]>
Commit | Line | Data |
---|---|---|
5ca28f79 | 1 | /* crc32.c -- compute the CRC-32 of a data stream |
8e6b3536 | 2 | * Copyright (C) 1995-2022 Mark Adler |
5ca28f79 L |
3 | * For conditions of distribution and use, see copyright notice in zlib.h |
4 | * | |
8e6b3536 NC |
5 | * This interleaved implementation of a CRC makes use of pipelined multiple |
6 | * arithmetic-logic units, commonly found in modern CPU cores. It is due to | |
7 | * Kadatch and Jenkins (2010). See doc/crc-doc.1.0.pdf in this distribution. | |
5ca28f79 L |
8 | */ |
9 | ||
8e6b3536 | 10 | /* @(#) $Id$ */ |
5ca28f79 L |
11 | |
12 | /* | |
13 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
14 | protection on the static variables used to control the first-use generation | |
8e6b3536 | 15 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should |
5ca28f79 L |
16 | first call get_crc_table() to initialize the tables before allowing more than |
17 | one thread to use crc32(). | |
18 | ||
8e6b3536 NC |
19 | MAKECRCH can be #defined to write out crc32.h. A main() routine is also |
20 | produced, so that this one source file can be compiled to an executable. | |
5ca28f79 L |
21 | */ |
22 | ||
23 | #ifdef MAKECRCH | |
24 | # include <stdio.h> | |
25 | # ifndef DYNAMIC_CRC_TABLE | |
26 | # define DYNAMIC_CRC_TABLE | |
27 | # endif /* !DYNAMIC_CRC_TABLE */ | |
28 | #endif /* MAKECRCH */ | |
29 | ||
8e6b3536 | 30 | #include "zutil.h" /* for Z_U4, Z_U8, z_crc_t, and FAR definitions */ |
5ca28f79 | 31 | |
8e6b3536 NC |
32 | /* |
33 | A CRC of a message is computed on N braids of words in the message, where | |
34 | each word consists of W bytes (4 or 8). If N is 3, for example, then three | |
35 | running sparse CRCs are calculated respectively on each braid, at these | |
36 | indices in the array of words: 0, 3, 6, ..., 1, 4, 7, ..., and 2, 5, 8, ... | |
37 | This is done starting at a word boundary, and continues until as many blocks | |
38 | of N * W bytes as are available have been processed. The results are combined | |
39 | into a single CRC at the end. For this code, N must be in the range 1..6 and | |
40 | W must be 4 or 8. The upper limit on N can be increased if desired by adding | |
41 | more #if blocks, extending the patterns apparent in the code. In addition, | |
42 | crc32.h would need to be regenerated, if the maximum N value is increased. | |
43 | ||
44 | N and W are chosen empirically by benchmarking the execution time on a given | |
45 | processor. The choices for N and W below were based on testing on Intel Kaby | |
46 | Lake i7, AMD Ryzen 7, ARM Cortex-A57, Sparc64-VII, PowerPC POWER9, and MIPS64 | |
47 | Octeon II processors. The Intel, AMD, and ARM processors were all fastest | |
48 | with N=5, W=8. The Sparc, PowerPC, and MIPS64 were all fastest at N=5, W=4. | |
49 | They were all tested with either gcc or clang, all using the -O3 optimization | |
50 | level. Your mileage may vary. | |
51 | */ | |
52 | ||
53 | /* Define N */ | |
54 | #ifdef Z_TESTN | |
55 | # define N Z_TESTN | |
56 | #else | |
57 | # define N 5 | |
58 | #endif | |
59 | #if N < 1 || N > 6 | |
60 | # error N must be in 1..6 | |
5ca28f79 | 61 | #endif |
8e6b3536 NC |
62 | |
63 | /* | |
64 | z_crc_t must be at least 32 bits. z_word_t must be at least as long as | |
65 | z_crc_t. It is assumed here that z_word_t is either 32 bits or 64 bits, and | |
66 | that bytes are eight bits. | |
67 | */ | |
68 | ||
69 | /* | |
70 | Define W and the associated z_word_t type. If W is not defined, then a | |
71 | braided calculation is not used, and the associated tables and code are not | |
72 | compiled. | |
73 | */ | |
74 | #ifdef Z_TESTW | |
75 | # if Z_TESTW-1 != -1 | |
76 | # define W Z_TESTW | |
77 | # endif | |
5ca28f79 | 78 | #else |
8e6b3536 NC |
79 | # ifdef MAKECRCH |
80 | # define W 8 /* required for MAKECRCH */ | |
81 | # else | |
82 | # if defined(__x86_64__) || defined(__aarch64__) | |
83 | # define W 8 | |
84 | # else | |
85 | # define W 4 | |
86 | # endif | |
87 | # endif | |
88 | #endif | |
89 | #ifdef W | |
90 | # if W == 8 && defined(Z_U8) | |
91 | typedef Z_U8 z_word_t; | |
92 | # elif defined(Z_U4) | |
93 | # undef W | |
94 | # define W 4 | |
95 | typedef Z_U4 z_word_t; | |
96 | # else | |
97 | # undef W | |
98 | # endif | |
99 | #endif | |
5ca28f79 | 100 | |
8e6b3536 NC |
101 | /* Local functions. */ |
102 | local z_crc_t multmodp OF((z_crc_t a, z_crc_t b)); | |
103 | local z_crc_t x2nmodp OF((z_off64_t n, unsigned k)); | |
5ca28f79 | 104 | |
8e6b3536 NC |
105 | /* If available, use the ARM processor CRC32 instruction. */ |
106 | #if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32) && W == 8 | |
107 | # define ARMCRC32 | |
108 | #endif | |
109 | ||
110 | #if defined(W) && (!defined(ARMCRC32) || defined(DYNAMIC_CRC_TABLE)) | |
111 | /* | |
112 | Swap the bytes in a z_word_t to convert between little and big endian. Any | |
113 | self-respecting compiler will optimize this to a single machine byte-swap | |
114 | instruction, if one is available. This assumes that word_t is either 32 bits | |
115 | or 64 bits. | |
116 | */ | |
117 | local z_word_t byte_swap(word) | |
118 | z_word_t word; | |
119 | { | |
120 | # if W == 8 | |
121 | return | |
122 | (word & 0xff00000000000000) >> 56 | | |
123 | (word & 0xff000000000000) >> 40 | | |
124 | (word & 0xff0000000000) >> 24 | | |
125 | (word & 0xff00000000) >> 8 | | |
126 | (word & 0xff000000) << 8 | | |
127 | (word & 0xff0000) << 24 | | |
128 | (word & 0xff00) << 40 | | |
129 | (word & 0xff) << 56; | |
130 | # else /* W == 4 */ | |
131 | return | |
132 | (word & 0xff000000) >> 24 | | |
133 | (word & 0xff0000) >> 8 | | |
134 | (word & 0xff00) << 8 | | |
135 | (word & 0xff) << 24; | |
136 | # endif | |
137 | } | |
138 | #endif | |
139 | ||
140 | /* CRC polynomial. */ | |
141 | #define POLY 0xedb88320 /* p(x) reflected, with x^32 implied */ | |
5ca28f79 L |
142 | |
143 | #ifdef DYNAMIC_CRC_TABLE | |
144 | ||
8e6b3536 NC |
145 | local z_crc_t FAR crc_table[256]; |
146 | local z_crc_t FAR x2n_table[32]; | |
5ca28f79 | 147 | local void make_crc_table OF((void)); |
8e6b3536 NC |
148 | #ifdef W |
149 | local z_word_t FAR crc_big_table[256]; | |
150 | local z_crc_t FAR crc_braid_table[W][256]; | |
151 | local z_word_t FAR crc_braid_big_table[W][256]; | |
152 | local void braid OF((z_crc_t [][256], z_word_t [][256], int, int)); | |
153 | #endif | |
5ca28f79 | 154 | #ifdef MAKECRCH |
8e6b3536 NC |
155 | local void write_table OF((FILE *, const z_crc_t FAR *, int)); |
156 | local void write_table32hi OF((FILE *, const z_word_t FAR *, int)); | |
157 | local void write_table64 OF((FILE *, const z_word_t FAR *, int)); | |
5ca28f79 | 158 | #endif /* MAKECRCH */ |
8e6b3536 NC |
159 | |
160 | /* | |
161 | Define a once() function depending on the availability of atomics. If this is | |
162 | compiled with DYNAMIC_CRC_TABLE defined, and if CRCs will be computed in | |
163 | multiple threads, and if atomics are not available, then get_crc_table() must | |
164 | be called to initialize the tables and must return before any threads are | |
165 | allowed to compute or combine CRCs. | |
166 | */ | |
167 | ||
168 | /* Definition of once functionality. */ | |
169 | typedef struct once_s once_t; | |
170 | local void once OF((once_t *, void (*)(void))); | |
171 | ||
172 | /* Check for the availability of atomics. */ | |
173 | #if defined(__STDC__) && __STDC_VERSION__ >= 201112L && \ | |
174 | !defined(__STDC_NO_ATOMICS__) | |
175 | ||
176 | #include <stdatomic.h> | |
177 | ||
178 | /* Structure for once(), which must be initialized with ONCE_INIT. */ | |
179 | struct once_s { | |
180 | atomic_flag begun; | |
181 | atomic_int done; | |
182 | }; | |
183 | #define ONCE_INIT {ATOMIC_FLAG_INIT, 0} | |
184 | ||
185 | /* | |
186 | Run the provided init() function exactly once, even if multiple threads | |
187 | invoke once() at the same time. The state must be a once_t initialized with | |
188 | ONCE_INIT. | |
189 | */ | |
190 | local void once(state, init) | |
191 | once_t *state; | |
192 | void (*init)(void); | |
193 | { | |
194 | if (!atomic_load(&state->done)) { | |
195 | if (atomic_flag_test_and_set(&state->begun)) | |
196 | while (!atomic_load(&state->done)) | |
197 | ; | |
198 | else { | |
199 | init(); | |
200 | atomic_store(&state->done, 1); | |
201 | } | |
202 | } | |
203 | } | |
204 | ||
205 | #else /* no atomics */ | |
206 | ||
207 | /* Structure for once(), which must be initialized with ONCE_INIT. */ | |
208 | struct once_s { | |
209 | volatile int begun; | |
210 | volatile int done; | |
211 | }; | |
212 | #define ONCE_INIT {0, 0} | |
213 | ||
214 | /* Test and set. Alas, not atomic, but tries to minimize the period of | |
215 | vulnerability. */ | |
216 | local int test_and_set OF((int volatile *)); | |
217 | local int test_and_set(flag) | |
218 | int volatile *flag; | |
219 | { | |
220 | int was; | |
221 | ||
222 | was = *flag; | |
223 | *flag = 1; | |
224 | return was; | |
225 | } | |
226 | ||
227 | /* Run the provided init() function once. This is not thread-safe. */ | |
228 | local void once(state, init) | |
229 | once_t *state; | |
230 | void (*init)(void); | |
231 | { | |
232 | if (!state->done) { | |
233 | if (test_and_set(&state->begun)) | |
234 | while (!state->done) | |
235 | ; | |
236 | else { | |
237 | init(); | |
238 | state->done = 1; | |
239 | } | |
240 | } | |
241 | } | |
242 | ||
243 | #endif | |
244 | ||
245 | /* State for once(). */ | |
246 | local once_t made = ONCE_INIT; | |
247 | ||
5ca28f79 L |
248 | /* |
249 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
250 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
251 | ||
252 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
8e6b3536 | 253 | with the lowest powers in the most significant bit. Then adding polynomials |
5ca28f79 | 254 | is just exclusive-or, and multiplying a polynomial by x is a right shift by |
8e6b3536 | 255 | one. If we call the above polynomial p, and represent a byte as the |
5ca28f79 | 256 | polynomial q, also with the lowest power in the most significant bit (so the |
8e6b3536 | 257 | byte 0xb1 is the polynomial x^7+x^3+x^2+1), then the CRC is (q*x^32) mod p, |
5ca28f79 L |
258 | where a mod b means the remainder after dividing a by b. |
259 | ||
260 | This calculation is done using the shift-register method of multiplying and | |
8e6b3536 | 261 | taking the remainder. The register is initialized to zero, and for each |
5ca28f79 | 262 | incoming bit, x^32 is added mod p to the register if the bit is a one (where |
8e6b3536 NC |
263 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by x |
264 | (which is shifting right by one and adding x^32 mod p if the bit shifted out | |
265 | is a one). We start with the highest power (least significant bit) of q and | |
266 | repeat for all eight bits of q. | |
267 | ||
268 | The table is simply the CRC of all possible eight bit values. This is all the | |
269 | information needed to generate CRCs on data a byte at a time for all | |
270 | combinations of CRC register values and incoming bytes. | |
271 | */ | |
272 | ||
5ca28f79 L |
273 | local void make_crc_table() |
274 | { | |
8e6b3536 NC |
275 | unsigned i, j, n; |
276 | z_crc_t p; | |
5ca28f79 | 277 | |
8e6b3536 NC |
278 | /* initialize the CRC of bytes tables */ |
279 | for (i = 0; i < 256; i++) { | |
280 | p = i; | |
281 | for (j = 0; j < 8; j++) | |
282 | p = p & 1 ? (p >> 1) ^ POLY : p >> 1; | |
283 | crc_table[i] = p; | |
284 | #ifdef W | |
285 | crc_big_table[i] = byte_swap(p); | |
286 | #endif | |
5ca28f79 L |
287 | } |
288 | ||
8e6b3536 NC |
289 | /* initialize the x^2^n mod p(x) table */ |
290 | p = (z_crc_t)1 << 30; /* x^1 */ | |
291 | x2n_table[0] = p; | |
292 | for (n = 1; n < 32; n++) | |
293 | x2n_table[n] = p = multmodp(p, p); | |
294 | ||
295 | #ifdef W | |
296 | /* initialize the braiding tables -- needs x2n_table[] */ | |
297 | braid(crc_braid_table, crc_braid_big_table, N, W); | |
298 | #endif | |
299 | ||
5ca28f79 | 300 | #ifdef MAKECRCH |
5ca28f79 | 301 | { |
8e6b3536 NC |
302 | /* |
303 | The crc32.h header file contains tables for both 32-bit and 64-bit | |
304 | z_word_t's, and so requires a 64-bit type be available. In that case, | |
305 | z_word_t must be defined to be 64-bits. This code then also generates | |
306 | and writes out the tables for the case that z_word_t is 32 bits. | |
307 | */ | |
308 | #if !defined(W) || W != 8 | |
309 | # error Need a 64-bit integer type in order to generate crc32.h. | |
310 | #endif | |
5ca28f79 | 311 | FILE *out; |
8e6b3536 NC |
312 | int k, n; |
313 | z_crc_t ltl[8][256]; | |
314 | z_word_t big[8][256]; | |
5ca28f79 L |
315 | |
316 | out = fopen("crc32.h", "w"); | |
317 | if (out == NULL) return; | |
8e6b3536 NC |
318 | |
319 | /* write out little-endian CRC table to crc32.h */ | |
320 | fprintf(out, | |
321 | "/* crc32.h -- tables for rapid CRC calculation\n" | |
322 | " * Generated automatically by crc32.c\n */\n" | |
323 | "\n" | |
324 | "local const z_crc_t FAR crc_table[] = {\n" | |
325 | " "); | |
326 | write_table(out, crc_table, 256); | |
327 | fprintf(out, | |
328 | "};\n"); | |
329 | ||
330 | /* write out big-endian CRC table for 64-bit z_word_t to crc32.h */ | |
331 | fprintf(out, | |
332 | "\n" | |
333 | "#ifdef W\n" | |
334 | "\n" | |
335 | "#if W == 8\n" | |
336 | "\n" | |
337 | "local const z_word_t FAR crc_big_table[] = {\n" | |
338 | " "); | |
339 | write_table64(out, crc_big_table, 256); | |
340 | fprintf(out, | |
341 | "};\n"); | |
342 | ||
343 | /* write out big-endian CRC table for 32-bit z_word_t to crc32.h */ | |
344 | fprintf(out, | |
345 | "\n" | |
346 | "#else /* W == 4 */\n" | |
347 | "\n" | |
348 | "local const z_word_t FAR crc_big_table[] = {\n" | |
349 | " "); | |
350 | write_table32hi(out, crc_big_table, 256); | |
351 | fprintf(out, | |
352 | "};\n" | |
353 | "\n" | |
354 | "#endif\n"); | |
355 | ||
356 | /* write out braid tables for each value of N */ | |
357 | for (n = 1; n <= 6; n++) { | |
358 | fprintf(out, | |
359 | "\n" | |
360 | "#if N == %d\n", n); | |
361 | ||
362 | /* compute braid tables for this N and 64-bit word_t */ | |
363 | braid(ltl, big, n, 8); | |
364 | ||
365 | /* write out braid tables for 64-bit z_word_t to crc32.h */ | |
366 | fprintf(out, | |
367 | "\n" | |
368 | "#if W == 8\n" | |
369 | "\n" | |
370 | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | |
371 | for (k = 0; k < 8; k++) { | |
372 | fprintf(out, " {"); | |
373 | write_table(out, ltl[k], 256); | |
374 | fprintf(out, "}%s", k < 7 ? ",\n" : ""); | |
375 | } | |
376 | fprintf(out, | |
377 | "};\n" | |
378 | "\n" | |
379 | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | |
380 | for (k = 0; k < 8; k++) { | |
381 | fprintf(out, " {"); | |
382 | write_table64(out, big[k], 256); | |
383 | fprintf(out, "}%s", k < 7 ? ",\n" : ""); | |
384 | } | |
385 | fprintf(out, | |
386 | "};\n"); | |
387 | ||
388 | /* compute braid tables for this N and 32-bit word_t */ | |
389 | braid(ltl, big, n, 4); | |
390 | ||
391 | /* write out braid tables for 32-bit z_word_t to crc32.h */ | |
392 | fprintf(out, | |
393 | "\n" | |
394 | "#else /* W == 4 */\n" | |
395 | "\n" | |
396 | "local const z_crc_t FAR crc_braid_table[][256] = {\n"); | |
397 | for (k = 0; k < 4; k++) { | |
398 | fprintf(out, " {"); | |
399 | write_table(out, ltl[k], 256); | |
400 | fprintf(out, "}%s", k < 3 ? ",\n" : ""); | |
401 | } | |
402 | fprintf(out, | |
403 | "};\n" | |
404 | "\n" | |
405 | "local const z_word_t FAR crc_braid_big_table[][256] = {\n"); | |
406 | for (k = 0; k < 4; k++) { | |
407 | fprintf(out, " {"); | |
408 | write_table32hi(out, big[k], 256); | |
409 | fprintf(out, "}%s", k < 3 ? ",\n" : ""); | |
410 | } | |
411 | fprintf(out, | |
412 | "};\n" | |
413 | "\n" | |
414 | "#endif\n" | |
415 | "\n" | |
416 | "#endif\n"); | |
5ca28f79 | 417 | } |
8e6b3536 NC |
418 | fprintf(out, |
419 | "\n" | |
420 | "#endif\n"); | |
421 | ||
422 | /* write out zeros operator table to crc32.h */ | |
423 | fprintf(out, | |
424 | "\n" | |
425 | "local const z_crc_t FAR x2n_table[] = {\n" | |
426 | " "); | |
427 | write_table(out, x2n_table, 32); | |
428 | fprintf(out, | |
429 | "};\n"); | |
5ca28f79 L |
430 | fclose(out); |
431 | } | |
432 | #endif /* MAKECRCH */ | |
433 | } | |
434 | ||
435 | #ifdef MAKECRCH | |
8e6b3536 NC |
436 | |
437 | /* | |
438 | Write the 32-bit values in table[0..k-1] to out, five per line in | |
439 | hexadecimal separated by commas. | |
440 | */ | |
441 | local void write_table(out, table, k) | |
5ca28f79 L |
442 | FILE *out; |
443 | const z_crc_t FAR *table; | |
8e6b3536 | 444 | int k; |
5ca28f79 L |
445 | { |
446 | int n; | |
447 | ||
8e6b3536 NC |
448 | for (n = 0; n < k; n++) |
449 | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", | |
5ca28f79 | 450 | (unsigned long)(table[n]), |
8e6b3536 | 451 | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); |
5ca28f79 | 452 | } |
8e6b3536 NC |
453 | |
454 | /* | |
455 | Write the high 32-bits of each value in table[0..k-1] to out, five per line | |
456 | in hexadecimal separated by commas. | |
457 | */ | |
458 | local void write_table32hi(out, table, k) | |
459 | FILE *out; | |
460 | const z_word_t FAR *table; | |
461 | int k; | |
462 | { | |
463 | int n; | |
464 | ||
465 | for (n = 0; n < k; n++) | |
466 | fprintf(out, "%s0x%08lx%s", n == 0 || n % 5 ? "" : " ", | |
467 | (unsigned long)(table[n] >> 32), | |
468 | n == k - 1 ? "" : (n % 5 == 4 ? ",\n" : ", ")); | |
469 | } | |
470 | ||
471 | /* | |
472 | Write the 64-bit values in table[0..k-1] to out, three per line in | |
473 | hexadecimal separated by commas. This assumes that if there is a 64-bit | |
474 | type, then there is also a long long integer type, and it is at least 64 | |
475 | bits. If not, then the type cast and format string can be adjusted | |
476 | accordingly. | |
477 | */ | |
478 | local void write_table64(out, table, k) | |
479 | FILE *out; | |
480 | const z_word_t FAR *table; | |
481 | int k; | |
482 | { | |
483 | int n; | |
484 | ||
485 | for (n = 0; n < k; n++) | |
486 | fprintf(out, "%s0x%016llx%s", n == 0 || n % 3 ? "" : " ", | |
487 | (unsigned long long)(table[n]), | |
488 | n == k - 1 ? "" : (n % 3 == 2 ? ",\n" : ", ")); | |
489 | } | |
490 | ||
491 | /* Actually do the deed. */ | |
492 | int main() | |
493 | { | |
494 | make_crc_table(); | |
495 | return 0; | |
496 | } | |
497 | ||
5ca28f79 L |
498 | #endif /* MAKECRCH */ |
499 | ||
8e6b3536 NC |
500 | #ifdef W |
501 | /* | |
502 | Generate the little and big-endian braid tables for the given n and z_word_t | |
503 | size w. Each array must have room for w blocks of 256 elements. | |
504 | */ | |
505 | local void braid(ltl, big, n, w) | |
506 | z_crc_t ltl[][256]; | |
507 | z_word_t big[][256]; | |
508 | int n; | |
509 | int w; | |
510 | { | |
511 | int k; | |
512 | z_crc_t i, p, q; | |
513 | for (k = 0; k < w; k++) { | |
514 | p = x2nmodp((n * w + 3 - k) << 3, 0); | |
515 | ltl[k][0] = 0; | |
516 | big[w - 1 - k][0] = 0; | |
517 | for (i = 1; i < 256; i++) { | |
518 | ltl[k][i] = q = multmodp(i << 24, p); | |
519 | big[w - 1 - k][i] = byte_swap(q); | |
520 | } | |
521 | } | |
522 | } | |
523 | #endif | |
524 | ||
5ca28f79 L |
525 | #else /* !DYNAMIC_CRC_TABLE */ |
526 | /* ======================================================================== | |
8e6b3536 NC |
527 | * Tables for byte-wise and braided CRC-32 calculations, and a table of powers |
528 | * of x for combining CRC-32s, all made by make_crc_table(). | |
5ca28f79 L |
529 | */ |
530 | #include "crc32.h" | |
531 | #endif /* DYNAMIC_CRC_TABLE */ | |
532 | ||
8e6b3536 NC |
533 | /* ======================================================================== |
534 | * Routines used for CRC calculation. Some are also required for the table | |
535 | * generation above. | |
536 | */ | |
537 | ||
538 | /* | |
539 | Return a(x) multiplied by b(x) modulo p(x), where p(x) is the CRC polynomial, | |
540 | reflected. For speed, this requires that a not be zero. | |
541 | */ | |
542 | local z_crc_t multmodp(a, b) | |
543 | z_crc_t a; | |
544 | z_crc_t b; | |
545 | { | |
546 | z_crc_t m, p; | |
547 | ||
548 | m = (z_crc_t)1 << 31; | |
549 | p = 0; | |
550 | for (;;) { | |
551 | if (a & m) { | |
552 | p ^= b; | |
553 | if ((a & (m - 1)) == 0) | |
554 | break; | |
555 | } | |
556 | m >>= 1; | |
557 | b = b & 1 ? (b >> 1) ^ POLY : b >> 1; | |
558 | } | |
559 | return p; | |
560 | } | |
561 | ||
562 | /* | |
563 | Return x^(n * 2^k) modulo p(x). Requires that x2n_table[] has been | |
564 | initialized. | |
565 | */ | |
566 | local z_crc_t x2nmodp(n, k) | |
567 | z_off64_t n; | |
568 | unsigned k; | |
569 | { | |
570 | z_crc_t p; | |
571 | ||
572 | p = (z_crc_t)1 << 31; /* x^0 == 1 */ | |
573 | while (n) { | |
574 | if (n & 1) | |
575 | p = multmodp(x2n_table[k & 31], p); | |
576 | n >>= 1; | |
577 | k++; | |
578 | } | |
579 | return p; | |
580 | } | |
581 | ||
5ca28f79 | 582 | /* ========================================================================= |
8e6b3536 NC |
583 | * This function can be used by asm versions of crc32(), and to force the |
584 | * generation of the CRC tables in a threaded application. | |
5ca28f79 L |
585 | */ |
586 | const z_crc_t FAR * ZEXPORT get_crc_table() | |
587 | { | |
588 | #ifdef DYNAMIC_CRC_TABLE | |
8e6b3536 | 589 | once(&made, make_crc_table); |
5ca28f79 L |
590 | #endif /* DYNAMIC_CRC_TABLE */ |
591 | return (const z_crc_t FAR *)crc_table; | |
592 | } | |
593 | ||
8e6b3536 NC |
594 | /* ========================================================================= |
595 | * Use ARM machine instructions if available. This will compute the CRC about | |
596 | * ten times faster than the braided calculation. This code does not check for | |
597 | * the presence of the CRC instruction at run time. __ARM_FEATURE_CRC32 will | |
598 | * only be defined if the compilation specifies an ARM processor architecture | |
599 | * that has the instructions. For example, compiling with -march=armv8.1-a or | |
600 | * -march=armv8-a+crc, or -march=native if the compile machine has the crc32 | |
601 | * instructions. | |
602 | */ | |
603 | #ifdef ARMCRC32 | |
604 | ||
605 | /* | |
606 | Constants empirically determined to maximize speed. These values are from | |
607 | measurements on a Cortex-A57. Your mileage may vary. | |
608 | */ | |
609 | #define Z_BATCH 3990 /* number of words in a batch */ | |
610 | #define Z_BATCH_ZEROS 0xa10d3d0c /* computed from Z_BATCH = 3990 */ | |
611 | #define Z_BATCH_MIN 800 /* fewest words in a final batch */ | |
5ca28f79 | 612 | |
de1ab01e | 613 | unsigned long ZEXPORT crc32_z(crc, buf, len) |
5ca28f79 L |
614 | unsigned long crc; |
615 | const unsigned char FAR *buf; | |
de1ab01e | 616 | z_size_t len; |
5ca28f79 | 617 | { |
8e6b3536 NC |
618 | z_crc_t val; |
619 | z_word_t crc1, crc2; | |
620 | const z_word_t *word; | |
621 | z_word_t val0, val1, val2; | |
622 | z_size_t last, last2, i; | |
623 | z_size_t num; | |
624 | ||
625 | /* Return initial CRC, if requested. */ | |
626 | if (buf == Z_NULL) return 0; | |
5ca28f79 L |
627 | |
628 | #ifdef DYNAMIC_CRC_TABLE | |
8e6b3536 | 629 | once(&made, make_crc_table); |
5ca28f79 L |
630 | #endif /* DYNAMIC_CRC_TABLE */ |
631 | ||
8e6b3536 NC |
632 | /* Pre-condition the CRC */ |
633 | crc ^= 0xffffffff; | |
5ca28f79 | 634 | |
8e6b3536 NC |
635 | /* Compute the CRC up to a word boundary. */ |
636 | while (len && ((z_size_t)buf & 7) != 0) { | |
637 | len--; | |
638 | val = *buf++; | |
639 | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | |
5ca28f79 | 640 | } |
8e6b3536 NC |
641 | |
642 | /* Prepare to compute the CRC on full 64-bit words word[0..num-1]. */ | |
643 | word = (z_word_t const *)buf; | |
644 | num = len >> 3; | |
645 | len &= 7; | |
646 | ||
647 | /* Do three interleaved CRCs to realize the throughput of one crc32x | |
648 | instruction per cycle. Each CRC is calcuated on Z_BATCH words. The three | |
649 | CRCs are combined into a single CRC after each set of batches. */ | |
650 | while (num >= 3 * Z_BATCH) { | |
651 | crc1 = 0; | |
652 | crc2 = 0; | |
653 | for (i = 0; i < Z_BATCH; i++) { | |
654 | val0 = word[i]; | |
655 | val1 = word[i + Z_BATCH]; | |
656 | val2 = word[i + 2 * Z_BATCH]; | |
657 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | |
658 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | |
659 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | |
660 | } | |
661 | word += 3 * Z_BATCH; | |
662 | num -= 3 * Z_BATCH; | |
663 | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc1; | |
664 | crc = multmodp(Z_BATCH_ZEROS, crc) ^ crc2; | |
5ca28f79 | 665 | } |
5ca28f79 | 666 | |
8e6b3536 NC |
667 | /* Do one last smaller batch with the remaining words, if there are enough |
668 | to pay for the combination of CRCs. */ | |
669 | last = num / 3; | |
670 | if (last >= Z_BATCH_MIN) { | |
671 | last2 = last << 1; | |
672 | crc1 = 0; | |
673 | crc2 = 0; | |
674 | for (i = 0; i < last; i++) { | |
675 | val0 = word[i]; | |
676 | val1 = word[i + last]; | |
677 | val2 = word[i + last2]; | |
678 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | |
679 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc1) : "r"(val1)); | |
680 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc2) : "r"(val2)); | |
681 | } | |
682 | word += 3 * last; | |
683 | num -= 3 * last; | |
684 | val = x2nmodp(last, 6); | |
685 | crc = multmodp(val, crc) ^ crc1; | |
686 | crc = multmodp(val, crc) ^ crc2; | |
687 | } | |
688 | ||
689 | /* Compute the CRC on any remaining words. */ | |
690 | for (i = 0; i < num; i++) { | |
691 | val0 = word[i]; | |
692 | __asm__ volatile("crc32x %w0, %w0, %x1" : "+r"(crc) : "r"(val0)); | |
693 | } | |
694 | word += num; | |
695 | ||
696 | /* Complete the CRC on any remaining bytes. */ | |
697 | buf = (const unsigned char FAR *)word; | |
698 | while (len) { | |
699 | len--; | |
700 | val = *buf++; | |
701 | __asm__ volatile("crc32b %w0, %w0, %w1" : "+r"(crc) : "r"(val)); | |
702 | } | |
703 | ||
704 | /* Return the CRC, post-conditioned. */ | |
705 | return crc ^ 0xffffffff; | |
de1ab01e NC |
706 | } |
707 | ||
8e6b3536 NC |
708 | #else |
709 | ||
710 | #ifdef W | |
5ca28f79 | 711 | |
de1ab01e | 712 | /* |
8e6b3536 NC |
713 | Return the CRC of the W bytes in the word_t data, taking the |
714 | least-significant byte of the word as the first byte of data, without any pre | |
715 | or post conditioning. This is used to combine the CRCs of each braid. | |
de1ab01e | 716 | */ |
8e6b3536 NC |
717 | local z_crc_t crc_word(data) |
718 | z_word_t data; | |
719 | { | |
720 | int k; | |
721 | for (k = 0; k < W; k++) | |
722 | data = (data >> 8) ^ crc_table[data & 0xff]; | |
723 | return (z_crc_t)data; | |
724 | } | |
de1ab01e | 725 | |
8e6b3536 NC |
726 | local z_word_t crc_word_big(data) |
727 | z_word_t data; | |
728 | { | |
729 | int k; | |
730 | for (k = 0; k < W; k++) | |
731 | data = (data << 8) ^ | |
732 | crc_big_table[(data >> ((W - 1) << 3)) & 0xff]; | |
733 | return data; | |
734 | } | |
735 | ||
736 | #endif | |
5ca28f79 L |
737 | |
738 | /* ========================================================================= */ | |
8e6b3536 | 739 | unsigned long ZEXPORT crc32_z(crc, buf, len) |
5ca28f79 L |
740 | unsigned long crc; |
741 | const unsigned char FAR *buf; | |
de1ab01e | 742 | z_size_t len; |
5ca28f79 | 743 | { |
8e6b3536 NC |
744 | /* Return initial CRC, if requested. */ |
745 | if (buf == Z_NULL) return 0; | |
5ca28f79 | 746 | |
8e6b3536 NC |
747 | #ifdef DYNAMIC_CRC_TABLE |
748 | once(&made, make_crc_table); | |
749 | #endif /* DYNAMIC_CRC_TABLE */ | |
5ca28f79 | 750 | |
8e6b3536 NC |
751 | /* Pre-condition the CRC */ |
752 | crc ^= 0xffffffff; | |
5ca28f79 | 753 | |
8e6b3536 | 754 | #ifdef W |
5ca28f79 | 755 | |
8e6b3536 NC |
756 | /* If provided enough bytes, do a braided CRC calculation. */ |
757 | if (len >= N * W + W - 1) { | |
758 | z_size_t blks; | |
759 | z_word_t const *words; | |
760 | unsigned endian; | |
761 | int k; | |
5ca28f79 | 762 | |
8e6b3536 NC |
763 | /* Compute the CRC up to a z_word_t boundary. */ |
764 | while (len && ((z_size_t)buf & (W - 1)) != 0) { | |
765 | len--; | |
766 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
767 | } | |
5ca28f79 | 768 | |
8e6b3536 NC |
769 | /* Compute the CRC on as many N z_word_t blocks as are available. */ |
770 | blks = len / (N * W); | |
771 | len -= blks * N * W; | |
772 | words = (z_word_t const *)buf; | |
773 | ||
774 | /* Do endian check at execution time instead of compile time, since ARM | |
775 | processors can change the endianess at execution time. If the | |
776 | compiler knows what the endianess will be, it can optimize out the | |
777 | check and the unused branch. */ | |
778 | endian = 1; | |
779 | if (*(unsigned char *)&endian) { | |
780 | /* Little endian. */ | |
781 | ||
782 | z_crc_t crc0; | |
783 | z_word_t word0; | |
784 | #if N > 1 | |
785 | z_crc_t crc1; | |
786 | z_word_t word1; | |
787 | #if N > 2 | |
788 | z_crc_t crc2; | |
789 | z_word_t word2; | |
790 | #if N > 3 | |
791 | z_crc_t crc3; | |
792 | z_word_t word3; | |
793 | #if N > 4 | |
794 | z_crc_t crc4; | |
795 | z_word_t word4; | |
796 | #if N > 5 | |
797 | z_crc_t crc5; | |
798 | z_word_t word5; | |
799 | #endif | |
800 | #endif | |
801 | #endif | |
802 | #endif | |
803 | #endif | |
804 | ||
805 | /* Initialize the CRC for each braid. */ | |
806 | crc0 = crc; | |
807 | #if N > 1 | |
808 | crc1 = 0; | |
809 | #if N > 2 | |
810 | crc2 = 0; | |
811 | #if N > 3 | |
812 | crc3 = 0; | |
813 | #if N > 4 | |
814 | crc4 = 0; | |
815 | #if N > 5 | |
816 | crc5 = 0; | |
817 | #endif | |
818 | #endif | |
819 | #endif | |
820 | #endif | |
821 | #endif | |
822 | ||
823 | /* | |
824 | Process the first blks-1 blocks, computing the CRCs on each braid | |
825 | independently. | |
826 | */ | |
827 | while (--blks) { | |
828 | /* Load the word for each braid into registers. */ | |
829 | word0 = crc0 ^ words[0]; | |
830 | #if N > 1 | |
831 | word1 = crc1 ^ words[1]; | |
832 | #if N > 2 | |
833 | word2 = crc2 ^ words[2]; | |
834 | #if N > 3 | |
835 | word3 = crc3 ^ words[3]; | |
836 | #if N > 4 | |
837 | word4 = crc4 ^ words[4]; | |
838 | #if N > 5 | |
839 | word5 = crc5 ^ words[5]; | |
840 | #endif | |
841 | #endif | |
842 | #endif | |
843 | #endif | |
844 | #endif | |
845 | words += N; | |
846 | ||
847 | /* Compute and update the CRC for each word. The loop should | |
848 | get unrolled. */ | |
849 | crc0 = crc_braid_table[0][word0 & 0xff]; | |
850 | #if N > 1 | |
851 | crc1 = crc_braid_table[0][word1 & 0xff]; | |
852 | #if N > 2 | |
853 | crc2 = crc_braid_table[0][word2 & 0xff]; | |
854 | #if N > 3 | |
855 | crc3 = crc_braid_table[0][word3 & 0xff]; | |
856 | #if N > 4 | |
857 | crc4 = crc_braid_table[0][word4 & 0xff]; | |
858 | #if N > 5 | |
859 | crc5 = crc_braid_table[0][word5 & 0xff]; | |
860 | #endif | |
861 | #endif | |
862 | #endif | |
863 | #endif | |
864 | #endif | |
865 | for (k = 1; k < W; k++) { | |
866 | crc0 ^= crc_braid_table[k][(word0 >> (k << 3)) & 0xff]; | |
867 | #if N > 1 | |
868 | crc1 ^= crc_braid_table[k][(word1 >> (k << 3)) & 0xff]; | |
869 | #if N > 2 | |
870 | crc2 ^= crc_braid_table[k][(word2 >> (k << 3)) & 0xff]; | |
871 | #if N > 3 | |
872 | crc3 ^= crc_braid_table[k][(word3 >> (k << 3)) & 0xff]; | |
873 | #if N > 4 | |
874 | crc4 ^= crc_braid_table[k][(word4 >> (k << 3)) & 0xff]; | |
875 | #if N > 5 | |
876 | crc5 ^= crc_braid_table[k][(word5 >> (k << 3)) & 0xff]; | |
877 | #endif | |
878 | #endif | |
879 | #endif | |
880 | #endif | |
881 | #endif | |
882 | } | |
883 | } | |
884 | ||
885 | /* | |
886 | Process the last block, combining the CRCs of the N braids at the | |
887 | same time. | |
888 | */ | |
889 | crc = crc_word(crc0 ^ words[0]); | |
890 | #if N > 1 | |
891 | crc = crc_word(crc1 ^ words[1] ^ crc); | |
892 | #if N > 2 | |
893 | crc = crc_word(crc2 ^ words[2] ^ crc); | |
894 | #if N > 3 | |
895 | crc = crc_word(crc3 ^ words[3] ^ crc); | |
896 | #if N > 4 | |
897 | crc = crc_word(crc4 ^ words[4] ^ crc); | |
898 | #if N > 5 | |
899 | crc = crc_word(crc5 ^ words[5] ^ crc); | |
900 | #endif | |
901 | #endif | |
902 | #endif | |
903 | #endif | |
904 | #endif | |
905 | words += N; | |
906 | } | |
907 | else { | |
908 | /* Big endian. */ | |
909 | ||
910 | z_word_t crc0, word0, comb; | |
911 | #if N > 1 | |
912 | z_word_t crc1, word1; | |
913 | #if N > 2 | |
914 | z_word_t crc2, word2; | |
915 | #if N > 3 | |
916 | z_word_t crc3, word3; | |
917 | #if N > 4 | |
918 | z_word_t crc4, word4; | |
919 | #if N > 5 | |
920 | z_word_t crc5, word5; | |
921 | #endif | |
922 | #endif | |
923 | #endif | |
924 | #endif | |
925 | #endif | |
926 | ||
927 | /* Initialize the CRC for each braid. */ | |
928 | crc0 = byte_swap(crc); | |
929 | #if N > 1 | |
930 | crc1 = 0; | |
931 | #if N > 2 | |
932 | crc2 = 0; | |
933 | #if N > 3 | |
934 | crc3 = 0; | |
935 | #if N > 4 | |
936 | crc4 = 0; | |
937 | #if N > 5 | |
938 | crc5 = 0; | |
939 | #endif | |
940 | #endif | |
941 | #endif | |
942 | #endif | |
943 | #endif | |
944 | ||
945 | /* | |
946 | Process the first blks-1 blocks, computing the CRCs on each braid | |
947 | independently. | |
948 | */ | |
949 | while (--blks) { | |
950 | /* Load the word for each braid into registers. */ | |
951 | word0 = crc0 ^ words[0]; | |
952 | #if N > 1 | |
953 | word1 = crc1 ^ words[1]; | |
954 | #if N > 2 | |
955 | word2 = crc2 ^ words[2]; | |
956 | #if N > 3 | |
957 | word3 = crc3 ^ words[3]; | |
958 | #if N > 4 | |
959 | word4 = crc4 ^ words[4]; | |
960 | #if N > 5 | |
961 | word5 = crc5 ^ words[5]; | |
962 | #endif | |
963 | #endif | |
964 | #endif | |
965 | #endif | |
966 | #endif | |
967 | words += N; | |
968 | ||
969 | /* Compute and update the CRC for each word. The loop should | |
970 | get unrolled. */ | |
971 | crc0 = crc_braid_big_table[0][word0 & 0xff]; | |
972 | #if N > 1 | |
973 | crc1 = crc_braid_big_table[0][word1 & 0xff]; | |
974 | #if N > 2 | |
975 | crc2 = crc_braid_big_table[0][word2 & 0xff]; | |
976 | #if N > 3 | |
977 | crc3 = crc_braid_big_table[0][word3 & 0xff]; | |
978 | #if N > 4 | |
979 | crc4 = crc_braid_big_table[0][word4 & 0xff]; | |
980 | #if N > 5 | |
981 | crc5 = crc_braid_big_table[0][word5 & 0xff]; | |
982 | #endif | |
983 | #endif | |
984 | #endif | |
985 | #endif | |
986 | #endif | |
987 | for (k = 1; k < W; k++) { | |
988 | crc0 ^= crc_braid_big_table[k][(word0 >> (k << 3)) & 0xff]; | |
989 | #if N > 1 | |
990 | crc1 ^= crc_braid_big_table[k][(word1 >> (k << 3)) & 0xff]; | |
991 | #if N > 2 | |
992 | crc2 ^= crc_braid_big_table[k][(word2 >> (k << 3)) & 0xff]; | |
993 | #if N > 3 | |
994 | crc3 ^= crc_braid_big_table[k][(word3 >> (k << 3)) & 0xff]; | |
995 | #if N > 4 | |
996 | crc4 ^= crc_braid_big_table[k][(word4 >> (k << 3)) & 0xff]; | |
997 | #if N > 5 | |
998 | crc5 ^= crc_braid_big_table[k][(word5 >> (k << 3)) & 0xff]; | |
999 | #endif | |
1000 | #endif | |
1001 | #endif | |
1002 | #endif | |
1003 | #endif | |
1004 | } | |
1005 | } | |
1006 | ||
1007 | /* | |
1008 | Process the last block, combining the CRCs of the N braids at the | |
1009 | same time. | |
1010 | */ | |
1011 | comb = crc_word_big(crc0 ^ words[0]); | |
1012 | #if N > 1 | |
1013 | comb = crc_word_big(crc1 ^ words[1] ^ comb); | |
1014 | #if N > 2 | |
1015 | comb = crc_word_big(crc2 ^ words[2] ^ comb); | |
1016 | #if N > 3 | |
1017 | comb = crc_word_big(crc3 ^ words[3] ^ comb); | |
1018 | #if N > 4 | |
1019 | comb = crc_word_big(crc4 ^ words[4] ^ comb); | |
1020 | #if N > 5 | |
1021 | comb = crc_word_big(crc5 ^ words[5] ^ comb); | |
1022 | #endif | |
1023 | #endif | |
1024 | #endif | |
1025 | #endif | |
1026 | #endif | |
1027 | words += N; | |
1028 | crc = byte_swap(comb); | |
1029 | } | |
1030 | ||
1031 | /* | |
1032 | Update the pointer to the remaining bytes to process. | |
1033 | */ | |
1034 | buf = (unsigned char const *)words; | |
5ca28f79 L |
1035 | } |
1036 | ||
8e6b3536 NC |
1037 | #endif /* W */ |
1038 | ||
1039 | /* Complete the computation of the CRC on any remaining bytes. */ | |
1040 | while (len >= 8) { | |
1041 | len -= 8; | |
1042 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1043 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1044 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1045 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1046 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1047 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1048 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
1049 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
5ca28f79 | 1050 | } |
8e6b3536 NC |
1051 | while (len) { |
1052 | len--; | |
1053 | crc = (crc >> 8) ^ crc_table[(crc ^ *buf++) & 0xff]; | |
5ca28f79 | 1054 | } |
5ca28f79 | 1055 | |
8e6b3536 NC |
1056 | /* Return the CRC, post-conditioned. */ |
1057 | return crc ^ 0xffffffff; | |
5ca28f79 L |
1058 | } |
1059 | ||
8e6b3536 | 1060 | #endif |
5ca28f79 L |
1061 | |
1062 | /* ========================================================================= */ | |
8e6b3536 NC |
1063 | unsigned long ZEXPORT crc32(crc, buf, len) |
1064 | unsigned long crc; | |
1065 | const unsigned char FAR *buf; | |
1066 | uInt len; | |
5ca28f79 | 1067 | { |
8e6b3536 | 1068 | return crc32_z(crc, buf, len); |
5ca28f79 L |
1069 | } |
1070 | ||
1071 | /* ========================================================================= */ | |
8e6b3536 NC |
1072 | uLong ZEXPORT crc32_combine64(crc1, crc2, len2) |
1073 | uLong crc1; | |
1074 | uLong crc2; | |
1075 | z_off64_t len2; | |
5ca28f79 | 1076 | { |
8e6b3536 NC |
1077 | #ifdef DYNAMIC_CRC_TABLE |
1078 | once(&made, make_crc_table); | |
1079 | #endif /* DYNAMIC_CRC_TABLE */ | |
1080 | return multmodp(x2nmodp(len2, 3), crc1) ^ crc2; | |
5ca28f79 L |
1081 | } |
1082 | ||
1083 | /* ========================================================================= */ | |
8e6b3536 | 1084 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) |
5ca28f79 L |
1085 | uLong crc1; |
1086 | uLong crc2; | |
8e6b3536 | 1087 | z_off_t len2; |
5ca28f79 | 1088 | { |
8e6b3536 NC |
1089 | return crc32_combine64(crc1, crc2, len2); |
1090 | } | |
5ca28f79 | 1091 | |
8e6b3536 NC |
1092 | /* ========================================================================= */ |
1093 | uLong ZEXPORT crc32_combine_gen64(len2) | |
1094 | z_off64_t len2; | |
1095 | { | |
1096 | #ifdef DYNAMIC_CRC_TABLE | |
1097 | once(&made, make_crc_table); | |
1098 | #endif /* DYNAMIC_CRC_TABLE */ | |
1099 | return x2nmodp(len2, 3); | |
5ca28f79 L |
1100 | } |
1101 | ||
1102 | /* ========================================================================= */ | |
8e6b3536 | 1103 | uLong ZEXPORT crc32_combine_gen(len2) |
5ca28f79 L |
1104 | z_off_t len2; |
1105 | { | |
8e6b3536 | 1106 | return crc32_combine_gen64(len2); |
5ca28f79 L |
1107 | } |
1108 | ||
8e6b3536 NC |
1109 | /* ========================================================================= */ |
1110 | uLong crc32_combine_op(crc1, crc2, op) | |
5ca28f79 L |
1111 | uLong crc1; |
1112 | uLong crc2; | |
8e6b3536 | 1113 | uLong op; |
5ca28f79 | 1114 | { |
8e6b3536 | 1115 | return multmodp(op, crc1) ^ crc2; |
5ca28f79 | 1116 | } |