]>
Commit | Line | Data |
---|---|---|
c906108c SS |
1 | /* Perform arithmetic and other operations on values, for GDB. |
2 | Copyright 1986, 89, 91, 92, 93, 94, 95, 96, 97, 1998 | |
3 | Free Software Foundation, Inc. | |
4 | ||
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b JM |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "value.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "expression.h" | |
27 | #include "target.h" | |
28 | #include "language.h" | |
29 | #include "demangle.h" | |
30 | #include "gdb_string.h" | |
c4093a6a | 31 | #include <math.h> |
c906108c SS |
32 | |
33 | /* Define whether or not the C operator '/' truncates towards zero for | |
34 | differently signed operands (truncation direction is undefined in C). */ | |
35 | ||
36 | #ifndef TRUNCATION_TOWARDS_ZERO | |
37 | #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) | |
38 | #endif | |
39 | ||
a14ed312 | 40 | static value_ptr value_subscripted_rvalue (value_ptr, value_ptr, int); |
c906108c | 41 | |
a14ed312 | 42 | void _initialize_valarith (void); |
c906108c | 43 | \f |
c5aa993b | 44 | |
c906108c SS |
45 | value_ptr |
46 | value_add (arg1, arg2) | |
47 | value_ptr arg1, arg2; | |
48 | { | |
49 | register value_ptr valint, valptr; | |
50 | register int len; | |
51 | struct type *type1, *type2, *valptrtype; | |
52 | ||
53 | COERCE_NUMBER (arg1); | |
54 | COERCE_NUMBER (arg2); | |
55 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
56 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
57 | ||
58 | if ((TYPE_CODE (type1) == TYPE_CODE_PTR | |
59 | || TYPE_CODE (type2) == TYPE_CODE_PTR) | |
60 | && | |
61 | (TYPE_CODE (type1) == TYPE_CODE_INT | |
62 | || TYPE_CODE (type2) == TYPE_CODE_INT)) | |
63 | /* Exactly one argument is a pointer, and one is an integer. */ | |
64 | { | |
65 | value_ptr retval; | |
66 | ||
67 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
68 | { | |
69 | valptr = arg1; | |
70 | valint = arg2; | |
71 | valptrtype = type1; | |
72 | } | |
73 | else | |
74 | { | |
75 | valptr = arg2; | |
76 | valint = arg1; | |
77 | valptrtype = type2; | |
78 | } | |
79 | len = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (valptrtype))); | |
80 | if (len == 0) | |
81 | len = 1; /* For (void *) */ | |
4478b372 JB |
82 | retval = value_from_pointer (valptrtype, |
83 | value_as_pointer (valptr) | |
c906108c SS |
84 | + (len * value_as_long (valint))); |
85 | VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (valptr); | |
86 | return retval; | |
87 | } | |
88 | ||
89 | return value_binop (arg1, arg2, BINOP_ADD); | |
90 | } | |
91 | ||
92 | value_ptr | |
93 | value_sub (arg1, arg2) | |
94 | value_ptr arg1, arg2; | |
95 | { | |
96 | struct type *type1, *type2; | |
97 | COERCE_NUMBER (arg1); | |
98 | COERCE_NUMBER (arg2); | |
99 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
100 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
101 | ||
102 | if (TYPE_CODE (type1) == TYPE_CODE_PTR) | |
103 | { | |
104 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
105 | { | |
106 | /* pointer - integer. */ | |
107 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
4478b372 JB |
108 | return value_from_pointer (VALUE_TYPE (arg1), |
109 | (value_as_pointer (arg1) | |
110 | - (sz * value_as_long (arg2)))); | |
c906108c SS |
111 | } |
112 | else if (TYPE_CODE (type2) == TYPE_CODE_PTR | |
113 | && TYPE_LENGTH (TYPE_TARGET_TYPE (type1)) | |
c5aa993b | 114 | == TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) |
c906108c SS |
115 | { |
116 | /* pointer to <type x> - pointer to <type x>. */ | |
117 | LONGEST sz = TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1))); | |
118 | return value_from_longest | |
c5aa993b | 119 | (builtin_type_long, /* FIXME -- should be ptrdiff_t */ |
c906108c SS |
120 | (value_as_long (arg1) - value_as_long (arg2)) / sz); |
121 | } | |
122 | else | |
123 | { | |
124 | error ("\ | |
125 | First argument of `-' is a pointer and second argument is neither\n\ | |
126 | an integer nor a pointer of the same type."); | |
127 | } | |
128 | } | |
129 | ||
130 | return value_binop (arg1, arg2, BINOP_SUB); | |
131 | } | |
132 | ||
133 | /* Return the value of ARRAY[IDX]. | |
134 | See comments in value_coerce_array() for rationale for reason for | |
135 | doing lower bounds adjustment here rather than there. | |
136 | FIXME: Perhaps we should validate that the index is valid and if | |
137 | verbosity is set, warn about invalid indices (but still use them). */ | |
138 | ||
139 | value_ptr | |
140 | value_subscript (array, idx) | |
141 | value_ptr array, idx; | |
142 | { | |
143 | value_ptr bound; | |
144 | int c_style = current_language->c_style_arrays; | |
145 | struct type *tarray; | |
146 | ||
147 | COERCE_REF (array); | |
148 | tarray = check_typedef (VALUE_TYPE (array)); | |
149 | COERCE_VARYING_ARRAY (array, tarray); | |
150 | ||
151 | if (TYPE_CODE (tarray) == TYPE_CODE_ARRAY | |
152 | || TYPE_CODE (tarray) == TYPE_CODE_STRING) | |
153 | { | |
154 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
155 | LONGEST lowerbound, upperbound; | |
156 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
157 | ||
158 | if (VALUE_LVAL (array) != lval_memory) | |
159 | return value_subscripted_rvalue (array, idx, lowerbound); | |
160 | ||
161 | if (c_style == 0) | |
162 | { | |
163 | LONGEST index = value_as_long (idx); | |
164 | if (index >= lowerbound && index <= upperbound) | |
165 | return value_subscripted_rvalue (array, idx, lowerbound); | |
166 | warning ("array or string index out of range"); | |
167 | /* fall doing C stuff */ | |
168 | c_style = 1; | |
169 | } | |
170 | ||
171 | if (lowerbound != 0) | |
172 | { | |
173 | bound = value_from_longest (builtin_type_int, (LONGEST) lowerbound); | |
174 | idx = value_sub (idx, bound); | |
175 | } | |
176 | ||
177 | array = value_coerce_array (array); | |
178 | } | |
179 | ||
180 | if (TYPE_CODE (tarray) == TYPE_CODE_BITSTRING) | |
181 | { | |
182 | struct type *range_type = TYPE_INDEX_TYPE (tarray); | |
183 | LONGEST index = value_as_long (idx); | |
184 | value_ptr v; | |
185 | int offset, byte, bit_index; | |
186 | LONGEST lowerbound, upperbound; | |
187 | get_discrete_bounds (range_type, &lowerbound, &upperbound); | |
188 | if (index < lowerbound || index > upperbound) | |
189 | error ("bitstring index out of range"); | |
190 | index -= lowerbound; | |
191 | offset = index / TARGET_CHAR_BIT; | |
c5aa993b | 192 | byte = *((char *) VALUE_CONTENTS (array) + offset); |
c906108c SS |
193 | bit_index = index % TARGET_CHAR_BIT; |
194 | byte >>= (BITS_BIG_ENDIAN ? TARGET_CHAR_BIT - 1 - bit_index : bit_index); | |
195 | v = value_from_longest (LA_BOOL_TYPE, byte & 1); | |
196 | VALUE_BITPOS (v) = bit_index; | |
197 | VALUE_BITSIZE (v) = 1; | |
198 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
199 | if (VALUE_LVAL (array) == lval_internalvar) | |
200 | VALUE_LVAL (v) = lval_internalvar_component; | |
201 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
202 | VALUE_OFFSET (v) = offset + VALUE_OFFSET (array); | |
203 | return v; | |
204 | } | |
205 | ||
206 | if (c_style) | |
207 | return value_ind (value_add (array, idx)); | |
208 | else | |
209 | error ("not an array or string"); | |
210 | } | |
211 | ||
212 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | |
213 | (eg, a vector register). This routine used to promote floats | |
214 | to doubles, but no longer does. */ | |
215 | ||
216 | static value_ptr | |
217 | value_subscripted_rvalue (array, idx, lowerbound) | |
218 | value_ptr array, idx; | |
219 | int lowerbound; | |
220 | { | |
221 | struct type *array_type = check_typedef (VALUE_TYPE (array)); | |
222 | struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type)); | |
223 | unsigned int elt_size = TYPE_LENGTH (elt_type); | |
224 | LONGEST index = value_as_long (idx); | |
225 | unsigned int elt_offs = elt_size * longest_to_int (index - lowerbound); | |
226 | value_ptr v; | |
227 | ||
228 | if (index < lowerbound || elt_offs >= TYPE_LENGTH (array_type)) | |
229 | error ("no such vector element"); | |
230 | ||
231 | v = allocate_value (elt_type); | |
232 | if (VALUE_LAZY (array)) | |
233 | VALUE_LAZY (v) = 1; | |
234 | else | |
235 | memcpy (VALUE_CONTENTS (v), VALUE_CONTENTS (array) + elt_offs, elt_size); | |
236 | ||
237 | if (VALUE_LVAL (array) == lval_internalvar) | |
238 | VALUE_LVAL (v) = lval_internalvar_component; | |
239 | else | |
240 | VALUE_LVAL (v) = VALUE_LVAL (array); | |
241 | VALUE_ADDRESS (v) = VALUE_ADDRESS (array); | |
242 | VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs; | |
243 | return v; | |
244 | } | |
245 | \f | |
246 | /* Check to see if either argument is a structure. This is called so | |
247 | we know whether to go ahead with the normal binop or look for a | |
248 | user defined function instead. | |
249 | ||
250 | For now, we do not overload the `=' operator. */ | |
251 | ||
252 | int | |
253 | binop_user_defined_p (op, arg1, arg2) | |
254 | enum exp_opcode op; | |
255 | value_ptr arg1, arg2; | |
256 | { | |
257 | struct type *type1, *type2; | |
258 | if (op == BINOP_ASSIGN || op == BINOP_CONCAT) | |
259 | return 0; | |
260 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
261 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
262 | return (TYPE_CODE (type1) == TYPE_CODE_STRUCT | |
263 | || TYPE_CODE (type2) == TYPE_CODE_STRUCT | |
264 | || (TYPE_CODE (type1) == TYPE_CODE_REF | |
265 | && TYPE_CODE (TYPE_TARGET_TYPE (type1)) == TYPE_CODE_STRUCT) | |
266 | || (TYPE_CODE (type2) == TYPE_CODE_REF | |
267 | && TYPE_CODE (TYPE_TARGET_TYPE (type2)) == TYPE_CODE_STRUCT)); | |
268 | } | |
269 | ||
270 | /* Check to see if argument is a structure. This is called so | |
271 | we know whether to go ahead with the normal unop or look for a | |
272 | user defined function instead. | |
273 | ||
274 | For now, we do not overload the `&' operator. */ | |
275 | ||
c5aa993b JM |
276 | int |
277 | unop_user_defined_p (op, arg1) | |
c906108c SS |
278 | enum exp_opcode op; |
279 | value_ptr arg1; | |
280 | { | |
281 | struct type *type1; | |
282 | if (op == UNOP_ADDR) | |
283 | return 0; | |
284 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
285 | for (;;) | |
286 | { | |
287 | if (TYPE_CODE (type1) == TYPE_CODE_STRUCT) | |
288 | return 1; | |
289 | else if (TYPE_CODE (type1) == TYPE_CODE_REF) | |
290 | type1 = TYPE_TARGET_TYPE (type1); | |
291 | else | |
292 | return 0; | |
293 | } | |
294 | } | |
295 | ||
296 | /* We know either arg1 or arg2 is a structure, so try to find the right | |
297 | user defined function. Create an argument vector that calls | |
298 | arg1.operator @ (arg1,arg2) and return that value (where '@' is any | |
299 | binary operator which is legal for GNU C++). | |
300 | ||
301 | OP is the operatore, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | |
302 | is the opcode saying how to modify it. Otherwise, OTHEROP is | |
303 | unused. */ | |
304 | ||
305 | value_ptr | |
306 | value_x_binop (arg1, arg2, op, otherop, noside) | |
307 | value_ptr arg1, arg2; | |
308 | enum exp_opcode op, otherop; | |
309 | enum noside noside; | |
310 | { | |
c5aa993b | 311 | value_ptr *argvec; |
c906108c SS |
312 | char *ptr; |
313 | char tstr[13]; | |
314 | int static_memfuncp; | |
315 | ||
316 | COERCE_REF (arg1); | |
317 | COERCE_REF (arg2); | |
318 | COERCE_ENUM (arg1); | |
319 | COERCE_ENUM (arg2); | |
320 | ||
321 | /* now we know that what we have to do is construct our | |
322 | arg vector and find the right function to call it with. */ | |
323 | ||
324 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 325 | error ("Can't do that binary op on that type"); /* FIXME be explicit */ |
c906108c SS |
326 | |
327 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 4); | |
328 | argvec[1] = value_addr (arg1); | |
329 | argvec[2] = arg2; | |
330 | argvec[3] = 0; | |
331 | ||
c5aa993b JM |
332 | /* make the right function name up */ |
333 | strcpy (tstr, "operator__"); | |
334 | ptr = tstr + 8; | |
c906108c SS |
335 | switch (op) |
336 | { | |
c5aa993b JM |
337 | case BINOP_ADD: |
338 | strcpy (ptr, "+"); | |
339 | break; | |
340 | case BINOP_SUB: | |
341 | strcpy (ptr, "-"); | |
342 | break; | |
343 | case BINOP_MUL: | |
344 | strcpy (ptr, "*"); | |
345 | break; | |
346 | case BINOP_DIV: | |
347 | strcpy (ptr, "/"); | |
348 | break; | |
349 | case BINOP_REM: | |
350 | strcpy (ptr, "%"); | |
351 | break; | |
352 | case BINOP_LSH: | |
353 | strcpy (ptr, "<<"); | |
354 | break; | |
355 | case BINOP_RSH: | |
356 | strcpy (ptr, ">>"); | |
357 | break; | |
358 | case BINOP_BITWISE_AND: | |
359 | strcpy (ptr, "&"); | |
360 | break; | |
361 | case BINOP_BITWISE_IOR: | |
362 | strcpy (ptr, "|"); | |
363 | break; | |
364 | case BINOP_BITWISE_XOR: | |
365 | strcpy (ptr, "^"); | |
366 | break; | |
367 | case BINOP_LOGICAL_AND: | |
368 | strcpy (ptr, "&&"); | |
369 | break; | |
370 | case BINOP_LOGICAL_OR: | |
371 | strcpy (ptr, "||"); | |
372 | break; | |
373 | case BINOP_MIN: | |
374 | strcpy (ptr, "<?"); | |
375 | break; | |
376 | case BINOP_MAX: | |
377 | strcpy (ptr, ">?"); | |
378 | break; | |
379 | case BINOP_ASSIGN: | |
380 | strcpy (ptr, "="); | |
381 | break; | |
382 | case BINOP_ASSIGN_MODIFY: | |
c906108c SS |
383 | switch (otherop) |
384 | { | |
c5aa993b JM |
385 | case BINOP_ADD: |
386 | strcpy (ptr, "+="); | |
387 | break; | |
388 | case BINOP_SUB: | |
389 | strcpy (ptr, "-="); | |
390 | break; | |
391 | case BINOP_MUL: | |
392 | strcpy (ptr, "*="); | |
393 | break; | |
394 | case BINOP_DIV: | |
395 | strcpy (ptr, "/="); | |
396 | break; | |
397 | case BINOP_REM: | |
398 | strcpy (ptr, "%="); | |
399 | break; | |
400 | case BINOP_BITWISE_AND: | |
401 | strcpy (ptr, "&="); | |
402 | break; | |
403 | case BINOP_BITWISE_IOR: | |
404 | strcpy (ptr, "|="); | |
405 | break; | |
406 | case BINOP_BITWISE_XOR: | |
407 | strcpy (ptr, "^="); | |
408 | break; | |
409 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
410 | default: |
411 | error ("Invalid binary operation specified."); | |
412 | } | |
413 | break; | |
c5aa993b JM |
414 | case BINOP_SUBSCRIPT: |
415 | strcpy (ptr, "[]"); | |
416 | break; | |
417 | case BINOP_EQUAL: | |
418 | strcpy (ptr, "=="); | |
419 | break; | |
420 | case BINOP_NOTEQUAL: | |
421 | strcpy (ptr, "!="); | |
422 | break; | |
423 | case BINOP_LESS: | |
424 | strcpy (ptr, "<"); | |
425 | break; | |
426 | case BINOP_GTR: | |
427 | strcpy (ptr, ">"); | |
428 | break; | |
429 | case BINOP_GEQ: | |
430 | strcpy (ptr, ">="); | |
431 | break; | |
432 | case BINOP_LEQ: | |
433 | strcpy (ptr, "<="); | |
434 | break; | |
435 | case BINOP_MOD: /* invalid */ | |
c906108c SS |
436 | default: |
437 | error ("Invalid binary operation specified."); | |
438 | } | |
439 | ||
c5aa993b JM |
440 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
441 | ||
c906108c SS |
442 | if (argvec[0]) |
443 | { | |
444 | if (static_memfuncp) | |
445 | { | |
446 | argvec[1] = argvec[0]; | |
447 | argvec++; | |
448 | } | |
449 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
450 | { | |
451 | struct type *return_type; | |
452 | return_type | |
453 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
454 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
455 | } | |
456 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
457 | } | |
458 | error ("member function %s not found", tstr); | |
459 | #ifdef lint | |
460 | return call_function_by_hand (argvec[0], 2 - static_memfuncp, argvec + 1); | |
461 | #endif | |
462 | } | |
463 | ||
464 | /* We know that arg1 is a structure, so try to find a unary user | |
465 | defined operator that matches the operator in question. | |
466 | Create an argument vector that calls arg1.operator @ (arg1) | |
467 | and return that value (where '@' is (almost) any unary operator which | |
468 | is legal for GNU C++). */ | |
469 | ||
470 | value_ptr | |
471 | value_x_unop (arg1, op, noside) | |
472 | value_ptr arg1; | |
473 | enum exp_opcode op; | |
474 | enum noside noside; | |
475 | { | |
c5aa993b | 476 | value_ptr *argvec; |
c906108c SS |
477 | char *ptr, *mangle_ptr; |
478 | char tstr[13], mangle_tstr[13]; | |
479 | int static_memfuncp; | |
480 | ||
481 | COERCE_REF (arg1); | |
482 | COERCE_ENUM (arg1); | |
483 | ||
484 | /* now we know that what we have to do is construct our | |
485 | arg vector and find the right function to call it with. */ | |
486 | ||
487 | if (TYPE_CODE (check_typedef (VALUE_TYPE (arg1))) != TYPE_CODE_STRUCT) | |
c5aa993b | 488 | error ("Can't do that unary op on that type"); /* FIXME be explicit */ |
c906108c SS |
489 | |
490 | argvec = (value_ptr *) alloca (sizeof (value_ptr) * 3); | |
491 | argvec[1] = value_addr (arg1); | |
492 | argvec[2] = 0; | |
493 | ||
c5aa993b JM |
494 | /* make the right function name up */ |
495 | strcpy (tstr, "operator__"); | |
496 | ptr = tstr + 8; | |
497 | strcpy (mangle_tstr, "__"); | |
498 | mangle_ptr = mangle_tstr + 2; | |
c906108c SS |
499 | switch (op) |
500 | { | |
c5aa993b JM |
501 | case UNOP_PREINCREMENT: |
502 | strcpy (ptr, "++"); | |
503 | break; | |
504 | case UNOP_PREDECREMENT: | |
505 | strcpy (ptr, "++"); | |
506 | break; | |
507 | case UNOP_POSTINCREMENT: | |
508 | strcpy (ptr, "++"); | |
509 | break; | |
510 | case UNOP_POSTDECREMENT: | |
511 | strcpy (ptr, "++"); | |
512 | break; | |
513 | case UNOP_LOGICAL_NOT: | |
514 | strcpy (ptr, "!"); | |
515 | break; | |
516 | case UNOP_COMPLEMENT: | |
517 | strcpy (ptr, "~"); | |
518 | break; | |
519 | case UNOP_NEG: | |
520 | strcpy (ptr, "-"); | |
521 | break; | |
522 | case UNOP_IND: | |
523 | strcpy (ptr, "*"); | |
524 | break; | |
c906108c SS |
525 | default: |
526 | error ("Invalid unary operation specified."); | |
527 | } | |
528 | ||
c5aa993b | 529 | argvec[0] = value_struct_elt (&arg1, argvec + 1, tstr, &static_memfuncp, "structure"); |
c906108c SS |
530 | |
531 | if (argvec[0]) | |
532 | { | |
533 | if (static_memfuncp) | |
534 | { | |
535 | argvec[1] = argvec[0]; | |
536 | argvec++; | |
537 | } | |
538 | if (noside == EVAL_AVOID_SIDE_EFFECTS) | |
539 | { | |
540 | struct type *return_type; | |
541 | return_type | |
542 | = TYPE_TARGET_TYPE (check_typedef (VALUE_TYPE (argvec[0]))); | |
543 | return value_zero (return_type, VALUE_LVAL (arg1)); | |
544 | } | |
545 | return call_function_by_hand (argvec[0], 1 - static_memfuncp, argvec + 1); | |
546 | } | |
547 | error ("member function %s not found", tstr); | |
c5aa993b | 548 | return 0; /* For lint -- never reached */ |
c906108c | 549 | } |
c906108c | 550 | \f |
c5aa993b | 551 | |
c906108c SS |
552 | /* Concatenate two values with the following conditions: |
553 | ||
c5aa993b JM |
554 | (1) Both values must be either bitstring values or character string |
555 | values and the resulting value consists of the concatenation of | |
556 | ARG1 followed by ARG2. | |
c906108c | 557 | |
c5aa993b | 558 | or |
c906108c | 559 | |
c5aa993b JM |
560 | One value must be an integer value and the other value must be |
561 | either a bitstring value or character string value, which is | |
562 | to be repeated by the number of times specified by the integer | |
563 | value. | |
c906108c SS |
564 | |
565 | ||
c5aa993b JM |
566 | (2) Boolean values are also allowed and are treated as bit string |
567 | values of length 1. | |
c906108c | 568 | |
c5aa993b JM |
569 | (3) Character values are also allowed and are treated as character |
570 | string values of length 1. | |
571 | */ | |
c906108c SS |
572 | |
573 | value_ptr | |
574 | value_concat (arg1, arg2) | |
575 | value_ptr arg1, arg2; | |
576 | { | |
c4093a6a | 577 | register value_ptr inval1, inval2, outval = NULL; |
c906108c SS |
578 | int inval1len, inval2len; |
579 | int count, idx; | |
580 | char *ptr; | |
581 | char inchar; | |
582 | struct type *type1 = check_typedef (VALUE_TYPE (arg1)); | |
583 | struct type *type2 = check_typedef (VALUE_TYPE (arg2)); | |
584 | ||
585 | COERCE_VARYING_ARRAY (arg1, type1); | |
586 | COERCE_VARYING_ARRAY (arg2, type2); | |
587 | ||
588 | /* First figure out if we are dealing with two values to be concatenated | |
589 | or a repeat count and a value to be repeated. INVAL1 is set to the | |
590 | first of two concatenated values, or the repeat count. INVAL2 is set | |
591 | to the second of the two concatenated values or the value to be | |
592 | repeated. */ | |
593 | ||
594 | if (TYPE_CODE (type2) == TYPE_CODE_INT) | |
595 | { | |
596 | struct type *tmp = type1; | |
597 | type1 = tmp; | |
598 | tmp = type2; | |
599 | inval1 = arg2; | |
600 | inval2 = arg1; | |
601 | } | |
602 | else | |
603 | { | |
604 | inval1 = arg1; | |
605 | inval2 = arg2; | |
606 | } | |
607 | ||
608 | /* Now process the input values. */ | |
609 | ||
610 | if (TYPE_CODE (type1) == TYPE_CODE_INT) | |
611 | { | |
612 | /* We have a repeat count. Validate the second value and then | |
c5aa993b | 613 | construct a value repeated that many times. */ |
c906108c SS |
614 | if (TYPE_CODE (type2) == TYPE_CODE_STRING |
615 | || TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
616 | { | |
617 | count = longest_to_int (value_as_long (inval1)); | |
618 | inval2len = TYPE_LENGTH (type2); | |
619 | ptr = (char *) alloca (count * inval2len); | |
620 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
621 | { | |
622 | inchar = (char) unpack_long (type2, | |
623 | VALUE_CONTENTS (inval2)); | |
624 | for (idx = 0; idx < count; idx++) | |
625 | { | |
626 | *(ptr + idx) = inchar; | |
627 | } | |
628 | } | |
629 | else | |
630 | { | |
631 | for (idx = 0; idx < count; idx++) | |
632 | { | |
633 | memcpy (ptr + (idx * inval2len), VALUE_CONTENTS (inval2), | |
634 | inval2len); | |
635 | } | |
636 | } | |
637 | outval = value_string (ptr, count * inval2len); | |
638 | } | |
639 | else if (TYPE_CODE (type2) == TYPE_CODE_BITSTRING | |
640 | || TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
641 | { | |
642 | error ("unimplemented support for bitstring/boolean repeats"); | |
643 | } | |
644 | else | |
645 | { | |
646 | error ("can't repeat values of that type"); | |
647 | } | |
648 | } | |
649 | else if (TYPE_CODE (type1) == TYPE_CODE_STRING | |
c5aa993b | 650 | || TYPE_CODE (type1) == TYPE_CODE_CHAR) |
c906108c SS |
651 | { |
652 | /* We have two character strings to concatenate. */ | |
653 | if (TYPE_CODE (type2) != TYPE_CODE_STRING | |
654 | && TYPE_CODE (type2) != TYPE_CODE_CHAR) | |
655 | { | |
656 | error ("Strings can only be concatenated with other strings."); | |
657 | } | |
658 | inval1len = TYPE_LENGTH (type1); | |
659 | inval2len = TYPE_LENGTH (type2); | |
660 | ptr = (char *) alloca (inval1len + inval2len); | |
661 | if (TYPE_CODE (type1) == TYPE_CODE_CHAR) | |
662 | { | |
663 | *ptr = (char) unpack_long (type1, VALUE_CONTENTS (inval1)); | |
664 | } | |
665 | else | |
666 | { | |
667 | memcpy (ptr, VALUE_CONTENTS (inval1), inval1len); | |
668 | } | |
669 | if (TYPE_CODE (type2) == TYPE_CODE_CHAR) | |
670 | { | |
c5aa993b | 671 | *(ptr + inval1len) = |
c906108c SS |
672 | (char) unpack_long (type2, VALUE_CONTENTS (inval2)); |
673 | } | |
674 | else | |
675 | { | |
676 | memcpy (ptr + inval1len, VALUE_CONTENTS (inval2), inval2len); | |
677 | } | |
678 | outval = value_string (ptr, inval1len + inval2len); | |
679 | } | |
680 | else if (TYPE_CODE (type1) == TYPE_CODE_BITSTRING | |
681 | || TYPE_CODE (type1) == TYPE_CODE_BOOL) | |
682 | { | |
683 | /* We have two bitstrings to concatenate. */ | |
684 | if (TYPE_CODE (type2) != TYPE_CODE_BITSTRING | |
685 | && TYPE_CODE (type2) != TYPE_CODE_BOOL) | |
686 | { | |
687 | error ("Bitstrings or booleans can only be concatenated with other bitstrings or booleans."); | |
688 | } | |
689 | error ("unimplemented support for bitstring/boolean concatenation."); | |
c5aa993b | 690 | } |
c906108c SS |
691 | else |
692 | { | |
693 | /* We don't know how to concatenate these operands. */ | |
694 | error ("illegal operands for concatenation."); | |
695 | } | |
696 | return (outval); | |
697 | } | |
c906108c SS |
698 | \f |
699 | ||
c5aa993b | 700 | |
c906108c SS |
701 | /* Perform a binary operation on two operands which have reasonable |
702 | representations as integers or floats. This includes booleans, | |
703 | characters, integers, or floats. | |
704 | Does not support addition and subtraction on pointers; | |
705 | use value_add or value_sub if you want to handle those possibilities. */ | |
706 | ||
707 | value_ptr | |
708 | value_binop (arg1, arg2, op) | |
709 | value_ptr arg1, arg2; | |
710 | enum exp_opcode op; | |
711 | { | |
712 | register value_ptr val; | |
713 | struct type *type1, *type2; | |
714 | ||
715 | COERCE_REF (arg1); | |
716 | COERCE_REF (arg2); | |
717 | COERCE_ENUM (arg1); | |
718 | COERCE_ENUM (arg2); | |
719 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
720 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
721 | ||
722 | if ((TYPE_CODE (type1) != TYPE_CODE_FLT | |
723 | && TYPE_CODE (type1) != TYPE_CODE_CHAR | |
724 | && TYPE_CODE (type1) != TYPE_CODE_INT | |
725 | && TYPE_CODE (type1) != TYPE_CODE_BOOL | |
726 | && TYPE_CODE (type1) != TYPE_CODE_RANGE) | |
727 | || | |
728 | (TYPE_CODE (type2) != TYPE_CODE_FLT | |
729 | && TYPE_CODE (type2) != TYPE_CODE_CHAR | |
730 | && TYPE_CODE (type2) != TYPE_CODE_INT | |
731 | && TYPE_CODE (type2) != TYPE_CODE_BOOL | |
732 | && TYPE_CODE (type2) != TYPE_CODE_RANGE)) | |
733 | error ("Argument to arithmetic operation not a number or boolean."); | |
734 | ||
735 | if (TYPE_CODE (type1) == TYPE_CODE_FLT | |
736 | || | |
737 | TYPE_CODE (type2) == TYPE_CODE_FLT) | |
738 | { | |
739 | /* FIXME-if-picky-about-floating-accuracy: Should be doing this | |
c5aa993b JM |
740 | in target format. real.c in GCC probably has the necessary |
741 | code. */ | |
c4093a6a | 742 | DOUBLEST v1, v2, v = 0; |
c906108c SS |
743 | v1 = value_as_double (arg1); |
744 | v2 = value_as_double (arg2); | |
745 | switch (op) | |
746 | { | |
747 | case BINOP_ADD: | |
748 | v = v1 + v2; | |
749 | break; | |
750 | ||
751 | case BINOP_SUB: | |
752 | v = v1 - v2; | |
753 | break; | |
754 | ||
755 | case BINOP_MUL: | |
756 | v = v1 * v2; | |
757 | break; | |
758 | ||
759 | case BINOP_DIV: | |
760 | v = v1 / v2; | |
761 | break; | |
762 | ||
c4093a6a JM |
763 | case BINOP_EXP: |
764 | v = pow (v1, v2); | |
765 | if (errno) | |
766 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
767 | break; | |
768 | ||
c906108c SS |
769 | default: |
770 | error ("Integer-only operation on floating point number."); | |
771 | } | |
772 | ||
773 | /* If either arg was long double, make sure that value is also long | |
c5aa993b | 774 | double. */ |
c906108c | 775 | |
c5aa993b JM |
776 | if (TYPE_LENGTH (type1) * 8 > TARGET_DOUBLE_BIT |
777 | || TYPE_LENGTH (type2) * 8 > TARGET_DOUBLE_BIT) | |
c906108c SS |
778 | val = allocate_value (builtin_type_long_double); |
779 | else | |
780 | val = allocate_value (builtin_type_double); | |
781 | ||
782 | store_floating (VALUE_CONTENTS_RAW (val), TYPE_LENGTH (VALUE_TYPE (val)), | |
783 | v); | |
784 | } | |
785 | else if (TYPE_CODE (type1) == TYPE_CODE_BOOL | |
786 | && | |
787 | TYPE_CODE (type2) == TYPE_CODE_BOOL) | |
c5aa993b | 788 | { |
c4093a6a | 789 | LONGEST v1, v2, v = 0; |
c5aa993b JM |
790 | v1 = value_as_long (arg1); |
791 | v2 = value_as_long (arg2); | |
792 | ||
793 | switch (op) | |
794 | { | |
795 | case BINOP_BITWISE_AND: | |
796 | v = v1 & v2; | |
797 | break; | |
798 | ||
799 | case BINOP_BITWISE_IOR: | |
800 | v = v1 | v2; | |
801 | break; | |
802 | ||
803 | case BINOP_BITWISE_XOR: | |
804 | v = v1 ^ v2; | |
c4093a6a JM |
805 | break; |
806 | ||
807 | case BINOP_EQUAL: | |
808 | v = v1 == v2; | |
809 | break; | |
810 | ||
811 | case BINOP_NOTEQUAL: | |
812 | v = v1 != v2; | |
c5aa993b JM |
813 | break; |
814 | ||
815 | default: | |
816 | error ("Invalid operation on booleans."); | |
817 | } | |
818 | ||
819 | val = allocate_value (type1); | |
820 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
821 | TYPE_LENGTH (type1), | |
822 | v); | |
823 | } | |
c906108c SS |
824 | else |
825 | /* Integral operations here. */ | |
826 | /* FIXME: Also mixed integral/booleans, with result an integer. */ | |
827 | /* FIXME: This implements ANSI C rules (also correct for C++). | |
828 | What about FORTRAN and chill? */ | |
829 | { | |
830 | unsigned int promoted_len1 = TYPE_LENGTH (type1); | |
831 | unsigned int promoted_len2 = TYPE_LENGTH (type2); | |
832 | int is_unsigned1 = TYPE_UNSIGNED (type1); | |
833 | int is_unsigned2 = TYPE_UNSIGNED (type2); | |
834 | unsigned int result_len; | |
835 | int unsigned_operation; | |
836 | ||
837 | /* Determine type length and signedness after promotion for | |
c5aa993b | 838 | both operands. */ |
c906108c SS |
839 | if (promoted_len1 < TYPE_LENGTH (builtin_type_int)) |
840 | { | |
841 | is_unsigned1 = 0; | |
842 | promoted_len1 = TYPE_LENGTH (builtin_type_int); | |
843 | } | |
844 | if (promoted_len2 < TYPE_LENGTH (builtin_type_int)) | |
845 | { | |
846 | is_unsigned2 = 0; | |
847 | promoted_len2 = TYPE_LENGTH (builtin_type_int); | |
848 | } | |
849 | ||
850 | /* Determine type length of the result, and if the operation should | |
c5aa993b JM |
851 | be done unsigned. |
852 | Use the signedness of the operand with the greater length. | |
853 | If both operands are of equal length, use unsigned operation | |
854 | if one of the operands is unsigned. */ | |
c906108c SS |
855 | if (promoted_len1 > promoted_len2) |
856 | { | |
857 | unsigned_operation = is_unsigned1; | |
858 | result_len = promoted_len1; | |
859 | } | |
860 | else if (promoted_len2 > promoted_len1) | |
861 | { | |
862 | unsigned_operation = is_unsigned2; | |
863 | result_len = promoted_len2; | |
864 | } | |
865 | else | |
866 | { | |
867 | unsigned_operation = is_unsigned1 || is_unsigned2; | |
868 | result_len = promoted_len1; | |
869 | } | |
870 | ||
871 | if (unsigned_operation) | |
872 | { | |
c4093a6a | 873 | ULONGEST v1, v2, v = 0; |
c906108c SS |
874 | v1 = (ULONGEST) value_as_long (arg1); |
875 | v2 = (ULONGEST) value_as_long (arg2); | |
876 | ||
877 | /* Truncate values to the type length of the result. */ | |
878 | if (result_len < sizeof (ULONGEST)) | |
879 | { | |
880 | v1 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
881 | v2 &= ((LONGEST) 1 << HOST_CHAR_BIT * result_len) - 1; | |
882 | } | |
c5aa993b | 883 | |
c906108c SS |
884 | switch (op) |
885 | { | |
886 | case BINOP_ADD: | |
887 | v = v1 + v2; | |
888 | break; | |
c5aa993b | 889 | |
c906108c SS |
890 | case BINOP_SUB: |
891 | v = v1 - v2; | |
892 | break; | |
c5aa993b | 893 | |
c906108c SS |
894 | case BINOP_MUL: |
895 | v = v1 * v2; | |
896 | break; | |
c5aa993b | 897 | |
c906108c SS |
898 | case BINOP_DIV: |
899 | v = v1 / v2; | |
900 | break; | |
c5aa993b | 901 | |
c4093a6a JM |
902 | case BINOP_EXP: |
903 | v = pow (v1, v2); | |
904 | if (errno) | |
905 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
906 | break; | |
907 | ||
c906108c SS |
908 | case BINOP_REM: |
909 | v = v1 % v2; | |
910 | break; | |
c5aa993b | 911 | |
c906108c SS |
912 | case BINOP_MOD: |
913 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
914 | v1 mod 0 has a defined value, v1. */ | |
915 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
c5aa993b | 916 | if (current_language->la_language == language_chill |
c906108c SS |
917 | && value_as_long (arg2) <= 0) |
918 | { | |
919 | error ("Second operand of MOD must be greater than zero."); | |
920 | } | |
921 | if (v2 == 0) | |
922 | { | |
923 | v = v1; | |
924 | } | |
925 | else | |
926 | { | |
c5aa993b | 927 | v = v1 / v2; |
c906108c SS |
928 | /* Note floor(v1/v2) == v1/v2 for unsigned. */ |
929 | v = v1 - (v2 * v); | |
930 | } | |
931 | break; | |
c5aa993b | 932 | |
c906108c SS |
933 | case BINOP_LSH: |
934 | v = v1 << v2; | |
935 | break; | |
c5aa993b | 936 | |
c906108c SS |
937 | case BINOP_RSH: |
938 | v = v1 >> v2; | |
939 | break; | |
c5aa993b | 940 | |
c906108c SS |
941 | case BINOP_BITWISE_AND: |
942 | v = v1 & v2; | |
943 | break; | |
c5aa993b | 944 | |
c906108c SS |
945 | case BINOP_BITWISE_IOR: |
946 | v = v1 | v2; | |
947 | break; | |
c5aa993b | 948 | |
c906108c SS |
949 | case BINOP_BITWISE_XOR: |
950 | v = v1 ^ v2; | |
951 | break; | |
c5aa993b | 952 | |
c906108c SS |
953 | case BINOP_LOGICAL_AND: |
954 | v = v1 && v2; | |
955 | break; | |
c5aa993b | 956 | |
c906108c SS |
957 | case BINOP_LOGICAL_OR: |
958 | v = v1 || v2; | |
959 | break; | |
c5aa993b | 960 | |
c906108c SS |
961 | case BINOP_MIN: |
962 | v = v1 < v2 ? v1 : v2; | |
963 | break; | |
c5aa993b | 964 | |
c906108c SS |
965 | case BINOP_MAX: |
966 | v = v1 > v2 ? v1 : v2; | |
967 | break; | |
968 | ||
969 | case BINOP_EQUAL: | |
970 | v = v1 == v2; | |
971 | break; | |
972 | ||
c4093a6a JM |
973 | case BINOP_NOTEQUAL: |
974 | v = v1 != v2; | |
975 | break; | |
976 | ||
c906108c SS |
977 | case BINOP_LESS: |
978 | v = v1 < v2; | |
979 | break; | |
c5aa993b | 980 | |
c906108c SS |
981 | default: |
982 | error ("Invalid binary operation on numbers."); | |
983 | } | |
984 | ||
985 | /* This is a kludge to get around the fact that we don't | |
986 | know how to determine the result type from the types of | |
987 | the operands. (I'm not really sure how much we feel the | |
988 | need to duplicate the exact rules of the current | |
989 | language. They can get really hairy. But not to do so | |
990 | makes it hard to document just what we *do* do). */ | |
991 | ||
992 | /* Can't just call init_type because we wouldn't know what | |
993 | name to give the type. */ | |
994 | val = allocate_value | |
995 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
996 | ? builtin_type_unsigned_long_long | |
997 | : builtin_type_unsigned_long); | |
998 | store_unsigned_integer (VALUE_CONTENTS_RAW (val), | |
999 | TYPE_LENGTH (VALUE_TYPE (val)), | |
1000 | v); | |
1001 | } | |
1002 | else | |
1003 | { | |
c4093a6a | 1004 | LONGEST v1, v2, v = 0; |
c906108c SS |
1005 | v1 = value_as_long (arg1); |
1006 | v2 = value_as_long (arg2); | |
c5aa993b | 1007 | |
c906108c SS |
1008 | switch (op) |
1009 | { | |
1010 | case BINOP_ADD: | |
1011 | v = v1 + v2; | |
1012 | break; | |
c5aa993b | 1013 | |
c906108c SS |
1014 | case BINOP_SUB: |
1015 | v = v1 - v2; | |
1016 | break; | |
c5aa993b | 1017 | |
c906108c SS |
1018 | case BINOP_MUL: |
1019 | v = v1 * v2; | |
1020 | break; | |
c5aa993b | 1021 | |
c906108c SS |
1022 | case BINOP_DIV: |
1023 | v = v1 / v2; | |
c4093a6a JM |
1024 | break; |
1025 | ||
1026 | case BINOP_EXP: | |
1027 | v = pow (v1, v2); | |
1028 | if (errno) | |
1029 | error ("Cannot perform exponentiation: %s", strerror (errno)); | |
c906108c | 1030 | break; |
c5aa993b | 1031 | |
c906108c SS |
1032 | case BINOP_REM: |
1033 | v = v1 % v2; | |
1034 | break; | |
c5aa993b | 1035 | |
c906108c SS |
1036 | case BINOP_MOD: |
1037 | /* Knuth 1.2.4, integer only. Note that unlike the C '%' op, | |
1038 | X mod 0 has a defined value, X. */ | |
1039 | /* Chill specifies that v2 must be > 0, so check for that. */ | |
c5aa993b | 1040 | if (current_language->la_language == language_chill |
c906108c SS |
1041 | && v2 <= 0) |
1042 | { | |
1043 | error ("Second operand of MOD must be greater than zero."); | |
1044 | } | |
1045 | if (v2 == 0) | |
1046 | { | |
1047 | v = v1; | |
1048 | } | |
1049 | else | |
1050 | { | |
c5aa993b | 1051 | v = v1 / v2; |
c906108c SS |
1052 | /* Compute floor. */ |
1053 | if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0)) | |
1054 | { | |
1055 | v--; | |
1056 | } | |
1057 | v = v1 - (v2 * v); | |
1058 | } | |
1059 | break; | |
c5aa993b | 1060 | |
c906108c SS |
1061 | case BINOP_LSH: |
1062 | v = v1 << v2; | |
1063 | break; | |
c5aa993b | 1064 | |
c906108c SS |
1065 | case BINOP_RSH: |
1066 | v = v1 >> v2; | |
1067 | break; | |
c5aa993b | 1068 | |
c906108c SS |
1069 | case BINOP_BITWISE_AND: |
1070 | v = v1 & v2; | |
1071 | break; | |
c5aa993b | 1072 | |
c906108c SS |
1073 | case BINOP_BITWISE_IOR: |
1074 | v = v1 | v2; | |
1075 | break; | |
c5aa993b | 1076 | |
c906108c SS |
1077 | case BINOP_BITWISE_XOR: |
1078 | v = v1 ^ v2; | |
1079 | break; | |
c5aa993b | 1080 | |
c906108c SS |
1081 | case BINOP_LOGICAL_AND: |
1082 | v = v1 && v2; | |
1083 | break; | |
c5aa993b | 1084 | |
c906108c SS |
1085 | case BINOP_LOGICAL_OR: |
1086 | v = v1 || v2; | |
1087 | break; | |
c5aa993b | 1088 | |
c906108c SS |
1089 | case BINOP_MIN: |
1090 | v = v1 < v2 ? v1 : v2; | |
1091 | break; | |
c5aa993b | 1092 | |
c906108c SS |
1093 | case BINOP_MAX: |
1094 | v = v1 > v2 ? v1 : v2; | |
1095 | break; | |
1096 | ||
1097 | case BINOP_EQUAL: | |
1098 | v = v1 == v2; | |
1099 | break; | |
1100 | ||
1101 | case BINOP_LESS: | |
1102 | v = v1 < v2; | |
1103 | break; | |
c5aa993b | 1104 | |
c906108c SS |
1105 | default: |
1106 | error ("Invalid binary operation on numbers."); | |
1107 | } | |
1108 | ||
1109 | /* This is a kludge to get around the fact that we don't | |
1110 | know how to determine the result type from the types of | |
1111 | the operands. (I'm not really sure how much we feel the | |
1112 | need to duplicate the exact rules of the current | |
1113 | language. They can get really hairy. But not to do so | |
1114 | makes it hard to document just what we *do* do). */ | |
1115 | ||
1116 | /* Can't just call init_type because we wouldn't know what | |
1117 | name to give the type. */ | |
1118 | val = allocate_value | |
1119 | (result_len > TARGET_LONG_BIT / HOST_CHAR_BIT | |
1120 | ? builtin_type_long_long | |
1121 | : builtin_type_long); | |
1122 | store_signed_integer (VALUE_CONTENTS_RAW (val), | |
1123 | TYPE_LENGTH (VALUE_TYPE (val)), | |
1124 | v); | |
1125 | } | |
1126 | } | |
1127 | ||
1128 | return val; | |
1129 | } | |
1130 | \f | |
1131 | /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */ | |
1132 | ||
1133 | int | |
1134 | value_logical_not (arg1) | |
1135 | value_ptr arg1; | |
1136 | { | |
1137 | register int len; | |
1138 | register char *p; | |
1139 | struct type *type1; | |
1140 | ||
1141 | COERCE_NUMBER (arg1); | |
1142 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1143 | ||
1144 | if (TYPE_CODE (type1) == TYPE_CODE_FLT) | |
1145 | return 0 == value_as_double (arg1); | |
1146 | ||
1147 | len = TYPE_LENGTH (type1); | |
1148 | p = VALUE_CONTENTS (arg1); | |
1149 | ||
1150 | while (--len >= 0) | |
1151 | { | |
1152 | if (*p++) | |
1153 | break; | |
1154 | } | |
1155 | ||
1156 | return len < 0; | |
1157 | } | |
1158 | ||
c4093a6a JM |
1159 | /* Perform a comparison on two string values (whose content are not |
1160 | necessarily null terminated) based on their length */ | |
1161 | ||
1162 | static int | |
1163 | value_strcmp (arg1, arg2) | |
1164 | register value_ptr arg1, arg2; | |
1165 | { | |
1166 | int len1 = TYPE_LENGTH (VALUE_TYPE (arg1)); | |
1167 | int len2 = TYPE_LENGTH (VALUE_TYPE (arg2)); | |
1168 | char *s1 = VALUE_CONTENTS (arg1); | |
1169 | char *s2 = VALUE_CONTENTS (arg2); | |
1170 | int i, len = len1 < len2 ? len1 : len2; | |
1171 | ||
1172 | for (i = 0; i < len; i++) | |
1173 | { | |
1174 | if (s1[i] < s2[i]) | |
1175 | return -1; | |
1176 | else if (s1[i] > s2[i]) | |
1177 | return 1; | |
1178 | else | |
1179 | continue; | |
1180 | } | |
1181 | ||
1182 | if (len1 < len2) | |
1183 | return -1; | |
1184 | else if (len1 > len2) | |
1185 | return 1; | |
1186 | else | |
1187 | return 0; | |
1188 | } | |
1189 | ||
c906108c SS |
1190 | /* Simulate the C operator == by returning a 1 |
1191 | iff ARG1 and ARG2 have equal contents. */ | |
1192 | ||
1193 | int | |
1194 | value_equal (arg1, arg2) | |
1195 | register value_ptr arg1, arg2; | |
1196 | ||
1197 | { | |
1198 | register int len; | |
1199 | register char *p1, *p2; | |
1200 | struct type *type1, *type2; | |
1201 | enum type_code code1; | |
1202 | enum type_code code2; | |
1203 | ||
1204 | COERCE_NUMBER (arg1); | |
1205 | COERCE_NUMBER (arg2); | |
1206 | ||
1207 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1208 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1209 | code1 = TYPE_CODE (type1); | |
1210 | code2 = TYPE_CODE (type2); | |
1211 | ||
1212 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1213 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1214 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1215 | BINOP_EQUAL))); | |
1216 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1217 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1218 | return value_as_double (arg1) == value_as_double (arg2); | |
1219 | ||
1220 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1221 | is bigger. */ | |
1222 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1223 | return value_as_pointer (arg1) == (CORE_ADDR) value_as_long (arg2); | |
1224 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) | |
1225 | return (CORE_ADDR) value_as_long (arg1) == value_as_pointer (arg2); | |
1226 | ||
1227 | else if (code1 == code2 | |
1228 | && ((len = (int) TYPE_LENGTH (type1)) | |
1229 | == (int) TYPE_LENGTH (type2))) | |
1230 | { | |
1231 | p1 = VALUE_CONTENTS (arg1); | |
1232 | p2 = VALUE_CONTENTS (arg2); | |
1233 | while (--len >= 0) | |
1234 | { | |
1235 | if (*p1++ != *p2++) | |
1236 | break; | |
1237 | } | |
1238 | return len < 0; | |
1239 | } | |
c4093a6a JM |
1240 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1241 | { | |
1242 | return value_strcmp (arg1, arg2) == 0; | |
1243 | } | |
c906108c SS |
1244 | else |
1245 | { | |
1246 | error ("Invalid type combination in equality test."); | |
c5aa993b | 1247 | return 0; /* For lint -- never reached */ |
c906108c SS |
1248 | } |
1249 | } | |
1250 | ||
1251 | /* Simulate the C operator < by returning 1 | |
1252 | iff ARG1's contents are less than ARG2's. */ | |
1253 | ||
1254 | int | |
1255 | value_less (arg1, arg2) | |
1256 | register value_ptr arg1, arg2; | |
1257 | { | |
1258 | register enum type_code code1; | |
1259 | register enum type_code code2; | |
1260 | struct type *type1, *type2; | |
1261 | ||
1262 | COERCE_NUMBER (arg1); | |
1263 | COERCE_NUMBER (arg2); | |
1264 | ||
1265 | type1 = check_typedef (VALUE_TYPE (arg1)); | |
1266 | type2 = check_typedef (VALUE_TYPE (arg2)); | |
1267 | code1 = TYPE_CODE (type1); | |
1268 | code2 = TYPE_CODE (type2); | |
1269 | ||
1270 | if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) && | |
1271 | (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1272 | return longest_to_int (value_as_long (value_binop (arg1, arg2, | |
1273 | BINOP_LESS))); | |
1274 | else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL) | |
1275 | && (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1276 | return value_as_double (arg1) < value_as_double (arg2); | |
1277 | else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | |
1278 | return value_as_pointer (arg1) < value_as_pointer (arg2); | |
1279 | ||
1280 | /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | |
1281 | is bigger. */ | |
1282 | else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL)) | |
1283 | return value_as_pointer (arg1) < (CORE_ADDR) value_as_long (arg2); | |
1284 | else if (code2 == TYPE_CODE_PTR && (code1 == TYPE_CODE_INT || code1 == TYPE_CODE_BOOL)) | |
1285 | return (CORE_ADDR) value_as_long (arg1) < value_as_pointer (arg2); | |
c4093a6a JM |
1286 | else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) |
1287 | return value_strcmp (arg1, arg2) < 0; | |
c906108c SS |
1288 | else |
1289 | { | |
1290 | error ("Invalid type combination in ordering comparison."); | |
1291 | return 0; | |
1292 | } | |
1293 | } | |
1294 | \f | |
1295 | /* The unary operators - and ~. Both free the argument ARG1. */ | |
1296 | ||
1297 | value_ptr | |
1298 | value_neg (arg1) | |
1299 | register value_ptr arg1; | |
1300 | { | |
1301 | register struct type *type; | |
1302 | register struct type *result_type = VALUE_TYPE (arg1); | |
1303 | ||
1304 | COERCE_REF (arg1); | |
1305 | COERCE_ENUM (arg1); | |
1306 | ||
1307 | type = check_typedef (VALUE_TYPE (arg1)); | |
1308 | ||
1309 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
c5aa993b | 1310 | return value_from_double (result_type, -value_as_double (arg1)); |
c906108c SS |
1311 | else if (TYPE_CODE (type) == TYPE_CODE_INT || TYPE_CODE (type) == TYPE_CODE_BOOL) |
1312 | { | |
1313 | /* Perform integral promotion for ANSI C/C++. | |
c5aa993b | 1314 | FIXME: What about FORTRAN and chill ? */ |
c906108c SS |
1315 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) |
1316 | result_type = builtin_type_int; | |
1317 | ||
c5aa993b JM |
1318 | return value_from_longest (result_type, -value_as_long (arg1)); |
1319 | } | |
1320 | else | |
1321 | { | |
1322 | error ("Argument to negate operation not a number."); | |
1323 | return 0; /* For lint -- never reached */ | |
c906108c | 1324 | } |
c906108c SS |
1325 | } |
1326 | ||
1327 | value_ptr | |
1328 | value_complement (arg1) | |
1329 | register value_ptr arg1; | |
1330 | { | |
1331 | register struct type *type; | |
1332 | register struct type *result_type = VALUE_TYPE (arg1); | |
c5aa993b | 1333 | int typecode; |
c906108c SS |
1334 | |
1335 | COERCE_REF (arg1); | |
1336 | COERCE_ENUM (arg1); | |
1337 | ||
1338 | type = check_typedef (VALUE_TYPE (arg1)); | |
1339 | ||
1340 | typecode = TYPE_CODE (type); | |
1341 | if ((typecode != TYPE_CODE_INT) && (typecode != TYPE_CODE_BOOL)) | |
1342 | error ("Argument to complement operation not an integer or boolean."); | |
1343 | ||
1344 | /* Perform integral promotion for ANSI C/C++. | |
1345 | FIXME: What about FORTRAN ? */ | |
1346 | if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int)) | |
1347 | result_type = builtin_type_int; | |
1348 | ||
c5aa993b | 1349 | return value_from_longest (result_type, ~value_as_long (arg1)); |
c906108c SS |
1350 | } |
1351 | \f | |
1352 | /* The INDEX'th bit of SET value whose VALUE_TYPE is TYPE, | |
1353 | and whose VALUE_CONTENTS is valaddr. | |
1354 | Return -1 if out of range, -2 other error. */ | |
1355 | ||
1356 | int | |
1357 | value_bit_index (type, valaddr, index) | |
1358 | struct type *type; | |
1359 | char *valaddr; | |
1360 | int index; | |
1361 | { | |
1362 | LONGEST low_bound, high_bound; | |
1363 | LONGEST word; | |
1364 | unsigned rel_index; | |
1365 | struct type *range = TYPE_FIELD_TYPE (type, 0); | |
1366 | if (get_discrete_bounds (range, &low_bound, &high_bound) < 0) | |
1367 | return -2; | |
1368 | if (index < low_bound || index > high_bound) | |
1369 | return -1; | |
1370 | rel_index = index - low_bound; | |
1371 | word = unpack_long (builtin_type_unsigned_char, | |
1372 | valaddr + (rel_index / TARGET_CHAR_BIT)); | |
1373 | rel_index %= TARGET_CHAR_BIT; | |
1374 | if (BITS_BIG_ENDIAN) | |
1375 | rel_index = TARGET_CHAR_BIT - 1 - rel_index; | |
1376 | return (word >> rel_index) & 1; | |
1377 | } | |
1378 | ||
1379 | value_ptr | |
1380 | value_in (element, set) | |
1381 | value_ptr element, set; | |
1382 | { | |
1383 | int member; | |
1384 | struct type *settype = check_typedef (VALUE_TYPE (set)); | |
1385 | struct type *eltype = check_typedef (VALUE_TYPE (element)); | |
1386 | if (TYPE_CODE (eltype) == TYPE_CODE_RANGE) | |
1387 | eltype = TYPE_TARGET_TYPE (eltype); | |
1388 | if (TYPE_CODE (settype) != TYPE_CODE_SET) | |
1389 | error ("Second argument of 'IN' has wrong type"); | |
1390 | if (TYPE_CODE (eltype) != TYPE_CODE_INT | |
1391 | && TYPE_CODE (eltype) != TYPE_CODE_CHAR | |
1392 | && TYPE_CODE (eltype) != TYPE_CODE_ENUM | |
1393 | && TYPE_CODE (eltype) != TYPE_CODE_BOOL) | |
1394 | error ("First argument of 'IN' has wrong type"); | |
1395 | member = value_bit_index (settype, VALUE_CONTENTS (set), | |
1396 | value_as_long (element)); | |
1397 | if (member < 0) | |
1398 | error ("First argument of 'IN' not in range"); | |
1399 | return value_from_longest (LA_BOOL_TYPE, member); | |
1400 | } | |
1401 | ||
1402 | void | |
1403 | _initialize_valarith () | |
1404 | { | |
1405 | } |