it's already been
18294 converted to host endianness, so we just need to sign- or
18295 zero-extend it as appropriate. */
18296 case DW_FORM_data1:
3aef2284 18297 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18298 break;
c906108c 18299 case DW_FORM_data2:
3aef2284 18300 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18301 break;
c906108c 18302 case DW_FORM_data4:
3aef2284 18303 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18304 break;
c906108c 18305 case DW_FORM_data8:
3aef2284 18306 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18307 break;
18308
c906108c 18309 case DW_FORM_sdata:
98bfdba5 18310 *value = DW_SND (attr);
2df3850c
JM
18311 break;
18312
c906108c 18313 case DW_FORM_udata:
98bfdba5 18314 *value = DW_UNSND (attr);
c906108c 18315 break;
2df3850c 18316
c906108c 18317 default:
4d3c2250 18318 complaint (&symfile_complaints,
e2e0b3e5 18319 _("unsupported const value attribute form: '%s'"),
4d3c2250 18320 dwarf_form_name (attr->form));
98bfdba5 18321 *value = 0;
c906108c
SS
18322 break;
18323 }
18324}
18325
2df3850c 18326
98bfdba5
PA
18327/* Copy constant value from an attribute to a symbol. */
18328
2df3850c 18329static void
ff39bb5e 18330dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18331 struct dwarf2_cu *cu)
2df3850c 18332{
98bfdba5
PA
18333 struct objfile *objfile = cu->objfile;
18334 struct comp_unit_head *cu_header = &cu->header;
12df843f 18335 LONGEST value;
d521ce57 18336 const gdb_byte *bytes;
98bfdba5 18337 struct dwarf2_locexpr_baton *baton;
2df3850c 18338
98bfdba5
PA
18339 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18340 SYMBOL_PRINT_NAME (sym),
18341 &objfile->objfile_obstack, cu,
18342 &value, &bytes, &baton);
2df3850c 18343
98bfdba5
PA
18344 if (baton != NULL)
18345 {
98bfdba5 18346 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18347 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18348 }
18349 else if (bytes != NULL)
18350 {
18351 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18352 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18353 }
18354 else
18355 {
18356 SYMBOL_VALUE (sym) = value;
f1e6e072 18357 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18358 }
2df3850c
JM
18359}
18360
c906108c
SS
18361/* Return the type of the die in question using its DW_AT_type attribute. */
18362
18363static struct type *
e7c27a73 18364die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18365{
c906108c 18366 struct attribute *type_attr;
c906108c 18367
e142c38c 18368 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18369 if (!type_attr)
18370 {
18371 /* A missing DW_AT_type represents a void type. */
46bf5051 18372 return objfile_type (cu->objfile)->builtin_void;
c906108c 18373 }
348e048f 18374
673bfd45 18375 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18376}
18377
b4ba55a1
JB
18378/* True iff CU's producer generates GNAT Ada auxiliary information
18379 that allows to find parallel types through that information instead
18380 of having to do expensive parallel lookups by type name. */
18381
18382static int
18383need_gnat_info (struct dwarf2_cu *cu)
18384{
18385 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18386 of GNAT produces this auxiliary information, without any indication
18387 that it is produced. Part of enhancing the FSF version of GNAT
18388 to produce that information will be to put in place an indicator
18389 that we can use in order to determine whether the descriptive type
18390 info is available or not. One suggestion that has been made is
18391 to use a new attribute, attached to the CU die. For now, assume
18392 that the descriptive type info is not available. */
18393 return 0;
18394}
18395
b4ba55a1
JB
18396/* Return the auxiliary type of the die in question using its
18397 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18398 attribute is not present. */
18399
18400static struct type *
18401die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18402{
b4ba55a1 18403 struct attribute *type_attr;
b4ba55a1
JB
18404
18405 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18406 if (!type_attr)
18407 return NULL;
18408
673bfd45 18409 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18410}
18411
18412/* If DIE has a descriptive_type attribute, then set the TYPE's
18413 descriptive type accordingly. */
18414
18415static void
18416set_descriptive_type (struct type *type, struct die_info *die,
18417 struct dwarf2_cu *cu)
18418{
18419 struct type *descriptive_type = die_descriptive_type (die, cu);
18420
18421 if (descriptive_type)
18422 {
18423 ALLOCATE_GNAT_AUX_TYPE (type);
18424 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18425 }
18426}
18427
c906108c
SS
18428/* Return the containing type of the die in question using its
18429 DW_AT_containing_type attribute. */
18430
18431static struct type *
e7c27a73 18432die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18433{
c906108c 18434 struct attribute *type_attr;
c906108c 18435
e142c38c 18436 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18437 if (!type_attr)
18438 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18439 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18440
673bfd45 18441 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18442}
18443
ac9ec31b
DE
18444/* Return an error marker type to use for the ill formed type in DIE/CU. */
18445
18446static struct type *
18447build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18448{
18449 struct objfile *objfile = dwarf2_per_objfile->objfile;
18450 char *message, *saved;
18451
18452 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18453 objfile_name (objfile),
ac9ec31b
DE
18454 cu->header.offset.sect_off,
18455 die->offset.sect_off);
18456 saved = obstack_copy0 (&objfile->objfile_obstack,
18457 message, strlen (message));
18458 xfree (message);
18459
18460 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18461}
18462
673bfd45 18463/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18464 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18465 DW_AT_containing_type.
673bfd45
DE
18466 If there is no type substitute an error marker. */
18467
c906108c 18468static struct type *
ff39bb5e 18469lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18470 struct dwarf2_cu *cu)
c906108c 18471{
bb5ed363 18472 struct objfile *objfile = cu->objfile;
f792889a
DJ
18473 struct type *this_type;
18474
ac9ec31b
DE
18475 gdb_assert (attr->name == DW_AT_type
18476 || attr->name == DW_AT_GNAT_descriptive_type
18477 || attr->name == DW_AT_containing_type);
18478
673bfd45
DE
18479 /* First see if we have it cached. */
18480
36586728
TT
18481 if (attr->form == DW_FORM_GNU_ref_alt)
18482 {
18483 struct dwarf2_per_cu_data *per_cu;
18484 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18485
18486 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18487 this_type = get_die_type_at_offset (offset, per_cu);
18488 }
7771576e 18489 else if (attr_form_is_ref (attr))
673bfd45 18490 {
b64f50a1 18491 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18492
18493 this_type = get_die_type_at_offset (offset, cu->per_cu);
18494 }
55f1336d 18495 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18496 {
ac9ec31b 18497 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18498
ac9ec31b 18499 return get_signatured_type (die, signature, cu);
673bfd45
DE
18500 }
18501 else
18502 {
ac9ec31b
DE
18503 complaint (&symfile_complaints,
18504 _("Dwarf Error: Bad type attribute %s in DIE"
18505 " at 0x%x [in module %s]"),
18506 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18507 objfile_name (objfile));
ac9ec31b 18508 return build_error_marker_type (cu, die);
673bfd45
DE
18509 }
18510
18511 /* If not cached we need to read it in. */
18512
18513 if (this_type == NULL)
18514 {
ac9ec31b 18515 struct die_info *type_die = NULL;
673bfd45
DE
18516 struct dwarf2_cu *type_cu = cu;
18517
7771576e 18518 if (attr_form_is_ref (attr))
ac9ec31b
DE
18519 type_die = follow_die_ref (die, attr, &type_cu);
18520 if (type_die == NULL)
18521 return build_error_marker_type (cu, die);
18522 /* If we find the type now, it's probably because the type came
3019eac3
DE
18523 from an inter-CU reference and the type's CU got expanded before
18524 ours. */
ac9ec31b 18525 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18526 }
18527
18528 /* If we still don't have a type use an error marker. */
18529
18530 if (this_type == NULL)
ac9ec31b 18531 return build_error_marker_type (cu, die);
673bfd45 18532
f792889a 18533 return this_type;
c906108c
SS
18534}
18535
673bfd45
DE
18536/* Return the type in DIE, CU.
18537 Returns NULL for invalid types.
18538
02142a6c 18539 This first does a lookup in die_type_hash,
673bfd45
DE
18540 and only reads the die in if necessary.
18541
18542 NOTE: This can be called when reading in partial or full symbols. */
18543
f792889a 18544static struct type *
e7c27a73 18545read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18546{
f792889a
DJ
18547 struct type *this_type;
18548
18549 this_type = get_die_type (die, cu);
18550 if (this_type)
18551 return this_type;
18552
673bfd45
DE
18553 return read_type_die_1 (die, cu);
18554}
18555
18556/* Read the type in DIE, CU.
18557 Returns NULL for invalid types. */
18558
18559static struct type *
18560read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18561{
18562 struct type *this_type = NULL;
18563
c906108c
SS
18564 switch (die->tag)
18565 {
18566 case DW_TAG_class_type:
680b30c7 18567 case DW_TAG_interface_type:
c906108c
SS
18568 case DW_TAG_structure_type:
18569 case DW_TAG_union_type:
f792889a 18570 this_type = read_structure_type (die, cu);
c906108c
SS
18571 break;
18572 case DW_TAG_enumeration_type:
f792889a 18573 this_type = read_enumeration_type (die, cu);
c906108c
SS
18574 break;
18575 case DW_TAG_subprogram:
18576 case DW_TAG_subroutine_type:
edb3359d 18577 case DW_TAG_inlined_subroutine:
f792889a 18578 this_type = read_subroutine_type (die, cu);
c906108c
SS
18579 break;
18580 case DW_TAG_array_type:
f792889a 18581 this_type = read_array_type (die, cu);
c906108c 18582 break;
72019c9c 18583 case DW_TAG_set_type:
f792889a 18584 this_type = read_set_type (die, cu);
72019c9c 18585 break;
c906108c 18586 case DW_TAG_pointer_type:
f792889a 18587 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18588 break;
18589 case DW_TAG_ptr_to_member_type:
f792889a 18590 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18591 break;
18592 case DW_TAG_reference_type:
f792889a 18593 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18594 break;
18595 case DW_TAG_const_type:
f792889a 18596 this_type = read_tag_const_type (die, cu);
c906108c
SS
18597 break;
18598 case DW_TAG_volatile_type:
f792889a 18599 this_type = read_tag_volatile_type (die, cu);
c906108c 18600 break;
06d66ee9
TT
18601 case DW_TAG_restrict_type:
18602 this_type = read_tag_restrict_type (die, cu);
18603 break;
c906108c 18604 case DW_TAG_string_type:
f792889a 18605 this_type = read_tag_string_type (die, cu);
c906108c
SS
18606 break;
18607 case DW_TAG_typedef:
f792889a 18608 this_type = read_typedef (die, cu);
c906108c 18609 break;
a02abb62 18610 case DW_TAG_subrange_type:
f792889a 18611 this_type = read_subrange_type (die, cu);
a02abb62 18612 break;
c906108c 18613 case DW_TAG_base_type:
f792889a 18614 this_type = read_base_type (die, cu);
c906108c 18615 break;
81a17f79 18616 case DW_TAG_unspecified_type:
f792889a 18617 this_type = read_unspecified_type (die, cu);
81a17f79 18618 break;
0114d602
DJ
18619 case DW_TAG_namespace:
18620 this_type = read_namespace_type (die, cu);
18621 break;
f55ee35c
JK
18622 case DW_TAG_module:
18623 this_type = read_module_type (die, cu);
18624 break;
c906108c 18625 default:
3e43a32a
MS
18626 complaint (&symfile_complaints,
18627 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18628 dwarf_tag_name (die->tag));
c906108c
SS
18629 break;
18630 }
63d06c5c 18631
f792889a 18632 return this_type;
63d06c5c
DC
18633}
18634
abc72ce4
DE
18635/* See if we can figure out if the class lives in a namespace. We do
18636 this by looking for a member function; its demangled name will
18637 contain namespace info, if there is any.
18638 Return the computed name or NULL.
18639 Space for the result is allocated on the objfile's obstack.
18640 This is the full-die version of guess_partial_die_structure_name.
18641 In this case we know DIE has no useful parent. */
18642
18643static char *
18644guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18645{
18646 struct die_info *spec_die;
18647 struct dwarf2_cu *spec_cu;
18648 struct die_info *child;
18649
18650 spec_cu = cu;
18651 spec_die = die_specification (die, &spec_cu);
18652 if (spec_die != NULL)
18653 {
18654 die = spec_die;
18655 cu = spec_cu;
18656 }
18657
18658 for (child = die->child;
18659 child != NULL;
18660 child = child->sibling)
18661 {
18662 if (child->tag == DW_TAG_subprogram)
18663 {
18664 struct attribute *attr;
18665
18666 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18667 if (attr == NULL)
18668 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18669 if (attr != NULL)
18670 {
18671 char *actual_name
18672 = language_class_name_from_physname (cu->language_defn,
18673 DW_STRING (attr));
18674 char *name = NULL;
18675
18676 if (actual_name != NULL)
18677 {
15d034d0 18678 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18679
18680 if (die_name != NULL
18681 && strcmp (die_name, actual_name) != 0)
18682 {
18683 /* Strip off the class name from the full name.
18684 We want the prefix. */
18685 int die_name_len = strlen (die_name);
18686 int actual_name_len = strlen (actual_name);
18687
18688 /* Test for '::' as a sanity check. */
18689 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18690 && actual_name[actual_name_len
18691 - die_name_len - 1] == ':')
abc72ce4 18692 name =
34a68019 18693 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18694 actual_name,
18695 actual_name_len - die_name_len - 2);
abc72ce4
DE
18696 }
18697 }
18698 xfree (actual_name);
18699 return name;
18700 }
18701 }
18702 }
18703
18704 return NULL;
18705}
18706
96408a79
SA
18707/* GCC might emit a nameless typedef that has a linkage name. Determine the
18708 prefix part in such case. See
18709 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18710
18711static char *
18712anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18713{
18714 struct attribute *attr;
18715 char *base;
18716
18717 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18718 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18719 return NULL;
18720
18721 attr = dwarf2_attr (die, DW_AT_name, cu);
18722 if (attr != NULL && DW_STRING (attr) != NULL)
18723 return NULL;
18724
18725 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18726 if (attr == NULL)
18727 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18728 if (attr == NULL || DW_STRING (attr) == NULL)
18729 return NULL;
18730
18731 /* dwarf2_name had to be already called. */
18732 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18733
18734 /* Strip the base name, keep any leading namespaces/classes. */
18735 base = strrchr (DW_STRING (attr), ':');
18736 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18737 return "";
18738
34a68019 18739 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18740 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18741}
18742
fdde2d81 18743/* Return the name of the namespace/class that DIE is defined within,
0114d602 18744 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18745
0114d602
DJ
18746 For example, if we're within the method foo() in the following
18747 code:
18748
18749 namespace N {
18750 class C {
18751 void foo () {
18752 }
18753 };
18754 }
18755
18756 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18757
0d5cff50 18758static const char *
e142c38c 18759determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18760{
0114d602
DJ
18761 struct die_info *parent, *spec_die;
18762 struct dwarf2_cu *spec_cu;
18763 struct type *parent_type;
96408a79 18764 char *retval;
63d06c5c 18765
f55ee35c
JK
18766 if (cu->language != language_cplus && cu->language != language_java
18767 && cu->language != language_fortran)
0114d602
DJ
18768 return "";
18769
96408a79
SA
18770 retval = anonymous_struct_prefix (die, cu);
18771 if (retval)
18772 return retval;
18773
0114d602
DJ
18774 /* We have to be careful in the presence of DW_AT_specification.
18775 For example, with GCC 3.4, given the code
18776
18777 namespace N {
18778 void foo() {
18779 // Definition of N::foo.
18780 }
18781 }
18782
18783 then we'll have a tree of DIEs like this:
18784
18785 1: DW_TAG_compile_unit
18786 2: DW_TAG_namespace // N
18787 3: DW_TAG_subprogram // declaration of N::foo
18788 4: DW_TAG_subprogram // definition of N::foo
18789 DW_AT_specification // refers to die #3
18790
18791 Thus, when processing die #4, we have to pretend that we're in
18792 the context of its DW_AT_specification, namely the contex of die
18793 #3. */
18794 spec_cu = cu;
18795 spec_die = die_specification (die, &spec_cu);
18796 if (spec_die == NULL)
18797 parent = die->parent;
18798 else
63d06c5c 18799 {
0114d602
DJ
18800 parent = spec_die->parent;
18801 cu = spec_cu;
63d06c5c 18802 }
0114d602
DJ
18803
18804 if (parent == NULL)
18805 return "";
98bfdba5
PA
18806 else if (parent->building_fullname)
18807 {
18808 const char *name;
18809 const char *parent_name;
18810
18811 /* It has been seen on RealView 2.2 built binaries,
18812 DW_TAG_template_type_param types actually _defined_ as
18813 children of the parent class:
18814
18815 enum E {};
18816 template class <class Enum> Class{};
18817 Class<enum E> class_e;
18818
18819 1: DW_TAG_class_type (Class)
18820 2: DW_TAG_enumeration_type (E)
18821 3: DW_TAG_enumerator (enum1:0)
18822 3: DW_TAG_enumerator (enum2:1)
18823 ...
18824 2: DW_TAG_template_type_param
18825 DW_AT_type DW_FORM_ref_udata (E)
18826
18827 Besides being broken debug info, it can put GDB into an
18828 infinite loop. Consider:
18829
18830 When we're building the full name for Class<E>, we'll start
18831 at Class, and go look over its template type parameters,
18832 finding E. We'll then try to build the full name of E, and
18833 reach here. We're now trying to build the full name of E,
18834 and look over the parent DIE for containing scope. In the
18835 broken case, if we followed the parent DIE of E, we'd again
18836 find Class, and once again go look at its template type
18837 arguments, etc., etc. Simply don't consider such parent die
18838 as source-level parent of this die (it can't be, the language
18839 doesn't allow it), and break the loop here. */
18840 name = dwarf2_name (die, cu);
18841 parent_name = dwarf2_name (parent, cu);
18842 complaint (&symfile_complaints,
18843 _("template param type '%s' defined within parent '%s'"),
18844 name ? name : "<unknown>",
18845 parent_name ? parent_name : "<unknown>");
18846 return "";
18847 }
63d06c5c 18848 else
0114d602
DJ
18849 switch (parent->tag)
18850 {
63d06c5c 18851 case DW_TAG_namespace:
0114d602 18852 parent_type = read_type_die (parent, cu);
acebe513
UW
18853 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18854 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18855 Work around this problem here. */
18856 if (cu->language == language_cplus
18857 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18858 return "";
0114d602
DJ
18859 /* We give a name to even anonymous namespaces. */
18860 return TYPE_TAG_NAME (parent_type);
63d06c5c 18861 case DW_TAG_class_type:
680b30c7 18862 case DW_TAG_interface_type:
63d06c5c 18863 case DW_TAG_structure_type:
0114d602 18864 case DW_TAG_union_type:
f55ee35c 18865 case DW_TAG_module:
0114d602
DJ
18866 parent_type = read_type_die (parent, cu);
18867 if (TYPE_TAG_NAME (parent_type) != NULL)
18868 return TYPE_TAG_NAME (parent_type);
18869 else
18870 /* An anonymous structure is only allowed non-static data
18871 members; no typedefs, no member functions, et cetera.
18872 So it does not need a prefix. */
18873 return "";
abc72ce4 18874 case DW_TAG_compile_unit:
95554aad 18875 case DW_TAG_partial_unit:
abc72ce4
DE
18876 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18877 if (cu->language == language_cplus
8b70b953 18878 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18879 && die->child != NULL
18880 && (die->tag == DW_TAG_class_type
18881 || die->tag == DW_TAG_structure_type
18882 || die->tag == DW_TAG_union_type))
18883 {
18884 char *name = guess_full_die_structure_name (die, cu);
18885 if (name != NULL)
18886 return name;
18887 }
18888 return "";
3d567982
TT
18889 case DW_TAG_enumeration_type:
18890 parent_type = read_type_die (parent, cu);
18891 if (TYPE_DECLARED_CLASS (parent_type))
18892 {
18893 if (TYPE_TAG_NAME (parent_type) != NULL)
18894 return TYPE_TAG_NAME (parent_type);
18895 return "";
18896 }
18897 /* Fall through. */
63d06c5c 18898 default:
8176b9b8 18899 return determine_prefix (parent, cu);
63d06c5c 18900 }
63d06c5c
DC
18901}
18902
3e43a32a
MS
18903/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18904 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18905 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18906 an obconcat, otherwise allocate storage for the result. The CU argument is
18907 used to determine the language and hence, the appropriate separator. */
987504bb 18908
f55ee35c 18909#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18910
18911static char *
f55ee35c
JK
18912typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18913 int physname, struct dwarf2_cu *cu)
63d06c5c 18914{
f55ee35c 18915 const char *lead = "";
5c315b68 18916 const char *sep;
63d06c5c 18917
3e43a32a
MS
18918 if (suffix == NULL || suffix[0] == '\0'
18919 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18920 sep = "";
18921 else if (cu->language == language_java)
18922 sep = ".";
f55ee35c
JK
18923 else if (cu->language == language_fortran && physname)
18924 {
18925 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18926 DW_AT_MIPS_linkage_name is preferred and used instead. */
18927
18928 lead = "__";
18929 sep = "_MOD_";
18930 }
987504bb
JJ
18931 else
18932 sep = "::";
63d06c5c 18933
6dd47d34
DE
18934 if (prefix == NULL)
18935 prefix = "";
18936 if (suffix == NULL)
18937 suffix = "";
18938
987504bb
JJ
18939 if (obs == NULL)
18940 {
3e43a32a
MS
18941 char *retval
18942 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18943
f55ee35c
JK
18944 strcpy (retval, lead);
18945 strcat (retval, prefix);
6dd47d34
DE
18946 strcat (retval, sep);
18947 strcat (retval, suffix);
63d06c5c
DC
18948 return retval;
18949 }
987504bb
JJ
18950 else
18951 {
18952 /* We have an obstack. */
f55ee35c 18953 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18954 }
63d06c5c
DC
18955}
18956
c906108c
SS
18957/* Return sibling of die, NULL if no sibling. */
18958
f9aca02d 18959static struct die_info *
fba45db2 18960sibling_die (struct die_info *die)
c906108c 18961{
639d11d3 18962 return die->sibling;
c906108c
SS
18963}
18964
71c25dea
TT
18965/* Get name of a die, return NULL if not found. */
18966
15d034d0
TT
18967static const char *
18968dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18969 struct obstack *obstack)
18970{
18971 if (name && cu->language == language_cplus)
18972 {
18973 char *canon_name = cp_canonicalize_string (name);
18974
18975 if (canon_name != NULL)
18976 {
18977 if (strcmp (canon_name, name) != 0)
10f0c4bb 18978 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18979 xfree (canon_name);
18980 }
18981 }
18982
18983 return name;
c906108c
SS
18984}
18985
9219021c
DC
18986/* Get name of a die, return NULL if not found. */
18987
15d034d0 18988static const char *
e142c38c 18989dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18990{
18991 struct attribute *attr;
18992
e142c38c 18993 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18994 if ((!attr || !DW_STRING (attr))
18995 && die->tag != DW_TAG_class_type
18996 && die->tag != DW_TAG_interface_type
18997 && die->tag != DW_TAG_structure_type
18998 && die->tag != DW_TAG_union_type)
71c25dea
TT
18999 return NULL;
19000
19001 switch (die->tag)
19002 {
19003 case DW_TAG_compile_unit:
95554aad 19004 case DW_TAG_partial_unit:
71c25dea
TT
19005 /* Compilation units have a DW_AT_name that is a filename, not
19006 a source language identifier. */
19007 case DW_TAG_enumeration_type:
19008 case DW_TAG_enumerator:
19009 /* These tags always have simple identifiers already; no need
19010 to canonicalize them. */
19011 return DW_STRING (attr);
907af001 19012
418835cc
KS
19013 case DW_TAG_subprogram:
19014 /* Java constructors will all be named "<init>", so return
19015 the class name when we see this special case. */
19016 if (cu->language == language_java
19017 && DW_STRING (attr) != NULL
19018 && strcmp (DW_STRING (attr), "<init>") == 0)
19019 {
19020 struct dwarf2_cu *spec_cu = cu;
19021 struct die_info *spec_die;
19022
19023 /* GCJ will output '<init>' for Java constructor names.
19024 For this special case, return the name of the parent class. */
19025
cdc07690 19026 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19027 If so, use the name of the specified DIE. */
19028 spec_die = die_specification (die, &spec_cu);
19029 if (spec_die != NULL)
19030 return dwarf2_name (spec_die, spec_cu);
19031
19032 do
19033 {
19034 die = die->parent;
19035 if (die->tag == DW_TAG_class_type)
19036 return dwarf2_name (die, cu);
19037 }
95554aad
TT
19038 while (die->tag != DW_TAG_compile_unit
19039 && die->tag != DW_TAG_partial_unit);
418835cc 19040 }
907af001
UW
19041 break;
19042
19043 case DW_TAG_class_type:
19044 case DW_TAG_interface_type:
19045 case DW_TAG_structure_type:
19046 case DW_TAG_union_type:
19047 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19048 structures or unions. These were of the form "._%d" in GCC 4.1,
19049 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19050 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19051 if (attr && DW_STRING (attr)
19052 && (strncmp (DW_STRING (attr), "._", 2) == 0
19053 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19054 return NULL;
53832f31
TT
19055
19056 /* GCC might emit a nameless typedef that has a linkage name. See
19057 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19058 if (!attr || DW_STRING (attr) == NULL)
19059 {
df5c6c50 19060 char *demangled = NULL;
53832f31
TT
19061
19062 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19063 if (attr == NULL)
19064 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19065
19066 if (attr == NULL || DW_STRING (attr) == NULL)
19067 return NULL;
19068
df5c6c50
JK
19069 /* Avoid demangling DW_STRING (attr) the second time on a second
19070 call for the same DIE. */
19071 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19072 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19073
19074 if (demangled)
19075 {
96408a79
SA
19076 char *base;
19077
53832f31 19078 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19079 DW_STRING (attr)
19080 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19081 demangled, strlen (demangled));
53832f31
TT
19082 DW_STRING_IS_CANONICAL (attr) = 1;
19083 xfree (demangled);
96408a79
SA
19084
19085 /* Strip any leading namespaces/classes, keep only the base name.
19086 DW_AT_name for named DIEs does not contain the prefixes. */
19087 base = strrchr (DW_STRING (attr), ':');
19088 if (base && base > DW_STRING (attr) && base[-1] == ':')
19089 return &base[1];
19090 else
19091 return DW_STRING (attr);
53832f31
TT
19092 }
19093 }
907af001
UW
19094 break;
19095
71c25dea 19096 default:
907af001
UW
19097 break;
19098 }
19099
19100 if (!DW_STRING_IS_CANONICAL (attr))
19101 {
19102 DW_STRING (attr)
19103 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19104 &cu->objfile->per_bfd->storage_obstack);
907af001 19105 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19106 }
907af001 19107 return DW_STRING (attr);
9219021c
DC
19108}
19109
19110/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19111 is none. *EXT_CU is the CU containing DIE on input, and the CU
19112 containing the return value on output. */
9219021c
DC
19113
19114static struct die_info *
f2f0e013 19115dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19116{
19117 struct attribute *attr;
9219021c 19118
f2f0e013 19119 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19120 if (attr == NULL)
19121 return NULL;
19122
f2f0e013 19123 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19124}
19125
c906108c
SS
19126/* Convert a DIE tag into its string name. */
19127
f39c6ffd 19128static const char *
aa1ee363 19129dwarf_tag_name (unsigned tag)
c906108c 19130{
f39c6ffd
TT
19131 const char *name = get_DW_TAG_name (tag);
19132
19133 if (name == NULL)
19134 return "DW_TAG_<unknown>";
19135
19136 return name;
c906108c
SS
19137}
19138
19139/* Convert a DWARF attribute code into its string name. */
19140
f39c6ffd 19141static const char *
aa1ee363 19142dwarf_attr_name (unsigned attr)
c906108c 19143{
f39c6ffd
TT
19144 const char *name;
19145
c764a876 19146#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19147 if (attr == DW_AT_MIPS_fde)
19148 return "DW_AT_MIPS_fde";
19149#else
19150 if (attr == DW_AT_HP_block_index)
19151 return "DW_AT_HP_block_index";
c764a876 19152#endif
f39c6ffd
TT
19153
19154 name = get_DW_AT_name (attr);
19155
19156 if (name == NULL)
19157 return "DW_AT_<unknown>";
19158
19159 return name;
c906108c
SS
19160}
19161
19162/* Convert a DWARF value form code into its string name. */
19163
f39c6ffd 19164static const char *
aa1ee363 19165dwarf_form_name (unsigned form)
c906108c 19166{
f39c6ffd
TT
19167 const char *name = get_DW_FORM_name (form);
19168
19169 if (name == NULL)
19170 return "DW_FORM_<unknown>";
19171
19172 return name;
c906108c
SS
19173}
19174
19175static char *
fba45db2 19176dwarf_bool_name (unsigned mybool)
c906108c
SS
19177{
19178 if (mybool)
19179 return "TRUE";
19180 else
19181 return "FALSE";
19182}
19183
19184/* Convert a DWARF type code into its string name. */
19185
f39c6ffd 19186static const char *
aa1ee363 19187dwarf_type_encoding_name (unsigned enc)
c906108c 19188{
f39c6ffd 19189 const char *name = get_DW_ATE_name (enc);
c906108c 19190
f39c6ffd
TT
19191 if (name == NULL)
19192 return "DW_ATE_<unknown>";
c906108c 19193
f39c6ffd 19194 return name;
c906108c 19195}
c906108c 19196
f9aca02d 19197static void
d97bc12b 19198dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19199{
19200 unsigned int i;
19201
d97bc12b
DE
19202 print_spaces (indent, f);
19203 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19204 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19205
19206 if (die->parent != NULL)
19207 {
19208 print_spaces (indent, f);
19209 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19210 die->parent->offset.sect_off);
d97bc12b
DE
19211 }
19212
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19215 dwarf_bool_name (die->child != NULL));
c906108c 19216
d97bc12b
DE
19217 print_spaces (indent, f);
19218 fprintf_unfiltered (f, " attributes:\n");
19219
c906108c
SS
19220 for (i = 0; i < die->num_attrs; ++i)
19221 {
d97bc12b
DE
19222 print_spaces (indent, f);
19223 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19224 dwarf_attr_name (die->attrs[i].name),
19225 dwarf_form_name (die->attrs[i].form));
d97bc12b 19226
c906108c
SS
19227 switch (die->attrs[i].form)
19228 {
c906108c 19229 case DW_FORM_addr:
3019eac3 19230 case DW_FORM_GNU_addr_index:
d97bc12b 19231 fprintf_unfiltered (f, "address: ");
5af949e3 19232 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19233 break;
19234 case DW_FORM_block2:
19235 case DW_FORM_block4:
19236 case DW_FORM_block:
19237 case DW_FORM_block1:
56eb65bd
SP
19238 fprintf_unfiltered (f, "block: size %s",
19239 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19240 break;
2dc7f7b3 19241 case DW_FORM_exprloc:
56eb65bd
SP
19242 fprintf_unfiltered (f, "expression: size %s",
19243 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19244 break;
4568ecf9
DE
19245 case DW_FORM_ref_addr:
19246 fprintf_unfiltered (f, "ref address: ");
19247 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19248 break;
36586728
TT
19249 case DW_FORM_GNU_ref_alt:
19250 fprintf_unfiltered (f, "alt ref address: ");
19251 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19252 break;
10b3939b
DJ
19253 case DW_FORM_ref1:
19254 case DW_FORM_ref2:
19255 case DW_FORM_ref4:
4568ecf9
DE
19256 case DW_FORM_ref8:
19257 case DW_FORM_ref_udata:
d97bc12b 19258 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19259 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19260 break;
c906108c
SS
19261 case DW_FORM_data1:
19262 case DW_FORM_data2:
19263 case DW_FORM_data4:
ce5d95e1 19264 case DW_FORM_data8:
c906108c
SS
19265 case DW_FORM_udata:
19266 case DW_FORM_sdata:
43bbcdc2
PH
19267 fprintf_unfiltered (f, "constant: %s",
19268 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19269 break;
2dc7f7b3
TT
19270 case DW_FORM_sec_offset:
19271 fprintf_unfiltered (f, "section offset: %s",
19272 pulongest (DW_UNSND (&die->attrs[i])));
19273 break;
55f1336d 19274 case DW_FORM_ref_sig8:
ac9ec31b
DE
19275 fprintf_unfiltered (f, "signature: %s",
19276 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19277 break;
c906108c 19278 case DW_FORM_string:
4bdf3d34 19279 case DW_FORM_strp:
3019eac3 19280 case DW_FORM_GNU_str_index:
36586728 19281 case DW_FORM_GNU_strp_alt:
8285870a 19282 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19283 DW_STRING (&die->attrs[i])
8285870a
JK
19284 ? DW_STRING (&die->attrs[i]) : "",
19285 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19286 break;
19287 case DW_FORM_flag:
19288 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19289 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19290 else
d97bc12b 19291 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19292 break;
2dc7f7b3
TT
19293 case DW_FORM_flag_present:
19294 fprintf_unfiltered (f, "flag: TRUE");
19295 break;
a8329558 19296 case DW_FORM_indirect:
0963b4bd
MS
19297 /* The reader will have reduced the indirect form to
19298 the "base form" so this form should not occur. */
3e43a32a
MS
19299 fprintf_unfiltered (f,
19300 "unexpected attribute form: DW_FORM_indirect");
a8329558 19301 break;
c906108c 19302 default:
d97bc12b 19303 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19304 die->attrs[i].form);
d97bc12b 19305 break;
c906108c 19306 }
d97bc12b 19307 fprintf_unfiltered (f, "\n");
c906108c
SS
19308 }
19309}
19310
f9aca02d 19311static void
d97bc12b 19312dump_die_for_error (struct die_info *die)
c906108c 19313{
d97bc12b
DE
19314 dump_die_shallow (gdb_stderr, 0, die);
19315}
19316
19317static void
19318dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19319{
19320 int indent = level * 4;
19321
19322 gdb_assert (die != NULL);
19323
19324 if (level >= max_level)
19325 return;
19326
19327 dump_die_shallow (f, indent, die);
19328
19329 if (die->child != NULL)
c906108c 19330 {
d97bc12b
DE
19331 print_spaces (indent, f);
19332 fprintf_unfiltered (f, " Children:");
19333 if (level + 1 < max_level)
19334 {
19335 fprintf_unfiltered (f, "\n");
19336 dump_die_1 (f, level + 1, max_level, die->child);
19337 }
19338 else
19339 {
3e43a32a
MS
19340 fprintf_unfiltered (f,
19341 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19342 }
19343 }
19344
19345 if (die->sibling != NULL && level > 0)
19346 {
19347 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19348 }
19349}
19350
d97bc12b
DE
19351/* This is called from the pdie macro in gdbinit.in.
19352 It's not static so gcc will keep a copy callable from gdb. */
19353
19354void
19355dump_die (struct die_info *die, int max_level)
19356{
19357 dump_die_1 (gdb_stdlog, 0, max_level, die);
19358}
19359
f9aca02d 19360static void
51545339 19361store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19362{
51545339 19363 void **slot;
c906108c 19364
b64f50a1
JK
19365 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19366 INSERT);
51545339
DJ
19367
19368 *slot = die;
c906108c
SS
19369}
19370
b64f50a1
JK
19371/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19372 required kind. */
19373
19374static sect_offset
ff39bb5e 19375dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19376{
4568ecf9 19377 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19378
7771576e 19379 if (attr_form_is_ref (attr))
b64f50a1 19380 return retval;
93311388 19381
b64f50a1 19382 retval.sect_off = 0;
93311388
DE
19383 complaint (&symfile_complaints,
19384 _("unsupported die ref attribute form: '%s'"),
19385 dwarf_form_name (attr->form));
b64f50a1 19386 return retval;
c906108c
SS
19387}
19388
43bbcdc2
PH
19389/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19390 * the value held by the attribute is not constant. */
a02abb62 19391
43bbcdc2 19392static LONGEST
ff39bb5e 19393dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19394{
19395 if (attr->form == DW_FORM_sdata)
19396 return DW_SND (attr);
19397 else if (attr->form == DW_FORM_udata
19398 || attr->form == DW_FORM_data1
19399 || attr->form == DW_FORM_data2
19400 || attr->form == DW_FORM_data4
19401 || attr->form == DW_FORM_data8)
19402 return DW_UNSND (attr);
19403 else
19404 {
3e43a32a
MS
19405 complaint (&symfile_complaints,
19406 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19407 dwarf_form_name (attr->form));
19408 return default_value;
19409 }
19410}
19411
348e048f
DE
19412/* Follow reference or signature attribute ATTR of SRC_DIE.
19413 On entry *REF_CU is the CU of SRC_DIE.
19414 On exit *REF_CU is the CU of the result. */
19415
19416static struct die_info *
ff39bb5e 19417follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19418 struct dwarf2_cu **ref_cu)
19419{
19420 struct die_info *die;
19421
7771576e 19422 if (attr_form_is_ref (attr))
348e048f 19423 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19424 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19425 die = follow_die_sig (src_die, attr, ref_cu);
19426 else
19427 {
19428 dump_die_for_error (src_die);
19429 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19430 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19431 }
19432
19433 return die;
03dd20cc
DJ
19434}
19435
5c631832 19436/* Follow reference OFFSET.
673bfd45
DE
19437 On entry *REF_CU is the CU of the source die referencing OFFSET.
19438 On exit *REF_CU is the CU of the result.
19439 Returns NULL if OFFSET is invalid. */
f504f079 19440
f9aca02d 19441static struct die_info *
36586728
TT
19442follow_die_offset (sect_offset offset, int offset_in_dwz,
19443 struct dwarf2_cu **ref_cu)
c906108c 19444{
10b3939b 19445 struct die_info temp_die;
f2f0e013 19446 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19447
348e048f
DE
19448 gdb_assert (cu->per_cu != NULL);
19449
98bfdba5
PA
19450 target_cu = cu;
19451
3019eac3 19452 if (cu->per_cu->is_debug_types)
348e048f
DE
19453 {
19454 /* .debug_types CUs cannot reference anything outside their CU.
19455 If they need to, they have to reference a signatured type via
55f1336d 19456 DW_FORM_ref_sig8. */
348e048f 19457 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19458 return NULL;
348e048f 19459 }
36586728
TT
19460 else if (offset_in_dwz != cu->per_cu->is_dwz
19461 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19462 {
19463 struct dwarf2_per_cu_data *per_cu;
9a619af0 19464
36586728
TT
19465 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19466 cu->objfile);
03dd20cc
DJ
19467
19468 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19469 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19470 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19471
10b3939b
DJ
19472 target_cu = per_cu->cu;
19473 }
98bfdba5
PA
19474 else if (cu->dies == NULL)
19475 {
19476 /* We're loading full DIEs during partial symbol reading. */
19477 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19478 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19479 }
c906108c 19480
f2f0e013 19481 *ref_cu = target_cu;
51545339 19482 temp_die.offset = offset;
b64f50a1 19483 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19484}
10b3939b 19485
5c631832
JK
19486/* Follow reference attribute ATTR of SRC_DIE.
19487 On entry *REF_CU is the CU of SRC_DIE.
19488 On exit *REF_CU is the CU of the result. */
19489
19490static struct die_info *
ff39bb5e 19491follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19492 struct dwarf2_cu **ref_cu)
19493{
b64f50a1 19494 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19495 struct dwarf2_cu *cu = *ref_cu;
19496 struct die_info *die;
19497
36586728
TT
19498 die = follow_die_offset (offset,
19499 (attr->form == DW_FORM_GNU_ref_alt
19500 || cu->per_cu->is_dwz),
19501 ref_cu);
5c631832
JK
19502 if (!die)
19503 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19504 "at 0x%x [in module %s]"),
4262abfb
JK
19505 offset.sect_off, src_die->offset.sect_off,
19506 objfile_name (cu->objfile));
348e048f 19507
5c631832
JK
19508 return die;
19509}
19510
d83e736b
JK
19511/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19512 Returned value is intended for DW_OP_call*. Returned
19513 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19514
19515struct dwarf2_locexpr_baton
8b9737bf
TT
19516dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19517 struct dwarf2_per_cu_data *per_cu,
19518 CORE_ADDR (*get_frame_pc) (void *baton),
19519 void *baton)
5c631832 19520{
918dd910 19521 struct dwarf2_cu *cu;
5c631832
JK
19522 struct die_info *die;
19523 struct attribute *attr;
19524 struct dwarf2_locexpr_baton retval;
19525
8cf6f0b1
TT
19526 dw2_setup (per_cu->objfile);
19527
918dd910
JK
19528 if (per_cu->cu == NULL)
19529 load_cu (per_cu);
19530 cu = per_cu->cu;
19531
36586728 19532 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19533 if (!die)
19534 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19535 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19536
19537 attr = dwarf2_attr (die, DW_AT_location, cu);
19538 if (!attr)
19539 {
e103e986
JK
19540 /* DWARF: "If there is no such attribute, then there is no effect.".
19541 DATA is ignored if SIZE is 0. */
5c631832 19542
e103e986 19543 retval.data = NULL;
5c631832
JK
19544 retval.size = 0;
19545 }
8cf6f0b1
TT
19546 else if (attr_form_is_section_offset (attr))
19547 {
19548 struct dwarf2_loclist_baton loclist_baton;
19549 CORE_ADDR pc = (*get_frame_pc) (baton);
19550 size_t size;
19551
19552 fill_in_loclist_baton (cu, &loclist_baton, attr);
19553
19554 retval.data = dwarf2_find_location_expression (&loclist_baton,
19555 &size, pc);
19556 retval.size = size;
19557 }
5c631832
JK
19558 else
19559 {
19560 if (!attr_form_is_block (attr))
19561 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19562 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19563 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19564
19565 retval.data = DW_BLOCK (attr)->data;
19566 retval.size = DW_BLOCK (attr)->size;
19567 }
19568 retval.per_cu = cu->per_cu;
918dd910 19569
918dd910
JK
19570 age_cached_comp_units ();
19571
5c631832 19572 return retval;
348e048f
DE
19573}
19574
8b9737bf
TT
19575/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19576 offset. */
19577
19578struct dwarf2_locexpr_baton
19579dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19580 struct dwarf2_per_cu_data *per_cu,
19581 CORE_ADDR (*get_frame_pc) (void *baton),
19582 void *baton)
19583{
19584 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19585
19586 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19587}
19588
b6807d98
TT
19589/* Write a constant of a given type as target-ordered bytes into
19590 OBSTACK. */
19591
19592static const gdb_byte *
19593write_constant_as_bytes (struct obstack *obstack,
19594 enum bfd_endian byte_order,
19595 struct type *type,
19596 ULONGEST value,
19597 LONGEST *len)
19598{
19599 gdb_byte *result;
19600
19601 *len = TYPE_LENGTH (type);
19602 result = obstack_alloc (obstack, *len);
19603 store_unsigned_integer (result, *len, byte_order, value);
19604
19605 return result;
19606}
19607
19608/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19609 pointer to the constant bytes and set LEN to the length of the
19610 data. If memory is needed, allocate it on OBSTACK. If the DIE
19611 does not have a DW_AT_const_value, return NULL. */
19612
19613const gdb_byte *
19614dwarf2_fetch_constant_bytes (sect_offset offset,
19615 struct dwarf2_per_cu_data *per_cu,
19616 struct obstack *obstack,
19617 LONGEST *len)
19618{
19619 struct dwarf2_cu *cu;
19620 struct die_info *die;
19621 struct attribute *attr;
19622 const gdb_byte *result = NULL;
19623 struct type *type;
19624 LONGEST value;
19625 enum bfd_endian byte_order;
19626
19627 dw2_setup (per_cu->objfile);
19628
19629 if (per_cu->cu == NULL)
19630 load_cu (per_cu);
19631 cu = per_cu->cu;
19632
19633 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19634 if (!die)
19635 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19636 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19637
19638
19639 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19640 if (attr == NULL)
19641 return NULL;
19642
19643 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19644 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19645
19646 switch (attr->form)
19647 {
19648 case DW_FORM_addr:
19649 case DW_FORM_GNU_addr_index:
19650 {
19651 gdb_byte *tem;
19652
19653 *len = cu->header.addr_size;
19654 tem = obstack_alloc (obstack, *len);
19655 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19656 result = tem;
19657 }
19658 break;
19659 case DW_FORM_string:
19660 case DW_FORM_strp:
19661 case DW_FORM_GNU_str_index:
19662 case DW_FORM_GNU_strp_alt:
19663 /* DW_STRING is already allocated on the objfile obstack, point
19664 directly to it. */
19665 result = (const gdb_byte *) DW_STRING (attr);
19666 *len = strlen (DW_STRING (attr));
19667 break;
19668 case DW_FORM_block1:
19669 case DW_FORM_block2:
19670 case DW_FORM_block4:
19671 case DW_FORM_block:
19672 case DW_FORM_exprloc:
19673 result = DW_BLOCK (attr)->data;
19674 *len = DW_BLOCK (attr)->size;
19675 break;
19676
19677 /* The DW_AT_const_value attributes are supposed to carry the
19678 symbol's value "represented as it would be on the target
19679 architecture." By the time we get here, it's already been
19680 converted to host endianness, so we just need to sign- or
19681 zero-extend it as appropriate. */
19682 case DW_FORM_data1:
19683 type = die_type (die, cu);
19684 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19685 if (result == NULL)
19686 result = write_constant_as_bytes (obstack, byte_order,
19687 type, value, len);
19688 break;
19689 case DW_FORM_data2:
19690 type = die_type (die, cu);
19691 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19692 if (result == NULL)
19693 result = write_constant_as_bytes (obstack, byte_order,
19694 type, value, len);
19695 break;
19696 case DW_FORM_data4:
19697 type = die_type (die, cu);
19698 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19699 if (result == NULL)
19700 result = write_constant_as_bytes (obstack, byte_order,
19701 type, value, len);
19702 break;
19703 case DW_FORM_data8:
19704 type = die_type (die, cu);
19705 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19706 if (result == NULL)
19707 result = write_constant_as_bytes (obstack, byte_order,
19708 type, value, len);
19709 break;
19710
19711 case DW_FORM_sdata:
19712 type = die_type (die, cu);
19713 result = write_constant_as_bytes (obstack, byte_order,
19714 type, DW_SND (attr), len);
19715 break;
19716
19717 case DW_FORM_udata:
19718 type = die_type (die, cu);
19719 result = write_constant_as_bytes (obstack, byte_order,
19720 type, DW_UNSND (attr), len);
19721 break;
19722
19723 default:
19724 complaint (&symfile_complaints,
19725 _("unsupported const value attribute form: '%s'"),
19726 dwarf_form_name (attr->form));
19727 break;
19728 }
19729
19730 return result;
19731}
19732
8a9b8146
TT
19733/* Return the type of the DIE at DIE_OFFSET in the CU named by
19734 PER_CU. */
19735
19736struct type *
b64f50a1 19737dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19738 struct dwarf2_per_cu_data *per_cu)
19739{
b64f50a1
JK
19740 sect_offset die_offset_sect;
19741
8a9b8146 19742 dw2_setup (per_cu->objfile);
b64f50a1
JK
19743
19744 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19745 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19746}
19747
ac9ec31b 19748/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19749 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19750 On exit *REF_CU is the CU of the result.
19751 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19752
19753static struct die_info *
ac9ec31b
DE
19754follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19755 struct dwarf2_cu **ref_cu)
348e048f
DE
19756{
19757 struct objfile *objfile = (*ref_cu)->objfile;
19758 struct die_info temp_die;
348e048f
DE
19759 struct dwarf2_cu *sig_cu;
19760 struct die_info *die;
19761
ac9ec31b
DE
19762 /* While it might be nice to assert sig_type->type == NULL here,
19763 we can get here for DW_AT_imported_declaration where we need
19764 the DIE not the type. */
348e048f
DE
19765
19766 /* If necessary, add it to the queue and load its DIEs. */
19767
95554aad 19768 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19769 read_signatured_type (sig_type);
348e048f 19770
348e048f 19771 sig_cu = sig_type->per_cu.cu;
69d751e3 19772 gdb_assert (sig_cu != NULL);
3019eac3
DE
19773 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19774 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19775 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19776 temp_die.offset.sect_off);
348e048f
DE
19777 if (die)
19778 {
796a7ff8
DE
19779 /* For .gdb_index version 7 keep track of included TUs.
19780 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19781 if (dwarf2_per_objfile->index_table != NULL
19782 && dwarf2_per_objfile->index_table->version <= 7)
19783 {
19784 VEC_safe_push (dwarf2_per_cu_ptr,
19785 (*ref_cu)->per_cu->imported_symtabs,
19786 sig_cu->per_cu);
19787 }
19788
348e048f
DE
19789 *ref_cu = sig_cu;
19790 return die;
19791 }
19792
ac9ec31b
DE
19793 return NULL;
19794}
19795
19796/* Follow signatured type referenced by ATTR in SRC_DIE.
19797 On entry *REF_CU is the CU of SRC_DIE.
19798 On exit *REF_CU is the CU of the result.
19799 The result is the DIE of the type.
19800 If the referenced type cannot be found an error is thrown. */
19801
19802static struct die_info *
ff39bb5e 19803follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19804 struct dwarf2_cu **ref_cu)
19805{
19806 ULONGEST signature = DW_SIGNATURE (attr);
19807 struct signatured_type *sig_type;
19808 struct die_info *die;
19809
19810 gdb_assert (attr->form == DW_FORM_ref_sig8);
19811
a2ce51a0 19812 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19813 /* sig_type will be NULL if the signatured type is missing from
19814 the debug info. */
19815 if (sig_type == NULL)
19816 {
19817 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19818 " from DIE at 0x%x [in module %s]"),
19819 hex_string (signature), src_die->offset.sect_off,
4262abfb 19820 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19821 }
19822
19823 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19824 if (die == NULL)
19825 {
19826 dump_die_for_error (src_die);
19827 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19828 " from DIE at 0x%x [in module %s]"),
19829 hex_string (signature), src_die->offset.sect_off,
4262abfb 19830 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19831 }
19832
19833 return die;
19834}
19835
19836/* Get the type specified by SIGNATURE referenced in DIE/CU,
19837 reading in and processing the type unit if necessary. */
19838
19839static struct type *
19840get_signatured_type (struct die_info *die, ULONGEST signature,
19841 struct dwarf2_cu *cu)
19842{
19843 struct signatured_type *sig_type;
19844 struct dwarf2_cu *type_cu;
19845 struct die_info *type_die;
19846 struct type *type;
19847
a2ce51a0 19848 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19849 /* sig_type will be NULL if the signatured type is missing from
19850 the debug info. */
19851 if (sig_type == NULL)
19852 {
19853 complaint (&symfile_complaints,
19854 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19855 " from DIE at 0x%x [in module %s]"),
19856 hex_string (signature), die->offset.sect_off,
4262abfb 19857 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19858 return build_error_marker_type (cu, die);
19859 }
19860
19861 /* If we already know the type we're done. */
19862 if (sig_type->type != NULL)
19863 return sig_type->type;
19864
19865 type_cu = cu;
19866 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19867 if (type_die != NULL)
19868 {
19869 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19870 is created. This is important, for example, because for c++ classes
19871 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19872 type = read_type_die (type_die, type_cu);
19873 if (type == NULL)
19874 {
19875 complaint (&symfile_complaints,
19876 _("Dwarf Error: Cannot build signatured type %s"
19877 " referenced from DIE at 0x%x [in module %s]"),
19878 hex_string (signature), die->offset.sect_off,
4262abfb 19879 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19880 type = build_error_marker_type (cu, die);
19881 }
19882 }
19883 else
19884 {
19885 complaint (&symfile_complaints,
19886 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19887 " from DIE at 0x%x [in module %s]"),
19888 hex_string (signature), die->offset.sect_off,
4262abfb 19889 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19890 type = build_error_marker_type (cu, die);
19891 }
19892 sig_type->type = type;
19893
19894 return type;
19895}
19896
19897/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19898 reading in and processing the type unit if necessary. */
19899
19900static struct type *
ff39bb5e 19901get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19902 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19903{
19904 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19905 if (attr_form_is_ref (attr))
ac9ec31b
DE
19906 {
19907 struct dwarf2_cu *type_cu = cu;
19908 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19909
19910 return read_type_die (type_die, type_cu);
19911 }
19912 else if (attr->form == DW_FORM_ref_sig8)
19913 {
19914 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19915 }
19916 else
19917 {
19918 complaint (&symfile_complaints,
19919 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19920 " at 0x%x [in module %s]"),
19921 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19922 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19923 return build_error_marker_type (cu, die);
19924 }
348e048f
DE
19925}
19926
e5fe5e75 19927/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19928
19929static void
e5fe5e75 19930load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19931{
52dc124a 19932 struct signatured_type *sig_type;
348e048f 19933
f4dc4d17
DE
19934 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19935 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19936
6721b2ec
DE
19937 /* We have the per_cu, but we need the signatured_type.
19938 Fortunately this is an easy translation. */
19939 gdb_assert (per_cu->is_debug_types);
19940 sig_type = (struct signatured_type *) per_cu;
348e048f 19941
6721b2ec 19942 gdb_assert (per_cu->cu == NULL);
348e048f 19943
52dc124a 19944 read_signatured_type (sig_type);
348e048f 19945
6721b2ec 19946 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19947}
19948
dee91e82
DE
19949/* die_reader_func for read_signatured_type.
19950 This is identical to load_full_comp_unit_reader,
19951 but is kept separate for now. */
348e048f
DE
19952
19953static void
dee91e82 19954read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19955 const gdb_byte *info_ptr,
dee91e82
DE
19956 struct die_info *comp_unit_die,
19957 int has_children,
19958 void *data)
348e048f 19959{
dee91e82 19960 struct dwarf2_cu *cu = reader->cu;
348e048f 19961
dee91e82
DE
19962 gdb_assert (cu->die_hash == NULL);
19963 cu->die_hash =
19964 htab_create_alloc_ex (cu->header.length / 12,
19965 die_hash,
19966 die_eq,
19967 NULL,
19968 &cu->comp_unit_obstack,
19969 hashtab_obstack_allocate,
19970 dummy_obstack_deallocate);
348e048f 19971
dee91e82
DE
19972 if (has_children)
19973 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19974 &info_ptr, comp_unit_die);
19975 cu->dies = comp_unit_die;
19976 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19977
19978 /* We try not to read any attributes in this function, because not
9cdd5dbd 19979 all CUs needed for references have been loaded yet, and symbol
348e048f 19980 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19981 or we won't be able to build types correctly.
19982 Similarly, if we do not read the producer, we can not apply
19983 producer-specific interpretation. */
95554aad 19984 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19985}
348e048f 19986
3019eac3
DE
19987/* Read in a signatured type and build its CU and DIEs.
19988 If the type is a stub for the real type in a DWO file,
19989 read in the real type from the DWO file as well. */
dee91e82
DE
19990
19991static void
19992read_signatured_type (struct signatured_type *sig_type)
19993{
19994 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19995
3019eac3 19996 gdb_assert (per_cu->is_debug_types);
dee91e82 19997 gdb_assert (per_cu->cu == NULL);
348e048f 19998
f4dc4d17
DE
19999 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20000 read_signatured_type_reader, NULL);
7ee85ab1 20001 sig_type->per_cu.tu_read = 1;
c906108c
SS
20002}
20003
c906108c
SS
20004/* Decode simple location descriptions.
20005 Given a pointer to a dwarf block that defines a location, compute
20006 the location and return the value.
20007
4cecd739
DJ
20008 NOTE drow/2003-11-18: This function is called in two situations
20009 now: for the address of static or global variables (partial symbols
20010 only) and for offsets into structures which are expected to be
20011 (more or less) constant. The partial symbol case should go away,
20012 and only the constant case should remain. That will let this
20013 function complain more accurately. A few special modes are allowed
20014 without complaint for global variables (for instance, global
20015 register values and thread-local values).
c906108c
SS
20016
20017 A location description containing no operations indicates that the
4cecd739 20018 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20019 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20020 callers will only want a very basic result and this can become a
21ae7a4d
JK
20021 complaint.
20022
20023 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20024
20025static CORE_ADDR
e7c27a73 20026decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20027{
e7c27a73 20028 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20029 size_t i;
20030 size_t size = blk->size;
d521ce57 20031 const gdb_byte *data = blk->data;
21ae7a4d
JK
20032 CORE_ADDR stack[64];
20033 int stacki;
20034 unsigned int bytes_read, unsnd;
20035 gdb_byte op;
c906108c 20036
21ae7a4d
JK
20037 i = 0;
20038 stacki = 0;
20039 stack[stacki] = 0;
20040 stack[++stacki] = 0;
20041
20042 while (i < size)
20043 {
20044 op = data[i++];
20045 switch (op)
20046 {
20047 case DW_OP_lit0:
20048 case DW_OP_lit1:
20049 case DW_OP_lit2:
20050 case DW_OP_lit3:
20051 case DW_OP_lit4:
20052 case DW_OP_lit5:
20053 case DW_OP_lit6:
20054 case DW_OP_lit7:
20055 case DW_OP_lit8:
20056 case DW_OP_lit9:
20057 case DW_OP_lit10:
20058 case DW_OP_lit11:
20059 case DW_OP_lit12:
20060 case DW_OP_lit13:
20061 case DW_OP_lit14:
20062 case DW_OP_lit15:
20063 case DW_OP_lit16:
20064 case DW_OP_lit17:
20065 case DW_OP_lit18:
20066 case DW_OP_lit19:
20067 case DW_OP_lit20:
20068 case DW_OP_lit21:
20069 case DW_OP_lit22:
20070 case DW_OP_lit23:
20071 case DW_OP_lit24:
20072 case DW_OP_lit25:
20073 case DW_OP_lit26:
20074 case DW_OP_lit27:
20075 case DW_OP_lit28:
20076 case DW_OP_lit29:
20077 case DW_OP_lit30:
20078 case DW_OP_lit31:
20079 stack[++stacki] = op - DW_OP_lit0;
20080 break;
f1bea926 20081
21ae7a4d
JK
20082 case DW_OP_reg0:
20083 case DW_OP_reg1:
20084 case DW_OP_reg2:
20085 case DW_OP_reg3:
20086 case DW_OP_reg4:
20087 case DW_OP_reg5:
20088 case DW_OP_reg6:
20089 case DW_OP_reg7:
20090 case DW_OP_reg8:
20091 case DW_OP_reg9:
20092 case DW_OP_reg10:
20093 case DW_OP_reg11:
20094 case DW_OP_reg12:
20095 case DW_OP_reg13:
20096 case DW_OP_reg14:
20097 case DW_OP_reg15:
20098 case DW_OP_reg16:
20099 case DW_OP_reg17:
20100 case DW_OP_reg18:
20101 case DW_OP_reg19:
20102 case DW_OP_reg20:
20103 case DW_OP_reg21:
20104 case DW_OP_reg22:
20105 case DW_OP_reg23:
20106 case DW_OP_reg24:
20107 case DW_OP_reg25:
20108 case DW_OP_reg26:
20109 case DW_OP_reg27:
20110 case DW_OP_reg28:
20111 case DW_OP_reg29:
20112 case DW_OP_reg30:
20113 case DW_OP_reg31:
20114 stack[++stacki] = op - DW_OP_reg0;
20115 if (i < size)
20116 dwarf2_complex_location_expr_complaint ();
20117 break;
c906108c 20118
21ae7a4d
JK
20119 case DW_OP_regx:
20120 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20121 i += bytes_read;
20122 stack[++stacki] = unsnd;
20123 if (i < size)
20124 dwarf2_complex_location_expr_complaint ();
20125 break;
c906108c 20126
21ae7a4d
JK
20127 case DW_OP_addr:
20128 stack[++stacki] = read_address (objfile->obfd, &data[i],
20129 cu, &bytes_read);
20130 i += bytes_read;
20131 break;
d53d4ac5 20132
21ae7a4d
JK
20133 case DW_OP_const1u:
20134 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20135 i += 1;
20136 break;
20137
20138 case DW_OP_const1s:
20139 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20140 i += 1;
20141 break;
20142
20143 case DW_OP_const2u:
20144 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20145 i += 2;
20146 break;
20147
20148 case DW_OP_const2s:
20149 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20150 i += 2;
20151 break;
d53d4ac5 20152
21ae7a4d
JK
20153 case DW_OP_const4u:
20154 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20155 i += 4;
20156 break;
20157
20158 case DW_OP_const4s:
20159 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20160 i += 4;
20161 break;
20162
585861ea
JK
20163 case DW_OP_const8u:
20164 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20165 i += 8;
20166 break;
20167
21ae7a4d
JK
20168 case DW_OP_constu:
20169 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20170 &bytes_read);
20171 i += bytes_read;
20172 break;
20173
20174 case DW_OP_consts:
20175 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20176 i += bytes_read;
20177 break;
20178
20179 case DW_OP_dup:
20180 stack[stacki + 1] = stack[stacki];
20181 stacki++;
20182 break;
20183
20184 case DW_OP_plus:
20185 stack[stacki - 1] += stack[stacki];
20186 stacki--;
20187 break;
20188
20189 case DW_OP_plus_uconst:
20190 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20191 &bytes_read);
20192 i += bytes_read;
20193 break;
20194
20195 case DW_OP_minus:
20196 stack[stacki - 1] -= stack[stacki];
20197 stacki--;
20198 break;
20199
20200 case DW_OP_deref:
20201 /* If we're not the last op, then we definitely can't encode
20202 this using GDB's address_class enum. This is valid for partial
20203 global symbols, although the variable's address will be bogus
20204 in the psymtab. */
20205 if (i < size)
20206 dwarf2_complex_location_expr_complaint ();
20207 break;
20208
20209 case DW_OP_GNU_push_tls_address:
20210 /* The top of the stack has the offset from the beginning
20211 of the thread control block at which the variable is located. */
20212 /* Nothing should follow this operator, so the top of stack would
20213 be returned. */
20214 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20215 address will be bogus in the psymtab. Make it always at least
20216 non-zero to not look as a variable garbage collected by linker
20217 which have DW_OP_addr 0. */
21ae7a4d
JK
20218 if (i < size)
20219 dwarf2_complex_location_expr_complaint ();
585861ea 20220 stack[stacki]++;
21ae7a4d
JK
20221 break;
20222
20223 case DW_OP_GNU_uninit:
20224 break;
20225
3019eac3 20226 case DW_OP_GNU_addr_index:
49f6c839 20227 case DW_OP_GNU_const_index:
3019eac3
DE
20228 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20229 &bytes_read);
20230 i += bytes_read;
20231 break;
20232
21ae7a4d
JK
20233 default:
20234 {
f39c6ffd 20235 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20236
20237 if (name)
20238 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20239 name);
20240 else
20241 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20242 op);
20243 }
20244
20245 return (stack[stacki]);
d53d4ac5 20246 }
3c6e0cb3 20247
21ae7a4d
JK
20248 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20249 outside of the allocated space. Also enforce minimum>0. */
20250 if (stacki >= ARRAY_SIZE (stack) - 1)
20251 {
20252 complaint (&symfile_complaints,
20253 _("location description stack overflow"));
20254 return 0;
20255 }
20256
20257 if (stacki <= 0)
20258 {
20259 complaint (&symfile_complaints,
20260 _("location description stack underflow"));
20261 return 0;
20262 }
20263 }
20264 return (stack[stacki]);
c906108c
SS
20265}
20266
20267/* memory allocation interface */
20268
c906108c 20269static struct dwarf_block *
7b5a2f43 20270dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20271{
20272 struct dwarf_block *blk;
20273
20274 blk = (struct dwarf_block *)
7b5a2f43 20275 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20276 return (blk);
20277}
20278
c906108c 20279static struct die_info *
b60c80d6 20280dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20281{
20282 struct die_info *die;
b60c80d6
DJ
20283 size_t size = sizeof (struct die_info);
20284
20285 if (num_attrs > 1)
20286 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20287
b60c80d6 20288 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20289 memset (die, 0, sizeof (struct die_info));
20290 return (die);
20291}
2e276125
JB
20292
20293\f
20294/* Macro support. */
20295
233d95b5
JK
20296/* Return file name relative to the compilation directory of file number I in
20297 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20298 responsible for freeing it. */
233d95b5 20299
2e276125 20300static char *
233d95b5 20301file_file_name (int file, struct line_header *lh)
2e276125 20302{
6a83a1e6
EZ
20303 /* Is the file number a valid index into the line header's file name
20304 table? Remember that file numbers start with one, not zero. */
20305 if (1 <= file && file <= lh->num_file_names)
20306 {
20307 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20308
233d95b5 20309 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20310 return xstrdup (fe->name);
233d95b5
JK
20311 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20312 fe->name, NULL);
6a83a1e6 20313 }
2e276125
JB
20314 else
20315 {
6a83a1e6
EZ
20316 /* The compiler produced a bogus file number. We can at least
20317 record the macro definitions made in the file, even if we
20318 won't be able to find the file by name. */
20319 char fake_name[80];
9a619af0 20320
8c042590
PM
20321 xsnprintf (fake_name, sizeof (fake_name),
20322 "<bad macro file number %d>", file);
2e276125 20323
6e70227d 20324 complaint (&symfile_complaints,
6a83a1e6
EZ
20325 _("bad file number in macro information (%d)"),
20326 file);
2e276125 20327
6a83a1e6 20328 return xstrdup (fake_name);
2e276125
JB
20329 }
20330}
20331
233d95b5
JK
20332/* Return the full name of file number I in *LH's file name table.
20333 Use COMP_DIR as the name of the current directory of the
20334 compilation. The result is allocated using xmalloc; the caller is
20335 responsible for freeing it. */
20336static char *
20337file_full_name (int file, struct line_header *lh, const char *comp_dir)
20338{
20339 /* Is the file number a valid index into the line header's file name
20340 table? Remember that file numbers start with one, not zero. */
20341 if (1 <= file && file <= lh->num_file_names)
20342 {
20343 char *relative = file_file_name (file, lh);
20344
20345 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20346 return relative;
20347 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20348 }
20349 else
20350 return file_file_name (file, lh);
20351}
20352
2e276125
JB
20353
20354static struct macro_source_file *
20355macro_start_file (int file, int line,
20356 struct macro_source_file *current_file,
20357 const char *comp_dir,
20358 struct line_header *lh, struct objfile *objfile)
20359{
233d95b5
JK
20360 /* File name relative to the compilation directory of this source file. */
20361 char *file_name = file_file_name (file, lh);
2e276125 20362
2e276125 20363 if (! current_file)
abc9d0dc 20364 {
fc474241
DE
20365 /* Note: We don't create a macro table for this compilation unit
20366 at all until we actually get a filename. */
20367 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20368
abc9d0dc
TT
20369 /* If we have no current file, then this must be the start_file
20370 directive for the compilation unit's main source file. */
fc474241
DE
20371 current_file = macro_set_main (macro_table, file_name);
20372 macro_define_special (macro_table);
abc9d0dc 20373 }
2e276125 20374 else
233d95b5 20375 current_file = macro_include (current_file, line, file_name);
2e276125 20376
233d95b5 20377 xfree (file_name);
6e70227d 20378
2e276125
JB
20379 return current_file;
20380}
20381
20382
20383/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20384 followed by a null byte. */
20385static char *
20386copy_string (const char *buf, int len)
20387{
20388 char *s = xmalloc (len + 1);
9a619af0 20389
2e276125
JB
20390 memcpy (s, buf, len);
20391 s[len] = '\0';
2e276125
JB
20392 return s;
20393}
20394
20395
20396static const char *
20397consume_improper_spaces (const char *p, const char *body)
20398{
20399 if (*p == ' ')
20400 {
4d3c2250 20401 complaint (&symfile_complaints,
3e43a32a
MS
20402 _("macro definition contains spaces "
20403 "in formal argument list:\n`%s'"),
4d3c2250 20404 body);
2e276125
JB
20405
20406 while (*p == ' ')
20407 p++;
20408 }
20409
20410 return p;
20411}
20412
20413
20414static void
20415parse_macro_definition (struct macro_source_file *file, int line,
20416 const char *body)
20417{
20418 const char *p;
20419
20420 /* The body string takes one of two forms. For object-like macro
20421 definitions, it should be:
20422
20423 <macro name> " " <definition>
20424
20425 For function-like macro definitions, it should be:
20426
20427 <macro name> "() " <definition>
20428 or
20429 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20430
20431 Spaces may appear only where explicitly indicated, and in the
20432 <definition>.
20433
20434 The Dwarf 2 spec says that an object-like macro's name is always
20435 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20436 the space when the macro's definition is the empty string.
2e276125
JB
20437
20438 The Dwarf 2 spec says that there should be no spaces between the
20439 formal arguments in a function-like macro's formal argument list,
20440 but versions of GCC around March 2002 include spaces after the
20441 commas. */
20442
20443
20444 /* Find the extent of the macro name. The macro name is terminated
20445 by either a space or null character (for an object-like macro) or
20446 an opening paren (for a function-like macro). */
20447 for (p = body; *p; p++)
20448 if (*p == ' ' || *p == '(')
20449 break;
20450
20451 if (*p == ' ' || *p == '\0')
20452 {
20453 /* It's an object-like macro. */
20454 int name_len = p - body;
20455 char *name = copy_string (body, name_len);
20456 const char *replacement;
20457
20458 if (*p == ' ')
20459 replacement = body + name_len + 1;
20460 else
20461 {
4d3c2250 20462 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20463 replacement = body + name_len;
20464 }
6e70227d 20465
2e276125
JB
20466 macro_define_object (file, line, name, replacement);
20467
20468 xfree (name);
20469 }
20470 else if (*p == '(')
20471 {
20472 /* It's a function-like macro. */
20473 char *name = copy_string (body, p - body);
20474 int argc = 0;
20475 int argv_size = 1;
20476 char **argv = xmalloc (argv_size * sizeof (*argv));
20477
20478 p++;
20479
20480 p = consume_improper_spaces (p, body);
20481
20482 /* Parse the formal argument list. */
20483 while (*p && *p != ')')
20484 {
20485 /* Find the extent of the current argument name. */
20486 const char *arg_start = p;
20487
20488 while (*p && *p != ',' && *p != ')' && *p != ' ')
20489 p++;
20490
20491 if (! *p || p == arg_start)
4d3c2250 20492 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20493 else
20494 {
20495 /* Make sure argv has room for the new argument. */
20496 if (argc >= argv_size)
20497 {
20498 argv_size *= 2;
20499 argv = xrealloc (argv, argv_size * sizeof (*argv));
20500 }
20501
20502 argv[argc++] = copy_string (arg_start, p - arg_start);
20503 }
20504
20505 p = consume_improper_spaces (p, body);
20506
20507 /* Consume the comma, if present. */
20508 if (*p == ',')
20509 {
20510 p++;
20511
20512 p = consume_improper_spaces (p, body);
20513 }
20514 }
20515
20516 if (*p == ')')
20517 {
20518 p++;
20519
20520 if (*p == ' ')
20521 /* Perfectly formed definition, no complaints. */
20522 macro_define_function (file, line, name,
6e70227d 20523 argc, (const char **) argv,
2e276125
JB
20524 p + 1);
20525 else if (*p == '\0')
20526 {
20527 /* Complain, but do define it. */
4d3c2250 20528 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20529 macro_define_function (file, line, name,
6e70227d 20530 argc, (const char **) argv,
2e276125
JB
20531 p);
20532 }
20533 else
20534 /* Just complain. */
4d3c2250 20535 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20536 }
20537 else
20538 /* Just complain. */
4d3c2250 20539 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20540
20541 xfree (name);
20542 {
20543 int i;
20544
20545 for (i = 0; i < argc; i++)
20546 xfree (argv[i]);
20547 }
20548 xfree (argv);
20549 }
20550 else
4d3c2250 20551 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20552}
20553
cf2c3c16
TT
20554/* Skip some bytes from BYTES according to the form given in FORM.
20555 Returns the new pointer. */
2e276125 20556
d521ce57
TT
20557static const gdb_byte *
20558skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20559 enum dwarf_form form,
20560 unsigned int offset_size,
20561 struct dwarf2_section_info *section)
2e276125 20562{
cf2c3c16 20563 unsigned int bytes_read;
2e276125 20564
cf2c3c16 20565 switch (form)
2e276125 20566 {
cf2c3c16
TT
20567 case DW_FORM_data1:
20568 case DW_FORM_flag:
20569 ++bytes;
20570 break;
20571
20572 case DW_FORM_data2:
20573 bytes += 2;
20574 break;
20575
20576 case DW_FORM_data4:
20577 bytes += 4;
20578 break;
20579
20580 case DW_FORM_data8:
20581 bytes += 8;
20582 break;
20583
20584 case DW_FORM_string:
20585 read_direct_string (abfd, bytes, &bytes_read);
20586 bytes += bytes_read;
20587 break;
20588
20589 case DW_FORM_sec_offset:
20590 case DW_FORM_strp:
36586728 20591 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20592 bytes += offset_size;
20593 break;
20594
20595 case DW_FORM_block:
20596 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20598 break;
20599
20600 case DW_FORM_block1:
20601 bytes += 1 + read_1_byte (abfd, bytes);
20602 break;
20603 case DW_FORM_block2:
20604 bytes += 2 + read_2_bytes (abfd, bytes);
20605 break;
20606 case DW_FORM_block4:
20607 bytes += 4 + read_4_bytes (abfd, bytes);
20608 break;
20609
20610 case DW_FORM_sdata:
20611 case DW_FORM_udata:
3019eac3
DE
20612 case DW_FORM_GNU_addr_index:
20613 case DW_FORM_GNU_str_index:
d521ce57 20614 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20615 if (bytes == NULL)
20616 {
20617 dwarf2_section_buffer_overflow_complaint (section);
20618 return NULL;
20619 }
cf2c3c16
TT
20620 break;
20621
20622 default:
20623 {
20624 complain:
20625 complaint (&symfile_complaints,
20626 _("invalid form 0x%x in `%s'"),
a32a8923 20627 form, get_section_name (section));
cf2c3c16
TT
20628 return NULL;
20629 }
2e276125
JB
20630 }
20631
cf2c3c16
TT
20632 return bytes;
20633}
757a13d0 20634
cf2c3c16
TT
20635/* A helper for dwarf_decode_macros that handles skipping an unknown
20636 opcode. Returns an updated pointer to the macro data buffer; or,
20637 on error, issues a complaint and returns NULL. */
757a13d0 20638
d521ce57 20639static const gdb_byte *
cf2c3c16 20640skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20641 const gdb_byte **opcode_definitions,
20642 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20643 bfd *abfd,
20644 unsigned int offset_size,
20645 struct dwarf2_section_info *section)
20646{
20647 unsigned int bytes_read, i;
20648 unsigned long arg;
d521ce57 20649 const gdb_byte *defn;
2e276125 20650
cf2c3c16 20651 if (opcode_definitions[opcode] == NULL)
2e276125 20652 {
cf2c3c16
TT
20653 complaint (&symfile_complaints,
20654 _("unrecognized DW_MACFINO opcode 0x%x"),
20655 opcode);
20656 return NULL;
20657 }
2e276125 20658
cf2c3c16
TT
20659 defn = opcode_definitions[opcode];
20660 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20661 defn += bytes_read;
2e276125 20662
cf2c3c16
TT
20663 for (i = 0; i < arg; ++i)
20664 {
f664829e
DE
20665 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20666 section);
cf2c3c16
TT
20667 if (mac_ptr == NULL)
20668 {
20669 /* skip_form_bytes already issued the complaint. */
20670 return NULL;
20671 }
20672 }
757a13d0 20673
cf2c3c16
TT
20674 return mac_ptr;
20675}
757a13d0 20676
cf2c3c16
TT
20677/* A helper function which parses the header of a macro section.
20678 If the macro section is the extended (for now called "GNU") type,
20679 then this updates *OFFSET_SIZE. Returns a pointer to just after
20680 the header, or issues a complaint and returns NULL on error. */
757a13d0 20681
d521ce57
TT
20682static const gdb_byte *
20683dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20684 bfd *abfd,
d521ce57 20685 const gdb_byte *mac_ptr,
cf2c3c16
TT
20686 unsigned int *offset_size,
20687 int section_is_gnu)
20688{
20689 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20690
cf2c3c16
TT
20691 if (section_is_gnu)
20692 {
20693 unsigned int version, flags;
757a13d0 20694
cf2c3c16
TT
20695 version = read_2_bytes (abfd, mac_ptr);
20696 if (version != 4)
20697 {
20698 complaint (&symfile_complaints,
20699 _("unrecognized version `%d' in .debug_macro section"),
20700 version);
20701 return NULL;
20702 }
20703 mac_ptr += 2;
757a13d0 20704
cf2c3c16
TT
20705 flags = read_1_byte (abfd, mac_ptr);
20706 ++mac_ptr;
20707 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20708
cf2c3c16
TT
20709 if ((flags & 2) != 0)
20710 /* We don't need the line table offset. */
20711 mac_ptr += *offset_size;
757a13d0 20712
cf2c3c16
TT
20713 /* Vendor opcode descriptions. */
20714 if ((flags & 4) != 0)
20715 {
20716 unsigned int i, count;
757a13d0 20717
cf2c3c16
TT
20718 count = read_1_byte (abfd, mac_ptr);
20719 ++mac_ptr;
20720 for (i = 0; i < count; ++i)
20721 {
20722 unsigned int opcode, bytes_read;
20723 unsigned long arg;
20724
20725 opcode = read_1_byte (abfd, mac_ptr);
20726 ++mac_ptr;
20727 opcode_definitions[opcode] = mac_ptr;
20728 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20729 mac_ptr += bytes_read;
20730 mac_ptr += arg;
20731 }
757a13d0 20732 }
cf2c3c16 20733 }
757a13d0 20734
cf2c3c16
TT
20735 return mac_ptr;
20736}
757a13d0 20737
cf2c3c16 20738/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20739 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20740
20741static void
d521ce57
TT
20742dwarf_decode_macro_bytes (bfd *abfd,
20743 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20744 struct macro_source_file *current_file,
15d034d0 20745 struct line_header *lh, const char *comp_dir,
cf2c3c16 20746 struct dwarf2_section_info *section,
36586728 20747 int section_is_gnu, int section_is_dwz,
cf2c3c16 20748 unsigned int offset_size,
8fc3fc34
TT
20749 struct objfile *objfile,
20750 htab_t include_hash)
cf2c3c16
TT
20751{
20752 enum dwarf_macro_record_type macinfo_type;
20753 int at_commandline;
d521ce57 20754 const gdb_byte *opcode_definitions[256];
757a13d0 20755
cf2c3c16
TT
20756 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20757 &offset_size, section_is_gnu);
20758 if (mac_ptr == NULL)
20759 {
20760 /* We already issued a complaint. */
20761 return;
20762 }
757a13d0
JK
20763
20764 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20765 GDB is still reading the definitions from command line. First
20766 DW_MACINFO_start_file will need to be ignored as it was already executed
20767 to create CURRENT_FILE for the main source holding also the command line
20768 definitions. On first met DW_MACINFO_start_file this flag is reset to
20769 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20770
20771 at_commandline = 1;
20772
20773 do
20774 {
20775 /* Do we at least have room for a macinfo type byte? */
20776 if (mac_ptr >= mac_end)
20777 {
f664829e 20778 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20779 break;
20780 }
20781
20782 macinfo_type = read_1_byte (abfd, mac_ptr);
20783 mac_ptr++;
20784
cf2c3c16
TT
20785 /* Note that we rely on the fact that the corresponding GNU and
20786 DWARF constants are the same. */
757a13d0
JK
20787 switch (macinfo_type)
20788 {
20789 /* A zero macinfo type indicates the end of the macro
20790 information. */
20791 case 0:
20792 break;
2e276125 20793
cf2c3c16
TT
20794 case DW_MACRO_GNU_define:
20795 case DW_MACRO_GNU_undef:
20796 case DW_MACRO_GNU_define_indirect:
20797 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20798 case DW_MACRO_GNU_define_indirect_alt:
20799 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20800 {
891d2f0b 20801 unsigned int bytes_read;
2e276125 20802 int line;
d521ce57 20803 const char *body;
cf2c3c16 20804 int is_define;
2e276125 20805
cf2c3c16
TT
20806 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20808
20809 if (macinfo_type == DW_MACRO_GNU_define
20810 || macinfo_type == DW_MACRO_GNU_undef)
20811 {
20812 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20813 mac_ptr += bytes_read;
20814 }
20815 else
20816 {
20817 LONGEST str_offset;
20818
20819 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20820 mac_ptr += offset_size;
2e276125 20821
36586728 20822 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20823 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20824 || section_is_dwz)
36586728
TT
20825 {
20826 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20827
20828 body = read_indirect_string_from_dwz (dwz, str_offset);
20829 }
20830 else
20831 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20832 }
20833
20834 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20835 || macinfo_type == DW_MACRO_GNU_define_indirect
20836 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20837 if (! current_file)
757a13d0
JK
20838 {
20839 /* DWARF violation as no main source is present. */
20840 complaint (&symfile_complaints,
20841 _("debug info with no main source gives macro %s "
20842 "on line %d: %s"),
cf2c3c16
TT
20843 is_define ? _("definition") : _("undefinition"),
20844 line, body);
757a13d0
JK
20845 break;
20846 }
3e43a32a
MS
20847 if ((line == 0 && !at_commandline)
20848 || (line != 0 && at_commandline))
4d3c2250 20849 complaint (&symfile_complaints,
757a13d0
JK
20850 _("debug info gives %s macro %s with %s line %d: %s"),
20851 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20852 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20853 line == 0 ? _("zero") : _("non-zero"), line, body);
20854
cf2c3c16 20855 if (is_define)
757a13d0 20856 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20857 else
20858 {
20859 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20860 || macinfo_type == DW_MACRO_GNU_undef_indirect
20861 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20862 macro_undef (current_file, line, body);
20863 }
2e276125
JB
20864 }
20865 break;
20866
cf2c3c16 20867 case DW_MACRO_GNU_start_file:
2e276125 20868 {
891d2f0b 20869 unsigned int bytes_read;
2e276125
JB
20870 int line, file;
20871
20872 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20873 mac_ptr += bytes_read;
20874 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20875 mac_ptr += bytes_read;
20876
3e43a32a
MS
20877 if ((line == 0 && !at_commandline)
20878 || (line != 0 && at_commandline))
757a13d0
JK
20879 complaint (&symfile_complaints,
20880 _("debug info gives source %d included "
20881 "from %s at %s line %d"),
20882 file, at_commandline ? _("command-line") : _("file"),
20883 line == 0 ? _("zero") : _("non-zero"), line);
20884
20885 if (at_commandline)
20886 {
cf2c3c16
TT
20887 /* This DW_MACRO_GNU_start_file was executed in the
20888 pass one. */
757a13d0
JK
20889 at_commandline = 0;
20890 }
20891 else
20892 current_file = macro_start_file (file, line,
20893 current_file, comp_dir,
cf2c3c16 20894 lh, objfile);
2e276125
JB
20895 }
20896 break;
20897
cf2c3c16 20898 case DW_MACRO_GNU_end_file:
2e276125 20899 if (! current_file)
4d3c2250 20900 complaint (&symfile_complaints,
3e43a32a
MS
20901 _("macro debug info has an unmatched "
20902 "`close_file' directive"));
2e276125
JB
20903 else
20904 {
20905 current_file = current_file->included_by;
20906 if (! current_file)
20907 {
cf2c3c16 20908 enum dwarf_macro_record_type next_type;
2e276125
JB
20909
20910 /* GCC circa March 2002 doesn't produce the zero
20911 type byte marking the end of the compilation
20912 unit. Complain if it's not there, but exit no
20913 matter what. */
20914
20915 /* Do we at least have room for a macinfo type byte? */
20916 if (mac_ptr >= mac_end)
20917 {
f664829e 20918 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20919 return;
20920 }
20921
20922 /* We don't increment mac_ptr here, so this is just
20923 a look-ahead. */
20924 next_type = read_1_byte (abfd, mac_ptr);
20925 if (next_type != 0)
4d3c2250 20926 complaint (&symfile_complaints,
3e43a32a
MS
20927 _("no terminating 0-type entry for "
20928 "macros in `.debug_macinfo' section"));
2e276125
JB
20929
20930 return;
20931 }
20932 }
20933 break;
20934
cf2c3c16 20935 case DW_MACRO_GNU_transparent_include:
36586728 20936 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20937 {
20938 LONGEST offset;
8fc3fc34 20939 void **slot;
a036ba48
TT
20940 bfd *include_bfd = abfd;
20941 struct dwarf2_section_info *include_section = section;
20942 struct dwarf2_section_info alt_section;
d521ce57 20943 const gdb_byte *include_mac_end = mac_end;
a036ba48 20944 int is_dwz = section_is_dwz;
d521ce57 20945 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20946
20947 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20948 mac_ptr += offset_size;
20949
a036ba48
TT
20950 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20951 {
20952 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20953
20954 dwarf2_read_section (dwarf2_per_objfile->objfile,
20955 &dwz->macro);
20956
a036ba48 20957 include_section = &dwz->macro;
a32a8923 20958 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20959 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20960 is_dwz = 1;
20961 }
20962
20963 new_mac_ptr = include_section->buffer + offset;
20964 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20965
8fc3fc34
TT
20966 if (*slot != NULL)
20967 {
20968 /* This has actually happened; see
20969 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20970 complaint (&symfile_complaints,
20971 _("recursive DW_MACRO_GNU_transparent_include in "
20972 ".debug_macro section"));
20973 }
20974 else
20975 {
d521ce57 20976 *slot = (void *) new_mac_ptr;
36586728 20977
a036ba48 20978 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20979 include_mac_end, current_file,
8fc3fc34 20980 lh, comp_dir,
36586728 20981 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20982 offset_size, objfile, include_hash);
20983
d521ce57 20984 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20985 }
cf2c3c16
TT
20986 }
20987 break;
20988
2e276125 20989 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20990 if (!section_is_gnu)
20991 {
20992 unsigned int bytes_read;
20993 int constant;
2e276125 20994
cf2c3c16
TT
20995 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20996 mac_ptr += bytes_read;
20997 read_direct_string (abfd, mac_ptr, &bytes_read);
20998 mac_ptr += bytes_read;
2e276125 20999
cf2c3c16
TT
21000 /* We don't recognize any vendor extensions. */
21001 break;
21002 }
21003 /* FALLTHROUGH */
21004
21005 default:
21006 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21007 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21008 section);
21009 if (mac_ptr == NULL)
21010 return;
21011 break;
2e276125 21012 }
757a13d0 21013 } while (macinfo_type != 0);
2e276125 21014}
8e19ed76 21015
cf2c3c16 21016static void
09262596 21017dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 21018 const char *comp_dir, int section_is_gnu)
cf2c3c16 21019{
bb5ed363 21020 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21021 struct line_header *lh = cu->line_header;
21022 bfd *abfd;
d521ce57 21023 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21024 struct macro_source_file *current_file = 0;
21025 enum dwarf_macro_record_type macinfo_type;
21026 unsigned int offset_size = cu->header.offset_size;
d521ce57 21027 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21028 struct cleanup *cleanup;
21029 htab_t include_hash;
21030 void **slot;
09262596
DE
21031 struct dwarf2_section_info *section;
21032 const char *section_name;
21033
21034 if (cu->dwo_unit != NULL)
21035 {
21036 if (section_is_gnu)
21037 {
21038 section = &cu->dwo_unit->dwo_file->sections.macro;
21039 section_name = ".debug_macro.dwo";
21040 }
21041 else
21042 {
21043 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21044 section_name = ".debug_macinfo.dwo";
21045 }
21046 }
21047 else
21048 {
21049 if (section_is_gnu)
21050 {
21051 section = &dwarf2_per_objfile->macro;
21052 section_name = ".debug_macro";
21053 }
21054 else
21055 {
21056 section = &dwarf2_per_objfile->macinfo;
21057 section_name = ".debug_macinfo";
21058 }
21059 }
cf2c3c16 21060
bb5ed363 21061 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21062 if (section->buffer == NULL)
21063 {
fceca515 21064 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21065 return;
21066 }
a32a8923 21067 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21068
21069 /* First pass: Find the name of the base filename.
21070 This filename is needed in order to process all macros whose definition
21071 (or undefinition) comes from the command line. These macros are defined
21072 before the first DW_MACINFO_start_file entry, and yet still need to be
21073 associated to the base file.
21074
21075 To determine the base file name, we scan the macro definitions until we
21076 reach the first DW_MACINFO_start_file entry. We then initialize
21077 CURRENT_FILE accordingly so that any macro definition found before the
21078 first DW_MACINFO_start_file can still be associated to the base file. */
21079
21080 mac_ptr = section->buffer + offset;
21081 mac_end = section->buffer + section->size;
21082
21083 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21084 &offset_size, section_is_gnu);
21085 if (mac_ptr == NULL)
21086 {
21087 /* We already issued a complaint. */
21088 return;
21089 }
21090
21091 do
21092 {
21093 /* Do we at least have room for a macinfo type byte? */
21094 if (mac_ptr >= mac_end)
21095 {
21096 /* Complaint is printed during the second pass as GDB will probably
21097 stop the first pass earlier upon finding
21098 DW_MACINFO_start_file. */
21099 break;
21100 }
21101
21102 macinfo_type = read_1_byte (abfd, mac_ptr);
21103 mac_ptr++;
21104
21105 /* Note that we rely on the fact that the corresponding GNU and
21106 DWARF constants are the same. */
21107 switch (macinfo_type)
21108 {
21109 /* A zero macinfo type indicates the end of the macro
21110 information. */
21111 case 0:
21112 break;
21113
21114 case DW_MACRO_GNU_define:
21115 case DW_MACRO_GNU_undef:
21116 /* Only skip the data by MAC_PTR. */
21117 {
21118 unsigned int bytes_read;
21119
21120 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21121 mac_ptr += bytes_read;
21122 read_direct_string (abfd, mac_ptr, &bytes_read);
21123 mac_ptr += bytes_read;
21124 }
21125 break;
21126
21127 case DW_MACRO_GNU_start_file:
21128 {
21129 unsigned int bytes_read;
21130 int line, file;
21131
21132 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21133 mac_ptr += bytes_read;
21134 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21135 mac_ptr += bytes_read;
21136
21137 current_file = macro_start_file (file, line, current_file,
bb5ed363 21138 comp_dir, lh, objfile);
cf2c3c16
TT
21139 }
21140 break;
21141
21142 case DW_MACRO_GNU_end_file:
21143 /* No data to skip by MAC_PTR. */
21144 break;
21145
21146 case DW_MACRO_GNU_define_indirect:
21147 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21148 case DW_MACRO_GNU_define_indirect_alt:
21149 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21150 {
21151 unsigned int bytes_read;
21152
21153 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21154 mac_ptr += bytes_read;
21155 mac_ptr += offset_size;
21156 }
21157 break;
21158
21159 case DW_MACRO_GNU_transparent_include:
f7a35f02 21160 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21161 /* Note that, according to the spec, a transparent include
21162 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21163 skip this opcode. */
21164 mac_ptr += offset_size;
21165 break;
21166
21167 case DW_MACINFO_vendor_ext:
21168 /* Only skip the data by MAC_PTR. */
21169 if (!section_is_gnu)
21170 {
21171 unsigned int bytes_read;
21172
21173 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21174 mac_ptr += bytes_read;
21175 read_direct_string (abfd, mac_ptr, &bytes_read);
21176 mac_ptr += bytes_read;
21177 }
21178 /* FALLTHROUGH */
21179
21180 default:
21181 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21182 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21183 section);
21184 if (mac_ptr == NULL)
21185 return;
21186 break;
21187 }
21188 } while (macinfo_type != 0 && current_file == NULL);
21189
21190 /* Second pass: Process all entries.
21191
21192 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21193 command-line macro definitions/undefinitions. This flag is unset when we
21194 reach the first DW_MACINFO_start_file entry. */
21195
8fc3fc34
TT
21196 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21197 NULL, xcalloc, xfree);
21198 cleanup = make_cleanup_htab_delete (include_hash);
21199 mac_ptr = section->buffer + offset;
21200 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21201 *slot = (void *) mac_ptr;
8fc3fc34 21202 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
21203 current_file, lh, comp_dir, section,
21204 section_is_gnu, 0,
8fc3fc34
TT
21205 offset_size, objfile, include_hash);
21206 do_cleanups (cleanup);
cf2c3c16
TT
21207}
21208
8e19ed76 21209/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21210 if so return true else false. */
380bca97 21211
8e19ed76 21212static int
6e5a29e1 21213attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21214{
21215 return (attr == NULL ? 0 :
21216 attr->form == DW_FORM_block1
21217 || attr->form == DW_FORM_block2
21218 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21219 || attr->form == DW_FORM_block
21220 || attr->form == DW_FORM_exprloc);
8e19ed76 21221}
4c2df51b 21222
c6a0999f
JB
21223/* Return non-zero if ATTR's value is a section offset --- classes
21224 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21225 You may use DW_UNSND (attr) to retrieve such offsets.
21226
21227 Section 7.5.4, "Attribute Encodings", explains that no attribute
21228 may have a value that belongs to more than one of these classes; it
21229 would be ambiguous if we did, because we use the same forms for all
21230 of them. */
380bca97 21231
3690dd37 21232static int
6e5a29e1 21233attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21234{
21235 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21236 || attr->form == DW_FORM_data8
21237 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21238}
21239
3690dd37
JB
21240/* Return non-zero if ATTR's value falls in the 'constant' class, or
21241 zero otherwise. When this function returns true, you can apply
21242 dwarf2_get_attr_constant_value to it.
21243
21244 However, note that for some attributes you must check
21245 attr_form_is_section_offset before using this test. DW_FORM_data4
21246 and DW_FORM_data8 are members of both the constant class, and of
21247 the classes that contain offsets into other debug sections
21248 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21249 that, if an attribute's can be either a constant or one of the
21250 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21251 taken as section offsets, not constants. */
380bca97 21252
3690dd37 21253static int
6e5a29e1 21254attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21255{
21256 switch (attr->form)
21257 {
21258 case DW_FORM_sdata:
21259 case DW_FORM_udata:
21260 case DW_FORM_data1:
21261 case DW_FORM_data2:
21262 case DW_FORM_data4:
21263 case DW_FORM_data8:
21264 return 1;
21265 default:
21266 return 0;
21267 }
21268}
21269
7771576e
SA
21270
21271/* DW_ADDR is always stored already as sect_offset; despite for the forms
21272 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21273
21274static int
6e5a29e1 21275attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21276{
21277 switch (attr->form)
21278 {
21279 case DW_FORM_ref_addr:
21280 case DW_FORM_ref1:
21281 case DW_FORM_ref2:
21282 case DW_FORM_ref4:
21283 case DW_FORM_ref8:
21284 case DW_FORM_ref_udata:
21285 case DW_FORM_GNU_ref_alt:
21286 return 1;
21287 default:
21288 return 0;
21289 }
21290}
21291
3019eac3
DE
21292/* Return the .debug_loc section to use for CU.
21293 For DWO files use .debug_loc.dwo. */
21294
21295static struct dwarf2_section_info *
21296cu_debug_loc_section (struct dwarf2_cu *cu)
21297{
21298 if (cu->dwo_unit)
21299 return &cu->dwo_unit->dwo_file->sections.loc;
21300 return &dwarf2_per_objfile->loc;
21301}
21302
8cf6f0b1
TT
21303/* A helper function that fills in a dwarf2_loclist_baton. */
21304
21305static void
21306fill_in_loclist_baton (struct dwarf2_cu *cu,
21307 struct dwarf2_loclist_baton *baton,
ff39bb5e 21308 const struct attribute *attr)
8cf6f0b1 21309{
3019eac3
DE
21310 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21311
21312 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21313
21314 baton->per_cu = cu->per_cu;
21315 gdb_assert (baton->per_cu);
21316 /* We don't know how long the location list is, but make sure we
21317 don't run off the edge of the section. */
3019eac3
DE
21318 baton->size = section->size - DW_UNSND (attr);
21319 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21320 baton->base_address = cu->base_address;
f664829e 21321 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21322}
21323
4c2df51b 21324static void
ff39bb5e 21325dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21326 struct dwarf2_cu *cu, int is_block)
4c2df51b 21327{
bb5ed363 21328 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21329 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21330
3690dd37 21331 if (attr_form_is_section_offset (attr)
3019eac3 21332 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21333 the section. If so, fall through to the complaint in the
21334 other branch. */
3019eac3 21335 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21336 {
0d53c4c4 21337 struct dwarf2_loclist_baton *baton;
4c2df51b 21338
bb5ed363 21339 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21340 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21341
8cf6f0b1 21342 fill_in_loclist_baton (cu, baton, attr);
be391dca 21343
d00adf39 21344 if (cu->base_known == 0)
0d53c4c4 21345 complaint (&symfile_complaints,
3e43a32a
MS
21346 _("Location list used without "
21347 "specifying the CU base address."));
4c2df51b 21348
f1e6e072
TT
21349 SYMBOL_ACLASS_INDEX (sym) = (is_block
21350 ? dwarf2_loclist_block_index
21351 : dwarf2_loclist_index);
0d53c4c4
DJ
21352 SYMBOL_LOCATION_BATON (sym) = baton;
21353 }
21354 else
21355 {
21356 struct dwarf2_locexpr_baton *baton;
21357
bb5ed363 21358 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21359 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21360 baton->per_cu = cu->per_cu;
21361 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21362
21363 if (attr_form_is_block (attr))
21364 {
21365 /* Note that we're just copying the block's data pointer
21366 here, not the actual data. We're still pointing into the
6502dd73
DJ
21367 info_buffer for SYM's objfile; right now we never release
21368 that buffer, but when we do clean up properly this may
21369 need to change. */
0d53c4c4
DJ
21370 baton->size = DW_BLOCK (attr)->size;
21371 baton->data = DW_BLOCK (attr)->data;
21372 }
21373 else
21374 {
21375 dwarf2_invalid_attrib_class_complaint ("location description",
21376 SYMBOL_NATURAL_NAME (sym));
21377 baton->size = 0;
0d53c4c4 21378 }
6e70227d 21379
f1e6e072
TT
21380 SYMBOL_ACLASS_INDEX (sym) = (is_block
21381 ? dwarf2_locexpr_block_index
21382 : dwarf2_locexpr_index);
0d53c4c4
DJ
21383 SYMBOL_LOCATION_BATON (sym) = baton;
21384 }
4c2df51b 21385}
6502dd73 21386
9aa1f1e3
TT
21387/* Return the OBJFILE associated with the compilation unit CU. If CU
21388 came from a separate debuginfo file, then the master objfile is
21389 returned. */
ae0d2f24
UW
21390
21391struct objfile *
21392dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21393{
9291a0cd 21394 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21395
21396 /* Return the master objfile, so that we can report and look up the
21397 correct file containing this variable. */
21398 if (objfile->separate_debug_objfile_backlink)
21399 objfile = objfile->separate_debug_objfile_backlink;
21400
21401 return objfile;
21402}
21403
96408a79
SA
21404/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21405 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21406 CU_HEADERP first. */
21407
21408static const struct comp_unit_head *
21409per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21410 struct dwarf2_per_cu_data *per_cu)
21411{
d521ce57 21412 const gdb_byte *info_ptr;
96408a79
SA
21413
21414 if (per_cu->cu)
21415 return &per_cu->cu->header;
21416
8a0459fd 21417 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21418
21419 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21420 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21421
21422 return cu_headerp;
21423}
21424
ae0d2f24
UW
21425/* Return the address size given in the compilation unit header for CU. */
21426
98714339 21427int
ae0d2f24
UW
21428dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21429{
96408a79
SA
21430 struct comp_unit_head cu_header_local;
21431 const struct comp_unit_head *cu_headerp;
c471e790 21432
96408a79
SA
21433 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21434
21435 return cu_headerp->addr_size;
ae0d2f24
UW
21436}
21437
9eae7c52
TT
21438/* Return the offset size given in the compilation unit header for CU. */
21439
21440int
21441dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21442{
96408a79
SA
21443 struct comp_unit_head cu_header_local;
21444 const struct comp_unit_head *cu_headerp;
9c6c53f7 21445
96408a79
SA
21446 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21447
21448 return cu_headerp->offset_size;
21449}
21450
21451/* See its dwarf2loc.h declaration. */
21452
21453int
21454dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21455{
21456 struct comp_unit_head cu_header_local;
21457 const struct comp_unit_head *cu_headerp;
21458
21459 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21460
21461 if (cu_headerp->version == 2)
21462 return cu_headerp->addr_size;
21463 else
21464 return cu_headerp->offset_size;
181cebd4
JK
21465}
21466
9aa1f1e3
TT
21467/* Return the text offset of the CU. The returned offset comes from
21468 this CU's objfile. If this objfile came from a separate debuginfo
21469 file, then the offset may be different from the corresponding
21470 offset in the parent objfile. */
21471
21472CORE_ADDR
21473dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21474{
bb3fa9d0 21475 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21476
21477 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21478}
21479
348e048f
DE
21480/* Locate the .debug_info compilation unit from CU's objfile which contains
21481 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21482
21483static struct dwarf2_per_cu_data *
b64f50a1 21484dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21485 unsigned int offset_in_dwz,
ae038cb0
DJ
21486 struct objfile *objfile)
21487{
21488 struct dwarf2_per_cu_data *this_cu;
21489 int low, high;
36586728 21490 const sect_offset *cu_off;
ae038cb0 21491
ae038cb0
DJ
21492 low = 0;
21493 high = dwarf2_per_objfile->n_comp_units - 1;
21494 while (high > low)
21495 {
36586728 21496 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21497 int mid = low + (high - low) / 2;
9a619af0 21498
36586728
TT
21499 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21500 cu_off = &mid_cu->offset;
21501 if (mid_cu->is_dwz > offset_in_dwz
21502 || (mid_cu->is_dwz == offset_in_dwz
21503 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21504 high = mid;
21505 else
21506 low = mid + 1;
21507 }
21508 gdb_assert (low == high);
36586728
TT
21509 this_cu = dwarf2_per_objfile->all_comp_units[low];
21510 cu_off = &this_cu->offset;
21511 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21512 {
36586728 21513 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21514 error (_("Dwarf Error: could not find partial DIE containing "
21515 "offset 0x%lx [in module %s]"),
b64f50a1 21516 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21517
b64f50a1
JK
21518 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21519 <= offset.sect_off);
ae038cb0
DJ
21520 return dwarf2_per_objfile->all_comp_units[low-1];
21521 }
21522 else
21523 {
21524 this_cu = dwarf2_per_objfile->all_comp_units[low];
21525 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21526 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21527 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21528 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21529 return this_cu;
21530 }
21531}
21532
23745b47 21533/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21534
9816fde3 21535static void
23745b47 21536init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21537{
9816fde3 21538 memset (cu, 0, sizeof (*cu));
23745b47
DE
21539 per_cu->cu = cu;
21540 cu->per_cu = per_cu;
21541 cu->objfile = per_cu->objfile;
93311388 21542 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21543}
21544
21545/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21546
21547static void
95554aad
TT
21548prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21549 enum language pretend_language)
9816fde3
JK
21550{
21551 struct attribute *attr;
21552
21553 /* Set the language we're debugging. */
21554 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21555 if (attr)
21556 set_cu_language (DW_UNSND (attr), cu);
21557 else
9cded63f 21558 {
95554aad 21559 cu->language = pretend_language;
9cded63f
TT
21560 cu->language_defn = language_def (cu->language);
21561 }
dee91e82
DE
21562
21563 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21564 if (attr)
21565 cu->producer = DW_STRING (attr);
93311388
DE
21566}
21567
ae038cb0
DJ
21568/* Release one cached compilation unit, CU. We unlink it from the tree
21569 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21570 the caller is responsible for that.
21571 NOTE: DATA is a void * because this function is also used as a
21572 cleanup routine. */
ae038cb0
DJ
21573
21574static void
68dc6402 21575free_heap_comp_unit (void *data)
ae038cb0
DJ
21576{
21577 struct dwarf2_cu *cu = data;
21578
23745b47
DE
21579 gdb_assert (cu->per_cu != NULL);
21580 cu->per_cu->cu = NULL;
ae038cb0
DJ
21581 cu->per_cu = NULL;
21582
21583 obstack_free (&cu->comp_unit_obstack, NULL);
21584
21585 xfree (cu);
21586}
21587
72bf9492 21588/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21589 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21590 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21591
21592static void
21593free_stack_comp_unit (void *data)
21594{
21595 struct dwarf2_cu *cu = data;
21596
23745b47
DE
21597 gdb_assert (cu->per_cu != NULL);
21598 cu->per_cu->cu = NULL;
21599 cu->per_cu = NULL;
21600
72bf9492
DJ
21601 obstack_free (&cu->comp_unit_obstack, NULL);
21602 cu->partial_dies = NULL;
ae038cb0
DJ
21603}
21604
21605/* Free all cached compilation units. */
21606
21607static void
21608free_cached_comp_units (void *data)
21609{
21610 struct dwarf2_per_cu_data *per_cu, **last_chain;
21611
21612 per_cu = dwarf2_per_objfile->read_in_chain;
21613 last_chain = &dwarf2_per_objfile->read_in_chain;
21614 while (per_cu != NULL)
21615 {
21616 struct dwarf2_per_cu_data *next_cu;
21617
21618 next_cu = per_cu->cu->read_in_chain;
21619
68dc6402 21620 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21621 *last_chain = next_cu;
21622
21623 per_cu = next_cu;
21624 }
21625}
21626
21627/* Increase the age counter on each cached compilation unit, and free
21628 any that are too old. */
21629
21630static void
21631age_cached_comp_units (void)
21632{
21633 struct dwarf2_per_cu_data *per_cu, **last_chain;
21634
21635 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21636 per_cu = dwarf2_per_objfile->read_in_chain;
21637 while (per_cu != NULL)
21638 {
21639 per_cu->cu->last_used ++;
21640 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21641 dwarf2_mark (per_cu->cu);
21642 per_cu = per_cu->cu->read_in_chain;
21643 }
21644
21645 per_cu = dwarf2_per_objfile->read_in_chain;
21646 last_chain = &dwarf2_per_objfile->read_in_chain;
21647 while (per_cu != NULL)
21648 {
21649 struct dwarf2_per_cu_data *next_cu;
21650
21651 next_cu = per_cu->cu->read_in_chain;
21652
21653 if (!per_cu->cu->mark)
21654 {
68dc6402 21655 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21656 *last_chain = next_cu;
21657 }
21658 else
21659 last_chain = &per_cu->cu->read_in_chain;
21660
21661 per_cu = next_cu;
21662 }
21663}
21664
21665/* Remove a single compilation unit from the cache. */
21666
21667static void
dee91e82 21668free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21669{
21670 struct dwarf2_per_cu_data *per_cu, **last_chain;
21671
21672 per_cu = dwarf2_per_objfile->read_in_chain;
21673 last_chain = &dwarf2_per_objfile->read_in_chain;
21674 while (per_cu != NULL)
21675 {
21676 struct dwarf2_per_cu_data *next_cu;
21677
21678 next_cu = per_cu->cu->read_in_chain;
21679
dee91e82 21680 if (per_cu == target_per_cu)
ae038cb0 21681 {
68dc6402 21682 free_heap_comp_unit (per_cu->cu);
dee91e82 21683 per_cu->cu = NULL;
ae038cb0
DJ
21684 *last_chain = next_cu;
21685 break;
21686 }
21687 else
21688 last_chain = &per_cu->cu->read_in_chain;
21689
21690 per_cu = next_cu;
21691 }
21692}
21693
fe3e1990
DJ
21694/* Release all extra memory associated with OBJFILE. */
21695
21696void
21697dwarf2_free_objfile (struct objfile *objfile)
21698{
21699 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21700
21701 if (dwarf2_per_objfile == NULL)
21702 return;
21703
21704 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21705 free_cached_comp_units (NULL);
21706
7b9f3c50
DE
21707 if (dwarf2_per_objfile->quick_file_names_table)
21708 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21709
fe3e1990
DJ
21710 /* Everything else should be on the objfile obstack. */
21711}
21712
dee91e82
DE
21713/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21714 We store these in a hash table separate from the DIEs, and preserve them
21715 when the DIEs are flushed out of cache.
21716
21717 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21718 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21719 or the type may come from a DWO file. Furthermore, while it's more logical
21720 to use per_cu->section+offset, with Fission the section with the data is in
21721 the DWO file but we don't know that section at the point we need it.
21722 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21723 because we can enter the lookup routine, get_die_type_at_offset, from
21724 outside this file, and thus won't necessarily have PER_CU->cu.
21725 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21726
dee91e82 21727struct dwarf2_per_cu_offset_and_type
1c379e20 21728{
dee91e82 21729 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21730 sect_offset offset;
1c379e20
DJ
21731 struct type *type;
21732};
21733
dee91e82 21734/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21735
21736static hashval_t
dee91e82 21737per_cu_offset_and_type_hash (const void *item)
1c379e20 21738{
dee91e82 21739 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21740
dee91e82 21741 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21742}
21743
dee91e82 21744/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21745
21746static int
dee91e82 21747per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21748{
dee91e82
DE
21749 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21750 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21751
dee91e82
DE
21752 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21753 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21754}
21755
21756/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21757 table if necessary. For convenience, return TYPE.
21758
21759 The DIEs reading must have careful ordering to:
21760 * Not cause infite loops trying to read in DIEs as a prerequisite for
21761 reading current DIE.
21762 * Not trying to dereference contents of still incompletely read in types
21763 while reading in other DIEs.
21764 * Enable referencing still incompletely read in types just by a pointer to
21765 the type without accessing its fields.
21766
21767 Therefore caller should follow these rules:
21768 * Try to fetch any prerequisite types we may need to build this DIE type
21769 before building the type and calling set_die_type.
e71ec853 21770 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21771 possible before fetching more types to complete the current type.
21772 * Make the type as complete as possible before fetching more types. */
1c379e20 21773
f792889a 21774static struct type *
1c379e20
DJ
21775set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21776{
dee91e82 21777 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21778 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
21779 struct attribute *attr;
21780 struct dynamic_prop prop;
1c379e20 21781
b4ba55a1
JB
21782 /* For Ada types, make sure that the gnat-specific data is always
21783 initialized (if not already set). There are a few types where
21784 we should not be doing so, because the type-specific area is
21785 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21786 where the type-specific area is used to store the floatformat).
21787 But this is not a problem, because the gnat-specific information
21788 is actually not needed for these types. */
21789 if (need_gnat_info (cu)
21790 && TYPE_CODE (type) != TYPE_CODE_FUNC
21791 && TYPE_CODE (type) != TYPE_CODE_FLT
21792 && !HAVE_GNAT_AUX_INFO (type))
21793 INIT_GNAT_SPECIFIC (type);
21794
3cdcd0ce
JB
21795 /* Read DW_AT_data_location and set in type. */
21796 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21797 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21798 {
21799 TYPE_DATA_LOCATION (type)
21800 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21801 *TYPE_DATA_LOCATION (type) = prop;
21802 }
21803
dee91e82 21804 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21805 {
dee91e82
DE
21806 dwarf2_per_objfile->die_type_hash =
21807 htab_create_alloc_ex (127,
21808 per_cu_offset_and_type_hash,
21809 per_cu_offset_and_type_eq,
21810 NULL,
21811 &objfile->objfile_obstack,
21812 hashtab_obstack_allocate,
21813 dummy_obstack_deallocate);
f792889a 21814 }
1c379e20 21815
dee91e82 21816 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21817 ofs.offset = die->offset;
21818 ofs.type = type;
dee91e82
DE
21819 slot = (struct dwarf2_per_cu_offset_and_type **)
21820 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21821 if (*slot)
21822 complaint (&symfile_complaints,
21823 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21824 die->offset.sect_off);
673bfd45 21825 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21826 **slot = ofs;
f792889a 21827 return type;
1c379e20
DJ
21828}
21829
02142a6c
DE
21830/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21831 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21832
21833static struct type *
b64f50a1 21834get_die_type_at_offset (sect_offset offset,
673bfd45 21835 struct dwarf2_per_cu_data *per_cu)
1c379e20 21836{
dee91e82 21837 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21838
dee91e82 21839 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21840 return NULL;
1c379e20 21841
dee91e82 21842 ofs.per_cu = per_cu;
673bfd45 21843 ofs.offset = offset;
dee91e82 21844 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21845 if (slot)
21846 return slot->type;
21847 else
21848 return NULL;
21849}
21850
02142a6c 21851/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21852 or return NULL if DIE does not have a saved type. */
21853
21854static struct type *
21855get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21856{
21857 return get_die_type_at_offset (die->offset, cu->per_cu);
21858}
21859
10b3939b
DJ
21860/* Add a dependence relationship from CU to REF_PER_CU. */
21861
21862static void
21863dwarf2_add_dependence (struct dwarf2_cu *cu,
21864 struct dwarf2_per_cu_data *ref_per_cu)
21865{
21866 void **slot;
21867
21868 if (cu->dependencies == NULL)
21869 cu->dependencies
21870 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21871 NULL, &cu->comp_unit_obstack,
21872 hashtab_obstack_allocate,
21873 dummy_obstack_deallocate);
21874
21875 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21876 if (*slot == NULL)
21877 *slot = ref_per_cu;
21878}
1c379e20 21879
f504f079
DE
21880/* Subroutine of dwarf2_mark to pass to htab_traverse.
21881 Set the mark field in every compilation unit in the
ae038cb0
DJ
21882 cache that we must keep because we are keeping CU. */
21883
10b3939b
DJ
21884static int
21885dwarf2_mark_helper (void **slot, void *data)
21886{
21887 struct dwarf2_per_cu_data *per_cu;
21888
21889 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21890
21891 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21892 reading of the chain. As such dependencies remain valid it is not much
21893 useful to track and undo them during QUIT cleanups. */
21894 if (per_cu->cu == NULL)
21895 return 1;
21896
10b3939b
DJ
21897 if (per_cu->cu->mark)
21898 return 1;
21899 per_cu->cu->mark = 1;
21900
21901 if (per_cu->cu->dependencies != NULL)
21902 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21903
21904 return 1;
21905}
21906
f504f079
DE
21907/* Set the mark field in CU and in every other compilation unit in the
21908 cache that we must keep because we are keeping CU. */
21909
ae038cb0
DJ
21910static void
21911dwarf2_mark (struct dwarf2_cu *cu)
21912{
21913 if (cu->mark)
21914 return;
21915 cu->mark = 1;
10b3939b
DJ
21916 if (cu->dependencies != NULL)
21917 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21918}
21919
21920static void
21921dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21922{
21923 while (per_cu)
21924 {
21925 per_cu->cu->mark = 0;
21926 per_cu = per_cu->cu->read_in_chain;
21927 }
72bf9492
DJ
21928}
21929
72bf9492
DJ
21930/* Trivial hash function for partial_die_info: the hash value of a DIE
21931 is its offset in .debug_info for this objfile. */
21932
21933static hashval_t
21934partial_die_hash (const void *item)
21935{
21936 const struct partial_die_info *part_die = item;
9a619af0 21937
b64f50a1 21938 return part_die->offset.sect_off;
72bf9492
DJ
21939}
21940
21941/* Trivial comparison function for partial_die_info structures: two DIEs
21942 are equal if they have the same offset. */
21943
21944static int
21945partial_die_eq (const void *item_lhs, const void *item_rhs)
21946{
21947 const struct partial_die_info *part_die_lhs = item_lhs;
21948 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21949
b64f50a1 21950 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21951}
21952
ae038cb0
DJ
21953static struct cmd_list_element *set_dwarf2_cmdlist;
21954static struct cmd_list_element *show_dwarf2_cmdlist;
21955
21956static void
21957set_dwarf2_cmd (char *args, int from_tty)
21958{
635c7e8a
TT
21959 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21960 gdb_stdout);
ae038cb0
DJ
21961}
21962
21963static void
21964show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21965{
ae038cb0
DJ
21966 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21967}
21968
4bf44c1c 21969/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21970
21971static void
c1bd65d0 21972dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21973{
21974 struct dwarf2_per_objfile *data = d;
8b70b953 21975 int ix;
8b70b953 21976
626f2d1c
TT
21977 /* Make sure we don't accidentally use dwarf2_per_objfile while
21978 cleaning up. */
21979 dwarf2_per_objfile = NULL;
21980
59b0c7c1
JB
21981 for (ix = 0; ix < data->n_comp_units; ++ix)
21982 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21983
59b0c7c1 21984 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21985 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21986 data->all_type_units[ix]->per_cu.imported_symtabs);
21987 xfree (data->all_type_units);
95554aad 21988
8b70b953 21989 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21990
21991 if (data->dwo_files)
21992 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21993 if (data->dwp_file)
21994 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21995
21996 if (data->dwz_file && data->dwz_file->dwz_bfd)
21997 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21998}
21999
22000\f
ae2de4f8 22001/* The "save gdb-index" command. */
9291a0cd
TT
22002
22003/* The contents of the hash table we create when building the string
22004 table. */
22005struct strtab_entry
22006{
22007 offset_type offset;
22008 const char *str;
22009};
22010
559a7a62
JK
22011/* Hash function for a strtab_entry.
22012
22013 Function is used only during write_hash_table so no index format backward
22014 compatibility is needed. */
b89be57b 22015
9291a0cd
TT
22016static hashval_t
22017hash_strtab_entry (const void *e)
22018{
22019 const struct strtab_entry *entry = e;
559a7a62 22020 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22021}
22022
22023/* Equality function for a strtab_entry. */
b89be57b 22024
9291a0cd
TT
22025static int
22026eq_strtab_entry (const void *a, const void *b)
22027{
22028 const struct strtab_entry *ea = a;
22029 const struct strtab_entry *eb = b;
22030 return !strcmp (ea->str, eb->str);
22031}
22032
22033/* Create a strtab_entry hash table. */
b89be57b 22034
9291a0cd
TT
22035static htab_t
22036create_strtab (void)
22037{
22038 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22039 xfree, xcalloc, xfree);
22040}
22041
22042/* Add a string to the constant pool. Return the string's offset in
22043 host order. */
b89be57b 22044
9291a0cd
TT
22045static offset_type
22046add_string (htab_t table, struct obstack *cpool, const char *str)
22047{
22048 void **slot;
22049 struct strtab_entry entry;
22050 struct strtab_entry *result;
22051
22052 entry.str = str;
22053 slot = htab_find_slot (table, &entry, INSERT);
22054 if (*slot)
22055 result = *slot;
22056 else
22057 {
22058 result = XNEW (struct strtab_entry);
22059 result->offset = obstack_object_size (cpool);
22060 result->str = str;
22061 obstack_grow_str0 (cpool, str);
22062 *slot = result;
22063 }
22064 return result->offset;
22065}
22066
22067/* An entry in the symbol table. */
22068struct symtab_index_entry
22069{
22070 /* The name of the symbol. */
22071 const char *name;
22072 /* The offset of the name in the constant pool. */
22073 offset_type index_offset;
22074 /* A sorted vector of the indices of all the CUs that hold an object
22075 of this name. */
22076 VEC (offset_type) *cu_indices;
22077};
22078
22079/* The symbol table. This is a power-of-2-sized hash table. */
22080struct mapped_symtab
22081{
22082 offset_type n_elements;
22083 offset_type size;
22084 struct symtab_index_entry **data;
22085};
22086
22087/* Hash function for a symtab_index_entry. */
b89be57b 22088
9291a0cd
TT
22089static hashval_t
22090hash_symtab_entry (const void *e)
22091{
22092 const struct symtab_index_entry *entry = e;
22093 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22094 sizeof (offset_type) * VEC_length (offset_type,
22095 entry->cu_indices),
22096 0);
22097}
22098
22099/* Equality function for a symtab_index_entry. */
b89be57b 22100
9291a0cd
TT
22101static int
22102eq_symtab_entry (const void *a, const void *b)
22103{
22104 const struct symtab_index_entry *ea = a;
22105 const struct symtab_index_entry *eb = b;
22106 int len = VEC_length (offset_type, ea->cu_indices);
22107 if (len != VEC_length (offset_type, eb->cu_indices))
22108 return 0;
22109 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22110 VEC_address (offset_type, eb->cu_indices),
22111 sizeof (offset_type) * len);
22112}
22113
22114/* Destroy a symtab_index_entry. */
b89be57b 22115
9291a0cd
TT
22116static void
22117delete_symtab_entry (void *p)
22118{
22119 struct symtab_index_entry *entry = p;
22120 VEC_free (offset_type, entry->cu_indices);
22121 xfree (entry);
22122}
22123
22124/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22125
9291a0cd 22126static htab_t
3876f04e 22127create_symbol_hash_table (void)
9291a0cd
TT
22128{
22129 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22130 delete_symtab_entry, xcalloc, xfree);
22131}
22132
22133/* Create a new mapped symtab object. */
b89be57b 22134
9291a0cd
TT
22135static struct mapped_symtab *
22136create_mapped_symtab (void)
22137{
22138 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22139 symtab->n_elements = 0;
22140 symtab->size = 1024;
22141 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22142 return symtab;
22143}
22144
22145/* Destroy a mapped_symtab. */
b89be57b 22146
9291a0cd
TT
22147static void
22148cleanup_mapped_symtab (void *p)
22149{
22150 struct mapped_symtab *symtab = p;
22151 /* The contents of the array are freed when the other hash table is
22152 destroyed. */
22153 xfree (symtab->data);
22154 xfree (symtab);
22155}
22156
22157/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22158 the slot.
22159
22160 Function is used only during write_hash_table so no index format backward
22161 compatibility is needed. */
b89be57b 22162
9291a0cd
TT
22163static struct symtab_index_entry **
22164find_slot (struct mapped_symtab *symtab, const char *name)
22165{
559a7a62 22166 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22167
22168 index = hash & (symtab->size - 1);
22169 step = ((hash * 17) & (symtab->size - 1)) | 1;
22170
22171 for (;;)
22172 {
22173 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22174 return &symtab->data[index];
22175 index = (index + step) & (symtab->size - 1);
22176 }
22177}
22178
22179/* Expand SYMTAB's hash table. */
b89be57b 22180
9291a0cd
TT
22181static void
22182hash_expand (struct mapped_symtab *symtab)
22183{
22184 offset_type old_size = symtab->size;
22185 offset_type i;
22186 struct symtab_index_entry **old_entries = symtab->data;
22187
22188 symtab->size *= 2;
22189 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22190
22191 for (i = 0; i < old_size; ++i)
22192 {
22193 if (old_entries[i])
22194 {
22195 struct symtab_index_entry **slot = find_slot (symtab,
22196 old_entries[i]->name);
22197 *slot = old_entries[i];
22198 }
22199 }
22200
22201 xfree (old_entries);
22202}
22203
156942c7
DE
22204/* Add an entry to SYMTAB. NAME is the name of the symbol.
22205 CU_INDEX is the index of the CU in which the symbol appears.
22206 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22207
9291a0cd
TT
22208static void
22209add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22210 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22211 offset_type cu_index)
22212{
22213 struct symtab_index_entry **slot;
156942c7 22214 offset_type cu_index_and_attrs;
9291a0cd
TT
22215
22216 ++symtab->n_elements;
22217 if (4 * symtab->n_elements / 3 >= symtab->size)
22218 hash_expand (symtab);
22219
22220 slot = find_slot (symtab, name);
22221 if (!*slot)
22222 {
22223 *slot = XNEW (struct symtab_index_entry);
22224 (*slot)->name = name;
156942c7 22225 /* index_offset is set later. */
9291a0cd
TT
22226 (*slot)->cu_indices = NULL;
22227 }
156942c7
DE
22228
22229 cu_index_and_attrs = 0;
22230 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22231 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22232 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22233
22234 /* We don't want to record an index value twice as we want to avoid the
22235 duplication.
22236 We process all global symbols and then all static symbols
22237 (which would allow us to avoid the duplication by only having to check
22238 the last entry pushed), but a symbol could have multiple kinds in one CU.
22239 To keep things simple we don't worry about the duplication here and
22240 sort and uniqufy the list after we've processed all symbols. */
22241 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22242}
22243
22244/* qsort helper routine for uniquify_cu_indices. */
22245
22246static int
22247offset_type_compare (const void *ap, const void *bp)
22248{
22249 offset_type a = *(offset_type *) ap;
22250 offset_type b = *(offset_type *) bp;
22251
22252 return (a > b) - (b > a);
22253}
22254
22255/* Sort and remove duplicates of all symbols' cu_indices lists. */
22256
22257static void
22258uniquify_cu_indices (struct mapped_symtab *symtab)
22259{
22260 int i;
22261
22262 for (i = 0; i < symtab->size; ++i)
22263 {
22264 struct symtab_index_entry *entry = symtab->data[i];
22265
22266 if (entry
22267 && entry->cu_indices != NULL)
22268 {
22269 unsigned int next_to_insert, next_to_check;
22270 offset_type last_value;
22271
22272 qsort (VEC_address (offset_type, entry->cu_indices),
22273 VEC_length (offset_type, entry->cu_indices),
22274 sizeof (offset_type), offset_type_compare);
22275
22276 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22277 next_to_insert = 1;
22278 for (next_to_check = 1;
22279 next_to_check < VEC_length (offset_type, entry->cu_indices);
22280 ++next_to_check)
22281 {
22282 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22283 != last_value)
22284 {
22285 last_value = VEC_index (offset_type, entry->cu_indices,
22286 next_to_check);
22287 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22288 last_value);
22289 ++next_to_insert;
22290 }
22291 }
22292 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22293 }
22294 }
9291a0cd
TT
22295}
22296
22297/* Add a vector of indices to the constant pool. */
b89be57b 22298
9291a0cd 22299static offset_type
3876f04e 22300add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22301 struct symtab_index_entry *entry)
22302{
22303 void **slot;
22304
3876f04e 22305 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22306 if (!*slot)
22307 {
22308 offset_type len = VEC_length (offset_type, entry->cu_indices);
22309 offset_type val = MAYBE_SWAP (len);
22310 offset_type iter;
22311 int i;
22312
22313 *slot = entry;
22314 entry->index_offset = obstack_object_size (cpool);
22315
22316 obstack_grow (cpool, &val, sizeof (val));
22317 for (i = 0;
22318 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22319 ++i)
22320 {
22321 val = MAYBE_SWAP (iter);
22322 obstack_grow (cpool, &val, sizeof (val));
22323 }
22324 }
22325 else
22326 {
22327 struct symtab_index_entry *old_entry = *slot;
22328 entry->index_offset = old_entry->index_offset;
22329 entry = old_entry;
22330 }
22331 return entry->index_offset;
22332}
22333
22334/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22335 constant pool entries going into the obstack CPOOL. */
b89be57b 22336
9291a0cd
TT
22337static void
22338write_hash_table (struct mapped_symtab *symtab,
22339 struct obstack *output, struct obstack *cpool)
22340{
22341 offset_type i;
3876f04e 22342 htab_t symbol_hash_table;
9291a0cd
TT
22343 htab_t str_table;
22344
3876f04e 22345 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22346 str_table = create_strtab ();
3876f04e 22347
9291a0cd
TT
22348 /* We add all the index vectors to the constant pool first, to
22349 ensure alignment is ok. */
22350 for (i = 0; i < symtab->size; ++i)
22351 {
22352 if (symtab->data[i])
3876f04e 22353 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22354 }
22355
22356 /* Now write out the hash table. */
22357 for (i = 0; i < symtab->size; ++i)
22358 {
22359 offset_type str_off, vec_off;
22360
22361 if (symtab->data[i])
22362 {
22363 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22364 vec_off = symtab->data[i]->index_offset;
22365 }
22366 else
22367 {
22368 /* While 0 is a valid constant pool index, it is not valid
22369 to have 0 for both offsets. */
22370 str_off = 0;
22371 vec_off = 0;
22372 }
22373
22374 str_off = MAYBE_SWAP (str_off);
22375 vec_off = MAYBE_SWAP (vec_off);
22376
22377 obstack_grow (output, &str_off, sizeof (str_off));
22378 obstack_grow (output, &vec_off, sizeof (vec_off));
22379 }
22380
22381 htab_delete (str_table);
3876f04e 22382 htab_delete (symbol_hash_table);
9291a0cd
TT
22383}
22384
0a5429f6
DE
22385/* Struct to map psymtab to CU index in the index file. */
22386struct psymtab_cu_index_map
22387{
22388 struct partial_symtab *psymtab;
22389 unsigned int cu_index;
22390};
22391
22392static hashval_t
22393hash_psymtab_cu_index (const void *item)
22394{
22395 const struct psymtab_cu_index_map *map = item;
22396
22397 return htab_hash_pointer (map->psymtab);
22398}
22399
22400static int
22401eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22402{
22403 const struct psymtab_cu_index_map *lhs = item_lhs;
22404 const struct psymtab_cu_index_map *rhs = item_rhs;
22405
22406 return lhs->psymtab == rhs->psymtab;
22407}
22408
22409/* Helper struct for building the address table. */
22410struct addrmap_index_data
22411{
22412 struct objfile *objfile;
22413 struct obstack *addr_obstack;
22414 htab_t cu_index_htab;
22415
22416 /* Non-zero if the previous_* fields are valid.
22417 We can't write an entry until we see the next entry (since it is only then
22418 that we know the end of the entry). */
22419 int previous_valid;
22420 /* Index of the CU in the table of all CUs in the index file. */
22421 unsigned int previous_cu_index;
0963b4bd 22422 /* Start address of the CU. */
0a5429f6
DE
22423 CORE_ADDR previous_cu_start;
22424};
22425
22426/* Write an address entry to OBSTACK. */
b89be57b 22427
9291a0cd 22428static void
0a5429f6
DE
22429add_address_entry (struct objfile *objfile, struct obstack *obstack,
22430 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22431{
0a5429f6 22432 offset_type cu_index_to_write;
948f8e3d 22433 gdb_byte addr[8];
9291a0cd
TT
22434 CORE_ADDR baseaddr;
22435
22436 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22437
0a5429f6
DE
22438 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22439 obstack_grow (obstack, addr, 8);
22440 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22441 obstack_grow (obstack, addr, 8);
22442 cu_index_to_write = MAYBE_SWAP (cu_index);
22443 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22444}
22445
22446/* Worker function for traversing an addrmap to build the address table. */
22447
22448static int
22449add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22450{
22451 struct addrmap_index_data *data = datap;
22452 struct partial_symtab *pst = obj;
0a5429f6
DE
22453
22454 if (data->previous_valid)
22455 add_address_entry (data->objfile, data->addr_obstack,
22456 data->previous_cu_start, start_addr,
22457 data->previous_cu_index);
22458
22459 data->previous_cu_start = start_addr;
22460 if (pst != NULL)
22461 {
22462 struct psymtab_cu_index_map find_map, *map;
22463 find_map.psymtab = pst;
22464 map = htab_find (data->cu_index_htab, &find_map);
22465 gdb_assert (map != NULL);
22466 data->previous_cu_index = map->cu_index;
22467 data->previous_valid = 1;
22468 }
22469 else
22470 data->previous_valid = 0;
22471
22472 return 0;
22473}
22474
22475/* Write OBJFILE's address map to OBSTACK.
22476 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22477 in the index file. */
22478
22479static void
22480write_address_map (struct objfile *objfile, struct obstack *obstack,
22481 htab_t cu_index_htab)
22482{
22483 struct addrmap_index_data addrmap_index_data;
22484
22485 /* When writing the address table, we have to cope with the fact that
22486 the addrmap iterator only provides the start of a region; we have to
22487 wait until the next invocation to get the start of the next region. */
22488
22489 addrmap_index_data.objfile = objfile;
22490 addrmap_index_data.addr_obstack = obstack;
22491 addrmap_index_data.cu_index_htab = cu_index_htab;
22492 addrmap_index_data.previous_valid = 0;
22493
22494 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22495 &addrmap_index_data);
22496
22497 /* It's highly unlikely the last entry (end address = 0xff...ff)
22498 is valid, but we should still handle it.
22499 The end address is recorded as the start of the next region, but that
22500 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22501 anyway. */
22502 if (addrmap_index_data.previous_valid)
22503 add_address_entry (objfile, obstack,
22504 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22505 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22506}
22507
156942c7
DE
22508/* Return the symbol kind of PSYM. */
22509
22510static gdb_index_symbol_kind
22511symbol_kind (struct partial_symbol *psym)
22512{
22513 domain_enum domain = PSYMBOL_DOMAIN (psym);
22514 enum address_class aclass = PSYMBOL_CLASS (psym);
22515
22516 switch (domain)
22517 {
22518 case VAR_DOMAIN:
22519 switch (aclass)
22520 {
22521 case LOC_BLOCK:
22522 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22523 case LOC_TYPEDEF:
22524 return GDB_INDEX_SYMBOL_KIND_TYPE;
22525 case LOC_COMPUTED:
22526 case LOC_CONST_BYTES:
22527 case LOC_OPTIMIZED_OUT:
22528 case LOC_STATIC:
22529 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22530 case LOC_CONST:
22531 /* Note: It's currently impossible to recognize psyms as enum values
22532 short of reading the type info. For now punt. */
22533 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22534 default:
22535 /* There are other LOC_FOO values that one might want to classify
22536 as variables, but dwarf2read.c doesn't currently use them. */
22537 return GDB_INDEX_SYMBOL_KIND_OTHER;
22538 }
22539 case STRUCT_DOMAIN:
22540 return GDB_INDEX_SYMBOL_KIND_TYPE;
22541 default:
22542 return GDB_INDEX_SYMBOL_KIND_OTHER;
22543 }
22544}
22545
9291a0cd 22546/* Add a list of partial symbols to SYMTAB. */
b89be57b 22547
9291a0cd
TT
22548static void
22549write_psymbols (struct mapped_symtab *symtab,
987d643c 22550 htab_t psyms_seen,
9291a0cd
TT
22551 struct partial_symbol **psymp,
22552 int count,
987d643c
TT
22553 offset_type cu_index,
22554 int is_static)
9291a0cd
TT
22555{
22556 for (; count-- > 0; ++psymp)
22557 {
156942c7
DE
22558 struct partial_symbol *psym = *psymp;
22559 void **slot;
987d643c 22560
156942c7 22561 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22562 error (_("Ada is not currently supported by the index"));
987d643c 22563
987d643c 22564 /* Only add a given psymbol once. */
156942c7 22565 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22566 if (!*slot)
22567 {
156942c7
DE
22568 gdb_index_symbol_kind kind = symbol_kind (psym);
22569
22570 *slot = psym;
22571 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22572 is_static, kind, cu_index);
987d643c 22573 }
9291a0cd
TT
22574 }
22575}
22576
22577/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22578 exception if there is an error. */
b89be57b 22579
9291a0cd
TT
22580static void
22581write_obstack (FILE *file, struct obstack *obstack)
22582{
22583 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22584 file)
22585 != obstack_object_size (obstack))
22586 error (_("couldn't data write to file"));
22587}
22588
22589/* Unlink a file if the argument is not NULL. */
b89be57b 22590
9291a0cd
TT
22591static void
22592unlink_if_set (void *p)
22593{
22594 char **filename = p;
22595 if (*filename)
22596 unlink (*filename);
22597}
22598
1fd400ff
TT
22599/* A helper struct used when iterating over debug_types. */
22600struct signatured_type_index_data
22601{
22602 struct objfile *objfile;
22603 struct mapped_symtab *symtab;
22604 struct obstack *types_list;
987d643c 22605 htab_t psyms_seen;
1fd400ff
TT
22606 int cu_index;
22607};
22608
22609/* A helper function that writes a single signatured_type to an
22610 obstack. */
b89be57b 22611
1fd400ff
TT
22612static int
22613write_one_signatured_type (void **slot, void *d)
22614{
22615 struct signatured_type_index_data *info = d;
22616 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22617 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22618 gdb_byte val[8];
22619
22620 write_psymbols (info->symtab,
987d643c 22621 info->psyms_seen,
3e43a32a
MS
22622 info->objfile->global_psymbols.list
22623 + psymtab->globals_offset,
987d643c
TT
22624 psymtab->n_global_syms, info->cu_index,
22625 0);
1fd400ff 22626 write_psymbols (info->symtab,
987d643c 22627 info->psyms_seen,
3e43a32a
MS
22628 info->objfile->static_psymbols.list
22629 + psymtab->statics_offset,
987d643c
TT
22630 psymtab->n_static_syms, info->cu_index,
22631 1);
1fd400ff 22632
b64f50a1
JK
22633 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22634 entry->per_cu.offset.sect_off);
1fd400ff 22635 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22636 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22637 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22638 obstack_grow (info->types_list, val, 8);
22639 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22640 obstack_grow (info->types_list, val, 8);
22641
22642 ++info->cu_index;
22643
22644 return 1;
22645}
22646
95554aad
TT
22647/* Recurse into all "included" dependencies and write their symbols as
22648 if they appeared in this psymtab. */
22649
22650static void
22651recursively_write_psymbols (struct objfile *objfile,
22652 struct partial_symtab *psymtab,
22653 struct mapped_symtab *symtab,
22654 htab_t psyms_seen,
22655 offset_type cu_index)
22656{
22657 int i;
22658
22659 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22660 if (psymtab->dependencies[i]->user != NULL)
22661 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22662 symtab, psyms_seen, cu_index);
22663
22664 write_psymbols (symtab,
22665 psyms_seen,
22666 objfile->global_psymbols.list + psymtab->globals_offset,
22667 psymtab->n_global_syms, cu_index,
22668 0);
22669 write_psymbols (symtab,
22670 psyms_seen,
22671 objfile->static_psymbols.list + psymtab->statics_offset,
22672 psymtab->n_static_syms, cu_index,
22673 1);
22674}
22675
9291a0cd 22676/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22677
9291a0cd
TT
22678static void
22679write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22680{
22681 struct cleanup *cleanup;
22682 char *filename, *cleanup_filename;
1fd400ff
TT
22683 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22684 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22685 int i;
22686 FILE *out_file;
22687 struct mapped_symtab *symtab;
22688 offset_type val, size_of_contents, total_len;
22689 struct stat st;
987d643c 22690 htab_t psyms_seen;
0a5429f6
DE
22691 htab_t cu_index_htab;
22692 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22693
9291a0cd
TT
22694 if (dwarf2_per_objfile->using_index)
22695 error (_("Cannot use an index to create the index"));
22696
8b70b953
TT
22697 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22698 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22699
260b681b
DE
22700 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22701 return;
22702
4262abfb
JK
22703 if (stat (objfile_name (objfile), &st) < 0)
22704 perror_with_name (objfile_name (objfile));
9291a0cd 22705
4262abfb 22706 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22707 INDEX_SUFFIX, (char *) NULL);
22708 cleanup = make_cleanup (xfree, filename);
22709
614c279d 22710 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22711 if (!out_file)
22712 error (_("Can't open `%s' for writing"), filename);
22713
22714 cleanup_filename = filename;
22715 make_cleanup (unlink_if_set, &cleanup_filename);
22716
22717 symtab = create_mapped_symtab ();
22718 make_cleanup (cleanup_mapped_symtab, symtab);
22719
22720 obstack_init (&addr_obstack);
22721 make_cleanup_obstack_free (&addr_obstack);
22722
22723 obstack_init (&cu_list);
22724 make_cleanup_obstack_free (&cu_list);
22725
1fd400ff
TT
22726 obstack_init (&types_cu_list);
22727 make_cleanup_obstack_free (&types_cu_list);
22728
987d643c
TT
22729 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22730 NULL, xcalloc, xfree);
96408a79 22731 make_cleanup_htab_delete (psyms_seen);
987d643c 22732
0a5429f6
DE
22733 /* While we're scanning CU's create a table that maps a psymtab pointer
22734 (which is what addrmap records) to its index (which is what is recorded
22735 in the index file). This will later be needed to write the address
22736 table. */
22737 cu_index_htab = htab_create_alloc (100,
22738 hash_psymtab_cu_index,
22739 eq_psymtab_cu_index,
22740 NULL, xcalloc, xfree);
96408a79 22741 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22742 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22743 xmalloc (sizeof (struct psymtab_cu_index_map)
22744 * dwarf2_per_objfile->n_comp_units);
22745 make_cleanup (xfree, psymtab_cu_index_map);
22746
22747 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22748 work here. Also, the debug_types entries do not appear in
22749 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22750 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22751 {
3e43a32a
MS
22752 struct dwarf2_per_cu_data *per_cu
22753 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22754 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22755 gdb_byte val[8];
0a5429f6
DE
22756 struct psymtab_cu_index_map *map;
22757 void **slot;
9291a0cd 22758
92fac807
JK
22759 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22760 It may be referenced from a local scope but in such case it does not
22761 need to be present in .gdb_index. */
22762 if (psymtab == NULL)
22763 continue;
22764
95554aad
TT
22765 if (psymtab->user == NULL)
22766 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22767
0a5429f6
DE
22768 map = &psymtab_cu_index_map[i];
22769 map->psymtab = psymtab;
22770 map->cu_index = i;
22771 slot = htab_find_slot (cu_index_htab, map, INSERT);
22772 gdb_assert (slot != NULL);
22773 gdb_assert (*slot == NULL);
22774 *slot = map;
9291a0cd 22775
b64f50a1
JK
22776 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22777 per_cu->offset.sect_off);
9291a0cd 22778 obstack_grow (&cu_list, val, 8);
e254ef6a 22779 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22780 obstack_grow (&cu_list, val, 8);
22781 }
22782
0a5429f6
DE
22783 /* Dump the address map. */
22784 write_address_map (objfile, &addr_obstack, cu_index_htab);
22785
1fd400ff
TT
22786 /* Write out the .debug_type entries, if any. */
22787 if (dwarf2_per_objfile->signatured_types)
22788 {
22789 struct signatured_type_index_data sig_data;
22790
22791 sig_data.objfile = objfile;
22792 sig_data.symtab = symtab;
22793 sig_data.types_list = &types_cu_list;
987d643c 22794 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22795 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22796 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22797 write_one_signatured_type, &sig_data);
22798 }
22799
156942c7
DE
22800 /* Now that we've processed all symbols we can shrink their cu_indices
22801 lists. */
22802 uniquify_cu_indices (symtab);
22803
9291a0cd
TT
22804 obstack_init (&constant_pool);
22805 make_cleanup_obstack_free (&constant_pool);
22806 obstack_init (&symtab_obstack);
22807 make_cleanup_obstack_free (&symtab_obstack);
22808 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22809
22810 obstack_init (&contents);
22811 make_cleanup_obstack_free (&contents);
1fd400ff 22812 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22813 total_len = size_of_contents;
22814
22815 /* The version number. */
796a7ff8 22816 val = MAYBE_SWAP (8);
9291a0cd
TT
22817 obstack_grow (&contents, &val, sizeof (val));
22818
22819 /* The offset of the CU list from the start of the file. */
22820 val = MAYBE_SWAP (total_len);
22821 obstack_grow (&contents, &val, sizeof (val));
22822 total_len += obstack_object_size (&cu_list);
22823
1fd400ff
TT
22824 /* The offset of the types CU list from the start of the file. */
22825 val = MAYBE_SWAP (total_len);
22826 obstack_grow (&contents, &val, sizeof (val));
22827 total_len += obstack_object_size (&types_cu_list);
22828
9291a0cd
TT
22829 /* The offset of the address table from the start of the file. */
22830 val = MAYBE_SWAP (total_len);
22831 obstack_grow (&contents, &val, sizeof (val));
22832 total_len += obstack_object_size (&addr_obstack);
22833
22834 /* The offset of the symbol table from the start of the file. */
22835 val = MAYBE_SWAP (total_len);
22836 obstack_grow (&contents, &val, sizeof (val));
22837 total_len += obstack_object_size (&symtab_obstack);
22838
22839 /* The offset of the constant pool from the start of the file. */
22840 val = MAYBE_SWAP (total_len);
22841 obstack_grow (&contents, &val, sizeof (val));
22842 total_len += obstack_object_size (&constant_pool);
22843
22844 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22845
22846 write_obstack (out_file, &contents);
22847 write_obstack (out_file, &cu_list);
1fd400ff 22848 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22849 write_obstack (out_file, &addr_obstack);
22850 write_obstack (out_file, &symtab_obstack);
22851 write_obstack (out_file, &constant_pool);
22852
22853 fclose (out_file);
22854
22855 /* We want to keep the file, so we set cleanup_filename to NULL
22856 here. See unlink_if_set. */
22857 cleanup_filename = NULL;
22858
22859 do_cleanups (cleanup);
22860}
22861
90476074
TT
22862/* Implementation of the `save gdb-index' command.
22863
22864 Note that the file format used by this command is documented in the
22865 GDB manual. Any changes here must be documented there. */
11570e71 22866
9291a0cd
TT
22867static void
22868save_gdb_index_command (char *arg, int from_tty)
22869{
22870 struct objfile *objfile;
22871
22872 if (!arg || !*arg)
96d19272 22873 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22874
22875 ALL_OBJFILES (objfile)
22876 {
22877 struct stat st;
22878
22879 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22880 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22881 continue;
22882
22883 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22884 if (dwarf2_per_objfile)
22885 {
22886 volatile struct gdb_exception except;
22887
22888 TRY_CATCH (except, RETURN_MASK_ERROR)
22889 {
22890 write_psymtabs_to_index (objfile, arg);
22891 }
22892 if (except.reason < 0)
22893 exception_fprintf (gdb_stderr, except,
22894 _("Error while writing index for `%s': "),
4262abfb 22895 objfile_name (objfile));
9291a0cd
TT
22896 }
22897 }
dce234bc
PP
22898}
22899
9291a0cd
TT
22900\f
22901
9eae7c52
TT
22902int dwarf2_always_disassemble;
22903
22904static void
22905show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22906 struct cmd_list_element *c, const char *value)
22907{
3e43a32a
MS
22908 fprintf_filtered (file,
22909 _("Whether to always disassemble "
22910 "DWARF expressions is %s.\n"),
9eae7c52
TT
22911 value);
22912}
22913
900e11f9
JK
22914static void
22915show_check_physname (struct ui_file *file, int from_tty,
22916 struct cmd_list_element *c, const char *value)
22917{
22918 fprintf_filtered (file,
22919 _("Whether to check \"physname\" is %s.\n"),
22920 value);
22921}
22922
6502dd73
DJ
22923void _initialize_dwarf2_read (void);
22924
22925void
22926_initialize_dwarf2_read (void)
22927{
96d19272
JK
22928 struct cmd_list_element *c;
22929
dce234bc 22930 dwarf2_objfile_data_key
c1bd65d0 22931 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22932
1bedd215
AC
22933 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22934Set DWARF 2 specific variables.\n\
22935Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22936 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22937 0/*allow-unknown*/, &maintenance_set_cmdlist);
22938
1bedd215
AC
22939 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22940Show DWARF 2 specific variables\n\
22941Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22942 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22943 0/*allow-unknown*/, &maintenance_show_cmdlist);
22944
22945 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22946 &dwarf2_max_cache_age, _("\
22947Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22948Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22949A higher limit means that cached compilation units will be stored\n\
22950in memory longer, and more total memory will be used. Zero disables\n\
22951caching, which can slow down startup."),
2c5b56ce 22952 NULL,
920d2a44 22953 show_dwarf2_max_cache_age,
2c5b56ce 22954 &set_dwarf2_cmdlist,
ae038cb0 22955 &show_dwarf2_cmdlist);
d97bc12b 22956
9eae7c52
TT
22957 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22958 &dwarf2_always_disassemble, _("\
22959Set whether `info address' always disassembles DWARF expressions."), _("\
22960Show whether `info address' always disassembles DWARF expressions."), _("\
22961When enabled, DWARF expressions are always printed in an assembly-like\n\
22962syntax. When disabled, expressions will be printed in a more\n\
22963conversational style, when possible."),
22964 NULL,
22965 show_dwarf2_always_disassemble,
22966 &set_dwarf2_cmdlist,
22967 &show_dwarf2_cmdlist);
22968
73be47f5 22969 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22970Set debugging of the dwarf2 reader."), _("\
22971Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22972When enabled (non-zero), debugging messages are printed during dwarf2\n\
22973reading and symtab expansion. A value of 1 (one) provides basic\n\
22974information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22975 NULL,
22976 NULL,
22977 &setdebuglist, &showdebuglist);
22978
ccce17b0 22979 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22980Set debugging of the dwarf2 DIE reader."), _("\
22981Show debugging of the dwarf2 DIE reader."), _("\
22982When enabled (non-zero), DIEs are dumped after they are read in.\n\
22983The value is the maximum depth to print."),
ccce17b0
YQ
22984 NULL,
22985 NULL,
22986 &setdebuglist, &showdebuglist);
9291a0cd 22987
900e11f9
JK
22988 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22989Set cross-checking of \"physname\" code against demangler."), _("\
22990Show cross-checking of \"physname\" code against demangler."), _("\
22991When enabled, GDB's internal \"physname\" code is checked against\n\
22992the demangler."),
22993 NULL, show_check_physname,
22994 &setdebuglist, &showdebuglist);
22995
e615022a
DE
22996 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22997 no_class, &use_deprecated_index_sections, _("\
22998Set whether to use deprecated gdb_index sections."), _("\
22999Show whether to use deprecated gdb_index sections."), _("\
23000When enabled, deprecated .gdb_index sections are used anyway.\n\
23001Normally they are ignored either because of a missing feature or\n\
23002performance issue.\n\
23003Warning: This option must be enabled before gdb reads the file."),
23004 NULL,
23005 NULL,
23006 &setlist, &showlist);
23007
96d19272 23008 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23009 _("\
fc1a9d6e 23010Save a gdb-index file.\n\
11570e71 23011Usage: save gdb-index DIRECTORY"),
96d19272
JK
23012 &save_cmdlist);
23013 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23014
23015 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23016 &dwarf2_locexpr_funcs);
23017 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23018 &dwarf2_loclist_funcs);
23019
23020 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23021 &dwarf2_block_frame_base_locexpr_funcs);
23022 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23023 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23024}
This page took 7.442215 seconds and 4 git commands to generate.