]>
Commit | Line | Data |
---|---|---|
e0001a05 NC |
1 | /* tc-xtensa.c -- Assemble Xtensa instructions. |
2 | Copyright 2003 Free Software Foundation, Inc. | |
3 | ||
4 | This file is part of GAS, the GNU Assembler. | |
5 | ||
6 | GAS is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
8 | the Free Software Foundation; either version 2, or (at your option) | |
9 | any later version. | |
10 | ||
11 | GAS is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
17 | along with GAS; see the file COPYING. If not, write to | |
18 | the Free Software Foundation, 59 Temple Place - Suite 330, Boston, | |
19 | MA 02111-1307, USA. */ | |
20 | ||
21 | #include <string.h> | |
22 | #include "as.h" | |
23 | #include "sb.h" | |
24 | #include "safe-ctype.h" | |
25 | #include "tc-xtensa.h" | |
26 | #include "frags.h" | |
27 | #include "subsegs.h" | |
28 | #include "xtensa-relax.h" | |
29 | #include "xtensa-istack.h" | |
e0001a05 NC |
30 | #include "struc-symbol.h" |
31 | #include "xtensa-config.h" | |
32 | ||
33 | #ifndef uint32 | |
34 | #define uint32 unsigned int | |
35 | #endif | |
36 | #ifndef int32 | |
37 | #define int32 signed int | |
38 | #endif | |
39 | ||
40 | /* Notes: | |
41 | ||
42 | There are 3 forms for instructions, | |
43 | 1) the MEMORY format -- this is the encoding 2 or 3 byte instruction | |
44 | 2) the TInsn -- handles instructions/labels and literals; | |
45 | all operands are assumed to be expressions | |
46 | 3) the IStack -- a stack of TInsn. this allows us to | |
47 | reason about the generated expansion instructions | |
48 | ||
49 | Naming conventions (used somewhat inconsistently): | |
50 | The xtensa_ functions are exported | |
51 | The xg_ functions are internal | |
52 | ||
53 | We also have a couple of different extensibility mechanisms. | |
54 | 1) The idiom replacement: | |
55 | This is used when a line is first parsed to | |
56 | replace an instruction pattern with another instruction | |
57 | It is currently limited to replacements of instructions | |
58 | with constant operands. | |
59 | 2) The xtensa-relax.c mechanism that has stronger instruction | |
60 | replacement patterns. When an instruction's immediate field | |
61 | does not fit the next instruction sequence is attempted. | |
62 | In addition, "narrow" opcodes are supported this way. */ | |
63 | ||
64 | ||
65 | /* Define characters with special meanings to GAS. */ | |
66 | const char comment_chars[] = "#"; | |
67 | const char line_comment_chars[] = "#"; | |
68 | const char line_separator_chars[] = ";"; | |
69 | const char EXP_CHARS[] = "eE"; | |
70 | const char FLT_CHARS[] = "rRsSfFdDxXpP"; | |
71 | ||
72 | ||
73 | /* Flag to indicate whether the hardware supports the density option. | |
74 | If not, enabling density instructions (via directives or --density flag) | |
75 | is illegal. */ | |
76 | ||
77 | #if STATIC_LIBISA | |
78 | bfd_boolean density_supported = XCHAL_HAVE_DENSITY; | |
79 | #else | |
80 | bfd_boolean density_supported = TRUE; | |
81 | #endif | |
82 | ||
83 | #define XTENSA_FETCH_WIDTH 4 | |
84 | ||
85 | /* Flags for properties of the last instruction in a segment. */ | |
86 | #define FLAG_IS_A0_WRITER 0x1 | |
87 | #define FLAG_IS_BAD_LOOPEND 0x2 | |
88 | ||
89 | ||
90 | /* We define a special segment names ".literal" to place literals | |
91 | into. The .fini and .init sections are special because they | |
92 | contain code that is moved together by the linker. We give them | |
93 | their own special .fini.literal and .init.literal sections. */ | |
94 | ||
95 | #define LITERAL_SECTION_NAME xtensa_section_rename (".literal") | |
96 | #define FINI_SECTION_NAME xtensa_section_rename (".fini") | |
97 | #define INIT_SECTION_NAME xtensa_section_rename (".init") | |
98 | #define FINI_LITERAL_SECTION_NAME xtensa_section_rename (".fini.literal") | |
99 | #define INIT_LITERAL_SECTION_NAME xtensa_section_rename (".init.literal") | |
100 | ||
101 | ||
102 | /* This type is used for the directive_stack to keep track of the | |
103 | state of the literal collection pools. */ | |
104 | ||
105 | typedef struct lit_state_struct | |
106 | { | |
107 | const char *lit_seg_name; | |
108 | const char *init_lit_seg_name; | |
109 | const char *fini_lit_seg_name; | |
110 | segT lit_seg; | |
111 | segT init_lit_seg; | |
112 | segT fini_lit_seg; | |
113 | } lit_state; | |
114 | ||
115 | static lit_state default_lit_sections; | |
116 | ||
117 | ||
118 | /* We keep lists of literal segments. The seg_list type is the node | |
119 | for such a list. The *_literal_head locals are the heads of the | |
120 | various lists. All of these lists have a dummy node at the start. */ | |
121 | ||
122 | typedef struct seg_list_struct | |
123 | { | |
124 | struct seg_list_struct *next; | |
125 | segT seg; | |
126 | } seg_list; | |
127 | ||
128 | static seg_list literal_head_h; | |
129 | static seg_list *literal_head = &literal_head_h; | |
130 | static seg_list init_literal_head_h; | |
131 | static seg_list *init_literal_head = &init_literal_head_h; | |
132 | static seg_list fini_literal_head_h; | |
133 | static seg_list *fini_literal_head = &fini_literal_head_h; | |
134 | ||
135 | ||
136 | /* Global flag to indicate when we are emitting literals. */ | |
137 | int generating_literals = 0; | |
138 | ||
139 | ||
140 | /* Structure for saving the current state before emitting literals. */ | |
141 | typedef struct emit_state_struct | |
142 | { | |
143 | const char *name; | |
144 | segT now_seg; | |
145 | subsegT now_subseg; | |
146 | int generating_literals; | |
147 | } emit_state; | |
148 | ||
149 | ||
150 | /* Directives. */ | |
151 | ||
152 | typedef enum | |
153 | { | |
154 | directive_none = 0, | |
155 | directive_literal, | |
156 | directive_density, | |
157 | directive_generics, | |
158 | directive_relax, | |
159 | directive_freeregs, | |
160 | directive_longcalls, | |
161 | directive_literal_prefix | |
162 | } directiveE; | |
163 | ||
164 | typedef struct | |
165 | { | |
166 | const char *name; | |
167 | bfd_boolean can_be_negated; | |
168 | } directive_infoS; | |
169 | ||
170 | const directive_infoS directive_info[] = | |
171 | { | |
172 | {"none", FALSE}, | |
173 | {"literal", FALSE}, | |
174 | {"density", TRUE}, | |
175 | {"generics", TRUE}, | |
176 | {"relax", TRUE}, | |
177 | {"freeregs", FALSE}, | |
178 | {"longcalls", TRUE}, | |
179 | {"literal_prefix", FALSE} | |
180 | }; | |
181 | ||
182 | bfd_boolean directive_state[] = | |
183 | { | |
184 | FALSE, /* none */ | |
185 | FALSE, /* literal */ | |
186 | #if STATIC_LIBISA && !XCHAL_HAVE_DENSITY | |
187 | FALSE, /* density */ | |
188 | #else | |
189 | TRUE, /* density */ | |
190 | #endif | |
191 | TRUE, /* generics */ | |
192 | TRUE, /* relax */ | |
193 | FALSE, /* freeregs */ | |
194 | FALSE, /* longcalls */ | |
195 | FALSE /* literal_prefix */ | |
196 | }; | |
197 | ||
198 | ||
199 | enum xtensa_relax_statesE | |
200 | { | |
201 | RELAX_ALIGN_NEXT_OPCODE, | |
202 | /* Use the first opcode of the next fragment to determine the | |
203 | alignment requirements. This is ONLY used for LOOPS | |
204 | currently. */ | |
205 | ||
206 | RELAX_DESIRE_ALIGN_IF_TARGET, | |
207 | /* These are placed in front of labels. They will all be converted | |
208 | to RELAX_DESIRE_ALIGN / RELAX_LOOP_END or rs_fill of 0 before | |
209 | relaxation begins. */ | |
210 | ||
211 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
212 | /* These are placed in front of conditional branches. It will be | |
213 | turned into a NOP (using a1) if the branch is immediately | |
214 | followed by a RETW or RETW.N. Otherwise it will be turned into | |
215 | an rs_fill of 0 before relaxation begins. */ | |
216 | ||
217 | RELAX_ADD_NOP_IF_PRE_LOOP_END, | |
218 | /* These are placed after JX instructions. It will be turned into a | |
219 | NOP if there is one instruction before a loop end label. | |
220 | Otherwise it will be turned into an rs_fill of 0 before | |
221 | relaxation begins. This is used to avoid a hardware TIE | |
222 | interlock issue prior to T1040. */ | |
223 | ||
224 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
225 | /* These are placed after LOOP instructions. It will be turned into | |
226 | a NOP when: (1) there are less than 3 instructions in the loop; | |
227 | we place 2 of these in a row to add up to 2 NOPS in short loops; | |
228 | or (2) The instructions in the loop do not include a branch or | |
229 | jump. Otherwise it will be turned into an rs_fill of 0 before | |
230 | relaxation begins. This is used to avoid hardware bug | |
231 | PR3830. */ | |
232 | ||
233 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END, | |
234 | /* These are placed after LOOP instructions. It will be turned into | |
235 | a NOP if there are less than 12 bytes to the end of some other | |
236 | loop's end. Otherwise it will be turned into an rs_fill of 0 | |
237 | before relaxation begins. This is used to avoid hardware bug | |
238 | PR3830. */ | |
239 | ||
240 | RELAX_DESIRE_ALIGN, | |
241 | /* The next fragment like its first instruction to NOT cross a | |
242 | 4-byte boundary. */ | |
243 | ||
244 | RELAX_LOOP_END, | |
245 | /* This will be turned into a NOP or NOP.N if the previous | |
246 | instruction is expanded to negate a loop. */ | |
247 | ||
248 | RELAX_LOOP_END_ADD_NOP, | |
249 | /* When the code density option is available, this will generate a | |
250 | NOP.N marked RELAX_NARROW. Otherwise, it will create an rs_fill | |
251 | fragment with a NOP in it. */ | |
252 | ||
253 | RELAX_LITERAL, | |
254 | /* Another fragment could generate an expansion here but has not yet. */ | |
255 | ||
256 | RELAX_LITERAL_NR, | |
257 | /* Expansion has been generated by an instruction that generates a | |
258 | literal. However, the stretch has NOT been reported yet in this | |
259 | fragment. */ | |
260 | ||
261 | RELAX_LITERAL_FINAL, | |
262 | /* Expansion has been generated by an instruction that generates a | |
263 | literal. */ | |
264 | ||
265 | RELAX_LITERAL_POOL_BEGIN, | |
266 | RELAX_LITERAL_POOL_END, | |
267 | /* Technically these are not relaxations at all, but mark a location | |
268 | to store literals later. Note that fr_var stores the frchain for | |
269 | BEGIN frags and fr_var stores now_seg for END frags. */ | |
270 | ||
271 | RELAX_NARROW, | |
272 | /* The last instruction in this fragment (at->fr_opcode) can be | |
273 | freely replaced with a single wider instruction if a future | |
274 | alignment desires or needs it. */ | |
275 | ||
276 | RELAX_IMMED, | |
277 | /* The last instruction in this fragment (at->fr_opcode) contains | |
278 | the value defined by fr_symbol (fr_offset = 0). If the value | |
279 | does not fit, use the specified expansion. This is similar to | |
280 | "NARROW", except that these may not be expanded in order to align | |
281 | code. */ | |
282 | ||
283 | RELAX_IMMED_STEP1, | |
284 | /* The last instruction in this fragment (at->fr_opcode) contains a | |
285 | literal. It has already been expanded at least 1 step. */ | |
286 | ||
287 | RELAX_IMMED_STEP2 | |
288 | /* The last instruction in this fragment (at->fr_opcode) contains a | |
289 | literal. It has already been expanded at least 2 steps. */ | |
290 | }; | |
291 | ||
292 | /* This is used as a stopper to bound the number of steps that | |
293 | can be taken. */ | |
294 | #define RELAX_IMMED_MAXSTEPS (RELAX_IMMED_STEP2 - RELAX_IMMED) | |
295 | ||
296 | ||
297 | typedef bfd_boolean (*frag_predicate) (const fragS *); | |
298 | ||
299 | ||
300 | /* Directive functions. */ | |
301 | ||
302 | static bfd_boolean use_generics | |
303 | PARAMS ((void)); | |
304 | static bfd_boolean use_longcalls | |
305 | PARAMS ((void)); | |
306 | static bfd_boolean code_density_available | |
307 | PARAMS ((void)); | |
308 | static bfd_boolean can_relax | |
309 | PARAMS ((void)); | |
310 | static void directive_push | |
311 | PARAMS ((directiveE, bfd_boolean, const void *)); | |
312 | static void directive_pop | |
313 | PARAMS ((directiveE *, bfd_boolean *, const char **, | |
314 | unsigned int *, const void **)); | |
315 | static void directive_balance | |
316 | PARAMS ((void)); | |
317 | static bfd_boolean inside_directive | |
318 | PARAMS ((directiveE)); | |
319 | static void get_directive | |
320 | PARAMS ((directiveE *, bfd_boolean *)); | |
321 | static void xtensa_begin_directive | |
322 | PARAMS ((int)); | |
323 | static void xtensa_end_directive | |
324 | PARAMS ((int)); | |
325 | static void xtensa_literal_prefix | |
326 | PARAMS ((char const *, int)); | |
327 | static void xtensa_literal_position | |
328 | PARAMS ((int)); | |
329 | static void xtensa_literal_pseudo | |
330 | PARAMS ((int)); | |
331 | ||
332 | /* Parsing and Idiom Translation Functions. */ | |
333 | ||
334 | static const char *expression_end | |
335 | PARAMS ((const char *)); | |
336 | static unsigned tc_get_register | |
337 | PARAMS ((const char *)); | |
338 | static void expression_maybe_register | |
339 | PARAMS ((xtensa_operand, expressionS *)); | |
340 | static int tokenize_arguments | |
341 | PARAMS ((char **, char *)); | |
342 | static bfd_boolean parse_arguments | |
343 | PARAMS ((TInsn *, int, char **)); | |
344 | static int xg_translate_idioms | |
345 | PARAMS ((char **, int *, char **)); | |
346 | static int xg_translate_sysreg_op | |
347 | PARAMS ((char **, int *, char **)); | |
348 | static void xg_reverse_shift_count | |
349 | PARAMS ((char **)); | |
350 | static int xg_arg_is_constant | |
351 | PARAMS ((char *, offsetT *)); | |
352 | static void xg_replace_opname | |
353 | PARAMS ((char **, char *)); | |
354 | static int xg_check_num_args | |
355 | PARAMS ((int *, int, char *, char **)); | |
356 | ||
357 | /* Functions for dealing with the Xtensa ISA. */ | |
358 | ||
359 | static bfd_boolean operand_is_immed | |
360 | PARAMS ((xtensa_operand)); | |
361 | static bfd_boolean operand_is_pcrel_label | |
362 | PARAMS ((xtensa_operand)); | |
363 | static int get_relaxable_immed | |
364 | PARAMS ((xtensa_opcode)); | |
365 | static xtensa_opcode get_opcode_from_buf | |
366 | PARAMS ((const char *)); | |
367 | static bfd_boolean is_direct_call_opcode | |
368 | PARAMS ((xtensa_opcode)); | |
369 | static bfd_boolean is_call_opcode | |
370 | PARAMS ((xtensa_opcode)); | |
371 | static bfd_boolean is_entry_opcode | |
372 | PARAMS ((xtensa_opcode)); | |
373 | static bfd_boolean is_loop_opcode | |
374 | PARAMS ((xtensa_opcode)); | |
375 | static bfd_boolean is_the_loop_opcode | |
376 | PARAMS ((xtensa_opcode)); | |
377 | static bfd_boolean is_jx_opcode | |
378 | PARAMS ((xtensa_opcode)); | |
379 | static bfd_boolean is_windowed_return_opcode | |
380 | PARAMS ((xtensa_opcode)); | |
381 | static bfd_boolean is_conditional_branch_opcode | |
382 | PARAMS ((xtensa_opcode)); | |
383 | static bfd_boolean is_branch_or_jump_opcode | |
384 | PARAMS ((xtensa_opcode)); | |
385 | static bfd_reloc_code_real_type opnum_to_reloc | |
386 | PARAMS ((int)); | |
387 | static int reloc_to_opnum | |
388 | PARAMS ((bfd_reloc_code_real_type)); | |
389 | static void xtensa_insnbuf_set_operand | |
390 | PARAMS ((xtensa_insnbuf, xtensa_opcode, xtensa_operand, int32, | |
391 | const char *, unsigned int)); | |
392 | static uint32 xtensa_insnbuf_get_operand | |
393 | PARAMS ((xtensa_insnbuf, xtensa_opcode, int)); | |
394 | static void xtensa_insnbuf_set_immediate_field | |
395 | PARAMS ((xtensa_opcode, xtensa_insnbuf, int32, const char *, | |
396 | unsigned int)); | |
397 | static bfd_boolean is_negatable_branch | |
398 | PARAMS ((TInsn *)); | |
399 | ||
400 | /* Functions for Internal Lists of Symbols. */ | |
401 | static void xtensa_define_label | |
402 | PARAMS ((symbolS *)); | |
403 | static void add_target_symbol | |
404 | PARAMS ((symbolS *, bfd_boolean)); | |
405 | static symbolS *xtensa_find_label | |
406 | PARAMS ((fragS *, offsetT, bfd_boolean)); | |
407 | static void map_over_defined_symbols | |
408 | PARAMS ((void (*fn) (symbolS *))); | |
409 | static bfd_boolean is_loop_target_label | |
410 | PARAMS ((symbolS *)); | |
411 | static void xtensa_mark_target_fragments | |
412 | PARAMS ((void)); | |
413 | ||
414 | /* Various Other Internal Functions. */ | |
415 | ||
416 | static bfd_boolean is_unique_insn_expansion | |
417 | PARAMS ((TransitionRule *)); | |
418 | static int xg_get_insn_size | |
419 | PARAMS ((TInsn *)); | |
420 | static int xg_get_build_instr_size | |
421 | PARAMS ((BuildInstr *)); | |
422 | static bfd_boolean xg_is_narrow_insn | |
423 | PARAMS ((TInsn *)); | |
424 | static bfd_boolean xg_is_single_relaxable_insn | |
425 | PARAMS ((TInsn *)); | |
426 | static int xg_get_max_narrow_insn_size | |
427 | PARAMS ((xtensa_opcode)); | |
428 | static int xg_get_max_insn_widen_size | |
429 | PARAMS ((xtensa_opcode)); | |
430 | static int xg_get_max_insn_widen_literal_size | |
431 | PARAMS ((xtensa_opcode)); | |
432 | static bfd_boolean xg_is_relaxable_insn | |
433 | PARAMS ((TInsn *, int)); | |
434 | static symbolS *get_special_literal_symbol | |
435 | PARAMS ((void)); | |
436 | static symbolS *get_special_label_symbol | |
437 | PARAMS ((void)); | |
438 | static bfd_boolean xg_build_to_insn | |
439 | PARAMS ((TInsn *, TInsn *, BuildInstr *)); | |
440 | static bfd_boolean xg_build_to_stack | |
441 | PARAMS ((IStack *, TInsn *, BuildInstr *)); | |
442 | static bfd_boolean xg_expand_to_stack | |
443 | PARAMS ((IStack *, TInsn *, int)); | |
444 | static bfd_boolean xg_expand_narrow | |
445 | PARAMS ((TInsn *, TInsn *)); | |
446 | static bfd_boolean xg_immeds_fit | |
447 | PARAMS ((const TInsn *)); | |
448 | static bfd_boolean xg_symbolic_immeds_fit | |
449 | PARAMS ((const TInsn *, segT, fragS *, offsetT, long)); | |
450 | static bfd_boolean xg_check_operand | |
451 | PARAMS ((int32, xtensa_operand)); | |
452 | static int is_dnrange | |
453 | PARAMS ((fragS *, symbolS *, long)); | |
454 | static int xg_assembly_relax | |
455 | PARAMS ((IStack *, TInsn *, segT, fragS *, offsetT, int, long)); | |
456 | static void xg_force_frag_space | |
457 | PARAMS ((int)); | |
458 | static void xg_finish_frag | |
459 | PARAMS ((char *, enum xtensa_relax_statesE, int, bfd_boolean)); | |
460 | static bfd_boolean is_branch_jmp_to_next | |
461 | PARAMS ((TInsn *, fragS *)); | |
462 | static void xg_add_branch_and_loop_targets | |
463 | PARAMS ((TInsn *)); | |
464 | static bfd_boolean xg_instruction_matches_rule | |
465 | PARAMS ((TInsn *, TransitionRule *)); | |
466 | static TransitionRule *xg_instruction_match | |
467 | PARAMS ((TInsn *)); | |
468 | static bfd_boolean xg_build_token_insn | |
469 | PARAMS ((BuildInstr *, TInsn *, TInsn *)); | |
470 | static bfd_boolean xg_simplify_insn | |
471 | PARAMS ((TInsn *, TInsn *)); | |
472 | static bfd_boolean xg_expand_assembly_insn | |
473 | PARAMS ((IStack *, TInsn *)); | |
474 | static symbolS *xg_assemble_literal | |
475 | PARAMS ((TInsn *)); | |
476 | static void xg_assemble_literal_space | |
477 | PARAMS ((int)); | |
478 | static symbolS *xtensa_create_literal_symbol | |
479 | PARAMS ((segT, fragS *)); | |
480 | static symbolS *xtensa_create_local_symbol | |
481 | PARAMS ((bfd *, const char *, segT, valueT, fragS *)); | |
482 | static bfd_boolean get_is_linkonce_section | |
483 | PARAMS ((bfd *, segT)); | |
484 | static bfd_boolean xg_emit_insn | |
485 | PARAMS ((TInsn *, bfd_boolean)); | |
486 | static bfd_boolean xg_emit_insn_to_buf | |
487 | PARAMS ((TInsn *, char *, fragS *, offsetT, bfd_boolean)); | |
488 | static bfd_boolean xg_add_opcode_fix | |
489 | PARAMS ((xtensa_opcode, int, expressionS *, fragS *, offsetT)); | |
490 | static void xg_resolve_literals | |
491 | PARAMS ((TInsn *, symbolS *)); | |
492 | static void xg_resolve_labels | |
493 | PARAMS ((TInsn *, symbolS *)); | |
494 | static void xg_assemble_tokens | |
495 | PARAMS ((TInsn *)); | |
496 | static bfd_boolean is_register_writer | |
497 | PARAMS ((const TInsn *, const char *, int)); | |
498 | static bfd_boolean is_bad_loopend_opcode | |
499 | PARAMS ((const TInsn *)); | |
500 | static bfd_boolean is_unaligned_label | |
501 | PARAMS ((symbolS *)); | |
502 | static fragS *next_non_empty_frag | |
503 | PARAMS ((const fragS *)); | |
504 | static xtensa_opcode next_frag_opcode | |
505 | PARAMS ((const fragS *)); | |
506 | static void update_next_frag_nop_state | |
507 | PARAMS ((fragS *)); | |
508 | static bfd_boolean next_frag_is_branch_target | |
509 | PARAMS ((const fragS *)); | |
510 | static bfd_boolean next_frag_is_loop_target | |
511 | PARAMS ((const fragS *)); | |
512 | static addressT next_frag_pre_opcode_bytes | |
513 | PARAMS ((const fragS *)); | |
514 | static bfd_boolean is_next_frag_target | |
515 | PARAMS ((const fragS *, const fragS *)); | |
516 | static void xtensa_mark_literal_pool_location | |
517 | PARAMS ((bfd_boolean)); | |
518 | static void xtensa_move_labels | |
519 | PARAMS ((fragS *, valueT, fragS *, valueT)); | |
520 | static void assemble_nop | |
521 | PARAMS ((size_t, char *)); | |
522 | static addressT get_expanded_loop_offset | |
523 | PARAMS ((xtensa_opcode)); | |
524 | static fragS *get_literal_pool_location | |
525 | PARAMS ((segT)); | |
526 | static void set_literal_pool_location | |
527 | PARAMS ((segT, fragS *)); | |
528 | ||
529 | /* Helpers for xtensa_end(). */ | |
530 | ||
531 | static void xtensa_cleanup_align_frags | |
532 | PARAMS ((void)); | |
533 | static void xtensa_fix_target_frags | |
534 | PARAMS ((void)); | |
535 | static bfd_boolean frag_can_negate_branch | |
536 | PARAMS ((fragS *)); | |
537 | static void xtensa_fix_a0_b_retw_frags | |
538 | PARAMS ((void)); | |
539 | static bfd_boolean next_instrs_are_b_retw | |
540 | PARAMS ((fragS *)); | |
541 | static void xtensa_fix_b_j_loop_end_frags | |
542 | PARAMS ((void)); | |
543 | static bfd_boolean next_instr_is_loop_end | |
544 | PARAMS ((fragS *)); | |
545 | static void xtensa_fix_close_loop_end_frags | |
546 | PARAMS ((void)); | |
547 | static size_t min_bytes_to_other_loop_end | |
548 | PARAMS ((fragS *, fragS *, offsetT, size_t)); | |
549 | static size_t unrelaxed_frag_min_size | |
550 | PARAMS ((fragS *)); | |
551 | static void xtensa_fix_short_loop_frags | |
552 | PARAMS ((void)); | |
553 | static size_t count_insns_to_loop_end | |
554 | PARAMS ((fragS *, bfd_boolean, size_t)); | |
555 | static size_t unrelaxed_frag_min_insn_count | |
556 | PARAMS ((fragS *)); | |
557 | static bfd_boolean branch_before_loop_end | |
558 | PARAMS ((fragS *)); | |
559 | static bfd_boolean unrelaxed_frag_has_b_j | |
560 | PARAMS ((fragS *)); | |
561 | static void xtensa_sanity_check | |
562 | PARAMS ((void)); | |
563 | static bfd_boolean is_empty_loop | |
564 | PARAMS ((const TInsn *, fragS *)); | |
565 | static bfd_boolean is_local_forward_loop | |
566 | PARAMS ((const TInsn *, fragS *)); | |
567 | ||
568 | /* Alignment Functions. */ | |
569 | ||
570 | static size_t get_text_align_power | |
571 | PARAMS ((int)); | |
572 | static addressT get_text_align_max_fill_size | |
573 | PARAMS ((int, bfd_boolean, bfd_boolean)); | |
574 | static addressT get_text_align_fill_size | |
575 | PARAMS ((addressT, int, int, bfd_boolean, bfd_boolean)); | |
576 | static size_t get_text_align_nop_count | |
577 | PARAMS ((size_t, bfd_boolean)); | |
578 | static size_t get_text_align_nth_nop_size | |
579 | PARAMS ((size_t, size_t, bfd_boolean)); | |
580 | static addressT get_noop_aligned_address | |
581 | PARAMS ((fragS *, addressT)); | |
582 | static addressT get_widen_aligned_address | |
583 | PARAMS ((fragS *, addressT)); | |
584 | ||
585 | /* Helpers for xtensa_relax_frag(). */ | |
586 | ||
587 | static long relax_frag_text_align | |
588 | PARAMS ((fragS *, long)); | |
589 | static long relax_frag_add_nop | |
590 | PARAMS ((fragS *)); | |
591 | static long relax_frag_narrow | |
592 | PARAMS ((fragS *, long)); | |
593 | static bfd_boolean future_alignment_required | |
594 | PARAMS ((fragS *, long)); | |
595 | static long relax_frag_immed | |
596 | PARAMS ((segT, fragS *, long, int, int *)); | |
597 | ||
598 | /* Helpers for md_convert_frag(). */ | |
599 | ||
600 | static void convert_frag_align_next_opcode | |
601 | PARAMS ((fragS *)); | |
602 | static void convert_frag_narrow | |
603 | PARAMS ((fragS *)); | |
604 | static void convert_frag_immed | |
605 | PARAMS ((segT, fragS *, int)); | |
606 | static fixS *fix_new_exp_in_seg | |
607 | PARAMS ((segT, subsegT, fragS *, int, int, expressionS *, int, | |
608 | bfd_reloc_code_real_type)); | |
609 | static void convert_frag_immed_finish_loop | |
610 | PARAMS ((segT, fragS *, TInsn *)); | |
611 | static offsetT get_expression_value | |
612 | PARAMS ((segT, expressionS *)); | |
613 | ||
614 | /* Flags for the Last Instruction in Each Subsegment. */ | |
615 | ||
616 | static unsigned get_last_insn_flags | |
617 | PARAMS ((segT, subsegT)); | |
618 | static void set_last_insn_flags | |
619 | PARAMS ((segT, subsegT, unsigned, bfd_boolean)); | |
620 | ||
621 | /* Segment list functions. */ | |
622 | ||
623 | static void xtensa_remove_section | |
624 | PARAMS ((segT)); | |
625 | static void xtensa_insert_section | |
626 | PARAMS ((segT, segT)); | |
627 | static void xtensa_move_seg_list_to_beginning | |
628 | PARAMS ((seg_list *)); | |
629 | static void xtensa_move_literals | |
630 | PARAMS ((void)); | |
631 | static void xtensa_move_frag_symbol | |
632 | PARAMS ((symbolS *)); | |
633 | static void xtensa_move_frag_symbols | |
634 | PARAMS ((void)); | |
635 | static void xtensa_reorder_seg_list | |
636 | PARAMS ((seg_list *, segT)); | |
637 | static void xtensa_reorder_segments | |
638 | PARAMS ((void)); | |
639 | static segT get_last_sec | |
640 | PARAMS ((void)); | |
641 | static void xtensa_switch_to_literal_fragment | |
642 | PARAMS ((emit_state *)); | |
643 | static void xtensa_switch_section_emit_state | |
644 | PARAMS ((emit_state *, segT, subsegT)); | |
645 | static void xtensa_restore_emit_state | |
646 | PARAMS ((emit_state *)); | |
647 | static void cache_literal_section | |
648 | PARAMS ((seg_list *, const char *, segT *)); | |
649 | static segT retrieve_literal_seg | |
650 | PARAMS ((seg_list *, const char *)); | |
651 | static segT seg_present | |
652 | PARAMS ((const char *)); | |
653 | static void add_seg_list | |
654 | PARAMS ((seg_list *, segT)); | |
655 | ||
656 | /* Property Table (e.g., ".xt.insn" and ".xt.lit") Functions. */ | |
657 | ||
658 | static void xtensa_create_property_segments | |
659 | PARAMS ((frag_predicate, const char *, xt_section_type)); | |
660 | static segment_info_type *retrieve_segment_info | |
661 | PARAMS ((segT)); | |
662 | static segT retrieve_xtensa_section | |
663 | PARAMS ((char *)); | |
664 | static bfd_boolean section_has_property | |
665 | PARAMS ((segT sec, frag_predicate)); | |
666 | static void add_xt_block_frags | |
667 | PARAMS ((segT, segT, xtensa_block_info **, frag_predicate)); | |
668 | static bfd_boolean get_frag_is_literal | |
669 | PARAMS ((const fragS *)); | |
670 | static bfd_boolean get_frag_is_insn | |
671 | PARAMS ((const fragS *)); | |
672 | ||
673 | /* Import from elf32-xtensa.c in BFD library. */ | |
674 | extern char *xtensa_get_property_section_name | |
675 | PARAMS ((bfd *, asection *, const char *)); | |
676 | ||
677 | /* TInsn and IStack functions. */ | |
678 | static bfd_boolean tinsn_has_symbolic_operands | |
679 | PARAMS ((const TInsn *)); | |
680 | static bfd_boolean tinsn_has_invalid_symbolic_operands | |
681 | PARAMS ((const TInsn *)); | |
682 | static bfd_boolean tinsn_has_complex_operands | |
683 | PARAMS ((const TInsn *)); | |
684 | static bfd_boolean tinsn_to_insnbuf | |
685 | PARAMS ((TInsn *, xtensa_insnbuf)); | |
686 | static bfd_boolean tinsn_check_arguments | |
687 | PARAMS ((const TInsn *)); | |
688 | static void tinsn_from_chars | |
689 | PARAMS ((TInsn *, char *)); | |
690 | static void tinsn_immed_from_frag | |
691 | PARAMS ((TInsn *, fragS *)); | |
692 | static int get_num_stack_text_bytes | |
693 | PARAMS ((IStack *)); | |
694 | static int get_num_stack_literal_bytes | |
695 | PARAMS ((IStack *)); | |
696 | ||
697 | /* Expression Utilities. */ | |
698 | bfd_boolean expr_is_const | |
699 | PARAMS ((const expressionS *)); | |
700 | offsetT get_expr_const | |
701 | PARAMS ((const expressionS *)); | |
702 | void set_expr_const | |
703 | PARAMS ((expressionS *, offsetT)); | |
704 | void set_expr_symbol_offset | |
705 | PARAMS ((expressionS *, symbolS *, offsetT)); | |
706 | bfd_boolean expr_is_equal | |
707 | PARAMS ((expressionS *, expressionS *)); | |
708 | static void copy_expr | |
709 | PARAMS ((expressionS *, const expressionS *)); | |
710 | ||
711 | #ifdef XTENSA_SECTION_RENAME | |
712 | static void build_section_rename | |
713 | PARAMS ((const char *)); | |
714 | static void add_section_rename | |
715 | PARAMS ((char *, char *)); | |
716 | #endif | |
717 | ||
718 | #ifdef XTENSA_COMBINE_LITERALS | |
719 | static void find_lit_sym_translation | |
720 | PARAMS ((expressionS *)); | |
721 | static void add_lit_sym_translation | |
722 | PARAMS ((char *, offsetT, symbolS *)); | |
723 | #endif | |
724 | ||
725 | ||
726 | /* ISA imported from bfd. */ | |
727 | extern xtensa_isa xtensa_default_isa; | |
728 | ||
729 | extern int target_big_endian; | |
730 | ||
731 | static xtensa_opcode xtensa_addi_opcode; | |
732 | static xtensa_opcode xtensa_addmi_opcode; | |
733 | static xtensa_opcode xtensa_call0_opcode; | |
734 | static xtensa_opcode xtensa_call4_opcode; | |
735 | static xtensa_opcode xtensa_call8_opcode; | |
736 | static xtensa_opcode xtensa_call12_opcode; | |
737 | static xtensa_opcode xtensa_callx0_opcode; | |
738 | static xtensa_opcode xtensa_callx4_opcode; | |
739 | static xtensa_opcode xtensa_callx8_opcode; | |
740 | static xtensa_opcode xtensa_callx12_opcode; | |
741 | static xtensa_opcode xtensa_entry_opcode; | |
742 | static xtensa_opcode xtensa_isync_opcode; | |
743 | static xtensa_opcode xtensa_j_opcode; | |
744 | static xtensa_opcode xtensa_jx_opcode; | |
745 | static xtensa_opcode xtensa_loop_opcode; | |
746 | static xtensa_opcode xtensa_loopnez_opcode; | |
747 | static xtensa_opcode xtensa_loopgtz_opcode; | |
748 | static xtensa_opcode xtensa_nop_n_opcode; | |
749 | static xtensa_opcode xtensa_or_opcode; | |
750 | static xtensa_opcode xtensa_ret_opcode; | |
751 | static xtensa_opcode xtensa_ret_n_opcode; | |
752 | static xtensa_opcode xtensa_retw_opcode; | |
753 | static xtensa_opcode xtensa_retw_n_opcode; | |
754 | static xtensa_opcode xtensa_rsr_opcode; | |
755 | static xtensa_opcode xtensa_waiti_opcode; | |
756 | ||
757 | \f | |
758 | /* Command-line Options. */ | |
759 | ||
760 | bfd_boolean use_literal_section = TRUE; | |
761 | static bfd_boolean align_targets = TRUE; | |
762 | static bfd_boolean align_only_targets = FALSE; | |
763 | static bfd_boolean software_a0_b_retw_interlock = TRUE; | |
764 | static bfd_boolean has_a0_b_retw = FALSE; | |
765 | static bfd_boolean workaround_a0_b_retw = TRUE; | |
766 | ||
767 | static bfd_boolean software_avoid_b_j_loop_end = TRUE; | |
768 | static bfd_boolean workaround_b_j_loop_end = TRUE; | |
769 | static bfd_boolean maybe_has_b_j_loop_end = FALSE; | |
770 | ||
771 | static bfd_boolean software_avoid_short_loop = TRUE; | |
772 | static bfd_boolean workaround_short_loop = TRUE; | |
773 | static bfd_boolean maybe_has_short_loop = FALSE; | |
774 | ||
775 | static bfd_boolean software_avoid_close_loop_end = TRUE; | |
776 | static bfd_boolean workaround_close_loop_end = TRUE; | |
777 | static bfd_boolean maybe_has_close_loop_end = FALSE; | |
778 | ||
779 | /* When avoid_short_loops is true, all loops with early exits must | |
780 | have at least 3 instructions. avoid_all_short_loops is a modifier | |
781 | to the avoid_short_loop flag. In addition to the avoid_short_loop | |
782 | actions, all straightline loopgtz and loopnez must have at least 3 | |
783 | instructions. */ | |
784 | ||
785 | static bfd_boolean software_avoid_all_short_loops = TRUE; | |
786 | static bfd_boolean workaround_all_short_loops = TRUE; | |
787 | ||
788 | /* This is on a per-instruction basis. */ | |
789 | static bfd_boolean specific_opcode = FALSE; | |
790 | ||
791 | enum | |
792 | { | |
793 | option_density = OPTION_MD_BASE, | |
794 | option_no_density, | |
795 | ||
796 | option_relax, | |
797 | option_no_relax, | |
798 | ||
799 | option_generics, | |
800 | option_no_generics, | |
801 | ||
802 | option_text_section_literals, | |
803 | option_no_text_section_literals, | |
804 | ||
805 | option_align_targets, | |
806 | option_no_align_targets, | |
807 | ||
808 | option_align_only_targets, | |
809 | option_no_align_only_targets, | |
810 | ||
811 | option_longcalls, | |
812 | option_no_longcalls, | |
813 | ||
814 | option_workaround_a0_b_retw, | |
815 | option_no_workaround_a0_b_retw, | |
816 | ||
817 | option_workaround_b_j_loop_end, | |
818 | option_no_workaround_b_j_loop_end, | |
819 | ||
820 | option_workaround_short_loop, | |
821 | option_no_workaround_short_loop, | |
822 | ||
823 | option_workaround_all_short_loops, | |
824 | option_no_workaround_all_short_loops, | |
825 | ||
826 | option_workaround_close_loop_end, | |
827 | option_no_workaround_close_loop_end, | |
828 | ||
829 | option_no_workarounds, | |
830 | ||
831 | #ifdef XTENSA_SECTION_RENAME | |
832 | option_literal_section_name, | |
833 | option_text_section_name, | |
834 | option_data_section_name, | |
835 | option_bss_section_name, | |
836 | option_rename_section_name, | |
837 | #endif | |
838 | ||
839 | option_eb, | |
840 | option_el | |
841 | }; | |
842 | ||
843 | const char *md_shortopts = ""; | |
844 | ||
845 | struct option md_longopts[] = | |
846 | { | |
847 | {"density", no_argument, NULL, option_density}, | |
848 | {"no-density", no_argument, NULL, option_no_density}, | |
849 | /* At least as early as alameda, --[no-]relax didn't work as | |
850 | documented, so as of albany, --[no-]relax is equivalent to | |
851 | --[no-]generics. Both of these will be deprecated in | |
852 | BearValley. */ | |
853 | {"relax", no_argument, NULL, option_generics}, | |
854 | {"no-relax", no_argument, NULL, option_no_generics}, | |
855 | {"generics", no_argument, NULL, option_generics}, | |
856 | {"no-generics", no_argument, NULL, option_no_generics}, | |
857 | {"text-section-literals", no_argument, NULL, option_text_section_literals}, | |
858 | {"no-text-section-literals", no_argument, NULL, | |
859 | option_no_text_section_literals}, | |
860 | /* This option was changed from -align-target to -target-align | |
861 | because it conflicted with the "-al" option. */ | |
862 | {"target-align", no_argument, NULL, option_align_targets}, | |
863 | {"no-target-align", no_argument, NULL, | |
864 | option_no_align_targets}, | |
865 | #if 0 | |
866 | /* This option should do a better job aligning targets because | |
867 | it will only attempt to align targets that are the target of a | |
868 | branch. */ | |
869 | { "target-align-only", no_argument, NULL, option_align_only_targets }, | |
870 | { "no-target-align-only", no_argument, NULL, option_no_align_only_targets }, | |
871 | #endif /* 0 */ | |
872 | {"longcalls", no_argument, NULL, option_longcalls}, | |
873 | {"no-longcalls", no_argument, NULL, option_no_longcalls}, | |
874 | ||
875 | {"no-workaround-a0-b-retw", no_argument, NULL, | |
876 | option_no_workaround_a0_b_retw}, | |
877 | {"workaround-a0-b-retw", no_argument, NULL, option_workaround_a0_b_retw}, | |
878 | ||
879 | {"no-workaround-b-j-loop-end", no_argument, NULL, | |
880 | option_no_workaround_b_j_loop_end}, | |
881 | {"workaround-b-j-loop-end", no_argument, NULL, | |
882 | option_workaround_b_j_loop_end}, | |
883 | ||
884 | {"no-workaround-short-loops", no_argument, NULL, | |
885 | option_no_workaround_short_loop}, | |
886 | {"workaround-short-loops", no_argument, NULL, option_workaround_short_loop}, | |
887 | ||
888 | {"no-workaround-all-short-loops", no_argument, NULL, | |
889 | option_no_workaround_all_short_loops}, | |
890 | {"workaround-all-short-loop", no_argument, NULL, | |
891 | option_workaround_all_short_loops}, | |
892 | ||
893 | {"no-workaround-close-loop-end", no_argument, NULL, | |
894 | option_no_workaround_close_loop_end}, | |
895 | {"workaround-close-loop-end", no_argument, NULL, | |
896 | option_workaround_close_loop_end}, | |
897 | ||
898 | {"no-workarounds", no_argument, NULL, option_no_workarounds}, | |
899 | ||
900 | #ifdef XTENSA_SECTION_RENAME | |
901 | {"literal-section-name", required_argument, NULL, | |
902 | option_literal_section_name}, | |
903 | {"text-section-name", required_argument, NULL, | |
904 | option_text_section_name}, | |
905 | {"data-section-name", required_argument, NULL, | |
906 | option_data_section_name}, | |
907 | {"rename-section", required_argument, NULL, | |
908 | option_rename_section_name}, | |
909 | {"bss-section-name", required_argument, NULL, | |
910 | option_bss_section_name}, | |
911 | #endif /* XTENSA_SECTION_RENAME */ | |
912 | ||
913 | {NULL, no_argument, NULL, 0} | |
914 | }; | |
915 | ||
916 | size_t md_longopts_size = sizeof md_longopts; | |
917 | ||
918 | ||
919 | int | |
920 | md_parse_option (c, arg) | |
921 | int c; | |
922 | char *arg; | |
923 | { | |
924 | switch (c) | |
925 | { | |
926 | case option_density: | |
927 | if (!density_supported) | |
928 | { | |
929 | as_bad (_("'--density' option not supported in this Xtensa " | |
930 | "configuration")); | |
931 | return 0; | |
932 | } | |
933 | directive_state[directive_density] = TRUE; | |
934 | return 1; | |
935 | case option_no_density: | |
936 | directive_state[directive_density] = FALSE; | |
937 | return 1; | |
938 | case option_generics: | |
939 | directive_state[directive_generics] = TRUE; | |
940 | return 1; | |
941 | case option_no_generics: | |
942 | directive_state[directive_generics] = FALSE; | |
943 | return 1; | |
944 | case option_longcalls: | |
945 | directive_state[directive_longcalls] = TRUE; | |
946 | return 1; | |
947 | case option_no_longcalls: | |
948 | directive_state[directive_longcalls] = FALSE; | |
949 | return 1; | |
950 | case option_text_section_literals: | |
951 | use_literal_section = FALSE; | |
952 | return 1; | |
953 | case option_no_text_section_literals: | |
954 | use_literal_section = TRUE; | |
955 | return 1; | |
956 | case option_workaround_a0_b_retw: | |
957 | workaround_a0_b_retw = TRUE; | |
958 | software_a0_b_retw_interlock = TRUE; | |
959 | return 1; | |
960 | case option_no_workaround_a0_b_retw: | |
961 | workaround_a0_b_retw = FALSE; | |
962 | software_a0_b_retw_interlock = FALSE; | |
963 | return 1; | |
964 | case option_workaround_b_j_loop_end: | |
965 | workaround_b_j_loop_end = TRUE; | |
966 | software_avoid_b_j_loop_end = TRUE; | |
967 | return 1; | |
968 | case option_no_workaround_b_j_loop_end: | |
969 | workaround_b_j_loop_end = FALSE; | |
970 | software_avoid_b_j_loop_end = FALSE; | |
971 | return 1; | |
972 | ||
973 | case option_workaround_short_loop: | |
974 | workaround_short_loop = TRUE; | |
975 | software_avoid_short_loop = TRUE; | |
976 | return 1; | |
977 | case option_no_workaround_short_loop: | |
978 | workaround_short_loop = FALSE; | |
979 | software_avoid_short_loop = FALSE; | |
980 | return 1; | |
981 | ||
982 | case option_workaround_all_short_loops: | |
983 | workaround_all_short_loops = TRUE; | |
984 | software_avoid_all_short_loops = TRUE; | |
985 | return 1; | |
986 | case option_no_workaround_all_short_loops: | |
987 | workaround_all_short_loops = FALSE; | |
988 | software_avoid_all_short_loops = FALSE; | |
989 | return 1; | |
990 | ||
991 | case option_workaround_close_loop_end: | |
992 | workaround_close_loop_end = TRUE; | |
993 | software_avoid_close_loop_end = TRUE; | |
994 | return 1; | |
995 | case option_no_workaround_close_loop_end: | |
996 | workaround_close_loop_end = FALSE; | |
997 | software_avoid_close_loop_end = FALSE; | |
998 | return 1; | |
999 | ||
1000 | case option_no_workarounds: | |
1001 | workaround_a0_b_retw = FALSE; | |
1002 | software_a0_b_retw_interlock = FALSE; | |
1003 | workaround_b_j_loop_end = FALSE; | |
1004 | software_avoid_b_j_loop_end = FALSE; | |
1005 | workaround_short_loop = FALSE; | |
1006 | software_avoid_short_loop = FALSE; | |
1007 | workaround_all_short_loops = FALSE; | |
1008 | software_avoid_all_short_loops = FALSE; | |
1009 | workaround_close_loop_end = FALSE; | |
1010 | software_avoid_close_loop_end = FALSE; | |
1011 | return 1; | |
1012 | ||
1013 | case option_align_targets: | |
1014 | align_targets = TRUE; | |
1015 | return 1; | |
1016 | case option_no_align_targets: | |
1017 | align_targets = FALSE; | |
1018 | return 1; | |
1019 | ||
1020 | case option_align_only_targets: | |
1021 | align_only_targets = TRUE; | |
1022 | return 1; | |
1023 | case option_no_align_only_targets: | |
1024 | align_only_targets = FALSE; | |
1025 | return 1; | |
1026 | ||
1027 | #ifdef XTENSA_SECTION_RENAME | |
1028 | case option_literal_section_name: | |
1029 | add_section_rename (".literal", arg); | |
1030 | as_warn (_("'--literal-section-name' is deprecated; " | |
1031 | "use '--rename-section .literal=NEWNAME'")); | |
1032 | return 1; | |
1033 | ||
1034 | case option_text_section_name: | |
1035 | add_section_rename (".text", arg); | |
1036 | as_warn (_("'--text-section-name' is deprecated; " | |
1037 | "use '--rename-section .text=NEWNAME'")); | |
1038 | return 1; | |
1039 | ||
1040 | case option_data_section_name: | |
1041 | add_section_rename (".data", arg); | |
1042 | as_warn (_("'--data-section-name' is deprecated; " | |
1043 | "use '--rename-section .data=NEWNAME'")); | |
1044 | return 1; | |
1045 | ||
1046 | case option_bss_section_name: | |
1047 | add_section_rename (".bss", arg); | |
1048 | as_warn (_("'--bss-section-name' is deprecated; " | |
1049 | "use '--rename-section .bss=NEWNAME'")); | |
1050 | return 1; | |
1051 | ||
1052 | case option_rename_section_name: | |
1053 | build_section_rename (arg); | |
1054 | return 1; | |
1055 | #endif /* XTENSA_SECTION_RENAME */ | |
1056 | ||
1057 | case 'Q': | |
1058 | /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section | |
1059 | should be emitted or not. FIXME: Not implemented. */ | |
1060 | return 1; | |
1061 | ||
1062 | default: | |
1063 | return 0; | |
1064 | } | |
1065 | } | |
1066 | ||
1067 | ||
1068 | void | |
1069 | md_show_usage (stream) | |
1070 | FILE *stream; | |
1071 | { | |
1072 | fputs ("\nXtensa options:\n" | |
1073 | "--[no-]density [Do not] emit density instructions\n" | |
1074 | "--[no-]relax [Do not] perform branch relaxation\n" | |
1075 | "--[no-]generics [Do not] transform instructions\n" | |
1076 | "--[no-]longcalls [Do not] emit 32-bit call sequences\n" | |
1077 | "--[no-]target-align [Do not] try to align branch targets\n" | |
1078 | "--[no-]text-section-literals\n" | |
1079 | " [Do not] put literals in the text section\n" | |
1080 | "--no-workarounds Do not use any Xtensa workarounds\n" | |
1081 | #ifdef XTENSA_SECTION_RENAME | |
1082 | "--rename-section old=new(:old1=new1)*\n" | |
1083 | " Rename section 'old' to 'new'\n" | |
1084 | "\nThe following Xtensa options are deprecated\n" | |
1085 | "--literal-section-name Name of literal section (default .literal)\n" | |
1086 | "--text-section-name Name of text section (default .text)\n" | |
1087 | "--data-section-name Name of data section (default .data)\n" | |
1088 | "--bss-section-name Name of bss section (default .bss)\n" | |
1089 | #endif | |
1090 | , stream); | |
1091 | } | |
1092 | ||
1093 | \f | |
1094 | /* Directive data and functions. */ | |
1095 | ||
1096 | typedef struct state_stackS_struct | |
1097 | { | |
1098 | directiveE directive; | |
1099 | bfd_boolean negated; | |
1100 | bfd_boolean old_state; | |
1101 | const char *file; | |
1102 | unsigned int line; | |
1103 | const void *datum; | |
1104 | struct state_stackS_struct *prev; | |
1105 | } state_stackS; | |
1106 | ||
1107 | state_stackS *directive_state_stack; | |
1108 | ||
1109 | const pseudo_typeS md_pseudo_table[] = | |
1110 | { | |
1111 | {"align", s_align_bytes, 0}, /* Defaulting is invalid (0) */ | |
1112 | {"literal_position", xtensa_literal_position, 0}, | |
1113 | {"frame", s_ignore, 0}, /* formerly used for STABS debugging */ | |
1114 | {"word", cons, 4}, | |
1115 | {"begin", xtensa_begin_directive, 0}, | |
1116 | {"end", xtensa_end_directive, 0}, | |
e0001a05 NC |
1117 | {"literal", xtensa_literal_pseudo, 0}, |
1118 | {NULL, 0, 0}, | |
1119 | }; | |
1120 | ||
1121 | ||
1122 | bfd_boolean | |
1123 | use_generics () | |
1124 | { | |
1125 | return directive_state[directive_generics]; | |
1126 | } | |
1127 | ||
1128 | ||
1129 | bfd_boolean | |
1130 | use_longcalls () | |
1131 | { | |
1132 | return directive_state[directive_longcalls]; | |
1133 | } | |
1134 | ||
1135 | ||
1136 | bfd_boolean | |
1137 | code_density_available () | |
1138 | { | |
1139 | return directive_state[directive_density]; | |
1140 | } | |
1141 | ||
1142 | ||
1143 | bfd_boolean | |
1144 | can_relax () | |
1145 | { | |
1146 | return use_generics (); | |
1147 | } | |
1148 | ||
1149 | ||
1150 | static void | |
1151 | directive_push (directive, negated, datum) | |
1152 | directiveE directive; | |
1153 | bfd_boolean negated; | |
1154 | const void *datum; | |
1155 | { | |
1156 | char *file; | |
1157 | unsigned int line; | |
1158 | state_stackS *stack = (state_stackS *) xmalloc (sizeof (state_stackS)); | |
1159 | ||
1160 | as_where (&file, &line); | |
1161 | ||
1162 | stack->directive = directive; | |
1163 | stack->negated = negated; | |
1164 | stack->old_state = directive_state[directive]; | |
1165 | stack->file = file; | |
1166 | stack->line = line; | |
1167 | stack->datum = datum; | |
1168 | stack->prev = directive_state_stack; | |
1169 | directive_state_stack = stack; | |
1170 | ||
1171 | directive_state[directive] = !negated; | |
1172 | } | |
1173 | ||
1174 | static void | |
1175 | directive_pop (directive, negated, file, line, datum) | |
1176 | directiveE *directive; | |
1177 | bfd_boolean *negated; | |
1178 | const char **file; | |
1179 | unsigned int *line; | |
1180 | const void **datum; | |
1181 | { | |
1182 | state_stackS *top = directive_state_stack; | |
1183 | ||
1184 | if (!directive_state_stack) | |
1185 | { | |
1186 | as_bad (_("unmatched end directive")); | |
1187 | *directive = directive_none; | |
1188 | return; | |
1189 | } | |
1190 | ||
1191 | directive_state[directive_state_stack->directive] = top->old_state; | |
1192 | *directive = top->directive; | |
1193 | *negated = top->negated; | |
1194 | *file = top->file; | |
1195 | *line = top->line; | |
1196 | *datum = top->datum; | |
1197 | directive_state_stack = top->prev; | |
1198 | free (top); | |
1199 | } | |
1200 | ||
1201 | ||
1202 | static void | |
1203 | directive_balance () | |
1204 | { | |
1205 | while (directive_state_stack) | |
1206 | { | |
1207 | directiveE directive; | |
1208 | bfd_boolean negated; | |
1209 | const char *file; | |
1210 | unsigned int line; | |
1211 | const void *datum; | |
1212 | ||
1213 | directive_pop (&directive, &negated, &file, &line, &datum); | |
1214 | as_warn_where ((char *) file, line, | |
1215 | _(".begin directive with no matching .end directive")); | |
1216 | } | |
1217 | } | |
1218 | ||
1219 | ||
1220 | static bfd_boolean | |
1221 | inside_directive (dir) | |
1222 | directiveE dir; | |
1223 | { | |
1224 | state_stackS *top = directive_state_stack; | |
1225 | ||
1226 | while (top && top->directive != dir) | |
1227 | top = top->prev; | |
1228 | ||
1229 | return (top != NULL); | |
1230 | } | |
1231 | ||
1232 | ||
1233 | static void | |
1234 | get_directive (directive, negated) | |
1235 | directiveE *directive; | |
1236 | bfd_boolean *negated; | |
1237 | { | |
1238 | int len; | |
1239 | unsigned i; | |
1240 | ||
1241 | if (strncmp (input_line_pointer, "no-", 3) != 0) | |
1242 | *negated = FALSE; | |
1243 | else | |
1244 | { | |
1245 | *negated = TRUE; | |
1246 | input_line_pointer += 3; | |
1247 | } | |
1248 | ||
1249 | len = strspn (input_line_pointer, | |
1250 | "abcdefghijklmnopqrstuvwxyz_/0123456789."); | |
1251 | ||
1252 | for (i = 0; i < sizeof (directive_info) / sizeof (*directive_info); ++i) | |
1253 | { | |
1254 | if (strncmp (input_line_pointer, directive_info[i].name, len) == 0) | |
1255 | { | |
1256 | input_line_pointer += len; | |
1257 | *directive = (directiveE) i; | |
1258 | if (*negated && !directive_info[i].can_be_negated) | |
1259 | as_bad (_("directive %s can't be negated"), | |
1260 | directive_info[i].name); | |
1261 | return; | |
1262 | } | |
1263 | } | |
1264 | ||
1265 | as_bad (_("unknown directive")); | |
1266 | *directive = (directiveE) XTENSA_UNDEFINED; | |
1267 | } | |
1268 | ||
1269 | ||
1270 | static void | |
1271 | xtensa_begin_directive (ignore) | |
1272 | int ignore ATTRIBUTE_UNUSED; | |
1273 | { | |
1274 | directiveE directive; | |
1275 | bfd_boolean negated; | |
1276 | emit_state *state; | |
1277 | int len; | |
1278 | lit_state *ls; | |
1279 | ||
1280 | get_directive (&directive, &negated); | |
1281 | if (directive == (directiveE) XTENSA_UNDEFINED) | |
1282 | { | |
1283 | discard_rest_of_line (); | |
1284 | return; | |
1285 | } | |
1286 | ||
1287 | switch (directive) | |
1288 | { | |
1289 | case directive_literal: | |
1290 | state = (emit_state *) xmalloc (sizeof (emit_state)); | |
1291 | xtensa_switch_to_literal_fragment (state); | |
1292 | directive_push (directive_literal, negated, state); | |
1293 | break; | |
1294 | ||
1295 | case directive_literal_prefix: | |
1296 | /* Check to see if the current fragment is a literal | |
1297 | fragment. If it is, then this operation is not allowed. */ | |
1298 | if (frag_now->tc_frag_data.is_literal) | |
1299 | { | |
1300 | as_bad (_("cannot set literal_prefix inside literal fragment")); | |
1301 | return; | |
1302 | } | |
1303 | ||
1304 | /* Allocate the literal state for this section and push | |
1305 | onto the directive stack. */ | |
1306 | ls = xmalloc (sizeof (lit_state)); | |
1307 | assert (ls); | |
1308 | ||
1309 | *ls = default_lit_sections; | |
1310 | ||
1311 | directive_push (directive_literal_prefix, negated, ls); | |
1312 | ||
1313 | /* Parse the new prefix from the input_line_pointer. */ | |
1314 | SKIP_WHITESPACE (); | |
1315 | len = strspn (input_line_pointer, | |
1316 | "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
1317 | "abcdefghijklmnopqrstuvwxyz_/0123456789.$"); | |
1318 | ||
1319 | /* Process the new prefix. */ | |
1320 | xtensa_literal_prefix (input_line_pointer, len); | |
1321 | ||
1322 | /* Skip the name in the input line. */ | |
1323 | input_line_pointer += len; | |
1324 | break; | |
1325 | ||
1326 | case directive_freeregs: | |
1327 | /* This information is currently unused, but we'll accept the statement | |
1328 | and just discard the rest of the line. This won't check the syntax, | |
1329 | but it will accept every correct freeregs directive. */ | |
1330 | input_line_pointer += strcspn (input_line_pointer, "\n"); | |
1331 | directive_push (directive_freeregs, negated, 0); | |
1332 | break; | |
1333 | ||
1334 | case directive_density: | |
1335 | if (!density_supported && !negated) | |
1336 | { | |
1337 | as_warn (_("Xtensa density option not supported; ignored")); | |
1338 | break; | |
1339 | } | |
1340 | /* fall through */ | |
1341 | ||
1342 | default: | |
1343 | directive_push (directive, negated, 0); | |
1344 | break; | |
1345 | } | |
1346 | ||
1347 | demand_empty_rest_of_line (); | |
1348 | } | |
1349 | ||
1350 | ||
1351 | static void | |
1352 | xtensa_end_directive (ignore) | |
1353 | int ignore ATTRIBUTE_UNUSED; | |
1354 | { | |
1355 | directiveE begin_directive, end_directive; | |
1356 | bfd_boolean begin_negated, end_negated; | |
1357 | const char *file; | |
1358 | unsigned int line; | |
1359 | emit_state *state; | |
1360 | lit_state *s; | |
1361 | ||
1362 | get_directive (&end_directive, &end_negated); | |
1363 | if (end_directive == (directiveE) XTENSA_UNDEFINED) | |
1364 | { | |
1365 | discard_rest_of_line (); | |
1366 | return; | |
1367 | } | |
1368 | ||
1369 | if (end_directive == directive_density && !density_supported && !end_negated) | |
1370 | { | |
1371 | as_warn (_("Xtensa density option not supported; ignored")); | |
1372 | demand_empty_rest_of_line (); | |
1373 | return; | |
1374 | } | |
1375 | ||
1376 | directive_pop (&begin_directive, &begin_negated, &file, &line, | |
1377 | (const void **) &state); | |
1378 | ||
1379 | if (begin_directive != directive_none) | |
1380 | { | |
1381 | if (begin_directive != end_directive || begin_negated != end_negated) | |
1382 | { | |
1383 | as_bad (_("does not match begin %s%s at %s:%d"), | |
1384 | begin_negated ? "no-" : "", | |
1385 | directive_info[begin_directive].name, file, line); | |
1386 | } | |
1387 | else | |
1388 | { | |
1389 | switch (end_directive) | |
1390 | { | |
1391 | case directive_literal: | |
1392 | frag_var (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
1393 | xtensa_restore_emit_state (state); | |
1394 | free (state); | |
1395 | break; | |
1396 | ||
1397 | case directive_freeregs: | |
1398 | break; | |
1399 | ||
1400 | case directive_literal_prefix: | |
1401 | /* Restore the default collection sections from saved state. */ | |
1402 | s = (lit_state *) state; | |
1403 | assert (s); | |
1404 | ||
1405 | if (use_literal_section) | |
1406 | default_lit_sections = *s; | |
1407 | ||
1408 | /* free the state storage */ | |
1409 | free (s); | |
1410 | break; | |
1411 | ||
1412 | default: | |
1413 | break; | |
1414 | } | |
1415 | } | |
1416 | } | |
1417 | ||
1418 | demand_empty_rest_of_line (); | |
1419 | } | |
1420 | ||
1421 | ||
1422 | /* Place an aligned literal fragment at the current location. */ | |
1423 | ||
1424 | static void | |
1425 | xtensa_literal_position (ignore) | |
1426 | int ignore ATTRIBUTE_UNUSED; | |
1427 | { | |
1428 | if (inside_directive (directive_literal)) | |
1429 | as_warn (_(".literal_position inside literal directive; ignoring")); | |
1430 | else if (!use_literal_section) | |
1431 | xtensa_mark_literal_pool_location (FALSE); | |
1432 | ||
1433 | demand_empty_rest_of_line (); | |
1434 | } | |
1435 | ||
1436 | ||
1437 | /* Support .literal label, value@plt + offset. */ | |
1438 | ||
1439 | static void | |
1440 | xtensa_literal_pseudo (ignored) | |
1441 | int ignored ATTRIBUTE_UNUSED; | |
1442 | { | |
1443 | emit_state state; | |
1444 | char *base_name; | |
1445 | #ifdef XTENSA_COMBINE_LITERALS | |
1446 | char *next_name; | |
1447 | symbolS *duplicate; | |
1448 | bfd_boolean used_name = FALSE; | |
1449 | int offset = 0; | |
1450 | #endif | |
1451 | char c; | |
1452 | char *p; | |
1453 | expressionS expP; | |
1454 | segT dest_seg; | |
1455 | ||
1456 | /* If we are using text-section literals, then this is the right value... */ | |
1457 | dest_seg = now_seg; | |
1458 | ||
1459 | base_name = input_line_pointer; | |
1460 | ||
1461 | xtensa_switch_to_literal_fragment (&state); | |
1462 | ||
1463 | /* ...but if we aren't using text-section-literals, then we | |
1464 | need to put them in the section we just switched to. */ | |
1465 | if (use_literal_section) | |
1466 | dest_seg = now_seg; | |
1467 | ||
1468 | /* All literals are aligned to four-byte boundaries | |
1469 | which is handled by switch to literal fragment. */ | |
1470 | /* frag_align (2, 0, 0); */ | |
1471 | ||
1472 | c = get_symbol_end (); | |
1473 | /* Just after name is now '\0'. */ | |
1474 | p = input_line_pointer; | |
1475 | *p = c; | |
1476 | SKIP_WHITESPACE (); | |
1477 | ||
1478 | if (*input_line_pointer != ',' && *input_line_pointer != ':') | |
1479 | { | |
1480 | as_bad (_("expected comma or colon after symbol name; " | |
1481 | "rest of line ignored")); | |
1482 | ignore_rest_of_line (); | |
1483 | xtensa_restore_emit_state (&state); | |
1484 | return; | |
1485 | } | |
1486 | *p = 0; | |
1487 | ||
1488 | #ifdef XTENSA_COMBINE_LITERALS | |
1489 | /* We need next name to start out equal to base_name, | |
1490 | but we modify it later to refer to a symbol and an offset. */ | |
1491 | next_name = xmalloc (strlen (base_name) + 1); | |
1492 | strcpy (next_name, base_name); | |
1493 | ||
1494 | /* We need a copy of base_name because we refer to it in the | |
1495 | lit_sym_translations and the source is somewhere in the input stream. */ | |
1496 | base_name = xmalloc (strlen (base_name) + 1); | |
1497 | strcpy (base_name, next_name); | |
1498 | ||
1499 | #else | |
1500 | ||
1501 | colon (base_name); | |
1502 | #endif | |
1503 | ||
1504 | do | |
1505 | { | |
1506 | input_line_pointer++; /* skip ',' or ':' */ | |
1507 | ||
1508 | expr (0, &expP); | |
1509 | ||
1510 | #ifdef XTENSA_COMBINE_LITERALS | |
1511 | duplicate = is_duplicate_literal (&expP, dest_seg); | |
1512 | if (duplicate) | |
1513 | { | |
1514 | add_lit_sym_translation (base_name, offset, duplicate); | |
1515 | used_name = TRUE; | |
1516 | continue; | |
1517 | } | |
1518 | colon (next_name); | |
1519 | #endif | |
1520 | ||
1521 | /* We only support 4-byte literals with .literal. */ | |
1522 | emit_expr (&expP, 4); | |
1523 | ||
1524 | #ifdef XTENSA_COMBINE_LITERALS | |
1525 | cache_literal (next_name, &expP, dest_seg); | |
1526 | free (next_name); | |
1527 | ||
1528 | if (*input_line_pointer == ',') | |
1529 | { | |
1530 | offset += 4; | |
1531 | next_name = xmalloc (strlen (base_name) + | |
1532 | strlen (XTENSA_LIT_PLUS_OFFSET) + 10); | |
1533 | sprintf (next_name, "%s%s%d", | |
1534 | XTENSA_LIT_PLUS_OFFSET, base_name, offset); | |
1535 | } | |
1536 | #endif | |
1537 | } | |
1538 | while (*input_line_pointer == ','); | |
1539 | ||
1540 | *p = c; | |
1541 | #ifdef XTENSA_COMBINE_LITERALS | |
1542 | if (!used_name) | |
1543 | free (base_name); | |
1544 | #endif | |
1545 | ||
1546 | demand_empty_rest_of_line (); | |
1547 | ||
1548 | xtensa_restore_emit_state (&state); | |
1549 | } | |
1550 | ||
1551 | ||
1552 | static void | |
1553 | xtensa_literal_prefix (start, len) | |
1554 | char const *start; | |
1555 | int len; | |
1556 | { | |
1557 | segT s_now; /* Storage for the current seg and subseg. */ | |
1558 | subsegT ss_now; | |
1559 | char *name; /* Pointer to the name itself. */ | |
1560 | char *newname; | |
1561 | ||
1562 | if (!use_literal_section) | |
1563 | return; | |
1564 | ||
1565 | /* Store away the current section and subsection. */ | |
1566 | s_now = now_seg; | |
1567 | ss_now = now_subseg; | |
1568 | ||
1569 | /* Get a null-terminated copy of the name. */ | |
1570 | name = xmalloc (len + 1); | |
1571 | assert (name); | |
1572 | ||
1573 | strncpy (name, start, len); | |
1574 | name[len] = 0; | |
1575 | ||
1576 | /* Allocate the sections (interesting note: the memory pointing to | |
1577 | the name is actually used for the name by the new section). */ | |
1578 | newname = xmalloc (len + strlen (".literal") + 1); | |
1579 | strcpy (newname, name); | |
1580 | strcpy (newname + len, ".literal"); | |
1581 | ||
1582 | /* Note that retrieve_literal_seg does not create a segment if | |
1583 | it already exists. */ | |
1584 | default_lit_sections.lit_seg = NULL; /* retrieved on demand */ | |
1585 | ||
1586 | /* Canonicalizing section names allows renaming literal | |
1587 | sections to occur correctly. */ | |
1588 | default_lit_sections.lit_seg_name = | |
1589 | tc_canonicalize_symbol_name (newname); | |
1590 | ||
1591 | free (name); | |
1592 | ||
1593 | /* Restore the current section and subsection and set the | |
1594 | generation into the old segment. */ | |
1595 | subseg_set (s_now, ss_now); | |
1596 | } | |
1597 | ||
1598 | \f | |
1599 | /* Parsing and Idiom Translation. */ | |
1600 | ||
1601 | static const char * | |
1602 | expression_end (name) | |
1603 | const char *name; | |
1604 | { | |
1605 | while (1) | |
1606 | { | |
1607 | switch (*name) | |
1608 | { | |
1609 | case ';': | |
1610 | case '\0': | |
1611 | case ',': | |
1612 | return name; | |
1613 | case ' ': | |
1614 | case '\t': | |
1615 | ++name; | |
1616 | continue; | |
1617 | default: | |
1618 | return 0; | |
1619 | } | |
1620 | } | |
1621 | } | |
1622 | ||
1623 | ||
1624 | #define ERROR_REG_NUM ((unsigned) -1) | |
1625 | ||
1626 | static unsigned | |
1627 | tc_get_register (prefix) | |
1628 | const char *prefix; | |
1629 | { | |
1630 | unsigned reg; | |
1631 | const char *next_expr; | |
1632 | const char *old_line_pointer; | |
1633 | ||
1634 | SKIP_WHITESPACE (); | |
1635 | old_line_pointer = input_line_pointer; | |
1636 | ||
1637 | if (*input_line_pointer == '$') | |
1638 | ++input_line_pointer; | |
1639 | ||
1640 | /* Accept "sp" as a synonym for "a1". */ | |
1641 | if (input_line_pointer[0] == 's' && input_line_pointer[1] == 'p' | |
1642 | && expression_end (input_line_pointer + 2)) | |
1643 | { | |
1644 | input_line_pointer += 2; | |
1645 | return 1; /* AR[1] */ | |
1646 | } | |
1647 | ||
1648 | while (*input_line_pointer++ == *prefix++) | |
1649 | ; | |
1650 | --input_line_pointer; | |
1651 | --prefix; | |
1652 | ||
1653 | if (*prefix) | |
1654 | { | |
1655 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1656 | return ERROR_REG_NUM; | |
1657 | } | |
1658 | ||
1659 | if (!ISDIGIT ((unsigned char) *input_line_pointer)) | |
1660 | { | |
1661 | as_bad (_("bad register number: %s"), input_line_pointer); | |
1662 | return ERROR_REG_NUM; | |
1663 | } | |
1664 | ||
1665 | reg = 0; | |
1666 | ||
1667 | while (ISDIGIT ((int) *input_line_pointer)) | |
1668 | reg = reg * 10 + *input_line_pointer++ - '0'; | |
1669 | ||
1670 | if (!(next_expr = expression_end (input_line_pointer))) | |
1671 | { | |
1672 | as_bad (_("bad register name: %s"), old_line_pointer); | |
1673 | return ERROR_REG_NUM; | |
1674 | } | |
1675 | ||
1676 | input_line_pointer = (char *) next_expr; | |
1677 | ||
1678 | return reg; | |
1679 | } | |
1680 | ||
1681 | ||
1682 | #define PLT_SUFFIX "@PLT" | |
1683 | #define plt_suffix "@plt" | |
1684 | ||
1685 | static void | |
1686 | expression_maybe_register (opnd, tok) | |
1687 | xtensa_operand opnd; | |
1688 | expressionS *tok; | |
1689 | { | |
1690 | char *kind = xtensa_operand_kind (opnd); | |
1691 | ||
1692 | if ((strlen (kind) == 1) | |
1693 | && (*kind == 'l' || *kind == 'L' || *kind == 'i' || *kind == 'r')) | |
1694 | { | |
1695 | segT t = expression (tok); | |
1696 | if (t == absolute_section && operand_is_pcrel_label (opnd)) | |
1697 | { | |
1698 | assert (tok->X_op == O_constant); | |
1699 | tok->X_op = O_symbol; | |
1700 | tok->X_add_symbol = &abs_symbol; | |
1701 | } | |
1702 | if (tok->X_op == O_symbol | |
1703 | && (!strncmp (input_line_pointer, PLT_SUFFIX, | |
1704 | strlen (PLT_SUFFIX) - 1) | |
1705 | || !strncmp (input_line_pointer, plt_suffix, | |
1706 | strlen (plt_suffix) - 1))) | |
1707 | { | |
1708 | tok->X_add_symbol->sy_tc.plt = 1; | |
1709 | input_line_pointer += strlen (plt_suffix); | |
1710 | } | |
1711 | #ifdef XTENSA_COMBINE_LITERALS | |
1712 | find_lit_sym_translation (tok); | |
1713 | #endif | |
1714 | } | |
1715 | else | |
1716 | { | |
1717 | unsigned reg = tc_get_register (kind); | |
1718 | ||
1719 | if (reg != ERROR_REG_NUM) /* Already errored */ | |
1720 | { | |
1721 | uint32 buf = reg; | |
1722 | if ((xtensa_operand_encode (opnd, &buf) != xtensa_encode_result_ok) | |
1723 | || (reg != xtensa_operand_decode (opnd, buf))) | |
1724 | as_bad (_("register number out of range")); | |
1725 | } | |
1726 | ||
1727 | tok->X_op = O_register; | |
1728 | tok->X_add_symbol = 0; | |
1729 | tok->X_add_number = reg; | |
1730 | } | |
1731 | } | |
1732 | ||
1733 | ||
1734 | /* Split up the arguments for an opcode or pseudo-op. */ | |
1735 | ||
1736 | static int | |
1737 | tokenize_arguments (args, str) | |
1738 | char **args; | |
1739 | char *str; | |
1740 | { | |
1741 | char *old_input_line_pointer; | |
1742 | bfd_boolean saw_comma = FALSE; | |
1743 | bfd_boolean saw_arg = FALSE; | |
1744 | int num_args = 0; | |
1745 | char *arg_end, *arg; | |
1746 | int arg_len; | |
1747 | ||
1748 | /* Save and restore input_line_pointer around this function. */ | |
1749 | old_input_line_pointer = input_line_pointer; | |
1750 | input_line_pointer = str; | |
1751 | ||
1752 | while (*input_line_pointer) | |
1753 | { | |
1754 | SKIP_WHITESPACE (); | |
1755 | switch (*input_line_pointer) | |
1756 | { | |
1757 | case '\0': | |
1758 | goto fini; | |
1759 | ||
1760 | case ',': | |
1761 | input_line_pointer++; | |
1762 | if (saw_comma || !saw_arg) | |
1763 | goto err; | |
1764 | saw_comma = TRUE; | |
1765 | break; | |
1766 | ||
1767 | default: | |
1768 | if (!saw_comma && saw_arg) | |
1769 | goto err; | |
1770 | ||
1771 | arg_end = input_line_pointer + 1; | |
1772 | while (!expression_end (arg_end)) | |
1773 | arg_end += 1; | |
1774 | ||
1775 | arg_len = arg_end - input_line_pointer; | |
1776 | arg = (char *) xmalloc (arg_len + 1); | |
1777 | args[num_args] = arg; | |
1778 | ||
1779 | strncpy (arg, input_line_pointer, arg_len); | |
1780 | arg[arg_len] = '\0'; | |
1781 | ||
1782 | input_line_pointer = arg_end; | |
1783 | num_args += 1; | |
1784 | saw_comma = FALSE; | |
1785 | saw_arg = TRUE; | |
1786 | break; | |
1787 | } | |
1788 | } | |
1789 | ||
1790 | fini: | |
1791 | if (saw_comma) | |
1792 | goto err; | |
1793 | input_line_pointer = old_input_line_pointer; | |
1794 | return num_args; | |
1795 | ||
1796 | err: | |
1797 | input_line_pointer = old_input_line_pointer; | |
1798 | return -1; | |
1799 | } | |
1800 | ||
1801 | ||
1802 | /* Parse the arguments to an opcode. Return true on error. */ | |
1803 | ||
1804 | static bfd_boolean | |
1805 | parse_arguments (insn, num_args, arg_strings) | |
1806 | TInsn *insn; | |
1807 | int num_args; | |
1808 | char **arg_strings; | |
1809 | { | |
1810 | expressionS *tok = insn->tok; | |
1811 | xtensa_opcode opcode = insn->opcode; | |
1812 | bfd_boolean had_error = TRUE; | |
1813 | xtensa_isa isa = xtensa_default_isa; | |
1814 | int n; | |
1815 | int opcode_operand_count; | |
1816 | int actual_operand_count = 0; | |
1817 | xtensa_operand opnd = NULL; | |
1818 | char *old_input_line_pointer; | |
1819 | ||
1820 | if (insn->insn_type == ITYPE_LITERAL) | |
1821 | opcode_operand_count = 1; | |
1822 | else | |
1823 | opcode_operand_count = xtensa_num_operands (isa, opcode); | |
1824 | ||
1825 | memset (tok, 0, sizeof (*tok) * MAX_INSN_ARGS); | |
1826 | ||
1827 | /* Save and restore input_line_pointer around this function. */ | |
1828 | old_input_line_pointer = input_line_pointer; | |
1829 | ||
1830 | for (n = 0; n < num_args; n++) | |
1831 | { | |
1832 | input_line_pointer = arg_strings[n]; | |
1833 | ||
1834 | if (actual_operand_count >= opcode_operand_count) | |
1835 | { | |
1836 | as_warn (_("too many arguments")); | |
1837 | goto err; | |
1838 | } | |
1839 | assert (actual_operand_count < MAX_INSN_ARGS); | |
1840 | ||
1841 | opnd = xtensa_get_operand (isa, opcode, actual_operand_count); | |
1842 | expression_maybe_register (opnd, tok); | |
1843 | ||
1844 | if (tok->X_op == O_illegal || tok->X_op == O_absent) | |
1845 | goto err; | |
1846 | actual_operand_count++; | |
1847 | tok++; | |
1848 | } | |
1849 | ||
1850 | insn->ntok = tok - insn->tok; | |
1851 | had_error = FALSE; | |
1852 | ||
1853 | err: | |
1854 | input_line_pointer = old_input_line_pointer; | |
1855 | return had_error; | |
1856 | } | |
1857 | ||
1858 | ||
1859 | static void | |
1860 | xg_reverse_shift_count (cnt_argp) | |
1861 | char **cnt_argp; | |
1862 | { | |
1863 | char *cnt_arg, *new_arg; | |
1864 | cnt_arg = *cnt_argp; | |
1865 | ||
1866 | /* replace the argument with "31-(argument)" */ | |
1867 | new_arg = (char *) xmalloc (strlen (cnt_arg) + 6); | |
1868 | sprintf (new_arg, "31-(%s)", cnt_arg); | |
1869 | ||
1870 | free (cnt_arg); | |
1871 | *cnt_argp = new_arg; | |
1872 | } | |
1873 | ||
1874 | ||
1875 | /* If "arg" is a constant expression, return non-zero with the value | |
1876 | in *valp. */ | |
1877 | ||
1878 | static int | |
1879 | xg_arg_is_constant (arg, valp) | |
1880 | char *arg; | |
1881 | offsetT *valp; | |
1882 | { | |
1883 | expressionS exp; | |
1884 | char *save_ptr = input_line_pointer; | |
1885 | ||
1886 | input_line_pointer = arg; | |
1887 | expression (&exp); | |
1888 | input_line_pointer = save_ptr; | |
1889 | ||
1890 | if (exp.X_op == O_constant) | |
1891 | { | |
1892 | *valp = exp.X_add_number; | |
1893 | return 1; | |
1894 | } | |
1895 | ||
1896 | return 0; | |
1897 | } | |
1898 | ||
1899 | ||
1900 | static void | |
1901 | xg_replace_opname (popname, newop) | |
1902 | char **popname; | |
1903 | char *newop; | |
1904 | { | |
1905 | free (*popname); | |
1906 | *popname = (char *) xmalloc (strlen (newop) + 1); | |
1907 | strcpy (*popname, newop); | |
1908 | } | |
1909 | ||
1910 | ||
1911 | static int | |
1912 | xg_check_num_args (pnum_args, expected_num, opname, arg_strings) | |
1913 | int *pnum_args; | |
1914 | int expected_num; | |
1915 | char *opname; | |
1916 | char **arg_strings; | |
1917 | { | |
1918 | int num_args = *pnum_args; | |
1919 | ||
1920 | if (num_args < expected_num) | |
1921 | { | |
1922 | as_bad (_("not enough operands (%d) for '%s'; expected %d"), | |
1923 | num_args, opname, expected_num); | |
1924 | return -1; | |
1925 | } | |
1926 | ||
1927 | if (num_args > expected_num) | |
1928 | { | |
1929 | as_warn (_("too many operands (%d) for '%s'; expected %d"), | |
1930 | num_args, opname, expected_num); | |
1931 | while (num_args-- > expected_num) | |
1932 | { | |
1933 | free (arg_strings[num_args]); | |
1934 | arg_strings[num_args] = 0; | |
1935 | } | |
1936 | *pnum_args = expected_num; | |
1937 | return -1; | |
1938 | } | |
1939 | ||
1940 | return 0; | |
1941 | } | |
1942 | ||
1943 | ||
1944 | static int | |
1945 | xg_translate_sysreg_op (popname, pnum_args, arg_strings) | |
1946 | char **popname; | |
1947 | int *pnum_args; | |
1948 | char **arg_strings; | |
1949 | { | |
1950 | char *opname, *new_opname; | |
1951 | offsetT val; | |
1952 | bfd_boolean has_underbar = FALSE; | |
1953 | ||
1954 | opname = *popname; | |
1955 | if (*opname == '_') | |
1956 | { | |
1957 | has_underbar = TRUE; | |
1958 | opname += 1; | |
1959 | } | |
1960 | ||
1961 | /* Opname == [rw]ur... */ | |
1962 | ||
1963 | if (opname[3] == '\0') | |
1964 | { | |
1965 | /* If the register is not specified as part of the opcode, | |
1966 | then get it from the operand and move it to the opcode. */ | |
1967 | ||
1968 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
1969 | return -1; | |
1970 | ||
1971 | if (!xg_arg_is_constant (arg_strings[1], &val)) | |
1972 | { | |
1973 | as_bad (_("register number for `%s' is not a constant"), opname); | |
1974 | return -1; | |
1975 | } | |
1976 | if ((unsigned) val > 255) | |
1977 | { | |
1978 | as_bad (_("register number (%ld) for `%s' is out of range"), | |
1979 | val, opname); | |
1980 | return -1; | |
1981 | } | |
1982 | ||
1983 | /* Remove the last argument, which is now part of the opcode. */ | |
1984 | free (arg_strings[1]); | |
1985 | arg_strings[1] = 0; | |
1986 | *pnum_args = 1; | |
1987 | ||
1988 | /* Translate the opcode. */ | |
1989 | new_opname = (char *) xmalloc (8); | |
1990 | sprintf (new_opname, "%s%cur%u", (has_underbar ? "_" : ""), | |
1991 | opname[0], (unsigned) val); | |
1992 | free (*popname); | |
1993 | *popname = new_opname; | |
1994 | } | |
1995 | ||
1996 | return 0; | |
1997 | } | |
1998 | ||
1999 | ||
2000 | /* If the instruction is an idiom (i.e., a built-in macro), translate it. | |
2001 | Returns non-zero if an error was found. */ | |
2002 | ||
2003 | static int | |
2004 | xg_translate_idioms (popname, pnum_args, arg_strings) | |
2005 | char **popname; | |
2006 | int *pnum_args; | |
2007 | char **arg_strings; | |
2008 | { | |
2009 | char *opname = *popname; | |
2010 | bfd_boolean has_underbar = FALSE; | |
2011 | ||
2012 | if (*opname == '_') | |
2013 | { | |
2014 | has_underbar = TRUE; | |
2015 | opname += 1; | |
2016 | } | |
2017 | ||
2018 | if (strcmp (opname, "mov") == 0) | |
2019 | { | |
2020 | if (!has_underbar && code_density_available ()) | |
2021 | xg_replace_opname (popname, "mov.n"); | |
2022 | else | |
2023 | { | |
2024 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
2025 | return -1; | |
2026 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2027 | arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1); | |
2028 | strcpy (arg_strings[2], arg_strings[1]); | |
2029 | *pnum_args = 3; | |
2030 | } | |
2031 | return 0; | |
2032 | } | |
2033 | ||
2034 | if (strcmp (opname, "bbsi.l") == 0) | |
2035 | { | |
2036 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2037 | return -1; | |
2038 | xg_replace_opname (popname, (has_underbar ? "_bbsi" : "bbsi")); | |
2039 | if (target_big_endian) | |
2040 | xg_reverse_shift_count (&arg_strings[1]); | |
2041 | return 0; | |
2042 | } | |
2043 | ||
2044 | if (strcmp (opname, "bbci.l") == 0) | |
2045 | { | |
2046 | if (xg_check_num_args (pnum_args, 3, opname, arg_strings)) | |
2047 | return -1; | |
2048 | xg_replace_opname (popname, (has_underbar ? "_bbci" : "bbci")); | |
2049 | if (target_big_endian) | |
2050 | xg_reverse_shift_count (&arg_strings[1]); | |
2051 | return 0; | |
2052 | } | |
2053 | ||
2054 | if (strcmp (opname, "nop") == 0) | |
2055 | { | |
2056 | if (!has_underbar && code_density_available ()) | |
2057 | xg_replace_opname (popname, "nop.n"); | |
2058 | else | |
2059 | { | |
2060 | if (xg_check_num_args (pnum_args, 0, opname, arg_strings)) | |
2061 | return -1; | |
2062 | xg_replace_opname (popname, (has_underbar ? "_or" : "or")); | |
2063 | arg_strings[0] = (char *) xmalloc (3); | |
2064 | arg_strings[1] = (char *) xmalloc (3); | |
2065 | arg_strings[2] = (char *) xmalloc (3); | |
2066 | strcpy (arg_strings[0], "a1"); | |
2067 | strcpy (arg_strings[1], "a1"); | |
2068 | strcpy (arg_strings[2], "a1"); | |
2069 | *pnum_args = 3; | |
2070 | } | |
2071 | return 0; | |
2072 | } | |
2073 | ||
2074 | if ((opname[0] == 'r' || opname[0] == 'w') | |
2075 | && opname[1] == 'u' | |
2076 | && opname[2] == 'r') | |
2077 | return xg_translate_sysreg_op (popname, pnum_args, arg_strings); | |
2078 | ||
2079 | ||
2080 | /* WIDENING DENSITY OPCODES | |
2081 | ||
2082 | questionable relaxations (widening) from old "tai" idioms: | |
2083 | ||
2084 | ADD.N --> ADD | |
2085 | BEQZ.N --> BEQZ | |
2086 | RET.N --> RET | |
2087 | RETW.N --> RETW | |
2088 | MOVI.N --> MOVI | |
2089 | MOV.N --> MOV | |
2090 | NOP.N --> NOP | |
2091 | ||
2092 | Note: this incomplete list was imported to match the "tai" | |
2093 | behavior; other density opcodes are not handled. | |
2094 | ||
2095 | The xtensa-relax code may know how to do these but it doesn't do | |
2096 | anything when these density opcodes appear inside a no-density | |
2097 | region. Somehow GAS should either print an error when that happens | |
2098 | or do the widening. The old "tai" behavior was to do the widening. | |
2099 | For now, I'll make it widen but print a warning. | |
2100 | ||
2101 | FIXME: GAS needs to detect density opcodes inside no-density | |
2102 | regions and treat them as errors. This code should be removed | |
2103 | when that is done. */ | |
2104 | ||
2105 | if (use_generics () | |
2106 | && !has_underbar | |
2107 | && density_supported | |
2108 | && !code_density_available ()) | |
2109 | { | |
2110 | if (strcmp (opname, "add.n") == 0) | |
2111 | xg_replace_opname (popname, "add"); | |
2112 | ||
2113 | else if (strcmp (opname, "beqz.n") == 0) | |
2114 | xg_replace_opname (popname, "beqz"); | |
2115 | ||
2116 | else if (strcmp (opname, "ret.n") == 0) | |
2117 | xg_replace_opname (popname, "ret"); | |
2118 | ||
2119 | else if (strcmp (opname, "retw.n") == 0) | |
2120 | xg_replace_opname (popname, "retw"); | |
2121 | ||
2122 | else if (strcmp (opname, "movi.n") == 0) | |
2123 | xg_replace_opname (popname, "movi"); | |
2124 | ||
2125 | else if (strcmp (opname, "mov.n") == 0) | |
2126 | { | |
2127 | if (xg_check_num_args (pnum_args, 2, opname, arg_strings)) | |
2128 | return -1; | |
2129 | xg_replace_opname (popname, "or"); | |
2130 | arg_strings[2] = (char *) xmalloc (strlen (arg_strings[1]) + 1); | |
2131 | strcpy (arg_strings[2], arg_strings[1]); | |
2132 | *pnum_args = 3; | |
2133 | } | |
2134 | ||
2135 | else if (strcmp (opname, "nop.n") == 0) | |
2136 | { | |
2137 | if (xg_check_num_args (pnum_args, 0, opname, arg_strings)) | |
2138 | return -1; | |
2139 | xg_replace_opname (popname, "or"); | |
2140 | arg_strings[0] = (char *) xmalloc (3); | |
2141 | arg_strings[1] = (char *) xmalloc (3); | |
2142 | arg_strings[2] = (char *) xmalloc (3); | |
2143 | strcpy (arg_strings[0], "a1"); | |
2144 | strcpy (arg_strings[1], "a1"); | |
2145 | strcpy (arg_strings[2], "a1"); | |
2146 | *pnum_args = 3; | |
2147 | } | |
2148 | } | |
2149 | ||
2150 | return 0; | |
2151 | } | |
2152 | ||
2153 | \f | |
2154 | /* Functions for dealing with the Xtensa ISA. */ | |
2155 | ||
2156 | /* Return true if the given operand is an immed or target instruction, | |
2157 | i.e., has a reloc associated with it. Currently, this is only true | |
2158 | if the operand kind is "i, "l" or "L". */ | |
2159 | ||
2160 | static bfd_boolean | |
2161 | operand_is_immed (opnd) | |
2162 | xtensa_operand opnd; | |
2163 | { | |
2164 | const char *opkind = xtensa_operand_kind (opnd); | |
2165 | if (opkind[0] == '\0' || opkind[1] != '\0') | |
2166 | return FALSE; | |
2167 | switch (opkind[0]) | |
2168 | { | |
2169 | case 'i': | |
2170 | case 'l': | |
2171 | case 'L': | |
2172 | return TRUE; | |
2173 | } | |
2174 | return FALSE; | |
2175 | } | |
2176 | ||
2177 | ||
2178 | /* Return true if the given operand is a pc-relative label. This is | |
2179 | true for "l", "L", and "r" operand kinds. */ | |
2180 | ||
2181 | bfd_boolean | |
2182 | operand_is_pcrel_label (opnd) | |
2183 | xtensa_operand opnd; | |
2184 | { | |
2185 | const char *opkind = xtensa_operand_kind (opnd); | |
2186 | if (opkind[0] == '\0' || opkind[1] != '\0') | |
2187 | return FALSE; | |
2188 | switch (opkind[0]) | |
2189 | { | |
2190 | case 'r': | |
2191 | case 'l': | |
2192 | case 'L': | |
2193 | return TRUE; | |
2194 | } | |
2195 | return FALSE; | |
2196 | } | |
2197 | ||
2198 | ||
2199 | /* Currently the assembler only allows us to use a single target per | |
2200 | fragment. Because of this, only one operand for a given | |
2201 | instruction may be symbolic. If there is an operand of kind "lrL", | |
2202 | the last one is chosen. Otherwise, the result is the number of the | |
2203 | last operand of type "i", and if there are none of those, we fail | |
2204 | and return -1. */ | |
2205 | ||
2206 | int | |
2207 | get_relaxable_immed (opcode) | |
2208 | xtensa_opcode opcode; | |
2209 | { | |
2210 | int last_immed = -1; | |
2211 | int noperands, opi; | |
2212 | xtensa_operand operand; | |
2213 | ||
2214 | if (opcode == XTENSA_UNDEFINED) | |
2215 | return -1; | |
2216 | ||
2217 | noperands = xtensa_num_operands (xtensa_default_isa, opcode); | |
2218 | for (opi = noperands - 1; opi >= 0; opi--) | |
2219 | { | |
2220 | operand = xtensa_get_operand (xtensa_default_isa, opcode, opi); | |
2221 | if (operand_is_pcrel_label (operand)) | |
2222 | return opi; | |
2223 | if (last_immed == -1 && operand_is_immed (operand)) | |
2224 | last_immed = opi; | |
2225 | } | |
2226 | return last_immed; | |
2227 | } | |
2228 | ||
2229 | ||
2230 | xtensa_opcode | |
2231 | get_opcode_from_buf (buf) | |
2232 | const char *buf; | |
2233 | { | |
2234 | static xtensa_insnbuf insnbuf = NULL; | |
2235 | xtensa_opcode opcode; | |
2236 | xtensa_isa isa = xtensa_default_isa; | |
2237 | if (!insnbuf) | |
2238 | insnbuf = xtensa_insnbuf_alloc (isa); | |
2239 | ||
2240 | xtensa_insnbuf_from_chars (isa, insnbuf, buf); | |
2241 | opcode = xtensa_decode_insn (isa, insnbuf); | |
2242 | return opcode; | |
2243 | } | |
2244 | ||
2245 | ||
2246 | static bfd_boolean | |
2247 | is_direct_call_opcode (opcode) | |
2248 | xtensa_opcode opcode; | |
2249 | { | |
2250 | if (opcode == XTENSA_UNDEFINED) | |
2251 | return FALSE; | |
2252 | ||
2253 | return (opcode == xtensa_call0_opcode | |
2254 | || opcode == xtensa_call4_opcode | |
2255 | || opcode == xtensa_call8_opcode | |
2256 | || opcode == xtensa_call12_opcode); | |
2257 | } | |
2258 | ||
2259 | ||
2260 | static bfd_boolean | |
2261 | is_call_opcode (opcode) | |
2262 | xtensa_opcode opcode; | |
2263 | { | |
2264 | if (is_direct_call_opcode (opcode)) | |
2265 | return TRUE; | |
2266 | ||
2267 | if (opcode == XTENSA_UNDEFINED) | |
2268 | return FALSE; | |
2269 | ||
2270 | return (opcode == xtensa_callx0_opcode | |
2271 | || opcode == xtensa_callx4_opcode | |
2272 | || opcode == xtensa_callx8_opcode | |
2273 | || opcode == xtensa_callx12_opcode); | |
2274 | } | |
2275 | ||
2276 | ||
2277 | /* Return true if the opcode is an entry opcode. This is used because | |
2278 | "entry" adds an implicit ".align 4" and also the entry instruction | |
2279 | has an extra check for an operand value. */ | |
2280 | ||
2281 | static bfd_boolean | |
2282 | is_entry_opcode (opcode) | |
2283 | xtensa_opcode opcode; | |
2284 | { | |
2285 | if (opcode == XTENSA_UNDEFINED) | |
2286 | return FALSE; | |
2287 | ||
2288 | return (opcode == xtensa_entry_opcode); | |
2289 | } | |
2290 | ||
2291 | ||
2292 | /* Return true if it is one of the loop opcodes. Loops are special | |
2293 | because they need automatic alignment and they have a relaxation so | |
2294 | complex that we hard-coded it. */ | |
2295 | ||
2296 | static bfd_boolean | |
2297 | is_loop_opcode (opcode) | |
2298 | xtensa_opcode opcode; | |
2299 | { | |
2300 | if (opcode == XTENSA_UNDEFINED) | |
2301 | return FALSE; | |
2302 | ||
2303 | return (opcode == xtensa_loop_opcode | |
2304 | || opcode == xtensa_loopnez_opcode | |
2305 | || opcode == xtensa_loopgtz_opcode); | |
2306 | } | |
2307 | ||
2308 | ||
2309 | static bfd_boolean | |
2310 | is_the_loop_opcode (opcode) | |
2311 | xtensa_opcode opcode; | |
2312 | { | |
2313 | if (opcode == XTENSA_UNDEFINED) | |
2314 | return FALSE; | |
2315 | ||
2316 | return (opcode == xtensa_loop_opcode); | |
2317 | } | |
2318 | ||
2319 | ||
2320 | static bfd_boolean | |
2321 | is_jx_opcode (opcode) | |
2322 | xtensa_opcode opcode; | |
2323 | { | |
2324 | if (opcode == XTENSA_UNDEFINED) | |
2325 | return FALSE; | |
2326 | ||
2327 | return (opcode == xtensa_jx_opcode); | |
2328 | } | |
2329 | ||
2330 | ||
2331 | /* Return true if the opcode is a retw or retw.n. | |
2332 | Needed to add nops to avoid a hardware interlock issue. */ | |
2333 | ||
2334 | static bfd_boolean | |
2335 | is_windowed_return_opcode (opcode) | |
2336 | xtensa_opcode opcode; | |
2337 | { | |
2338 | if (opcode == XTENSA_UNDEFINED) | |
2339 | return FALSE; | |
2340 | ||
2341 | return (opcode == xtensa_retw_opcode || opcode == xtensa_retw_n_opcode); | |
2342 | } | |
2343 | ||
2344 | ||
2345 | /* Return true if the opcode type is "l" and the opcode is NOT a jump. */ | |
2346 | ||
2347 | static bfd_boolean | |
2348 | is_conditional_branch_opcode (opcode) | |
2349 | xtensa_opcode opcode; | |
2350 | { | |
2351 | xtensa_isa isa = xtensa_default_isa; | |
2352 | int num_ops, i; | |
2353 | ||
2354 | if (opcode == xtensa_j_opcode && opcode != XTENSA_UNDEFINED) | |
2355 | return FALSE; | |
2356 | ||
2357 | num_ops = xtensa_num_operands (isa, opcode); | |
2358 | for (i = 0; i < num_ops; i++) | |
2359 | { | |
2360 | xtensa_operand operand = xtensa_get_operand (isa, opcode, i); | |
2361 | if (strcmp (xtensa_operand_kind (operand), "l") == 0) | |
2362 | return TRUE; | |
2363 | } | |
2364 | return FALSE; | |
2365 | } | |
2366 | ||
2367 | ||
2368 | /* Return true if the given opcode is a conditional branch | |
2369 | instruction, i.e., currently this is true if the instruction | |
2370 | is a jx or has an operand with 'l' type and is not a loop. */ | |
2371 | ||
2372 | bfd_boolean | |
2373 | is_branch_or_jump_opcode (opcode) | |
2374 | xtensa_opcode opcode; | |
2375 | { | |
2376 | int opn, op_count; | |
2377 | ||
2378 | if (opcode == XTENSA_UNDEFINED) | |
2379 | return FALSE; | |
2380 | ||
2381 | if (is_loop_opcode (opcode)) | |
2382 | return FALSE; | |
2383 | ||
2384 | if (is_jx_opcode (opcode)) | |
2385 | return TRUE; | |
2386 | ||
2387 | op_count = xtensa_num_operands (xtensa_default_isa, opcode); | |
2388 | for (opn = 0; opn < op_count; opn++) | |
2389 | { | |
2390 | xtensa_operand opnd = | |
2391 | xtensa_get_operand (xtensa_default_isa, opcode, opn); | |
2392 | const char *opkind = xtensa_operand_kind (opnd); | |
2393 | if (opkind && opkind[0] == 'l' && opkind[1] == '\0') | |
2394 | return TRUE; | |
2395 | } | |
2396 | return FALSE; | |
2397 | } | |
2398 | ||
2399 | ||
2400 | /* Convert from operand numbers to BFD relocation type code. | |
2401 | Return BFD_RELOC_NONE on failure. */ | |
2402 | ||
2403 | bfd_reloc_code_real_type | |
2404 | opnum_to_reloc (opnum) | |
2405 | int opnum; | |
2406 | { | |
2407 | switch (opnum) | |
2408 | { | |
2409 | case 0: | |
2410 | return BFD_RELOC_XTENSA_OP0; | |
2411 | case 1: | |
2412 | return BFD_RELOC_XTENSA_OP1; | |
2413 | case 2: | |
2414 | return BFD_RELOC_XTENSA_OP2; | |
2415 | default: | |
2416 | break; | |
2417 | } | |
2418 | return BFD_RELOC_NONE; | |
2419 | } | |
2420 | ||
2421 | ||
2422 | /* Convert from BFD relocation type code to operand number. | |
2423 | Return -1 on failure. */ | |
2424 | ||
2425 | int | |
2426 | reloc_to_opnum (reloc) | |
2427 | bfd_reloc_code_real_type reloc; | |
2428 | { | |
2429 | switch (reloc) | |
2430 | { | |
2431 | case BFD_RELOC_XTENSA_OP0: | |
2432 | return 0; | |
2433 | case BFD_RELOC_XTENSA_OP1: | |
2434 | return 1; | |
2435 | case BFD_RELOC_XTENSA_OP2: | |
2436 | return 2; | |
2437 | default: | |
2438 | break; | |
2439 | } | |
2440 | return -1; | |
2441 | } | |
2442 | ||
2443 | ||
2444 | static void | |
2445 | xtensa_insnbuf_set_operand (insnbuf, opcode, operand, value, file, line) | |
2446 | xtensa_insnbuf insnbuf; | |
2447 | xtensa_opcode opcode; | |
2448 | xtensa_operand operand; | |
2449 | int32 value; | |
2450 | const char *file; | |
2451 | unsigned int line; | |
2452 | { | |
2453 | xtensa_encode_result encode_result; | |
2454 | uint32 valbuf = value; | |
2455 | ||
2456 | encode_result = xtensa_operand_encode (operand, &valbuf); | |
2457 | ||
2458 | switch (encode_result) | |
2459 | { | |
2460 | case xtensa_encode_result_ok: | |
2461 | break; | |
2462 | case xtensa_encode_result_align: | |
2463 | as_bad_where ((char *) file, line, | |
2464 | _("operand %d not properly aligned for '%s'"), | |
2465 | value, xtensa_opcode_name (xtensa_default_isa, opcode)); | |
2466 | break; | |
2467 | case xtensa_encode_result_not_in_table: | |
2468 | as_bad_where ((char *) file, line, | |
2469 | _("operand %d not in immediate table for '%s'"), | |
2470 | value, xtensa_opcode_name (xtensa_default_isa, opcode)); | |
2471 | break; | |
2472 | case xtensa_encode_result_too_high: | |
2473 | as_bad_where ((char *) file, line, | |
2474 | _("operand %d too large for '%s'"), value, | |
2475 | xtensa_opcode_name (xtensa_default_isa, opcode)); | |
2476 | break; | |
2477 | case xtensa_encode_result_too_low: | |
2478 | as_bad_where ((char *) file, line, | |
2479 | _("operand %d too small for '%s'"), value, | |
2480 | xtensa_opcode_name (xtensa_default_isa, opcode)); | |
2481 | break; | |
2482 | case xtensa_encode_result_not_ok: | |
2483 | as_bad_where ((char *) file, line, | |
2484 | _("operand %d is invalid for '%s'"), value, | |
2485 | xtensa_opcode_name (xtensa_default_isa, opcode)); | |
2486 | break; | |
2487 | default: | |
2488 | abort (); | |
2489 | } | |
2490 | ||
2491 | xtensa_operand_set_field (operand, insnbuf, valbuf); | |
2492 | } | |
2493 | ||
2494 | ||
2495 | static uint32 | |
2496 | xtensa_insnbuf_get_operand (insnbuf, opcode, opnum) | |
2497 | xtensa_insnbuf insnbuf; | |
2498 | xtensa_opcode opcode; | |
2499 | int opnum; | |
2500 | { | |
2501 | xtensa_operand op = xtensa_get_operand (xtensa_default_isa, opcode, opnum); | |
2502 | return xtensa_operand_decode (op, xtensa_operand_get_field (op, insnbuf)); | |
2503 | } | |
2504 | ||
2505 | ||
2506 | static void | |
2507 | xtensa_insnbuf_set_immediate_field (opcode, insnbuf, value, file, line) | |
2508 | xtensa_opcode opcode; | |
2509 | xtensa_insnbuf insnbuf; | |
2510 | int32 value; | |
2511 | const char *file; | |
2512 | unsigned int line; | |
2513 | { | |
2514 | xtensa_isa isa = xtensa_default_isa; | |
2515 | int last_opnd = xtensa_num_operands (isa, opcode) - 1; | |
2516 | xtensa_operand operand = xtensa_get_operand (isa, opcode, last_opnd); | |
2517 | xtensa_insnbuf_set_operand (insnbuf, opcode, operand, value, file, line); | |
2518 | } | |
2519 | ||
2520 | ||
2521 | static bfd_boolean | |
2522 | is_negatable_branch (insn) | |
2523 | TInsn *insn; | |
2524 | { | |
2525 | xtensa_isa isa = xtensa_default_isa; | |
2526 | int i; | |
2527 | int num_ops = xtensa_num_operands (isa, insn->opcode); | |
2528 | ||
2529 | for (i = 0; i < num_ops; i++) | |
2530 | { | |
2531 | xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i); | |
2532 | char *kind = xtensa_operand_kind (opnd); | |
2533 | if (strlen (kind) == 1 && *kind == 'l') | |
2534 | return TRUE; | |
2535 | } | |
2536 | return FALSE; | |
2537 | } | |
2538 | ||
2539 | \f | |
2540 | /* Lists for recording various properties of symbols. */ | |
2541 | ||
2542 | typedef struct symbol_consS_struct | |
2543 | { | |
2544 | symbolS *first; | |
2545 | /* These are used for the target taken. */ | |
2546 | int is_loop_target:1; | |
2547 | int is_branch_target:1; | |
2548 | int is_literal:1; | |
2549 | int is_moved:1; | |
2550 | struct symbol_consS_struct *rest; | |
2551 | } symbol_consS; | |
2552 | ||
2553 | symbol_consS *defined_symbols = 0; | |
2554 | symbol_consS *branch_targets = 0; | |
2555 | ||
2556 | ||
2557 | static void | |
2558 | xtensa_define_label (sym) | |
2559 | symbolS *sym; | |
2560 | { | |
2561 | symbol_consS *cons = (symbol_consS *) xmalloc (sizeof (symbol_consS)); | |
2562 | ||
2563 | cons->first = sym; | |
2564 | cons->is_branch_target = 0; | |
2565 | cons->is_loop_target = 0; | |
2566 | cons->is_literal = generating_literals ? 1 : 0; | |
2567 | cons->is_moved = 0; | |
2568 | cons->rest = defined_symbols; | |
2569 | defined_symbols = cons; | |
2570 | } | |
2571 | ||
2572 | ||
2573 | void | |
2574 | add_target_symbol (sym, is_loop) | |
2575 | symbolS *sym; | |
2576 | bfd_boolean is_loop; | |
2577 | { | |
2578 | symbol_consS *cons, *sym_e; | |
2579 | ||
2580 | for (sym_e = branch_targets; sym_e; sym_e = sym_e->rest) | |
2581 | { | |
2582 | if (sym_e->first == sym) | |
2583 | { | |
2584 | if (is_loop) | |
2585 | sym_e->is_loop_target = 1; | |
2586 | else | |
2587 | sym_e->is_branch_target = 1; | |
2588 | return; | |
2589 | } | |
2590 | } | |
2591 | ||
2592 | cons = (symbol_consS *) xmalloc (sizeof (symbol_consS)); | |
2593 | cons->first = sym; | |
2594 | cons->is_branch_target = (is_loop ? 0 : 1); | |
2595 | cons->is_loop_target = (is_loop ? 1 : 0); | |
2596 | cons->rest = branch_targets; | |
2597 | branch_targets = cons; | |
2598 | } | |
2599 | ||
2600 | ||
2601 | /* Find the symbol at a given position. (Note: the "loops_ok" | |
2602 | argument is provided to allow ignoring labels that define loop | |
2603 | ends. This fixes a bug where the NOPs to align a loop opcode were | |
2604 | included in a previous zero-cost loop: | |
2605 | ||
2606 | loop a0, loopend | |
2607 | <loop1 body> | |
2608 | loopend: | |
2609 | ||
2610 | loop a2, loopend2 | |
2611 | <loop2 body> | |
2612 | ||
2613 | would become: | |
2614 | ||
2615 | loop a0, loopend | |
2616 | <loop1 body> | |
2617 | nop.n <===== bad! | |
2618 | loopend: | |
2619 | ||
2620 | loop a2, loopend2 | |
2621 | <loop2 body> | |
2622 | ||
2623 | This argument is used to prevent moving the NOP to before the | |
2624 | loop-end label, which is what you want in this special case.) */ | |
2625 | ||
2626 | static symbolS * | |
2627 | xtensa_find_label (fragP, offset, loops_ok) | |
2628 | fragS *fragP; | |
2629 | offsetT offset; | |
2630 | bfd_boolean loops_ok; | |
2631 | { | |
2632 | symbol_consS *consP; | |
2633 | ||
2634 | for (consP = defined_symbols; consP; consP = consP->rest) | |
2635 | { | |
2636 | symbolS *symP = consP->first; | |
2637 | ||
2638 | if (S_GET_SEGMENT (symP) == now_seg | |
2639 | && symbol_get_frag (symP) == fragP | |
2640 | && symbol_constant_p (symP) | |
2641 | && S_GET_VALUE (symP) == fragP->fr_address + (unsigned) offset | |
2642 | && (loops_ok || !is_loop_target_label (symP))) | |
2643 | return symP; | |
2644 | } | |
2645 | return NULL; | |
2646 | } | |
2647 | ||
2648 | ||
2649 | static void | |
2650 | map_over_defined_symbols (fn) | |
2651 | void (*fn) PARAMS ((symbolS *)); | |
2652 | { | |
2653 | symbol_consS *sym_cons; | |
2654 | ||
2655 | for (sym_cons = defined_symbols; sym_cons; sym_cons = sym_cons->rest) | |
2656 | fn (sym_cons->first); | |
2657 | } | |
2658 | ||
2659 | ||
2660 | static bfd_boolean | |
2661 | is_loop_target_label (sym) | |
2662 | symbolS *sym; | |
2663 | { | |
2664 | symbol_consS *sym_e; | |
2665 | ||
2666 | for (sym_e = branch_targets; sym_e; sym_e = sym_e->rest) | |
2667 | { | |
2668 | if (sym_e->first == sym) | |
2669 | return sym_e->is_loop_target; | |
2670 | } | |
2671 | return FALSE; | |
2672 | } | |
2673 | ||
2674 | ||
2675 | /* Walk over all of the symbols that are branch target labels and | |
2676 | loop target labels. Mark the associated fragments for these with | |
2677 | the appropriate flags. */ | |
2678 | ||
2679 | static void | |
2680 | xtensa_mark_target_fragments () | |
2681 | { | |
2682 | symbol_consS *sym_e; | |
2683 | ||
2684 | for (sym_e = branch_targets; sym_e; sym_e = sym_e->rest) | |
2685 | { | |
2686 | symbolS *sym = sym_e->first; | |
2687 | ||
2688 | if (symbol_get_frag (sym) | |
2689 | && symbol_constant_p (sym) | |
2690 | && S_GET_VALUE (sym) == 0) | |
2691 | { | |
2692 | if (sym_e->is_branch_target) | |
2693 | symbol_get_frag (sym)->tc_frag_data.is_branch_target = TRUE; | |
2694 | if (sym_e->is_loop_target) | |
2695 | symbol_get_frag (sym)->tc_frag_data.is_loop_target = TRUE; | |
2696 | } | |
2697 | } | |
2698 | } | |
2699 | ||
2700 | \f | |
2701 | /* Various Other Internal Functions. */ | |
2702 | ||
2703 | static bfd_boolean | |
2704 | is_unique_insn_expansion (r) | |
2705 | TransitionRule *r; | |
2706 | { | |
2707 | if (!r->to_instr || r->to_instr->next != NULL) | |
2708 | return FALSE; | |
2709 | if (r->to_instr->typ != INSTR_INSTR) | |
2710 | return FALSE; | |
2711 | return TRUE; | |
2712 | } | |
2713 | ||
2714 | ||
2715 | static int | |
2716 | xg_get_insn_size (insn) | |
2717 | TInsn *insn; | |
2718 | { | |
2719 | assert (insn->insn_type == ITYPE_INSN); | |
2720 | return xtensa_insn_length (xtensa_default_isa, insn->opcode); | |
2721 | } | |
2722 | ||
2723 | ||
2724 | static int | |
2725 | xg_get_build_instr_size (insn) | |
2726 | BuildInstr *insn; | |
2727 | { | |
2728 | assert (insn->typ == INSTR_INSTR); | |
2729 | return xtensa_insn_length (xtensa_default_isa, insn->opcode); | |
2730 | } | |
2731 | ||
2732 | ||
2733 | bfd_boolean | |
2734 | xg_is_narrow_insn (insn) | |
2735 | TInsn *insn; | |
2736 | { | |
2737 | TransitionTable *table = xg_build_widen_table (); | |
2738 | TransitionList *l; | |
2739 | int num_match = 0; | |
2740 | assert (insn->insn_type == ITYPE_INSN); | |
2741 | assert (insn->opcode < table->num_opcodes); | |
2742 | ||
2743 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2744 | { | |
2745 | TransitionRule *rule = l->rule; | |
2746 | ||
2747 | if (xg_instruction_matches_rule (insn, rule) | |
2748 | && is_unique_insn_expansion (rule)) | |
2749 | { | |
2750 | /* It only generates one instruction... */ | |
2751 | assert (insn->insn_type == ITYPE_INSN); | |
2752 | /* ...and it is a larger instruction. */ | |
2753 | if (xg_get_insn_size (insn) | |
2754 | < xg_get_build_instr_size (rule->to_instr)) | |
2755 | { | |
2756 | num_match++; | |
2757 | if (num_match > 1) | |
2758 | return FALSE; | |
2759 | } | |
2760 | } | |
2761 | } | |
2762 | return (num_match == 1); | |
2763 | } | |
2764 | ||
2765 | ||
2766 | bfd_boolean | |
2767 | xg_is_single_relaxable_insn (insn) | |
2768 | TInsn *insn; | |
2769 | { | |
2770 | TransitionTable *table = xg_build_widen_table (); | |
2771 | TransitionList *l; | |
2772 | int num_match = 0; | |
2773 | assert (insn->insn_type == ITYPE_INSN); | |
2774 | assert (insn->opcode < table->num_opcodes); | |
2775 | ||
2776 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2777 | { | |
2778 | TransitionRule *rule = l->rule; | |
2779 | ||
2780 | if (xg_instruction_matches_rule (insn, rule) | |
2781 | && is_unique_insn_expansion (rule)) | |
2782 | { | |
2783 | assert (insn->insn_type == ITYPE_INSN); | |
2784 | /* ... and it is a larger instruction. */ | |
2785 | if (xg_get_insn_size (insn) | |
2786 | <= xg_get_build_instr_size (rule->to_instr)) | |
2787 | { | |
2788 | num_match++; | |
2789 | if (num_match > 1) | |
2790 | return FALSE; | |
2791 | } | |
2792 | } | |
2793 | } | |
2794 | return (num_match == 1); | |
2795 | } | |
2796 | ||
2797 | ||
2798 | /* Return the largest size instruction that this instruction can | |
2799 | expand to. Currently, in all cases, this is 3 bytes. Of course we | |
2800 | could just calculate this once and generate a table. */ | |
2801 | ||
2802 | int | |
2803 | xg_get_max_narrow_insn_size (opcode) | |
2804 | xtensa_opcode opcode; | |
2805 | { | |
2806 | /* Go ahead and compute it, but it better be 3. */ | |
2807 | TransitionTable *table = xg_build_widen_table (); | |
2808 | TransitionList *l; | |
2809 | int old_size = xtensa_insn_length (xtensa_default_isa, opcode); | |
2810 | assert (opcode < table->num_opcodes); | |
2811 | ||
2812 | /* Actually we can do better. Check to see of Only one applies. */ | |
2813 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
2814 | { | |
2815 | TransitionRule *rule = l->rule; | |
2816 | ||
2817 | /* If it only generates one instruction. */ | |
2818 | if (is_unique_insn_expansion (rule)) | |
2819 | { | |
2820 | int new_size = xtensa_insn_length (xtensa_default_isa, | |
2821 | rule->to_instr->opcode); | |
2822 | if (new_size > old_size) | |
2823 | { | |
2824 | assert (new_size == 3); | |
2825 | return 3; | |
2826 | } | |
2827 | } | |
2828 | } | |
2829 | return old_size; | |
2830 | } | |
2831 | ||
2832 | ||
2833 | /* Return the maximum number of bytes this opcode can expand to. */ | |
2834 | ||
2835 | int | |
2836 | xg_get_max_insn_widen_size (opcode) | |
2837 | xtensa_opcode opcode; | |
2838 | { | |
2839 | TransitionTable *table = xg_build_widen_table (); | |
2840 | TransitionList *l; | |
2841 | int max_size = xtensa_insn_length (xtensa_default_isa, opcode); | |
2842 | ||
2843 | assert (opcode < table->num_opcodes); | |
2844 | ||
2845 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
2846 | { | |
2847 | TransitionRule *rule = l->rule; | |
2848 | BuildInstr *build_list; | |
2849 | int this_size = 0; | |
2850 | ||
2851 | if (!rule) | |
2852 | continue; | |
2853 | build_list = rule->to_instr; | |
2854 | if (is_unique_insn_expansion (rule)) | |
2855 | { | |
2856 | assert (build_list->typ == INSTR_INSTR); | |
2857 | this_size = xg_get_max_insn_widen_size (build_list->opcode); | |
2858 | } | |
2859 | else | |
2860 | for (; build_list != NULL; build_list = build_list->next) | |
2861 | { | |
2862 | switch (build_list->typ) | |
2863 | { | |
2864 | case INSTR_INSTR: | |
2865 | this_size += xtensa_insn_length (xtensa_default_isa, | |
2866 | build_list->opcode); | |
2867 | ||
2868 | break; | |
2869 | case INSTR_LITERAL_DEF: | |
2870 | case INSTR_LABEL_DEF: | |
2871 | default: | |
2872 | break; | |
2873 | } | |
2874 | } | |
2875 | if (this_size > max_size) | |
2876 | max_size = this_size; | |
2877 | } | |
2878 | return max_size; | |
2879 | } | |
2880 | ||
2881 | ||
2882 | /* Return the maximum number of literal bytes this opcode can generate. */ | |
2883 | ||
2884 | int | |
2885 | xg_get_max_insn_widen_literal_size (opcode) | |
2886 | xtensa_opcode opcode; | |
2887 | { | |
2888 | TransitionTable *table = xg_build_widen_table (); | |
2889 | TransitionList *l; | |
2890 | int max_size = 0; | |
2891 | ||
2892 | assert (opcode < table->num_opcodes); | |
2893 | ||
2894 | for (l = table->table[opcode]; l != NULL; l = l->next) | |
2895 | { | |
2896 | TransitionRule *rule = l->rule; | |
2897 | BuildInstr *build_list; | |
2898 | int this_size = 0; | |
2899 | ||
2900 | if (!rule) | |
2901 | continue; | |
2902 | build_list = rule->to_instr; | |
2903 | if (is_unique_insn_expansion (rule)) | |
2904 | { | |
2905 | assert (build_list->typ == INSTR_INSTR); | |
2906 | this_size = xg_get_max_insn_widen_literal_size (build_list->opcode); | |
2907 | } | |
2908 | else | |
2909 | for (; build_list != NULL; build_list = build_list->next) | |
2910 | { | |
2911 | switch (build_list->typ) | |
2912 | { | |
2913 | case INSTR_LITERAL_DEF: | |
2914 | /* hard coded 4-byte literal. */ | |
2915 | this_size += 4; | |
2916 | break; | |
2917 | case INSTR_INSTR: | |
2918 | case INSTR_LABEL_DEF: | |
2919 | default: | |
2920 | break; | |
2921 | } | |
2922 | } | |
2923 | if (this_size > max_size) | |
2924 | max_size = this_size; | |
2925 | } | |
2926 | return max_size; | |
2927 | } | |
2928 | ||
2929 | ||
2930 | bfd_boolean | |
2931 | xg_is_relaxable_insn (insn, lateral_steps) | |
2932 | TInsn *insn; | |
2933 | int lateral_steps; | |
2934 | { | |
2935 | int steps_taken = 0; | |
2936 | TransitionTable *table = xg_build_widen_table (); | |
2937 | TransitionList *l; | |
2938 | ||
2939 | assert (insn->insn_type == ITYPE_INSN); | |
2940 | assert (insn->opcode < table->num_opcodes); | |
2941 | ||
2942 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
2943 | { | |
2944 | TransitionRule *rule = l->rule; | |
2945 | ||
2946 | if (xg_instruction_matches_rule (insn, rule)) | |
2947 | { | |
2948 | if (steps_taken == lateral_steps) | |
2949 | return TRUE; | |
2950 | steps_taken++; | |
2951 | } | |
2952 | } | |
2953 | return FALSE; | |
2954 | } | |
2955 | ||
2956 | ||
2957 | static symbolS * | |
2958 | get_special_literal_symbol () | |
2959 | { | |
2960 | static symbolS *sym = NULL; | |
2961 | ||
2962 | if (sym == NULL) | |
2963 | sym = symbol_find_or_make ("SPECIAL_LITERAL0\001"); | |
2964 | return sym; | |
2965 | } | |
2966 | ||
2967 | ||
2968 | static symbolS * | |
2969 | get_special_label_symbol () | |
2970 | { | |
2971 | static symbolS *sym = NULL; | |
2972 | ||
2973 | if (sym == NULL) | |
2974 | sym = symbol_find_or_make ("SPECIAL_LABEL0\001"); | |
2975 | return sym; | |
2976 | } | |
2977 | ||
2978 | ||
2979 | /* Return true on success. */ | |
2980 | ||
2981 | bfd_boolean | |
2982 | xg_build_to_insn (targ, insn, bi) | |
2983 | TInsn *targ; | |
2984 | TInsn *insn; | |
2985 | BuildInstr *bi; | |
2986 | { | |
2987 | BuildOp *op; | |
2988 | symbolS *sym; | |
2989 | ||
2990 | memset (targ, 0, sizeof (TInsn)); | |
2991 | switch (bi->typ) | |
2992 | { | |
2993 | case INSTR_INSTR: | |
2994 | op = bi->ops; | |
2995 | targ->opcode = bi->opcode; | |
2996 | targ->insn_type = ITYPE_INSN; | |
2997 | targ->is_specific_opcode = FALSE; | |
2998 | ||
2999 | for (; op != NULL; op = op->next) | |
3000 | { | |
3001 | int op_num = op->op_num; | |
3002 | int op_data = op->op_data; | |
3003 | ||
3004 | assert (op->op_num < MAX_INSN_ARGS); | |
3005 | ||
3006 | if (targ->ntok <= op_num) | |
3007 | targ->ntok = op_num + 1; | |
3008 | ||
3009 | switch (op->typ) | |
3010 | { | |
3011 | case OP_CONSTANT: | |
3012 | set_expr_const (&targ->tok[op_num], op_data); | |
3013 | break; | |
3014 | case OP_OPERAND: | |
3015 | assert (op_data < insn->ntok); | |
3016 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3017 | break; | |
3018 | case OP_LITERAL: | |
3019 | sym = get_special_literal_symbol (); | |
3020 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3021 | break; | |
3022 | case OP_LABEL: | |
3023 | sym = get_special_label_symbol (); | |
3024 | set_expr_symbol_offset (&targ->tok[op_num], sym, 0); | |
3025 | break; | |
3026 | default: | |
3027 | /* currently handles: | |
3028 | OP_OPERAND_LOW8 | |
3029 | OP_OPERAND_HI24S | |
3030 | OP_OPERAND_F32MINUS */ | |
3031 | if (xg_has_userdef_op_fn (op->typ)) | |
3032 | { | |
3033 | assert (op_data < insn->ntok); | |
3034 | if (expr_is_const (&insn->tok[op_data])) | |
3035 | { | |
3036 | long val; | |
3037 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3038 | val = xg_apply_userdef_op_fn (op->typ, | |
3039 | targ->tok[op_num]. | |
3040 | X_add_number); | |
3041 | targ->tok[op_num].X_add_number = val; | |
3042 | } | |
3043 | else | |
3044 | return FALSE; /* We cannot use a relocation for this. */ | |
3045 | break; | |
3046 | } | |
3047 | assert (0); | |
3048 | break; | |
3049 | } | |
3050 | } | |
3051 | break; | |
3052 | ||
3053 | case INSTR_LITERAL_DEF: | |
3054 | op = bi->ops; | |
3055 | targ->opcode = XTENSA_UNDEFINED; | |
3056 | targ->insn_type = ITYPE_LITERAL; | |
3057 | targ->is_specific_opcode = FALSE; | |
3058 | for (; op != NULL; op = op->next) | |
3059 | { | |
3060 | int op_num = op->op_num; | |
3061 | int op_data = op->op_data; | |
3062 | assert (op->op_num < MAX_INSN_ARGS); | |
3063 | ||
3064 | if (targ->ntok <= op_num) | |
3065 | targ->ntok = op_num + 1; | |
3066 | ||
3067 | switch (op->typ) | |
3068 | { | |
3069 | case OP_OPERAND: | |
3070 | assert (op_data < insn->ntok); | |
3071 | copy_expr (&targ->tok[op_num], &insn->tok[op_data]); | |
3072 | break; | |
3073 | case OP_LITERAL: | |
3074 | case OP_CONSTANT: | |
3075 | case OP_LABEL: | |
3076 | default: | |
3077 | assert (0); | |
3078 | break; | |
3079 | } | |
3080 | } | |
3081 | break; | |
3082 | ||
3083 | case INSTR_LABEL_DEF: | |
3084 | op = bi->ops; | |
3085 | targ->opcode = XTENSA_UNDEFINED; | |
3086 | targ->insn_type = ITYPE_LABEL; | |
3087 | targ->is_specific_opcode = FALSE; | |
3088 | /* Literal with no ops. is a label? */ | |
3089 | assert (op == NULL); | |
3090 | break; | |
3091 | ||
3092 | default: | |
3093 | assert (0); | |
3094 | } | |
3095 | ||
3096 | return TRUE; | |
3097 | } | |
3098 | ||
3099 | ||
3100 | /* Return true on success. */ | |
3101 | ||
3102 | bfd_boolean | |
3103 | xg_build_to_stack (istack, insn, bi) | |
3104 | IStack *istack; | |
3105 | TInsn *insn; | |
3106 | BuildInstr *bi; | |
3107 | { | |
3108 | for (; bi != NULL; bi = bi->next) | |
3109 | { | |
3110 | TInsn *next_insn = istack_push_space (istack); | |
3111 | ||
3112 | if (!xg_build_to_insn (next_insn, insn, bi)) | |
3113 | return FALSE; | |
3114 | } | |
3115 | return TRUE; | |
3116 | } | |
3117 | ||
3118 | ||
3119 | /* Return true on valid expansion. */ | |
3120 | ||
3121 | bfd_boolean | |
3122 | xg_expand_to_stack (istack, insn, lateral_steps) | |
3123 | IStack *istack; | |
3124 | TInsn *insn; | |
3125 | int lateral_steps; | |
3126 | { | |
3127 | int stack_size = istack->ninsn; | |
3128 | int steps_taken = 0; | |
3129 | TransitionTable *table = xg_build_widen_table (); | |
3130 | TransitionList *l; | |
3131 | ||
3132 | assert (insn->insn_type == ITYPE_INSN); | |
3133 | assert (insn->opcode < table->num_opcodes); | |
3134 | ||
3135 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3136 | { | |
3137 | TransitionRule *rule = l->rule; | |
3138 | ||
3139 | if (xg_instruction_matches_rule (insn, rule)) | |
3140 | { | |
3141 | if (lateral_steps == steps_taken) | |
3142 | { | |
3143 | int i; | |
3144 | ||
3145 | /* This is it. Expand the rule to the stack. */ | |
3146 | if (!xg_build_to_stack (istack, insn, rule->to_instr)) | |
3147 | return FALSE; | |
3148 | ||
3149 | /* Check to see if it fits. */ | |
3150 | for (i = stack_size; i < istack->ninsn; i++) | |
3151 | { | |
3152 | TInsn *insn = &istack->insn[i]; | |
3153 | ||
3154 | if (insn->insn_type == ITYPE_INSN | |
3155 | && !tinsn_has_symbolic_operands (insn) | |
3156 | && !xg_immeds_fit (insn)) | |
3157 | { | |
3158 | istack->ninsn = stack_size; | |
3159 | return FALSE; | |
3160 | } | |
3161 | } | |
3162 | return TRUE; | |
3163 | } | |
3164 | steps_taken++; | |
3165 | } | |
3166 | } | |
3167 | return FALSE; | |
3168 | } | |
3169 | ||
3170 | ||
3171 | bfd_boolean | |
3172 | xg_expand_narrow (targ, insn) | |
3173 | TInsn *targ; | |
3174 | TInsn *insn; | |
3175 | { | |
3176 | TransitionTable *table = xg_build_widen_table (); | |
3177 | TransitionList *l; | |
3178 | ||
3179 | assert (insn->insn_type == ITYPE_INSN); | |
3180 | assert (insn->opcode < table->num_opcodes); | |
3181 | ||
3182 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3183 | { | |
3184 | TransitionRule *rule = l->rule; | |
3185 | if (xg_instruction_matches_rule (insn, rule) | |
3186 | && is_unique_insn_expansion (rule)) | |
3187 | { | |
3188 | /* Is it a larger instruction? */ | |
3189 | if (xg_get_insn_size (insn) | |
3190 | <= xg_get_build_instr_size (rule->to_instr)) | |
3191 | { | |
3192 | xg_build_to_insn (targ, insn, rule->to_instr); | |
3193 | return FALSE; | |
3194 | } | |
3195 | } | |
3196 | } | |
3197 | return TRUE; | |
3198 | } | |
3199 | ||
3200 | ||
3201 | /* Assumes: All immeds are constants. Check that all constants fit | |
3202 | into their immeds; return false if not. */ | |
3203 | ||
3204 | static bfd_boolean | |
3205 | xg_immeds_fit (insn) | |
3206 | const TInsn *insn; | |
3207 | { | |
3208 | int i; | |
3209 | ||
3210 | int n = insn->ntok; | |
3211 | assert (insn->insn_type == ITYPE_INSN); | |
3212 | for (i = 0; i < n; ++i) | |
3213 | { | |
3214 | const expressionS *expr = &insn->tok[i]; | |
3215 | xtensa_operand opnd = xtensa_get_operand (xtensa_default_isa, | |
3216 | insn->opcode, i); | |
3217 | if (!operand_is_immed (opnd)) | |
3218 | continue; | |
3219 | ||
3220 | switch (expr->X_op) | |
3221 | { | |
3222 | case O_register: | |
3223 | case O_constant: | |
3224 | { | |
3225 | if (xg_check_operand (expr->X_add_number, opnd)) | |
3226 | return FALSE; | |
3227 | } | |
3228 | break; | |
3229 | default: | |
3230 | /* The symbol should have a fixup associated with it. */ | |
3231 | assert (FALSE); | |
3232 | break; | |
3233 | } | |
3234 | } | |
3235 | return TRUE; | |
3236 | } | |
3237 | ||
3238 | ||
3239 | /* This should only be called after we have an initial | |
3240 | estimate of the addresses. */ | |
3241 | ||
3242 | static bfd_boolean | |
3243 | xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch) | |
3244 | const TInsn *insn; | |
3245 | segT pc_seg; | |
3246 | fragS *pc_frag; | |
3247 | offsetT pc_offset; | |
3248 | long stretch; | |
3249 | { | |
3250 | symbolS *symbolP; | |
3251 | offsetT target, pc, new_offset; | |
3252 | int i; | |
3253 | int n = insn->ntok; | |
3254 | ||
3255 | assert (insn->insn_type == ITYPE_INSN); | |
3256 | ||
3257 | for (i = 0; i < n; ++i) | |
3258 | { | |
3259 | const expressionS *expr = &insn->tok[i]; | |
3260 | xtensa_operand opnd = xtensa_get_operand (xtensa_default_isa, | |
3261 | insn->opcode, i); | |
3262 | if (!operand_is_immed (opnd)) | |
3263 | continue; | |
3264 | ||
3265 | switch (expr->X_op) | |
3266 | { | |
3267 | case O_register: | |
3268 | case O_constant: | |
3269 | if (xg_check_operand (expr->X_add_number, opnd)) | |
3270 | return FALSE; | |
3271 | break; | |
3272 | ||
3273 | case O_symbol: | |
3274 | /* We only allow symbols for pc-relative stuff. | |
3275 | If pc_frag == 0, then we don't have frag locations yet. */ | |
3276 | if (pc_frag == 0) | |
3277 | return FALSE; | |
3278 | ||
3279 | /* If it is PC-relative and the symbol is in the same segment as | |
3280 | the PC.... */ | |
3281 | if (!xtensa_operand_isPCRelative (opnd) | |
3282 | || S_GET_SEGMENT (expr->X_add_symbol) != pc_seg) | |
3283 | return FALSE; | |
3284 | ||
3285 | symbolP = expr->X_add_symbol; | |
3286 | target = S_GET_VALUE (symbolP) + expr->X_add_number; | |
3287 | pc = pc_frag->fr_address + pc_offset; | |
3288 | ||
3289 | /* If frag has yet to be reached on this pass, assume it | |
3290 | will move by STRETCH just as we did. If this is not so, | |
3291 | it will be because some frag between grows, and that will | |
3292 | force another pass. Beware zero-length frags. There | |
3293 | should be a faster way to do this. */ | |
3294 | ||
3295 | if (stretch && is_dnrange (pc_frag, symbolP, stretch)) | |
3296 | target += stretch; | |
3297 | ||
3298 | new_offset = xtensa_operand_do_reloc (opnd, target, pc); | |
3299 | if (xg_check_operand (new_offset, opnd)) | |
3300 | return FALSE; | |
3301 | break; | |
3302 | ||
3303 | default: | |
3304 | /* The symbol should have a fixup associated with it. */ | |
3305 | return FALSE; | |
3306 | } | |
3307 | } | |
3308 | ||
3309 | return TRUE; | |
3310 | } | |
3311 | ||
3312 | ||
3313 | /* This will check to see if the value can be converted into the | |
3314 | operand type. It will return true if it does not fit. */ | |
3315 | ||
3316 | static bfd_boolean | |
3317 | xg_check_operand (value, operand) | |
3318 | int32 value; | |
3319 | xtensa_operand operand; | |
3320 | { | |
3321 | uint32 valbuf = value; | |
3322 | return (xtensa_operand_encode (operand, &valbuf) != xtensa_encode_result_ok); | |
3323 | } | |
3324 | ||
3325 | ||
3326 | /* Check if a symbol is pointing to somewhere after | |
3327 | the start frag, given that the segment has stretched | |
3328 | by stretch during relaxation. | |
3329 | ||
3330 | This is more complicated than it might appear at first blush | |
3331 | because of the stretching that goes on. Here is how the check | |
3332 | works: | |
3333 | ||
3334 | If the symbol and the frag are in the same segment, then | |
3335 | the symbol could be down range. Note that this function | |
3336 | assumes that start_frag is in now_seg. | |
3337 | ||
3338 | If the symbol is pointing to a frag with an address greater than | |
3339 | than the start_frag's address, then it _could_ be down range. | |
3340 | ||
3341 | The problem comes because target_frag may or may not have had | |
3342 | stretch bytes added to its address already, depending on if it is | |
3343 | before or after start frag. (And if we knew that, then we wouldn't | |
3344 | need this function.) start_frag has definitely already had stretch | |
3345 | bytes added to its address. | |
3346 | ||
3347 | If target_frag's address hasn't been adjusted yet, then to | |
3348 | determine if it comes after start_frag, we need to subtract | |
3349 | stretch from start_frag's address. | |
3350 | ||
3351 | If target_frag's address has been adjusted, then it might have | |
3352 | been adjusted such that it comes after start_frag's address minus | |
3353 | stretch bytes. | |
3354 | ||
3355 | So, in that case, we scan for it down stream to within | |
3356 | stretch bytes. We could search to the end of the fr_chain, but | |
3357 | that ends up taking too much time (over a minute on some gnu | |
3358 | tests). */ | |
3359 | ||
3360 | int | |
3361 | is_dnrange (start_frag, sym, stretch) | |
3362 | fragS *start_frag; | |
3363 | symbolS *sym; | |
3364 | long stretch; | |
3365 | { | |
3366 | if (S_GET_SEGMENT (sym) == now_seg) | |
3367 | { | |
3368 | fragS *cur_frag = symbol_get_frag (sym); | |
3369 | ||
3370 | if (cur_frag->fr_address >= start_frag->fr_address - stretch) | |
3371 | { | |
3372 | int distance = stretch; | |
3373 | ||
3374 | while (cur_frag && distance >= 0) | |
3375 | { | |
3376 | distance -= cur_frag->fr_fix; | |
3377 | if (cur_frag == start_frag) | |
3378 | return 0; | |
3379 | cur_frag = cur_frag->fr_next; | |
3380 | } | |
3381 | return 1; | |
3382 | } | |
3383 | } | |
3384 | return 0; | |
3385 | } | |
3386 | ||
3387 | \f | |
3388 | /* Relax the assembly instruction at least "min_steps". | |
3389 | Return the number of steps taken. */ | |
3390 | ||
3391 | int | |
3392 | xg_assembly_relax (istack, insn, pc_seg, pc_frag, pc_offset, min_steps, | |
3393 | stretch) | |
3394 | IStack *istack; | |
3395 | TInsn *insn; | |
3396 | segT pc_seg; | |
3397 | fragS *pc_frag; /* If pc_frag == 0, then no pc-relative. */ | |
3398 | offsetT pc_offset; /* Offset in fragment. */ | |
3399 | int min_steps; /* Minimum number of conversion steps. */ | |
3400 | long stretch; /* Number of bytes stretched so far. */ | |
3401 | { | |
3402 | int steps_taken = 0; | |
3403 | ||
3404 | /* assert (has no symbolic operands) | |
3405 | Some of its immeds don't fit. | |
3406 | Try to build a relaxed version. | |
3407 | This may go through a couple of stages | |
3408 | of single instruction transformations before | |
3409 | we get there. */ | |
3410 | ||
3411 | TInsn single_target; | |
3412 | TInsn current_insn; | |
3413 | int lateral_steps = 0; | |
3414 | int istack_size = istack->ninsn; | |
3415 | ||
3416 | if (xg_symbolic_immeds_fit (insn, pc_seg, pc_frag, pc_offset, stretch) | |
3417 | && steps_taken >= min_steps) | |
3418 | { | |
3419 | istack_push (istack, insn); | |
3420 | return steps_taken; | |
3421 | } | |
3422 | tinsn_copy (¤t_insn, insn); | |
3423 | ||
3424 | /* Walk through all of the single instruction expansions. */ | |
3425 | while (xg_is_single_relaxable_insn (¤t_insn)) | |
3426 | { | |
3427 | int error_val = xg_expand_narrow (&single_target, ¤t_insn); | |
3428 | ||
3429 | assert (!error_val); | |
3430 | ||
3431 | if (xg_symbolic_immeds_fit (&single_target, pc_seg, pc_frag, pc_offset, | |
3432 | stretch)) | |
3433 | { | |
3434 | steps_taken++; | |
3435 | if (steps_taken >= min_steps) | |
3436 | { | |
3437 | istack_push (istack, &single_target); | |
3438 | return steps_taken; | |
3439 | } | |
3440 | } | |
3441 | tinsn_copy (¤t_insn, &single_target); | |
3442 | } | |
3443 | ||
3444 | /* Now check for a multi-instruction expansion. */ | |
3445 | while (xg_is_relaxable_insn (¤t_insn, lateral_steps)) | |
3446 | { | |
3447 | if (xg_symbolic_immeds_fit (¤t_insn, pc_seg, pc_frag, pc_offset, | |
3448 | stretch)) | |
3449 | { | |
3450 | if (steps_taken >= min_steps) | |
3451 | { | |
3452 | istack_push (istack, ¤t_insn); | |
3453 | return steps_taken; | |
3454 | } | |
3455 | } | |
3456 | steps_taken++; | |
3457 | if (xg_expand_to_stack (istack, ¤t_insn, lateral_steps)) | |
3458 | { | |
3459 | if (steps_taken >= min_steps) | |
3460 | return steps_taken; | |
3461 | } | |
3462 | lateral_steps++; | |
3463 | istack->ninsn = istack_size; | |
3464 | } | |
3465 | ||
3466 | /* It's not going to work -- use the original. */ | |
3467 | istack_push (istack, insn); | |
3468 | return steps_taken; | |
3469 | } | |
3470 | ||
3471 | ||
3472 | static void | |
3473 | xg_force_frag_space (size) | |
3474 | int size; | |
3475 | { | |
3476 | /* This may have the side effect of creating a new fragment for the | |
3477 | space to go into. I just do not like the name of the "frag" | |
3478 | functions. */ | |
3479 | frag_grow (size); | |
3480 | } | |
3481 | ||
3482 | ||
3483 | void | |
3484 | xg_finish_frag (last_insn, state, max_growth, is_insn) | |
3485 | char *last_insn; | |
3486 | enum xtensa_relax_statesE state; | |
3487 | int max_growth; | |
3488 | bfd_boolean is_insn; | |
3489 | { | |
3490 | /* Finish off this fragment so that it has at LEAST the desired | |
3491 | max_growth. If it doesn't fit in this fragment, close this one | |
3492 | and start a new one. In either case, return a pointer to the | |
3493 | beginning of the growth area. */ | |
3494 | ||
3495 | fragS *old_frag; | |
3496 | xg_force_frag_space (max_growth); | |
3497 | ||
3498 | old_frag = frag_now; | |
3499 | ||
3500 | frag_now->fr_opcode = last_insn; | |
3501 | if (is_insn) | |
3502 | frag_now->tc_frag_data.is_insn = TRUE; | |
3503 | ||
3504 | frag_var (rs_machine_dependent, max_growth, max_growth, | |
3505 | state, frag_now->fr_symbol, frag_now->fr_offset, last_insn); | |
3506 | ||
3507 | /* Just to make sure that we did not split it up. */ | |
3508 | assert (old_frag->fr_next == frag_now); | |
3509 | } | |
3510 | ||
3511 | ||
3512 | static bfd_boolean | |
3513 | is_branch_jmp_to_next (insn, fragP) | |
3514 | TInsn *insn; | |
3515 | fragS *fragP; | |
3516 | { | |
3517 | xtensa_isa isa = xtensa_default_isa; | |
3518 | int i; | |
3519 | int num_ops = xtensa_num_operands (isa, insn->opcode); | |
3520 | int target_op = -1; | |
3521 | symbolS *sym; | |
3522 | fragS *target_frag; | |
3523 | ||
3524 | if (is_loop_opcode (insn->opcode)) | |
3525 | return FALSE; | |
3526 | ||
3527 | for (i = 0; i < num_ops; i++) | |
3528 | { | |
3529 | xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i); | |
3530 | char *kind = xtensa_operand_kind (opnd); | |
3531 | if (strlen (kind) == 1 && *kind == 'l') | |
3532 | { | |
3533 | target_op = i; | |
3534 | break; | |
3535 | } | |
3536 | } | |
3537 | if (target_op == -1) | |
3538 | return FALSE; | |
3539 | ||
3540 | if (insn->ntok <= target_op) | |
3541 | return FALSE; | |
3542 | ||
3543 | if (insn->tok[target_op].X_op != O_symbol) | |
3544 | return FALSE; | |
3545 | ||
3546 | sym = insn->tok[target_op].X_add_symbol; | |
3547 | if (sym == NULL) | |
3548 | return FALSE; | |
3549 | ||
3550 | if (insn->tok[target_op].X_add_number != 0) | |
3551 | return FALSE; | |
3552 | ||
3553 | target_frag = symbol_get_frag (sym); | |
3554 | if (target_frag == NULL) | |
3555 | return FALSE; | |
3556 | ||
3557 | if (is_next_frag_target (fragP->fr_next, target_frag) | |
3558 | && S_GET_VALUE (sym) == target_frag->fr_address) | |
3559 | return TRUE; | |
3560 | ||
3561 | return FALSE; | |
3562 | } | |
3563 | ||
3564 | ||
3565 | static void | |
3566 | xg_add_branch_and_loop_targets (insn) | |
3567 | TInsn *insn; | |
3568 | { | |
3569 | xtensa_isa isa = xtensa_default_isa; | |
3570 | int num_ops = xtensa_num_operands (isa, insn->opcode); | |
3571 | ||
3572 | if (is_loop_opcode (insn->opcode)) | |
3573 | { | |
3574 | int i = 1; | |
3575 | xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i); | |
3576 | char *kind = xtensa_operand_kind (opnd); | |
3577 | if (strlen (kind) == 1 && *kind == 'l') | |
3578 | if (insn->tok[i].X_op == O_symbol) | |
3579 | add_target_symbol (insn->tok[i].X_add_symbol, TRUE); | |
3580 | return; | |
3581 | } | |
3582 | ||
3583 | /* Currently, we do not add branch targets. This is an optimization | |
3584 | for later that tries to align only branch targets, not just any | |
3585 | label in a text section. */ | |
3586 | ||
3587 | if (align_only_targets) | |
3588 | { | |
3589 | int i; | |
3590 | ||
3591 | for (i = 0; i < insn->ntok && i < num_ops; i++) | |
3592 | { | |
3593 | xtensa_operand opnd = xtensa_get_operand (isa, insn->opcode, i); | |
3594 | char *kind = xtensa_operand_kind (opnd); | |
3595 | if (strlen (kind) == 1 && *kind == 'l' | |
3596 | && insn->tok[i].X_op == O_symbol) | |
3597 | add_target_symbol (insn->tok[i].X_add_symbol, FALSE); | |
3598 | } | |
3599 | } | |
3600 | } | |
3601 | ||
3602 | ||
3603 | /* Return the transition rule that matches or NULL if none matches. */ | |
3604 | ||
3605 | bfd_boolean | |
3606 | xg_instruction_matches_rule (insn, rule) | |
3607 | TInsn *insn; | |
3608 | TransitionRule *rule; | |
3609 | { | |
3610 | PreconditionList *condition_l; | |
3611 | ||
3612 | if (rule->opcode != insn->opcode) | |
3613 | return FALSE; | |
3614 | ||
3615 | for (condition_l = rule->conditions; | |
3616 | condition_l != NULL; | |
3617 | condition_l = condition_l->next) | |
3618 | { | |
3619 | expressionS *exp1; | |
3620 | expressionS *exp2; | |
3621 | Precondition *cond = condition_l->precond; | |
3622 | ||
3623 | switch (cond->typ) | |
3624 | { | |
3625 | case OP_CONSTANT: | |
3626 | /* The expression must be the constant. */ | |
3627 | assert (cond->op_num < insn->ntok); | |
3628 | exp1 = &insn->tok[cond->op_num]; | |
3629 | if (!expr_is_const (exp1)) | |
3630 | return FALSE; | |
3631 | switch (cond->cmp) | |
3632 | { | |
3633 | case OP_EQUAL: | |
3634 | if (get_expr_const (exp1) != cond->op_data) | |
3635 | return FALSE; | |
3636 | break; | |
3637 | case OP_NOTEQUAL: | |
3638 | if (get_expr_const (exp1) == cond->op_data) | |
3639 | return FALSE; | |
3640 | break; | |
3641 | } | |
3642 | break; | |
3643 | ||
3644 | case OP_OPERAND: | |
3645 | assert (cond->op_num < insn->ntok); | |
3646 | assert (cond->op_data < insn->ntok); | |
3647 | exp1 = &insn->tok[cond->op_num]; | |
3648 | exp2 = &insn->tok[cond->op_data]; | |
3649 | ||
3650 | switch (cond->cmp) | |
3651 | { | |
3652 | case OP_EQUAL: | |
3653 | if (!expr_is_equal (exp1, exp2)) | |
3654 | return FALSE; | |
3655 | break; | |
3656 | case OP_NOTEQUAL: | |
3657 | if (expr_is_equal (exp1, exp2)) | |
3658 | return FALSE; | |
3659 | break; | |
3660 | } | |
3661 | break; | |
3662 | ||
3663 | case OP_LITERAL: | |
3664 | case OP_LABEL: | |
3665 | default: | |
3666 | return FALSE; | |
3667 | } | |
3668 | } | |
3669 | return TRUE; | |
3670 | } | |
3671 | ||
3672 | ||
3673 | TransitionRule * | |
3674 | xg_instruction_match (insn) | |
3675 | TInsn *insn; | |
3676 | { | |
3677 | TransitionTable *table = xg_build_simplify_table (); | |
3678 | TransitionList *l; | |
3679 | assert (insn->opcode < table->num_opcodes); | |
3680 | ||
3681 | /* Walk through all of the possible transitions. */ | |
3682 | for (l = table->table[insn->opcode]; l != NULL; l = l->next) | |
3683 | { | |
3684 | TransitionRule *rule = l->rule; | |
3685 | if (xg_instruction_matches_rule (insn, rule)) | |
3686 | return rule; | |
3687 | } | |
3688 | return NULL; | |
3689 | } | |
3690 | ||
3691 | ||
3692 | /* Return false if no error. */ | |
3693 | ||
3694 | bfd_boolean | |
3695 | xg_build_token_insn (instr_spec, old_insn, new_insn) | |
3696 | BuildInstr *instr_spec; | |
3697 | TInsn *old_insn; | |
3698 | TInsn *new_insn; | |
3699 | { | |
3700 | int num_ops = 0; | |
3701 | BuildOp *b_op; | |
3702 | ||
3703 | switch (instr_spec->typ) | |
3704 | { | |
3705 | case INSTR_INSTR: | |
3706 | new_insn->insn_type = ITYPE_INSN; | |
3707 | new_insn->opcode = instr_spec->opcode; | |
3708 | new_insn->is_specific_opcode = FALSE; | |
3709 | break; | |
3710 | case INSTR_LITERAL_DEF: | |
3711 | new_insn->insn_type = ITYPE_LITERAL; | |
3712 | new_insn->opcode = XTENSA_UNDEFINED; | |
3713 | new_insn->is_specific_opcode = FALSE; | |
3714 | break; | |
3715 | case INSTR_LABEL_DEF: | |
3716 | as_bad (_("INSTR_LABEL_DEF not supported yet")); | |
3717 | break; | |
3718 | } | |
3719 | ||
3720 | for (b_op = instr_spec->ops; b_op != NULL; b_op = b_op->next) | |
3721 | { | |
3722 | expressionS *exp; | |
3723 | const expressionS *src_exp; | |
3724 | ||
3725 | num_ops++; | |
3726 | switch (b_op->typ) | |
3727 | { | |
3728 | case OP_CONSTANT: | |
3729 | /* The expression must be the constant. */ | |
3730 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3731 | exp = &new_insn->tok[b_op->op_num]; | |
3732 | set_expr_const (exp, b_op->op_data); | |
3733 | break; | |
3734 | ||
3735 | case OP_OPERAND: | |
3736 | assert (b_op->op_num < MAX_INSN_ARGS); | |
3737 | assert (b_op->op_data < (unsigned) old_insn->ntok); | |
3738 | src_exp = &old_insn->tok[b_op->op_data]; | |
3739 | exp = &new_insn->tok[b_op->op_num]; | |
3740 | copy_expr (exp, src_exp); | |
3741 | break; | |
3742 | ||
3743 | case OP_LITERAL: | |
3744 | case OP_LABEL: | |
3745 | as_bad (_("can't handle generation of literal/labels yet")); | |
3746 | assert (0); | |
3747 | ||
3748 | default: | |
3749 | as_bad (_("can't handle undefined OP TYPE")); | |
3750 | assert (0); | |
3751 | } | |
3752 | } | |
3753 | ||
3754 | new_insn->ntok = num_ops; | |
3755 | return FALSE; | |
3756 | } | |
3757 | ||
3758 | ||
3759 | /* Return true if it was simplified. */ | |
3760 | ||
3761 | bfd_boolean | |
3762 | xg_simplify_insn (old_insn, new_insn) | |
3763 | TInsn *old_insn; | |
3764 | TInsn *new_insn; | |
3765 | { | |
3766 | TransitionRule *rule = xg_instruction_match (old_insn); | |
3767 | BuildInstr *insn_spec; | |
3768 | if (rule == NULL) | |
3769 | return FALSE; | |
3770 | ||
3771 | insn_spec = rule->to_instr; | |
3772 | /* There should only be one. */ | |
3773 | assert (insn_spec != NULL); | |
3774 | assert (insn_spec->next == NULL); | |
3775 | if (insn_spec->next != NULL) | |
3776 | return FALSE; | |
3777 | ||
3778 | xg_build_token_insn (insn_spec, old_insn, new_insn); | |
3779 | ||
3780 | return TRUE; | |
3781 | } | |
3782 | ||
3783 | ||
3784 | /* xg_expand_assembly_insn: (1) Simplify the instruction, i.e., l32i -> | |
3785 | l32i.n. (2) Check the number of operands. (3) Place the instruction | |
3786 | tokens into the stack or if we can relax it at assembly time, place | |
3787 | multiple instructions/literals onto the stack. Return false if no | |
3788 | error. */ | |
3789 | ||
3790 | static bfd_boolean | |
3791 | xg_expand_assembly_insn (istack, orig_insn) | |
3792 | IStack *istack; | |
3793 | TInsn *orig_insn; | |
3794 | { | |
3795 | int noperands; | |
3796 | TInsn new_insn; | |
3797 | memset (&new_insn, 0, sizeof (TInsn)); | |
3798 | ||
3799 | /* On return, we will be using the "use_tokens" with "use_ntok". | |
3800 | This will reduce things like addi to addi.n. */ | |
3801 | if (code_density_available () && !orig_insn->is_specific_opcode) | |
3802 | { | |
3803 | if (xg_simplify_insn (orig_insn, &new_insn)) | |
3804 | orig_insn = &new_insn; | |
3805 | } | |
3806 | ||
3807 | noperands = xtensa_num_operands (xtensa_default_isa, orig_insn->opcode); | |
3808 | if (orig_insn->ntok < noperands) | |
3809 | { | |
3810 | as_bad (_("found %d operands for '%s': Expected %d"), | |
3811 | orig_insn->ntok, | |
3812 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3813 | noperands); | |
3814 | return TRUE; | |
3815 | } | |
3816 | if (orig_insn->ntok > noperands) | |
3817 | as_warn (_("found too many (%d) operands for '%s': Expected %d"), | |
3818 | orig_insn->ntok, | |
3819 | xtensa_opcode_name (xtensa_default_isa, orig_insn->opcode), | |
3820 | noperands); | |
3821 | ||
3822 | /* If there are not enough operands, we will assert above. If there | |
3823 | are too many, just cut out the extras here. */ | |
3824 | ||
3825 | orig_insn->ntok = noperands; | |
3826 | ||
3827 | /* Cases: | |
3828 | ||
3829 | Instructions with all constant immeds: | |
3830 | Assemble them and relax the instruction if possible. | |
3831 | Give error if not possible; no fixup needed. | |
3832 | ||
3833 | Instructions with symbolic immeds: | |
3834 | Assemble them with a Fix up (that may cause instruction expansion). | |
3835 | Also close out the fragment if the fixup may cause instruction expansion. | |
3836 | ||
3837 | There are some other special cases where we need alignment. | |
3838 | 1) before certain instructions with required alignment (OPCODE_ALIGN) | |
3839 | 2) before labels that have jumps (LABEL_ALIGN) | |
3840 | 3) after call instructions (RETURN_ALIGN) | |
3841 | Multiple of these may be possible on the same fragment. | |
3842 | If so, make sure to satisfy the required alignment. | |
3843 | Then try to get the desired alignment. */ | |
3844 | ||
3845 | if (tinsn_has_invalid_symbolic_operands (orig_insn)) | |
3846 | return TRUE; | |
3847 | ||
3848 | if (orig_insn->is_specific_opcode || !can_relax ()) | |
3849 | { | |
3850 | istack_push (istack, orig_insn); | |
3851 | return FALSE; | |
3852 | } | |
3853 | ||
3854 | if (tinsn_has_symbolic_operands (orig_insn)) | |
3855 | { | |
3856 | if (tinsn_has_complex_operands (orig_insn)) | |
3857 | xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0); | |
3858 | else | |
3859 | istack_push (istack, orig_insn); | |
3860 | } | |
3861 | else | |
3862 | { | |
3863 | if (xg_immeds_fit (orig_insn)) | |
3864 | istack_push (istack, orig_insn); | |
3865 | else | |
3866 | xg_assembly_relax (istack, orig_insn, 0, 0, 0, 0, 0); | |
3867 | } | |
3868 | ||
3869 | #if 0 | |
3870 | for (i = 0; i < istack->ninsn; i++) | |
3871 | { | |
3872 | if (xg_simplify_insn (&new_insn, &istack->insn[i])) | |
3873 | istack->insn[i] = new_insn; | |
3874 | } | |
3875 | #endif | |
3876 | ||
3877 | return FALSE; | |
3878 | } | |
3879 | ||
3880 | ||
3881 | /* Currently all literals that are generated here are 32-bit L32R targets. */ | |
3882 | ||
3883 | symbolS * | |
3884 | xg_assemble_literal (insn) | |
3885 | /* const */ TInsn *insn; | |
3886 | { | |
3887 | emit_state state; | |
3888 | symbolS *lit_sym = NULL; | |
3889 | ||
3890 | /* size = 4 for L32R. It could easily be larger when we move to | |
3891 | larger constants. Add a parameter later. */ | |
3892 | offsetT litsize = 4; | |
3893 | offsetT litalign = 2; /* 2^2 = 4 */ | |
3894 | expressionS saved_loc; | |
3895 | set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ()); | |
3896 | ||
3897 | assert (insn->insn_type == ITYPE_LITERAL); | |
3898 | assert (insn->ntok = 1); /* must be only one token here */ | |
3899 | ||
3900 | xtensa_switch_to_literal_fragment (&state); | |
3901 | ||
3902 | /* Force a 4-byte align here. Note that this opens a new frag, so all | |
3903 | literals done with this function have a frag to themselves. That's | |
3904 | important for the way text section literals work. */ | |
3905 | frag_align (litalign, 0, 0); | |
3906 | ||
3907 | emit_expr (&insn->tok[0], litsize); | |
3908 | ||
3909 | assert (frag_now->tc_frag_data.literal_frag == NULL); | |
3910 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
3911 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
3912 | lit_sym = frag_now->fr_symbol; | |
3913 | frag_now->tc_frag_data.is_literal = TRUE; | |
3914 | ||
3915 | /* Go back. */ | |
3916 | xtensa_restore_emit_state (&state); | |
3917 | return lit_sym; | |
3918 | } | |
3919 | ||
3920 | ||
3921 | static void | |
3922 | xg_assemble_literal_space (size) | |
3923 | /* const */ int size; | |
3924 | { | |
3925 | emit_state state; | |
3926 | /* We might have to do something about this alignment. It only | |
3927 | takes effect if something is placed here. */ | |
3928 | offsetT litalign = 2; /* 2^2 = 4 */ | |
3929 | fragS *lit_saved_frag; | |
3930 | ||
3931 | expressionS saved_loc; | |
3932 | ||
3933 | assert (size % 4 == 0); | |
3934 | set_expr_symbol_offset (&saved_loc, frag_now->fr_symbol, frag_now_fix ()); | |
3935 | ||
3936 | xtensa_switch_to_literal_fragment (&state); | |
3937 | ||
3938 | /* Force a 4-byte align here. */ | |
3939 | frag_align (litalign, 0, 0); | |
3940 | ||
3941 | xg_force_frag_space (size); | |
3942 | ||
3943 | lit_saved_frag = frag_now; | |
3944 | frag_now->tc_frag_data.literal_frag = get_literal_pool_location (now_seg); | |
3945 | frag_now->tc_frag_data.is_literal = TRUE; | |
3946 | frag_now->fr_symbol = xtensa_create_literal_symbol (now_seg, frag_now); | |
3947 | xg_finish_frag (0, RELAX_LITERAL, size, FALSE); | |
3948 | ||
3949 | /* Go back. */ | |
3950 | xtensa_restore_emit_state (&state); | |
3951 | frag_now->tc_frag_data.literal_frag = lit_saved_frag; | |
3952 | } | |
3953 | ||
3954 | ||
3955 | symbolS * | |
3956 | xtensa_create_literal_symbol (sec, frag) | |
3957 | segT sec; | |
3958 | fragS *frag; | |
3959 | { | |
3960 | static int lit_num = 0; | |
3961 | static char name[256]; | |
3962 | symbolS *fragSym; | |
3963 | ||
3964 | sprintf (name, ".L_lit_sym%d", lit_num); | |
3965 | fragSym = xtensa_create_local_symbol (stdoutput, name, sec, 0, frag_now); | |
3966 | ||
3967 | frag->tc_frag_data.is_literal = TRUE; | |
3968 | lit_num++; | |
3969 | return fragSym; | |
3970 | } | |
3971 | ||
3972 | ||
3973 | /* Create a local symbol. If it is in a linkonce section, we have to | |
3974 | be careful to make sure that if it is used in a relocation that the | |
3975 | symbol will be in the output file. */ | |
3976 | ||
3977 | symbolS * | |
3978 | xtensa_create_local_symbol (abfd, name, sec, value, frag) | |
3979 | bfd *abfd; | |
3980 | const char *name; | |
3981 | segT sec; | |
3982 | valueT value; | |
3983 | fragS *frag; | |
3984 | { | |
3985 | symbolS *symbolP; | |
3986 | ||
3987 | if (get_is_linkonce_section (abfd, sec)) | |
3988 | { | |
3989 | symbolP = symbol_new (name, sec, value, frag); | |
3990 | S_CLEAR_EXTERNAL (symbolP); | |
3991 | /* symbolP->local = 1; */ | |
3992 | } | |
3993 | else | |
3994 | symbolP = symbol_new (name, sec, value, frag); | |
3995 | ||
3996 | return symbolP; | |
3997 | } | |
3998 | ||
3999 | ||
4000 | /* Return true if the section flags are marked linkonce | |
4001 | or the name is .gnu.linkonce*. */ | |
4002 | ||
4003 | bfd_boolean | |
4004 | get_is_linkonce_section (abfd, sec) | |
4005 | bfd *abfd ATTRIBUTE_UNUSED; | |
4006 | segT sec; | |
4007 | { | |
4008 | flagword flags, link_once_flags; | |
4009 | ||
4010 | flags = bfd_get_section_flags (abfd, sec); | |
4011 | link_once_flags = (flags & SEC_LINK_ONCE); | |
4012 | ||
4013 | /* Flags might not be set yet. */ | |
4014 | if (!link_once_flags) | |
4015 | { | |
4016 | static size_t len = sizeof ".gnu.linkonce.t."; | |
4017 | ||
4018 | if (strncmp (segment_name (sec), ".gnu.linkonce.t.", len - 1) == 0) | |
4019 | link_once_flags = SEC_LINK_ONCE; | |
4020 | } | |
4021 | return (link_once_flags != 0); | |
4022 | } | |
4023 | ||
4024 | ||
4025 | /* Emit an instruction to the current fragment. If record_fix is true, | |
4026 | then this instruction will not change and we can go ahead and record | |
4027 | the fixup. If record_fix is false, then the instruction may change | |
4028 | and we are going to close out this fragment. Go ahead and set the | |
4029 | fr_symbol and fr_offset instead of adding a fixup. */ | |
4030 | ||
4031 | static bfd_boolean | |
4032 | xg_emit_insn (t_insn, record_fix) | |
4033 | TInsn *t_insn; | |
4034 | bfd_boolean record_fix; | |
4035 | { | |
4036 | bfd_boolean ok = TRUE; | |
4037 | xtensa_isa isa = xtensa_default_isa; | |
4038 | xtensa_opcode opcode = t_insn->opcode; | |
4039 | bfd_boolean has_fixup = FALSE; | |
4040 | int noperands; | |
4041 | int i, byte_count; | |
4042 | fragS *oldfrag; | |
4043 | size_t old_size; | |
4044 | char *f; | |
4045 | static xtensa_insnbuf insnbuf = NULL; | |
4046 | ||
4047 | /* Use a static pointer to the insn buffer so we don't have to call | |
4048 | malloc each time through. */ | |
4049 | if (!insnbuf) | |
4050 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4051 | ||
4052 | has_fixup = tinsn_to_insnbuf (t_insn, insnbuf); | |
4053 | ||
4054 | noperands = xtensa_num_operands (isa, opcode); | |
4055 | assert (noperands == t_insn->ntok); | |
4056 | ||
4057 | byte_count = xtensa_insn_length (isa, opcode); | |
4058 | oldfrag = frag_now; | |
4059 | /* This should NEVER cause us to jump into a new frag; | |
4060 | we've already reserved space. */ | |
4061 | old_size = frag_now_fix (); | |
4062 | f = frag_more (byte_count); | |
4063 | assert (oldfrag == frag_now); | |
4064 | ||
4065 | /* This needs to generate a record that lists the parts that are | |
4066 | instructions. */ | |
4067 | if (!frag_now->tc_frag_data.is_insn) | |
4068 | { | |
4069 | /* If we are at the beginning of a fragment, switch this | |
4070 | fragment to an instruction fragment. */ | |
4071 | if (now_seg != absolute_section && old_size != 0) | |
4072 | as_warn (_("instruction fragment may contain data")); | |
4073 | frag_now->tc_frag_data.is_insn = TRUE; | |
4074 | } | |
4075 | ||
4076 | xtensa_insnbuf_to_chars (isa, insnbuf, f); | |
4077 | ||
e0001a05 NC |
4078 | /* Now spit out the opcode fixup.... */ |
4079 | if (!has_fixup) | |
4080 | return !ok; | |
4081 | ||
4082 | for (i = 0; i < noperands; ++i) | |
4083 | { | |
4084 | expressionS *expr = &t_insn->tok[i]; | |
4085 | switch (expr->X_op) | |
4086 | { | |
4087 | case O_symbol: | |
4088 | if (get_relaxable_immed (opcode) == i) | |
4089 | { | |
4090 | if (record_fix) | |
4091 | { | |
4092 | if (!xg_add_opcode_fix (opcode, i, expr, frag_now, | |
4093 | f - frag_now->fr_literal)) | |
4094 | ok = FALSE; | |
4095 | } | |
4096 | else | |
4097 | { | |
4098 | /* Write it to the fr_offset, fr_symbol. */ | |
4099 | frag_now->fr_symbol = expr->X_add_symbol; | |
4100 | frag_now->fr_offset = expr->X_add_number; | |
4101 | } | |
4102 | } | |
4103 | else | |
4104 | { | |
4105 | as_bad (_("invalid operand %d on '%s'"), | |
4106 | i, xtensa_opcode_name (isa, opcode)); | |
4107 | ok = FALSE; | |
4108 | } | |
4109 | break; | |
4110 | ||
4111 | case O_constant: | |
4112 | case O_register: | |
4113 | break; | |
4114 | ||
4115 | default: | |
4116 | as_bad (_("invalid expression for operand %d on '%s'"), | |
4117 | i, xtensa_opcode_name (isa, opcode)); | |
4118 | ok = FALSE; | |
4119 | break; | |
4120 | } | |
4121 | } | |
4122 | ||
4123 | return !ok; | |
4124 | } | |
4125 | ||
4126 | ||
4127 | static bfd_boolean | |
4128 | xg_emit_insn_to_buf (t_insn, buf, fragP, offset, build_fix) | |
4129 | TInsn *t_insn; | |
4130 | char *buf; | |
4131 | fragS *fragP; | |
4132 | offsetT offset; | |
4133 | bfd_boolean build_fix; | |
4134 | { | |
4135 | static xtensa_insnbuf insnbuf = NULL; | |
4136 | bfd_boolean has_symbolic_immed = FALSE; | |
4137 | bfd_boolean ok = TRUE; | |
4138 | if (!insnbuf) | |
4139 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4140 | ||
4141 | has_symbolic_immed = tinsn_to_insnbuf (t_insn, insnbuf); | |
4142 | if (has_symbolic_immed && build_fix) | |
4143 | { | |
4144 | /* Add a fixup. */ | |
4145 | int opnum = get_relaxable_immed (t_insn->opcode); | |
4146 | expressionS *exp = &t_insn->tok[opnum]; | |
4147 | ||
4148 | if (!xg_add_opcode_fix (t_insn->opcode, | |
4149 | opnum, exp, fragP, offset)) | |
4150 | ok = FALSE; | |
4151 | } | |
4152 | fragP->tc_frag_data.is_insn = TRUE; | |
4153 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf); | |
4154 | return ok; | |
4155 | } | |
4156 | ||
4157 | ||
4158 | /* Put in a fixup record based on the opcode. | |
4159 | Return true on success. */ | |
4160 | ||
4161 | bfd_boolean | |
4162 | xg_add_opcode_fix (opcode, opnum, expr, fragP, offset) | |
4163 | xtensa_opcode opcode; | |
4164 | int opnum; | |
4165 | expressionS *expr; | |
4166 | fragS *fragP; | |
4167 | offsetT offset; | |
4168 | { | |
4169 | bfd_reloc_code_real_type reloc; | |
4170 | reloc_howto_type *howto; | |
4171 | int insn_length; | |
4172 | fixS *the_fix; | |
4173 | ||
4174 | reloc = opnum_to_reloc (opnum); | |
4175 | if (reloc == BFD_RELOC_NONE) | |
4176 | { | |
4177 | as_bad (_("invalid relocation operand %i on '%s'"), | |
4178 | opnum, xtensa_opcode_name (xtensa_default_isa, opcode)); | |
4179 | return FALSE; | |
4180 | } | |
4181 | ||
4182 | howto = bfd_reloc_type_lookup (stdoutput, reloc); | |
4183 | ||
4184 | if (!howto) | |
4185 | { | |
4186 | as_bad (_("undefined symbol for opcode \"%s\"."), | |
4187 | xtensa_opcode_name (xtensa_default_isa, opcode)); | |
4188 | return FALSE; | |
4189 | } | |
4190 | ||
4191 | insn_length = xtensa_insn_length (xtensa_default_isa, opcode); | |
4192 | the_fix = fix_new_exp (fragP, offset, insn_length, expr, | |
4193 | howto->pc_relative, reloc); | |
4194 | ||
4195 | if (expr->X_add_symbol && | |
4196 | (S_IS_EXTERNAL (expr->X_add_symbol) || S_IS_WEAK (expr->X_add_symbol))) | |
4197 | the_fix->fx_plt = TRUE; | |
4198 | ||
4199 | return TRUE; | |
4200 | } | |
4201 | ||
4202 | ||
4203 | void | |
4204 | xg_resolve_literals (insn, lit_sym) | |
4205 | TInsn *insn; | |
4206 | symbolS *lit_sym; | |
4207 | { | |
4208 | symbolS *sym = get_special_literal_symbol (); | |
4209 | int i; | |
4210 | if (lit_sym == 0) | |
4211 | return; | |
4212 | assert (insn->insn_type == ITYPE_INSN); | |
4213 | for (i = 0; i < insn->ntok; i++) | |
4214 | if (insn->tok[i].X_add_symbol == sym) | |
4215 | insn->tok[i].X_add_symbol = lit_sym; | |
4216 | ||
4217 | } | |
4218 | ||
4219 | ||
4220 | void | |
4221 | xg_resolve_labels (insn, label_sym) | |
4222 | TInsn *insn; | |
4223 | symbolS *label_sym; | |
4224 | { | |
4225 | symbolS *sym = get_special_label_symbol (); | |
4226 | int i; | |
4227 | /* assert(!insn->is_literal); */ | |
4228 | for (i = 0; i < insn->ntok; i++) | |
4229 | if (insn->tok[i].X_add_symbol == sym) | |
4230 | insn->tok[i].X_add_symbol = label_sym; | |
4231 | ||
4232 | } | |
4233 | ||
4234 | ||
4235 | static void | |
4236 | xg_assemble_tokens (insn) | |
4237 | /*const */ TInsn *insn; | |
4238 | { | |
4239 | /* By the time we get here, there's not too much left to do. | |
4240 | 1) Check our assumptions. | |
4241 | 2) Check if the current instruction is "narrow". | |
4242 | If so, then finish the frag, create another one. | |
4243 | We could also go back to change some previous | |
4244 | "narrow" frags into no-change ones if we have more than | |
4245 | MAX_NARROW_ALIGNMENT of them without alignment restrictions | |
4246 | between them. | |
4247 | ||
4248 | Cases: | |
4249 | 1) It has constant operands and doesn't fit. | |
4250 | Go ahead and assemble it so it will fail. | |
4251 | 2) It has constant operands that fit. | |
4252 | If narrow and !is_specific_opcode, | |
4253 | assemble it and put in a relocation | |
4254 | else | |
4255 | assemble it. | |
4256 | 3) It has a symbolic immediate operand | |
4257 | a) Find the worst-case relaxation required | |
4258 | b) Find the worst-case literal pool space required. | |
4259 | Insert appropriate alignment & space in the literal. | |
4260 | Assemble it. | |
4261 | Add the relocation. */ | |
4262 | ||
4263 | assert (insn->insn_type == ITYPE_INSN); | |
4264 | ||
4265 | if (!tinsn_has_symbolic_operands (insn)) | |
4266 | { | |
4267 | if (xg_is_narrow_insn (insn) && !insn->is_specific_opcode) | |
4268 | { | |
4269 | /* assemble it but add max required space */ | |
4270 | int max_size = xg_get_max_narrow_insn_size (insn->opcode); | |
4271 | int min_size = xg_get_insn_size (insn); | |
4272 | char *last_insn; | |
4273 | assert (max_size == 3); | |
4274 | /* make sure we have enough space to widen it */ | |
4275 | xg_force_frag_space (max_size); | |
4276 | /* Output the instruction. It may cause an error if some | |
4277 | operands do not fit. */ | |
4278 | last_insn = frag_more (0); | |
4279 | if (xg_emit_insn (insn, TRUE)) | |
4280 | as_warn (_("instruction with constant operands does not fit")); | |
4281 | xg_finish_frag (last_insn, RELAX_NARROW, max_size - min_size, TRUE); | |
4282 | } | |
4283 | else | |
4284 | { | |
4285 | /* Assemble it. No relocation needed. */ | |
4286 | int max_size = xg_get_insn_size (insn); | |
4287 | xg_force_frag_space (max_size); | |
4288 | if (xg_emit_insn (insn, FALSE)) | |
4289 | as_warn (_("instruction with constant operands does not " | |
4290 | "fit without widening")); | |
4291 | /* frag_more (max_size); */ | |
4292 | ||
4293 | /* Special case for jx. If the jx is the next to last | |
4294 | instruction in a loop, we will add a NOP after it. This | |
4295 | avoids a hardware issue that could occur if the jx jumped | |
4296 | to the next instruction. */ | |
4297 | if (software_avoid_b_j_loop_end | |
4298 | && is_jx_opcode (insn->opcode)) | |
4299 | { | |
4300 | maybe_has_b_j_loop_end = TRUE; | |
4301 | /* add 2 of these */ | |
4302 | frag_now->tc_frag_data.is_insn = TRUE; | |
4303 | frag_var (rs_machine_dependent, 4, 4, | |
4304 | RELAX_ADD_NOP_IF_PRE_LOOP_END, | |
4305 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
4306 | } | |
4307 | } | |
4308 | } | |
4309 | else | |
4310 | { | |
4311 | /* Need to assemble it with space for the relocation. */ | |
4312 | if (!insn->is_specific_opcode) | |
4313 | { | |
4314 | /* Assemble it but add max required space. */ | |
4315 | char *last_insn; | |
4316 | int min_size = xg_get_insn_size (insn); | |
4317 | int max_size = xg_get_max_insn_widen_size (insn->opcode); | |
4318 | int max_literal_size = | |
4319 | xg_get_max_insn_widen_literal_size (insn->opcode); | |
4320 | ||
4321 | #if 0 | |
4322 | symbolS *immed_sym = xg_get_insn_immed_symbol (insn); | |
4323 | set_frag_segment (frag_now, now_seg); | |
4324 | #endif /* 0 */ | |
4325 | ||
4326 | /* Make sure we have enough space to widen the instruction. | |
4327 | This may open a new fragment. */ | |
4328 | xg_force_frag_space (max_size); | |
4329 | if (max_literal_size != 0) | |
4330 | xg_assemble_literal_space (max_literal_size); | |
4331 | ||
4332 | /* Output the instruction. It may cause an error if some | |
4333 | operands do not fit. Emit the incomplete instruction. */ | |
4334 | last_insn = frag_more (0); | |
4335 | xg_emit_insn (insn, FALSE); | |
4336 | ||
4337 | xg_finish_frag (last_insn, RELAX_IMMED, max_size - min_size, TRUE); | |
4338 | ||
4339 | /* Special cases for loops: | |
4340 | close_loop_end should be inserted AFTER short_loop. | |
4341 | Make sure that CLOSE loops are processed BEFORE short_loops | |
4342 | when converting them. */ | |
4343 | ||
4344 | /* "short_loop": add a NOP if the loop is < 4 bytes. */ | |
4345 | if (software_avoid_short_loop | |
4346 | && is_loop_opcode (insn->opcode)) | |
4347 | { | |
4348 | maybe_has_short_loop = TRUE; | |
4349 | frag_now->tc_frag_data.is_insn = TRUE; | |
4350 | frag_var (rs_machine_dependent, 4, 4, | |
4351 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
4352 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
4353 | frag_now->tc_frag_data.is_insn = TRUE; | |
4354 | frag_var (rs_machine_dependent, 4, 4, | |
4355 | RELAX_ADD_NOP_IF_SHORT_LOOP, | |
4356 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
4357 | } | |
4358 | ||
4359 | /* "close_loop_end": Add up to 12 bytes of NOPs to keep a | |
4360 | loop at least 12 bytes away from another loop's loop | |
4361 | end. */ | |
4362 | if (software_avoid_close_loop_end | |
4363 | && is_loop_opcode (insn->opcode)) | |
4364 | { | |
4365 | maybe_has_close_loop_end = TRUE; | |
4366 | frag_now->tc_frag_data.is_insn = TRUE; | |
4367 | frag_var (rs_machine_dependent, 12, 12, | |
4368 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END, | |
4369 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
4370 | } | |
4371 | } | |
4372 | else | |
4373 | { | |
4374 | /* Assemble it in place. No expansion will be required, | |
4375 | but we'll still need a relocation record. */ | |
4376 | int max_size = xg_get_insn_size (insn); | |
4377 | xg_force_frag_space (max_size); | |
4378 | if (xg_emit_insn (insn, TRUE)) | |
4379 | as_warn (_("instruction's constant operands do not fit")); | |
4380 | } | |
4381 | } | |
4382 | } | |
4383 | ||
4384 | ||
4385 | /* Return true if the instruction can write to the specified | |
4386 | integer register. */ | |
4387 | ||
4388 | static bfd_boolean | |
4389 | is_register_writer (insn, regset, regnum) | |
4390 | const TInsn *insn; | |
4391 | const char *regset; | |
4392 | int regnum; | |
4393 | { | |
4394 | int i; | |
4395 | int num_ops; | |
4396 | xtensa_isa isa = xtensa_default_isa; | |
4397 | ||
4398 | num_ops = xtensa_num_operands (isa, insn->opcode); | |
4399 | ||
4400 | for (i = 0; i < num_ops; i++) | |
4401 | { | |
4402 | xtensa_operand operand = xtensa_get_operand (isa, insn->opcode, i); | |
4403 | char inout = xtensa_operand_inout (operand); | |
4404 | ||
4405 | if (inout == '>' || inout == '=') | |
4406 | { | |
4407 | if (strcmp (xtensa_operand_kind (operand), regset) == 0) | |
4408 | { | |
4409 | if ((insn->tok[i].X_op == O_register) | |
4410 | && (insn->tok[i].X_add_number == regnum)) | |
4411 | return TRUE; | |
4412 | } | |
4413 | } | |
4414 | } | |
4415 | return FALSE; | |
4416 | } | |
4417 | ||
4418 | ||
4419 | static bfd_boolean | |
4420 | is_bad_loopend_opcode (tinsn) | |
4421 | const TInsn * tinsn; | |
4422 | { | |
4423 | xtensa_opcode opcode = tinsn->opcode; | |
4424 | ||
4425 | if (opcode == XTENSA_UNDEFINED) | |
4426 | return FALSE; | |
4427 | ||
4428 | if (opcode == xtensa_call0_opcode | |
4429 | || opcode == xtensa_callx0_opcode | |
4430 | || opcode == xtensa_call4_opcode | |
4431 | || opcode == xtensa_callx4_opcode | |
4432 | || opcode == xtensa_call8_opcode | |
4433 | || opcode == xtensa_callx8_opcode | |
4434 | || opcode == xtensa_call12_opcode | |
4435 | || opcode == xtensa_callx12_opcode | |
4436 | || opcode == xtensa_isync_opcode | |
4437 | || opcode == xtensa_ret_opcode | |
4438 | || opcode == xtensa_ret_n_opcode | |
4439 | || opcode == xtensa_retw_opcode | |
4440 | || opcode == xtensa_retw_n_opcode | |
4441 | || opcode == xtensa_waiti_opcode) | |
4442 | return TRUE; | |
4443 | ||
4444 | /* An RSR of LCOUNT is illegal as the last opcode in a loop. */ | |
4445 | if (opcode == xtensa_rsr_opcode | |
4446 | && tinsn->ntok >= 2 | |
4447 | && tinsn->tok[1].X_op == O_constant | |
4448 | && tinsn->tok[1].X_add_number == 2) | |
4449 | return TRUE; | |
4450 | ||
4451 | return FALSE; | |
4452 | } | |
4453 | ||
4454 | ||
4455 | /* Labels that begin with ".Ln" or ".LM" are unaligned. | |
4456 | This allows the debugger to add unaligned labels. | |
4457 | Also, the assembler generates stabs labels that need | |
4458 | not be aligned: FAKE_LABEL_NAME . {"F", "L", "endfunc"}. */ | |
4459 | ||
4460 | bfd_boolean | |
4461 | is_unaligned_label (sym) | |
4462 | symbolS *sym; | |
4463 | { | |
4464 | const char *name = S_GET_NAME (sym); | |
4465 | static size_t fake_size = 0; | |
4466 | ||
4467 | if (name | |
4468 | && name[0] == '.' | |
4469 | && name[1] == 'L' && (name[2] == 'n' || name[2] == 'M')) | |
4470 | return TRUE; | |
4471 | ||
4472 | /* FAKE_LABEL_NAME followed by "F", "L" or "endfunc" */ | |
4473 | if (fake_size == 0) | |
4474 | fake_size = strlen (FAKE_LABEL_NAME); | |
4475 | ||
4476 | if (name | |
4477 | && strncmp (FAKE_LABEL_NAME, name, fake_size) == 0 | |
4478 | && (name[fake_size] == 'F' | |
4479 | || name[fake_size] == 'L' | |
4480 | || (name[fake_size] == 'e' | |
4481 | && strncmp ("endfunc", name+fake_size, 7) == 0))) | |
4482 | return TRUE; | |
4483 | ||
4484 | return FALSE; | |
4485 | } | |
4486 | ||
4487 | ||
4488 | fragS * | |
4489 | next_non_empty_frag (fragP) | |
4490 | const fragS *fragP; | |
4491 | { | |
4492 | fragS *next_fragP = fragP->fr_next; | |
4493 | ||
4494 | /* Sometimes an empty will end up here due storage allocation issues. | |
4495 | So we have to skip until we find something legit. */ | |
4496 | while (next_fragP && next_fragP->fr_fix == 0) | |
4497 | next_fragP = next_fragP->fr_next; | |
4498 | ||
4499 | if (next_fragP == NULL || next_fragP->fr_fix == 0) | |
4500 | return NULL; | |
4501 | ||
4502 | return next_fragP; | |
4503 | } | |
4504 | ||
4505 | ||
4506 | xtensa_opcode | |
4507 | next_frag_opcode (fragP) | |
4508 | const fragS * fragP; | |
4509 | { | |
4510 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
4511 | static xtensa_insnbuf insnbuf = NULL; | |
4512 | xtensa_isa isa = xtensa_default_isa; | |
4513 | ||
4514 | if (!insnbuf) | |
4515 | insnbuf = xtensa_insnbuf_alloc (isa); | |
4516 | ||
4517 | if (next_fragP == NULL) | |
4518 | return XTENSA_UNDEFINED; | |
4519 | ||
4520 | xtensa_insnbuf_from_chars (isa, insnbuf, next_fragP->fr_literal); | |
4521 | return xtensa_decode_insn (isa, insnbuf); | |
4522 | } | |
4523 | ||
4524 | ||
4525 | /* Return true if the target frag is one of the next non-empty frags. */ | |
4526 | ||
4527 | bfd_boolean | |
4528 | is_next_frag_target (fragP, target) | |
4529 | const fragS *fragP; | |
4530 | const fragS *target; | |
4531 | { | |
4532 | if (fragP == NULL) | |
4533 | return FALSE; | |
4534 | ||
4535 | for (; fragP; fragP = fragP->fr_next) | |
4536 | { | |
4537 | if (fragP == target) | |
4538 | return TRUE; | |
4539 | if (fragP->fr_fix != 0) | |
4540 | return FALSE; | |
4541 | if (fragP->fr_type == rs_fill && fragP->fr_offset != 0) | |
4542 | return FALSE; | |
4543 | if ((fragP->fr_type == rs_align || fragP->fr_type == rs_align_code) | |
4544 | && ((fragP->fr_address % (1 << fragP->fr_offset)) != 0)) | |
4545 | return FALSE; | |
4546 | if (fragP->fr_type == rs_space) | |
4547 | return FALSE; | |
4548 | } | |
4549 | return FALSE; | |
4550 | } | |
4551 | ||
4552 | ||
4553 | /* If the next legit fragment is an end-of-loop marker, | |
4554 | switch its state so it will instantiate a NOP. */ | |
4555 | ||
4556 | static void | |
4557 | update_next_frag_nop_state (fragP) | |
4558 | fragS *fragP; | |
4559 | { | |
4560 | fragS *next_fragP = fragP->fr_next; | |
4561 | ||
4562 | while (next_fragP && next_fragP->fr_fix == 0) | |
4563 | { | |
4564 | if (next_fragP->fr_type == rs_machine_dependent | |
4565 | && next_fragP->fr_subtype == RELAX_LOOP_END) | |
4566 | { | |
4567 | next_fragP->fr_subtype = RELAX_LOOP_END_ADD_NOP; | |
4568 | return; | |
4569 | } | |
4570 | next_fragP = next_fragP->fr_next; | |
4571 | } | |
4572 | } | |
4573 | ||
4574 | ||
4575 | static bfd_boolean | |
4576 | next_frag_is_branch_target (fragP) | |
4577 | const fragS *fragP; | |
4578 | { | |
4579 | /* Sometimes an empty will end up here due storage allocation issues, | |
4580 | so we have to skip until we find something legit. */ | |
4581 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4582 | { | |
4583 | if (fragP->tc_frag_data.is_branch_target) | |
4584 | return TRUE; | |
4585 | if (fragP->fr_fix != 0) | |
4586 | break; | |
4587 | } | |
4588 | return FALSE; | |
4589 | } | |
4590 | ||
4591 | ||
4592 | static bfd_boolean | |
4593 | next_frag_is_loop_target (fragP) | |
4594 | const fragS *fragP; | |
4595 | { | |
4596 | /* Sometimes an empty will end up here due storage allocation issues. | |
4597 | So we have to skip until we find something legit. */ | |
4598 | for (fragP = fragP->fr_next; fragP; fragP = fragP->fr_next) | |
4599 | { | |
4600 | if (fragP->tc_frag_data.is_loop_target) | |
4601 | return TRUE; | |
4602 | if (fragP->fr_fix != 0) | |
4603 | break; | |
4604 | } | |
4605 | return FALSE; | |
4606 | } | |
4607 | ||
4608 | ||
4609 | static addressT | |
4610 | next_frag_pre_opcode_bytes (fragp) | |
4611 | const fragS *fragp; | |
4612 | { | |
4613 | const fragS *next_fragp = fragp->fr_next; | |
4614 | ||
4615 | xtensa_opcode next_opcode = next_frag_opcode (fragp); | |
4616 | if (!is_loop_opcode (next_opcode)) | |
4617 | return 0; | |
4618 | ||
4619 | /* Sometimes an empty will end up here due storage allocation issues. | |
4620 | So we have to skip until we find something legit. */ | |
4621 | while (next_fragp->fr_fix == 0) | |
4622 | next_fragp = next_fragp->fr_next; | |
4623 | ||
4624 | if (next_fragp->fr_type != rs_machine_dependent) | |
4625 | return 0; | |
4626 | ||
4627 | /* There is some implicit knowledge encoded in here. | |
4628 | The LOOP instructions that are NOT RELAX_IMMED have | |
4629 | been relaxed. */ | |
4630 | if (next_fragp->fr_subtype > RELAX_IMMED) | |
4631 | return get_expanded_loop_offset (next_opcode); | |
4632 | ||
4633 | return 0; | |
4634 | } | |
4635 | ||
4636 | ||
4637 | /* Mark a location where we can later insert literal frags. Update | |
4638 | the section's literal_pool_loc, so subsequent literals can be | |
4639 | placed nearest to their use. */ | |
4640 | ||
4641 | static void | |
4642 | xtensa_mark_literal_pool_location (move_labels) | |
4643 | bfd_boolean move_labels; | |
4644 | { | |
4645 | /* Any labels pointing to the current location need | |
4646 | to be adjusted to after the literal pool. */ | |
4647 | emit_state s; | |
4648 | fragS *label_target = frag_now; | |
4649 | fragS *pool_location; | |
4650 | offsetT label_offset = frag_now_fix (); | |
4651 | ||
4652 | frag_align (2, 0, 0); | |
4653 | ||
4654 | /* We stash info in the fr_var of these frags | |
4655 | so we can later move the literal's fixes into this | |
4656 | frchain's fix list. We can use fr_var because fr_var's | |
4657 | interpretation depends solely on the fr_type and subtype. */ | |
4658 | pool_location = frag_now; | |
4659 | frag_variant (rs_machine_dependent, 0, (int) frchain_now, | |
4660 | RELAX_LITERAL_POOL_BEGIN, NULL, 0, NULL); | |
4661 | frag_variant (rs_machine_dependent, 0, (int) now_seg, | |
4662 | RELAX_LITERAL_POOL_END, NULL, 0, NULL); | |
4663 | ||
4664 | /* Now put a frag into the literal pool that points to this location. */ | |
4665 | set_literal_pool_location (now_seg, pool_location); | |
4666 | xtensa_switch_to_literal_fragment (&s); | |
4667 | ||
4668 | /* Close whatever frag is there. */ | |
4669 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
4670 | frag_now->tc_frag_data.literal_frag = pool_location; | |
4671 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
4672 | xtensa_restore_emit_state (&s); | |
4673 | if (move_labels) | |
4674 | xtensa_move_labels (label_target, label_offset, frag_now, 0); | |
4675 | } | |
4676 | ||
4677 | ||
4678 | static void | |
4679 | xtensa_move_labels (old_frag, old_offset, new_frag, new_offset) | |
4680 | fragS *old_frag; | |
4681 | valueT old_offset; | |
4682 | fragS *new_frag ATTRIBUTE_UNUSED; | |
4683 | valueT new_offset; | |
4684 | { | |
4685 | symbolS *old_sym; | |
4686 | ||
4687 | /* Repeat until there are no more.... */ | |
4688 | for (old_sym = xtensa_find_label (old_frag, old_offset, TRUE); | |
4689 | old_sym; | |
4690 | old_sym = xtensa_find_label (old_frag, old_offset, TRUE)) | |
4691 | { | |
4692 | S_SET_VALUE (old_sym, (valueT) new_offset); | |
4693 | symbol_set_frag (old_sym, frag_now); | |
4694 | } | |
4695 | } | |
4696 | ||
4697 | ||
4698 | /* Assemble a NOP of the requested size in the buffer. User must have | |
4699 | allocated "buf" with at least "size" bytes. */ | |
4700 | ||
4701 | void | |
4702 | assemble_nop (size, buf) | |
4703 | size_t size; | |
4704 | char *buf; | |
4705 | { | |
4706 | static xtensa_insnbuf insnbuf = NULL; | |
4707 | TInsn t_insn; | |
4708 | if (!insnbuf) | |
4709 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
4710 | ||
4711 | tinsn_init (&t_insn); | |
4712 | switch (size) | |
4713 | { | |
4714 | case 2: | |
4715 | t_insn.opcode = xtensa_nop_n_opcode; | |
4716 | t_insn.ntok = 0; | |
4717 | if (t_insn.opcode == XTENSA_UNDEFINED) | |
4718 | as_fatal (_("opcode 'NOP.N' unavailable in this configuration")); | |
4719 | tinsn_to_insnbuf (&t_insn, insnbuf); | |
4720 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf); | |
4721 | break; | |
4722 | ||
4723 | case 3: | |
4724 | t_insn.opcode = xtensa_or_opcode; | |
4725 | assert (t_insn.opcode != XTENSA_UNDEFINED); | |
4726 | if (t_insn.opcode == XTENSA_UNDEFINED) | |
4727 | as_fatal (_("opcode 'OR' unavailable in this configuration")); | |
4728 | set_expr_const (&t_insn.tok[0], 1); | |
4729 | set_expr_const (&t_insn.tok[1], 1); | |
4730 | set_expr_const (&t_insn.tok[2], 1); | |
4731 | t_insn.ntok = 3; | |
4732 | tinsn_to_insnbuf (&t_insn, insnbuf); | |
4733 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, buf); | |
4734 | break; | |
4735 | ||
4736 | default: | |
4737 | as_fatal (_("invalid %d-byte NOP requested"), size); | |
4738 | } | |
4739 | } | |
4740 | ||
4741 | ||
4742 | /* Return the number of bytes for the offset of the expanded loop | |
4743 | instruction. This should be incorporated into the relaxation | |
4744 | specification but is hard-coded here. This is used to auto-align | |
4745 | the loop instruction. It is invalid to call this function if the | |
4746 | configuration does not have loops or if the opcode is not a loop | |
4747 | opcode. */ | |
4748 | ||
4749 | static addressT | |
4750 | get_expanded_loop_offset (opcode) | |
4751 | xtensa_opcode opcode; | |
4752 | { | |
4753 | /* This is the OFFSET of the loop instruction in the expanded loop. | |
4754 | This MUST correspond directly to the specification of the loop | |
4755 | expansion. It will be validated on fragment conversion. */ | |
4756 | if (opcode == XTENSA_UNDEFINED) | |
4757 | as_fatal (_("get_expanded_loop_offset: undefined opcode")); | |
4758 | if (opcode == xtensa_loop_opcode) | |
4759 | return 0; | |
4760 | if (opcode == xtensa_loopnez_opcode) | |
4761 | return 3; | |
4762 | if (opcode == xtensa_loopgtz_opcode) | |
4763 | return 6; | |
4764 | as_fatal (_("get_expanded_loop_offset: invalid opcode")); | |
4765 | return 0; | |
4766 | } | |
4767 | ||
4768 | ||
4769 | fragS * | |
4770 | get_literal_pool_location (seg) | |
4771 | segT seg; | |
4772 | { | |
4773 | return seg_info (seg)->tc_segment_info_data.literal_pool_loc; | |
4774 | } | |
4775 | ||
4776 | ||
4777 | static void | |
4778 | set_literal_pool_location (seg, literal_pool_loc) | |
4779 | segT seg; | |
4780 | fragS *literal_pool_loc; | |
4781 | { | |
4782 | seg_info (seg)->tc_segment_info_data.literal_pool_loc = literal_pool_loc; | |
4783 | } | |
4784 | ||
4785 | \f | |
4786 | /* External Functions and Other GAS Hooks. */ | |
4787 | ||
4788 | const char * | |
4789 | xtensa_target_format () | |
4790 | { | |
4791 | return (target_big_endian ? "elf32-xtensa-be" : "elf32-xtensa-le"); | |
4792 | } | |
4793 | ||
4794 | ||
4795 | void | |
4796 | xtensa_file_arch_init (abfd) | |
4797 | bfd *abfd; | |
4798 | { | |
4799 | bfd_set_private_flags (abfd, 0x100 | 0x200); | |
4800 | } | |
4801 | ||
4802 | ||
4803 | void | |
4804 | md_number_to_chars (buf, val, n) | |
4805 | char *buf; | |
4806 | valueT val; | |
4807 | int n; | |
4808 | { | |
4809 | if (target_big_endian) | |
4810 | number_to_chars_bigendian (buf, val, n); | |
4811 | else | |
4812 | number_to_chars_littleendian (buf, val, n); | |
4813 | } | |
4814 | ||
4815 | ||
4816 | /* This function is called once, at assembler startup time. It should | |
4817 | set up all the tables, etc. that the MD part of the assembler will | |
4818 | need. */ | |
4819 | ||
4820 | void | |
4821 | md_begin () | |
4822 | { | |
4823 | segT current_section = now_seg; | |
4824 | int current_subsec = now_subseg; | |
4825 | xtensa_isa isa; | |
4826 | ||
4827 | #if STATIC_LIBISA | |
4828 | isa = xtensa_isa_init (); | |
4829 | #else | |
4830 | /* ISA was already initialized by xtensa_init(). */ | |
4831 | isa = xtensa_default_isa; | |
4832 | #endif | |
4833 | ||
4834 | /* Set up the .literal, .fini.literal and .init.literal sections. */ | |
4835 | memset (&default_lit_sections, 0, sizeof (default_lit_sections)); | |
4836 | default_lit_sections.init_lit_seg_name = INIT_LITERAL_SECTION_NAME; | |
4837 | default_lit_sections.fini_lit_seg_name = FINI_LITERAL_SECTION_NAME; | |
4838 | default_lit_sections.lit_seg_name = LITERAL_SECTION_NAME; | |
4839 | ||
4840 | subseg_set (current_section, current_subsec); | |
4841 | ||
4842 | xtensa_addi_opcode = xtensa_opcode_lookup (isa, "addi"); | |
4843 | xtensa_addmi_opcode = xtensa_opcode_lookup (isa, "addmi"); | |
4844 | xtensa_call0_opcode = xtensa_opcode_lookup (isa, "call0"); | |
4845 | xtensa_call4_opcode = xtensa_opcode_lookup (isa, "call4"); | |
4846 | xtensa_call8_opcode = xtensa_opcode_lookup (isa, "call8"); | |
4847 | xtensa_call12_opcode = xtensa_opcode_lookup (isa, "call12"); | |
4848 | xtensa_callx0_opcode = xtensa_opcode_lookup (isa, "callx0"); | |
4849 | xtensa_callx4_opcode = xtensa_opcode_lookup (isa, "callx4"); | |
4850 | xtensa_callx8_opcode = xtensa_opcode_lookup (isa, "callx8"); | |
4851 | xtensa_callx12_opcode = xtensa_opcode_lookup (isa, "callx12"); | |
4852 | xtensa_entry_opcode = xtensa_opcode_lookup (isa, "entry"); | |
4853 | xtensa_isync_opcode = xtensa_opcode_lookup (isa, "isync"); | |
4854 | xtensa_j_opcode = xtensa_opcode_lookup (isa, "j"); | |
4855 | xtensa_jx_opcode = xtensa_opcode_lookup (isa, "jx"); | |
4856 | xtensa_loop_opcode = xtensa_opcode_lookup (isa, "loop"); | |
4857 | xtensa_loopnez_opcode = xtensa_opcode_lookup (isa, "loopnez"); | |
4858 | xtensa_loopgtz_opcode = xtensa_opcode_lookup (isa, "loopgtz"); | |
4859 | xtensa_nop_n_opcode = xtensa_opcode_lookup (isa, "nop.n"); | |
4860 | xtensa_or_opcode = xtensa_opcode_lookup (isa, "or"); | |
4861 | xtensa_ret_opcode = xtensa_opcode_lookup (isa, "ret"); | |
4862 | xtensa_ret_n_opcode = xtensa_opcode_lookup (isa, "ret.n"); | |
4863 | xtensa_retw_opcode = xtensa_opcode_lookup (isa, "retw"); | |
4864 | xtensa_retw_n_opcode = xtensa_opcode_lookup (isa, "retw.n"); | |
4865 | xtensa_rsr_opcode = xtensa_opcode_lookup (isa, "rsr"); | |
4866 | xtensa_waiti_opcode = xtensa_opcode_lookup (isa, "waiti"); | |
4867 | } | |
4868 | ||
4869 | ||
4870 | /* tc_frob_label hook */ | |
4871 | ||
4872 | void | |
4873 | xtensa_frob_label (sym) | |
4874 | symbolS *sym; | |
4875 | { | |
4876 | xtensa_define_label (sym); | |
4877 | if (is_loop_target_label (sym) | |
4878 | && (get_last_insn_flags (now_seg, now_subseg) | |
4879 | & FLAG_IS_BAD_LOOPEND) != 0) | |
4880 | as_bad (_("invalid last instruction for a zero-overhead loop")); | |
4881 | ||
4882 | /* No target aligning in the absolute section. */ | |
4883 | if (now_seg != absolute_section && align_targets | |
4884 | && !is_unaligned_label (sym)) | |
4885 | { | |
4886 | fragS *old_frag = frag_now; | |
4887 | offsetT old_offset = frag_now_fix (); | |
4888 | if (frag_now->tc_frag_data.is_literal) | |
4889 | return; | |
4890 | /* frag_now->tc_frag_data.is_insn = TRUE; */ | |
4891 | frag_var (rs_machine_dependent, 4, 4, | |
4892 | RELAX_DESIRE_ALIGN_IF_TARGET, | |
4893 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
4894 | xtensa_move_labels (old_frag, old_offset, frag_now, 0); | |
4895 | /* Once we know whether or not the label is a branch target | |
4896 | We will suppress some of these alignments. */ | |
4897 | } | |
4898 | } | |
4899 | ||
4900 | ||
4901 | /* md_flush_pending_output hook */ | |
4902 | ||
4903 | void | |
4904 | xtensa_flush_pending_output () | |
4905 | { | |
4906 | /* If there is a non-zero instruction fragment, close it. */ | |
4907 | if (frag_now_fix () != 0 && frag_now->tc_frag_data.is_insn) | |
4908 | { | |
4909 | frag_wane (frag_now); | |
4910 | frag_new (0); | |
4911 | } | |
4912 | frag_now->tc_frag_data.is_insn = FALSE; | |
4913 | } | |
4914 | ||
4915 | ||
4916 | void | |
4917 | md_assemble (str) | |
4918 | char *str; | |
4919 | { | |
4920 | xtensa_isa isa = xtensa_default_isa; | |
4921 | char *opname; | |
4922 | unsigned opnamelen; | |
4923 | bfd_boolean has_underbar = FALSE; | |
4924 | char *arg_strings[MAX_INSN_ARGS]; | |
4925 | int num_args; | |
4926 | IStack istack; /* Put instructions into here. */ | |
4927 | TInsn orig_insn; /* Original instruction from the input. */ | |
4928 | int i; | |
4929 | symbolS *lit_sym = NULL; | |
4930 | ||
4931 | if (frag_now->tc_frag_data.is_literal) | |
4932 | { | |
4933 | static bfd_boolean reported = 0; | |
4934 | if (reported < 4) | |
4935 | as_bad (_("cannot assemble '%s' into a literal fragment"), str); | |
4936 | if (reported == 3) | |
4937 | as_bad (_("...")); | |
4938 | reported++; | |
4939 | return; | |
4940 | } | |
4941 | ||
4942 | istack_init (&istack); | |
4943 | tinsn_init (&orig_insn); | |
4944 | ||
4945 | /* Split off the opcode. */ | |
4946 | opnamelen = strspn (str, "abcdefghijklmnopqrstuvwxyz_/0123456789."); | |
4947 | opname = xmalloc (opnamelen + 1); | |
4948 | memcpy (opname, str, opnamelen); | |
4949 | opname[opnamelen] = '\0'; | |
4950 | ||
4951 | num_args = tokenize_arguments (arg_strings, str + opnamelen); | |
4952 | if (num_args == -1) | |
4953 | { | |
4954 | as_bad (_("syntax error")); | |
4955 | return; | |
4956 | } | |
4957 | ||
4958 | if (xg_translate_idioms (&opname, &num_args, arg_strings)) | |
4959 | return; | |
4960 | ||
4961 | /* Check for an underbar prefix. */ | |
4962 | if (*opname == '_') | |
4963 | { | |
4964 | has_underbar = TRUE; | |
4965 | opname += 1; | |
4966 | } | |
4967 | ||
4968 | orig_insn.insn_type = ITYPE_INSN; | |
4969 | orig_insn.ntok = 0; | |
4970 | orig_insn.is_specific_opcode = (has_underbar || !use_generics ()); | |
4971 | specific_opcode = orig_insn.is_specific_opcode; | |
4972 | ||
4973 | orig_insn.opcode = xtensa_opcode_lookup (isa, opname); | |
4974 | if (orig_insn.opcode == XTENSA_UNDEFINED) | |
4975 | { | |
4976 | as_bad (_("unknown opcode %s"), opname); | |
4977 | return; | |
4978 | } | |
4979 | ||
4980 | if (frag_now_fix () != 0 && !frag_now->tc_frag_data.is_insn) | |
4981 | { | |
4982 | frag_wane (frag_now); | |
4983 | frag_new (0); | |
4984 | } | |
4985 | ||
4986 | if (software_a0_b_retw_interlock) | |
4987 | { | |
4988 | if ((get_last_insn_flags (now_seg, now_subseg) & FLAG_IS_A0_WRITER) != 0 | |
4989 | && is_conditional_branch_opcode (orig_insn.opcode)) | |
4990 | { | |
4991 | has_a0_b_retw = TRUE; | |
4992 | ||
4993 | /* Mark this fragment with the special RELAX_ADD_NOP_IF_A0_B_RETW. | |
4994 | After the first assembly pass we will check all of them and | |
4995 | add a nop if needed. */ | |
4996 | frag_now->tc_frag_data.is_insn = TRUE; | |
4997 | frag_var (rs_machine_dependent, 4, 4, | |
4998 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
4999 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
5000 | frag_now->tc_frag_data.is_insn = TRUE; | |
5001 | frag_var (rs_machine_dependent, 4, 4, | |
5002 | RELAX_ADD_NOP_IF_A0_B_RETW, | |
5003 | frag_now->fr_symbol, frag_now->fr_offset, NULL); | |
5004 | } | |
5005 | } | |
5006 | ||
5007 | /* Special case: The call instructions should be marked "specific opcode" | |
5008 | to keep them from expanding. */ | |
5009 | if (!use_longcalls () && is_direct_call_opcode (orig_insn.opcode)) | |
5010 | orig_insn.is_specific_opcode = TRUE; | |
5011 | ||
5012 | /* Parse the arguments. */ | |
5013 | if (parse_arguments (&orig_insn, num_args, arg_strings)) | |
5014 | { | |
5015 | as_bad (_("syntax error")); | |
5016 | return; | |
5017 | } | |
5018 | ||
5019 | /* Free the opcode and argument strings, now that they've been parsed. */ | |
5020 | free (has_underbar ? opname - 1 : opname); | |
5021 | opname = 0; | |
5022 | while (num_args-- > 0) | |
5023 | free (arg_strings[num_args]); | |
5024 | ||
5025 | /* Check for the right number and type of arguments. */ | |
5026 | if (tinsn_check_arguments (&orig_insn)) | |
5027 | return; | |
5028 | ||
5029 | /* See if the instruction implies an aligned section. */ | |
5030 | if (is_entry_opcode (orig_insn.opcode) || is_loop_opcode (orig_insn.opcode)) | |
5031 | record_alignment (now_seg, 2); | |
5032 | ||
5033 | xg_add_branch_and_loop_targets (&orig_insn); | |
5034 | ||
5035 | /* Special cases for instructions that force an alignment... */ | |
5036 | if (!orig_insn.is_specific_opcode && is_loop_opcode (orig_insn.opcode)) | |
5037 | { | |
5038 | fragS *old_frag = frag_now; | |
5039 | offsetT old_offset = frag_now_fix (); | |
5040 | symbolS *old_sym = NULL; | |
5041 | size_t max_fill; | |
5042 | ||
5043 | frag_now->tc_frag_data.is_insn = TRUE; | |
5044 | frag_now->tc_frag_data.is_no_density = !code_density_available (); | |
5045 | max_fill = get_text_align_max_fill_size | |
5046 | (get_text_align_power (XTENSA_FETCH_WIDTH), | |
5047 | TRUE, frag_now->tc_frag_data.is_no_density); | |
5048 | frag_var (rs_machine_dependent, max_fill, max_fill, | |
5049 | RELAX_ALIGN_NEXT_OPCODE, frag_now->fr_symbol, | |
5050 | frag_now->fr_offset, NULL); | |
5051 | ||
5052 | /* Repeat until there are no more. */ | |
5053 | while ((old_sym = xtensa_find_label (old_frag, old_offset, FALSE))) | |
5054 | { | |
5055 | S_SET_VALUE (old_sym, (valueT) 0); | |
5056 | symbol_set_frag (old_sym, frag_now); | |
5057 | } | |
5058 | } | |
5059 | ||
5060 | /* Special count for "entry" instruction. */ | |
5061 | if (is_entry_opcode (orig_insn.opcode)) | |
5062 | { | |
5063 | /* Check that the second opcode (#1) is >= 16. */ | |
5064 | if (orig_insn.ntok >= 2) | |
5065 | { | |
5066 | expressionS *exp = &orig_insn.tok[1]; | |
5067 | switch (exp->X_op) | |
5068 | { | |
5069 | case O_constant: | |
5070 | if (exp->X_add_number < 16) | |
5071 | as_warn (_("entry instruction with stack decrement < 16")); | |
5072 | break; | |
5073 | ||
5074 | default: | |
5075 | as_warn (_("entry instruction with non-constant decrement")); | |
5076 | } | |
5077 | } | |
5078 | } | |
5079 | ||
5080 | if (!orig_insn.is_specific_opcode && is_entry_opcode (orig_insn.opcode)) | |
5081 | { | |
5082 | xtensa_mark_literal_pool_location (TRUE); | |
5083 | ||
5084 | /* Automatically align ENTRY instructions. */ | |
5085 | frag_align (2, 0, 0); | |
5086 | } | |
5087 | ||
5088 | if (software_a0_b_retw_interlock) | |
5089 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_A0_WRITER, | |
5090 | is_register_writer (&orig_insn, "a", 0)); | |
5091 | ||
5092 | set_last_insn_flags (now_seg, now_subseg, FLAG_IS_BAD_LOOPEND, | |
5093 | is_bad_loopend_opcode (&orig_insn)); | |
5094 | ||
5095 | /* Finish it off: | |
5096 | assemble_tokens (opcode, tok, ntok); | |
5097 | expand the tokens from the orig_insn into the | |
5098 | stack of instructions that will not expand | |
5099 | unless required at relaxation time. */ | |
5100 | if (xg_expand_assembly_insn (&istack, &orig_insn)) | |
5101 | return; | |
5102 | ||
5103 | for (i = 0; i < istack.ninsn; i++) | |
5104 | { | |
5105 | TInsn *insn = &istack.insn[i]; | |
5106 | if (insn->insn_type == ITYPE_LITERAL) | |
5107 | { | |
5108 | assert (lit_sym == NULL); | |
5109 | lit_sym = xg_assemble_literal (insn); | |
5110 | } | |
5111 | else | |
5112 | { | |
5113 | if (lit_sym) | |
5114 | xg_resolve_literals (insn, lit_sym); | |
5115 | xg_assemble_tokens (insn); | |
5116 | } | |
5117 | } | |
5118 | ||
5119 | /* Now, if the original opcode was a call... */ | |
5120 | if (align_targets && is_call_opcode (orig_insn.opcode)) | |
5121 | { | |
5122 | frag_now->tc_frag_data.is_insn = TRUE; | |
5123 | frag_var (rs_machine_dependent, 4, 4, | |
5124 | RELAX_DESIRE_ALIGN, | |
5125 | frag_now->fr_symbol, | |
5126 | frag_now->fr_offset, | |
5127 | NULL); | |
5128 | } | |
5129 | } | |
5130 | ||
5131 | ||
5132 | /* TC_CONS_FIX_NEW hook: Check for "@PLT" suffix on symbol references. | |
5133 | If found, use an XTENSA_PLT reloc for 4-byte values. Otherwise, this | |
5134 | is the same as the standard code in read.c. */ | |
5135 | ||
5136 | void | |
5137 | xtensa_cons_fix_new (frag, where, size, exp) | |
5138 | fragS *frag; | |
5139 | int where; | |
5140 | int size; | |
5141 | expressionS *exp; | |
5142 | { | |
5143 | bfd_reloc_code_real_type r; | |
5144 | bfd_boolean plt = FALSE; | |
5145 | ||
5146 | if (*input_line_pointer == '@') | |
5147 | { | |
5148 | if (!strncmp (input_line_pointer, PLT_SUFFIX, strlen (PLT_SUFFIX) - 1) | |
5149 | && !strncmp (input_line_pointer, plt_suffix, | |
5150 | strlen (plt_suffix) - 1)) | |
5151 | { | |
5152 | as_bad (_("undefined @ suffix '%s', expected '%s'"), | |
5153 | input_line_pointer, plt_suffix); | |
5154 | ignore_rest_of_line (); | |
5155 | return; | |
5156 | } | |
5157 | ||
5158 | input_line_pointer += strlen (plt_suffix); | |
5159 | plt = TRUE; | |
5160 | } | |
5161 | ||
5162 | switch (size) | |
5163 | { | |
5164 | case 1: | |
5165 | r = BFD_RELOC_8; | |
5166 | break; | |
5167 | case 2: | |
5168 | r = BFD_RELOC_16; | |
5169 | break; | |
5170 | case 4: | |
5171 | r = plt ? BFD_RELOC_XTENSA_PLT : BFD_RELOC_32; | |
5172 | break; | |
5173 | case 8: | |
5174 | r = BFD_RELOC_64; | |
5175 | break; | |
5176 | default: | |
5177 | as_bad (_("unsupported BFD relocation size %u"), size); | |
5178 | r = BFD_RELOC_32; | |
5179 | break; | |
5180 | } | |
5181 | fix_new_exp (frag, where, size, exp, 0, r); | |
5182 | } | |
5183 | ||
5184 | ||
5185 | /* TC_FRAG_INIT hook */ | |
5186 | ||
5187 | void | |
5188 | xtensa_frag_init (frag) | |
5189 | fragS *frag; | |
5190 | { | |
5191 | frag->tc_frag_data.is_no_density = !code_density_available (); | |
5192 | } | |
5193 | ||
5194 | ||
5195 | symbolS * | |
5196 | md_undefined_symbol (name) | |
5197 | char *name ATTRIBUTE_UNUSED; | |
5198 | { | |
5199 | return NULL; | |
5200 | } | |
5201 | ||
5202 | ||
5203 | /* Round up a section size to the appropriate boundary. */ | |
5204 | ||
5205 | valueT | |
5206 | md_section_align (segment, size) | |
5207 | segT segment ATTRIBUTE_UNUSED; | |
5208 | valueT size; | |
5209 | { | |
5210 | return size; /* Byte alignment is fine. */ | |
5211 | } | |
5212 | ||
5213 | ||
5214 | long | |
5215 | md_pcrel_from (fixP) | |
5216 | fixS *fixP; | |
5217 | { | |
5218 | char *insn_p; | |
5219 | static xtensa_insnbuf insnbuf = NULL; | |
5220 | int opnum; | |
5221 | xtensa_operand operand; | |
5222 | xtensa_opcode opcode; | |
5223 | xtensa_isa isa = xtensa_default_isa; | |
5224 | valueT addr = fixP->fx_where + fixP->fx_frag->fr_address; | |
5225 | ||
5226 | if (fixP->fx_done) | |
5227 | return addr; | |
5228 | ||
5229 | if (fixP->fx_r_type == BFD_RELOC_XTENSA_ASM_EXPAND) | |
5230 | return addr; | |
5231 | ||
5232 | if (!insnbuf) | |
5233 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5234 | ||
5235 | insn_p = &fixP->fx_frag->fr_literal[fixP->fx_where]; | |
5236 | xtensa_insnbuf_from_chars (isa, insnbuf, insn_p); | |
5237 | opcode = xtensa_decode_insn (isa, insnbuf); | |
5238 | ||
5239 | opnum = reloc_to_opnum (fixP->fx_r_type); | |
5240 | ||
5241 | if (opnum < 0) | |
5242 | as_fatal (_("invalid operand relocation for '%s' instruction"), | |
5243 | xtensa_opcode_name (isa, opcode)); | |
5244 | if (opnum >= xtensa_num_operands (isa, opcode)) | |
5245 | as_fatal (_("invalid relocation for operand %d in '%s' instruction"), | |
5246 | opnum, xtensa_opcode_name (isa, opcode)); | |
5247 | operand = xtensa_get_operand (isa, opcode, opnum); | |
5248 | if (!operand) | |
5249 | { | |
5250 | as_warn_where (fixP->fx_file, | |
5251 | fixP->fx_line, | |
5252 | _("invalid relocation type %d for %s instruction"), | |
5253 | fixP->fx_r_type, xtensa_opcode_name (isa, opcode)); | |
5254 | return addr; | |
5255 | } | |
5256 | ||
5257 | if (!operand_is_pcrel_label (operand)) | |
5258 | { | |
5259 | as_bad_where (fixP->fx_file, | |
5260 | fixP->fx_line, | |
5261 | _("invalid relocation for operand %d of '%s'"), | |
5262 | opnum, xtensa_opcode_name (isa, opcode)); | |
5263 | return addr; | |
5264 | } | |
5265 | if (!xtensa_operand_isPCRelative (operand)) | |
5266 | { | |
5267 | as_warn_where (fixP->fx_file, | |
5268 | fixP->fx_line, | |
5269 | _("non-PCREL relocation operand %d for '%s': %s"), | |
5270 | opnum, xtensa_opcode_name (isa, opcode), | |
5271 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
5272 | return addr; | |
5273 | } | |
5274 | ||
5275 | return 0 - xtensa_operand_do_reloc (operand, 0, addr); | |
5276 | } | |
5277 | ||
5278 | ||
5279 | /* tc_symbol_new_hook */ | |
5280 | ||
5281 | void | |
5282 | xtensa_symbol_new_hook (symbolP) | |
5283 | symbolS *symbolP; | |
5284 | { | |
5285 | symbolP->sy_tc.plt = 0; | |
5286 | } | |
5287 | ||
5288 | ||
5289 | /* tc_fix_adjustable hook */ | |
5290 | ||
5291 | bfd_boolean | |
5292 | xtensa_fix_adjustable (fixP) | |
5293 | fixS *fixP; | |
5294 | { | |
5295 | /* We need the symbol name for the VTABLE entries. */ | |
5296 | if (fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT | |
5297 | || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) | |
5298 | return 0; | |
5299 | ||
5300 | return 1; | |
5301 | } | |
5302 | ||
5303 | ||
5304 | void | |
5305 | md_apply_fix3 (fixP, valP, seg) | |
5306 | fixS *fixP; | |
5307 | valueT *valP; | |
5308 | segT seg ATTRIBUTE_UNUSED; | |
5309 | { | |
5310 | if (fixP->fx_pcrel == 0 && fixP->fx_addsy == 0) | |
5311 | { | |
5312 | /* This happens when the relocation is within the current section. | |
5313 | It seems this implies a PCREL operation. We'll catch it and error | |
5314 | if not. */ | |
5315 | ||
5316 | char *const fixpos = fixP->fx_frag->fr_literal + fixP->fx_where; | |
5317 | static xtensa_insnbuf insnbuf = NULL; | |
5318 | xtensa_opcode opcode; | |
5319 | xtensa_isa isa; | |
5320 | ||
5321 | switch (fixP->fx_r_type) | |
5322 | { | |
5323 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
5324 | fixP->fx_done = 1; | |
5325 | break; | |
5326 | ||
5327 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
5328 | as_bad (_("unhandled local relocation fix %s"), | |
5329 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
5330 | break; | |
5331 | ||
5332 | case BFD_RELOC_32: | |
5333 | case BFD_RELOC_16: | |
5334 | case BFD_RELOC_8: | |
5335 | /* The only one we support that isn't an instruction field. */ | |
5336 | md_number_to_chars (fixpos, *valP, fixP->fx_size); | |
5337 | fixP->fx_done = 1; | |
5338 | break; | |
5339 | ||
5340 | case BFD_RELOC_XTENSA_OP0: | |
5341 | case BFD_RELOC_XTENSA_OP1: | |
5342 | case BFD_RELOC_XTENSA_OP2: | |
5343 | isa = xtensa_default_isa; | |
5344 | if (!insnbuf) | |
5345 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5346 | ||
5347 | xtensa_insnbuf_from_chars (isa, insnbuf, fixpos); | |
5348 | opcode = xtensa_decode_insn (isa, insnbuf); | |
5349 | if (opcode == XTENSA_UNDEFINED) | |
5350 | as_fatal (_("undecodable FIX")); | |
5351 | ||
5352 | xtensa_insnbuf_set_immediate_field (opcode, insnbuf, *valP, | |
5353 | fixP->fx_file, fixP->fx_line); | |
5354 | ||
5355 | fixP->fx_frag->tc_frag_data.is_insn = TRUE; | |
5356 | xtensa_insnbuf_to_chars (isa, insnbuf, fixpos); | |
5357 | fixP->fx_done = 1; | |
5358 | break; | |
5359 | ||
5360 | case BFD_RELOC_VTABLE_INHERIT: | |
5361 | case BFD_RELOC_VTABLE_ENTRY: | |
5362 | fixP->fx_done = 0; | |
5363 | break; | |
5364 | ||
5365 | default: | |
5366 | as_bad (_("unhandled local relocation fix %s"), | |
5367 | bfd_get_reloc_code_name (fixP->fx_r_type)); | |
5368 | } | |
5369 | } | |
5370 | } | |
5371 | ||
5372 | ||
5373 | char * | |
5374 | md_atof (type, litP, sizeP) | |
5375 | int type; | |
5376 | char *litP; | |
5377 | int *sizeP; | |
5378 | { | |
5379 | int prec; | |
5380 | LITTLENUM_TYPE words[4]; | |
5381 | char *t; | |
5382 | int i; | |
5383 | ||
5384 | switch (type) | |
5385 | { | |
5386 | case 'f': | |
5387 | prec = 2; | |
5388 | break; | |
5389 | ||
5390 | case 'd': | |
5391 | prec = 4; | |
5392 | break; | |
5393 | ||
5394 | default: | |
5395 | *sizeP = 0; | |
5396 | return "bad call to md_atof"; | |
5397 | } | |
5398 | ||
5399 | t = atof_ieee (input_line_pointer, type, words); | |
5400 | if (t) | |
5401 | input_line_pointer = t; | |
5402 | ||
5403 | *sizeP = prec * 2; | |
5404 | ||
5405 | for (i = prec - 1; i >= 0; i--) | |
5406 | { | |
5407 | int idx = i; | |
5408 | if (target_big_endian) | |
5409 | idx = (prec - 1 - i); | |
5410 | ||
5411 | md_number_to_chars (litP, (valueT) words[idx], 2); | |
5412 | litP += 2; | |
5413 | } | |
5414 | ||
5415 | return NULL; | |
5416 | } | |
5417 | ||
5418 | ||
5419 | int | |
5420 | md_estimate_size_before_relax (fragP, seg) | |
5421 | fragS *fragP; | |
5422 | segT seg ATTRIBUTE_UNUSED; | |
5423 | { | |
5424 | return fragP->tc_frag_data.text_expansion; | |
5425 | } | |
5426 | ||
5427 | ||
5428 | /* Translate internal representation of relocation info to BFD target | |
5429 | format. */ | |
5430 | ||
5431 | arelent * | |
5432 | tc_gen_reloc (section, fixp) | |
5433 | asection *section ATTRIBUTE_UNUSED; | |
5434 | fixS *fixp; | |
5435 | { | |
5436 | arelent *reloc; | |
5437 | ||
5438 | reloc = (arelent *) xmalloc (sizeof (arelent)); | |
5439 | reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *)); | |
5440 | *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); | |
5441 | reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; | |
5442 | ||
5443 | /* Make sure none of our internal relocations make it this far. | |
5444 | They'd better have been fully resolved by this point. */ | |
5445 | assert ((int) fixp->fx_r_type > 0); | |
5446 | ||
5447 | reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type); | |
5448 | if (reloc->howto == NULL) | |
5449 | { | |
5450 | as_bad_where (fixp->fx_file, fixp->fx_line, | |
5451 | _("cannot represent `%s' relocation in object file"), | |
5452 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
5453 | return NULL; | |
5454 | } | |
5455 | ||
5456 | if (!fixp->fx_pcrel != !reloc->howto->pc_relative) | |
5457 | { | |
5458 | as_fatal (_("internal error? cannot generate `%s' relocation"), | |
5459 | bfd_get_reloc_code_name (fixp->fx_r_type)); | |
5460 | } | |
5461 | assert (!fixp->fx_pcrel == !reloc->howto->pc_relative); | |
5462 | ||
5463 | reloc->addend = fixp->fx_offset; | |
5464 | ||
5465 | switch (fixp->fx_r_type) | |
5466 | { | |
5467 | case BFD_RELOC_XTENSA_OP0: | |
5468 | case BFD_RELOC_XTENSA_OP1: | |
5469 | case BFD_RELOC_XTENSA_OP2: | |
5470 | case BFD_RELOC_XTENSA_ASM_EXPAND: | |
5471 | case BFD_RELOC_32: | |
5472 | case BFD_RELOC_XTENSA_PLT: | |
5473 | case BFD_RELOC_VTABLE_INHERIT: | |
5474 | case BFD_RELOC_VTABLE_ENTRY: | |
5475 | break; | |
5476 | ||
5477 | case BFD_RELOC_XTENSA_ASM_SIMPLIFY: | |
5478 | as_warn (_("emitting simplification relocation")); | |
5479 | break; | |
5480 | ||
5481 | default: | |
5482 | as_warn (_("emitting unknown relocation")); | |
5483 | } | |
5484 | ||
5485 | return reloc; | |
5486 | } | |
5487 | ||
5488 | \f | |
5489 | void | |
5490 | xtensa_end () | |
5491 | { | |
5492 | directive_balance (); | |
5493 | xtensa_move_literals (); | |
5494 | ||
5495 | xtensa_reorder_segments (); | |
5496 | xtensa_mark_target_fragments (); | |
5497 | xtensa_cleanup_align_frags (); | |
5498 | xtensa_fix_target_frags (); | |
5499 | if (software_a0_b_retw_interlock && has_a0_b_retw) | |
5500 | xtensa_fix_a0_b_retw_frags (); | |
5501 | if (software_avoid_b_j_loop_end && maybe_has_b_j_loop_end) | |
5502 | xtensa_fix_b_j_loop_end_frags (); | |
5503 | ||
5504 | /* "close_loop_end" should be processed BEFORE "short_loop". */ | |
5505 | if (software_avoid_close_loop_end && maybe_has_close_loop_end) | |
5506 | xtensa_fix_close_loop_end_frags (); | |
5507 | ||
5508 | if (software_avoid_short_loop && maybe_has_short_loop) | |
5509 | xtensa_fix_short_loop_frags (); | |
5510 | ||
5511 | xtensa_sanity_check (); | |
5512 | } | |
5513 | ||
5514 | ||
5515 | static void | |
5516 | xtensa_cleanup_align_frags () | |
5517 | { | |
5518 | frchainS *frchP; | |
5519 | ||
5520 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5521 | { | |
5522 | fragS *fragP; | |
5523 | ||
5524 | /* Walk over all of the fragments in a subsection. */ | |
5525 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5526 | { | |
5527 | if ((fragP->fr_type == rs_align | |
5528 | || fragP->fr_type == rs_align_code | |
5529 | || (fragP->fr_type == rs_machine_dependent | |
5530 | && (fragP->fr_subtype == RELAX_DESIRE_ALIGN | |
5531 | || fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET))) | |
5532 | && fragP->fr_fix == 0) | |
5533 | { | |
5534 | fragS * next = fragP->fr_next; | |
5535 | ||
5536 | while (next | |
5537 | && next->fr_type == rs_machine_dependent | |
5538 | && next->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
5539 | { | |
5540 | frag_wane (next); | |
5541 | next = next->fr_next; | |
5542 | } | |
5543 | } | |
5544 | } | |
5545 | } | |
5546 | } | |
5547 | ||
5548 | ||
5549 | /* Re-process all of the fragments looking to convert all of the | |
5550 | RELAX_DESIRE_ALIGN_IF_TARGET fragments. If there is a branch | |
5551 | target in the next fragment, convert this to RELAX_DESIRE_ALIGN. | |
5552 | If the next fragment starts with a loop target, AND the previous | |
5553 | fragment can be expanded to negate the branch, convert this to a | |
5554 | RELAX_LOOP_END. Otherwise, convert to a .fill 0. */ | |
5555 | ||
5556 | static void | |
5557 | xtensa_fix_target_frags () | |
5558 | { | |
5559 | frchainS *frchP; | |
5560 | ||
5561 | /* When this routine is called, all of the subsections are still intact | |
5562 | so we walk over subsections instead of sections. */ | |
5563 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5564 | { | |
5565 | bfd_boolean prev_frag_can_negate_branch = FALSE; | |
5566 | fragS *fragP; | |
5567 | ||
5568 | /* Walk over all of the fragments in a subsection. */ | |
5569 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5570 | { | |
5571 | if (fragP->fr_type == rs_machine_dependent | |
5572 | && fragP->fr_subtype == RELAX_DESIRE_ALIGN_IF_TARGET) | |
5573 | { | |
5574 | if (next_frag_is_loop_target (fragP)) | |
5575 | { | |
5576 | if (prev_frag_can_negate_branch) | |
5577 | fragP->fr_subtype = RELAX_LOOP_END; | |
5578 | else | |
5579 | { | |
5580 | if (!align_only_targets || | |
5581 | next_frag_is_branch_target (fragP)) | |
5582 | fragP->fr_subtype = RELAX_DESIRE_ALIGN; | |
5583 | else | |
5584 | frag_wane (fragP); | |
5585 | } | |
5586 | } | |
5587 | else if (!align_only_targets | |
5588 | || next_frag_is_branch_target (fragP)) | |
5589 | fragP->fr_subtype = RELAX_DESIRE_ALIGN; | |
5590 | else | |
5591 | frag_wane (fragP); | |
5592 | } | |
5593 | if (fragP->fr_fix != 0) | |
5594 | prev_frag_can_negate_branch = FALSE; | |
5595 | if (frag_can_negate_branch (fragP)) | |
5596 | prev_frag_can_negate_branch = TRUE; | |
5597 | } | |
5598 | } | |
5599 | } | |
5600 | ||
5601 | ||
5602 | static bfd_boolean | |
5603 | frag_can_negate_branch (fragP) | |
5604 | fragS *fragP; | |
5605 | { | |
5606 | if (fragP->fr_type == rs_machine_dependent | |
5607 | && fragP->fr_subtype == RELAX_IMMED) | |
5608 | { | |
5609 | TInsn t_insn; | |
5610 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
5611 | if (is_negatable_branch (&t_insn)) | |
5612 | return TRUE; | |
5613 | } | |
5614 | return FALSE; | |
5615 | } | |
5616 | ||
5617 | ||
5618 | /* Re-process all of the fragments looking to convert all of the | |
5619 | RELAX_ADD_NOP_IF_A0_B_RETW. If the next instruction is a | |
5620 | conditional branch or a retw/retw.n, convert this frag to one that | |
5621 | will generate a NOP. In any case close it off with a .fill 0. */ | |
5622 | ||
5623 | static void | |
5624 | xtensa_fix_a0_b_retw_frags () | |
5625 | { | |
5626 | frchainS *frchP; | |
5627 | ||
5628 | /* When this routine is called, all of the subsections are still intact | |
5629 | so we walk over subsections instead of sections. */ | |
5630 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5631 | { | |
5632 | fragS *fragP; | |
5633 | ||
5634 | /* Walk over all of the fragments in a subsection. */ | |
5635 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5636 | { | |
5637 | if (fragP->fr_type == rs_machine_dependent | |
5638 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_A0_B_RETW) | |
5639 | { | |
5640 | if (next_instrs_are_b_retw (fragP)) | |
5641 | relax_frag_add_nop (fragP); | |
5642 | else | |
5643 | frag_wane (fragP); | |
5644 | } | |
5645 | } | |
5646 | } | |
5647 | } | |
5648 | ||
5649 | ||
5650 | bfd_boolean | |
5651 | next_instrs_are_b_retw (fragP) | |
5652 | fragS * fragP; | |
5653 | { | |
5654 | xtensa_opcode opcode; | |
5655 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
5656 | static xtensa_insnbuf insnbuf = NULL; | |
5657 | xtensa_isa isa = xtensa_default_isa; | |
5658 | int offset = 0; | |
5659 | ||
5660 | if (!insnbuf) | |
5661 | insnbuf = xtensa_insnbuf_alloc (isa); | |
5662 | ||
5663 | if (next_fragP == NULL) | |
5664 | return FALSE; | |
5665 | ||
5666 | /* Check for the conditional branch. */ | |
5667 | xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset]); | |
5668 | opcode = xtensa_decode_insn (isa, insnbuf); | |
5669 | ||
5670 | if (!is_conditional_branch_opcode (opcode)) | |
5671 | return FALSE; | |
5672 | ||
5673 | offset += xtensa_insn_length (isa, opcode); | |
5674 | if (offset == next_fragP->fr_fix) | |
5675 | { | |
5676 | next_fragP = next_non_empty_frag (next_fragP); | |
5677 | offset = 0; | |
5678 | } | |
5679 | if (next_fragP == NULL) | |
5680 | return FALSE; | |
5681 | ||
5682 | /* Check for the retw/retw.n. */ | |
5683 | xtensa_insnbuf_from_chars (isa, insnbuf, &next_fragP->fr_literal[offset]); | |
5684 | opcode = xtensa_decode_insn (isa, insnbuf); | |
5685 | ||
5686 | if (is_windowed_return_opcode (opcode)) | |
5687 | return TRUE; | |
5688 | return FALSE; | |
5689 | } | |
5690 | ||
5691 | ||
5692 | /* Re-process all of the fragments looking to convert all of the | |
5693 | RELAX_ADD_NOP_IF_PRE_LOOP_END. If there is one instruction and a | |
5694 | loop end label, convert this frag to one that will generate a NOP. | |
5695 | In any case close it off with a .fill 0. */ | |
5696 | ||
5697 | static void | |
5698 | xtensa_fix_b_j_loop_end_frags () | |
5699 | { | |
5700 | frchainS *frchP; | |
5701 | ||
5702 | /* When this routine is called, all of the subsections are still intact | |
5703 | so we walk over subsections instead of sections. */ | |
5704 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5705 | { | |
5706 | fragS *fragP; | |
5707 | ||
5708 | /* Walk over all of the fragments in a subsection. */ | |
5709 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5710 | { | |
5711 | if (fragP->fr_type == rs_machine_dependent | |
5712 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_PRE_LOOP_END) | |
5713 | { | |
5714 | if (next_instr_is_loop_end (fragP)) | |
5715 | relax_frag_add_nop (fragP); | |
5716 | else | |
5717 | frag_wane (fragP); | |
5718 | } | |
5719 | } | |
5720 | } | |
5721 | } | |
5722 | ||
5723 | ||
5724 | bfd_boolean | |
5725 | next_instr_is_loop_end (fragP) | |
5726 | fragS * fragP; | |
5727 | { | |
5728 | const fragS *next_fragP; | |
5729 | ||
5730 | if (next_frag_is_loop_target (fragP)) | |
5731 | return FALSE; | |
5732 | ||
5733 | next_fragP = next_non_empty_frag (fragP); | |
5734 | if (next_fragP == NULL) | |
5735 | return FALSE; | |
5736 | ||
5737 | if (!next_frag_is_loop_target (next_fragP)) | |
5738 | return FALSE; | |
5739 | ||
5740 | /* If the size is >= 3 then there is more than one instruction here. | |
5741 | The hardware bug will not fire. */ | |
5742 | if (next_fragP->fr_fix > 3) | |
5743 | return FALSE; | |
5744 | ||
5745 | return TRUE; | |
5746 | } | |
5747 | ||
5748 | ||
5749 | /* Re-process all of the fragments looking to convert all of the | |
5750 | RELAX_ADD_NOP_IF_CLOSE_LOOP_END. If there is an loop end that is | |
5751 | not MY loop's loop end within 12 bytes, add enough nops here to | |
5752 | make it at least 12 bytes away. In any case close it off with a | |
5753 | .fill 0. */ | |
5754 | ||
5755 | static void | |
5756 | xtensa_fix_close_loop_end_frags () | |
5757 | { | |
5758 | frchainS *frchP; | |
5759 | ||
5760 | /* When this routine is called, all of the subsections are still intact | |
5761 | so we walk over subsections instead of sections. */ | |
5762 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5763 | { | |
5764 | fragS *fragP; | |
5765 | ||
5766 | fragS *current_target = NULL; | |
5767 | offsetT current_offset = 0; | |
5768 | ||
5769 | /* Walk over all of the fragments in a subsection. */ | |
5770 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5771 | { | |
5772 | if (fragP->fr_type == rs_machine_dependent | |
5773 | && fragP->fr_subtype == RELAX_IMMED) | |
5774 | { | |
5775 | /* Read it. If the instruction is a loop, get the target. */ | |
5776 | xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_opcode); | |
5777 | if (is_loop_opcode (opcode)) | |
5778 | { | |
5779 | TInsn t_insn; | |
5780 | ||
5781 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
5782 | tinsn_immed_from_frag (&t_insn, fragP); | |
5783 | ||
5784 | /* Get the current fragment target. */ | |
5785 | if (fragP->fr_symbol) | |
5786 | { | |
5787 | current_target = symbol_get_frag (fragP->fr_symbol); | |
5788 | current_offset = fragP->fr_offset; | |
5789 | } | |
5790 | } | |
5791 | } | |
5792 | ||
5793 | if (current_target | |
5794 | && fragP->fr_type == rs_machine_dependent | |
5795 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_CLOSE_LOOP_END) | |
5796 | { | |
5797 | size_t min_bytes; | |
5798 | size_t bytes_added = 0; | |
5799 | ||
5800 | #define REQUIRED_LOOP_DIVIDING_BYTES 12 | |
5801 | /* Max out at 12. */ | |
5802 | min_bytes = min_bytes_to_other_loop_end | |
5803 | (fragP->fr_next, current_target, current_offset, | |
5804 | REQUIRED_LOOP_DIVIDING_BYTES); | |
5805 | ||
5806 | if (min_bytes < REQUIRED_LOOP_DIVIDING_BYTES) | |
5807 | { | |
5808 | while (min_bytes + bytes_added | |
5809 | < REQUIRED_LOOP_DIVIDING_BYTES) | |
5810 | { | |
5811 | int length = 3; | |
5812 | ||
5813 | if (fragP->fr_var < length) | |
5814 | as_warn (_("fr_var %lu < length %d; ignoring"), | |
5815 | fragP->fr_var, length); | |
5816 | else | |
5817 | { | |
5818 | assemble_nop (length, | |
5819 | fragP->fr_literal + fragP->fr_fix); | |
5820 | fragP->fr_fix += length; | |
5821 | fragP->fr_var -= length; | |
5822 | } | |
5823 | bytes_added += length; | |
5824 | } | |
5825 | } | |
5826 | frag_wane (fragP); | |
5827 | } | |
5828 | } | |
5829 | } | |
5830 | } | |
5831 | ||
5832 | ||
5833 | size_t | |
5834 | min_bytes_to_other_loop_end (fragP, current_target, current_offset, max_size) | |
5835 | fragS *fragP; | |
5836 | fragS *current_target; | |
5837 | offsetT current_offset; | |
5838 | size_t max_size; | |
5839 | { | |
5840 | size_t offset = 0; | |
5841 | fragS *current_fragP; | |
5842 | ||
5843 | for (current_fragP = fragP; | |
5844 | current_fragP; | |
5845 | current_fragP = current_fragP->fr_next) | |
5846 | { | |
5847 | if (current_fragP->tc_frag_data.is_loop_target | |
5848 | && current_fragP != current_target) | |
5849 | return offset + current_offset; | |
5850 | ||
5851 | offset += unrelaxed_frag_min_size (current_fragP); | |
5852 | ||
5853 | if (offset + current_offset >= max_size) | |
5854 | return max_size; | |
5855 | } | |
5856 | return max_size; | |
5857 | } | |
5858 | ||
5859 | ||
5860 | size_t | |
5861 | unrelaxed_frag_min_size (fragP) | |
5862 | fragS * fragP; | |
5863 | { | |
5864 | size_t size = fragP->fr_fix; | |
5865 | ||
5866 | /* add fill size */ | |
5867 | if (fragP->fr_type == rs_fill) | |
5868 | size += fragP->fr_offset; | |
5869 | ||
5870 | return size; | |
5871 | } | |
5872 | ||
5873 | ||
5874 | /* Re-process all of the fragments looking to convert all | |
5875 | of the RELAX_ADD_NOP_IF_SHORT_LOOP. If: | |
5876 | ||
5877 | A) | |
5878 | 1) the instruction size count to the loop end label | |
5879 | is too short (<= 2 instructions), | |
5880 | 2) loop has a jump or branch in it | |
5881 | ||
5882 | or B) | |
5883 | 1) software_avoid_all_short_loops is true | |
5884 | 2) The generating loop was a 'loopgtz' or 'loopnez' | |
5885 | 3) the instruction size count to the loop end label is too short | |
5886 | (<= 2 instructions) | |
5887 | then convert this frag (and maybe the next one) to generate a NOP. | |
5888 | In any case close it off with a .fill 0. */ | |
5889 | ||
5890 | static void | |
5891 | xtensa_fix_short_loop_frags () | |
5892 | { | |
5893 | frchainS *frchP; | |
5894 | ||
5895 | /* When this routine is called, all of the subsections are still intact | |
5896 | so we walk over subsections instead of sections. */ | |
5897 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
5898 | { | |
5899 | fragS *fragP; | |
5900 | fragS *current_target = NULL; | |
5901 | offsetT current_offset = 0; | |
5902 | xtensa_opcode current_opcode = XTENSA_UNDEFINED; | |
5903 | ||
5904 | /* Walk over all of the fragments in a subsection. */ | |
5905 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
5906 | { | |
5907 | /* check on the current loop */ | |
5908 | if (fragP->fr_type == rs_machine_dependent | |
5909 | && fragP->fr_subtype == RELAX_IMMED) | |
5910 | { | |
5911 | /* Read it. If the instruction is a loop, get the target. */ | |
5912 | xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_opcode); | |
5913 | if (is_loop_opcode (opcode)) | |
5914 | { | |
5915 | TInsn t_insn; | |
5916 | ||
5917 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
5918 | tinsn_immed_from_frag (&t_insn, fragP); | |
5919 | ||
5920 | /* Get the current fragment target. */ | |
5921 | if (fragP->fr_symbol) | |
5922 | { | |
5923 | current_target = symbol_get_frag (fragP->fr_symbol); | |
5924 | current_offset = fragP->fr_offset; | |
5925 | current_opcode = opcode; | |
5926 | } | |
5927 | } | |
5928 | } | |
5929 | ||
5930 | if (fragP->fr_type == rs_machine_dependent | |
5931 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
5932 | { | |
5933 | size_t insn_count = | |
5934 | count_insns_to_loop_end (fragP->fr_next, TRUE, 3); | |
5935 | if (insn_count < 3 | |
5936 | && (branch_before_loop_end (fragP->fr_next) | |
5937 | || (software_avoid_all_short_loops | |
5938 | && current_opcode != XTENSA_UNDEFINED | |
5939 | && !is_the_loop_opcode (current_opcode)))) | |
5940 | relax_frag_add_nop (fragP); | |
5941 | else | |
5942 | frag_wane (fragP); | |
5943 | } | |
5944 | } | |
5945 | } | |
5946 | } | |
5947 | ||
5948 | ||
5949 | size_t | |
5950 | count_insns_to_loop_end (base_fragP, count_relax_add, max_count) | |
5951 | fragS *base_fragP; | |
5952 | bfd_boolean count_relax_add; | |
5953 | size_t max_count; | |
5954 | { | |
5955 | fragS *fragP = NULL; | |
5956 | size_t insn_count = 0; | |
5957 | ||
5958 | fragP = base_fragP; | |
5959 | ||
5960 | for (; fragP && !fragP->tc_frag_data.is_loop_target; fragP = fragP->fr_next) | |
5961 | { | |
5962 | insn_count += unrelaxed_frag_min_insn_count (fragP); | |
5963 | if (insn_count >= max_count) | |
5964 | return max_count; | |
5965 | ||
5966 | if (count_relax_add) | |
5967 | { | |
5968 | if (fragP->fr_type == rs_machine_dependent | |
5969 | && fragP->fr_subtype == RELAX_ADD_NOP_IF_SHORT_LOOP) | |
5970 | { | |
5971 | /* In order to add the appropriate number of | |
5972 | NOPs, we count an instruction for downstream | |
5973 | occurrences. */ | |
5974 | insn_count++; | |
5975 | if (insn_count >= max_count) | |
5976 | return max_count; | |
5977 | } | |
5978 | } | |
5979 | } | |
5980 | return insn_count; | |
5981 | } | |
5982 | ||
5983 | ||
5984 | size_t | |
5985 | unrelaxed_frag_min_insn_count (fragP) | |
5986 | fragS *fragP; | |
5987 | { | |
5988 | size_t insn_count = 0; | |
5989 | int offset = 0; | |
5990 | ||
5991 | if (!fragP->tc_frag_data.is_insn) | |
5992 | return insn_count; | |
5993 | ||
5994 | /* Decode the fixed instructions. */ | |
5995 | while (offset < fragP->fr_fix) | |
5996 | { | |
5997 | xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_literal + offset); | |
5998 | if (opcode == XTENSA_UNDEFINED) | |
5999 | { | |
6000 | as_fatal (_("undecodable instruction in instruction frag")); | |
6001 | return insn_count; | |
6002 | } | |
6003 | offset += xtensa_insn_length (xtensa_default_isa, opcode); | |
6004 | insn_count++; | |
6005 | } | |
6006 | ||
6007 | return insn_count; | |
6008 | } | |
6009 | ||
6010 | ||
6011 | bfd_boolean | |
6012 | branch_before_loop_end (base_fragP) | |
6013 | fragS *base_fragP; | |
6014 | { | |
6015 | fragS *fragP; | |
6016 | ||
6017 | for (fragP = base_fragP; | |
6018 | fragP && !fragP->tc_frag_data.is_loop_target; | |
6019 | fragP = fragP->fr_next) | |
6020 | { | |
6021 | if (unrelaxed_frag_has_b_j (fragP)) | |
6022 | return TRUE; | |
6023 | } | |
6024 | return FALSE; | |
6025 | } | |
6026 | ||
6027 | ||
6028 | bfd_boolean | |
6029 | unrelaxed_frag_has_b_j (fragP) | |
6030 | fragS *fragP; | |
6031 | { | |
6032 | size_t insn_count = 0; | |
6033 | int offset = 0; | |
6034 | ||
6035 | if (!fragP->tc_frag_data.is_insn) | |
6036 | return FALSE; | |
6037 | ||
6038 | /* Decode the fixed instructions. */ | |
6039 | while (offset < fragP->fr_fix) | |
6040 | { | |
6041 | xtensa_opcode opcode = get_opcode_from_buf (fragP->fr_literal + offset); | |
6042 | if (opcode == XTENSA_UNDEFINED) | |
6043 | { | |
6044 | as_fatal (_("undecodable instruction in instruction frag")); | |
6045 | return insn_count; | |
6046 | } | |
6047 | if (is_branch_or_jump_opcode (opcode)) | |
6048 | return TRUE; | |
6049 | offset += xtensa_insn_length (xtensa_default_isa, opcode); | |
6050 | } | |
6051 | return FALSE; | |
6052 | } | |
6053 | ||
6054 | ||
6055 | /* Checks to be made after initial assembly but before relaxation. */ | |
6056 | ||
6057 | static void | |
6058 | xtensa_sanity_check () | |
6059 | { | |
6060 | char *file_name; | |
6061 | int line; | |
6062 | ||
6063 | frchainS *frchP; | |
6064 | ||
6065 | as_where (&file_name, &line); | |
6066 | for (frchP = frchain_root; frchP; frchP = frchP->frch_next) | |
6067 | { | |
6068 | fragS *fragP; | |
6069 | ||
6070 | /* Walk over all of the fragments in a subsection. */ | |
6071 | for (fragP = frchP->frch_root; fragP; fragP = fragP->fr_next) | |
6072 | { | |
6073 | /* Currently we only check for empty loops here. */ | |
6074 | if (fragP->fr_type == rs_machine_dependent | |
6075 | && fragP->fr_subtype == RELAX_IMMED) | |
6076 | { | |
6077 | static xtensa_insnbuf insnbuf = NULL; | |
6078 | TInsn t_insn; | |
6079 | ||
6080 | if (fragP->fr_opcode != NULL) | |
6081 | { | |
6082 | if (!insnbuf) | |
6083 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
6084 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
6085 | tinsn_immed_from_frag (&t_insn, fragP); | |
6086 | ||
6087 | if (is_loop_opcode (t_insn.opcode)) | |
6088 | { | |
6089 | if (is_empty_loop (&t_insn, fragP)) | |
6090 | { | |
6091 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
6092 | as_bad (_("invalid empty loop")); | |
6093 | } | |
6094 | if (!is_local_forward_loop (&t_insn, fragP)) | |
6095 | { | |
6096 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
6097 | as_bad (_("loop target does not follow " | |
6098 | "loop instruction in section")); | |
6099 | } | |
6100 | } | |
6101 | } | |
6102 | } | |
6103 | } | |
6104 | } | |
6105 | new_logical_line (file_name, line); | |
6106 | } | |
6107 | ||
6108 | ||
6109 | #define LOOP_IMMED_OPN 1 | |
6110 | ||
6111 | /* Return true if the loop target is the next non-zero fragment. */ | |
6112 | ||
6113 | bfd_boolean | |
6114 | is_empty_loop (insn, fragP) | |
6115 | const TInsn *insn; | |
6116 | fragS *fragP; | |
6117 | { | |
6118 | const expressionS *expr; | |
6119 | symbolS *symbolP; | |
6120 | fragS *next_fragP; | |
6121 | ||
6122 | if (insn->insn_type != ITYPE_INSN) | |
6123 | return FALSE; | |
6124 | ||
6125 | if (!is_loop_opcode (insn->opcode)) | |
6126 | return FALSE; | |
6127 | ||
6128 | if (insn->ntok <= LOOP_IMMED_OPN) | |
6129 | return FALSE; | |
6130 | ||
6131 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
6132 | ||
6133 | if (expr->X_op != O_symbol) | |
6134 | return FALSE; | |
6135 | ||
6136 | symbolP = expr->X_add_symbol; | |
6137 | if (!symbolP) | |
6138 | return FALSE; | |
6139 | ||
6140 | if (symbol_get_frag (symbolP) == NULL) | |
6141 | return FALSE; | |
6142 | ||
6143 | if (S_GET_VALUE (symbolP) != 0) | |
6144 | return FALSE; | |
6145 | ||
6146 | /* Walk through the zero-size fragments from this one. If we find | |
6147 | the target fragment, then this is a zero-size loop. */ | |
6148 | for (next_fragP = fragP->fr_next; | |
6149 | next_fragP != NULL; | |
6150 | next_fragP = next_fragP->fr_next) | |
6151 | { | |
6152 | if (next_fragP == symbol_get_frag (symbolP)) | |
6153 | return TRUE; | |
6154 | if (next_fragP->fr_fix != 0) | |
6155 | return FALSE; | |
6156 | } | |
6157 | return FALSE; | |
6158 | } | |
6159 | ||
6160 | ||
6161 | bfd_boolean | |
6162 | is_local_forward_loop (insn, fragP) | |
6163 | const TInsn *insn; | |
6164 | fragS *fragP; | |
6165 | { | |
6166 | const expressionS *expr; | |
6167 | symbolS *symbolP; | |
6168 | fragS *next_fragP; | |
6169 | ||
6170 | if (insn->insn_type != ITYPE_INSN) | |
6171 | return FALSE; | |
6172 | ||
6173 | if (!is_loop_opcode (insn->opcode)) | |
6174 | return FALSE; | |
6175 | ||
6176 | if (insn->ntok <= LOOP_IMMED_OPN) | |
6177 | return FALSE; | |
6178 | ||
6179 | expr = &insn->tok[LOOP_IMMED_OPN]; | |
6180 | ||
6181 | if (expr->X_op != O_symbol) | |
6182 | return FALSE; | |
6183 | ||
6184 | symbolP = expr->X_add_symbol; | |
6185 | if (!symbolP) | |
6186 | return FALSE; | |
6187 | ||
6188 | if (symbol_get_frag (symbolP) == NULL) | |
6189 | return FALSE; | |
6190 | ||
6191 | /* Walk through fragments until we find the target. | |
6192 | If we do not find the target, then this is an invalid loop. */ | |
6193 | for (next_fragP = fragP->fr_next; | |
6194 | next_fragP != NULL; | |
6195 | next_fragP = next_fragP->fr_next) | |
6196 | if (next_fragP == symbol_get_frag (symbolP)) | |
6197 | return TRUE; | |
6198 | ||
6199 | return FALSE; | |
6200 | } | |
6201 | ||
6202 | \f | |
6203 | /* Alignment Functions. */ | |
6204 | ||
6205 | size_t | |
6206 | get_text_align_power (target_size) | |
6207 | int target_size; | |
6208 | { | |
6209 | size_t i = 0; | |
6210 | for (i = 0; i < sizeof (size_t); i++) | |
6211 | { | |
6212 | if (target_size <= (1 << i)) | |
6213 | return i; | |
6214 | } | |
6215 | as_fatal (_("get_text_align_power: argument too large")); | |
6216 | return 0; | |
6217 | } | |
6218 | ||
6219 | ||
6220 | addressT | |
6221 | get_text_align_max_fill_size (align_pow, use_nops, use_no_density) | |
6222 | int align_pow; | |
6223 | bfd_boolean use_nops; | |
6224 | bfd_boolean use_no_density; | |
6225 | { | |
6226 | if (!use_nops) | |
6227 | return (1 << align_pow); | |
6228 | if (use_no_density) | |
6229 | return 3 * (1 << align_pow); | |
6230 | ||
6231 | return 1 + (1 << align_pow); | |
6232 | } | |
6233 | ||
6234 | ||
6235 | /* get_text_align_fill_size () | |
6236 | ||
6237 | Desired alignments: | |
6238 | give the address | |
6239 | target_size = size of next instruction | |
6240 | align_pow = get_text_align_power (target_size). | |
6241 | use_nops = 0 | |
6242 | use_no_density = 0; | |
6243 | Loop alignments: | |
6244 | address = current address + loop instruction size; | |
6245 | target_size = 3 (for 2 or 3 byte target) | |
6246 | = 8 (for 8 byte target) | |
6247 | align_pow = get_text_align_power (target_size); | |
6248 | use_nops = 1 | |
6249 | use_no_density = set appropriately | |
6250 | Text alignments: | |
6251 | address = current address + loop instruction size; | |
6252 | target_size = 0 | |
6253 | align_pow = get_text_align_power (target_size); | |
6254 | use_nops = 0 | |
6255 | use_no_density = 0. */ | |
6256 | ||
6257 | addressT | |
6258 | get_text_align_fill_size (address, align_pow, target_size, | |
6259 | use_nops, use_no_density) | |
6260 | addressT address; | |
6261 | int align_pow; | |
6262 | int target_size; | |
6263 | bfd_boolean use_nops; | |
6264 | bfd_boolean use_no_density; | |
6265 | { | |
6266 | /* Input arguments: | |
6267 | ||
6268 | align_pow: log2 (required alignment). | |
6269 | ||
6270 | target_size: alignment must allow the new_address and | |
6271 | new_address+target_size-1. | |
6272 | ||
6273 | use_nops: if true, then we can only use 2 or 3 byte nops. | |
6274 | ||
6275 | use_no_density: if use_nops and use_no_density, we can only use | |
6276 | 3-byte nops. | |
6277 | ||
6278 | Usually, for non-zero target_size, the align_pow is the power of 2 | |
6279 | that is greater than or equal to the target_size. This handles the | |
6280 | 2-byte, 3-byte and 8-byte instructions. */ | |
6281 | ||
6282 | size_t alignment = (1 << align_pow); | |
6283 | if (!use_nops) | |
6284 | { | |
6285 | /* This is the easy case. */ | |
6286 | size_t mod; | |
6287 | mod = address % alignment; | |
6288 | if (mod != 0) | |
6289 | mod = alignment - mod; | |
6290 | assert ((address + mod) % alignment == 0); | |
6291 | return mod; | |
6292 | } | |
6293 | ||
6294 | /* This is the slightly harder case. */ | |
6295 | assert ((int) alignment >= target_size); | |
6296 | assert (target_size > 0); | |
6297 | if (!use_no_density) | |
6298 | { | |
6299 | size_t i; | |
6300 | for (i = 0; i < alignment * 2; i++) | |
6301 | { | |
6302 | if (i == 1) | |
6303 | continue; | |
6304 | if ((address + i) >> align_pow == | |
6305 | (address + i + target_size - 1) >> align_pow) | |
6306 | return i; | |
6307 | } | |
6308 | } | |
6309 | else | |
6310 | { | |
6311 | size_t i; | |
6312 | ||
6313 | /* Can only fill multiples of 3. */ | |
6314 | for (i = 0; i <= alignment * 3; i += 3) | |
6315 | { | |
6316 | if ((address + i) >> align_pow == | |
6317 | (address + i + target_size - 1) >> align_pow) | |
6318 | return i; | |
6319 | } | |
6320 | } | |
6321 | assert (0); | |
6322 | return 0; | |
6323 | } | |
6324 | ||
6325 | ||
6326 | /* This will assert if it is not possible. */ | |
6327 | ||
6328 | size_t | |
6329 | get_text_align_nop_count (fill_size, use_no_density) | |
6330 | size_t fill_size; | |
6331 | bfd_boolean use_no_density; | |
6332 | { | |
6333 | size_t count = 0; | |
6334 | if (use_no_density) | |
6335 | { | |
6336 | assert (fill_size % 3 == 0); | |
6337 | return (fill_size / 3); | |
6338 | } | |
6339 | ||
6340 | assert (fill_size != 1); /* Bad argument. */ | |
6341 | ||
6342 | while (fill_size > 1) | |
6343 | { | |
6344 | size_t insn_size = 3; | |
6345 | if (fill_size == 2 || fill_size == 4) | |
6346 | insn_size = 2; | |
6347 | fill_size -= insn_size; | |
6348 | count++; | |
6349 | } | |
6350 | assert (fill_size != 1); /* Bad algorithm. */ | |
6351 | return count; | |
6352 | } | |
6353 | ||
6354 | ||
6355 | size_t | |
6356 | get_text_align_nth_nop_size (fill_size, n, use_no_density) | |
6357 | size_t fill_size; | |
6358 | size_t n; | |
6359 | bfd_boolean use_no_density; | |
6360 | { | |
6361 | size_t count = 0; | |
6362 | ||
6363 | assert (get_text_align_nop_count (fill_size, use_no_density) > n); | |
6364 | ||
6365 | if (use_no_density) | |
6366 | return 3; | |
6367 | ||
6368 | while (fill_size > 1) | |
6369 | { | |
6370 | size_t insn_size = 3; | |
6371 | if (fill_size == 2 || fill_size == 4) | |
6372 | insn_size = 2; | |
6373 | fill_size -= insn_size; | |
6374 | count++; | |
6375 | if (n + 1 == count) | |
6376 | return insn_size; | |
6377 | } | |
6378 | assert (0); | |
6379 | return 0; | |
6380 | } | |
6381 | ||
6382 | ||
6383 | /* For the given fragment, find the appropriate address | |
6384 | for it to begin at if we are using NOPs to align it. */ | |
6385 | ||
6386 | static addressT | |
6387 | get_noop_aligned_address (fragP, address) | |
6388 | fragS *fragP; | |
6389 | addressT address; | |
6390 | { | |
6391 | static xtensa_insnbuf insnbuf = NULL; | |
6392 | size_t fill_size = 0; | |
6393 | ||
6394 | if (!insnbuf) | |
6395 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
6396 | ||
6397 | switch (fragP->fr_type) | |
6398 | { | |
6399 | case rs_machine_dependent: | |
6400 | if (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
6401 | { | |
6402 | /* The rule is: get next fragment's FIRST instruction. Find | |
6403 | the smallest number of bytes that need to be added to | |
6404 | ensure that the next fragment's FIRST instruction will fit | |
6405 | in a single word. | |
6406 | ||
6407 | E.G., 2 bytes : 0, 1, 2 mod 4 | |
6408 | 3 bytes: 0, 1 mod 4 | |
6409 | ||
6410 | If the FIRST instruction MIGHT be relaxed, | |
6411 | assume that it will become a 3 byte instruction. */ | |
6412 | ||
6413 | int target_insn_size; | |
6414 | xtensa_opcode opcode = next_frag_opcode (fragP); | |
6415 | addressT pre_opcode_bytes; | |
6416 | ||
6417 | if (opcode == XTENSA_UNDEFINED) | |
6418 | { | |
6419 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
6420 | _("invalid opcode for RELAX_ALIGN_NEXT_OPCODE")); | |
6421 | as_fatal (_("cannot continue")); | |
6422 | } | |
6423 | ||
6424 | target_insn_size = xtensa_insn_length (xtensa_default_isa, opcode); | |
6425 | ||
6426 | pre_opcode_bytes = next_frag_pre_opcode_bytes (fragP); | |
6427 | ||
6428 | if (is_loop_opcode (opcode)) | |
6429 | { | |
6430 | /* next_fragP should be the loop. */ | |
6431 | const fragS *next_fragP = next_non_empty_frag (fragP); | |
6432 | xtensa_opcode next_opcode = next_frag_opcode (next_fragP); | |
6433 | size_t alignment; | |
6434 | ||
6435 | pre_opcode_bytes += target_insn_size; | |
6436 | ||
6437 | /* For loops, the alignment depends on the size of the | |
6438 | instruction following the loop, not the loop instruction. */ | |
6439 | if (next_opcode == XTENSA_UNDEFINED) | |
6440 | target_insn_size = 3; | |
6441 | else | |
6442 | { | |
6443 | target_insn_size = | |
6444 | xtensa_insn_length (xtensa_default_isa, next_opcode); | |
6445 | ||
6446 | if (target_insn_size == 2) | |
6447 | target_insn_size = 3; /* ISA specifies this. */ | |
6448 | } | |
6449 | ||
6450 | /* If it was 8, then we'll need a larger alignment | |
6451 | for the section. */ | |
6452 | alignment = get_text_align_power (target_insn_size); | |
6453 | ||
6454 | /* Is Now_seg valid */ | |
6455 | record_alignment (now_seg, alignment); | |
6456 | } | |
6457 | else | |
6458 | as_fatal (_("expected loop opcode in relax align next target")); | |
6459 | ||
6460 | fill_size = get_text_align_fill_size | |
6461 | (address + pre_opcode_bytes, | |
6462 | get_text_align_power (target_insn_size), | |
6463 | target_insn_size, TRUE, fragP->tc_frag_data.is_no_density); | |
6464 | } | |
6465 | break; | |
6466 | #if 0 | |
6467 | case rs_align: | |
6468 | case rs_align_code: | |
6469 | fill_size = get_text_align_fill_size | |
6470 | (address, fragP->fr_offset, 1, TRUE, | |
6471 | fragP->tc_frag_data.is_no_density); | |
6472 | break; | |
6473 | #endif | |
6474 | default: | |
6475 | as_fatal (_("expected align_code or RELAX_ALIGN_NEXT_OPCODE")); | |
6476 | } | |
6477 | ||
6478 | return address + fill_size; | |
6479 | } | |
6480 | ||
6481 | ||
6482 | /* 3 mechanisms for relaxing an alignment: | |
6483 | ||
6484 | Align to a power of 2. | |
6485 | Align so the next fragment's instruction does not cross a word boundary. | |
6486 | Align the current instruction so that if the next instruction | |
6487 | were 3 bytes, it would not cross a word boundary. | |
6488 | ||
6489 | We can align with: | |
6490 | ||
6491 | zeros - This is easy; always insert zeros. | |
6492 | nops - 3 and 2 byte instructions | |
6493 | 2 - 2 byte nop | |
6494 | 3 - 3 byte nop | |
6495 | 4 - 2, 2-byte nops | |
6496 | >=5 : 3 byte instruction + fn(n-3) | |
6497 | widening - widen previous instructions. */ | |
6498 | ||
6499 | static addressT | |
6500 | get_widen_aligned_address (fragP, address) | |
6501 | fragS *fragP; | |
6502 | addressT address; | |
6503 | { | |
6504 | addressT align_pow, new_address, loop_insn_offset; | |
6505 | fragS *next_frag; | |
6506 | int insn_size; | |
6507 | xtensa_opcode opcode, next_opcode; | |
6508 | static xtensa_insnbuf insnbuf = NULL; | |
6509 | ||
6510 | if (!insnbuf) | |
6511 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
6512 | ||
6513 | if (fragP->fr_type == rs_align || fragP->fr_type == rs_align_code) | |
6514 | { | |
6515 | align_pow = fragP->fr_offset; | |
6516 | new_address = ((address + ((1 << align_pow) - 1)) | |
6517 | << align_pow) >> align_pow; | |
6518 | return new_address; | |
6519 | } | |
6520 | ||
6521 | if (fragP->fr_type == rs_machine_dependent) | |
6522 | { | |
6523 | switch (fragP->fr_subtype) | |
6524 | { | |
6525 | case RELAX_DESIRE_ALIGN: | |
6526 | ||
6527 | /* The rule is: get the next fragment's FIRST instruction. | |
6528 | Find the smallest number of bytes needed to be added | |
6529 | in order to ensure that the next fragment is FIRST | |
6530 | instruction will fit in a single word. | |
6531 | i.e. 2 bytes : 0, 1, 2. mod 4 | |
6532 | 3 bytes: 0, 1 mod 4 | |
6533 | If the FIRST instruction MIGHT be relaxed, | |
6534 | assume that it will become a 3-byte instruction. */ | |
6535 | ||
6536 | insn_size = 3; | |
6537 | /* Check to see if it might be 2 bytes. */ | |
6538 | next_opcode = next_frag_opcode (fragP); | |
6539 | if (next_opcode != XTENSA_UNDEFINED | |
6540 | && xtensa_insn_length (xtensa_default_isa, next_opcode) == 2) | |
6541 | insn_size = 2; | |
6542 | ||
6543 | assert (insn_size <= 4); | |
6544 | for (new_address = address; new_address < address + 4; new_address++) | |
6545 | { | |
6546 | if (new_address >> 2 == (new_address + insn_size - 1) >> 2) | |
6547 | return new_address; | |
6548 | } | |
6549 | as_bad (_("internal error aligning")); | |
6550 | return address; | |
6551 | ||
6552 | case RELAX_ALIGN_NEXT_OPCODE: | |
6553 | /* The rule is: get next fragment's FIRST instruction. | |
6554 | Find the smallest number of bytes needed to be added | |
6555 | in order to ensure that the next fragment's FIRST | |
6556 | instruction will fit in a single word. | |
6557 | i.e. 2 bytes : 0, 1, 2. mod 4 | |
6558 | 3 bytes: 0, 1 mod 4 | |
6559 | If the FIRST instruction MIGHT be relaxed, | |
6560 | assume that it will become a 3 byte instruction. */ | |
6561 | ||
6562 | opcode = next_frag_opcode (fragP); | |
6563 | if (opcode == XTENSA_UNDEFINED) | |
6564 | { | |
6565 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
6566 | _("invalid opcode for RELAX_ALIGN_NEXT_OPCODE")); | |
6567 | as_fatal (_("cannot continue")); | |
6568 | } | |
6569 | insn_size = xtensa_insn_length (xtensa_default_isa, opcode); | |
6570 | assert (insn_size <= 4); | |
6571 | assert (is_loop_opcode (opcode)); | |
6572 | ||
6573 | loop_insn_offset = 0; | |
6574 | next_frag = next_non_empty_frag (fragP); | |
6575 | ||
6576 | /* If the loop has been expanded then the loop | |
6577 | instruction could be at an offset from this fragment. */ | |
6578 | if (next_frag->fr_subtype != RELAX_IMMED) | |
6579 | loop_insn_offset = get_expanded_loop_offset (opcode); | |
6580 | ||
6581 | for (new_address = address; new_address < address + 4; new_address++) | |
6582 | { | |
6583 | if ((new_address + loop_insn_offset + insn_size) >> 2 == | |
6584 | (new_address + loop_insn_offset + insn_size + 2) >> 2) | |
6585 | return new_address; | |
6586 | } | |
6587 | as_bad (_("internal error aligning")); | |
6588 | return address; | |
6589 | ||
6590 | default: | |
6591 | as_bad (_("internal error aligning")); | |
6592 | return address; | |
6593 | } | |
6594 | } | |
6595 | as_bad (_("internal error aligning")); | |
6596 | return address; | |
6597 | } | |
6598 | ||
6599 | \f | |
6600 | /* md_relax_frag Hook and Helper Functions. */ | |
6601 | ||
6602 | /* Return the number of bytes added to this fragment, given that the | |
6603 | input has been stretched already by "stretch". */ | |
6604 | ||
6605 | long | |
6606 | xtensa_relax_frag (fragP, stretch, stretched_p) | |
6607 | fragS *fragP; | |
6608 | long stretch; | |
6609 | int *stretched_p; | |
6610 | { | |
6611 | int unreported = fragP->tc_frag_data.unreported_expansion; | |
6612 | long new_stretch = 0; | |
6613 | char *file_name; | |
6614 | int line, lit_size; | |
6615 | ||
6616 | as_where (&file_name, &line); | |
6617 | new_logical_line (fragP->fr_file, fragP->fr_line); | |
6618 | ||
6619 | fragP->tc_frag_data.unreported_expansion = 0; | |
6620 | ||
6621 | switch (fragP->fr_subtype) | |
6622 | { | |
6623 | case RELAX_ALIGN_NEXT_OPCODE: | |
6624 | /* Always convert. */ | |
6625 | new_stretch = relax_frag_text_align (fragP, stretch); | |
6626 | break; | |
6627 | ||
6628 | case RELAX_LOOP_END: | |
6629 | /* Do nothing. */ | |
6630 | break; | |
6631 | ||
6632 | case RELAX_LOOP_END_ADD_NOP: | |
6633 | /* Add a NOP and switch to .fill 0. */ | |
6634 | new_stretch = relax_frag_add_nop (fragP); | |
6635 | break; | |
6636 | ||
6637 | case RELAX_DESIRE_ALIGN: | |
6638 | /* We REALLY want to change the relaxation order here. This | |
6639 | should do NOTHING. The narrowing before it will either align | |
6640 | it or not. */ | |
6641 | break; | |
6642 | ||
6643 | case RELAX_LITERAL: | |
6644 | case RELAX_LITERAL_FINAL: | |
6645 | return 0; | |
6646 | ||
6647 | case RELAX_LITERAL_NR: | |
6648 | lit_size = 4; | |
6649 | fragP->fr_subtype = RELAX_LITERAL_FINAL; | |
6650 | assert (unreported == lit_size); | |
6651 | memset (&fragP->fr_literal[fragP->fr_fix], 0, 4); | |
6652 | fragP->fr_var -= lit_size; | |
6653 | fragP->fr_fix += lit_size; | |
6654 | new_stretch = 4; | |
6655 | break; | |
6656 | ||
6657 | case RELAX_NARROW: | |
6658 | new_stretch = relax_frag_narrow (fragP, stretch); | |
6659 | break; | |
6660 | ||
6661 | case RELAX_IMMED: | |
6662 | case RELAX_IMMED_STEP1: | |
6663 | case RELAX_IMMED_STEP2: | |
6664 | /* Place the immediate. */ | |
6665 | new_stretch = relax_frag_immed (now_seg, fragP, stretch, | |
6666 | fragP->fr_subtype - RELAX_IMMED, | |
6667 | stretched_p); | |
6668 | break; | |
6669 | ||
6670 | case RELAX_LITERAL_POOL_BEGIN: | |
6671 | case RELAX_LITERAL_POOL_END: | |
6672 | /* No relaxation required. */ | |
6673 | break; | |
6674 | ||
6675 | default: | |
6676 | as_bad (_("bad relaxation state")); | |
6677 | } | |
6678 | ||
6679 | new_logical_line (file_name, line); | |
6680 | return new_stretch; | |
6681 | } | |
6682 | ||
6683 | ||
6684 | static long | |
6685 | relax_frag_text_align (fragP, stretch) | |
6686 | fragS *fragP; | |
6687 | long stretch; | |
6688 | { | |
6689 | addressT old_address, old_next_address, old_size; | |
6690 | addressT new_address, new_next_address, new_size; | |
6691 | addressT growth; | |
6692 | ||
6693 | /* Overview of the relaxation procedure for alignment | |
6694 | inside an executable section: | |
6695 | ||
6696 | The old size is stored in the tc_frag_data.text_expansion field. | |
6697 | ||
6698 | Calculate the new address, fix up the text_expansion and | |
6699 | return the growth. */ | |
6700 | ||
6701 | /* Calculate the old address of this fragment and the next fragment. */ | |
6702 | old_address = fragP->fr_address - stretch; | |
6703 | old_next_address = (fragP->fr_address - stretch + fragP->fr_fix + | |
6704 | fragP->tc_frag_data.text_expansion); | |
6705 | old_size = old_next_address - old_address; | |
6706 | ||
6707 | /* Calculate the new address of this fragment and the next fragment. */ | |
6708 | new_address = fragP->fr_address; | |
6709 | new_next_address = | |
6710 | get_noop_aligned_address (fragP, fragP->fr_address + fragP->fr_fix); | |
6711 | new_size = new_next_address - new_address; | |
6712 | ||
6713 | growth = new_size - old_size; | |
6714 | ||
6715 | /* Fix up the text_expansion field and return the new growth. */ | |
6716 | fragP->tc_frag_data.text_expansion += growth; | |
6717 | return growth; | |
6718 | } | |
6719 | ||
6720 | ||
6721 | /* Add a NOP (i.e., "or a1, a1, a1"). Use the 3-byte one because we | |
6722 | don't know about the availability of density yet. TODO: When the | |
6723 | flags are stored per fragment, use NOP.N when possible. */ | |
6724 | ||
6725 | static long | |
6726 | relax_frag_add_nop (fragP) | |
6727 | fragS *fragP; | |
6728 | { | |
6729 | static xtensa_insnbuf insnbuf = NULL; | |
6730 | TInsn t_insn; | |
6731 | char *nop_buf = fragP->fr_literal + fragP->fr_fix; | |
6732 | int length; | |
6733 | if (!insnbuf) | |
6734 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
6735 | ||
6736 | tinsn_init (&t_insn); | |
6737 | t_insn.opcode = xtensa_or_opcode; | |
6738 | assert (t_insn.opcode != XTENSA_UNDEFINED); | |
6739 | ||
6740 | t_insn.ntok = 3; | |
6741 | set_expr_const (&t_insn.tok[0], 1); | |
6742 | set_expr_const (&t_insn.tok[1], 1); | |
6743 | set_expr_const (&t_insn.tok[2], 1); | |
6744 | ||
6745 | tinsn_to_insnbuf (&t_insn, insnbuf); | |
6746 | fragP->tc_frag_data.is_insn = TRUE; | |
6747 | xtensa_insnbuf_to_chars (xtensa_default_isa, insnbuf, nop_buf); | |
6748 | ||
6749 | length = xtensa_insn_length (xtensa_default_isa, t_insn.opcode); | |
6750 | if (fragP->fr_var < length) | |
6751 | { | |
6752 | as_warn (_("fr_var (%ld) < length (%d); ignoring"), | |
6753 | fragP->fr_var, length); | |
6754 | frag_wane (fragP); | |
6755 | return 0; | |
6756 | } | |
6757 | ||
6758 | fragP->fr_fix += length; | |
6759 | fragP->fr_var -= length; | |
6760 | frag_wane (fragP); | |
6761 | return length; | |
6762 | } | |
6763 | ||
6764 | ||
6765 | static long | |
6766 | relax_frag_narrow (fragP, stretch) | |
6767 | fragS *fragP; | |
6768 | long stretch; | |
6769 | { | |
6770 | /* Overview of the relaxation procedure for alignment inside an | |
6771 | executable section: Find the number of widenings required and the | |
6772 | number of nop bytes required. Store the number of bytes ALREADY | |
6773 | widened. If there are enough instructions to widen (must go back | |
6774 | ONLY through NARROW fragments), mark each of the fragments as TO BE | |
6775 | widened, recalculate the fragment addresses. */ | |
6776 | ||
6777 | assert (fragP->fr_type == rs_machine_dependent | |
6778 | && fragP->fr_subtype == RELAX_NARROW); | |
6779 | ||
6780 | if (!future_alignment_required (fragP, 0)) | |
6781 | { | |
6782 | /* If already expanded but no longer needed because of a prior | |
6783 | stretch, it is SAFE to unexpand because the next fragment will | |
6784 | NEVER start at an address > the previous time through the | |
6785 | relaxation. */ | |
6786 | if (fragP->tc_frag_data.text_expansion) | |
6787 | { | |
6788 | if (stretch > 0) | |
6789 | { | |
6790 | fragP->tc_frag_data.text_expansion = 0; | |
6791 | return -1; | |
6792 | } | |
6793 | /* Otherwise we have to live with this bad choice. */ | |
6794 | return 0; | |
6795 | } | |
6796 | return 0; | |
6797 | } | |
6798 | ||
6799 | if (fragP->tc_frag_data.text_expansion == 0) | |
6800 | { | |
6801 | fragP->tc_frag_data.text_expansion = 1; | |
6802 | return 1; | |
6803 | } | |
6804 | ||
6805 | return 0; | |
6806 | } | |
6807 | ||
6808 | ||
6809 | static bfd_boolean | |
6810 | future_alignment_required (fragP, stretch) | |
6811 | fragS *fragP; | |
6812 | long stretch; | |
6813 | { | |
6814 | long address = fragP->fr_address + stretch; | |
6815 | int num_widens = 0; | |
6816 | addressT aligned_address; | |
6817 | offsetT desired_diff; | |
6818 | ||
6819 | while (fragP) | |
6820 | { | |
6821 | /* Limit this to a small search. */ | |
6822 | if (num_widens > 8) | |
6823 | return FALSE; | |
6824 | address += fragP->fr_fix; | |
6825 | ||
6826 | switch (fragP->fr_type) | |
6827 | { | |
6828 | case rs_fill: | |
6829 | address += fragP->fr_offset * fragP->fr_var; | |
6830 | break; | |
6831 | ||
6832 | case rs_machine_dependent: | |
6833 | switch (fragP->fr_subtype) | |
6834 | { | |
6835 | case RELAX_NARROW: | |
6836 | /* address += fragP->fr_fix; */ | |
6837 | num_widens++; | |
6838 | break; | |
6839 | ||
6840 | case RELAX_IMMED: | |
6841 | address += (/* fragP->fr_fix + */ | |
6842 | fragP->tc_frag_data.text_expansion); | |
6843 | break; | |
6844 | ||
6845 | case RELAX_ALIGN_NEXT_OPCODE: | |
6846 | case RELAX_DESIRE_ALIGN: | |
6847 | /* address += fragP->fr_fix; */ | |
6848 | aligned_address = get_widen_aligned_address (fragP, address); | |
6849 | desired_diff = aligned_address - address; | |
6850 | assert (desired_diff >= 0); | |
6851 | /* If there are enough wideners in between do it. */ | |
6852 | /* return (num_widens == desired_diff); */ | |
6853 | if (num_widens == desired_diff) | |
6854 | return TRUE; | |
6855 | if (fragP->fr_subtype == RELAX_ALIGN_NEXT_OPCODE) | |
6856 | return FALSE; | |
6857 | break; | |
6858 | ||
6859 | default: | |
6860 | return FALSE; | |
6861 | } | |
6862 | break; | |
6863 | ||
6864 | default: | |
6865 | return FALSE; | |
6866 | } | |
6867 | fragP = fragP->fr_next; | |
6868 | } | |
6869 | ||
6870 | return FALSE; | |
6871 | } | |
6872 | ||
6873 | ||
6874 | static long | |
6875 | relax_frag_immed (segP, fragP, stretch, min_steps, stretched_p) | |
6876 | segT segP; | |
6877 | fragS *fragP; | |
6878 | long stretch; | |
6879 | int min_steps; | |
6880 | int *stretched_p; | |
6881 | { | |
6882 | static xtensa_insnbuf insnbuf = NULL; | |
6883 | TInsn t_insn; | |
6884 | int old_size; | |
6885 | bfd_boolean negatable_branch = FALSE; | |
6886 | bfd_boolean branch_jmp_to_next = FALSE; | |
6887 | IStack istack; | |
6888 | offsetT frag_offset; | |
6889 | int num_steps; | |
6890 | fragS *lit_fragP; | |
6891 | int num_text_bytes, num_literal_bytes; | |
6892 | int literal_diff, text_diff; | |
6893 | ||
6894 | assert (fragP->fr_opcode != NULL); | |
6895 | ||
6896 | if (!insnbuf) | |
6897 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
6898 | ||
6899 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
6900 | tinsn_immed_from_frag (&t_insn, fragP); | |
6901 | ||
6902 | negatable_branch = is_negatable_branch (&t_insn); | |
6903 | ||
6904 | old_size = xtensa_insn_length (xtensa_default_isa, t_insn.opcode); | |
6905 | ||
6906 | if (software_avoid_b_j_loop_end) | |
6907 | branch_jmp_to_next = is_branch_jmp_to_next (&t_insn, fragP); | |
6908 | ||
6909 | /* Special case: replace a branch to the next instruction with a NOP. | |
6910 | This is required to work around a hardware bug in T1040.0 and also | |
6911 | serves as an optimization. */ | |
6912 | ||
6913 | if (branch_jmp_to_next | |
6914 | && ((old_size == 2) || (old_size == 3)) | |
6915 | && !next_frag_is_loop_target (fragP)) | |
6916 | return 0; | |
6917 | ||
6918 | /* Here is the fun stuff: Get the immediate field from this | |
6919 | instruction. If it fits, we are done. If not, find the next | |
6920 | instruction sequence that fits. */ | |
6921 | ||
6922 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
6923 | istack_init (&istack); | |
6924 | num_steps = xg_assembly_relax (&istack, &t_insn, segP, fragP, frag_offset, | |
6925 | min_steps, stretch); | |
6926 | if (num_steps < min_steps) | |
6927 | { | |
6928 | as_fatal (_("internal error: relaxation failed")); | |
6929 | return 0; | |
6930 | } | |
6931 | ||
6932 | if (num_steps > RELAX_IMMED_MAXSTEPS) | |
6933 | { | |
6934 | as_fatal (_("internal error: relaxation requires too many steps")); | |
6935 | return 0; | |
6936 | } | |
6937 | ||
6938 | fragP->fr_subtype = (int) RELAX_IMMED + num_steps; | |
6939 | ||
6940 | /* Figure out the number of bytes needed. */ | |
6941 | lit_fragP = 0; | |
6942 | num_text_bytes = get_num_stack_text_bytes (&istack) - old_size; | |
6943 | num_literal_bytes = get_num_stack_literal_bytes (&istack); | |
6944 | literal_diff = num_literal_bytes - fragP->tc_frag_data.literal_expansion; | |
6945 | text_diff = num_text_bytes - fragP->tc_frag_data.text_expansion; | |
6946 | ||
6947 | /* It MUST get larger. If not, we could get an infinite loop. */ | |
6948 | know (num_text_bytes >= 0); | |
6949 | know (literal_diff >= 0 && text_diff >= 0); | |
6950 | ||
6951 | fragP->tc_frag_data.text_expansion = num_text_bytes; | |
6952 | fragP->tc_frag_data.literal_expansion = num_literal_bytes; | |
6953 | ||
6954 | /* Find the associated expandable literal for this. */ | |
6955 | if (literal_diff != 0) | |
6956 | { | |
6957 | lit_fragP = fragP->tc_frag_data.literal_frag; | |
6958 | if (lit_fragP) | |
6959 | { | |
6960 | assert (literal_diff == 4); | |
6961 | lit_fragP->tc_frag_data.unreported_expansion += literal_diff; | |
6962 | ||
6963 | /* We expect that the literal section state has NOT been | |
6964 | modified yet. */ | |
6965 | assert (lit_fragP->fr_type == rs_machine_dependent | |
6966 | && lit_fragP->fr_subtype == RELAX_LITERAL); | |
6967 | lit_fragP->fr_subtype = RELAX_LITERAL_NR; | |
6968 | ||
6969 | /* We need to mark this section for another iteration | |
6970 | of relaxation. */ | |
6971 | (*stretched_p)++; | |
6972 | } | |
6973 | } | |
6974 | ||
6975 | /* This implicitly uses the assumption that a branch is negated | |
6976 | when the size of the output increases by at least 2 bytes. */ | |
6977 | ||
6978 | if (negatable_branch && num_text_bytes >= 2) | |
6979 | { | |
6980 | /* If next frag is a loop end, then switch it to add a NOP. */ | |
6981 | update_next_frag_nop_state (fragP); | |
6982 | } | |
6983 | ||
6984 | return text_diff; | |
6985 | } | |
6986 | ||
6987 | \f | |
6988 | /* md_convert_frag Hook and Helper Functions. */ | |
6989 | ||
6990 | void | |
6991 | md_convert_frag (abfd, sec, fragp) | |
6992 | bfd *abfd ATTRIBUTE_UNUSED; | |
6993 | segT sec; | |
6994 | fragS *fragp; | |
6995 | { | |
6996 | char *file_name; | |
6997 | int line; | |
6998 | ||
6999 | as_where (&file_name, &line); | |
7000 | new_logical_line (fragp->fr_file, fragp->fr_line); | |
7001 | ||
7002 | switch (fragp->fr_subtype) | |
7003 | { | |
7004 | case RELAX_ALIGN_NEXT_OPCODE: | |
7005 | /* Always convert. */ | |
7006 | convert_frag_align_next_opcode (fragp); | |
7007 | break; | |
7008 | ||
7009 | case RELAX_DESIRE_ALIGN: | |
7010 | /* Do nothing. If not aligned already, too bad. */ | |
7011 | break; | |
7012 | ||
7013 | case RELAX_LITERAL: | |
7014 | case RELAX_LITERAL_FINAL: | |
7015 | break; | |
7016 | ||
7017 | case RELAX_NARROW: | |
7018 | /* No conversion. */ | |
7019 | convert_frag_narrow (fragp); | |
7020 | break; | |
7021 | ||
7022 | case RELAX_IMMED: | |
7023 | case RELAX_IMMED_STEP1: | |
7024 | case RELAX_IMMED_STEP2: | |
7025 | /* Place the immediate. */ | |
7026 | convert_frag_immed (sec, fragp, fragp->fr_subtype - RELAX_IMMED); | |
7027 | break; | |
7028 | ||
7029 | case RELAX_LITERAL_NR: | |
7030 | if (use_literal_section) | |
7031 | { | |
7032 | /* This should have been handled during relaxation. When | |
7033 | relaxing a code segment, literals sometimes need to be | |
7034 | added to the corresponding literal segment. If that | |
7035 | literal segment has already been relaxed, then we end up | |
7036 | in this situation. Marking the literal segments as data | |
7037 | would make this happen less often (since GAS always relaxes | |
7038 | code before data), but we could still get into trouble if | |
7039 | there are instructions in a segment that is not marked as | |
7040 | containing code. Until we can implement a better solution, | |
7041 | cheat and adjust the addresses of all the following frags. | |
7042 | This could break subsequent alignments, but the linker's | |
7043 | literal coalescing will do that anyway. */ | |
7044 | ||
7045 | fragS *f; | |
7046 | fragp->fr_subtype = RELAX_LITERAL_FINAL; | |
7047 | assert (fragp->tc_frag_data.unreported_expansion == 4); | |
7048 | memset (&fragp->fr_literal[fragp->fr_fix], 0, 4); | |
7049 | fragp->fr_var -= 4; | |
7050 | fragp->fr_fix += 4; | |
7051 | for (f = fragp->fr_next; f; f = f->fr_next) | |
7052 | f->fr_address += 4; | |
7053 | } | |
7054 | else | |
7055 | as_bad (_("invalid relaxation fragment result")); | |
7056 | break; | |
7057 | } | |
7058 | ||
7059 | fragp->fr_var = 0; | |
7060 | new_logical_line (file_name, line); | |
7061 | } | |
7062 | ||
7063 | ||
7064 | void | |
7065 | convert_frag_align_next_opcode (fragp) | |
7066 | fragS *fragp; | |
7067 | { | |
7068 | char *nop_buf; /* Location for Writing. */ | |
7069 | size_t i; | |
7070 | ||
7071 | bfd_boolean use_no_density = fragp->tc_frag_data.is_no_density; | |
7072 | addressT aligned_address; | |
7073 | size_t fill_size, nop_count; | |
7074 | ||
7075 | aligned_address = get_noop_aligned_address (fragp, fragp->fr_address + | |
7076 | fragp->fr_fix); | |
7077 | fill_size = aligned_address - (fragp->fr_address + fragp->fr_fix); | |
7078 | nop_count = get_text_align_nop_count (fill_size, use_no_density); | |
7079 | nop_buf = fragp->fr_literal + fragp->fr_fix; | |
7080 | ||
7081 | for (i = 0; i < nop_count; i++) | |
7082 | { | |
7083 | size_t nop_size; | |
7084 | nop_size = get_text_align_nth_nop_size (fill_size, i, use_no_density); | |
7085 | ||
7086 | assemble_nop (nop_size, nop_buf); | |
7087 | nop_buf += nop_size; | |
7088 | } | |
7089 | ||
7090 | fragp->fr_fix += fill_size; | |
7091 | fragp->fr_var -= fill_size; | |
7092 | } | |
7093 | ||
7094 | ||
7095 | static void | |
7096 | convert_frag_narrow (fragP) | |
7097 | fragS *fragP; | |
7098 | { | |
7099 | static xtensa_insnbuf insnbuf = NULL; | |
7100 | TInsn t_insn, single_target; | |
7101 | int size, old_size, diff, error_val; | |
7102 | offsetT frag_offset; | |
7103 | ||
7104 | if (fragP->tc_frag_data.text_expansion == 0) | |
7105 | { | |
7106 | /* No conversion. */ | |
7107 | fragP->fr_var = 0; | |
7108 | return; | |
7109 | } | |
7110 | ||
7111 | assert (fragP->fr_opcode != NULL); | |
7112 | ||
7113 | if (!insnbuf) | |
7114 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
7115 | ||
7116 | tinsn_from_chars (&t_insn, fragP->fr_opcode); | |
7117 | tinsn_immed_from_frag (&t_insn, fragP); | |
7118 | ||
7119 | /* Just convert it to a wide form.... */ | |
7120 | size = 0; | |
7121 | old_size = xtensa_insn_length (xtensa_default_isa, t_insn.opcode); | |
7122 | ||
7123 | tinsn_init (&single_target); | |
7124 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
7125 | ||
7126 | error_val = xg_expand_narrow (&single_target, &t_insn); | |
7127 | if (error_val) | |
7128 | as_bad (_("unable to widen instruction")); | |
7129 | ||
7130 | size = xtensa_insn_length (xtensa_default_isa, single_target.opcode); | |
7131 | xg_emit_insn_to_buf (&single_target, fragP->fr_opcode, | |
7132 | fragP, frag_offset, TRUE); | |
7133 | ||
7134 | diff = size - old_size; | |
7135 | assert (diff >= 0); | |
7136 | assert (diff <= fragP->fr_var); | |
7137 | fragP->fr_var -= diff; | |
7138 | fragP->fr_fix += diff; | |
7139 | ||
7140 | /* clean it up */ | |
7141 | fragP->fr_var = 0; | |
7142 | } | |
7143 | ||
7144 | ||
7145 | static void | |
7146 | convert_frag_immed (segP, fragP, min_steps) | |
7147 | segT segP; | |
7148 | fragS *fragP; | |
7149 | int min_steps; | |
7150 | { | |
7151 | char *immed_instr = fragP->fr_opcode; | |
7152 | static xtensa_insnbuf insnbuf = NULL; | |
7153 | TInsn orig_t_insn; | |
7154 | bfd_boolean expanded = FALSE; | |
7155 | char *fr_opcode = fragP->fr_opcode; | |
7156 | bfd_boolean branch_jmp_to_next = FALSE; | |
7157 | int size; | |
7158 | ||
7159 | assert (fragP->fr_opcode != NULL); | |
7160 | ||
7161 | if (!insnbuf) | |
7162 | insnbuf = xtensa_insnbuf_alloc (xtensa_default_isa); | |
7163 | ||
7164 | tinsn_from_chars (&orig_t_insn, fragP->fr_opcode); | |
7165 | tinsn_immed_from_frag (&orig_t_insn, fragP); | |
7166 | ||
7167 | /* Here is the fun stuff: Get the immediate field from this | |
7168 | instruction. If it fits, we're done. If not, find the next | |
7169 | instruction sequence that fits. */ | |
7170 | ||
7171 | if (software_avoid_b_j_loop_end) | |
7172 | branch_jmp_to_next = is_branch_jmp_to_next (&orig_t_insn, fragP); | |
7173 | ||
7174 | if (branch_jmp_to_next && !next_frag_is_loop_target (fragP)) | |
7175 | { | |
7176 | /* Conversion just inserts a NOP and marks the fix as completed. */ | |
7177 | size = xtensa_insn_length (xtensa_default_isa, orig_t_insn.opcode); | |
7178 | assemble_nop (size, fragP->fr_opcode); | |
7179 | fragP->fr_var = 0; | |
7180 | } | |
7181 | else | |
7182 | { | |
7183 | IStack istack; | |
7184 | int i; | |
7185 | symbolS *lit_sym = NULL; | |
7186 | int total_size = 0; | |
7187 | int old_size; | |
7188 | int diff; | |
7189 | symbolS *gen_label = NULL; | |
7190 | offsetT frag_offset; | |
7191 | ||
7192 | /* It does not fit. Find something that does and | |
7193 | convert immediately. */ | |
7194 | frag_offset = fragP->fr_opcode - fragP->fr_literal; | |
7195 | istack_init (&istack); | |
7196 | xg_assembly_relax (&istack, &orig_t_insn, | |
7197 | segP, fragP, frag_offset, min_steps, 0); | |
7198 | ||
7199 | old_size = xtensa_insn_length (xtensa_default_isa, orig_t_insn.opcode); | |
7200 | ||
7201 | /* Assemble this right inline. */ | |
7202 | ||
7203 | /* First, create the mapping from a label name to the REAL label. */ | |
7204 | total_size = 0; | |
7205 | for (i = 0; i < istack.ninsn; i++) | |
7206 | { | |
7207 | TInsn *t_insn = &istack.insn[i]; | |
7208 | int size = 0; | |
7209 | fragS *lit_frag; | |
7210 | ||
7211 | switch (t_insn->insn_type) | |
7212 | { | |
7213 | case ITYPE_LITERAL: | |
7214 | if (lit_sym != NULL) | |
7215 | as_bad (_("multiple literals in expansion")); | |
7216 | /* First find the appropriate space in the literal pool. */ | |
7217 | lit_frag = fragP->tc_frag_data.literal_frag; | |
7218 | if (lit_frag == NULL) | |
7219 | as_bad (_("no registered fragment for literal")); | |
7220 | if (t_insn->ntok != 1) | |
7221 | as_bad (_("number of literal tokens != 1")); | |
7222 | ||
7223 | /* Set the literal symbol and add a fixup. */ | |
7224 | lit_sym = lit_frag->fr_symbol; | |
7225 | break; | |
7226 | ||
7227 | case ITYPE_LABEL: | |
7228 | assert (gen_label == NULL); | |
7229 | gen_label = symbol_new (FAKE_LABEL_NAME, now_seg, | |
7230 | fragP->fr_opcode - fragP->fr_literal + | |
7231 | total_size, fragP); | |
7232 | break; | |
7233 | ||
7234 | case ITYPE_INSN: | |
7235 | size = xtensa_insn_length (xtensa_default_isa, t_insn->opcode); | |
7236 | total_size += size; | |
7237 | break; | |
7238 | } | |
7239 | } | |
7240 | ||
7241 | total_size = 0; | |
7242 | for (i = 0; i < istack.ninsn; i++) | |
7243 | { | |
7244 | TInsn *t_insn = &istack.insn[i]; | |
7245 | fragS *lit_frag; | |
7246 | int size; | |
7247 | segT target_seg; | |
7248 | ||
7249 | switch (t_insn->insn_type) | |
7250 | { | |
7251 | case ITYPE_LITERAL: | |
7252 | lit_frag = fragP->tc_frag_data.literal_frag; | |
7253 | /* already checked */ | |
7254 | assert (lit_frag != NULL); | |
7255 | assert (lit_sym != NULL); | |
7256 | assert (t_insn->ntok == 1); | |
7257 | /* add a fixup */ | |
7258 | target_seg = S_GET_SEGMENT (lit_sym); | |
7259 | assert (target_seg); | |
7260 | fix_new_exp_in_seg (target_seg, 0, lit_frag, 0, 4, | |
7261 | &t_insn->tok[0], FALSE, BFD_RELOC_32); | |
7262 | break; | |
7263 | ||
7264 | case ITYPE_LABEL: | |
7265 | break; | |
7266 | ||
7267 | case ITYPE_INSN: | |
7268 | xg_resolve_labels (t_insn, gen_label); | |
7269 | xg_resolve_literals (t_insn, lit_sym); | |
7270 | size = xtensa_insn_length (xtensa_default_isa, t_insn->opcode); | |
7271 | total_size += size; | |
7272 | xg_emit_insn_to_buf (t_insn, immed_instr, fragP, | |
7273 | immed_instr - fragP->fr_literal, TRUE); | |
7274 | immed_instr += size; | |
7275 | break; | |
7276 | } | |
7277 | } | |
7278 | ||
7279 | diff = total_size - old_size; | |
7280 | assert (diff >= 0); | |
7281 | if (diff != 0) | |
7282 | expanded = TRUE; | |
7283 | assert (diff <= fragP->fr_var); | |
7284 | fragP->fr_var -= diff; | |
7285 | fragP->fr_fix += diff; | |
7286 | } | |
7287 | ||
7288 | /* Clean it up. */ | |
7289 | fragP->fr_var = 0; | |
7290 | ||
7291 | /* Check for undefined immediates in LOOP instructions. */ | |
7292 | if (is_loop_opcode (orig_t_insn.opcode)) | |
7293 | { | |
7294 | symbolS *sym; | |
7295 | sym = orig_t_insn.tok[1].X_add_symbol; | |
7296 | if (sym != NULL && !S_IS_DEFINED (sym)) | |
7297 | { | |
7298 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
7299 | return; | |
7300 | } | |
7301 | sym = orig_t_insn.tok[1].X_op_symbol; | |
7302 | if (sym != NULL && !S_IS_DEFINED (sym)) | |
7303 | { | |
7304 | as_bad (_("unresolved loop target symbol: %s"), S_GET_NAME (sym)); | |
7305 | return; | |
7306 | } | |
7307 | } | |
7308 | ||
7309 | if (expanded && is_loop_opcode (orig_t_insn.opcode)) | |
7310 | convert_frag_immed_finish_loop (segP, fragP, &orig_t_insn); | |
7311 | ||
7312 | if (expanded && is_direct_call_opcode (orig_t_insn.opcode)) | |
7313 | { | |
7314 | /* Add an expansion note on the expanded instruction. */ | |
7315 | fix_new_exp_in_seg (now_seg, 0, fragP, fr_opcode - fragP->fr_literal, 4, | |
7316 | &orig_t_insn.tok[0], TRUE, | |
7317 | BFD_RELOC_XTENSA_ASM_EXPAND); | |
7318 | ||
7319 | } | |
7320 | } | |
7321 | ||
7322 | ||
7323 | /* Add a new fix expression into the desired segment. We have to | |
7324 | switch to that segment to do this. */ | |
7325 | ||
7326 | static fixS * | |
7327 | fix_new_exp_in_seg (new_seg, new_subseg, | |
7328 | frag, where, size, exp, pcrel, r_type) | |
7329 | segT new_seg; | |
7330 | subsegT new_subseg; | |
7331 | fragS *frag; | |
7332 | int where; | |
7333 | int size; | |
7334 | expressionS *exp; | |
7335 | int pcrel; | |
7336 | bfd_reloc_code_real_type r_type; | |
7337 | { | |
7338 | fixS *new_fix; | |
7339 | segT seg = now_seg; | |
7340 | subsegT subseg = now_subseg; | |
7341 | assert (new_seg != 0); | |
7342 | subseg_set (new_seg, new_subseg); | |
7343 | ||
7344 | if (r_type == BFD_RELOC_32 | |
7345 | && exp->X_add_symbol | |
7346 | && exp->X_add_symbol->sy_tc.plt == 1) | |
7347 | { | |
7348 | r_type = BFD_RELOC_XTENSA_PLT; | |
7349 | } | |
7350 | ||
7351 | new_fix = fix_new_exp (frag, where, size, exp, pcrel, r_type); | |
7352 | subseg_set (seg, subseg); | |
7353 | return new_fix; | |
7354 | } | |
7355 | ||
7356 | ||
7357 | /* Relax a loop instruction so that it can span loop >256 bytes. */ | |
7358 | /* | |
7359 | loop as, .L1 | |
7360 | .L0: | |
7361 | rsr as, LEND | |
7362 | wsr as, LBEG | |
7363 | addi as, as, lo8(label-.L1) | |
7364 | addmi as, as, mid8(label-.L1) | |
7365 | wsr as, LEND | |
7366 | isync | |
7367 | rsr as, LCOUNT | |
7368 | addi as, as, 1 | |
7369 | .L1: | |
7370 | <<body>> | |
7371 | label: */ | |
7372 | ||
7373 | static void | |
7374 | convert_frag_immed_finish_loop (segP, fragP, t_insn) | |
7375 | segT segP; | |
7376 | fragS *fragP; | |
7377 | TInsn *t_insn; | |
7378 | { | |
7379 | TInsn loop_insn; | |
7380 | TInsn addi_insn; | |
7381 | TInsn addmi_insn; | |
7382 | unsigned long target; | |
7383 | static xtensa_insnbuf insnbuf = NULL; | |
7384 | unsigned int loop_length, loop_length_hi, loop_length_lo; | |
7385 | xtensa_isa isa = xtensa_default_isa; | |
7386 | addressT loop_offset; | |
7387 | addressT addi_offset = 9; | |
7388 | addressT addmi_offset = 12; | |
7389 | ||
7390 | if (!insnbuf) | |
7391 | insnbuf = xtensa_insnbuf_alloc (isa); | |
7392 | ||
7393 | /* Get the loop offset. */ | |
7394 | loop_offset = get_expanded_loop_offset (t_insn->opcode); | |
7395 | /* Validate that there really is a LOOP at the loop_offset. */ | |
7396 | tinsn_from_chars (&loop_insn, fragP->fr_opcode + loop_offset); | |
7397 | ||
7398 | if (!is_loop_opcode (loop_insn.opcode)) | |
7399 | { | |
7400 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
7401 | _("loop relaxation specification does not correspond")); | |
7402 | assert (0); | |
7403 | } | |
7404 | addi_offset += loop_offset; | |
7405 | addmi_offset += loop_offset; | |
7406 | ||
7407 | assert (t_insn->ntok == 2); | |
7408 | target = get_expression_value (segP, &t_insn->tok[1]); | |
7409 | ||
7410 | know (symbolP); | |
7411 | know (symbolP->sy_frag); | |
7412 | know (!(S_GET_SEGMENT (symbolP) == absolute_section) | |
7413 | || symbol_get_frag (symbolP) == &zero_address_frag); | |
7414 | ||
7415 | loop_length = target - (fragP->fr_address + fragP->fr_fix); | |
7416 | loop_length_hi = loop_length & ~0x0ff; | |
7417 | loop_length_lo = loop_length & 0x0ff; | |
7418 | if (loop_length_lo >= 128) | |
7419 | { | |
7420 | loop_length_lo -= 256; | |
7421 | loop_length_hi += 256; | |
7422 | } | |
7423 | ||
7424 | /* Because addmi sign-extends the immediate, 'loop_length_hi' can be at most | |
7425 | 32512. If the loop is larger than that, then we just fail. */ | |
7426 | if (loop_length_hi > 32512) | |
7427 | as_bad_where (fragP->fr_file, fragP->fr_line, | |
7428 | _("loop too long for LOOP instruction")); | |
7429 | ||
7430 | tinsn_from_chars (&addi_insn, fragP->fr_opcode + addi_offset); | |
7431 | assert (addi_insn.opcode == xtensa_addi_opcode); | |
7432 | ||
7433 | tinsn_from_chars (&addmi_insn, fragP->fr_opcode + addmi_offset); | |
7434 | assert (addmi_insn.opcode == xtensa_addmi_opcode); | |
7435 | ||
7436 | set_expr_const (&addi_insn.tok[2], loop_length_lo); | |
7437 | tinsn_to_insnbuf (&addi_insn, insnbuf); | |
7438 | ||
7439 | fragP->tc_frag_data.is_insn = TRUE; | |
7440 | xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addi_offset); | |
7441 | ||
7442 | set_expr_const (&addmi_insn.tok[2], loop_length_hi); | |
7443 | tinsn_to_insnbuf (&addmi_insn, insnbuf); | |
7444 | xtensa_insnbuf_to_chars (isa, insnbuf, fragP->fr_opcode + addmi_offset); | |
7445 | } | |
7446 | ||
7447 | ||
7448 | static offsetT | |
7449 | get_expression_value (segP, exp) | |
7450 | segT segP; | |
7451 | expressionS *exp; | |
7452 | { | |
7453 | if (exp->X_op == O_constant) | |
7454 | return exp->X_add_number; | |
7455 | if (exp->X_op == O_symbol) | |
7456 | { | |
7457 | /* Find the fragment. */ | |
7458 | symbolS *sym = exp->X_add_symbol; | |
7459 | ||
7460 | assert (S_GET_SEGMENT (sym) == segP | |
7461 | || S_GET_SEGMENT (sym) == absolute_section); | |
7462 | ||
7463 | return (S_GET_VALUE (sym) + exp->X_add_number); | |
7464 | } | |
7465 | as_bad (_("invalid expression evaluation type %d"), exp->X_op); | |
7466 | return 0; | |
7467 | } | |
7468 | ||
7469 | \f | |
7470 | /* A map that keeps information on a per-subsegment basis. This is | |
7471 | maintained during initial assembly, but is invalid once the | |
7472 | subsegments are smashed together. I.E., it cannot be used during | |
7473 | the relaxation. */ | |
7474 | ||
7475 | typedef struct subseg_map_struct | |
7476 | { | |
7477 | /* the key */ | |
7478 | segT seg; | |
7479 | subsegT subseg; | |
7480 | ||
7481 | /* the data */ | |
7482 | unsigned flags; | |
7483 | ||
7484 | struct subseg_map_struct *next; | |
7485 | } subseg_map; | |
7486 | ||
7487 | static subseg_map *sseg_map = NULL; | |
7488 | ||
7489 | ||
7490 | static unsigned | |
7491 | get_last_insn_flags (seg, subseg) | |
7492 | segT seg; | |
7493 | subsegT subseg; | |
7494 | { | |
7495 | subseg_map *subseg_e; | |
7496 | ||
7497 | for (subseg_e = sseg_map; subseg_e != NULL; subseg_e = subseg_e->next) | |
7498 | if (seg == subseg_e->seg && subseg == subseg_e->subseg) | |
7499 | return subseg_e->flags; | |
7500 | ||
7501 | return 0; | |
7502 | } | |
7503 | ||
7504 | ||
7505 | static void | |
7506 | set_last_insn_flags (seg, subseg, fl, val) | |
7507 | segT seg; | |
7508 | subsegT subseg; | |
7509 | unsigned fl; | |
7510 | bfd_boolean val; | |
7511 | { | |
7512 | subseg_map *subseg_e; | |
7513 | ||
7514 | for (subseg_e = sseg_map; subseg_e; subseg_e = subseg_e->next) | |
7515 | if (seg == subseg_e->seg && subseg == subseg_e->subseg) | |
7516 | break; | |
7517 | ||
7518 | if (!subseg_e) | |
7519 | { | |
7520 | subseg_e = (subseg_map *) xmalloc (sizeof (subseg_map)); | |
7521 | memset (subseg_e, 0, sizeof (subseg_map)); | |
7522 | subseg_e->seg = seg; | |
7523 | subseg_e->subseg = subseg; | |
7524 | subseg_e->flags = 0; | |
7525 | subseg_e->next = sseg_map; | |
7526 | sseg_map = subseg_e; | |
7527 | } | |
7528 | ||
7529 | if (val) | |
7530 | subseg_e->flags |= fl; | |
7531 | else | |
7532 | subseg_e->flags &= ~fl; | |
7533 | } | |
7534 | ||
7535 | \f | |
7536 | /* Segment Lists and emit_state Stuff. */ | |
7537 | ||
7538 | /* Remove the segment from the global sections list. */ | |
7539 | ||
7540 | static void | |
7541 | xtensa_remove_section (sec) | |
7542 | segT sec; | |
7543 | { | |
7544 | /* Handle brain-dead bfd_section_list_remove macro, which | |
7545 | expect the address of the prior section's "next" field, not | |
7546 | just the address of the section to remove. */ | |
7547 | ||
7548 | segT *ps_next_ptr = &stdoutput->sections; | |
7549 | while (*ps_next_ptr != sec && *ps_next_ptr != NULL) | |
7550 | ps_next_ptr = &(*ps_next_ptr)->next; | |
7551 | ||
7552 | assert (*ps_next_ptr != NULL); | |
7553 | ||
7554 | bfd_section_list_remove (stdoutput, ps_next_ptr); | |
7555 | } | |
7556 | ||
7557 | ||
7558 | static void | |
7559 | xtensa_insert_section (after_sec, sec) | |
7560 | segT after_sec; | |
7561 | segT sec; | |
7562 | { | |
7563 | segT *after_sec_next; | |
7564 | if (after_sec == NULL) | |
7565 | after_sec_next = &stdoutput->sections; | |
7566 | else | |
7567 | after_sec_next = &after_sec->next; | |
7568 | ||
7569 | bfd_section_list_insert (stdoutput, after_sec_next, sec); | |
7570 | } | |
7571 | ||
7572 | ||
7573 | static void | |
7574 | xtensa_move_seg_list_to_beginning (head) | |
7575 | seg_list *head; | |
7576 | { | |
7577 | head = head->next; | |
7578 | while (head) | |
7579 | { | |
7580 | segT literal_section = head->seg; | |
7581 | ||
7582 | /* Move the literal section to the front of the section list. */ | |
7583 | assert (literal_section); | |
7584 | xtensa_remove_section (literal_section); | |
7585 | xtensa_insert_section (NULL, literal_section); | |
7586 | ||
7587 | head = head->next; | |
7588 | } | |
7589 | } | |
7590 | ||
7591 | ||
7592 | void | |
7593 | xtensa_move_literals () | |
7594 | { | |
7595 | seg_list *segment; | |
7596 | frchainS *frchain_from, *frchain_to; | |
7597 | fragS *search_frag, *next_frag, *last_frag, *literal_pool, *insert_after; | |
7598 | fragS **frag_splice; | |
7599 | emit_state state; | |
7600 | segT dest_seg; | |
7601 | fixS *fix, *next_fix, **fix_splice; | |
7602 | ||
7603 | /* As clunky as this is, we can't rely on frag_var | |
7604 | and frag_variant to get called in all situations. */ | |
7605 | ||
7606 | segment = literal_head->next; | |
7607 | while (segment) | |
7608 | { | |
7609 | frchain_from = seg_info (segment->seg)->frchainP; | |
7610 | search_frag = frchain_from->frch_root; | |
7611 | while (search_frag) | |
7612 | { | |
7613 | search_frag->tc_frag_data.is_literal = TRUE; | |
7614 | search_frag = search_frag->fr_next; | |
7615 | } | |
7616 | segment = segment->next; | |
7617 | } | |
7618 | ||
7619 | if (use_literal_section) | |
7620 | return; | |
7621 | ||
7622 | segment = literal_head->next; | |
7623 | while (segment) | |
7624 | { | |
7625 | frchain_from = seg_info (segment->seg)->frchainP; | |
7626 | search_frag = frchain_from->frch_root; | |
7627 | literal_pool = NULL; | |
7628 | frchain_to = NULL; | |
7629 | frag_splice = &(frchain_from->frch_root); | |
7630 | ||
7631 | while (!search_frag->tc_frag_data.literal_frag) | |
7632 | { | |
7633 | assert (search_frag->fr_fix == 0 | |
7634 | || search_frag->fr_type == rs_align); | |
7635 | search_frag = search_frag->fr_next; | |
7636 | } | |
7637 | ||
7638 | assert (search_frag->tc_frag_data.literal_frag->fr_subtype | |
7639 | == RELAX_LITERAL_POOL_BEGIN); | |
7640 | xtensa_switch_section_emit_state (&state, segment->seg, 0); | |
7641 | ||
7642 | /* Make sure that all the frags in this series are closed, and | |
7643 | that there is at least one left over of zero-size. This | |
7644 | prevents us from making a segment with an frchain without any | |
7645 | frags in it. */ | |
7646 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
7647 | last_frag = frag_now; | |
7648 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
7649 | ||
7650 | while (search_frag != frag_now) | |
7651 | { | |
7652 | next_frag = search_frag->fr_next; | |
7653 | ||
7654 | /* First, move the frag out of the literal section and | |
7655 | to the appropriate place. */ | |
7656 | if (search_frag->tc_frag_data.literal_frag) | |
7657 | { | |
7658 | literal_pool = search_frag->tc_frag_data.literal_frag; | |
7659 | assert (literal_pool->fr_subtype == RELAX_LITERAL_POOL_BEGIN); | |
7660 | /* Note that we set this fr_var to be a fix | |
7661 | chain when we created the literal pool location | |
7662 | as RELAX_LITERAL_POOL_BEGIN. */ | |
7663 | frchain_to = (frchainS *) literal_pool->fr_var; | |
7664 | } | |
7665 | insert_after = literal_pool; | |
7666 | ||
7667 | while (insert_after->fr_next->fr_subtype != RELAX_LITERAL_POOL_END) | |
7668 | insert_after = insert_after->fr_next; | |
7669 | ||
7670 | dest_seg = (segT) insert_after->fr_next->fr_var; | |
7671 | ||
7672 | *frag_splice = next_frag; | |
7673 | search_frag->fr_next = insert_after->fr_next; | |
7674 | insert_after->fr_next = search_frag; | |
7675 | search_frag->tc_frag_data.lit_seg = dest_seg; | |
7676 | ||
7677 | /* Now move any fixups associated with this frag to the | |
7678 | right section. */ | |
7679 | fix = frchain_from->fix_root; | |
7680 | fix_splice = &(frchain_from->fix_root); | |
7681 | while (fix) | |
7682 | { | |
7683 | next_fix = fix->fx_next; | |
7684 | if (fix->fx_frag == search_frag) | |
7685 | { | |
7686 | *fix_splice = next_fix; | |
7687 | fix->fx_next = frchain_to->fix_root; | |
7688 | frchain_to->fix_root = fix; | |
7689 | if (frchain_to->fix_tail == NULL) | |
7690 | frchain_to->fix_tail = fix; | |
7691 | } | |
7692 | else | |
7693 | fix_splice = &(fix->fx_next); | |
7694 | fix = next_fix; | |
7695 | } | |
7696 | search_frag = next_frag; | |
7697 | } | |
7698 | ||
7699 | if (frchain_from->fix_root != NULL) | |
7700 | { | |
7701 | frchain_from = seg_info (segment->seg)->frchainP; | |
7702 | as_warn (_("fixes not all moved from %s"), segment->seg->name); | |
7703 | ||
7704 | assert (frchain_from->fix_root == NULL); | |
7705 | } | |
7706 | frchain_from->fix_tail = NULL; | |
7707 | xtensa_restore_emit_state (&state); | |
7708 | segment = segment->next; | |
7709 | } | |
7710 | ||
7711 | xtensa_move_frag_symbols (); | |
7712 | } | |
7713 | ||
7714 | ||
7715 | static void | |
7716 | xtensa_move_frag_symbol (sym) | |
7717 | symbolS *sym; | |
7718 | { | |
7719 | fragS *frag = symbol_get_frag (sym); | |
7720 | ||
7721 | if (frag->tc_frag_data.lit_seg != (segT) 0) | |
7722 | S_SET_SEGMENT (sym, frag->tc_frag_data.lit_seg); | |
7723 | } | |
7724 | ||
7725 | ||
7726 | static void | |
7727 | xtensa_move_frag_symbols () | |
7728 | { | |
7729 | symbolS *symbolP; | |
7730 | ||
7731 | /* Although you might think that only one of these lists should be | |
7732 | searched, it turns out that the difference of the two sets | |
7733 | (either way) is not empty. They do overlap quite a bit, | |
7734 | however. */ | |
7735 | ||
7736 | for (symbolP = symbol_rootP; symbolP; symbolP = symbolP->sy_next) | |
7737 | xtensa_move_frag_symbol (symbolP); | |
7738 | ||
7739 | map_over_defined_symbols (xtensa_move_frag_symbol); | |
7740 | } | |
7741 | ||
7742 | ||
7743 | static void | |
7744 | xtensa_reorder_seg_list (head, after) | |
7745 | seg_list *head; | |
7746 | segT after; | |
7747 | { | |
7748 | /* Move all of the sections in the section list to come | |
7749 | after "after" in the gnu segment list. */ | |
7750 | ||
7751 | head = head->next; | |
7752 | while (head) | |
7753 | { | |
7754 | segT literal_section = head->seg; | |
7755 | ||
7756 | /* Move the literal section after "after". */ | |
7757 | assert (literal_section); | |
7758 | if (literal_section != after) | |
7759 | { | |
7760 | xtensa_remove_section (literal_section); | |
7761 | xtensa_insert_section (after, literal_section); | |
7762 | } | |
7763 | ||
7764 | head = head->next; | |
7765 | } | |
7766 | } | |
7767 | ||
7768 | ||
7769 | /* Push all the literal segments to the end of the gnu list. */ | |
7770 | ||
7771 | void | |
7772 | xtensa_reorder_segments () | |
7773 | { | |
7774 | segT sec; | |
7775 | segT last_sec; | |
7776 | int old_count = 0; | |
7777 | int new_count = 0; | |
7778 | ||
7779 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
7780 | old_count++; | |
7781 | ||
7782 | /* Now that we have the last section, push all the literal | |
7783 | sections to the end. */ | |
7784 | last_sec = get_last_sec (); | |
7785 | xtensa_reorder_seg_list (literal_head, last_sec); | |
7786 | xtensa_reorder_seg_list (init_literal_head, last_sec); | |
7787 | xtensa_reorder_seg_list (fini_literal_head, last_sec); | |
7788 | ||
7789 | /* Now perform the final error check. */ | |
7790 | for (sec = stdoutput->sections; sec != NULL; sec = sec->next) | |
7791 | new_count++; | |
7792 | assert (new_count == old_count); | |
7793 | } | |
7794 | ||
7795 | ||
7796 | segT | |
7797 | get_last_sec () | |
7798 | { | |
7799 | segT last_sec = stdoutput->sections; | |
7800 | while (last_sec->next != NULL) | |
7801 | last_sec = last_sec->next; | |
7802 | ||
7803 | return last_sec; | |
7804 | } | |
7805 | ||
7806 | ||
7807 | /* Change the emit state (seg, subseg, and frag related stuff) to the | |
7808 | correct location. Return a emit_state which can be passed to | |
7809 | xtensa_restore_emit_state to return to current fragment. */ | |
7810 | ||
7811 | void | |
7812 | xtensa_switch_to_literal_fragment (result) | |
7813 | emit_state *result; | |
7814 | { | |
7815 | /* When we mark a literal pool location, we want to put a frag in | |
7816 | the literal pool that points to it. But to do that, we want to | |
7817 | switch_to_literal_fragment. But literal sections don't have | |
7818 | literal pools, so their location is always null, so we would | |
7819 | recurse forever. This is kind of hacky, but it works. */ | |
7820 | ||
7821 | static bfd_boolean recursive = FALSE; | |
7822 | fragS *pool_location = get_literal_pool_location (now_seg); | |
7823 | bfd_boolean is_init = | |
7824 | (now_seg && !strcmp (segment_name (now_seg), INIT_SECTION_NAME)); | |
7825 | ||
7826 | bfd_boolean is_fini = | |
7827 | (now_seg && !strcmp (segment_name (now_seg), FINI_SECTION_NAME)); | |
7828 | ||
7829 | ||
7830 | if (pool_location == NULL | |
7831 | && !use_literal_section | |
7832 | && !recursive | |
7833 | && !is_init && ! is_fini) | |
7834 | { | |
7835 | as_warn (_("inlining literal pool; " | |
7836 | "specify location with .literal_position.")); | |
7837 | recursive = TRUE; | |
7838 | xtensa_mark_literal_pool_location (FALSE); | |
7839 | recursive = FALSE; | |
7840 | } | |
7841 | ||
7842 | /* Special case: If we are in the ".fini" or ".init" section, then | |
7843 | we will ALWAYS be generating to the ".fini.literal" and | |
7844 | ".init.literal" sections. */ | |
7845 | ||
7846 | if (is_init) | |
7847 | { | |
7848 | cache_literal_section (init_literal_head, | |
7849 | default_lit_sections.init_lit_seg_name, | |
7850 | &default_lit_sections.init_lit_seg); | |
7851 | xtensa_switch_section_emit_state (result, | |
7852 | default_lit_sections.init_lit_seg, 0); | |
7853 | } | |
7854 | else if (is_fini) | |
7855 | { | |
7856 | cache_literal_section (fini_literal_head, | |
7857 | default_lit_sections.fini_lit_seg_name, | |
7858 | &default_lit_sections.fini_lit_seg); | |
7859 | xtensa_switch_section_emit_state (result, | |
7860 | default_lit_sections.fini_lit_seg, 0); | |
7861 | } | |
7862 | else | |
7863 | { | |
7864 | cache_literal_section (literal_head, | |
7865 | default_lit_sections.lit_seg_name, | |
7866 | &default_lit_sections.lit_seg); | |
7867 | xtensa_switch_section_emit_state (result, | |
7868 | default_lit_sections.lit_seg, 0); | |
7869 | } | |
7870 | ||
7871 | if (!use_literal_section && | |
7872 | !is_init && !is_fini && | |
7873 | get_literal_pool_location (now_seg) != pool_location) | |
7874 | { | |
7875 | /* Close whatever frag is there. */ | |
7876 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
7877 | frag_now->tc_frag_data.literal_frag = pool_location; | |
7878 | frag_variant (rs_fill, 0, 0, 0, NULL, 0, NULL); | |
7879 | } | |
7880 | ||
7881 | /* Do a 4 byte align here. */ | |
7882 | frag_align (2, 0, 0); | |
7883 | } | |
7884 | ||
7885 | ||
7886 | /* Call this function before emitting data into the literal section. | |
7887 | This is a helper function for xtensa_switch_to_literal_fragment. | |
7888 | This is similar to a .section new_now_seg subseg. */ | |
7889 | ||
7890 | void | |
7891 | xtensa_switch_section_emit_state (state, new_now_seg, new_now_subseg) | |
7892 | emit_state *state; | |
7893 | segT new_now_seg; | |
7894 | subsegT new_now_subseg; | |
7895 | { | |
7896 | state->name = now_seg->name; | |
7897 | state->now_seg = now_seg; | |
7898 | state->now_subseg = now_subseg; | |
7899 | state->generating_literals = generating_literals; | |
7900 | generating_literals++; | |
7901 | subseg_new (segment_name (new_now_seg), new_now_subseg); | |
7902 | } | |
7903 | ||
7904 | ||
7905 | /* Use to restore the emitting into the normal place. */ | |
7906 | ||
7907 | void | |
7908 | xtensa_restore_emit_state (state) | |
7909 | emit_state *state; | |
7910 | { | |
7911 | generating_literals = state->generating_literals; | |
7912 | subseg_new (state->name, state->now_subseg); | |
7913 | } | |
7914 | ||
7915 | ||
7916 | /* Get a segment of a given name. If the segment is already | |
7917 | present, return it; otherwise, create a new one. */ | |
7918 | ||
7919 | static void | |
7920 | cache_literal_section (head, name, seg) | |
7921 | seg_list *head; | |
7922 | const char *name; | |
7923 | segT *seg; | |
7924 | { | |
7925 | segT current_section = now_seg; | |
7926 | int current_subsec = now_subseg; | |
7927 | ||
7928 | if (*seg != 0) | |
7929 | return; | |
7930 | *seg = retrieve_literal_seg (head, name); | |
7931 | subseg_set (current_section, current_subsec); | |
7932 | } | |
7933 | ||
7934 | ||
7935 | /* Get a segment of a given name. If the segment is already | |
7936 | present, return it; otherwise, create a new one. */ | |
7937 | ||
7938 | static segT | |
7939 | retrieve_literal_seg (head, name) | |
7940 | seg_list *head; | |
7941 | const char *name; | |
7942 | { | |
7943 | segT ret = 0; | |
7944 | ||
7945 | assert (head); | |
7946 | ||
7947 | ret = seg_present (name); | |
7948 | if (!ret) | |
7949 | { | |
7950 | ret = subseg_new (name, (subsegT) 0); | |
7951 | add_seg_list (head, ret); | |
7952 | bfd_set_section_flags (stdoutput, ret, SEC_HAS_CONTENTS | | |
7953 | SEC_READONLY | SEC_ALLOC | SEC_LOAD | SEC_CODE); | |
7954 | bfd_set_section_alignment (stdoutput, ret, 2); | |
7955 | } | |
7956 | ||
7957 | return ret; | |
7958 | } | |
7959 | ||
7960 | ||
7961 | /* Return a segment of a given name if it is present. */ | |
7962 | ||
7963 | static segT | |
7964 | seg_present (name) | |
7965 | const char *name; | |
7966 | { | |
7967 | segT seg; | |
7968 | seg = stdoutput->sections; | |
7969 | ||
7970 | while (seg) | |
7971 | { | |
7972 | if (!strcmp (segment_name (seg), name)) | |
7973 | return seg; | |
7974 | seg = seg->next; | |
7975 | } | |
7976 | ||
7977 | return 0; | |
7978 | } | |
7979 | ||
7980 | ||
7981 | /* Add a segment to a segment list. */ | |
7982 | ||
7983 | static void | |
7984 | add_seg_list (head, seg) | |
7985 | seg_list *head; | |
7986 | segT seg; | |
7987 | { | |
7988 | seg_list *n; | |
7989 | n = (seg_list *) xmalloc (sizeof (seg_list)); | |
7990 | assert (n); | |
7991 | ||
7992 | n->seg = seg; | |
7993 | n->next = head->next; | |
7994 | head->next = n; | |
7995 | } | |
7996 | ||
7997 | \f | |
7998 | /* Set up Property Tables after Relaxation. */ | |
7999 | ||
8000 | #define XTENSA_INSN_SEC_NAME ".xt.insn" | |
8001 | #define XTENSA_LIT_SEC_NAME ".xt.lit" | |
8002 | ||
8003 | void | |
8004 | xtensa_post_relax_hook () | |
8005 | { | |
8006 | xtensa_move_seg_list_to_beginning (literal_head); | |
8007 | xtensa_move_seg_list_to_beginning (init_literal_head); | |
8008 | xtensa_move_seg_list_to_beginning (fini_literal_head); | |
8009 | ||
8010 | xtensa_create_property_segments (get_frag_is_insn, | |
8011 | XTENSA_INSN_SEC_NAME, | |
8012 | xt_literal_sec); | |
8013 | if (use_literal_section) | |
8014 | xtensa_create_property_segments (get_frag_is_literal, | |
8015 | XTENSA_LIT_SEC_NAME, | |
8016 | xt_insn_sec); | |
8017 | } | |
8018 | ||
8019 | ||
8020 | static bfd_boolean | |
8021 | get_frag_is_literal (fragP) | |
8022 | const fragS *fragP; | |
8023 | { | |
8024 | assert (fragP != NULL); | |
8025 | return (fragP->tc_frag_data.is_literal); | |
8026 | } | |
8027 | ||
8028 | ||
8029 | static bfd_boolean | |
8030 | get_frag_is_insn (fragP) | |
8031 | const fragS *fragP; | |
8032 | { | |
8033 | assert (fragP != NULL); | |
8034 | return (fragP->tc_frag_data.is_insn); | |
8035 | } | |
8036 | ||
8037 | ||
8038 | static void | |
8039 | xtensa_create_property_segments (property_function, section_name_base, | |
8040 | sec_type) | |
8041 | frag_predicate property_function; | |
8042 | const char * section_name_base; | |
8043 | xt_section_type sec_type; | |
8044 | { | |
8045 | segT *seclist; | |
8046 | ||
8047 | /* Walk over all of the current segments. | |
8048 | Walk over each fragment | |
8049 | For each fragment that has instructions | |
8050 | Build an instruction record (append where possible). */ | |
8051 | ||
8052 | for (seclist = &stdoutput->sections; | |
8053 | seclist && *seclist; | |
8054 | seclist = &(*seclist)->next) | |
8055 | { | |
8056 | segT sec = *seclist; | |
8057 | if (section_has_property (sec, property_function)) | |
8058 | { | |
8059 | char * property_section_name = | |
8060 | xtensa_get_property_section_name (stdoutput, sec, | |
8061 | section_name_base); | |
8062 | segT insn_sec = retrieve_xtensa_section (property_section_name); | |
8063 | segment_info_type *xt_seg_info = retrieve_segment_info (insn_sec); | |
8064 | xtensa_block_info ** xt_blocks = | |
8065 | &xt_seg_info->tc_segment_info_data.blocks[sec_type]; | |
8066 | /* Walk over all of the frchains here and add new sections. */ | |
8067 | add_xt_block_frags (sec, insn_sec, xt_blocks, property_function); | |
8068 | } | |
8069 | } | |
8070 | ||
8071 | /* Now we fill them out.... */ | |
8072 | ||
8073 | for (seclist = &stdoutput->sections; | |
8074 | seclist && *seclist; | |
8075 | seclist = &(*seclist)->next) | |
8076 | { | |
8077 | segment_info_type *seginfo; | |
8078 | xtensa_block_info *block; | |
8079 | segT sec = *seclist; | |
8080 | seginfo = seg_info (sec); | |
8081 | block = seginfo->tc_segment_info_data.blocks[sec_type]; | |
8082 | ||
8083 | if (block) | |
8084 | { | |
8085 | xtensa_block_info *cur_block; | |
8086 | /* This is a section with some data. */ | |
8087 | size_t num_recs = 0; | |
8088 | size_t rec_size; | |
8089 | ||
8090 | for (cur_block = block; cur_block; cur_block = cur_block->next) | |
8091 | num_recs++; | |
8092 | ||
8093 | rec_size = num_recs * 8; | |
8094 | bfd_set_section_size (stdoutput, sec, rec_size); | |
8095 | ||
8096 | /* In order to make this work with the assembler, we have to | |
8097 | build some frags and then build the "fixups" for it. It | |
8098 | would be easier to just set the contents then set the | |
8099 | arlents. */ | |
8100 | ||
8101 | if (num_recs) | |
8102 | { | |
8103 | /* Allocate a fragment and leak it. */ | |
8104 | fragS *fragP; | |
8105 | size_t frag_size; | |
8106 | fixS *fixes; | |
8107 | frchainS *frchainP; | |
8108 | size_t i; | |
8109 | char *frag_data; | |
8110 | ||
8111 | frag_size = sizeof (fragS) + rec_size; | |
8112 | fragP = (fragS *) xmalloc (frag_size); | |
8113 | ||
8114 | memset (fragP, 0, frag_size); | |
8115 | fragP->fr_address = 0; | |
8116 | fragP->fr_next = NULL; | |
8117 | fragP->fr_fix = rec_size; | |
8118 | fragP->fr_var = 0; | |
8119 | fragP->fr_type = rs_fill; | |
8120 | /* the rest are zeros */ | |
8121 | ||
8122 | frchainP = seginfo->frchainP; | |
8123 | frchainP->frch_root = fragP; | |
8124 | frchainP->frch_last = fragP; | |
8125 | ||
8126 | fixes = (fixS *) xmalloc (sizeof (fixS) * num_recs); | |
8127 | memset (fixes, 0, sizeof (fixS) * num_recs); | |
8128 | ||
8129 | seginfo->fix_root = fixes; | |
8130 | seginfo->fix_tail = &fixes[num_recs - 1]; | |
8131 | cur_block = block; | |
8132 | frag_data = &fragP->fr_literal[0]; | |
8133 | for (i = 0; i < num_recs; i++) | |
8134 | { | |
8135 | fixS *fix = &fixes[i]; | |
8136 | assert (cur_block); | |
8137 | ||
8138 | /* Write the fixup. */ | |
8139 | if (i != num_recs - 1) | |
8140 | fix->fx_next = &fixes[i + 1]; | |
8141 | else | |
8142 | fix->fx_next = NULL; | |
8143 | fix->fx_size = 4; | |
8144 | fix->fx_done = 0; | |
8145 | fix->fx_frag = fragP; | |
8146 | fix->fx_where = i * 8; | |
8147 | fix->fx_addsy = section_symbol (cur_block->sec); | |
8148 | fix->fx_offset = cur_block->offset; | |
8149 | fix->fx_r_type = BFD_RELOC_32; | |
8150 | fix->fx_file = "Internal Assembly"; | |
8151 | fix->fx_line = 0; | |
8152 | ||
8153 | /* Write the length. */ | |
8154 | md_number_to_chars (&frag_data[4 + 8 * i], | |
8155 | cur_block->size, 4); | |
8156 | cur_block = cur_block->next; | |
8157 | } | |
8158 | } | |
8159 | } | |
8160 | } | |
8161 | } | |
8162 | ||
8163 | ||
8164 | segment_info_type * | |
8165 | retrieve_segment_info (seg) | |
8166 | segT seg; | |
8167 | { | |
8168 | segment_info_type *seginfo; | |
8169 | seginfo = (segment_info_type *) bfd_get_section_userdata (stdoutput, seg); | |
8170 | if (!seginfo) | |
8171 | { | |
8172 | frchainS *frchainP; | |
8173 | ||
8174 | seginfo = (segment_info_type *) xmalloc (sizeof (*seginfo)); | |
8175 | memset ((PTR) seginfo, 0, sizeof (*seginfo)); | |
8176 | seginfo->fix_root = NULL; | |
8177 | seginfo->fix_tail = NULL; | |
8178 | seginfo->bfd_section = seg; | |
8179 | seginfo->sym = 0; | |
8180 | /* We will not be dealing with these, only our special ones. */ | |
8181 | #if 0 | |
8182 | if (seg == bfd_abs_section_ptr) | |
8183 | abs_seg_info = seginfo; | |
8184 | else if (seg == bfd_und_section_ptr) | |
8185 | und_seg_info = seginfo; | |
8186 | else | |
8187 | #endif | |
8188 | bfd_set_section_userdata (stdoutput, seg, (PTR) seginfo); | |
8189 | #if 0 | |
8190 | seg_fix_rootP = &segment_info[seg].fix_root; | |
8191 | seg_fix_tailP = &segment_info[seg].fix_tail; | |
8192 | #endif | |
8193 | ||
8194 | frchainP = (frchainS *) xmalloc (sizeof (frchainS)); | |
8195 | frchainP->frch_root = NULL; | |
8196 | frchainP->frch_last = NULL; | |
8197 | frchainP->frch_next = NULL; | |
8198 | frchainP->frch_seg = seg; | |
8199 | frchainP->frch_subseg = 0; | |
8200 | frchainP->fix_root = NULL; | |
8201 | frchainP->fix_tail = NULL; | |
8202 | /* Do not init the objstack. */ | |
8203 | /* obstack_begin (&frchainP->frch_obstack, chunksize); */ | |
8204 | /* frchainP->frch_frag_now = fragP; */ | |
8205 | frchainP->frch_frag_now = NULL; | |
8206 | ||
8207 | seginfo->frchainP = frchainP; | |
8208 | } | |
8209 | ||
8210 | return seginfo; | |
8211 | } | |
8212 | ||
8213 | ||
8214 | segT | |
8215 | retrieve_xtensa_section (sec_name) | |
8216 | char *sec_name; | |
8217 | { | |
8218 | bfd *abfd = stdoutput; | |
8219 | flagword flags, out_flags, link_once_flags; | |
8220 | segT s; | |
8221 | ||
8222 | flags = bfd_get_section_flags (abfd, now_seg); | |
8223 | link_once_flags = (flags & SEC_LINK_ONCE); | |
8224 | if (link_once_flags) | |
8225 | link_once_flags |= (flags & SEC_LINK_DUPLICATES); | |
8226 | out_flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY | link_once_flags); | |
8227 | ||
8228 | s = bfd_make_section_old_way (abfd, sec_name); | |
8229 | if (s == NULL) | |
8230 | as_bad (_("could not create section %s"), sec_name); | |
8231 | if (!bfd_set_section_flags (abfd, s, out_flags)) | |
8232 | as_bad (_("invalid flag combination on section %s"), sec_name); | |
8233 | ||
8234 | return s; | |
8235 | } | |
8236 | ||
8237 | ||
8238 | bfd_boolean | |
8239 | section_has_property (sec, property_function) | |
8240 | segT sec; | |
8241 | frag_predicate property_function; | |
8242 | { | |
8243 | segment_info_type *seginfo = seg_info (sec); | |
8244 | fragS *fragP; | |
8245 | ||
8246 | if (seginfo && seginfo->frchainP) | |
8247 | { | |
8248 | for (fragP = seginfo->frchainP->frch_root; fragP; fragP = fragP->fr_next) | |
8249 | { | |
8250 | if (property_function (fragP) | |
8251 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
8252 | return TRUE; | |
8253 | } | |
8254 | } | |
8255 | return FALSE; | |
8256 | } | |
8257 | ||
8258 | ||
8259 | /* Two types of block sections exist right now: literal and insns. */ | |
8260 | ||
8261 | void | |
8262 | add_xt_block_frags (sec, xt_block_sec, xt_block, property_function) | |
8263 | segT sec; | |
8264 | segT xt_block_sec; | |
8265 | xtensa_block_info **xt_block; | |
8266 | frag_predicate property_function; | |
8267 | { | |
8268 | segment_info_type *seg_info; | |
8269 | segment_info_type *xt_seg_info; | |
8270 | bfd_vma seg_offset; | |
8271 | fragS *fragP; | |
8272 | ||
8273 | xt_seg_info = retrieve_segment_info (xt_block_sec); | |
8274 | seg_info = retrieve_segment_info (sec); | |
8275 | ||
8276 | /* Build it if needed. */ | |
8277 | while (*xt_block != NULL) | |
8278 | xt_block = &(*xt_block)->next; | |
8279 | /* We are either at NULL at the beginning or at the end. */ | |
8280 | ||
8281 | /* Walk through the frags. */ | |
8282 | seg_offset = 0; | |
8283 | ||
8284 | if (seg_info->frchainP) | |
8285 | { | |
8286 | for (fragP = seg_info->frchainP->frch_root; | |
8287 | fragP; | |
8288 | fragP = fragP->fr_next) | |
8289 | { | |
8290 | if (property_function (fragP) | |
8291 | && (fragP->fr_type != rs_fill || fragP->fr_fix != 0)) | |
8292 | { | |
8293 | if (*xt_block != NULL) | |
8294 | { | |
8295 | if ((*xt_block)->offset + (*xt_block)->size | |
8296 | == fragP->fr_address) | |
8297 | (*xt_block)->size += fragP->fr_fix; | |
8298 | else | |
8299 | xt_block = &((*xt_block)->next); | |
8300 | } | |
8301 | if (*xt_block == NULL) | |
8302 | { | |
8303 | xtensa_block_info *new_block = (xtensa_block_info *) | |
8304 | xmalloc (sizeof (xtensa_block_info)); | |
8305 | new_block->sec = sec; | |
8306 | new_block->offset = fragP->fr_address; | |
8307 | new_block->size = fragP->fr_fix; | |
8308 | new_block->next = NULL; | |
8309 | *xt_block = new_block; | |
8310 | } | |
8311 | } | |
8312 | } | |
8313 | } | |
8314 | } | |
8315 | ||
8316 | \f | |
8317 | /* Instruction Stack Functions (from "xtensa-istack.h"). */ | |
8318 | ||
8319 | void | |
8320 | istack_init (stack) | |
8321 | IStack *stack; | |
8322 | { | |
8323 | memset (stack, 0, sizeof (IStack)); | |
8324 | stack->ninsn = 0; | |
8325 | } | |
8326 | ||
8327 | ||
8328 | bfd_boolean | |
8329 | istack_empty (stack) | |
8330 | IStack *stack; | |
8331 | { | |
8332 | return (stack->ninsn == 0); | |
8333 | } | |
8334 | ||
8335 | ||
8336 | bfd_boolean | |
8337 | istack_full (stack) | |
8338 | IStack *stack; | |
8339 | { | |
8340 | return (stack->ninsn == MAX_ISTACK); | |
8341 | } | |
8342 | ||
8343 | ||
8344 | /* Return a pointer to the top IStack entry. | |
8345 | It is an error to call this if istack_empty () is true. */ | |
8346 | ||
8347 | TInsn * | |
8348 | istack_top (stack) | |
8349 | IStack *stack; | |
8350 | { | |
8351 | int rec = stack->ninsn - 1; | |
8352 | assert (!istack_empty (stack)); | |
8353 | return &stack->insn[rec]; | |
8354 | } | |
8355 | ||
8356 | ||
8357 | /* Add a new TInsn to an IStack. | |
8358 | It is an error to call this if istack_full () is true. */ | |
8359 | ||
8360 | void | |
8361 | istack_push (stack, insn) | |
8362 | IStack *stack; | |
8363 | TInsn *insn; | |
8364 | { | |
8365 | int rec = stack->ninsn; | |
8366 | assert (!istack_full (stack)); | |
8367 | tinsn_copy (&stack->insn[rec], insn); | |
8368 | stack->ninsn++; | |
8369 | } | |
8370 | ||
8371 | ||
8372 | /* Clear space for the next TInsn on the IStack and return a pointer | |
8373 | to it. It is an error to call this if istack_full () is true. */ | |
8374 | ||
8375 | TInsn * | |
8376 | istack_push_space (stack) | |
8377 | IStack *stack; | |
8378 | { | |
8379 | int rec = stack->ninsn; | |
8380 | TInsn *insn; | |
8381 | assert (!istack_full (stack)); | |
8382 | insn = &stack->insn[rec]; | |
8383 | memset (insn, 0, sizeof (TInsn)); | |
8384 | stack->ninsn++; | |
8385 | return insn; | |
8386 | } | |
8387 | ||
8388 | ||
8389 | /* Remove the last pushed instruction. It is an error to call this if | |
8390 | istack_empty () returns true. */ | |
8391 | ||
8392 | void | |
8393 | istack_pop (stack) | |
8394 | IStack *stack; | |
8395 | { | |
8396 | int rec = stack->ninsn - 1; | |
8397 | assert (!istack_empty (stack)); | |
8398 | stack->ninsn--; | |
8399 | memset (&stack->insn[rec], 0, sizeof (TInsn)); | |
8400 | } | |
8401 | ||
8402 | \f | |
8403 | /* TInsn functions. */ | |
8404 | ||
8405 | void | |
8406 | tinsn_init (dst) | |
8407 | TInsn *dst; | |
8408 | { | |
8409 | memset (dst, 0, sizeof (TInsn)); | |
8410 | } | |
8411 | ||
8412 | ||
8413 | void | |
8414 | tinsn_copy (dst, src) | |
8415 | TInsn *dst; | |
8416 | const TInsn *src; | |
8417 | { | |
8418 | tinsn_init (dst); | |
8419 | memcpy (dst, src, sizeof (TInsn)); | |
8420 | } | |
8421 | ||
8422 | ||
8423 | /* Get the ``num''th token of the TInsn. | |
8424 | It is illegal to call this if num > insn->ntoks. */ | |
8425 | ||
8426 | expressionS * | |
8427 | tinsn_get_tok (insn, num) | |
8428 | TInsn *insn; | |
8429 | int num; | |
8430 | { | |
8431 | assert (num < insn->ntok); | |
8432 | return &insn->tok[num]; | |
8433 | } | |
8434 | ||
8435 | ||
8436 | /* Return true if ANY of the operands in the insn are symbolic. */ | |
8437 | ||
8438 | static bfd_boolean | |
8439 | tinsn_has_symbolic_operands (insn) | |
8440 | const TInsn *insn; | |
8441 | { | |
8442 | int i; | |
8443 | int n = insn->ntok; | |
8444 | ||
8445 | assert (insn->insn_type == ITYPE_INSN); | |
8446 | ||
8447 | for (i = 0; i < n; ++i) | |
8448 | { | |
8449 | switch (insn->tok[i].X_op) | |
8450 | { | |
8451 | case O_register: | |
8452 | case O_constant: | |
8453 | break; | |
8454 | default: | |
8455 | return TRUE; | |
8456 | } | |
8457 | } | |
8458 | return FALSE; | |
8459 | } | |
8460 | ||
8461 | ||
8462 | bfd_boolean | |
8463 | tinsn_has_invalid_symbolic_operands (insn) | |
8464 | const TInsn *insn; | |
8465 | { | |
8466 | int i; | |
8467 | int n = insn->ntok; | |
8468 | ||
8469 | assert (insn->insn_type == ITYPE_INSN); | |
8470 | ||
8471 | for (i = 0; i < n; ++i) | |
8472 | { | |
8473 | switch (insn->tok[i].X_op) | |
8474 | { | |
8475 | case O_register: | |
8476 | case O_constant: | |
8477 | break; | |
8478 | default: | |
8479 | if (i == get_relaxable_immed (insn->opcode)) | |
8480 | break; | |
8481 | as_bad (_("invalid symbolic operand %d on '%s'"), | |
8482 | i, xtensa_opcode_name (xtensa_default_isa, insn->opcode)); | |
8483 | return TRUE; | |
8484 | } | |
8485 | } | |
8486 | return FALSE; | |
8487 | } | |
8488 | ||
8489 | ||
8490 | /* For assembly code with complex expressions (e.g. subtraction), | |
8491 | we have to build them in the literal pool so that | |
8492 | their results are calculated correctly after relaxation. | |
8493 | The relaxation only handles expressions that | |
8494 | boil down to SYMBOL + OFFSET. */ | |
8495 | ||
8496 | static bfd_boolean | |
8497 | tinsn_has_complex_operands (insn) | |
8498 | const TInsn *insn; | |
8499 | { | |
8500 | int i; | |
8501 | int n = insn->ntok; | |
8502 | assert (insn->insn_type == ITYPE_INSN); | |
8503 | for (i = 0; i < n; ++i) | |
8504 | { | |
8505 | switch (insn->tok[i].X_op) | |
8506 | { | |
8507 | case O_register: | |
8508 | case O_constant: | |
8509 | case O_symbol: | |
8510 | break; | |
8511 | default: | |
8512 | return TRUE; | |
8513 | } | |
8514 | } | |
8515 | return FALSE; | |
8516 | } | |
8517 | ||
8518 | ||
8519 | /* Convert the constant operands in the t_insn to insnbuf. | |
8520 | Return true if there is a symbol in the immediate field. | |
8521 | ||
8522 | Before this is called, | |
8523 | 1) the number of operands are correct | |
8524 | 2) the t_insn is a ITYPE_INSN | |
8525 | 3) ONLY the relaxable_ is built | |
8526 | 4) All operands are O_constant, O_symbol. All constants fit | |
8527 | The return value tells whether there are any remaining O_symbols. */ | |
8528 | ||
8529 | static bfd_boolean | |
8530 | tinsn_to_insnbuf (t_insn, insnbuf) | |
8531 | TInsn *t_insn; | |
8532 | xtensa_insnbuf insnbuf; | |
8533 | { | |
8534 | xtensa_isa isa = xtensa_default_isa; | |
8535 | xtensa_opcode opcode = t_insn->opcode; | |
8536 | bfd_boolean has_fixup = FALSE; | |
8537 | int noperands = xtensa_num_operands (isa, opcode); | |
8538 | int i; | |
8539 | uint32 opnd_value; | |
8540 | char *file_name; | |
8541 | int line; | |
8542 | ||
8543 | assert (t_insn->insn_type == ITYPE_INSN); | |
8544 | if (noperands != t_insn->ntok) | |
8545 | as_fatal (_("operand number mismatch")); | |
8546 | ||
8547 | xtensa_encode_insn (isa, opcode, insnbuf); | |
8548 | ||
8549 | for (i = 0; i < noperands; ++i) | |
8550 | { | |
8551 | expressionS *expr = &t_insn->tok[i]; | |
8552 | xtensa_operand operand = xtensa_get_operand (isa, opcode, i); | |
8553 | switch (expr->X_op) | |
8554 | { | |
8555 | case O_register: | |
8556 | /* The register number has already been checked in | |
8557 | expression_maybe_register, so we don't need to check here. */ | |
8558 | opnd_value = expr->X_add_number; | |
8559 | (void) xtensa_operand_encode (operand, &opnd_value); | |
8560 | xtensa_operand_set_field (operand, insnbuf, opnd_value); | |
8561 | break; | |
8562 | ||
8563 | case O_constant: | |
8564 | as_where (&file_name, &line); | |
8565 | /* It is a constant and we called this function, | |
8566 | then we have to try to fit it. */ | |
8567 | xtensa_insnbuf_set_operand (insnbuf, opcode, operand, | |
8568 | expr->X_add_number, file_name, line); | |
8569 | break; | |
8570 | ||
8571 | case O_symbol: | |
8572 | default: | |
8573 | has_fixup = TRUE; | |
8574 | break; | |
8575 | } | |
8576 | } | |
8577 | return has_fixup; | |
8578 | } | |
8579 | ||
8580 | ||
8581 | /* Check the instruction arguments. Return true on failure. */ | |
8582 | ||
8583 | bfd_boolean | |
8584 | tinsn_check_arguments (insn) | |
8585 | const TInsn *insn; | |
8586 | { | |
8587 | xtensa_isa isa = xtensa_default_isa; | |
8588 | xtensa_opcode opcode = insn->opcode; | |
8589 | ||
8590 | if (opcode == XTENSA_UNDEFINED) | |
8591 | { | |
8592 | as_bad (_("invalid opcode")); | |
8593 | return TRUE; | |
8594 | } | |
8595 | ||
8596 | if (xtensa_num_operands (isa, opcode) > insn->ntok) | |
8597 | { | |
8598 | as_bad (_("too few operands")); | |
8599 | return TRUE; | |
8600 | } | |
8601 | ||
8602 | if (xtensa_num_operands (isa, opcode) < insn->ntok) | |
8603 | { | |
8604 | as_bad (_("too many operands")); | |
8605 | return TRUE; | |
8606 | } | |
8607 | return FALSE; | |
8608 | } | |
8609 | ||
8610 | ||
8611 | /* Load an instruction from its encoded form. */ | |
8612 | ||
8613 | static void | |
8614 | tinsn_from_chars (t_insn, f) | |
8615 | TInsn *t_insn; | |
8616 | char *f; | |
8617 | { | |
8618 | static xtensa_insnbuf insnbuf = NULL; | |
8619 | int i; | |
8620 | xtensa_opcode opcode; | |
8621 | xtensa_isa isa = xtensa_default_isa; | |
8622 | ||
8623 | if (!insnbuf) | |
8624 | insnbuf = xtensa_insnbuf_alloc (isa); | |
8625 | ||
8626 | xtensa_insnbuf_from_chars (isa, insnbuf, f); | |
8627 | opcode = xtensa_decode_insn (isa, insnbuf); | |
8628 | ||
8629 | /* Find the immed. */ | |
8630 | tinsn_init (t_insn); | |
8631 | t_insn->insn_type = ITYPE_INSN; | |
8632 | t_insn->is_specific_opcode = FALSE; /* Must not be specific. */ | |
8633 | t_insn->opcode = opcode; | |
8634 | t_insn->ntok = xtensa_num_operands (isa, opcode); | |
8635 | for (i = 0; i < t_insn->ntok; i++) | |
8636 | { | |
8637 | set_expr_const (&t_insn->tok[i], | |
8638 | xtensa_insnbuf_get_operand (insnbuf, opcode, i)); | |
8639 | } | |
8640 | } | |
8641 | ||
8642 | ||
8643 | /* Read the value of the relaxable immed from the fr_symbol and fr_offset. */ | |
8644 | ||
8645 | static void | |
8646 | tinsn_immed_from_frag (t_insn, fragP) | |
8647 | TInsn *t_insn; | |
8648 | fragS *fragP; | |
8649 | { | |
8650 | xtensa_opcode opcode = t_insn->opcode; | |
8651 | int opnum; | |
8652 | ||
8653 | if (fragP->fr_symbol) | |
8654 | { | |
8655 | opnum = get_relaxable_immed (opcode); | |
8656 | set_expr_symbol_offset (&t_insn->tok[opnum], | |
8657 | fragP->fr_symbol, fragP->fr_offset); | |
8658 | } | |
8659 | } | |
8660 | ||
8661 | ||
8662 | static int | |
8663 | get_num_stack_text_bytes (istack) | |
8664 | IStack *istack; | |
8665 | { | |
8666 | int i; | |
8667 | int text_bytes = 0; | |
8668 | ||
8669 | for (i = 0; i < istack->ninsn; i++) | |
8670 | { | |
8671 | TInsn *t_insn = &istack->insn[i]; | |
8672 | if (t_insn->insn_type == ITYPE_INSN) | |
8673 | text_bytes += xg_get_insn_size (t_insn); | |
8674 | } | |
8675 | return text_bytes; | |
8676 | } | |
8677 | ||
8678 | ||
8679 | static int | |
8680 | get_num_stack_literal_bytes (istack) | |
8681 | IStack *istack; | |
8682 | { | |
8683 | int i; | |
8684 | int lit_bytes = 0; | |
8685 | ||
8686 | for (i = 0; i < istack->ninsn; i++) | |
8687 | { | |
8688 | TInsn *t_insn = &istack->insn[i]; | |
8689 | ||
8690 | if (t_insn->insn_type == ITYPE_LITERAL && t_insn->ntok == 1) | |
8691 | lit_bytes += 4; | |
8692 | } | |
8693 | return lit_bytes; | |
8694 | } | |
8695 | ||
8696 | \f | |
8697 | /* Expression utilities. */ | |
8698 | ||
8699 | /* Return true if the expression is an integer constant. */ | |
8700 | ||
8701 | bfd_boolean | |
8702 | expr_is_const (s) | |
8703 | const expressionS *s; | |
8704 | { | |
8705 | return (s->X_op == O_constant); | |
8706 | } | |
8707 | ||
8708 | ||
8709 | /* Get the expression constant. | |
8710 | Calling this is illegal if expr_is_const () returns true. */ | |
8711 | ||
8712 | offsetT | |
8713 | get_expr_const (s) | |
8714 | const expressionS *s; | |
8715 | { | |
8716 | assert (expr_is_const (s)); | |
8717 | return s->X_add_number; | |
8718 | } | |
8719 | ||
8720 | ||
8721 | /* Set the expression to a constant value. */ | |
8722 | ||
8723 | void | |
8724 | set_expr_const (s, val) | |
8725 | expressionS *s; | |
8726 | offsetT val; | |
8727 | { | |
8728 | s->X_op = O_constant; | |
8729 | s->X_add_number = val; | |
8730 | s->X_add_symbol = NULL; | |
8731 | s->X_op_symbol = NULL; | |
8732 | } | |
8733 | ||
8734 | ||
8735 | /* Set the expression to a symbol + constant offset. */ | |
8736 | ||
8737 | void | |
8738 | set_expr_symbol_offset (s, sym, offset) | |
8739 | expressionS *s; | |
8740 | symbolS *sym; | |
8741 | offsetT offset; | |
8742 | { | |
8743 | s->X_op = O_symbol; | |
8744 | s->X_add_symbol = sym; | |
8745 | s->X_op_symbol = NULL; /* unused */ | |
8746 | s->X_add_number = offset; | |
8747 | } | |
8748 | ||
8749 | ||
8750 | bfd_boolean | |
8751 | expr_is_equal (s1, s2) | |
8752 | expressionS *s1; | |
8753 | expressionS *s2; | |
8754 | { | |
8755 | if (s1->X_op != s2->X_op) | |
8756 | return FALSE; | |
8757 | if (s1->X_add_symbol != s2->X_add_symbol) | |
8758 | return FALSE; | |
8759 | if (s1->X_op_symbol != s2->X_op_symbol) | |
8760 | return FALSE; | |
8761 | if (s1->X_add_number != s2->X_add_number) | |
8762 | return FALSE; | |
8763 | return TRUE; | |
8764 | } | |
8765 | ||
8766 | ||
8767 | static void | |
8768 | copy_expr (dst, src) | |
8769 | expressionS *dst; | |
8770 | const expressionS *src; | |
8771 | { | |
8772 | memcpy (dst, src, sizeof (expressionS)); | |
8773 | } | |
8774 | ||
8775 | \f | |
8776 | /* Support for Tensilica's "--rename-section" option. */ | |
8777 | ||
8778 | #ifdef XTENSA_SECTION_RENAME | |
8779 | ||
8780 | struct rename_section_struct | |
8781 | { | |
8782 | char *old_name; | |
8783 | char *new_name; | |
8784 | struct rename_section_struct *next; | |
8785 | }; | |
8786 | ||
8787 | static struct rename_section_struct *section_rename; | |
8788 | ||
8789 | ||
8790 | /* Parse the string oldname=new_name:oldname2=new_name2 | |
8791 | and call add_section_rename. */ | |
8792 | ||
8793 | void | |
8794 | build_section_rename (arg) | |
8795 | const char *arg; | |
8796 | { | |
8797 | char *this_arg = NULL; | |
8798 | char *next_arg = NULL; | |
8799 | ||
8800 | for (this_arg = strdup (arg); this_arg != NULL; this_arg = next_arg) | |
8801 | { | |
8802 | if (this_arg) | |
8803 | { | |
8804 | next_arg = strchr (this_arg, ':'); | |
8805 | if (next_arg) | |
8806 | { | |
8807 | *next_arg = '\0'; | |
8808 | next_arg++; | |
8809 | } | |
8810 | } | |
8811 | { | |
8812 | char *old_name = this_arg; | |
8813 | char *new_name = strchr (this_arg, '='); | |
8814 | ||
8815 | if (*old_name == '\0') | |
8816 | { | |
8817 | as_warn (_("ignoring extra '-rename-section' delimiter ':'")); | |
8818 | continue; | |
8819 | } | |
8820 | if (!new_name || new_name[1] == '\0') | |
8821 | { | |
8822 | as_warn (_("ignoring invalid '-rename-section' " | |
8823 | "specification: '%s'"), old_name); | |
8824 | continue; | |
8825 | } | |
8826 | *new_name = '\0'; | |
8827 | new_name++; | |
8828 | add_section_rename (old_name, new_name); | |
8829 | } | |
8830 | } | |
8831 | } | |
8832 | ||
8833 | ||
8834 | static void | |
8835 | add_section_rename (old_name, new_name) | |
8836 | char *old_name; | |
8837 | char *new_name; | |
8838 | { | |
8839 | struct rename_section_struct *r = section_rename; | |
8840 | ||
8841 | /* Check for invalid section renaming. */ | |
8842 | for (r = section_rename; r != NULL; r = r->next) | |
8843 | { | |
8844 | if (strcmp (r->old_name, old_name) == 0) | |
8845 | as_bad (_("section %s renamed multiple times"), old_name); | |
8846 | if (strcmp (r->new_name, new_name) == 0) | |
8847 | as_bad (_("multiple sections remapped to output section %s"), | |
8848 | new_name); | |
8849 | } | |
8850 | ||
8851 | /* Now add it. */ | |
8852 | r = (struct rename_section_struct *) | |
8853 | xmalloc (sizeof (struct rename_section_struct)); | |
8854 | r->old_name = strdup (old_name); | |
8855 | r->new_name = strdup (new_name); | |
8856 | r->next = section_rename; | |
8857 | section_rename = r; | |
8858 | } | |
8859 | ||
8860 | ||
8861 | const char * | |
8862 | xtensa_section_rename (name) | |
8863 | const char *name; | |
8864 | { | |
8865 | struct rename_section_struct *r = section_rename; | |
8866 | ||
8867 | for (r = section_rename; r != NULL; r = r->next) | |
8868 | if (strcmp (r->old_name, name) == 0) | |
8869 | return r->new_name; | |
8870 | ||
8871 | return name; | |
8872 | } | |
8873 | ||
8874 | #endif /* XTENSA_SECTION_RENAME */ | |
8875 | ||
8876 | \f | |
8877 | /* Combining identical literals. */ | |
8878 | ||
8879 | #ifdef XTENSA_COMBINE_LITERALS | |
8880 | ||
8881 | /* This code records all the .literal values that are ever seen and | |
8882 | detects duplicates so that identical values can be combined. This | |
8883 | is currently disabled because it's only half-baked. */ | |
8884 | ||
8885 | #define XTENSA_LIT_PLUS_OFFSET ".xtensa_litsym_offset_" | |
8886 | ||
8887 | /* TODO: make this into a more efficient data structure. */ | |
8888 | typedef struct literal_list_elem | |
8889 | { | |
8890 | symbolS *sym; /* The symbol that points to this literal. */ | |
8891 | expressionS expr; /* The expression. */ | |
8892 | segT seg; | |
8893 | struct literal_list_elem *next; /* Next in the list. */ | |
8894 | } literal_list_elem; | |
8895 | ||
8896 | literal_list_elem *lit_cache = NULL; | |
8897 | ||
8898 | typedef struct lit_sym_translation | |
8899 | { | |
8900 | char *name; /* This name. */ | |
8901 | offsetT offset; /* Plus this offset. */ | |
8902 | symbolS *sym; /* Should really mean this symbol. */ | |
8903 | struct lit_sym_translation *next; | |
8904 | } lit_sym_translation; | |
8905 | ||
8906 | lit_sym_translation *translations = NULL; | |
8907 | ||
8908 | static bfd_boolean is_duplicate_expression | |
8909 | PARAMS ((expressionS *, expressionS *)); | |
8910 | static void cache_literal | |
8911 | PARAMS ((char *sym_name, expressionS *, segT)); | |
8912 | static symbolS *is_duplicate_literal | |
8913 | PARAMS ((expressionS *, segT)); | |
8914 | ||
8915 | ||
8916 | static bfd_boolean | |
8917 | is_duplicate_expression (e1, e2) | |
8918 | expressionS *e1; | |
8919 | expressionS *e2; | |
8920 | { | |
8921 | if (e1->X_op != e2->X_op) | |
8922 | return FALSE; | |
8923 | if (e1->X_add_symbol != e2->X_add_symbol) | |
8924 | return FALSE; | |
8925 | if (e1->X_op_symbol != e2->X_op_symbol) | |
8926 | return FALSE; | |
8927 | if (e1->X_add_number != e2->X_add_number) | |
8928 | return FALSE; | |
8929 | if (e1->X_unsigned != e2->X_unsigned) | |
8930 | return FALSE; | |
8931 | if (e1->X_md != e2->X_md) | |
8932 | return FALSE; | |
8933 | return TRUE; | |
8934 | } | |
8935 | ||
8936 | ||
8937 | static void | |
8938 | cache_literal (sym_name, expP, seg) | |
8939 | char *sym_name; | |
8940 | expressionS *expP; | |
8941 | segT seg; | |
8942 | { | |
8943 | literal_list_elem *lit = xmalloc (sizeof (literal_list_elem)); | |
8944 | ||
8945 | lit->sym = symbol_find (sym_name); | |
8946 | lit->expr = *expP; | |
8947 | lit->seg = seg; | |
8948 | lit->next = lit_cache; | |
8949 | lit_cache = lit; | |
8950 | } | |
8951 | ||
8952 | ||
8953 | static symbolS * | |
8954 | is_duplicate_literal (expr, seg) | |
8955 | expressionS *expr; | |
8956 | segT seg; | |
8957 | { | |
8958 | literal_list_elem *lit = lit_cache; | |
8959 | ||
8960 | while (lit != NULL) | |
8961 | { | |
8962 | if (is_duplicate_expression (&lit->expr, expr) && seg == lit->seg) | |
8963 | return lit->sym; | |
8964 | lit = lit->next; | |
8965 | } | |
8966 | ||
8967 | return NULL; | |
8968 | } | |
8969 | ||
8970 | ||
8971 | static void | |
8972 | add_lit_sym_translation (name, offset, target) | |
8973 | char * name; | |
8974 | offsetT offset; | |
8975 | symbolS * target; | |
8976 | { | |
8977 | lit_sym_translation *lit_trans = xmalloc (sizeof (lit_sym_translation)); | |
8978 | ||
8979 | lit_trans->name = name; | |
8980 | lit_trans->offset = offset; | |
8981 | lit_trans->sym = target; | |
8982 | lit_trans->next = translations; | |
8983 | translations = lit_trans; | |
8984 | } | |
8985 | ||
8986 | ||
8987 | static void | |
8988 | find_lit_sym_translation (expr) | |
8989 | expressionS *expr; | |
8990 | { | |
8991 | lit_sym_translation *lit_trans = translations; | |
8992 | ||
8993 | if (expr->X_op != O_symbol) | |
8994 | return; | |
8995 | ||
8996 | while (lit_trans != NULL) | |
8997 | { | |
8998 | if (lit_trans->offset == expr->X_add_number | |
8999 | && strcmp (lit_trans->name, S_GET_NAME (expr->X_add_symbol)) == 0) | |
9000 | { | |
9001 | expr->X_add_symbol = lit_trans->sym; | |
9002 | expr->X_add_number = 0; | |
9003 | return; | |
9004 | } | |
9005 | lit_trans = lit_trans->next; | |
9006 | } | |
9007 | } | |
9008 | ||
9009 | #endif /* XTENSA_COMBINE_LITERALS */ |